
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1986

Fourth Generation Programming Languages.

Jacobson, Everett Lee

http://hdl.handle.net/10945/21874

J JJ JJXJ

rB SCHOOL
30G*

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
FOURTH GENERATION PROGRAMMING LANGUAGES

by

Everett Lee Jacobson

June 1986

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited

T 2348 7

8

IURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY

DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited.

PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NAME OF PERFORMING ORGANIZATION

aval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code 5 2

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School
ADDRESS {City. State, and ZIP Code)

onterey, California 93943-5000

7b. ADDRESS (City. State, and ZIP Code)

Monterey, California 93943-5000

NAME OF FUNDING/SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUM8ER

ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

TITLE (Include Security Clarification)

DURTH GENERATION PROGRAMMING LANGUAGES

PERSONAL AUTHOR(S)

acobson, Everett Lee
TYPE OF REPORT

aster's thesis
3b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day)

1986 June
15 PAGE COUNT

75
SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB-GROUP

1
* SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Fourth Generation

ABSTRACT (Continue on reverse if necessary and identify by block number)

With an ever increasing demand for new program applications and the
ailure of older generations of languages, such as COBOL, PL/I, PASCAL,
be, to keep up with this increased demand, there exists a need for new
Bchniques and approaches to programming. Greater programmer/user pro-
activity and enhanced user friendliness, to allow more end users to
svelop applications on their own, are goals sought by industry in order
3 reduce skyrocketing backlogs of applications. This paper describes a
2W generation of programming languages, used in the development of
isiness and scientific applications, that addresses and achieves these
)als. The basic characteristics of Fourth Generation Languages is re-
newed and the design and implementation of a Fourth Generation Language
> proposed. Although Fourth Generation Languages do increase user pro-
lctivity and are easier to learn and use than previous generations of

STrtlBUTlON/ AVAILABILITY OF ABSTRACT

3 UNCLASSIFIED/UNLIMITED SAME AS RPT D DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
NAME OF RESPONSIBLE INDIVIDUAL

Thomas Wu
22b TELEPHONE (Include Area Code)

(408) 646-3391
22c OFFICE SYMBOL

Code 52Wq
FORM 1473, 84 mar B3 APR edition may be used until exhausted

All other editions are obsolete

1

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION Of THIS PAOe fWh«n Data Bnffd)

19. ABSTRACT (cont'd)

languages, much research remains to be done before general end
user computing becomes the norm rather than the exception.

?
'
J ?eC1

Approved for public release; distribution is unlimited,

Fourth Generation Programming Languages

by

Everett Lee Jacobson
Captain, United States Marine Corps

B.S., Washington State University, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1986

ABSTRACT

With an ever increasing demand for new program applica-

tions and the failure of older generations of languages,

such as COBOL, PL/ I, PASCAL, etc., to keep up with this in-

creased demand, there exists a need for new techniques and

approaches to programming. Greater programmer /user produc-

tivity and enhanced user friendliness, to allow more end

users to develop applications on their own, are goals sought

by industry in order to reduce skyrocketing backlogs of

applications. This paper describes a new generation of pro-

gramming languages, used in the development of business and

scientific applications, that addresses and achieves these

goals. The basic characteristics of Fourth Generation

Languages is reviewed and the design and implementation of

a Fourth Generation Language is proposed. Although Fourth

Generation Languages do increase user productivity and are

easier to learn and use than previous generations of lan-

guages, much research remains to be done before general end

user computing becomes the norm rather than the exception.

TABLE OF CONTENTS

I . INTRODUCTION 6

A

.

BACKGROUND 6

B

.

THE CHALLENGE 8

II . WHY FOURTH GENERATION? 10

III . FOURTH GENERATION LANGUAGE CRITERIA 14

A

.

EASY TO LEARN 14

B. EASY TO USE 16

C

.

POWERFUL 21

IV. DESIGN OF A FOURTH GENERATION LANGUAGE 28

A. DESIGN OVERVIEW 32

B

.

COMPONENTS 3 7

C. APPLICATION DEVELOPMENT 4

D

.

EXAMPLE 52

V. IMPLEMENTATION 5 9

A

.

ARCHITECTURE 6

B

.

ALGORITHMS , 6 5

VI . CONCLUSIONS 7

LIST OF REFERENCES 72

BIBLIOGRAPHY 73

INITIAL DISTRIBUTION LIST 74

I. INTRODUCTION

A treatise on computer programming languages should be-

gin with asking why we even have or need these languages.

The answer is simply that programming languages are the medi-

um of communication between man and machines, enabling us to

instruct the machine as to what we want it to do. Two of

the primary goals in the development of programming languages

have been to make them easy to use yet rich in functionality

or powerful enough to accomplish the wide range of tasks

various users might demand of their computing system. Or

another way of looking at these goals is that we continue to

seek ways to make computers more accessible or useful to

more people while simultaneously improving their productivity

in the development of application programs. This paper will

explore the advances made toward meeting these goals, summa-

rize the basic characteristics common to all languages con-

sidered to be Fourth Generation Languages and propose a

language to achieve this goal.

A. BACKGROUND

Currently, we have advanced through three generations of

languages and a new generation is under development , although

some would argue that this fourth generation of languages is

already present on the market. This moot point will be

settled with time and by those with the advantage of hindsight

6

However, I believe that most people would agree that the

first generation of programming languages began with the ad-

vent of the computer itself and comprised machine languages.

Unique to each computer model , machine languages are based

on sequences of zeroes and ones, a code quite easily followed

by machines but tough for the human eye and mind to keep

track of and program in. This difficulty of dealing with

zeroes and ones was overcome by the development of mnemonic

codes which could be translated into zeroes and ones for the

machine but which could be much more easily understood by

programmers—these were called assembly languages. But as-

sembly languages have also proven to be rather difficult to

use and understand even in simple computing tasks. So, yet

another generation of languages, the third, was spawned and

they (PL/I, COBOL, FORTRAN, etc.) have proved to be easier

to use and understand because of the structured coding and

procedural approach to problem solving utilized by these

languages. Can we than say that these Third Generation Lan-

guages have achieved the goals of being easy to use and

functionally powerful? The answer lies with those who are

using these programming languages--to a programmer with ex-

cellent training and years of experience, any or all of

these languages may be considered easy to use but to someone

with little or no programming experience, they are extremely

confusing to say the least.

B. THE CHALLENGE

Since the marketing of the first computer, the usefulness

of computers has increased substantially due to advances in

both hardware and software, and the number and experience

level of people utilizing computers has also increased.

Simultaneously, computing costs have declined, primarily due

to hardware. I am convinced that more and more people will

be using or wanting to use computers in their daily lives

and unless better programming languages are developed, many

of these people will face seemingly insurmountable hurdles

because they just do not have the time or inclination to

learn. a programming language. As a result they will continue

to rely on_ overloaded data processing centers and "canned"

software which may or may not meet their current needs and

most likely not meet their future needs. Those who wish to

use the computer to do something beyond the capabilities of

the "canned" programs will discover that they have to write

their own program. Learning to program, unfortunately, is

still a time consuming and oftentimes frustrating endeavor.

The challenge is to bring computer capabilities usefully

and simply to people whose work can be benefitted by pro-

gramming (Shu, 1985, p. 326). In other words, I believe the

Third Generation Languages have not gone far enough in mak-

ing communication with a computer easy as well as functional.

This is where the Fourth Generation Languages must continue

the advance toward better man and machine communications,

and make computer usage truly acceptable to the general

populace.

II. WHY FOURTH GENERATION?

Over the past couple of decades, programming languages

have evolved rather slowly. Although there have been dif-

ferences in data, control, name and syntactic structures,

the basic constructs of FORTRAN, COBOL, PL/l, PASCAL, etc.,

remain somewhat similar. Dramatic increases in programmer

productivity have not been forthcoming, yet the need for

improvement in this area continues to grow. James Martin

(1985, p. 1) highlights this need as follows: "By any set

of estimates of future computing power, the productivity of

application development must increase by two orders of mag-

nitude over the next ten years. This cannot happen if com-

puters are programmed with COBOL, PL/ I, PASCAL, or ADA."

And as the use of computers continues to spread, many people

who are not experienced programmers must be able to put com-

puters to work for themselves and their employers. Appli-

cation development without professional programmers is

becoming a vigorous trend in computing (Martin, 1982, pp.

56-58). Application programs will increasingly be created by

end users, business consultants and system analysts. These

individuals need a powerful language with which they can

quickly build their own applications and a language which

allows them to be able to concentrate on the application

rather than on the intricacies of coding. Removing

10

unnecessary complexity is very important because it allows

the user to spend his mental effort on what really matters--

the purpose of the application. End users require languages

that are as easy to use as possible; user friendly languages

without the need to remember mnemonics, formats, sequences

and complex controls.

All of the previous generations of programming languages

have not satisfied these needs. Therefore, a new generation

of computer languages needs to be developed which is more

powerful than the previous generation so that results can be

obtained much faster. It must also address the issue of

user friendliness. Currently, new tools referred to as

"High-productivity languages," "Non-procedural languages,"

and "Application generators," are being introduced and are

providing us with an improved ability to put the computer to

use. Each of these tools fit or come close to fitting the

criteria outlined in the next section and thus may be clas-

sified as Fourth Generation Languages. With Fourth Genera-

tion Languages, computer power is becoming available to any

thinking person and without the need of extensive training

in programming.

Most Third Generation Languages utilized a monologue

approach, with the user writing a program, compiling it,

debugging it and finally running the program. However,

many of the Fourth Generation Languages employ a dialogue,

with the user and computer interacting as the specific

11

application is being built. Dialogues, where the user may

respond to menus, fill in panels presented to him on the

screen, move a cursor or bar on a screen or manipulate data

in screen windows, allows the user to catch errors while

they are being made or avoid them altogether so that later

debugging is simplified.

Fourth Generation Languages are clearly distinct from

the previous generations of programming languages and these

distinctions are what give these languages the edge in terms

of enhanced productivity and increased user friendliness.

Their impact will shape data processing developments in the

rest of the decade and beyond.

With simple commercial data processing applications, im-

provements in productivity due to the use of a Fourth Gen-

eration Language, vice a Third Generation Language, have

been documented to be as high as 80 to 1. However, a 10 to

1 improvement is more typical (Martin, 1985, pp. 75-77).

In order to have a major impact on programmer productivity,

though, a Fourth Generation Language needs to be more than

just another language which affects only the programming

part of the life cycle of a program/system under development.

It must include prototyping, iterative design and tools

which concentrate on the specification and design phases of

life cycle development, as well as be capable of generating

code directly from the design. Some Fourth Generation Lan-

guages are capable of enhancing this "front-end" of system

life cycles but much more research is needed.

12

Although Fourth Generation Languages seem to offer hope

in the areas of improved productivity and easier program

development, problems still remain. For instance, some

Fourth Generation Languages are very limited in what they

can actually develop and when applied to an inappropriate

problem, they can cause more problems or fail to achieve

the required results. This inflexibility in application has

made many wonder if Fourth Generation Languages are really

an improvement. "Some Fourth Generation Languages are over-

sold and do not have the capabilities needed for complex

systems." (Martin, 1985, p. 79) Others claim to be easy

to learn and use, yet overwhelm most users. Some Fourth

Generation. Languages which have proven very effective when

working with databases, make no provision for application

development and thus are really only glorified database

management systems. The volume of languages which claim to

be Fourth Generation continues to increase. Therefore, it

requires considerable skill to select a Fourth Generation

Language from the bevy of candidates, to ensure that it is

suited to your simple, as well as complex applications and

to check that it provides adequate machine performance. In

general, a high level of professionalism is needed in the

control and management of user computing, especially since

the advent and proliferation of Fourth Generation Languages.

13

III. FOURTH GENERATION LANGUAGE CRITERIA

In order to distinguish this new generation of program-

ming languages from others, criteria or goals must be estab-

lished to evaluate specific languages and determine where

they fit into the family of programming languages. The great

variety and diverse scope of these new languages is fantas-

tic. Some are powerful, concise and thereby cryptic at first

sight. Some have excellent graphics and are easy to use but

lack flexibility. Some are suitable for end users with

little training; some are intended for professionals. Some

are closely linked to their own database software; some will

operate on many types of files. One reason for this paper

is to clarify what is meant by Fourth Generation Language

and possibly bring a little order to the chaotic and boiling

morass of originality and new ideas found in the field of

computer languages. Accordingly, the following discussion

contains criteria/characteristics which a language must

possess to be considered a Fourth Generation Language. And

with these characteristics, large improvements in user pro-

ductivity and increased user friendliness of the language

appears not only possible, but hopefully, inevitable.

A. EASY TO LEARN

For a language to be easy to learn, it should be simple,

natural, logical and have few things to memorize and be

14

based on or related to something already well known by the

general populace (the eventual users of the Fourth Generation

Languages). By simple, I mean understandable, basic or fun-

damental and lucidly explained through a concise description

and a few examples. These simple components should have few

or, better still, no exceptions/limitations/restrictions be-

cause they cause the user to have to memorize them or may

confuse the user. Furthermore, these simple components should

be able to be combined, again in a simple, comprehensible

fashion in order to b*uild more complex, sophisticated and

powerful components of the language which may be utilized by

more experienced users, yet within the grasp of the novice

who has learned the simple "building blocks." These more

complex components should be developed by a consistent ap-

plication of simple components and be given expressive names

which clearly indicate their function.

By natural, I mean familiar, common, normal, or typical.

The natural way of expressing something definitely varies

from person to person, however if the programming language

can emulate written and/or spoken English along with its

syntax, then one should be able to maximize the number of

people who would at least understand what you were telling

the computer to do and thus learn how to do this themselves

(provided English is understood in the first place). Ter-

minology used by a Fourth Generation Language, then, should

be natural and consist of sentences or phrases of English

15

words which are readily understood by a majority of the

population.

By logical, I mean the language should incorporate only

those functions and operations which follow from clear rea-

soning to avoid any "fuzzy" or "gray" areas. Given certain

conditions or facts then only fixed conclusions could be

reached. This will also reduce the requirement to remember

these illogical areas and hence aid the user in learning the

language since the user can be assured that all functions/

components operate logically.

To learn all the details of a programming language, it

normally takes many hours of practice and experimentation.

To be easy, to learn, the language should have few concepts/

components/operations/functions that must be absolutely

memorized. In addition, it must possess an easy, quick way

to obtain answers to questions and determine options or

courses of actions that the user has available to him from

his present state. This latter requirement necessitates

the use of an extensive help environment which dynamically

tracks the user's position at any point in computer session.

B. EASY TO USE

For a programming language to be easy to use, it should

permit someone with limited programming experience the oppor-

tunity to obtain meaningful results with a minimum amount of

time spent designing, coding and debugging a specific appli-

cation. In addition, the language should be flexible enough

16

for experienced users and with enough available shortcuts to

be useful for them. The language should accomodate or sup-

port both commercial and scientific application program

development, database creation and manipulation, report gen-

eration and graphics applications for relatively inexperienced

computer users. Additionally, experienced computer users may

also benefit from a language which allows easier development,

debugging and maintenance of systems applications. A Fourth

Generation Language will minimize the necessity to explain

in detail now some application need be executed. Instead it

should allow the user to just explain what he wants done and

then let the computer, which utilizes an extremely versatile

and flexible default mechanism, accomplish the task without

the user getting involved in the "how" of the problem. How-

ever, the user should have the option to get involved with

the "how" of any task through the manipulation or modifica-

tion of the default structure behind the task(s) identified

by the user. Minimizing what the user must know about how

to implement or execute a particular function, operation or

task, yet permitting him the opportunity if he wants it,

will reduce some of the procedural details the user must re-

member and allow him to think more in terms of results rather

than "how am I going to do this." A Fourth Generation Lan-

guage will allow the user to just specify what actions he

wants performed with no mention of method, order of execution

or particular technique--a strictly non-procedural approach

17

to programming. This non-procedural aspect of a language has

been demonstrated effectively by several database management

systems but this should also be expanded beyond databases

and into application program development as well. Current

data manipulation languages (DML) are non-procedural in their

execution of simple queries but for more complex queries, the

DML is frequently embedded within some host language (e.g.,

Ingres within 'C'). However, a Fourth Generation Language

will not require this embedding but will incorporate the DML

and the host language into a single integrated language.

This will facilitate the development of report and graphics

generators as well as complex database applications since a

user will pnly have to think about what he wants rather than

how he will implant the correct DML queries within the host

language. Thus, the Fourth Generation Language will be

easier to use for database applications because the inter-

face between the DML and the host language has been removed

and the two languages integrated into one functional unit.

Also this integration will reduce debugging time since an

error prone interface has been removed. Maintenance of

these languages will be simplified because they will be

easier to understand due to fewer details explaining how the

interface was performed or how a particular task was executed,

So not only will these Fourth Generation Language programs

be easier to write but maintenance costs should be reduced

since understanding what a program does, reusing parts of

18

it and modifying other parts of it should be relatively easy

and not complicated by excessive, procedural or interfacing

details.

For ease of use, a menu driven system works well, espe-

cially for users with limited experience. The menu contains

a listing of options or courses of action open to the user

at any stage of program development. This listing alleviates

the necessity of memorizing commands or sequence of commands

since the user only has to refer to the menu and then select an

appropriate action. Besides, "recognition is easier than

recall." (Helander, 1981, p. 304) The use of menus also

restricts the user to only legal commands, thus reducing the

time spent_ pursuing illegal commands or fallacious courses

of action. However, the option to allow the user to specify

what to do with command sentences or phrases should not be

overlooked, especially when dealing with experienced users.

Menu-driven systems tend to be less flexible and sometimes

burdensome to use if one has to go through several menus to

perform a task that may take only one command phrase to

execute in a command-driven system. The flexibility and

usefulness of menu-driven systems are a function of how well

they have been designed to handle the variety of tasks and

methods of operations demanded by ingenious users. Optimally,

a Fourth Generation Language should be both menu-driven for

ease of use but allow for custom designing of menus or be

command-driven for the flexibility required by experienced

users.

19

Simple, flexible control structures which are capable of

doing all the operations/functions which a Third Generation

Language can do are also necessary. The next generation

must be at least as powerful as its predecessors. Regularity

should be adhered to in the design of these control struc-

tures so that no special cases need be remembered and the

format of each control structure follows similar templates.

An extensive help mechanism is particularly important

in making a language easy to use and it should be readily

available through an online approach. This help mechanism

should be attuned to a user's current condition or state and

offer. the user options which are applicable and meaningful

to the current situation. A call for help should not result

in a flood of superfluous information which would only tend

to confuse the user. For this reason, the help mechanism

must track where the user is at any point in time, i.e.,

what commands he has issued, what actions have occurred and

what is his current status. An options table should be made

available to the user which is based upon his current situa-

tion and how he got there. Only viable options would appear

in the options table. The user should be able to return to

hiis previous state or to a main menu or to the operating

system upon request. Once help is requested, brief state-

ments highlighting alternatives will be displayed but if

the user would like a more detailed explanation, each help

option should also be backed up by a more thorough descrip-

tion of that particular option--its meaning, cause and

20

effect. The help mechanism should employ windows which do

not entirely rewrite the screen each time help is called.

Instead, as much of the screen should be preserved in order

to allow the user to read both the help comment plus the

point from which he requested help.

C. POWERFUL

A Fourth Generation Language must also be a powerful

language, retaining and/or enhancing the capabilities of the

previous generation languages. A powerful language must pro-

vide operations or be functional in many areas and handle

not only simple computing problems but complex ones as well.

Essential elements include applications development in both

the commercial and scientific arenas, report generation, a

graphics package, communications with other computers and

database creation, access and maintenance. Hence, a power-

ful language is fully functional or useful not only for the

new computer user but the computer professional as well. I

equate powerful with productive and effective use of the

computer by the wide range of potential users.

Although it would be preferable for all application

development to be non-procedural, this is unrealistic and

at this juncture incompatible with the conceptual logic

utilized in problem solving. Thus, a Fourth Generation Lan-

guage must incorporate the necessary, procedural control

structures of the previous generations in order to perform

21

the conditional, iterative and control flow functions needed

in application development. Conditional statements such as:

(1) If-then

(2) If-then-else

(3) Select or case

are necessary for testing if certain named conditions exist

and indicating what action to take when they do exist. At

least three types of iteration are important to retain:

(1) Loop quitloop endloop

(2) Loop [numeral]/ [variable] endloop

(3) Loop skip-one-iteration endloop

The first iteration type permits both iteration until a con-

dition becomes true or while a condition is true when the

quitloop part is executed after a test condition is checked.

If the quitloop check is performed late in the loop, after

all other statements, you have the repeat-until construct.

And if placed before other statements, you have the while-do

construct of third generation languages. Also, this first

type of iteration permits exiting a loop anywhere within the

loop and not just at the beginning or end of the loop con-

struct—different from most third generation languages. The

second iteration type allows looping a fixed number of times

as indicated by the numeral or variable upon entering the

loop. This is like the for-do construct of previous genera-

tions. The third iteration type allows one to skip a single

iteration of a loop but 1.) return to the beginning of the

22

loop to continue again until a quitloop condition is reached

if used in conjunction with type one loops or 2 .) return to

the beginning of a loop, advance the count and continue loop-

ing until the count is zero if used with type two loops. So,

the skip-one-iteration does exactly as its name indicates

and must be used in conjunction with one of the other two

loop constructs, but it has no counterpart in previous gen-

erations, apart from the use of GOTO's. The skip-one-

iteration portion of a loop construct may be used with or

without a conditional statement inside the loop. The purpose

of this skip-one-iteration is simply to add greater flexi-

bility to loop constructs by allowing the user to easily

skip one or more iterations of a loop without having to exit

the loop altogether.

To aid the user in utilizing the proper format of the

above constructs, an interactive environment which checks

the syntax of the user's program as he types it in, must be

a part of the Fourth Generation Language. The system in-

dicates immediately if the conditional or iterative construct

is not formed correctly or a reserved word is misspelled.

It also rewrites the construct using identation to make the

reading of the finished program easier. Another approach

to ensure error-free use of these constructs is to allow the

user to select the construct he wants to use from a list of

possibilities displayed in a window on some portion of the

screen. Then once he has made his selection, the correct

23

format is automatically reproduced on the screen and he need

only fill in the blanks. And if constructs were nested with-

in each other, the format would also be automatically in-

dented to reflect this nesting, thus enhancing program

readability. If this list of options is used in conjunction

with an interactive environment, then the system would only

need to check the syntax of the conditions and statements

the user has typed into the blank spaces of the construct.

A Fourth Generation Language should permit the user to

name and define functions or procedures which he may then

use in his current program or in future applications.

'Function/procedure' would be listed in a window along with

the above mentioned constructs and once the user selects

'function/procedure' from the list of options in the window,

the system prompts him for the name, parameters and body of

the function/procedure. Upon completion of the function/

procedure, the name of it is added to either a separate win-

dow or to the constructs 1 window, to permit the user to use

it again by simply naming it and providing any necessary

parameters. Each time a function/procedure is used again

in the program, the system would check the parameter list

to ensure that it was correct in number and type of arguments

and warn the user if not. Each function/procedure should

also be able to be executed separately to ensure they are

error-free. In fact, all fragments of a program should be

capable of being executed independently and before the whole

program is done, in order to reduce time spent debugging.

24

Data access and maintenance authorized to the user should

also be possible in the application environment of the Fourth

Generation Language. The following database management func-

tions should be allowed (again, where authorized): retrieval,

deletion, insertion, modification and the use/development of

aggregate functions. Any joins needed in the execution of

any one of these database management functions should also

be permissable but will be entirely invisible to the user.

The database management tasks, like the control constructs

must also be listed in a window. The user then picks which

one he wants and the format of that particular task appears

on the screen and the user need only to fill in the blanks.

The user could also query the system about the database or-

ganization to see the makeup of the internal relations, i.e.,

table names, field names and aliases, indices and even an

entity-relationship diagram of the schema. The user must be

able to ask the database management system which relations

contain a specific field or set of fields, as well as es-

tablish his own aliases. However, the most important point

here is that the user does not have to change environments

when working with the database or when working with applica-

tions programs. Both have been integrated into the same

environment and the syntactical requirements (if any) for

both are identical. From this single environment, the

database can be created, have user views defined, establish

authorizations, initiate integrity checks as well as perform

25

the above mentioned functions. There should be no explicit

context switch when changing between tasks or programming

tools such as switching from editing, to program execution,

to debugging, etc. In addition, the various ongoing tasks

could be displayed in different windows and the user could

then manipulate these windows and/or their contents, simul-

taneously or one at a time. This would permit the user to

define programs, edit them, ask for system help or send and

receive messages via different windows.

Another powerful and extremely useful tool or command is

the cancel command. This allows a user to backtrack or can-

cel previous commands and get back to a point he chooses to

proceed from again. And if he did not really want to back-

track at all or so far he should be able to cancel the can-

cel and effectively go forward again.

The burden of declaring variable types must be lifted

from the user of a Fourth Generation Language, but left as

an option that experienced users may choose for efficiency

or accurate documentation purposes. A Fourth Generation

Language should be capable of assigning appropriate types

itself from the user provided data as well as remain as

flexible as possible when operating on variables of dissimi-

lar types--such as real/integer integer/real, string/char,

char/string, etc. All these operations should be equally

possible without generating error messages. To be at least

as flexible or powerful as previous generations of languages,

26

a Fourth Generation Language must encompass all the data

types utilized by these earlier languages, as well as allow

the same or more kinds of operations on these data types.

27

IV. DESIGN OF A FOURTH GENERATION LANGUAGE

Although Third Generation Languages have emphasized a

textual approach to making computing languages powerful, as

well as easy to learn and use, text by itself has proven to

be rather restrictive and one dimensional. Currently, there

are several graphical approaches proposed or already devel-

oped for use with databases and/or program development that

seem to meet most of the criteria for a Fourth Generation

Language (i.e., APPLICATION FACTORY, NATURAL, QUERY-BY-

EXAMPLE, etc.) but these languages lack the explanatory in-

formation jone sometimes needs to understand a technique or

procedure. However, a textual approach fully supported by

graphics may be a fair compromise between the two approaches

mentioned above since it borrows from the strengths of each,

i.e., graphics being universally understood, powerful in

conceptual depiction and easy to learn and use (Ives, 1982,

pp. 21-23); text is rich in semantics, expressive and possi-

bly a more concise and less awkward manner in which to devel-

op a simple application or query and an effective way to call

for a report, program or subroutine to be executed. Thus, a

graphical-textual modus operandi enhanced by menus and versa-

tile window or viewing methods may achieve the goals desired

of a Fourth Generation Language, while alleviating the weak-

nesses of using purely textual or graphical methods.

28

In order to make programming languages easier to learn

and use, more of the abstract properties of programs should

be brought out on the computer screen. What the user sees

on the screen should be related closely to the user's own

problem solving thought processes, as well as his own physi-

cal perspective of the application/system he is trying to

create. Programming languages consisting of text only, do

not sufficiently reduce the abstract qualities of programs

to easily understood and easily visualized segments whereas

graphical/pictorial methods of representing programs can be

utilized to simplify and/or categorize abstract portions of

programs. How much of an application program should be

textually .or graphically represented is a moot point, but

because of the reasons listed below, I believe graphical

program representation will be favored over textual methods

alone and some combination of the two representations, with

an emphasis on graphics, will prove particularly vital in

helping Fourth Generation Languages achieve their goals.

Since the human mind is strongly visually oriented and

since people acquire information at a significantly higher

rate by discovering graphical relationships in complex pic-

tures rather than by reading text, the importance of graphi-

cal program representation seems obvious. Pictures are much

richer, more powerful vehicles of expression than a one

dimensional stream of text. The properties that pictures

borrow from the real world include shape, size, color,

29

direction, distance, multiple dimensions, and texture. Using

these properties in the encoding of information can result

in more compact program expression and a resultant decrease

in decoding time. Our eyes provide instant, random access

to any part of a picture and to detailed and overall views

as well. In contrast, access to text is strictly sequential.

The use of objects from the real world in pictures that are

used to illustrate abstract ideas makes the ideas simple to

think about. Good pictures that incorporate real world ob-

jects and are used to depict abstractions will help not only

the specialist to formulate and communicate thoughts faster

and better, but will also aid the novice who is groping for

a handle on unfamiliar matter. For example, the best pic-

torial aid for learning computer programming is a concrete

model of the computer. Using text alone forces the user to

come up with his own mental images. It seems then that

graphical/pictorial program representation is essential for

making programming easier. Since graphics offer advantages

over text alone, the use of graphics should be extremely

useful in depicting the three major components of programs--

control flow, data flow and data structure (static as well

as dynamic). (Raeder, 1985, pp. 12-15)

A simplistic but I believe true view of computing in

general, is that computing/data processing is always a trans-

formation and/or transaction process such that a user inputs

some data/information/request and expects an answer--some

30

new data/information/yes-or-no/report or simply that no answer

is available. Continuing with this view then, computing can

be considered to be composed of inputs, outputs and the trans-

formation/transaction that created the output from the input.

Speaking strictly from an end user (and possibly the applica-

tion programmer) viewpoint, it would be beneficial if he

could simply define his input, define the desired output and

in the highest non-procedural (procedural only as a last

choice) language possible describe what must be done to the

input to obtain the output. It must be noted here that since

problem-solving itself is a procedural process, the total

elimination of looking at a problem from a step at a time

approach seems unlikely. However, within each problem-solving

step there may be numerous approaches, implementations or

design techniques for handling the problem and here is where

the end user may benefit from the non-procedural methodology

of just telling what must be done and letting the computer

accomplish it in the most efficient manner possible.

Since either an entirely textual or totally graphical

approach seems to be unacceptable, the entire system of

input-transformation/processing-output should be automated

and depicted as a combination of text and graphical structures

(pictures). So, just as hardware development has become in-

creasingly automated through various CAD/CAM techniques,

Fourth Generation Languages can take the next step forward

in software automation.

31

A. DESIGN OVERVIEW

A specific idea may be to just automate the current

structured analysis and design techniques through the use of

a friendly user interface involving a textual-graphical ap-

proach along with "pop-up" menus, windows, an interactive

environment and other potentially user friendly innovations.

"Pop-up" menus are simply listings of actions or commands

that are legal within the context of the window they "pop-up"

in. As a user progresses in his development of a program,

different actions may become legal and thus, a new menu

pops-up in the window. A window is a bounded, physical

location on the computer terminal screen, in which the user

performs the various tasks needed to develop, test, execute

and maintain a program. Multiple windows can exist at the

same time on the screen, but only one task at a time can be

performed in a window.

End user applications could be depicted as hierarchies

of data flow diagrams which would in turn make these appli-

cations more understandable since they "are a natural way

for people to depict applications." (Stevens, 1982, p. 172)

This would permit end users an organized, yet simple approach

to problem solving and more experienced users the opportunity

to perform analysis, design and prototyping with initial and

future specifications in an automated manner. Since each

phase of development could easily be saved and some self-

documenting items could be added to save the programmer from

32

some of the more tedious but necessary features of software

development, documentation could be improved and maintenance

costs reduced. Higher Order Software (HOS) already has a

graphical method of displaying inputs being modified into

outputs, however I beleive this could be elaborated in order

to provide end users an easier system to use and experienced

users a more powerful system. It could also provide for the

integration of database applications (Martin, 1985, pp. 252-

257).

Initially, when a user first calls upon the textual-

graphical system a menu should be made available to determine

the user's purpose, e.g., run a program, develop a program,

query a database. Or more simply, the user could be prompted

for his input and from this the system would then know the

user's purpose. If the user is running a program, he may

need the system to remind him of the program's name and how

to cause the system to execute it. The input here could be

the program name and the output would be the execution of

the program. If the user wants to query a database, one of

the current graphical interfaces (QBF, GLAD, etc.) could be

used to walk the user through the development of his query.

The input here could be the database name or the query it-

self and the output the answer to the query or the intro-

duction to the graphical interface. However, if the user

wants to develop an application program (and any application

will handle database accesses as well) the system will walk

33

him through its development from the highest level or layer

down to the lowest necessary for actual computer generated

code. Input here could be the highest level of incoming

data and the output could be the data, report, or answer the

user is looking for.

For a simple application, the user needs only to provide

the name (s) of the data input and the system could ask the

user the data types the user has in mind for these inputs

by providing him a list of possible types. The same for the

output would occur and the system would also display the in-

put (s) as named arrowheads entering a window (the location

of the data transformation process) and- the output(s) would

be automatically displayed as arrowheads exiting the process

window as indicated in Figure 1.

Named INPUTS > DATA
Transform

Named OUTPUTS -->

Figure 1. Simple Application

Next the user is prompted by the system for the contents of

the process window or a description of the action performed

within the window. For a more complicated application, the

system asks for intermediate input(s) and output (s) and pro-

vides the additional data transformation windows. For the

simple, one layer program, the user would be aided in this

development of the contents of the process window through on

34

screen or "pop-up" menus displaying the possible commands

and/or control structures available to him. If control struc-

tures were utilized, "action diagrams" (Martin, 1985, pp.

157-172) would be employed to ensure the proper format was

followed. Action diagrams are simple diagrams which reflect

the structure of a construct through the use of brackets,

boxes or other graphical pictures. They are particularly

useful in the design and understanding of complex code. A

user of such diagrams can tell quickly whether a construct

is structured correctly and completely or not. If database

access was needed, then GLAD (Wu, 1985, pp. 12-20) with its

built-in program box could be utilized to express the entire

data transformation or a portion of that action. And the

database access would be depicted as named arrowheads to or

from a named database as shown in Figure 2. Anytime the

INPUTS DATA
Transf orir

I

> OUTPUTS

DATABASE

Figure 2. Database Integration

user tried to perform some inappropriate operation on the

input or output data the system would caution the user.

Upon completion of the actions within the process window the

35

user could select to execute the module to ensure proper

functioning. The system would prompt the user for any docu-

mentation deemed essential to the understanding of the module

and this would be stored separately and only be displayed if

requested. In the more complex applications, as the user

decides on the appropriate intermediate input(s) and output(s),

the system provides the necessary process windows and the

user must name them or describe their contents as he would

do in a simple application. The user continues to break

down all the input and output to their lowest levels, or

until he can think of no more intermediate data, then he

proceeds to complete the contents descriptions of any windows

not already described. What the user will end up with will

be a hierarchy of data flow diagrams from the most coarse

view to the finest view, where actual code exists. The sys-

tem keeps track of each level in this hierarchy and at any

point in the development of the application the user may

select to 'zoom-in' or 'zoom-out' one or several levels to

review, modify or execute what he has already described.

The user may also elect to have different portions of

his program in view by specifying window locations and the

contents of these windows and he could be performing differ-

ent tasks in the different windows, such as, documenting a

module, describing the contents of a process window, executing

or possible debugging a process window or entire program.

The action of each window would be kept as the status or

36

state of the window and the user would be allowed to move

freely between windows, call upon menus that were applicable

within the various windows, close or open windows and adjust

the size and print of windows. The use of windows is quite

natural and supports people's workhabits since when most

people perform a task, they tend to shift their attention

from one subtask to another in a fairly random fashion. In

addition, the use of windows could alleviate the awkwardness

one experiences when going from one part of a system to

another (changing modes, i.e., from editor to operating sys-

tem to debugger). With multiple windows, the user can switch

the mode he is in by simply moving to or opening another win-

dow and still keep his other activities in sight if needed

(Raeder, 1985, p. 17).

B. COMPONENTS

The data flow view of an application is a natural way

for end users to depict a solution to their problem. Typ-

ically, people perform functions and share data with other

people who have other functions that they perform. Data

flow diagrams picture these interrelationships and flows

of data between independent functions as they exist naturally

(Stevens, 1982, p. 172). The components of this approach to

application program development are inputs and outputs, pro-

cesses (functions or data transformations), databases (files),

function libraries, menus, and windows with their associated

37

commands, herein called edge commands. A discussion of each

component as it relates to a user-computer session follows.

When a user begins a dialogue or session with the com-

puter where this textual-graphical approach has been in-

stalled, the user may be presented with a main menu to

select his initial activity--such as, program development

(and this is integrated with access to a database, if neces-

sary), program execution or database activity. This main

menu may not be necessary if each action taken by the user

can be classified as either an input, process description or

output. For instance, a database query could be broken into

these three parts where the database name is the input (user

could deal_ with multiple databases), the development of the

query itself by means of some user friendly tool is the pro-

cess description and the result of the query is obviously

the output. If the user decided to create a database, the

input would be the user selected name for the database. The

system would check the name for uniqueness and then, if

there was no main menu to indicate that this was going to be

a database activity, the computer would ask the user if this

name was for a program, database, file or function library.

The user would select database and then the system would

guide the user through the development of the mandatory and

optional features of his database and then prompt him for

values to enter into his database. All of this would be

considered the process description. The output would consist

38

of a list of options for the user where he could designate

the output he desired--hard copy of database, print database

to screen or maybe nothing at all. When the user completes

the input, the process description and the designation of

the output he would select a command on the edge of the

screen labelled 'end'. If the user did not complete devel-

opment of his database or some other activity then he could

select an edge (edge of screen) command such as 'quit' or

'cease for now 1 from a set of commands always present along

the edge of the screen. If 'quit' or 'cease for now' was

selected, he would be prompted if he wanted to save what he

had done so far. Later, upon re-entering this activity he

could be prompted to see if he was continuing where he left

off, changing part or all of what he had already done,

starting anew or reviewing what he had done. In each case,

the system would direct him to the correct part of the

activity for further development. If the user wanted to

update a database, the input would be the name of the data-

base. The system would check if the name was unique and if

not then it would ask the user if he was working with a data-

base, program, etc. To distinguish between querying, creat-

ing, updating or deleting the named database, the system

would ask the user which activity he wanted to do. The sys-

tem must verify that the user has authority for the activity

selected before proceeding. In addition, if a user is only

allowed access to a particular view of the database, the

39

system must ensure that only this view is provided to the

user. The system would guide the user to that part of the

database he wanted to update by asking him the table name.

Then "pop-up" edge commands such as 'table insert', 'table

delete', 'record insert', 'record delete', 'field modify',

'field delete' could be selected by the user to match what

he wanted to do and each of these commands would guide the

user to the proper location within the table. Once again the

user could select 'quit' or 'cease for now' if he had to

stop before completing his actions or he could select 'end'

if the update was done. The output would be a list of op-

tionsfor the user just as in the database creation activity.

All of_ the above activities which have dealt with a data-

base alone would be performed through the use of menus, edge

commands, system prompts and multiple windows. This requires

little or no use of pictures unless the edge commands used

suggestive icons to indicate the command's functions.

C. APPLICATION DEVELOPMENT

For application program development, the system aids the

user by organizing the development process in a top-down

fashion. The final program consists of from one to many

levels of data flow diagrams where each level is a re-

finement of the one above it. When beginning a session with

the computer, the user would indicate the activity of appli-

cation program development either by selecting it from a

menu or by indicating the name of the program and the system

40

would then ask him which activity he wanted. Once program

development had been selected, the system would add the com-

mands in Figure 3 to the edge of the screen. From this

(1) INPUT > (4) DATABASE/File

(2) OUTPUT >

(3)

(6) Function LIBRARY

Figure 3. Edge Commands for Application Development

point, the user would be expected to either begin his pro-

gram development by selecting one of the new commands indi-

cated above or select help for instructions on how to proceed

In one corner of the screen, the word UNDEFINED would be dis-

played if any portion of the program being developed was not

complete. In addition, the user could select the word

UNDEFINED to obtain a listing of the incomplete parts of the

program.

If the user selected the input arrow, a window could be

opened in the center of the screen and it would contain the

information denoted in Figure 4. The user would then be

expected to fill out this form about the input data as best

he could, but fully realizing that this information could be

changed as the program developed. Data that was identical

but that had different names could all be listed in a single

window by placing the different names after the first prompt.

For data with different sources, types or range of values,

41

Names(s) of Data Input:

Data Source: Terminal __

Process Window §

File

Database

Interrupt

Other

Data Type: Number
Character
String
Boolean
Data
Dollar
Matrix
Record
Set
Pointer
Combination

OPTIONAL FEATURES

Range of Values:

Format

:

Error Messages:

Comments

:

Figure 4. Input Window

42

separate input windows for each would be used. Under the

data source category, if the user indicated that the input

was coming from a file or database, then the system would

prompt him for the name of the file or database. In addition,

the system would use the information about the source to

determine the type of I/O to use in bringing the input into

a process window or sending as output.

Under the data type category, if the user selected a

matrix, record or set type of data structure, the system

would prompt him for type of data structure(s) they contained.

The system would also ask for the size of the matrix. If

the user selected the combination data type, the system would

prompt him_ for which other data types were combined and in

what order or format.

The bottom portion of the input or output window would

be for optional information which the user would not have

to complete before he finished development of the application,

however all other information would be mandatory and thus

have to be completed prior to completing the development,

otherwise the system would warn the user of the incomplete

input or output window. The format section would be used

if the input came from a form or the output was going to be

in a particular format, then the system would guide the

user through the design of the form. Input/output error

messages could be established here so that, if any of the

features of the data description were violated, an error

43

message would be issued and the user allowed to begin again.

Comments are just user documentation.

All this information about the data used by the program

would be consolidated in a data dictionary which the user

could look at upon request. Cross-referencing information

such as where data was used, where it came from and where it

went would be automatically generated and kept in the data

dictionary.

The window used for output would be identical to that

used for input except that data source would be changed to

data destination. And as with all windows within this sys-

tem, the user would be free to move the input/output window,

enlarge, shrink, open, close or cover and uncover it. The

main difference between closing and covering a window is that

closing means you are done with the window while covering

means to hold onto the contents of the window just as you

left it, but hide it from view until the user asks to uncover

the window.

If the user selected the process box and he was just be-

ginning development on a program, then the user would see a

window with a number 0.0 located at the top of it appear in

the center of the screen. This window is depicted in Figure

5. The user would be expected to indicate all input(s) and

output(s) to this high-level view of his program and the sys-

tem would check to see if these input(s) and output (s) were

defined yet. If not, the UNDEFINED indicator in the outer

44

Input (s)

:

Output (s)

:

Description:

OPTIONAL FEATURES

Comments:

Entry Information:

Exit Information:

Figure 5. Process Window

window would "light up." As the user indicates the input (s)

and output (s), named arrows would be shown entering and

exiting the window and the type and source of the data (if

known) would be depicted by icons attached to the arrows.

Next, the user would have to describe the process (es) he

has in mind for this particular program. But since the 0.0

level is the very top-level, this description would normally

be rather general and usually no code would be written here.

The comments section is again just user documentation. En-

try and exit information are to be utilized to handle con-

trol flow within the system. Any valid statement that can

be placed in the description of the process window can also

be placed here. The effect of the entry and exit informa-

tion is to control entry and exit to subordinate levels of

45

process windows--the system must check the entry information

of the higher level window before entering the lower level

process window and the system must check the exit information

of the higher level before leaving a lower level. This pro-

vides the necessary control flow needed in the development

of an application.

Upon completing the process window, the user would select

the 'end' edge command and this window's information would be

saved and the screen would change back to the original pro-

gram development one. Then, each subsequent selection of

the process box would cause the system to prompt the user

for how many process windows he wants. After the user entered

a number, the system would provide the number of windows asked

for and each would be automatically numbered in accordance

with the appropriate level the user was working at. And if

too many or too few windows were requested, the user could

simply close or open additional windows and again the system

would automatically number the windows, if necessary. If

too many windows are present, the user can always move them

or cover temporarily the ones not immediately needed and

enlarge or shrink the windows to the desired level, which

automatically adjusts the size of the lettering and/or

pictures in the window.

Just as at the top-level, the user needs to describe the

input (s) and output (s) to each proces window and then de-

scribe the process which transforms the input data into

46

output data. To assist in this area, the system provides the

following additional edge commands for the user to use in

developing his program:

(1) If-then

(2) Loop

(3) Function library

(4) Database access

When the user selects the if-then command for use within

a process window, a window, like Figure 6, appears where he

was working. The selection of the if-then command provides

. If -then

1

if following condition(s) true:

then do this:

(OPTIONAL) else if following true:
(DUPLICATE) then do this:

(OPTIONAL) else do this:

Figure 6. If-then Construct

the user with the following possible constructs: if-then,

if -then-else , if -then-elseif , and if -then-elseif -else. The

user only needs to type in the condition(s) he wants checked

47

and the resulting action(s) to occur if the condition(s)

is (are) true for a simple if-then statement. The user is

allowed to use any statement in the condition section of the

if-then construct that evaluates to a true or false. If the

user enters an incorrect statement (one which does not eval-

uate to either true or false), the system highlights the in-

correct statement and if the user asks for help, an error

message is printed explaining the problem. The user may use

the following logical operators with his list of conditions:

and, or, not. If the user has alternative condition(s) or

alternative action(s) then he simply fills in these optional

portions of the construct. If he has more than one alterna-

tive set of conditions and actions, then he can duplicate

the else-if part as many times as necessary. As the user

fills in each part of the construct, the enclosed parts of

the construct expand automatically to accomodate the con-

ditions) and action(s). The system permits nesting of these

constructs to any level but will not remove the enclosing

boxes for each part of the construct until the entire con-

struct is completed. Then, the system places the if-then

construct in the correct location of the developing program

and with proper indentation reflecting the levels of nesting.

The purpose of handling the construct in this manner is to

ensure the proper usage of the construct and to help the

user understand the needed parts of the construct, thus

making it easier for him to use by avoiding common syntax

errors

.

48

When the loop construct is selected, the user is presented

with a similar situation as with the if-then construct. With

the loop, he would see a window, where he was working, like

Figure 7. Depending on where the exit condition is placed,

loop

Body of loop:

Exit condition:
i

i

- Exit location: After
Before

Figure 7. Loop Construct

the user can have either a repeat-until or a while-do con-

struct commonly found in Third Generation Languages. Addi-

tionally, the user could position the exit condition in the

middle of the body and thus loop through part of the body

more times than the other part of the body--a mid-loop exit.

The body of the loop would be the statement(s) that the user

wants to have repeated and this could also contain other

loops nested to any level desired. The exit condition must

be a statement (s) that evaluates to either true or false.

The location allows the user to describe precisely where he

wants to place the exit condition for evaluation within the

49

body of the loop. He could place the exit condition either

after, before or between statements. Once again, after the

loop construct is completed, the boxes are removed and the

loop construct is properly indented and positioned next to

the other statements already in the developing program.

Iterations free of syntax errors are thus guaranteed, and

user understanding as well as ease of use is enhanced.

If the user needs to correct or edit some portion of the

program already written he simply moves to that segment and

uses the 'insert', 'delete' or ' typeover ' commands to make

correction. Once the user attempts to make a correction to

either the conditional or iterative constructs— the system

provided boxes, used to initially build these constructs,

reappear and once again help ensure correctness and complete-

ness of the construct.

During development of a program, the user may develop

functions that he wants to save for future use or he may

have a need for functions and procedures that he (or others)

has (have) developed previously. Hence, the user selects

the 'library' edge command in either of these cases. When

'library' is selected, the user is given a choice of adding

to the library, deleting items from his view of it or list-

ing its contents. If adding to the library, the user selects

this option and the system prompts him for the name, the

input and output parameters and the process window that con-

tains the function to be added to the library. If the user

50

needs to use a function/procedure from the library, he could

simple name it while in the process window or could ask for

the listing of all library functions and then select one

from the listing. Once he has selected a function/procedure

for a window, the system checks to ensure the input and out-

put parameters for the process window match the type for the

function and if they do not match, the user is warned of the

problem by an error message. The system will also have some

built-in functions such as: sort, max, min, average, member

and initialize. Utilization of such functions allows the

user to specify just what he wants done and not how to do

it, thus emphasizing the non-procedural approach to programming

If during the course of program development the user

finds that he needs to access a database for information

which he will use within his program, then he will select

the 'database access' edge command. The system will ask him

the name of the database and once he provides the name, a

window will open for him and within this window he will devel-

op his query utilizing a non-procedural, graphical database

language. Once his query is complete, he will select the

edge command 'end' and the query will be automatically in-

corporated into the program.

While developing a program, if the number of process

windows becomes too much to be easily seen on the screen

at one time, then the system will "wrap" the process windows

around to both the left and right sides of the screen.

51

Alternatively , the user may select to cover the process win-

dows he does not need, which provides more room on the

screen, and then uncover them when he is ready to work on

them. If the user needs to shift the process windows either

right and left or up and down, movement arrows will be

located along the edge of the screen. If the user wants to

visit other levels of development, then the two edge com-

mands 'zoom-in' and 'zoom-out' would be used.

Once a user completes a process window and supposing the

process is not to be broken down any further, he would be

able to test it to ensure it functions properly, i.e., that

the input is actually transformed into the output. The user

would simply select the edge command 'test' and the system

would prompt him for which process window and what input

values he wanted to use. The system would then display the

output and let the user know if it matched the output he

declared. Module testing during development would reduce

the degree of debugging necessary for each application.

D. EXAMPLE

Utilizing the textual-graphical, Fourth Generation Lan-

guage described above for the development of an application

program may help clarify some of the features of this lan-

guage. Upon entering the system, the user selects the option

to develop an application program. The "pop-up" menu which

includes the commands-- ' input
'

, 'output 1

, 'process' and

' library ' --appears on the edge of the screen or development

window.

52

If the user first wants to indicate the top level descrip-

tion of his program, he selects 'process' to begin (Figure 8)

l

j

0.0

Input: fraction

Output: reduced_fraction

Description: Reduction of any nonzero, positive fraction

to its lowest term.

OPTIONAL FEATURES

Comments: This program accepts any positive, nonzero

fraction and reduces it to lowest terms. The

user is prompted for a fraction, the program

determines the greatest common divisor (GCD)

of the numerator and denominator then uses

the GCD to divide both the numerator and

denominator to obtain the reduced fraction.

Entry Information: Print "Enter fraction or 'q' to quit.

Example - 6/12."

Exit Information: Terminal input = 'q'.

Figure 8. Sample Top-level Process Window

53

After filling in the above information, the user chooses to

describe the input at this top level. This is completed by

the user as indicated in Figure 9. From the input window,

Name(s) of Data Input: fraction

Data Source: Terminal

Data Type: Combination - Number Character Number

OPTIONAL FEATURES

Range of Values: Number = 1 - maxint

Character = '
/

'

Format: numerator /denominator

Error Messages: Violate Data Type - "You must enter a

number followed by a slash followed by

another number with no intervening

spaces. Please try again."

Violate Range of Values - "Enter only

positive numbers between one and

maxinteger. Use only a slash between

the numerator and denominator numbers."

Comments

:

Figure 9. Sample Input Window

the system can tell the name of the data, where it will come

from and any constraints imposed on the data by the user.

Next, the user decides to fill in the output information for

54

Next, the user decides to fill in the output information for

the top level as shown in Figure 10. At this point, if the

Name(s) of Data Output: reduced_fraction

Data Sink: Terminal

Data Type: same as input

OPTIONAL FEATURES

Range of Values: same as input

Format: same as input

Error Messages:

Comments:

Figure 10. Sample Output Window

user asks for a display of his program so far, the system

would display the following:

fraction--^-

Reduction of any nonzero,

positive fraction to its -reduced_fraction-

lowest term.

Figure 11. Sample Program Description

Now the user must think about how many other process windows

he will need for the second level of the program. However,

if he over estimates or under estimates, he can always use

edge commands to delete or create more process windows.

Assume our user has estimated accurately and has asked for

55

two more process windows. Both windows will appear on the

screen and he can choose either to begin filling in or he

can cover one and enlarge the other to see what he is doing

a little better. Our user elects to work on one at a time

and thus covers one of them by using the 'cover' command.

His work is shown in Figure 12. Note that the variables

1.0

Input (s) : fraction

Output(s): fraction, gcd

Description:
MAX(numerator, denominator) --> large
MIN(numerator, denominator) --> small

LOOP
Body of loop:

1. large MOD small --> remainder
2. small --> large
3. remainder --y small

Exit condition:
^ small =

Exit location:
Before 1.

large --> gcd

OPTIONAL FEATURES

Comments

:

Entry Information:

Exit Information:

Figure 12. Sample Level One Process Window

56

"numerator" and "denominator" have already been described

implicitly in the definition of the input data named "frac-

tion." Also, temporary variables "large," "small" and

"remainder" must be of the same type as the variable(s) that

assign (designated by the arrow -->) to it values. The

loop construct I left as it would initially appear to the

user. Normally, upon completion of the loop construct, the

system would automatically convert it to code. The above

process window is a complete module in itself and could be

tested by the user by selecting the edge command 'test.'

However, the user has created some intermediate data which

must be defined. He decides now to define this data called

"gcd," instead of proceeding to the covered process window.

The data is defined in Figure 13.

!

Name(s) of Data Input: gcd

Data Source: Process Window # 1.0 to # 2.0

Data Type: Number

OPTIONAL FEATURES

Range of Values: 1 - maxint

Format:

Error Messages:

Comments

:

Figure 13. Sample Intermediate Input Window

57

The above data description informs the system that gcd is

passed from process window #1.0 to process window #2.0 and

that it is of type "number."

Finally, the user is ready to use the 'uncover' command

to complete process window #2.0. Results are shown in

Figure 14. Upon completion of process window #2.0, the user

2.0

Input (s): fraction, gcd

Output(s): reduced_fraction

Description:
numerator * gcd --> new_numerator
denominator * gcd --> new_denominator

new_numerator/new_denominator --> reduced_fraction

OPTIONAL FEATURES

Comments:

Entry Information:

Exit Information:

Figure 14. Sample Level One Process Window

could display the program or execute it as desired. This

completes the simple example.

58

V. IMPLEMENTATION

Although the number of potential implementations of the

proposed Fourth Generation Language of the previous chapter

are many, each implementation must be evaluated from the

standpoint of efficiency as well as correctness. The in-

herent overhead of a Fourth Generation Language is tremendous

since the express purpose of this new generation of languages

is to remove some of the tedious tasks performed by program-

mers through the introduction of a vast array of defaults,

menu displays and window organizations. As a result, many

of the activities performed manually have been incorporated

within the computer software to ease the burden on the pro-

grammer/user. Additionally, each Fourth Generation Language

represents a level of abstraction above earlier programming

languages and many functions/operations qan be handled in a

non-procedural vice procedural fashion. This can be either

beneficial or detrimental to efficiency depending on how

many levels of translation must occur to execute the func-

tion—a few, highly optimized translations (i.e., from high-

level notation to assembly or machine language or directly

to machine language) can be extremely efficient, whereas

numerous translations (i.e., from high-level notation to

PASCAL to assembly to machine language) may simply add to

the overhead of duties the system must perform. The proposed

59

Fourth Generation Langauge maintains an on-line, real-time

dialogue with the user and therefore requires subsecond re-

sponse times so that the user will not lose his concentration

nor be distracted, which would occur if he continually had to

wait for the computer each time he requested a menu or manip-

ulated one of the windows. All user input must be inter-

preted rather than be compiled. Once again, efficiency of

implementation is mandated.

A. ARCHITECTURE

An overview of the proposed Fourth Generation Language's

architecture contains the following main components: window

manager, menu handler, translator, library of functions,

database management system, data dictionary and database.

The interconnections between these components is depicted

in Figure 15.

Since the window plays such a central role in the use,

development and modification of all application programs,

it also serves as one of the main components of the system--

centrally located between the user and the system translator.

The window manager is responsible for the creation, deletion

and manipulation of all windows by the user. It interprets

and fills the user's request for a window and consults the

data dictionary for the appropriate size and location of the

window, as well as the correct edge commands to display and

where to display them. The window manager determines which

menus are applicable to a given window. Consistency checking

60

USER K- SCREEN

DBMS K-

WINDOW

MANAGER
k-

MENU

HANDLER

Figure 15. Textual-Graphical
System Architecture

61

in the following areas is performed by the window manager

either alone or in conjunction with another component of the

system. Before the user closes a window, the manager checks

for incomplete or undefined items and lists them so that the

user can be reminded, upon request, of what has not yet been

completed. The window manager ensures that all input and

output data from a process window (during application devel-

opment) are compatible with any upper levels previously de-

scribed and warns the user if not compatible. Furthermore,

it checks to ensure that process window data operations are

compatible as per the descriptions of data in the input and

output windows. Input data that has been defined but not

used in the application program or is not used in the process

window it enters but never exits, is tagged for user review.

Output data which is produced by a process window but not

declared in an output window is also tagged.

Another important feature of the window manager is to

keep track of the mode/function of the window. As the user

moves the cursor between different windows—windows where

the user may be performing entirely different functions

(i.e., executing a program, editing/developing a program,

debugging, etc.), the window manager alerts the translator

as to which function is being performed in the window.

With this system then, the integration of all programming

tools under one environment occurs but it is spread across

the various windows visible to the user. One window performs

62

only a single function at a time but many windows performing

different functions can all be present on the computer screen

at the same time and this in effect produces the integration

of tools.

The menu handler interfaces with the window manager and

is responsible for maintaining control of all menus presented

to the user, both where and when to present them. As win-

dows are displayed to the user, some of the standard menus

or edge commands are automatically included within the win-

dow. The window manager knows which menus to include with

which windows by consulting the menu handler. "Pop-up"

menus- periodically requested by the user or activated by

user actions are also obtained by the window manager from

the menu handler. The menu handler contains a list of con-

ditions for each menu and then if conditions are met, a

pointer from the menu handler to the data dictionary indi-

cates the menu that the window manager is to include in the ^

window.

The database management system must be fully functional,

that is, allow the user to create, update, query and delete

database information as well as define integrity constraints,

authorized users and authorized views. In addition, the

database management system must reveal the database schema

upon request from an authorized user. The user must be

guided through each activity, preferably through the use of

graphical descriptions of the database, which appear very

63

easy for the user to learn and work with. Since the pro-

posed Fourth Generation Language performs all its functions

within windows, the database management system will also

guide the user in his development of a query (or update,

creation or deletion) within a window. An application which

requires access to a database for information will develop

the necessary query with the aid of the database management

system and then the translator will incorporate the final

query within the application program, thus the user will not

be responsible for any database/program integration.

The relational database will contain an extensive data

dictionary which is necessary for the consistency checking

performed by the system during real-time. The data diction-

ary will contain all the information about all input and out-

put data which is obtained from the input and output windows.

It will contain information about all intermediate data

created in process windows as well as the definitions^ and

constraints on the data fields and tables composing the

database. In addition, information regarding window initial

sizes and locations and menu listings will be located in the

data dictionary. The data dictionary should be available to

the user to "customize" the database with his own terminology,

remarks and aliases for data. The library of functions

developed by the user or already present in the organization

are also stored within the database. Security of the data

dictionary and the library should be available to protect

data and function definitions from unauthorized changes.

64

The translator component takes the process descriptions

from the process window and translates them into code. The

translator distinguishes between verbal descriptions of

what a process is doing and the non-procedural functions

named by the user and any procedural code he develops for

the application program. The translator serves as the inter-

face between actual code and the window manager where the

high-level Fourth Generation Language is utilized in appli-

cation development. In the next section, a couple of al-

gorithms which the translator uses in translating control

structure formats to code are offered.

B. ALGORITHMS

In order to show that the proposed Fourth Generation

Language's features are implementable , one must not only

reveal a system architecture but also develop any algorithm

which may be needed in the course of translation from the

high-level language to a lower level language. The archi-

tecture and algorithms themselves do not guarantee that the

system proposed is a feasible one, instead they are merely

the basic elements needed at the beginning of a long pro-

cess to come up with an efficient and correct implementation

of the proposed language. At this point, algorithms which

reveal how conditional and iterative statements may be

translated from the box structure of the proposed Fourth

Generation Language to a Third Generation Language will be

introduced.

65

Beginning with the conditional statement then, an algo-

rithm utilized by the translator component will be shown.

The on-line translator interacts with the user as he types

information into the process window. If executable code such

as mathematical statements or library defined functions are

listed in the process window, the translator must keep track

of which windows contain this code and which contain just

verbal descriptions of the process. If the user selects

the 'if-then' construct from a menu of edge commands, the

window manager installs a window within the process window

and this new window contains the parts of the conditional

construct which the user must now fill in. Next, it is the

translator-' s responsibility to ensure that as the conditional

statement is completed by the user, only legal statements

are utilized and if illegal ones are discovered, the trans-

lator must warn the user.

Once the user has completed development of his condition-

al statement, the translator utilizes the following algorithm

to translate the user input into a PASCAL if-then statement.

Note that the translator treats the user input for each part

of the if-ten construct as just strings of characters.

BEGIN

Initialize (condition_o, action_o, condition_a,
action_a, arrayl, array2, else_clause,
count, no_error)

Get_Condition (condition_o, no_error)

Get_Action (action_o, no_error

)

66

IF condition_o = " " AND action_o £ " " AND no_error
THEN
miss_original_cond -> error
FALSE -> no_error

IF condition_o £ " " AND action_o = " " AND no_error
THEN
miss_original_action -> error
FALSE -> no_error

IF condition_o = " " AND action_o = " " AND no_error
THEN
miss_cond_and_action -> error
FALSE -> no_error

IF no_error THEN
Get_Condition (cond_a, no_error)

Get_Action (action_a, no_error)

IF cond_a = " " AND action_a t " " AND no_error
THEN
miss_alt_cond -> error
FALSE -> no_error

IF cond_a ± " " AND action_a = " " AND no_error
THEN
miss_alt_action -> error
FALSE -> no_error

WHILE cond_a % " " AND action_a ' " "

AND no_error

count + 1 -> count
cond_a -^ arrayl(count)

action_a -^ array2 (count)

Get_Condition (cond_a, no_error)

Get_Action (action_a, no_error)

IF cond_a = " " AND action_a ~ " "

AND no_error

THEN
miss_alt_cond --^ error
FALSE --> no_error

IF cond_a <) " " AND action_a = " "

AND no_error
THEN
miss_alt_action --> error
FALSE -^ no_error

67

IF no_error THEN
Get_Action (else_clause, no_error)
Format_if_then (condition_o, action_o,

arrayl, array2, else_clause)

ELSE
Error_msg (error, count)

ELSE
Error_msg (error, count)

END

The procedure Get_Condition ensures that the condition in

the if-then construct is either a single boolean variable or

a statement with a relational operator in it, and the state-

ment evaluates to true or false. It will also check for

matching parenthesis. The procedure Get-Action checks to

ensure all_ statements entered in the action sections of the

if-then construct are legal statements for the language.

Error_msg, which can be called from the main program or from

each of the other two procedures, prints error messages de-

pending on what has occurred.

For the iterative construct, basically the same activity

occurs--the user requests to have a 'loop' from the menu and

the window manager provides a loop window within the process

window. The translator then observes what the user inputs

into each part of the loop construct to ensure only legal

statements are entered and warns the user when any illegal

statements are entered. After the user completes the loop

construct, the translator then utilizes the following

algorithm.

68

BEGIN

Initialize (body, number_lines, condition, location,
line#, no_error)

Get_Body (body, number_lines , no_error)

IF body ± " " AND no_error THEN

Get_Exit_Condition (condition, no_error)

IF condition ^ " " AND no_error THEN

Get_Exit_Location (location, line#, no_error,
number_lines

)

IF line# AND no_error THEN

IF location = "Before" AND line# = 1 THEN
Make_While_Loop (body, condition)

ELSEIF location = "After"
AND line# = number_lines THEN

Make_Repeat_Loop (body, condition)

ELSE
Make_Loop_with_GOTO (body, condition,

location, line#)

ELSEIF no_error THEN
negative_line# --> error
Error_msg (error)

ELSEIF no_error THEN
miss_exit_condition --?> error
Error_msg (error)

ELSEIF no_error THEN
miss_loop-Body --^ error
Error msg (error)

END

Procedure Get_Body checks for legal statements throughout

the body of the loop. Get_Exit_Condition checks to ensure

that the condition statement evaluates to true or false.

Get_Exit_Location checks to see if the user has entered a

legitimate line number. All three procedures can call the

procedure Error_msg to print out any error messages.

69

VI. CONCLUSIONS

Although Fourth Generation Languages are no panacea, they

do address some of the problems facing the computer industry

today , namely— skyrocketing demand for applications develop-

ment during a time of severe backlogs of requests for new

applications, low programmer productivity due to the use of

lower level, Third Generation Languages and needed improve-

ment in the life cycle of large program/system development.

The use of Fourth Generation Languages in program develop-

ment has proven to be much more effective than Third Genera-

tion techniques, but Fourth Generation Languages have

generally been less flexible in the types of applications

that they can handle as compared to their predecessors. Yet

to overlook the potential of Fourth Generation Languages,

because of their inflexibility, seems grossly irresponsible.

Future sales of vast quantities of computers will be

possible only if they can be put to work without professional

programmers. Application development without programmers is

perhaps one of the most important turning points in the com-

puter revolution. With continued improvement of Fourth

Generation Languages, user computing can and will flourish,

but we must make these languages easier to learn and use, as

well as more powerful. The combination of text and graphics

enhanced through the use of windows, menus and an integrated

70

database management system is one approach toward achieving

a more user friendly, powerful Fourth Generation Language.

71

LIST OF REFERENCES

Helander, G. A., "Improving System Usability for Business
Professionals," IBM Systems Journal , v. 20, September 1981.

Ives, B., "Graphical User Interfaces for Business Information
Systems," MIS Quarterly , v. 6, December 1982.

Martin, J., Fourth Generation Languages , Prentice-Hall, Inc.,
1985.

Raeder, G., "A Survey of Current Graphical Programming
Techniques," Computer , v. 18, August 1985.

Shu, N. C. , Visual Programming Languages: A Dimensional
Analysis

,
paper presented at the International Symposium on

New Direcitons in Computing, Trondheim, Norway, 12 August 1985

Stevens, W. P., "How Data Flow Can Improve Application Devel-
opment Productivity," IBM Systems Journal , v. 21, June 1982.

Wu, C. T. , A Unified Interface Method for Interfacing with a
Database , Naval Postgraduate School, submitted for publica-
tion 1985.-

72

BIBLIOGRAPHY

Finzer, W. and Gould, L., "Programming By Rehearsal," Byte ,

v. 9, June 1984.

Purvy, R. , Farrell, J., and Klose, P., "The Design of Star's
Records Processing: Data Processing for the Noncomputer
Professional," ACM Transactions on Office Information Systems ,

v. l f January 1983.

Rowe, L. A., Fill-in-the-Form Programming , paper presented
at the Proceedings of Very Large Databases, 11th, Stockholm,
Sweden, 17 September 1985.

Shu, N. C., "Formal: A Forms-Oriented, Visual-Directed
Application Development System," Computer , v. 18, August 1985.

Tsubotani, H., Monden, N. , Tanaka, M. , and Ichikawa, T.

,

"A High Level Language Based Computing Environment to
Support Production and Execution of Reliable Programs,"
IEEE Transactions on Software Engineering , v. 2, February 1986.

Wasserman, A. I., Pircher, P. A., and Shewmake, D. T.

,

"Building Reliable Interactive Information Systems," IEEE
Transactions on Software Engineering , v. 2, January 1986.

Zloof, M. M. , "Of f ice-by-Example: A Business Language that
Unifies Data, Word Processing and Electronic Mail," IBM
Systems Journal , v. 21, September 1982.

73

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5000

3. Professor Wu, Code 52Wq 1

Naval Postgraduate School
Monterey, California 93943-5000

4. Professor MacLennan, Code 52Mi 1

Naval Postgraduate School
Monterey, California 93943-5000

5. Captain E. L. Jacobson 2

14801 Sherman Way, Apt. #302
Van Nuys, California 91405

6. Computer Technology Programs, Code 37 1

Naval Postgraduate School
Monterey, California 93943-5000

74 1 7 898

Dudley msrox libbap.it

Thesis
J2372
c.l

2i87 c2C 't

Jacobson
Fourth Generation

Programming Languages. es '

20 H4Y 9? 12 8 6 3

Thesis

J2372
c.l

91 R7t;^

Jacobson
Fourth Generation

Programming Languages.

