
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1986

An ADA model of the AEGIS radar scheduler.

Purdum, James H.

http://hdl.handle.net/10945/21632

DUDLEY KttOX LIBRARY
T
*A.L P08 I KH&dZi

MCI TIA 939^-ftW^

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
AN ADA MODEL

OF THE
AEGIS RADAR SCHEDULER

by

James H. Purdum

December 1986

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution is unlimited

t!
' r--

>.
'- >

iECU«l T"V CLASSIFICATION OF Thi? PAGE"

2a SECURITY CLASSIFICATION AUTHORITY

?b DECLASSIFICATION /DOWNGRADING SCHEDULE

1 PERFORMING ORGANIZATION REPORT NUMBER(S)

a NAME OF PERFORMING ORGANIZATION

<Javal Postgraduate School

< ADDRESS (Cry. Srafe. and JiPCode)

Monterey, California 93945-5000

: ADDRESS (Cry. Uate. jnd CIP Code)

unclassified

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION

unclassified
1b RESTRICTIVE MARKINGS

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited.

5 MONITORING ORGANIZATION REPORT NUMBER(S)

60 OFF,CE SYMBOL
(If applicable)

52

a NAME OF FUNDING/ SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If appiicaole)

Ta NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

7b AOORESS (C/fy, State, and HP Code)

Monterey, California 95945-5000

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

j 10 SOURCE OF fijNOlNG NUMBERS
PROGRAM JPROJEC"
ELEMENT NO NO

A'iXv

NO
WORK JNIT
ACCESSION NO

T.'TLt ^include Security Classification)

AN ADA MODEL OF THE AEGIS RADAR SCHEDULER
j E=SONAl AUTHOR(S

Purdum, James H.

MaTte^^Yhesi: 3b TiME COVERED
FROM TO

14 PAT£Pf R E pORT {Year, Month Day)
1986 December

SUPPLEMENTARY NOTATION

15 PAGE COuNT
181

COSATi COOES
FElD GROUP SUB-GROUP

'8 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

ADA model of the AEGIS radar scheduler; NPS
AEGIS project model

ABSTRACT (Continue on reverse it neceuary and identify by block number)

This thesis presents a software implementation in JANUS/ADA of the
Radar Scheduler process based on previous thesis work developed for
the NPS AEGIS Control Program for a mult i -microprocessor system
This thesis is a first effort in implementing the NPS AEGIS projectmodel in JANUS/ADA. Included are the results of the preliminaryreal-time testing and logical tests of the Radar Scheduler module.

D TR'3U T iON/AVAlLABlLiTY OF ABSTRACT
EL'NCLASSIFIEO/UNL'MITED CI SAME AS RPT D DTlC USERS

res
FORM 1473, 84 mar

21 ABSTRACT SECURITY CLASSIFICATION

unclassified
2{mV8W-fM*aCode) 22c OFFICE SYMBOL

Code 52Kr
83 APR edition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF this PAGE

unclassified

Approved for public release; distribution is unlimited.

An ADA Model
of the

AEGIS Radar Scheduler

by

James H. Purdum
Lieutenant, United States Navy

B.S., Arkansas State University, 1979

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1986

ABSTRACT

This thesis presents a software implementation in JANUS/ADA of the Radar

Scheduler process based on previous thesis work developed for the NPS AEGIS

Modeling Project. The project is an emulation of the AEGIS AN/SPY- 1A Radar

Control Program for a multi-microprocessor system. This thesis is a first effort in

implementing the NPS AEGIS project model in JANUS/ADA. Included are the results

of the preliminary real-time testing and logical tests of the Radar Scheduler module.

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic

errors, they can not be considered validated. Any application of these without

additional verification is at the risk of the user.

Some terms used in this thesis are registered trademarks of commercial products.

Rather than attempt to cite each occurrence of a trademark, all trademarks appearing

in this thesis are listed below the firm holding the trademark:

1. U. S. Government (AJPO)

a. ADA Programming Language

2. RR Software. Inc.

a. JANUS/ADA Programming Language

3. Digital Research, Box 579. Pacific Grove. California

a. PL/I-80 Programming Language

4. Intel Corporation, Santa Clara, California

a. iSBC 86/12A Single Board Computer

5. Zenith Data Systems Corporation

a. Z-100 Series Computer

TABLE OF CONTENTS

I. INTRODUCTION 9

II. SOFTWARE DOCUMENTATION 11

A. SOFTWARE ENGINEERING PHILOSOPHY 11

B. THE ADA PROGRAMMING LANGUAGE 11

C. PROGRAM DOCUMENTATION REQUIREMENTS 12

D. VARIABLE NAMING CONVENTIONS 14

E. FILE NAMING CONVENTIONS 15

III. NPS MODEL OF THE AN/SPY- 1A RADAR CONTROL
GROUP IS

A. RADAR CONTROL GROUP MODULES 18

1. Control Modules 19

2. Support Modules 22

IV. RADAR SCHEDULER DESIGN 25

A. PURPOSE OF RADAR SCHEDULER 25

B. FUNCTIONAL DESCRIPTION OF RADAR
SCHEDULER 27

C. EXTERNAL DATA STRUCTURES 29

1. Data Structures Consumed 29

2. Data Structures Produced 35

D. INTERNAL DATA STRUCTURES 38

E. RADAR SCHEDULER MODULE DESCRIPTIONS 39

1. Initialization 40

2. Swap Dwell Buffers 42

3. Radar Event Priority Enhancement 43

4. Radar and Computer Synchronization 45

5. Beam Selection Routines 46

6. Supplementary Dwell Processing 48

7. Dwell Array Face Assignment 48

8. Comply With Radar Doctrine 49

9. Satisfy SPY-1A Hardware Constraints 50

10. Place Dwells Into Dwell Buffers 52

11. Radar Load Evaluation 53

12. Elapsed Time This Interval 53

13. Radar Event Control Table Analysis 54

14. Free Radar Event Control Table Memory 56

F. RADAR SCHEDULER COMMON SERVICE ROUTINES 57

1. Random Number Generator 57

2. Clock. Routine 58

3. Initialize Radar Event Priority List 58

V. TEST PLAN 60

A. DESIGN AND DOCUMENTATION OF TEST
MODULES 60

1. Search Management Test Harness 60

2. Track. Management Test Harness 61

3. Detection Processing Initialization Module 61

4. Operator Interlace Module 61

B. DATA ANALYSIS METHODS 62

C TIMING ANALYSIS 62

VI. CONCLUSIONS AND RECOMMENDATIONS 66

APPENDIX A: COMMON MEMORY INTERFACE SOURCE CODE 68

APPENDIX B: GLOBAL SOURCE CODE 93

APPENDIX C: RADAR SCHEDULER SOURCE CODE 100

APPENDIX D: TEST HARNESS SOURCE CODE 132

APPENDIX E: SAMPLE RADAR SCHEDULER OUTPUT 157

LIST OF REFERENCES 178

BIBLIOGRAPHY 179

INITIAL DISTRIBUTION LIST 180

LIST OF TABLES

1. NPS AEGIS MODULE NAMING CONVENTION 15

2. COMMON MEMORY INTERFACE MATRIX 17

3. RADAR EVENT PRIORITY LIST 25

4. PERFORMANCE RESULTS 65

LIST OF FIGURES

2.1 Source Code Documentation 13

4.

1

Radar Scheduler Algorithm 26

4.2 Initialization Module Algorithm 42

4.3 Swap Dwell Buffers Algorithm 43

4.4 Priority Enhancement Algorithm 44

4.5 Synchronization Algorithm 45

4.6 Uend Algorithm 47

4.7 Get RECT Node Algorithm 47

4.3 Free RECT Node Algorithm 48

4.9 Dwell Array Face Assignment 49

4.10 Comply With Radar Doctrine Algorithm 50

4.11 Satisfy Hardware Constraints Aigoritnm .51

4. 12 Fill External Dwells 52

4.13 Radar Load Evaluation Algorithm 54

4. 14 Elapsed Time Algorithm 54

4.15 Radar Schedular Dump Algorithm 55

4. 16 Free Memory Algorithm 56

4.17 Random Number Generator Algorithm 57

4.18 Clock Algorithm 58

4.19 Priority Event List Initialization Algorithm 59

I. INTRODUCTION

The AEGIS Combat System (ACS) is an automated, rapid reaction shipboard

combat system. As an automated combat system, it is designed to control shipboard

sensors, manage electronic data processing, and assist in the making of time critical

combat decisions while simultaneously engaging air, surface, and subsurface threats.

Additionally an AEGIS platform posesses the capacity for defending its accompanying

forces against the same threats. To meet this demanding environment the ACS relies

on a specially designed computer system to assist in every phase of combat

engagement.

At present the computer system is composed of three banks of four processors

and up to three uni-processor AN/UYK-7 computer systems, totalling fifteen 32-bit

processors. In addition, there are six or more AN/UYK-20 16-bit minicomputers in

the system making the AEGIS system the largest network of computers dedicated :o a

combat system. The faculty and officer students at the Naval Postgraduate School have

been interested in ways to reduce the costs of the ACS without compromising its

capability. As a result the Naval Postgraduate School developed the AEGIS Modeling

Group to study the problem. The group's major goal and approach to the problem is

to model the AEGIS Combat System's computer suite using multi-microprocessor

technology and the latest software engineering principles.

The feasibility of a multi-microprocessor approach was first addressed by

Gayler's thesis [Ref. 1: p. 15]. Gayler explains that state of the art advances in

microelectronics should be used as an alternate method of processor implementation in

future AEGIS platforms. In order to realize the benefits of large scale integration

(such as reduced size, weight, cost, and an increased reliability) a distributed multi-

microprocessor architecture was proposed. Further studies into the hardware

implementation were carried out in thesis work by Dilmore [Ref. 2: pp. 7-70] which

describe hardware implementation for the NTS model. After the hardware decisions

were made for the model, Riche and Williams [Ref. 3: pp. 11-232] laid out the design

for the software foundation for the AN/SPY- 1A radar control.

The NTS design of the software places a major emphasis on concurrent process

management, both asynchronous and periodic. A Multi-Computer Real Time

Executive (MCORTEX) was developed in a sequence of six thesis projects to permit

parallel processing in each computer in the multiprocessor system. At present, thesis

work is being done to provide concurrent process management by creating an ADA
language interface to the MCORTEX system. MCORTEX can then be used to

coordinate the asynchronous processes of the ACS's model in a multi-microprocessor

environment. The main objective of this thesis is to implement the Radar Scheduler

process using the JANUS/ADA programming language. This in turn will provide a

major portion of the overall model and the opportunity to study the feasibility of real-

time programming in ADA.

Chapter II of this thesis presents the software documentation principles for the

NPS model of the ACS. This includes a discussion of the Janus Ada programming

language and an explanation of the program documentation scheme used by the NPS

AEGIS Modeling Group. Chapter III describes the NPS model of the Radar Control

System. A functional description is given for of each the Radar Control Group

modules to be modeled. A more detailed description of the Radar Scheduler is provided

in Chapter IV. Chapter IV presencs the Radar Scheduler design and necessary

documentation for the Radar Scheduler source code. This is the major section of this

thesis which emphasizes the functional requirements, data structure specifications, and

an explanation of the algorithms implemented by the Radar Scheduler program.

Chapter V provides information on testing the algorithms implemented. This includes a

discussion on the module testing philosophy for time critical programs and the strategy

used in testing the Radar Scheduler modules. Chapter VI presents the conclusions and

recommendations for further research.

10

II. SOFTWARE DOCUMENTATION

A. SOFTWARE ENGINEERING PHILOSOPHY

The primary goal of software engineering is to improve the quality of software

products while increasing the productivity of software engineers. This goal applies as

well to the AEGIS Modeling Group. Due to the continuing turn over and time

constraints of research students, it is essential that this project be based on sound

software engineering principles. In view of this the AEGIS Modeling Group has

adopted the following philosophy. First, both the design and the source code must be

clear, easy to understand, and modifiable. Second, the model must be constructed

within the constraints of the AEGIS program specifications.

The first goai mentioned is achieved through a top down modular design, using

structured programming. Moreover, the documentation must also emphasize this

hierarchical structure with the upper-most level ot documentation presenting 'he least

detailed view and successive levels becoming more ana more detailed. Tins way the

reader is not overwhelmed by details and thus is more able to grasp the structure of the

program.

The second goal relating to program specifications is very important. Unless the

design is based on a firm knowledge of the program specification, the modeling effort is

in vain. Each module's documentation will include a description of its purpose. All

modules are constructed so that they obey the functional specifications of the AEGIS

AN/SPY- 1A Radar Controller software.

B. THE ADA PROGRAMMING LANGUAGE

The ADA programming language was designed in accordance with the

requirements defined by the United States Department of Defense. In general, these

requirements call for a language with considerable expressive power over a wide

application domain [Ref. 4: p. 1-1]. Of particular interest in our application is the

languages ability to cover real-time programming. To support real-time programming,

ADA provides facilities to model parallel tasks and to handle exceptions.

Unfortunately, the ADA language implementations do not provide runtime

environments for multi-single-board computer based systems. In order to use the

multiprocessor environment, the MCORTEX operating system is used to permit

11

parallel processing in the ADA language. In particular, use is made of the

JANUS/ADA language, which differs from the fully validated ADA primarily because

tasking and generics have not yet been implemented. Since the MCORTEX operating

system is used for parallel processing, there is no need for the tasking features of the

ADA language, and therefore JANUS/ADA is suitable as the programming language

to implement the present version of the AEGIS model.

In the JANUS/ADA programming language modules are composed of packages

that can be separately compiled. The package usually contains a specification and a

body. Each of these parts reside in separate files for compilation purposes. Files

containing the moduies specification have the file type "LIB". Files containing "he

package body have been given the default JANUS/ADA file type "PKG".

ADA's enumeration types allow the user to add clarity to the code and program

at a much higher level of abstraction. The clarity is achieved by creating data

structures that can be easily read rather than having to decipher their purpose in the

code.

C. PROGRAM DOCUMENTATION REQUIREMENTS

Documentation of the Pvadar Scheduler Model program in :his thesis is in

keeping with the PL/I-80 version which was modeled after me Software Requirements

for the A7-E Aircraft document. The requirements call for documenting design

decisions that will impact the future development of the program, what the functional

requirements of the program are, what the interface data structures are composed of,

how the program's internal data structures were fashioned, and the modular

decomposition of the program. [Ref. 5: p. 23]

All the design decisions which were made for the Radar Scheduler Model can be

found in Chapter 4 which serves as a module design document. Each Radar Scheduler

module's design documentation contains the following:

1. A functional abstract description of the module,

2. Common memory interface,

a. Data structures consumed,

b. Data structures produced,

3. Internal process data structures,

a. Data structures consumed,

b. Data structures produced,

12

4. Local module data structures,

5. A description of the module in an algorithmic language.

Design decisions made for the purpose of testing the Radar Scheduler are documented

in Chapter V.

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 7 Dec 86
-- MODULE TYPE: Skeleton Sample (Vers 1.0}
— PURPOSE: Depict format for module source code
-- NAME: Sample ... fig2.pkg

— This sampie module source code skeleton represents
— the format to be used in documenting modules.

WITH global. tables; - declare global data structures
-- and common memory

PACKAGE BODY fig2 IS

USE global.tables;

TYPE localvar IS INTEGER; -- declare any local
var: localvar; -- module variables

PROCEDURE sample! parameter: IN INTEGER) IS
procvar: INTEGER; -- declare procedure variables

BEGIN
-- code for the procedure

END sample:

BEGIN
-- If desired local or global variables
-- can be initialized here.
— If this module was not designed for the
-- procedure "sample" then the code for the
— main program ' sample" would go here.

END fig2;

Figure 2.1 Source Code Documentation.

Code documentation must maintain a balance between verbosity and scarcity of

comments. The prime objective is to increase readability and ease the task of

maintenance. An example of the format for source code documentation in this thesis is

given in Figure 2.1 . The source code documentation used in this thesis can be

generally broken into three parts, a module header, a module description, and short

comments for code explanations that may not be apparent to the reader.

The purpose of the module header is to introduce the module to the reader. The

header's template format helps to insure that vital information is not overlooked, while

13

adding to the structured approach of the documentation. Each module header provides

the reader with the following information:

1. Who the owner of the module is.

2. The date that the module was last altered.

3. The type of module and the current version number.

4. The purpose for which the module was written.

5. The English language equivalent name of the module and the file name it is

stored under.

Following the module header is the module description. The module description

is used to explain the generai functional logic which controls the execution of the

algorithm implemented by the module. Included in the module description are the

input and output parameters used by the module.

The last type of documentation, short in code comments, are used to introduce

the major functions within "he module. The comments will describe what the function

has been designed to do.

D. VARIABLE NAMING CONVENTIONS

A common pitfall of the applications programmer is "excessive contraction" of

variable names. In keeping with the desire to maximize readability, the convention for

naming variables is based on two principles. First, that the variable name be long

enough to be unique to the language and the reader, and second, that the name reflect

the variables purpose. However, if the lengths of the variable names are too long, it

becomes difficult to organize the source code to fit on the standard 8.5 inch by 1 1 inch

page. Consequently the programmer must consider the fact that he will not be the only

one to read his code and decide accordingly.

In the case of this thesis variable naming was based on the PL/I-80 version

names. The reason for this decision was to avoid confusion on the part of future

researchers. This was necessary since the majority of the variables are defined by

common memory interface data structures that were designed in the early stages of the

Radar Control Group modeling process. Since these data structures act as interfaces to

the other major processes, adding, changing, or deleting variables in these data

structures was not a decision that should be made from the Radar Scheduler processes

design level.

14

E. FILE NAMING CONVENTIONS

A file naming convention has been established in order to keep track, of the large

number of files that make up the the Radar Controller model. This convention has

been preserved by this thesis in order to maintain consistance with the previous

versions. The JANUS/ADA modules in this thesis have been named after their PL/ 1-80

predecessors so that their names will serve as a cross-referencing tool to facilitate

future research.

TABLE 1

NPS AEGIS MODULE NAMING CONVENTION

MODULE NAME CODE FILE NAME

CONTROL GROUP
Radar Scheduler R RRCM
Search Management S SRCM
Track Management T TRCM
Radar Return (incut) I IRCM
Radar Output: ORCM
Channel I/O Control H HRCM

SUPPORT CROUP
Switch Action and Display A ARCM
ZCcD User Services C CRCM
Beam Stabilization 3 BRCM
Detection Processing D DRCM
ECM/Clutter Processing E ERCM
Frequency Management F FRCM
Track Association K KRCM
Load Evaluation L LRCM
Missile Communications M MRCM
WCS User Services W WRCM
Cross-Gating X XRCM

The scheme for naming the files is presented in Table 1 . Each of the major

processes is assigned a unique one letter process identifier code. This code followed by

the letters "RCM", make up the file name which stands for "Radar Control Module".

Each of these major processes is composed of several subordinate modules. The file

names of the subordinate modules correspond to the initials of their parent process

followed by a module number. For example, the first module within the Switch Action

and Display process would have the file name "SADM1" which stands for Switch

Action and Display Module 1.

15

If the modules are further subdivided into submodules and subroutines then they

are uniquely identified through file name typing. That is, the filename takes on the

parent process initials and module number followed by a submodule letter (A-Z). For

instance, the Track. File Initialization module, DPMI, which is part of the Detection

Processing Module, has a subroutine which is used to place a node at the end of a

linked list. Since this subroutine is part of DPMI, it has the file name DPMIA.

Some subroutines may be used by many modules. In this case they have more

than one parent process and are classified as "Common Service Routines". These

modules use the file name "CSR" followed by a number T o uniquely identify them from

other 'Common Service Routines". For example, the subroutine 'rand" . which

generates a pseudo-random number, is shared by several modules, therefore, it has the

file name "CSR5". There is aiso one other module which is shared by the major

processes. This module contains giobai data structures and its file name is 'GLOBAL".

The Radar Control Moduie aiso incorporates files that contain data structures

which ict as a "common memory interface' between tne maior processes. These

common memory interfaces are called 'tables" and their 'lie names are the initials

"TAB" followed by a number (0-77). The table's file names are organized into the

matrix presented in Table 2 .

This table shows data structures which interface with the

major processes. The columns of the matrix contain entries which identify tables usea

as the input data structures to the process identified by the letter on top of the column.

The rows of the matrix contain entries that identify the tables which are used as output

data structures from the process identified by the letter in the left most column of the

matrix. For example, "TAB3" is an interface data structure between the Radar Return

process (I), and the Radar Scheduler process (R). To the Radar Return process

"TAB3" is an input data structure and to the Radar Scheduler process it is an output

data structure.

Since all the modules are defined as Ada packages, some modules may

incorporate two files, the package specification and the package body. To distinguish

between them, the file containing the specification has the file type "LIB". The file

containing the body has the file type "PKG". For example, the files "RRCM.LIB" and

"RRCM.PKG" are collectively the Radar Scheduler process.
1

Unless specified the words process, module, submodule, subroutine, etc., in this
thesis refer to the entire package data structure.

16

TABLE 2

COMMON MEMORY INTERFACE MATRIX

CONTROL GROUP 1 SUPPORT GROUPRSTP IOHACBDEFKLMWX
R" 1 2 3 4 5 6 7 8 9 10

S 11 12 13 14 15 16

T 17 18 7 19

P 20 21 22 23 24 25 26 27 10 28 29

I 30 31

32 33 34 35 36 37 38 10 39

H 40 40

A 41 42 43 44 45 46
|

j

47

C 48 49 50 51 52 53

3 54 55 56

D 57 4 58

Z 59 60

F 61
1

£ 53

K 64

L 65 66 67 68

M 10 69

W 70 71 72

X 73 74 75 76 77

17

III. NPS MODEL OF THE AN/SPY-1A RADAR CONTROL GROUP

The NPS model of the AEGIS system is designed to emulate the Radar Control

system. The overall system, as described by Gayler [Ref. 1: p. 1], contains seven

subsystems:

1. Radar System AN/SPY- 1

A

2. Command and Decision System MARK 1 MOD
3. Weapons Control System MARK 1 MOD
4. Fire Control System MARK 99 MOD 1

5. Guided Missile Launching System MARK 26 MOD 5

6. Standard Missile

7. Operational Readiness Test System MARK 1

Research at NPS is focused on the first of these subsystems. The NPS AEGIS model

implements a subset of the Radar Control Group subsystem, which in turn is a subset

of the Radar System AN' SPY- 1A. The reasons for this decision are discussed in

Dilmore s thesis [Ref. 2: pp. 1-20].

The radar controller modules have been broken down into two major groups:

control modules and support modules. The control modules are dedicated to the five

major tasks of the radar controller:

1. Search Management,

2. Radar Scheduling,

3. Radar Output,

4. Radar Input and,

5. Track Processing.

The support modules perform more limited or specialized functions. Only the support

modules required to implement the Radar Scheduler will be presented in this thesis.

A. RADAR CONTROL GROUP MODULES
This section gives an overall view of the Radar Control Group modules required

for the modeling of the Radar Scheduler process. The first subsection describes the

"control modules" and the second subsection is dedicated to the "support modules".

18

1. Control Modules

Four of the five "control" modules are required to model the Radar Scheduler

functions: the Radar Scheduler process, the Search Management process, the Track

Management process, and the Radar Return process. Of these control modules only

the Radar Scheduler is fully modeled. The remaining control modules are at present

only test harnesses for the Radar Scheduler process. The following description of these

modules is based on previous thesis work. [Refs. 3,5: pp. 43-50, 32-36].

a. Radar Scheduler

The Radar Scheduler's purpose is r.o schedule a mix of radar events. These

events actually correspond to the transmission of a radar beam in a specific direction

for a certain amount of time. In doing this the scheduler must ensure that a search

volume of 360 degrees azimuth and 90 degrees elevation is covered. The term "mix of

radar events" refers die various rvpes of events ,uch as search, track., missile control.

etc.. Each of these events has a cenain pnontv which must be taken into account ro

insure its timely occurance. The time limit for scheduling a mix of radar events in i

given radar interval is 21 milliseconds. For this reason the Raaar Scheduler is the most

time critical function within the Radar Control Group ro be modeled. A more derailed

description of the module's mnctions will be given in the Rauar .Sciieciuler Design

chapter.

b. Search Management

The Search Management module generates all the search type beam

requests. The requests fall into three general categories, horizon search, above horizon

search, and special request type beams. The beams are maintained in separate queues

in accordance with the operational doctrine, the special request doctrine, and the radar

event priority list.

The Search Management module must insure that enough horizon and

above horizon requests are generated for a 360 degree azimuth and 90 degree search

field. These two event types may be considered typical for normal operation.

On the other hand, special request beams correspond to events which

would not be considered under normal searching operations. The special request

category contains eleven radar event types, which enhance the radar search capability.

The capabilities provided by the special request events are explained in the remainder

of this subsection.

19

Two of the special request events are devoted to ECM Burnthrough. ECM
Burnthrough is an electronic counter measure whereby the radar's transmission power

is increased so that objects can be seen through jamming and/or clutter. Jamming is an

electronic warfare technique used against radar to distort the radar return being viewed

on the scope. Clutter is a term used to describe extraneous blips on the radar scope.

The blips are usually caused by bad wether or sea conditions.

Special scans requests are also controlled by the Search Management

process. Special scans include manual and moving target indicator (MTI) search

requests. MTI is a technique that electronically filters out stationary objects from the

radar display, thereby indicating which objects, or targets, are actually moving.

The Search Management module controils passive search. In a passive

search, unlike active search, the radar's transmitter is off and the radar's receiver is

only used to detect the presence of another emmiter.

The extended search mode is another capability that is controlled by the

Search Management orocess. This is used when there ire several contacts along the

same azimuth and the radar returns from the contacts become difficult to distinguish.

Electronic blanking gates are inserted at the ranges of known contacts along the given

azimuth so that the other contacts may be detected. The extended search mode may

aiso be used to increase the search intensity in either range or bearing.

Horizon confirmation is an electronic means used to confirm targets in a

clutter environment. Horizon confirmation and the clutter mapping process are both

supported by the Search Management process.

The remaining special request functions supported by the Search

Management module are missile and target acquisition requests, and partial dwell

formatting of the requested beams. Modeling of the partial dwell formatting for use by

the Radar Scheduler would require the use of classified documents. In order to

maintain the unclassified status of this thesis, unclassified data has been substituted in

the requested beam queues.

c. Track Management

The Track Management module is responsible for controlling all the

requested track beams. Controlling the requested track beams entails three major tasks,

with respect to both real and simulated targets.

The first task is track updating. Track updating entails an automatic

smoothing of the position and rate of target return data. This data is used to predict

20

the future target positions with sufficient accuracy to maintain tracking. In order to

accomplish this, the Track. Management process must ensure that the highest priority

tracks are given ample illumination time by the radar while simultaneously keeping

lesser priority tracks illuminated within the constraints necessary to maintain their

tracks. When the system becomes overloaded, the software must be able to compensate

by eliminating those tracks that are perceived as least threatening. Naturally, this also

implies that track processing must be able to evaluate new targets immediately so that

special threat candidates and target splits can be identified.

The second task is track handling. Track handling includes the following:

1. Track dwell wave form selection,

2. Cross-gate preparation,

3. Transition from search to track mode,

4. Acceleration limiting processing, and

5. Automatic special mode processing.

The third task is special processing. Special processing is a collection of

routines used for JVLTI tracks, missile tracks, and clock updates. Special processing also

includes a routine for handling split targets. A split target is actually two or more

targets that initially appear as one because they are so close together. When the "arget

does split into multiple tracks each must be individually processed.

Special processing also includes a routine for processing Sensitivity Time

Control (STC) data. STC is an electronic adjustment to the gain of the radar receiver

based on the radar range to the target. This keeps objects closest to the radar, which

provide very strong returns, from saturating the radar returns.

In conjunction with the three functions previously mentioned, the Track

Management module is responsible for notifying Command and Decision (C & D) and

Weapons Control Systems (WCS) of new tracks and any special threats.

d. Radar Return {Input)

The Radar Return module performs the initial processing on the raw data

received from the SPY-1A Signal Processor. This includes data validity checks, clutter

mapping, search processing, track angle error correction, and ECM analysis.

Once this is accomplished, the radar data must be routed to the appropriate

modules for further processing. Evaluation and dissemination of this data is subject to

the same 21 millisecond time constraint as the Radar Scheduler. In fact the Radar

Scheduler relies on synchronization data from the Radar Return module to maintain

scheduling interval synchronization with the radar hardware.

21

2. Support Modules

There are fifteen "support modules" contained in the Radar Control Group

Modules. These support modules function as background processes to provide support

for the "control modules". Seven of these modules are required for modeling the Radar

Scheduler function. The description of these modules is based on information supplied

in previous thesis research for the AEGIS Modeling Group [Refs. 5,3: pp. 36-40,

51-55].

a. Switch Action and Display

The Switch Action and Display module acts as an interface between the

Radar System Controller (RSO and the radar. This allows the RCS to monitor and

control the radar in accordance with operational doctrine and the individual desires of

the operator.

The module provides information to the Radar Scheduler function which is

used in formatting selected beams for the current scheduling interval. The information

consists of inhibited radiation regions and the radiation power level (low or high).

Radiation inhibit regions are regions where doctrine control does not ailow radar

transmission. The regions are defined via start and stop bearings.

b. Command and Decision User Services

The Command and Decision User Services moduie acts as an interface

between the Radar Control Group and the Command and Decision Group. The

purpose of the module is to check and route all the messages between these programs.

To accomplish this, a priority level message scheme is used in order to meet the

required track report interval rates and other report rates during peak radar load

periods.

c. Beam Stabilization

The Beam Stabilization module performs two main functions. First it

transforms the ship's motion matrix (roll, pitch, and yaw) into a stable space matrix

which is used for radar beam guidance. Second, it assigns the array face limits which

are used in formatting scheduled dwells.

The fore and aft gyro data converters supply the necessary roll, pitch, and

yaw information along with ship's heading for stabilization. This information is used

to compute the stable deck space matrix.

The ship's motion matrix and the bearing limits for the four phased array

antennas are passed to the Radar Scheduler. The Radar Scheduler then uses the

information to format the selected dwells.

22

d. Detection Processing

The Detection Processing module is executed only when target or beacon

detection data is received from the Radar Return module. When this occurs the

module looks for detections as a result of normal search (clear and MTI), extended

range search, horizon confirmation, missile acquisition, and target acquisition dwells.

The module is also responsible for initiating track requests and preparing detections for

cross-gating.

The Track File data is maintained by the Detection Processing module. The

Track file is a linked list data structure capable of handling as many targets as can be

tracked within the hardware constraints of the computer. Access to the Track File is

provided to the Radar Scheduler by the Track Management module via an index into

the file.

e. Frequency Management

The Frequency Management module is used to assign radar frequencies to

the dwells selected by the Raaar Scheduler during each scheduling interval. The

frequencies and onase codes assigned to the dwell are made to conform with sector ana

global doctrines.

fn accordance with the doctrines, frequency channel selections are in one of

three modes, fixed, random, or preiook. Fixed implies one designated cnannei only. The

random mode means that frequencies are selected on a random basis from the available

channels established by the current doctrine. Preiook implies frequency selection of the

least jammed channel frequency based on the results of a passive angle track (PAT)

frequency analysis. By use of these frequency channel selection modes the Frequency

Management module can generate the Radar Scheduler input data for the frequency

operating channel and subpulse-frequency order selection.

The phase code to be used within each dwell is also specified by this

module. The phase codes are selected at random from a list of the phase codes

available during the current schedule for each dwell. A separate list of phase codes are

maintained for clear and MTI type dwells.

Each scheduled dwell will contain channel frequency, band frequency,

phase codes, and inhibited frequency channels. If the dwell is an MTI type then it will

also contain MTI frequency data. If the dwell is a missile type then missile uplink and

downlink frequencies will be included.

23

/. Load Evaluation

The Load Evaluation module provides system's load information to the

Command and Decision element as well as the Radar System Controller. The systems

load is based on seven indicies which must be computed periodically. These seven

indicies are:

1. Transmitter utilization load,

2. Control group track file load,

3. Control group computer processing load,

4. Search frame time for horizon and above horizon scans.

5. Track time,

6. Track transition index, and

7. Radar time utilization index.

The track cime variable is used by the Raaar Scheduler as input to reset us'

track time counter. The Radar Scheauler .veeps a running total ot track time. rhe

Track time inaex orovuies :ne percentage of radar usage dedicated to tracKing targets

over an average live second time span.

g. Missile Communication

The Missile Communication moauie provides an interface between the

Weapons Control System guidance command generation ana Radar Control Program s

guidance control link. Uplink missile guidance commands and the missile identification

code are sent to the Radar Scheduler. Further information on the operation of this

function can be found in classified documents.

24

IV. RADAR SCHEDULER DESIGN

The design of the Radar Scheduler function is based on the PL/I-80 version

implemented by Grant, [Ref. 5: p. 41]. This chapter presents the design details for the

JANUS/ADA version of the Radar Scheduler process.

A. PURPOSE OF RADAR SCHEDULER

The Radar Scheduler's purpose is to schedule a mix oC radar events (dwells) in a

way that ensures the occurrence of necessary events in a timely manner. The various

types of radar events used in this model were taken from open literature, rather than

the actual classified list found in the AEGIS performance specifications. [Ref. 5: p 41]

The list of radar events shown in Tabie 3 are the radar events used in this model.

TABLE 3

RADAR EVENT PRIORITY LIST

PRIORITY RADAR EVENT QUEUE IDENTITY

1 ECM Burnthrouqh Special Request
2 Target Definition Special Request
3 Special Test Special Request
4 Engaged Hostile Target Track
5 Own SM-2 Missile Guidance Missile
6 Pre-Engaged Hostile Target Track
7 High Priority Track Transition Track
8 High Priority Track Confirmation Track
9 Horizon Search Search

10 Special ECM Burnthrouqh Special Request
11 Special Target Definition Special Request
12 Special Scans (MTI , Man, etc) Special Request
13 Special Target Acquisition Special Request
14 Confirmed Hostile Track Track
15 Assumed Hostile Track Track
16 Unevaluated Track Track
17 Controlled Friendly Track Track
18 Track Confirmation Track
19 Track Transition Track
20 Assumed Friendly Track Track
21 Confirmed Friendly Track Track
22 Above Horizon Search Search
23 Above Horizon Search Test Special Request
24 Simulation Dwell Special Request
25 Diagnostic Dwell Special Request
26 Dummy Dwell Special Request

25

The actual mix of radar events that get scheduled is determined by the Radar

Scheduler. The schedule is governed by the radar resources available, time constraints,

and an event's priority relative to the other events that are being requested. The details

of the process are explained in the following section. The Radar Scheduler's

algorithmic description is given Figure 4.1 .

Begin Radar Scheduler;
7or number of intervals loop;

Advance radar Iood event counts;
Get value of real time (CSR7);
Swap external dwell buffers (RSM2);
Do enhancement of Radar Event Priorities (RSM3);
Resynchronize computer and radar times (RSM4)

;

Begin beam selection
Traverse the Priority List

Traverse the event queue
If searcn or special request queue then

Put beam information' in Control Taole;
Do Supplementary Dwell Processing IRSM6);
Do Face Assignment (RSM7);
Do Radar Doctrine (RSM8)

:

Satisfy Hardware Constraints (RSM9);
If satisfied then

rill External Tables (RSH10);
Insert Dwell in Control Table list (RSH5);

Else
Delete Dwell from Control Table list (RSM5);

Else
Put beam information in Control Table;
Do Supplementary Dwell Processing (RSM6);
Do Face Assignment (RSM7);
Do Radar Doctrine (RSM8)

j

Satisfy Hardware Constraints (RSM9);
If satisfied then

Fill External Tables (RSM10);
Insert Dwell in Control Table list (RSM5);

Else
Delete Dwell from Control Table list (RSM5);

End Traverse the Event Queue;
Compute Elapsed Time (RSM12);

End Traverse Priority List;
End Beam Selection;
If interval results are to be displayed then

Display Interval Scheduling Results (RSM13);
Free Control Table Memory for Next Interval (RSM14);

End For number of intervals loop;
End Radar Scheduler;

Figure 4.1 Radar Scheduler Algorithm.

26

B. FUNCTIONAL DESCRIPTION OF RADAR SCHEDULER

The Radar Scheduler operates in a continuous loop selecting requested beams,

generated by the Search and Track management processes, for scheduling. Once

selected, the beams are formated into dwells. If the hardware and other constraints are

satisfied, then scheduled dwells are sent to the Radar Output function and are packed

into the Channel Output Buffer for transmission to the Signal Processor. The time it

takes to complete this task is defined as a scheduling interval. Furthermore, the median

scheduling interval is defined to be 21 bms (binary milliseconds).

The requested beams are siored for use by the Radar Scheduler in four types oi

queues. The searcn and special request type queues are maintained by :.he Searcn

Management Process." The track and missile type queues are maintained by the Track

Management Process.^ The Radar Scheduler gains access to these queues through

pointers in the Priority Event List. The Priority Event List in turn provides the

scheduler with a mechanism for prioritizing the requested beams (see Table 3).

Therefore, an ordering of the beams is developed in two ways. From *.ne queue

structure they are ordered in a first come first served fashion. Second, the queues

themselves are ordered by association with the Priority Event List. The queue

associated with the radar event at the beginning of the list has the highest priority as

indicated in the table. Togetner these data structures provide the oasis of the priority

scheme used for selecting the requested beams.

When the Radar Scheduler program is loaded for execution, the Priority Event

List and the scheduler's internal data structures are automatically initialized. Also

included in this initialization are the data structures that the scheduler produces.

The scheduling interval begins after advancing the event counts and updating the

real time. Next the external dwell buffers are swapped preparing them for the next set

of dwells to be scheduled. Once the buffers have been swapped, the enhancement

procedure modifies the Priority Event List holding the requested beams.

The enhancement routine dynamically enhances the priority of the events in the

list and in effect changes its traversal order. Changing the traversal order of the events

increases the probability of selection for those requested beam queues associated with

the events at the head of the list.

2,

.111

Track and missile queues are formed from the Track Node data structure.

'Search and special request queues are formed from the Search Node data
structure.

27

After enhancement and resynchronization of computer and radar times, the beam

selection process begins. During this process beams are considered for selection by

traversing the Priority Event List in its' current priority order. The highest priority

beam is selected first and so on until the resource constraints are exhausted for that

particular interval.

There are several resource constraints that must be considered. There must be

sufficient radar resources available to handle the requested beams. The elapsed time for

the scheduling interval must be less than the allowed eiapsed time. The total dwells

scheduled must not exceed the maximum allowed during an interval. The final

constraint occurs by completely traversing the Priority Event List and in effect

terminating the beam selection process. If these constraints are met, traversal of the

Priority Event List is continued.

If the event's beam queue is not empty then the beam queue is traversed

processing eacn requested beam. First the beams information is inserted into a Radar

Event Control Table node. Next supplementary dwell processing occurs in preparation

for scheduling. Alter this is accomplished, the selected beams ire given an array face

assignment and a comparison is done between *he beam's transmission and the radar

doctrines that are in effect. Once this is accomplished the beams must meet the final

selection criterion of satisfying the hardware constraints.

If the hardware constraints were satisfied, then the selected beam is sent to the

external dwell buffers, load evaluation occurs, and the node is added to the Radar

Event Control Table. If the hardware constraints were not satisfied, then the node is

returned to the pool of available Radar Event Control Table nodes for future use. The

Radar Scheduler then considers the next beam in the event's request queue, and so on

until the queue is empty.

When the beams in the queue have been considered the scheduler moves on to

the next event in the list. This continues until all the events in the Priority Event List

have been considered or the resource constraints can no longer be met. Once this

occurs, the scheduling interval is completed and the elapsed time is computed.

If the results of this interval are requested by the program operator, then the

appropriate information is dumped into a file called "RSOUT.TXT". Then the memory

is freed up for the next scheduling interval by returning the nodes that make up the

Radar Event Control Table to the pool of available nodes.

28

The run-time Radar Scheduler model does not implement the following design

time modules: Resynchronization (RSM4), Supplementary Dwell Processing (RSM6),

Radar Array Face Assignment (RSM7), Comply With Radar Doctrine (RSM8), and

the Radar Load Evaluation (RSM11) module. Implementation of the modules that are

not coded would require knowledge of the required data structure values to be

produced. Due to time constraints, the design decisions which must be made to

produce those values must be deferred until the processes that will use them are

designed and implemented. [Ref. 5: pp. 46-47]

C. EXTERNAL DATA STRUCTURES

The external data structures are global constants, variables, and type declarations

which act as interfaces between the Radar Scheduler modules and the other Control

Group and Support Group modules. The modules are referred to as tables and are

numbered consecutively from zero to seventy- seven.

A Common Memory Interface Matrix. Table 2. is designed to be used as an

index Into the listing of the external data structures located in Appendix D. The

applicable data structures for the Radar Scheduler Module can be found by reading

across row "R" to locate the output data structures and down column "R" to locate the

input 'lata structures.

1. Data Structures Consumed

These data structures reside in common memory and are declared by Library

Packages for use by the Radar Control processes which read from and write to them.

The Radar Scheduler uses the data structures in the following tables to select and

format dwells during a scheduling interval.

a. Table - Priority Event List

The Radar Event Priority List is visible to the Radar Scheduler (consumer),

Search Management (producer), and the Track Management (producer) procedures

only. The variable pri_lst is a one dimensional array of radar events which correspond

to the Radar Event Priority List depicted by Table 3 . The array simulates a linked list

so that priorities can be changed dynamically during execution. Each element in the

array is a pointer corresponding to a unique Radar Event. Each event contains a

BeamQue which is a variable record that holds a pointer to a queue of requested

beams. Although each queue is unique, they are classified as either search, special

request, track, or missile type queues, depending which Radar Event the beam queue

29

belongs to. The variable record is designed to associate search and special request

beams with the search node data structure found in TAB 1. LIB. The track and missile

type beams are associated with the track, node data structure of TAB2.LIB. The

Priority Event List is the key to the selection process. By placing the beam queues in

the Priority Event List, the requested beams are prioritized by association with their

respective radar events. The requested beam's priority is used as the main criterion for

selection. Furthermore, since the Priority Event List is designed to act like a linked list,

the traversal order can be changed for each interval to ensure the eventual selection of

the lowest priority beams.

The constants and variables defined by this data structure are described as

follows:

status is a boolean flag which is set to true when the event queue has
information in it.

eventnm is a string with the event name corresponding to the Radar Event
Priority List (Table'2).

max nodes is a variable representing the maximum number of nodes that the
event's requested beam queue can hold.

que id is in enumeration type variable corresponding to one o[four possible
queue types, search , special_request , track . or missile .

que_ptr is actuallv a variable record .containing a oointer to the first node in
tne "event's requested oeam queue, [f the que_ia is a search or special request
type queue then the pointer' Snode is visible, otherwise the pointer Tnode is

visible.

enhnc acts as a flag which when set to true indicates that the priority of the
event can be enhanced bv the Radar Scheduler when the conditions s'tated in
Radar Scheduler Module 3 are met.

b_pri is an integer variable which holds a constant value corresponding to the
event's base priority. This value is the same as the "pri_lst" array s index value.

c pri is an integer variable which corresponds to the event's current priority as
determined by Radar Scheduler Module 3.

ltx indicates the last time a beam from this event was selected by the Radar
Scheduler.

alhvd_ltx indicates the allowed time between selection for this type of event.

slct_flg is a flag which is set to true if a beam from this event was selected
during the previous interval.

nxt is an integer variable used as an index or pointer to the next prioritv in the
pri 1st. It's value can only be changed during priority enhancement. The value
0""acts as an end of list marker in the same way that a null pointer marks the
end of a linked list.

low_enhnc is a constant which stands for the lowest enhancement value, 4.

max_pri is a constant which stands for maximum priority but is actually the
maximum number of events in the Priority Event List or the length of the
prijst array, 26.

30

b. Table 1 - Search Node

This data structure acts as a template for the nodes within the search and

special request beam queues. Table 1 also provides an interface for the Radar

Scheduler process and the Search Management process. The fields contained in the

search node record are as follows:

info.mode is the event number identifier. It can have a unique value between 1

and 26.

info.bid is a character strina which acts as a unique beam identifier for scheduler
efficiency analysis.

info.neam_posit.azim is an integer variable describing the reauested beam's
azimuth position in deck space coordinates.

info.beam_posit.elev is m integer variable describing the reauested beams
elevation position in decis. space coordinates.

info.inst_rge is a variable which gives an indication oi the range 'o which the
search oeam is to be effective.

lnfo;stc dara is rhe sensitivity rime control variable. This is used as an indication
of howlnucn power will be allowed to oe used to pull contacts out of clutter.

inf6.dbct_blnk_gte holds the vaiue for tne radar doctrine range gate.

info;cltrjblnk_gte holds the value for the radar clutter range gate.

info.eof inaic is a flag vhich when set to true indicates "hat search frame las
been completed. A search (fame consists of 360 degrees of azimuth ana '0

degrees of elevation.

info.req id is used to hold the identity of the requesting process for special
requestbeams.

nxt is a pointer to the next node in this queue, which is a linked list of Search
Nodes.

c. Table 2 - Track Node

This is a common memory interface data structure between the Radar

Scheduler process (consumer) and the Radar Return process (producer) only. The track

Node is a template for the nodes within track and missile beam queues. The data fields

declared in the Track Node are:

• info.mode is the event number identifier. It can have a unique value between 1

and 26.

• info.bid is a character string which acts as a unique beam identifier for scheduler
efficiency analysis.

• info.ptrk is a pointer to the Track File which this node is requesting a beam
for. The Track Tile data structure is located in Table 7.

• nxt is a pointer to the next Track Node in this queue, which is a linked list of
Track Nodes.

31

d. Table 3 - I to R

Table 3 is a common memory interface data structure for the Radar

Scheduler (consumer) and Radar Return (producer) processes. The data structure the

following SPY-1 radar status variables:

• resynch_time is the amount of time that the Radar Scheduler is out of
synchronization with the SPY-1 radar expressed in milliseconds.

• loop_con is an inteser variable used to tell the Radar Scheduler how far ahead
or behind in the radar control loop the Radar Control Program is.

xmsn_status is a boolean variable indicating the transmission status o(the
previous interval's scheduled beams.

e. Table 4 - A to R

Table 4 is a common interface data structure between the Detection

Processing Process (consumer), Radar Scheduler Process (consumer), and the Switch

Action and Display Process (producer). The data structure contains RCS commands to

aid in the formating of iie radar dwell buffer. The data fields are as follows:

« power fig is a iooiean variable that represents the status of the radar power.
When 'powerjlg" is set to true, the power is to high, and when it is set to false;
t.ne power is to low.

rad_p>vr notion is a boolean variable that reDresents the status of the radar
power oTbtion. When set co true the power oduoii ls on. ana when set to false

the power option is off.

'ad inhibt regions is i ive element array of records containing start and stop
bearings for "one or' live possible radiation inhibition regions definable by
doctrine.

rad_inhibt_regions().start_bn.g is the bearing start indicator.

rad_inhibt_regions().stop_bng is the bearing stop indicator.

op doct.mtrks is the maximum number of tracks to be initialized in the Track
File. This value is used to aid in testing the Radar Scheduler Module.

• op doct.mintvls is the maximum number of scheduling intervals to be run on a
tesl of the Radar Scheduler Model.

• op_doct.dply_rect is an integer variable used to define the interval display delay
period.

/. Table 5 - Command and Decision User Services Interface

Table 5 is visible to the Radar Scheduler Process (consumer) and the

Command and Decision User Services Process (producer). The interface contains one

variable to communicate the transmission status:

• rdr_silence is a boolean variable which when set to true, informs the Radar
Scheduler that radar silence is in effect.

32

g. Table 6 - Beam Stabilization Interface

Table 6 is a common memory interface between the Radar Scheduler

Process (consumer) and the Beam Stabilization Process (producer). The data structure

contains information concerning array face limits and the ship's motion matrix. The

data fields are as follows:

• face antenna limits is a four element array of records containing the left and
righf for each" of the four phased array antenna faces.

• face_antenna limitsC). limit left indicates the left most bearing limit to an
accuracv of til degrees for the ohased arrav antenna face indicated bv the arrav
index. The limits "are converted into stable space bearings from deck, space
bearings by the gyro converters.

• face antenna_limits(). right limit is the same as above onlv pertaining to the
right" most limit.

• ships_motion_matrLx.x_ship_dot is the value of the ship's velocity in the x deck
direction.

• ships motion matrix.v ship_dot is the value of the shio's velocity in the v deck.
direction.

• snips_motion_matrix.roll is the amount oi' roll the ship is experiencing.

• ships_motion_matrix. pitch is the amount of pitch the ship is experiencing.

• ships_motion_matrix.yaw is the amount of yaw the ship is experiencing.

• azimJ.imit_siope is the limiting value of the rise in elevation for a given azimuth.

h. Table 7 - Track File

Table 7 is a common memory interface between the Radar Scheduler

Process (consumer/producer), the Detection Processing Process (producer), Track.

Processing Process (producer/consumer), and the Track Management Process

(consumer). The Track File acts as a memory map which allows dynamic allocation of

memory for tracks as they are acquired. The files are arranged in a linked list of track

file nodes. The track file nodes contain two major hierarchy levels beam data and track

data. These data fields are defined as follows:

• beam data.mode is an integer between 1 and 26 which corresponds to the
identity of the radar event for this track.

• beam data.bid is a character string which uniquely identifies the requested beam
for this track.

• beam_data.priority is an integer value corresponding to the relative priority of
this track compared to the other tracks in this Track File.

• beam_data.posit.x is the rectangular X coordinate of the track position as found
when it was last illuminated by the radar.

• beam_data.posit.y is the rectangular Y coordinate of the track position as found
when it was last illuminated by the radar.

• beam data.posit.z is the rectangular Z coordinate (elevation) of the track
position as found when it was last illuminated by the radar.

33

beam_data.posit.slnt_rge is the straight line range to the track's last position.

beam_data.posit.x_dot is the track's velocity in the X direction.

beam_data.posit.y_dot is the track's velocity in the Y direction.

beam_data.posit.z_dot is the track's velocity in the z direction.

beam_data.posit.rge_dot is the tracks relative change in straight line range.

beam data.trk xsitn flag is a boolean variable which when set to true indicates
that fhe trackTias alrack historyless than or equal to four detections.

beam data.ctl_grp_trk_num is a number which corresoonds to the track's Radar
Control Group track number.

beam_data.ctsl is a number used to historically record the track.

beam data.xgte bin num is a number which corresponds to the track's location
in the" cross-gating matrix.

beam_data.pred azim is a bearing value correspondine to where the track is

predicted to be~bv the Radar Scheduler upon scheduling a track dwell on this
track.

beam_data.pred_elev is the predicted elevation of the crack.

beam data.Iow eiev nrk._flg is set to true when the track's elevation is below a
preset altnuderThe~actuai settings are classified.

beam data.iog_ampld est is an estimate of the return sienal strength of the radar
echo "oouncea off this track.

beam_data.xmit_req_flg is a boolean variable which when sec ko true indicates
TraclT Processing is requesting a dwell be Transmitted for this track.

beam_data.sim tgt_flg is a boolean variable which is set to true when the track
is a simulated Target.

nxt_trk is a pointer to the next track node in the Track File. The data fields

associated with this pointer are defined by the declarations in Table 2.

I. Table 8 - frequency Management Interface

Table 8 is used by the Radar Scheduler Process (consumer) to complete

formatting of selected radar dwells. The data structure contains frequency and

waveform information in the following fields:

waveform is an array from 1 to "max_dwells" of records containing waveform
information.

\vaveform().freq_chnl is the channel frequency to be used by this beam.

>vaveform().freq_band is the frequency band to be used by this beam.

>vaveform().phase l_code is the frequency phase code used for transmitting this
beam.

>vaveform().phase2_code is the second half of the frequency phase code used for
transmitting this beam.

>vaveform().mti.pri is the PRI code used when the beam is an MTI beam.

waveform().mti.d\vl_length is the length or duration of the dwell in
microseconds if the beam is a MTI beam.

34

• >vaveform().msle.uplnk freq is the frequency used to communicate with own
ship's S\T-2 missile, if the beam is a missile communication beam.

• \vaveform().msle.d>vn freq is the frequency used by the missile to transmit
information back to tITe ship, when the beam is a missile communication beam.

• >vaveform().inhib_freq_chnl are the frequency channels which are prohibited to
this beam.

j. Table 9 - L to R

Table 9 is the common memory interface between the Radar Scheduler

Process (consumer) and the Load Evaluation Process (producer). This data structure is

used by the Radar Scheduler Process to format track dwells and contains only one data

field:

• trk._um :tr reset is a boolean variable which when set to true informs the
Raaar Scheduler Process to zero out its track time counter.

k. Table 10 - Missile Downlink Interface

Table 10 is the common memory data structure between the Radar

Scheduler Process (consumer) ana the Missile Communications Process (producer).

Since che actual data fields are classified, the downlink message is arbitrarily separated

into eight parts as follows:

mssi dwnink is an array form one to 'num_mssl_msgs" of records :ontaining
missile messages.

mssljiwnink<).prt_one ;

s an integer variable.

mssl_dwnlnk().prt_two is an integer variable.

mssl_dwnlnk().prt_three is an integer variable.

mssl_dwnlnk().prt_four is an integer variable.

mssl_dwnlnk().prt_five is an integer variable.

mssl_d>vnlnk().prt_six is an integer variable.

mssl_d>vnlnk().prt_seven is an integer variable.

mssl_d\vnlnk().prt_eight is an integer variable.

2. Data Structures Produced

These data structures are located in common memory. They are used by the

Radar Scheduler Process (producer) and those processes which are consumers of the

data.

a. Table 11 - Search Management Interface

Table 1 1 is the common memory data structure interface between the

Radar Scheduler Process (producer) and the Search Management Process (consumer).

The data structure is used by the Search Management Process to distinguish which

35

search queues require filling. The Radar Scheduler sets the flags when it has used a set

number of search request beams. The flags are defined below:

• hs_que_replen is a boolean variable which when set to true indicates that the
horizon search queue needs to be replenished.

• ahs_que replen is a boolean variable which when set to true indicates that the
above horizon search queue needs to be replenished.

b. Table 17 - Track Management Interface

Table 17 is the common memory data structure between the Radar

Scheduler Process (producer) and the Track. Management Process t consumer). The

Radar Scheduler Process uses the data structure to hold the scheduled Track, dwells

seiectea for transmission. The Track Management Process uses the data structure to

asses its efficiency in prioritizing previously requested tracks. The data fields are

defined as:

• sched_trk_beamjist is an array from one to "max_dwells" of records.

• sched trk beam list(.mode ; d ;

s a integer variable used to identify the ^adar
event~associatecfwitn the scheduled track.

» sched trk beam !ist().trk file ium is the uniaue track number of the scheduled
track."

• sched_trk_beam_iisT< .priority.

c. Taoie 20 - Track Processing Inter/ace

Taoic 20 is a common memory interface used by the Radar Scheduler

Process (producer) and the Track Management Process (consumer). The data structure

contains information on each of the scheduled dwells for one scheduling interval. As

dwells are formatted for transmission, the Radar Scheduler Process transmits the

information. The data fields are defined as follows:

stble_spc_pos is an arrav from one to "max_dwells" of records containing stable
space position information.

stble_spc_pos().azim is the bearing of the scheduled dwell in tenths of degrees.

stble_spc_pos().elev is the elevation of the scheduled dwell in tenths of degrees.

stble_spc_pos().x_posit is the rectangular X coordinate of the scheduled dwell.

stble_spc_pos().y_posit is the rectangular Y coordinate of the scheduled dwell.

stble_spc_pos().z_posit is the rectangular Z coordinate of the scheduled dwell.

sched xmsn_time is the scheduled transmission time in milliseconds for the
scheduled dwell.

d. Table 32 - Radar Output Interface

Table 32 is the common memory interface between the Radar Scheduler

Process (producer) and the Radar Output Process (consumer). It acts as a buffer for

36

the formatted dwells, and supplies information to the Radar Output Process to aid in

completing the channel I/O control buffer. The data structures in Table 32 are defined

as follows:

ptr_r to_o is a two element array of pointers used to access two linked lists of
record's containing dwell data.

ptr_r_to_o().d>vl_data.mode is the major transmission mode used by this dwell.

ptr_r_to_o().d\vl_data.face is the antenna face assigned to this dwell.

ptr_r_to_o().dwl_data.sub_mode is a two element array of integers which are the
frequency sub-modes assigned to this dwell.

ptr_r to_o("t.dwi data.dwHdx is the dwell index number for the current
scheduling interval.

Str_r_to_o().d\vl_data.bearnpurpose is an integer which corresponds to the
earn s mode value which indicates what purpose" the dwell was scheduled for.

ptr_r to o().dwl data.dwl start idx is a 32 bit number which is the transmission
time Tor the dwell to an accuracy which is classified.

ptr_r_to_o().dvvi_data.doct_unbink gates data has been read from the Search
Management provided data.

ptr r to o(».dwl data.clutter unblnk gates data is the same form as
doer 7in51nk sates."—3

ptr_r_to_o().iink is a pointer to the next dwell data record in the linked list.

e. Table 40 - Output Control Channel Buffer

Table 40 is a common memory interface between the Radar Scheduler

Process (producer), the Radar Output Process (producer), the Radar Control Program,

and the Radar Channel Control Program (consumer). The Radar Scheduler Process has

responsibility for filling only a small portion of the data fields which are defined below:

occb_ptr is a two element array of pointers to two linked lists of records
containing Output Channel Control Buffer information.

occb_ptr().oa.cntrl \vord.rdr_xmsn_on is a boolean variable which when set to
true indicates that Hie dwell is to be transmitted.

occb_ptr().om.face is the antenna face assigned to this dwell.

occb ptr().oh.pril_mti is the MTI PRI code used by the dwell when it is an
MTTawell.

occb_ptr().oh.pri2_mti is the second half of the PRI code.

occb_ptr().ot is a twelve element array of records emulating missile
communications links.

occb_ptr().ot().otmsb emulates a missile communication link when the dwell is

a missile dwell.

occb_ptr().ot().otlsb also emulates a missile communications link.

occb_ptr().ol.xmit_freq is the transmission frequency used by this dwell.

occb_ptr().ol.rcm_freq is the receiver frequency used to receive the return dwell
signal.

37

occb_ptr().oj.subchnl_freq_group is the group of sub-channel frequencies used to
transmit this dwell.

occb_ptr().o_f.ph.se l_code is the first part of the dwell frequency phase codes.

occb_ptr().og.fdbkl is the first part of the dwell feedback phase codes.

occb_ptr().oa.cntrl word.freq_group_slct is a boolean flag which when set to
true indicates the selected frequency group for this dwell.

occb__ptr().oi.d"\vM_start_time is the start time for the dwell in microseconds.

occb ptr().ob.detectl_thrsld holds the value of an expected detection range for a
track" type dwell.

occb ptn).ob.detect2 thrsid holds the value of an expected detection range for a
tracE" type dwell.

occb_ptr().ob.detect3 thrsid holds the value of an expected detection range for a
tracK. type dwell.

occb_ptr().oe.truncl_thrsld is a truncation signal level threshold value to assist

in detecting targets.
~

occb ptr().oe.trunc2 thrsid is a truncation sisnal level threshold value to assist

in detecting targets.
~

occb_ptr().oq.eiev_sector is the sector elevation limits for this dwell.

occb_ptr<).os.dpiy_azim is the bearing the dwell is to be transmitted on.

occb ptn J.o r.aplv_eiev is the elevation this dwell is to be transmitted on in
degrees.

'

occbjptr().os.video_extnt is the signal level expected from this dwell.

occb_ptr().trk_gate_strt is the starting range for gating a track dwell.

occb ptr().link is a pointer to the next Output Channel Control Buffer node
available.

D. INTERNAL DATA STRUCTURES

All data structures that are internal to the Radar Scheduler Process and that

must be shared by subordinate Radar Scheduler modules are located in the package

specification of RSMO. The data structures are defined as follows:

rdrint is a constant that represents the maximum time which can be spent in the
Beam Selection Module.

srch_que is a constant used to represent the event type Search.

sr_que is a constant used to represent the event type Special Request.

trk_que is a constant used to represent the event type Track.

mssl_que is a constant used to represent the event type Missile.

srch dwls is a constant equal to the maximum number of Search events that can
be scheduled in one interval.

srjhvls is a constant equal to the maximum number of Special Request events
that can be scheduled in one interval.

38

trk_cbvls is a constant equal to the maximum number of Track events that can
be scheduled in one interval.

mssl dwls is a constant equal to the maximum number of Missile events that
can b"e scheduled in one interval.

rdr_rsrcs is a constant which represents the percentage of radar resources which
can be used in scheduling beams for an interval.

ppl is an integer variable used as an index for traversing the priority list.

intvl num is an integer variable used to represent the number of intervals that
have~been executed.

The next data structure contained in RSMO is the Radar Event Control Table.

This is [he primary data structure used by the Radar Scheduler to schedule a mix of

radar events for one scheduling interval. The Radar Event Control Tabie is a linked list

of records. The records which act as nodes contain the following fields:

• srch dvvl is a pointer to a Search Node data structure described in external
Table I.

trk_dwl is a pointer to a TracK Node data structure described in external Table

• ocb data ;

s a record containing [he data to be transmitted to [he external dwell
buffers. Explanations for [he data fields in this record can be found in Sections
IV.C.2.Q arid e.

• leamid is a a character string used for resting the logic of che Radar Scheduler
algorithm.

• dru is an integer also used for resting the logic of the Radar Scheduler
aigorunm.

• nxt event is a pointer which acts as a link to the next Radar Control Table
node in the linked list.

• rect is a pointer to the head of the Radar Control Table's linked list data
structure.

sp is a pointer to the Search Node data structure described in Table 1.

tp is a pointer to the Track Node data structure described in Table 2.

rect_ptr is a pointer to the head of the linked list which makes up the Radar
Event Control Table.

pool_ptr is a pointer to Radar Event Control Table record.

buff_ptr is a pointer to a the data structure described in Table 40.

cm_ptr is a pointer to the data structure described in Table 32.

E. RADAR SCHEDULER MODULE DESCRIPTIONS

The modules described in this section are subordinate to the Radar Scheduler

process. A functional description of each of the modules, and any subroutines

subordinate to them is given below.

39

1. Initialization

The function of the initialization module is to create and initialize any data

structures, local to the Radar Scheduler process, that must be shared between the

Radar Scheduler modules. The creation of these data structures is necessary only for

access type data structures which form linked lists. Allocation of memory for these data

structures prior to the execution of the Radar Scheduler process serves to increase the

efficiency of the main scheduling loop by eliminating the need to allocate memory for

each new node during scheduling. This module is executed oniy one time, when the

Radar Scheduler process is loaded for execution.

The decision to piace these variables in a separate module instead of the

package specification for the Radar Scheduler process is based on the principle of

information hiding. Since these variables need to be shared by other Radar Scheduler

modules they must be in a package specification. If they were placed in the Radar

Scheduler's package specification, then modules other than Radar Scheduler modules

wouid be able to access tnem.

The Initialization mocmie does not consume any common memory interface

data structures. It does produce the initial nool of Output Channel Control Buffer

nodes and a pool of Raaar Event Control Table uodes.

The following data structures are declared in module specification and are

local to the Radar Scheduler process:

rdrinit is a constant representing the maximum amount of time which can be
spent in the beam selection mode.

srch_que is a constant assigned to the event type search.

trk_que is a constant assigned to the event type track.

sr_que is a constant assigned to the event type special request.

mssl_que is a constant assigned to the event type missile.

srch dwls is a constant representing the maximum number of search events that
can "Be scheduled in one interval.

trk_dwls is a constant representing the maximum number of track events that
can be scheduled in one interval.

sr dwls is a constant representing the maximum number of special request
events that can be scheduled in one interval.

mssl dwls is a constant representing the maximum number of missile events that
can 5e scheduled in one interval.

srch_pcnt is a constant representing the percentage of radar resources allotted
to each search dwell.

trk pent is a constant representing the percentage of radar resources allotted to
each track dwell.

40

sr_pcnt is a constant representing the percentage of radar resources allotted to
each special request dwell.

mssl_pcnt is a constant representing the percentage of radar resources allotted
to each missile dwell.

The following data structures are used to control program execution:

ppl is an index used to control traversal of the priority event list.

intvl_num is used to keep track of the number of intervals that have been
executed.

sp is a working pointer for traversing a linked list of search nodes.

tp is a working pointer for traversing a linked list of track nodes.

r is a working poinier for traversing the Radar Event Control Table.

rect ptr is a pointer which always identifies the first node in the Radar Event
Control Table.

pool ptr is a pointer which alwavs identifies the first node in the pool of
available Radar Event Control Table nodes.

buff_ptr aiways points :o the current Channel I, O Control node.

cm_pcr always points to the current Radar Output node.

The Radar Event Control Table is the primary data structure used by the

Radar Scheduler process to schedule the mix of radar events for each interval. This

data structure contains live major fields:

irch cbvl
:

.s a mirror imaee of the search node data structure (see Section Ci.d
of this cnapterj.

trk dwl is a mirror image of the track node data structure (see Section C.l.b of
this~chapter).

ocb data contains the information that is transmitted to the external dwell
buffers. An explanation of
C.2.d and e of this chapter.
buffers. An explanation of the data fields in this record is is given in Sections

of tr

'

beamid corresponds to the beam identifier used bv the srch_d\vl or trk_dwl "bid"
data field and is used for testing the logic of the Radar Scheduler algorithm.

dru holds the total percentage of radar resources consumed after the selection of
the current beam.

nxt_event is a link to the next node in the linked list that makes up the Radar
Event Control Table.

There are no data structures locally declared within this module body. The

procedures make_pool and ex_buff_create are declared local to the module body and

are used for the initialization process. An algorithmic description of the Initialization

module is given in Figure 4.2 .

a. Make Pool

The procedure Make Pool is derived from the PL/I-80 version of RSM1A.

This procedure is declared within the body of the Initialization module described

41

Begin Radar Scheduler Initialization;

Create a pool of Output Channel Control Buffer nodes;

Create a pool of Radar Output Interface nodes;

Create a pool of Radar Event Control Table nodes;

Initialize working pointers for Radar Scheduler;

End Radar Scheduler Initialization;

Figure 4.2 Initialization Module Algorithm.

above. The purpose of this procedure is to make a pool of Radar Event Control Table

nodes.

The procedure declares two local pointers, "p" and "q" for creating a linked

list of Radar Event Control Table nodes. The variable numb_nodes stands for the

number of nodes to be created.

b. Create Dwell Suffer Pools

The procedure Create Dwell Buffer Pools is derived from the PL- [-80

version of RSM1B. The task of this procedure is to create two circular linked lists for

the Output Channel Control Buffer and two circular linked lists for the Radar Output

Interface nodes.

The procedure declares the following working pointers locally for the

purpose of creating the circularly linked lists:

• pi and ql are Output Channel Control Buffer pointers.

• p2 and q2 are Radar Output Interface pointers.

The following data structures are used for execution control flow within the

procedure:

• length is the length of the circular linked lists being created.

• ctr is a variable used to keep track of the number of nodes being created.

• i is an index to control the number of circular linked lists being created.

2. Swap Dwell Buffers

Functionally, the Swap module manages the Radar Scheduler's access to the

two external dwell buffers described above. The Swap module must insure that a

minimum number of available nodes are present in the pool for consumption by the

42

Radar Scheduler during each scheduling interval. The Swap module is called from the

beginning of the main control loop in the Radar Scheduler process.

The Swap module consumes the global pointer variables to the common

memory interface pools of Output Channel Control Buffer and Radar Output nodes.

This module does not produce any common memory interface data structures. The

algorithm for this procedure is given in Figure 4.3

The input; output parameters are the only data structures declared locally and

are Dassed by reference. These data structures are:

• buff is a pointer to the Cutout Channel Control Suffer.

• cm is a pointer to the common memory interface Radar Output buffer.

• index is the index to the current buffers.

Begin Swap Dwell Buffers:

If the index is two then

rhe index gets one:

else

the index gets two;

enu if;

change dwell buffers;

End Swap Dwell Buffers;

Figure 4.3 Swap Dwell Buffers Algorithm.

3. Radar Event Priority Enhancement

The function of this module is to ensure that the mix of radar events being

considered for selection is optimized by their respective priorities in the Radar Event

Priority List. The design is based on Digital Equipment's VMS Operating System

Priority Enhancement Algorithm. Radar events having base priorities lower than the

enhancement value have the capacity for dynamic prioritization. The procedure

examines each event to see if its priority can be enhanced. If the event's priority needs

to be enhanced, its priority value is increased. Execution of this module takes place

prior to the Beam selection and Synchronization. When executed, the module

produces a reprioritized Radar Event Priority List. [Ref. 5: p. 76]

43

Begin Priority Enhancement;

Reset the last time executed for all radar events;

Traverse the enhanceable portion of the priority list;

If the event is enhanceable and its queue is not
empty then

If the time between scheduling of the event is

greater than the ailowed time "then

[fthe event's current priority is above
the standard enhancement value out beiow
:ne lowest enhancement value then

increment the event s priority by i;

Else

Increment the event's priority by 4 but
not above the low enhancement value;

End Enhance:

Reorder the priority event list;

End Last time executed:

End Traverse the priority list;

End Priority Enhancement;

Figure 4.4 Priority Enhancement Algorithm.

The enhancement module does not consume any common memory interface

data structures. The input parameter to this procedure is the variable elapsed_time

which is passed by value from the Radar Scheduler process. The parameter

elapsed_time is used to update the Radar Event Priority List ltx data field. The

algorithm for the Enhancement module is presented in Figure 4.4

This module uses the procedure ripl to remove and insert a node from its

present position in the priority list to its new position in the list. The procedure is

declared locally in the Enhancement modules body.

a. Remove and Insert

The Remove and Insert procedure is part of the Enhancement module.

The procedure removes a node from its current position in the priority list, inserts the

node at its new priority and then resets the current priority values for the other events.

The following data structures are declared locally:

44

curnt is an input parameter passed by value representing the event's current
lispriority in the list.

new_p is an int
priority in the list

ne>v_P i
s a

,

n }PP ut: parameter passed by value representing the event's new
'st.

• p is an index used to traverse the priority list.

• b4 is a variable that holds the last value of the index "p".

• tempi and temp2 are temporary storage variables for the indexes.

4. Radar and Computer Synchronization

The function of this module is to ensure that the Radar Control Group time is

synchronized co the radar time. The scheduler waits for a clocK update from the radar.

According to AEGIS performance specifications, the scheduler must schedule dummy

dwells, if the update is greater than two seconds. The Radar Scheduler design calls for

the process to be "blocked" until synchronization has been accomplished. The

scheduler is made "ready' upon synchronization of clocks and Track File time updates.

The Radar Scheduler must aier: the RSC (or in our case the Switch Action and

Dispiav process) to the pending update. This requirement is not implemented in this

version of the scheduler modei. For :iock updates of less than two seconds, immediate

synchronization is carried out and the the current scheduling interval is modified ro

conform with the new Radar Control Group time. [Ref. 5: p.
7
81

Begin Synchronization;

If I to_R.resvnch_time minus Radar Scheduler time is

greater than 2 seconds then

Wait until the Radar Scheduler time equals the
resynch_time;

Else if the resynch_time minus Radar Scheduler time is

greater than or equal to zero but less than or equal to
2 seconds then

Radar Scheduler time gets radar time;

End Synchronization;

Figure 4.5 Synchronization Algorithm.

This module consumes the synchronization variable within the Radar Return

(input) Interface data structure. It does not produce any common memory interface

45

data. Real time data is produced for use by the Radar Scheduler when a clock update

occurs.

The modules local data structures have not been designed. The algorithm for

Radar and Computer Synchronization is given in Figure 4.5 .

5. Beam Selection Routines

This module contains procedures used in the Beam Selection process of the

Radar Scheduler. The code for the Beam Selection process is actually part of the Radar

Scheduler code and the functional descnption for Beam Selection is given there. This

module is a package containing two procedures and a function. Their functional

descriptions are given in the following subsections of this section.

This module contains one local data structure, a working pointer p which is

used by the routines in this module's body. The pointer is declared outside of the

routines inorder to increase their efficiency and prevent neap or stack over flow which

wouid occur by repeated calls to these procedures; function.

This module does not consume or produce any common memory data

structures.

a. Add Linked List

Functionally, the procedure llend is used to insert a Radar Event Control

Table node at the end of a linked list. This procedure is derived form the PL/I-80

module RSM3A. The procedure declaration is contained in the Beam Selection module

described above.

The parameters to this procedure are pointers, q and s, which are passed by

reference. The pointer q points to the head of the list. The pointer s points to the node

which is to be inserted at the end of the linked list. The pointers consumed in this

procedure are Radar Event Control Table data structures local to the Radar Scheduler

modules only. There are no common memory interface data structures consumed by

this procedure.

There are no local data structures produced by this procedure. The

working pointer p is declared in the body of the Beam Selection Routines module.

The algorithmic description for this procedure is given in Figure 4.6 .

b. Get RECT Node

The function Get RECT Node locates the first available Radar Event

Control Table node from the pool and returns a pointer to that node. The function

also resets the head of pool's linked list to the next available node.

46

Begin llend;

If first list q is null then
list q gets node s;

Else

Find end of list q;
End of list q gets node s;

End [lend:

Hgure 4.6 ilend Aigorunm.

There are no common memory interface data structures consumed by this

procedure.

There are ao local data structures produced by his procedure. The

working pointer p is declared in the body of the Seam Selection R.outmes module.

The aigonchmic .description ofthis function ;s given in Figure 4.7 .

3egm Gee RECT Node:

If pool is empty then

Create a new pool pointer;

End if;

p gets pool pointer;

pool pointer gets next node in linked list;

Return pointer p;

End Get RECT Node;

Figure 4.7 Get RECT Node Algorithm.

c. Free RECT Node

Functionally, this procedure returns an unused Radar Event Control Table

node to the pool of available nodes. The procedure Free RECT node together with the

function Get RECT Node are used to manage pointer storage.

47

There are no common memory interface data structures consumed by this

procedure.

There are no local data structures produced by this procedure. The

working pointer p is declared in the body of the Beam Selection Routines module.

Figure 4.8 gives the algorithmic description of the procedure Free RECT

Node.

3egm Free RECT Node:

'

Set node q's Link to null;

If pool is empty then

pool pointer gets node q;

Else

insert node q at e:nd of pool list;

End if:

End Free RECT Node:

rigure 4.8 Free RECT Node Algorithm.

6. Supplementary Dwell Processing

The function of the Supplementary Dwell Processing module is to do sufficient

processing on each selected beam to ensure enough dwell information is generated for

correct transmission by the radar. The minimum information required is:

the scheduled dwell's transmission time,

the dwell index number,

the stable space bearing and elevation beam position,

the radar end the dwell is to be transmitted from and,

the radar transmission parameters.

The data structures used by this module have not been decided upon [Ref. 5: p. 82].

The algorithm for this module has not been written.

7. Dwell Array Face Assignment

The function of this module is to assign an array face to each selected beam.

The NTS model assumes that the ship is not underway and on a heading of 000

48

degrees true, therefore the model does not emulate gyro inputs. Hence, stable space

coordinates equate to ship's deck, space coordinates. The result of this is that the

transformation matrix and array face bearing limits generated by the Beam

Stabilization process are constant. The Assignment module is used to select the array

face for the beam's transmission by comparing the beam's bearing to the limits found

in the array face bearing limits table. This assignment consumes the common memory

interface data for array face bearing limits. No common memory data is produced.

[Ref. 5: pp. 82-83]

No internal data is consumed by this module and there are no locally declared

data structures in this module. It does produce the face assignment data for the

selected beam which is located in the Radar Event Control Table data structure.

This module is not implemented in the Radar Scheduler model. An

algorithmic description of the moduie is given in Figure 4.9 .

Begin Dwell Array Face Assignment;

If beam beann g is between first limits then

Beam face assignment gets ot\q\

Else if beam bearing is between second limits then

Beam face assignment gets two;

Else if beam bearing is between third limits then

Beam face assignment gets three;

Else

Beam face assignment gets four;

End Dwell Array Face Assignment;

Figure 4.9 Dwell Array Face Assignment.

8. Comply With Radar Doctrine

The function of this module is to ensure that the selected beam's transmission

parameters comply with the doctrines imposed by the program operators.

The common memory data consumed by this module includes the radar

silence flag, produced by the Command and Decision User services process, and three

49

doctrine commands produced by the Switch Action and Display process. The doctrine

commands consumed are:

•. the radar transmitter power flag,

•. the radar power option flag and,

•. the inhibited radiation regions.

This module does not consume any internal data and there are no locally declared data

structures. [Ref. 5: p. 84]

This module does produce data for the Output Channel Control Buffer data

structure of the Radar Event Control Tabie.

This module is not implemented in this program. The algorithm for this

module is presented in Figure 4.10 .

Begin Comply With Radar Doctrine;

If the radar siience flag is false then

Set the transmitter power based on the Haas set

by the Switch Action and Display process:"

If beam's lie within [he inhibited radiation
regions then

Set transmitter Hag to false;

End if;

Else

Set transmitter flag to false;

End if else;

End Comply With Radar Doctrine;

Figure 4.10 Comply With Radar Doctrine Algorithm.

9. Satisfy SPY-1A Hardware Constraints

The function of this module is to optimize the available radar resources for

dwell transmission during each scheduling interval. The AEGIS Program

Specifications call for the use of digital filters to optimize dwell transmission

parameters. In the NPS model, a fixed resource percentage scheme is used to calculate

the amount of radar resources consumed. Each radar event is assigned a constant

50

resource percentage requirement. As the requested beams are selected for scheduleding,

their constant resource requirements are subtracted form the total radar resources

available. The total radar resources for the start of each scheduling interval is 100%.

Beams are no longer selected once the available resources have been depleted, filenum

rsm9

Begin Satisfy Hardware Constraints:

Ascertain the beams identity and set

percent eauat to beams alloted resource:

Radar resources used gets raaar resources plus percent;

If radar resources used is less than 100% then

set dweil resources used ro 100% minus the
radar resources used:

Set the hardware constraints flag to true:

£ise

Set raaar resources used to radar resources used
minus percent:

Set the hardware constraints Mag to false:

End if else:

End Satisfy Hardware Constraints;

Figure 4.11 Satisfy Hardware Constraints Algorithm.

This module does not consume or produce any common memory data

structures.

The input parameters to the Satisfy SPY-1A Hardware Constraints procedure

are as follows:

• id is a que type identifier used to determine what percentage of resources are
required. This parameter is passed by value.

• rru is an input/ output parameter containing the running total of radar resources
used for the current scheduling interval. The parameter is passed by reference.

• dru is an input/output parameter containing the total percentage of radar
resources consumed after selection of the current beam.

• hwc is a boolean output parameter which is set to true if the hardware
constraints are satisfied. The parameter is passed by reference.

The following data structures are locally declared:

51

srch_pcnt is a constant representing the percentage of resources allotted for
each search dwell.

sr_pcnt is a constant representing the percentage of resources allotted for each
special request dwell.

trk_pcnt is a constant representing the percentage of resources allotted for each
tracK dwell.

mssl_pcnt is a constant representing the percentage of resources allotted for
each missile dwell.

percent is a temoorarv variable used to hold the percent of resources being
considered.

The algorithmic description for the Satisfy Hardware Constraints procedure is

presented in Figure 4.11 .

10. Place Dwells Into Dwell Buffers

The function of this module is :o transmit the formatted dwell information to

the two external dwell buffers; Formatting is complete upon satisfying the hardware

constraints: [f the seieciea :>eam satisfies those constraints, then it is transmitted to the

external dwell buffers for raaar transmission.

Begin Fill External Dwells;

Point to the current Output Control Channel Buffer;

Set the Output Control Channel Buffer data structure to
the ocb_data structure of the Radar Event Control Table;

Point to the Current R_to_0 data structure;

Set the R to O data structure to the appropriate data
fields in the Radar Event Control Table;

End Fill External Dwells;

Figure 4.12 Fill External Dwells.

This procedure consumes the current pointers to the external dwell buffers

which are passed by reference in the following input/output parameters:

• pi and p2 are pointers to the Output Control Channel Buffer common memory
data structure.

• p3 and p4 are pointers to the R_to_0 common memory data structure.

• pr is a pointer to the Output Control Channel Buffer data contained in the
internal Radar Event Control Table data structure for the current the current
selected beam.

52

There are no other locally declared data structures in this module. Figure 4.12

gives the algorithmic description of this procedure.

11. Radar Load Evaluation

The function of this module is to maintain a running total of the amount of

radar time being expended in tracking targets. The total is reset to zero each time the

Load Evaluation process tells the Radar Scheduler to reset its' track time counter.

Beam transmission data is then sent to the Load Evaluation process. This module is

executed only if the selected beam has satisfied the hardware constraints. [Ref. 5: p.

87]

The Load Evaluation module consumes the common memory interlace from

the load evaluation process (TAB9.LIB). The data structure consumed is the track time

counter reset flag. The common memory interface information produced by this

moduie includes information concerning the transmitter duty factor for the current

beam, the r.otai time spent on dummy dwells during the interval, and the number of

horizon and above horizon search beams that were not scheduled during the

intervai.This information is placed in the common memory interface of TAB65.LIB.

[Ref. 5: p. 38]

Internal data consumed by this module includes the beams identity and the

percentage of resources used by the beam. No internal data is produced by this

module. Also, this module does not use any locally declared data.

The algorithm for Load Evaluation is given in Figure 4.13 .

12. Elapsed Time This Interval

The function of this module is to compute the amount of time spent

scheduling and formatting the radar beams during the interval.

No common memory interface data is consumed or produced by this module.

The module does consume the internal Radar Scheduler data structure

rs_time. Each time the module is executed a new value for the elapsed time is

produced.

The Elapsed Time This Interval module uses the following local data

structures:

• et is an input/output parameter that holds the elapsed time.

• rtim is an input/ output parameter that holds the Radar Scheduler time.

• oltim is a variable to hold the old time value.

Figure 4.14 shows the algorithm used by the Elapsed Time procedure.

53

Begin Radar Load Evaluation;

Increment the Duty factor variable (fore or aft);

Increment the phase shifter variable (fore or aft);

If the track, time counter reset variable is true then

Set track time counter to zero'
If selected beam is a track or missile beam then

Increment the track, time counter;

If the selected beam is a dummy dwell then

Increment the dummy dwell time variable;

If the selected beam is a search beam then

decrement the unsked search beam variable;

End Radar Load Evaluation;

Figure 4.13 Radar Load Evaluation Algorithm.

Begin Elapsed Time;

Old time gets the value of the real time;

Real time gets the current value of real time;

Elapsed time gets elapsed time plus real time
minus the old"time;

Return the new values of elapsed time and real time.

End Elapsed Time;

Figure 4.14 Elapsed Time Algorithm.

13. Radar Event Control Table Analysis

This module is designed to dump selected fields from the Radar Event Priority

List and the Radar Event Control Table into a file called RSOUT.TXT. When the

Radar Scheduler program completes its execution, the file will contain the requested

beams from the Radar Event Priority List and the selected beams from the Radar

54

Event Control Table. The results can be analyzed by comparing the requested beam

data to the scheduled beam data.

Begin Radar Scheduler Dump;

Traverse the Priority Event List;

If Priority Event List status is true then

if search or special request oeam queue then

Traverse search or special request beam queue:
Display beam identifier:
increment oeam position count;

End traverse search or special request beam queue;

Else

Traverse Tack or missile beam queue:

Displav Oeam identifier:

Increment beam position count:

End rraverse track or missile beam queue:

End if e:se:

Start new ine and display oeam positions:

2:se

Display "no requests this interval";

End if else;

End traverse Priority Event List;

Traverse Radar Event Control Table;

Display beam identifiers;
Display dwell number;
Display resources;

End traverse Radar Event Control Table;

End Radar Scheduler Dump;

Figure 4.15 Radar Schedular Dump Algorithm.

This module consumes the Radar Event Priority List common memory data

structure. It does not produce any common memory data.

This module also consumes the Radar Event Control Table internal data

structure. It does not produce any internal data.

55

The local variables used in this module are defined below:

dsh is a string constant containing a dashed line for formating the output.

sptr is a working pointer used in traversing the Radar Event Priority List's
search or special request beam queue.

tptr is a working pointer used in traversing the Radar Event Prioritv List's track
or missile beam"queue.

p is a working pointer used in traversing the Radar Event Control Table.

Control Table.

The dump procedure declared in this moauie uses the pointers described

above. The procedure aiso defines the following local data structures:

• ctr is used as an index for iraversing me Radar Event Priority Event list.

• start is a variable used to keep track of the starting vaiue used in the "FOR"
loop control structure.

• an is a variable used to keep track of die queue position.

The r.he algorithm for this procedure is presented in Figure 4.15'

.

14 Free Raaar Event Control Table Memory

The function of [his moduie is ro return [he Radar Event Control Table nodes

to the pooi of available nodes at the end of each scheduling interval so they can be

reused. This is accomplished by linking [he Raaar Event Control Table to the Enu of

[he node pooi. Then as the nodes are required, [he Get RECT Node function from the

RSM5 module returns them to the Radar Event Control Table.

Begin Free Memory;

Find the end of the RECT node pool;

Insert the Radar Event Control Table
at the end of the RECT node pool;

Return null Radar Event Control Table pointer;

End Free Memory;

Figure 4.16 Free Memory Algorithm.

The Free Memory module does not produce or consume any common

memory data structures.

56

The module consumes the internal data structure, Radar Event Control Table,

and reproduces the pool List.

The module produces the local pointer p for use by . the Free Memory

procedure. Figure 4.16 contains the algorithmic description of this procedure.

F. RADAR SCHEDULER COMMON SERVICE ROUTINES

The Common service routines used are designed to be accessible to all the major

processes. For simplicity, the common service routines used by the Radar Scheduler

program have been Included in r.he Global module. Some of :he previously designed

Common Service Routines functions have been replaced by standard Ada packages,

such as the type conversion and string manipulation functions. The procedures await,

advance, ticket etc.. are expected to be replaced by MCORTEX procedures and appear

only as stubs in this program. The design decisions for the Common Service Routines

implemented in this model are included here.

i. Random Number Generator

The Random Number Generator is a function that returns a pseudo-random

number. The function uses a congruence algorithm to generate numbers in the range

from zero to the "t". in this case "t" is 31099.

Begin Random Number Generator;

If this is the first call to this module then;

set x equal to seed number;

Compute the random number;

set "x" equal to the random number;

Return the value of "x" to the caller;

End Random Number Generator;

Figure 4.17 Random Number Generator Algorithm.

This routine does not consume or produce any common memory or Radar

Scheduler data structures. The module does consume the variable "x" which is declared

in the Global package body along with the function. LJnlike the function, the variable

"x" is hidden from the users of the Random Number Generator. This variable is

57

initialized by the Global package body and thereafter set to the pseudo-random

number returned after each execution of the function. The variable "x" is then used as

a seed for each successive call to the function.

The data structures defined by this function are:

• a is a constant approximately equal to the square root of "t".

• b is a constant that is relatively prime to "t".

• t is a constant which defines the upper bound of the numbers generated.

• y is a temporary variable used to calculate the random number.

Figure 4.17 presents the algorithm for the random function.

2. Clock Routine

This Common Service Routine is designed to simulate a real time millisecond

clock. Each time this function is called the variable time is incremented. This new value

of time is then returned to che calling process.

This moduie does not consume or produce any common or internal data

structures.

The only data siructure used by this function is the variable time, which is

declared in the package body of the Global module. The Clock Algorithm is shown in

Figure 4.13 .

Begin Clock;

Increment "time";

Return the value of "time";

End Clock;

Figure 4.18 Clock Algorithm.

3. Initialize Radar Event Priority List

The purpose of this procedure is to initialize the data fields in the Radar Event

Priority List. It is designated as a Common Service Routine because it must be

executed prior to any process using the list.

This routine does not consume any common memory data structures.

58

No Radar Scheduler internal data structures are produced or consumed by

this routine.

There is only one local variable declared by this procedure, the variable "i",

which is used as an index for traversing the Radar Event Priority List.

The Initialization algorithm is presented in Figure 4.19 .

Begin Initialization;

For ";" zers one ro maximum numoer of events loop:

Set initial values for the common data fields;

Assign allowed execution periods based on
the index "i" and the description given in

la Die &prilst;

Assign beam queue types maximum nodes based on
the index " and cue "description given in
able &prilst;

Set the link to the next event in the list;

End loop:

Resei last link to zero:

Assign event names inaccordance with Table &prilst;

End initialization:

Figure 4.19 Priority Event List Initialization Algorithm.

59

V. TEST PLAN

The testing requirements for the NPS model of the Radar Scheduler process have

a limited set of goals. The primary goal is to test for logical correctness and secondarily

to test the performance of the code generated by JANUS/ADA's compiler.

Testing for logical correctness entails verifying that the program conforms to its

specifications, implements the iesign algorithm, and produces T.he required output.

Testing of the Raaar Scheduler process for this thesis was done primarily by a 'bottom

up", "white box' approach. The reason for taking this approach as opposed to a top

down approach is that the basic design had already been implemented once in the

PE/I-80 version oi the ;oae. Since this was the case, it was felt that r fie overall design

was sound and [here was very little risk in implementing and resting the modules from

the bottom up. Furthermore, this allowed for more extensive resting, as there was little

need for module stubs;

A [est Harness was designed for each module with an erfort towards exercising, as

much as possible, each branch of the code for :orrect execution and robustness. The

subordinate modules were tested first. The test Harnesses were then expanded 10

incorporate the modules at the next higher level. At each phase of the testing the test

harnesses were modified to allow the input of relevant data to exercise the branches of

the code and then record the results for examination. In some cases print statements

were inserted into the code to ensure that a particular branch was being executed

properly.

A. DESIGN AND DOCUMENTATION OF TEST MODULES
1. Search Management Test Harness

The Search Management test harness is made up of two modules, the Search

Management Initialization module and the Fill Search Queue module. Collectively

these two modules provide the search and special request beams for the Radar

Scheduler Process.

The Search Management Initialization module is executed once. Its' purpose

is to allocate memory for search nodes (TAB1.LIB), and create empty request queues

for each search and special request event in the Radar Event Priority List (TABO.LIB).

60

The Fill Search Queue module is responsible for filling the search and special

request queues with the proper beam data. The data supplied by this module includes

the beam mode, a unique beam identifier, beam position, instrumented range, blanking

gates, end of frame indicator, and a requestor identity. This design version imposes a

static set of beam requests, for test purposes. Whenever the module is executed, the

same set of beam requests are placed in the queues. The static set of beam requests are

used to facilitate the data analysis of the Radar Scheduler and is not meant to

accurately model the Search Management process. The source code for the Search

Management modules is contained in Appendix D.

2. Track Management Test Harness

The Track Management test harness is composed of the Track Management

module (TRCM) and a Track Management Initialization module (TMM1). The

Initialization module is designed to allocate memory for track nodes (TAB2.LIB) and

create empty request queues for each track and missile event in the Radar Event

Priority List (TABO.LIB)

The mam Track Management module is used to search through the Track File

correlating track modes to radar track event modes. When a correlation is found, the

track is added to the Priority Event List's request queue. This module does not

accurately model the Track Management process and again is used only for testing the

Radar Scheduler Source code. The source code for these modules is located in

Appendix D.

3. Detection Processing Initialization Module

The Detection Processing Initialization module (DPM) creates the Track File

and initializes its data fields with viable data for testing the Radar Scheduler. The

number of Track File nodes initialized is determined by the test harness operator at run

time, when he is directed to provide the "number of tracks" to be initialized.

Calculation of the data field values in the track node are based on the values returned

by the pseudo-random number generator. Therefore successive runs of the test harness

with identical input from the operator will generate the same Track File data each

time. The source code for this module is located in Appendix D.

4. Operator Interface Module

The Operator Interface module provides the user of the test harness the ability

to alter the number of tracks to be initialized, the desired number of intervals to be

run, and how often the results are to be displayed. Actually the results are sent to a file

61

that can be examined by the user after the test run. A short messages is printed to the

screen whenever results of the scheduling interval are sent to the file. This can also be

used to. time the scheduling interval loop without the overhead of the routines that are

only executed once to initialize the data structures.

The operator is cautioned that using a very large number for the number of

intervals and a small interval display delay period will generate a very large file of test

results and may cause a heap or stack overflow. If the operator desires such a run,

then the print functions in RSM13.PKG can be easily modified to print to the screen,

by eliminating the word "Text" from the print commands.

B. DATA ANALYSIS METHODS
The Radar Scheduler model was designed so that the results of any particular

scheduling interval may be recorded in the file RSOUT.TXT. For each scheduling

interval being recorded, [he output file holds a section 01 information on the requested

beams from the Radar Event Priority List and a section of information on dwells

scheduled from the Radar Event Controi Taole.

The requested beam section shows the scheduling interval number and lists the

events in their current oriority order. Along with each event is a list of the requested

beams if any, and their position in the request queue. All the beams are identified by a

unique beam identifier.

The scheduled dwell section shows the interval number the dwells were scheduled

in and a list of all dwells scheduled. For each dwell the following is provided:

•. the unique beam identity of the dwell,

•. the percentase of resources left after formatting the selected beam into a dwell,
and

•. the dwell index number of the selected beam.

The Radar Scheduler's output is analyzed by comparing the requested beam

identities to the selected beam identites of the scheduled dwells. The results recorded

over several intervals indicate how well the model is optimizing the radar resources and

if the radar events are being scheduled efficiently.

C. TIMING ANALYSIS

To test the timing of Radar Scheduler program, a short message is sent to the

screen each interval display delay period. When the first message is displayed, the

Radar Scheduler has completed its initialization of data structures and completed the

62

number of scheduling intervals equal to the display delay period. In order to avoid the

initialization overhead at the start of the program, timing must start when the first

message appears and not when the program is first executed. Then the operator may

end timing on any later interval display delay period. This way the operator can get a

good approximation of the time it takes to complete one scheduling interval.

In order to calculate the average scheduling interval time, the overhead from the

terminal display and writing to output file must be accounted for. To account for this,

the assumption is made that the time co print to the screen and dump the results to the

output rile is approximately equal eacn rime :t occurs, fn other words, the interval

display procedure ;akes approximately tlie same amount d(time each time it is

executed.

Let "Tr" equal the cotal time recorded for the test run. Let "Td" equal the time it

takes for one execution of the display procedure. Let Ti" equai the execution rime for

one scheduling interval. To calculate Ti" the following r est procedure was used:

•. Three runs of the Radar Scheduler were maae using the same input. The results
were recorded and their average was used as "Tr"i

a. The interval display delay period was set on 500.

b. The number of intervals was set to 1000.

c: Timing was started on the first interval display delay period, 500.

d. Timing was stopped on the last interval display delay period, 1000, which
causea only the last display to be included in the total' time recorded.

•. Three runs of the Radar Scheduler were taken again using a new interval
displav delay period. The the run times were recorded and again the average
was used as'"Tr".

a. The interval display delay period was set on 100.

b. The number of intervals was set to 1000.

c. Timing was started on the fifth interval display delay period, 500.

d. Timing was stopped on the last interval display delay period, 1000, which
caused five display times to be included in the total time recorded.

For the first set of runs the following equation holds:

Trl = 500Ti + Td.

The second set of runs uses the formula:

Tr2 = 500Ti + 5Td.

Solving the two simultaneous equations for Ti yields:

Ti = (5Trl-Tr2)/2000.

63

Test runs were made of the code generated by JANUS/ADA compiler with all

the standard pragmas, and then again on the code generated when the pragmas were

turned off. The pragmas that were turned on and ofT during compilation are shown at

the beginning of each source code module. For consistancy, all the modules include the

same pragma statements. The pragmas that were turned on and ofT are: arithcheck,

rangecheck, debug, and enumtab.

The arithmetic check pragma controls the generation of arithmetic overflow

checks. Code is generated during compilation ro check all mathematical expressions

when this pragma is turned on. r Ref. 6: p. 3-1]

The range check pragma controls the generation ot range onecks for subrange

variables and array subscripts. The range check code is generated at compile time when

the pragma is turned on. [Ref. 6: p. B-2]

The debug pragma controls rhe generation ot line aumber and procedure names.

This information is used by the walkback which is generated after a run-time error. The

code generated when this pragma is on would only affect performance when a run-time

error occurs. [Ref. 6: p. B-l]

The enumeration :able pragma controls the generation of enumeration tables.

These tables are only necessary when the programer is doing [/O with enumeration

types. The generation of these tables at compile time does not affect performance, but

it does use a lot of storage space. [Ref. 6: p. B-l]

Since the above pragmas are turned on by default, they have been explicitly

turned of in the code. They can be turned back on at compile time by the conditional

compilation feature. When this feature is off, as it is by default, the lines preceded by a

"@" are treated as comments. If the conditional compilation is turned on with the "c"

command at compile time, then the lines preceded by the "@" symbol are compiled.

[Ref. 6: p. B-l]

The first executable code was generated with the pragmas on and the second was

generated with the pragmas off. The test results are shown in Table 4 .

Run-time test results of the code produced by the JANUS/ADA compiler showed

almost a two to one increase in speed when it was recompiled with the arithmetic and

range checking features turned off. This shows that although there was a significant

increase in speed, it was not without sacrificing some of features that the Ada language

includes. Even with the pragmas turned off, the best speed of 213.4 milliseconds is still

ten times the median scheduling interval time of 21 milliseconds required.

64

TABLE 4

PERFORMANCE RESULTS

PRAGMAS ON

NUMBER OF TRACKS: 50
NUMBER OF INTERVALS: 1000
INTERVAL DISPLAY DELAY: 500
NUMBER OF INTERVALS TIMED: 500
AVERAGE RUN TIME Trl: 228. 58 sec

NUMBER OF TRACKS: 50
NUMBER OF INTERVALS: 1000
INTERVAL DISPLAY DELAY: 100
AVERAGE RUN TIME Tr2: 231. 48 sec

TIME PER SCHEDULING INTERVAL "Ti": ... 0.4557 sec/int
SCHEDULING RATE: 2.2 int/sec

PRAGMAS OFF

NUMBER OF TRACKS: 50
NUMBER OF INTERVALS: 1000
INTERVAL DISPLAY DELAY: 500
NUMBER OF INTERVALS TIMED: 500
AVERAGE RUN TIME Trl: 107. 49 sec

NUMBER OF TRACKS: 50
NUMBER OF INTERVALS: 1000
INTERVAL DISPLAY DELAY: 100
AVERAGE RUN TIME Tr2: 110. 65 sec

TIME PER SCHEDULING INTERVAL "Ti": ... 0.2134 sec/int
SCHEDULING RATE: 4. 6 int/sec

The tests were run on the Z-100's 8-Bit microprocessor. The target processor is

the iSBC 86/12A Single Board Computer with a 16-Bit microprocessor, which will

increase the performance. However, it is doubtfull that this will be enough to over

come a factor often.

65

VI. CONCLUSIONS AND RECOMMENDATIONS

This thesis has developed a JANUS/ADA model of the Radar Scheduler process.

The model is a first effort in implementing one of the AEGIS AN/SPY- 1A Radar

Control Group modules in JANUS/ADA and as such it is a part of the continuing

research effort at the Naval Postgraduate School to test the feasibility of replacing the

AEGIS main frame computer suit with a multi-microprocessor system. Additionally,

the Radar Scheduler provides an example for studying the performance of time critical

programs written in ADA.

The design of the Radar Scheduler model incorporates 14 modules. The modules

were designed to be integrated into the overall model with a minium of changes

required. In support of this. Chapter IV, serves as the Radar Scheduler Design

Document to be used as a reference for the future implementation and integration of

the Radar Scheduler Process with the remaining Radar Control Group modules. As

such, any changes to "he Radar Scheduler's design shouid be reflected in the design

document.

Logical testing of the individual modules was increasingly more dificult as they

were integrated into the main program. There were several reasons for this. First, the

number of logical paths to be examined grew very rapidly as the modules were

integrated. In some cases, the lower modules had tested satisfactorily, isolated in their

own test harness. Then later, while acting in conjunction with the higher level modules,

they developed problems which were not accounted for by the test harness. For

example, the dynamic allocation of local access data structures, and some recursively

designed procedures, functioned well until they were stressed by the load of the Radar

Scheduler test harness. Under this stress, stack overflow became a problem. Declaring

the access types outside the procedures in the package body, and making the recursive

procedures iterative, solved the problem.

Determining what the best testing criteria is, and formulating a testing strategy is

difficult without a more rigorously defined specification. The logical correctness of the

module can not be determined from statements such as "in a timely manner".

However, the Radar Scheduler output indicates that the requested beams are being

scheduled in a priority order, and that those beams that are not scheduled during the

66

interval are being reprioritized and scheduled in later intervals. The radar resources

remaining at the end of the interval indicate that the resources are being consumed

until there is no longer enough to fill the remaining requests for that interval.

Two conclusion are evident from the preliminary real-time testing. First, the code

generated with the range and arithmetic checking turned off executes at twice the speed

of the code normally generated by the compiler. Second, the best run-time was ten

times slower than the median scheduling interval time required. In view of this, further

testing shouid be done to isolate the cause. The most time intensive portions 3f the

program snouid be analyzed r
irst. identification should be made by measuring the

execution time for the most likely modules and weighting the results by the number of

times the module is executed by the Radar Scheduler process. Once the modules have

been identified, the actual cause of the time deiay can be asessed. The algorithms and

data structures can be examined for improvement. This way, a more accurate

accounting of the moduie design, ana the feasibility of real-time programming in ADA
can be maae.

The supplementary processes (TRCM, SRCM, DRCM, aid \RCM) were

developed as test harnesses to supply the Radar Scheduler with radar event requests.

These processes will be fully implemented in the Janus/Ada programming anguage as

the NPS AEGIS Project progresses. Ultimately the processes will be integrated into a

multi-microprocessor model of the Radar Controller.

To completely model the Radar Controller, several major tasks remain. First the

JANUS/ADA language interface to the MCORTEX system must be completed, so

that the Radar Scheduler model can be run and tested in a true concurrent multi-

microprocessor environment. The information gained from this will be valuable to the

future programmers of the remaining processes. Next the Track Processing portion of

the Radar Control Group should be implemented. This portion is expected to be

numerically intensive and should provide a good basis for testing the performance of

the code produced by the JANUS/ADA compiler and the interaction of processes on

seperate processors.

When the remainder of the processes have been completed, the Radar Controller

model can be evaluated as a whole. At that time actual efficiency measurements can be

made of the Radar Controller model and the effects of the Ada programming language

in a real-time multiprocessor programming environment can be asessed.

67

APPENDIX A

COMMON MEMORY INTERFACE SOURCE CODE

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 3 Dec 86
-- MODULE TYPE: External data structure
-- PURPOSE: Common memory interface to: Radar Scheduler, Search Management
-- and Track Management orocesses— NAME: Priority Event List ... TABO. LIB

-- This data structure is the list of radar events in priority order.
-- Each element _n the list holds information on the event queue it
-- points to.

pragma arithcheck(off) ; pragma debug(off)

;

pragma enumtahc.off) ; pragma rangecheck(off) ;

@ pragma arithcheck(on) ; pragma debug"(on) ,-

@ pragma anumtaoi on; ; pragma rangecheck(on)

;

WITH tabl , tab2

;

PACKAGE tabO IS

io_anhnc: CONSTANT INTEGER :.= 4;
max_pri: CONSTANT INTEGER:- 26;

TYPE QueType IS ; search, speciai_.-equest, track, missile) ;

USE tabl , tao2 ,-

TYPE 3eamOue IS RECORD
CASE kind: QueType IS

WHEN search | special_request =>
Snode : SearchPtr;

-
-- see TAB1.LIB

WHEN track | missile =>
Tnode: TrkPtr; -- see TAB2.LIB

WHEN others =>
null

;

END CASE;
END RECORD;

TYPE pri_lst_info IS RECORD
status
eventnm
max_nodes
que_id
que_ptr
enhnc
b_pri
c_pri
ltx
allwd ltx
slct_f\lg
nxt

BOOLEAN

;

string(40)

;

INTEGER;
QueType

;

BeamQue

;

BOOLEAN

;

INTEGER;
INTEGER;
INTEGER

;

INTEGER;
BOOLEAN;
INTEGER; -- pointer to next priority in list

END RECORD;

TYPE PriLstPtr IS ACCESS pri_lst_info ;

TYPE PriLstArray IS ARRAY(1 . .max_pri) OF PriLstPtr;

pri_lst : PriLstArray;

END tabO;

68

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 3 Dec 86
-- MODULE TYPE: External data structure
-- PURPOSE: Common memory interface to: Radar Scheduler, Search Management,
-- and Track Management processes
-- NAME: Priority Event List ... TABO.PKG

pragma arithcheck(off) ; pragma debug(of

f

) ;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on) ; pragma rangecheck(on)

;

PACKAGE BODY tabO IS

i : INTEGER;

BEGIN
FOR i IN l..max_pri LOOP

pri_lst(i):= MEW pri_list_info;
END LOOP;

END tabO;

69

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Sep 86
-- MODULE TYPE: external table
-- PURPOSE: Common memory interface
-- NAME: Search Node .. .TAB1 .LIB

-- This interface is a search beam node. It acts as a template for the
-- nodes which make up the horizon search, above horizon search and
-- special request queues.
-- The Search Management Process fills the queue and the radar Scheduler
-- Process empties it.

pragma arithcheck(of f) ;
pragma debug(off) ;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug"(on);
@ pragma enumtab(on; ; pragma rangecheck(on)

;

PACKAGE cabl IS

TYPE BeamPosition IS RECORD
azim : INTEGER;
elev : INTEGER;

END RECORD;

TYPE SrchData 13 RECORD
INTEGER

;

string(3)

;

3eamPosxtion;
INTEGER:
INTEGER

;

mode
bid
beam_posit
inst^rge
5tc_iana
doctJblnk_gte : INTEGER;
:^t;-_oxnK_gT:e : INTEGER;
eof Tndic : BOOLEAN;
req~id : INTEGER;

END RECORD;

TYPE SrchDatPtr IS ACCESS SrchData;

TYPE SearchNode;
TYPE SearchPtr IS ACCESS SearchNode;
TYPE SearchNode IS RECORD

info: SrchDatPtr;
nxt : SearchPtr;

END RECORD;

srch_node: SearchPtr;

END tabl;

70

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 24 Jun 86
-- MODULE TYPE: external table
-- PURPOSE: common memory interface
-- NAME: Track Node ... TAB2.LIB

-- This data structure is a track request beam node. It acts as an overlay
-- for the track request queues resident in the Priority List. The Track
-- Management Process fills the queues with requests for track beams and
-- the Radar Scheduler Process empties them as the track beams are scheduled.

pragma arithcheck(off) ; pragma debug(off');
pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma aritftcheckCon J ; pragma debug"(on) ;

i§ pragma enumtabf on; ; pragma rangecneck(on) ;

WITH tab7

r

PACKAGE tab 2 IS

USE tab7

;

TYPE Trklnfo IS RECORD
mode : INTEGER

;

bid : strmcuS) ;

p_trk: PtrTrkFile; -- 3ee :AB7,LI3
END RECORD;

TYPE IrackNode;
TYPE IrkPtr "S ACCESS TracxNode

;

TYPE TrackNode IS RECORD
info . Trklnfo

:

nxc : rrkP.tr;
END RECORD;

trk_node: TrkPtr -

;

END tab2;

71

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 24 Jun 86
-- MODULE TYPE: external table
-- PURPOSE: common memory interface
-- NAME: I_to_R ... TAB3*.LIB

-- This table is an interface data structure which communicates SPY-1 radar
-- status to the Radar Scheduling Process.

pragma arithcheck(off) ; pragma debug(off)

;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on) ; pragma rangecheck(on)

;

PACKAGE tab3 IS

TYPE SPY1 .status IS ?.ECORD
resynch_time : INTEGER;
loop_con : INTEGER:
xmsn_status : BOOLEAN;

END RECORD;

TYPE StatPtr IS ACCESS 5PYl_3tatus
I to R: StatPtr.;

IND tao3

72

— OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 24 Jun 86
-- MODULE TYPE: external table
-- PURPOSE: common memory interface
-- NAME: A_tO_R ...TAB4.LIB

-- This interface data structure communicates RCS commands to the Radar
-- Scheduler to aid in the formating of the radar dwell buffer.

pragma arithcheck(off) ; pragma debug(off');
pragma enumtab(of r) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on); pragma rangecheck(on)

;

PACKAGE tab4 13

TYPE InhibicReaion IS RECORD
start bng : INTEGER;
stop_Bng : INTEGER;

END RECORD;

TYPE OpDoct IS RECORD
mtrks : INTEGER;
mintvls : INTEGER;
dplvrect : INTEGER;

END RECORD;

TYPE RCS command IS RECORD
pwr_flg : 300LEAN;
rad_pwr„option: BOOLEAN;
radZlnhibt_regions : array(1..5) OF InnibitRegion;
OD_aOC~ : OdDoCI;

END RECORD

:

TYPE Ptr_A to_R 13 ACCESS RCS command;
A_tO_R : Ptr_A_tO_R;

END tab4;

73

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 22 Oct 86
-- MODULE TYPE: external table
-- PURPOSE: common memory interface
-- NAME: A_to_R ...TAB4.PKG

-- This interface data structure communicates RCS commands to the Radar
-- Scheduler to aid in the formating of the radar dwell buffer.

pragma arithcheck(off) ; pragma debug(of f)

;

pragma enumtab(of f) ; pragma rangecheck(of f)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on); pragma rangecheck(on)

;

PACKAGE BODY tab4 IS

BEGIN

A_to_R:= NEW RCS_command;

END tab4;

74

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 11 Oct 86
-- MODULE TYPE: External Table
-- PURPOSE: Common Memory Interface
-- NAME: C_to_R ... TAB5.LIB

-- This table is an interface between the C&D User Services Process
-- and the Radar Scheduling Process.

pragma arithcheck(of f) ; pragma debug(off)

;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on); pragma rangecheck(on) •

PACKAGE tab 5 15

rdr_silnce: BOOLEAN;

END tab 5 ;

75

— OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 11 Oct 86
-- MODULE TYPE: External Table
-- PURPOSE: Common Memory Interface
-- NAME: B_to_R ... TAB6.LI3

-- This interface data structure communicates information concerning
-- array face limits and ships motion matrix to the Radar Scheduler
-- Process. The information is developed in the Beam Stabilization
-- Process.

pragma arithcheck(_off) ; pragma debug(off) ;

pragma enumtab(of r) ; pragma rangecheck(off)

;

(? pragma arithcheck; on) ,- pragma debug (on)

§ pragma anumcab(on) ; bragma rangecheck(on)

;

PACKAGE "ab6 [S

TYPE L_R_Limits IS RECORD
iimit_Ieft: INTEGER;
right_limit: INTEGER;

END RECORD;

TYPE FaceLimits IS ARRAY.(11.-4) OF C_R_Uimits.;

TYPE MbtionMatrix ZS RECORD
X_shiD_dot

:

INTEGER

;

fj~.ship_.dot: INTEGER
r.ool : INTEGER
oitch : INTEGER
Vaw : INTEGER

END 'RECORD;

TYPE B_R Interface;
TYPE 3toR IS ACCESS B_R_Ihter.face
TYPE 3_R_Interface CS RECORD

facej"ancenna_^imi C3
ships motion matrix
azim_Timit_sTope

END RECORD;

B_tO_R: BtoR;

END tab6;

FaceLimits

;

MotionMatrix;
INTEGER;

76

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 22 Oct 86
-- MODULE TYPE: external table
-- PURPOSE: common memory interface
-- NAME: Track File ...TAB7.LIB

-- This external table is the radar control system track file. The data
-- structure is a linked list based on a pointer which is passed between
-- processes which require access to the track file for data on tracks.

pragma arithcheck(off) ; pragma debug(of

f

) ;

pragma enumtab(of f) ,• pragma rangecheck(off) ;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on) ; pragma rangecheck(on)

;

WITH Longops;

PACKAGE tab 7 IS

USE Longops;

TYPE Position IS RECORD
x
y

slnc_rnge
x_do t

y_do z
z_dot
rge_dot

[ND RECORD;

INTEGER
INTEGER

;

INTEGER'
Lona_Int:eger
INTEGER

;

INTEGER
INTEGER
INTEGER

-- uana Inteaer zrom LonaoDs packaae

TYPE TimAlwdDwl 15
msw : INTEGER

:

Isw : INTEGER;
END RECORD;

RECORD

TYPE UpdtPosit IS RECORD
msw_rate_filter : INTEGER;
lsw_rate_filter : INTEGER;

END RECORD;

TYPE PredTimLst IS RECORD
msw_azim_elev : INTEGER;
lsw_azim_elev : INTEGER;

END RECORD;

TYPE DetectRnge IS RECORD
msw : INTEGER;
lsw : INTEGER;

END RECORD;

TYPE TimDetect IS RECORD
msw : INTEGER;
lsw : INTEGER;

END RECORD;

TYPE TrkData IS RECORD
mode
bid
priority
posit
trk_xsitn_flag
ctl grp trk num
ctsl

y
~

xgte_bin_num
?red_azim
ow_elev trk_flg
log_ampl3_est

INTEGER;
string(3)

;

INTEGER;
Position;
BOOLEAN;
INTEGER;
INTEGER;
INTEGER,
INTEGER,
BOOLEAN;
INTEGER;

77

xmit_reqflg
sim_tgt_flg

END RECORD;

: BOOLEAN;
: BOOLEAN;

TYPE TrkDatPtr IS ACCESS TrkData;

TYPE TgtData IS RECORD
tim_alwd_dwl : TimAlwdDwl;
mfar trk_num : INTEGER;
wcs_Tdx : INTEGER,;
updt_tim_posit : UpdtPosit;
pred tim_lst : PredTimLst;
dwl_b~twn_tim : INTEGER;
nxt_trk xate_bin: INTEGER;
prev_trk"_xgte_bin: INTEGER;

freq
frad

ari:3t:_noise.
least_noise^
vaiid_data_"tlg
lost trk count

INTEGER
INTEGER:
BOOLEAN;
INTEGER;

nxt_tim_cbl_entry : INTEGER;

--he=l ,me=2 , le=3 , ale=4,mti=5 ,passv=6,missile=7 ,cvr_plse=8
trk_mode : INTEGER;

rcvr_s ta cus fig
typl _pas3v_ilg
:vp22pas3V_jflg
drp_crk_fig

300LEAN

:

BOOLEAN

;

BOOLEAN

:

BOOLEAN

:

air=l , surfaca=2 , clutter=3
•X class : INTEGER:

-hostile=l
:rk id

-:ig

:riendlv=2 . unknown=3
: INTEGER;

wcs
sm tK_amp la_c oun t
rnge_accel_flg
detect_rnge
tim_detec£
caus_lost_data_pt

END RECORD;

TYPE TrkFile:
TYPE PtrTrkFile IS ACCESS TrkFile;
TYPE TrkFile IS RECORD

BOOLEAN

;

INTEGER;
BOOLEAN;
DetectRnge;
TimDetect;

: INTEGER; --unknown pointer type?

beam data
tgt_3ata
nxt_trk

END RECORD;

TrkDatPtr;
TgtData

?

PtrTrkFile;

ptrk: PtrTrkFile;
trk_file: PtrTrkFile;

END tab7;

78

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 17 Nov 86— MODULE TYPE: external table
-- PURPOSE: common memory interface
-- NAME: Track File . ..TAB7.PKG

-- This external table is the radar control system track file. The data
-- structure is a linked list based on a pointer which is Dassed between
-- processes which require access to the track file for data on tracks.

pragma arithcheck(of f) ;
pragma debug(off);

pragma enumtab(of f) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug"(on) ;

i§ pragma enumcab(on) ; bragma rangecheck(on) -

PACKAGE 30DY :ao7 13

3EGIM

ptrk:= MEW TrkFile,-
perk.beam_data:= NEW TridData;
trk_file:= MEW TrkFile;
trk file.beam data := MEW TrkDaca:
ptr£:.= trk^file;
or.rK.beam iaca:= trk file. beam laca:

3ND caD7

79

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 11 Oct 36
-- MODULE TYPE: External Table
-- PURPOSE: Common Memory Interface— NAME: F_to_R ... TAB8.LIB

-- This interface data structure contains the frequency and waveform
-- information required by the Radar Scheduler Process to complete
-- formatting of selected radar dwells.

pragma arithcheck(off) ; pragma debug(of f)

;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; oragma debug(on);
@ pragma enumtao< on) ; pragma rangecheck(on)

;

PACKAGE caD8 IS

raax_dwelis: CONSTANT INTEGER:- 10; -- not previously defined, 10 ?

TYPE mtiRec IS RECORD
pri : INTEGER;
dwl_Length: INTEGER;

END RECORD;

TYPE msleSec IS RECORD
UDlnk freq: INTEGER;
x:m freq : INTEGER:

END RECORD
;

'

TYPE WaveFormRec CS RECORD
fr.eq_chnl .• INTEGER
£re.q_band : INTEGER
phasel_code: INTEGER
phase2__code : INTEGER
mti : mtiRec ,•

.nsie : msTeRec;
inhib_freq_chnl; INTEGER;

END RECORD;

TYPE F_to_R IS ACCESS WaveFormRec;

TYPE InfoWaveForm IS ARRAY(1 . .max_dwells) OF F_to_R ;

waveform: InfoWaveForm;

END tab8;

80

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 11 Oct 86— MODULE TYPE: External Table
-- PURPOSE: Common Memory Interface
-- NAME: F_tO_R ... TAB8.PKG

-- This interface data structure contains the frequency and waveform
-- information required by the Radar Scheduler Process to complete
-- formatting of selected radar dwells.

pragma arithcheck(off) ;
pragma debug(off);

pragma enumtab(off) ; pragma rangechecfc(off)

;

@ pragma arithcheck(on) ; pragma debug(on)

;

@ pragma enumtab(on) ; pragma rancecheck(on)

;

PACKAGE 30DY zao8 IS

1: INTEGER;

BEGIN
FOR i IN 1. .max_dwells LOOP

waveform(i) := NEW WaveFormRec;
END LOOP;

END tabS;

81

-- OWNER: AEGIS Modeling Group— DATE OF LAST UPDATE: 11 Oct 86
-- MODULE TYPE: External Table— PURPOSE: Common Memory Interface
-- NAME: L_to_R ... TAB9.LIB

-- This interface data structure contains the flag which indicates
-- reset time for the track counter. This flag is used by the Radar
-- Scheduler Process to format track dwells.

pragma arithcheckfoff) ; pragma debug(off) ;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on)

;
pragma rangecheck(on)

;

PACKAGE tab 9 IS

trk_tim_ctr_resei:: 300LZAN;

END tab9 ;

82

OWNER: AEGIS Modeling Group
DATE OF LAST UPDATE: 11 Oct 86
MODULE TYPE: External Table
PURPOSE: Common Memorv Interface
NAME: Missile Downlink Messaqe . TAB10.LIB

-- This table holds the communication information required for
-- downlink data from own ship's SM-2 missiles.

pragma arithcheck(off) ; pragma debug(off

)

pragma enumtab(of f) ; pragma rangecheck(of f)

;

@ pragma arithcheck(on) ; pragma debugton)

;

@ pragma enumtab(on) ; pragma rangecheck(on)

;

PACKAGE tab10 13

num_mssi_nsgs : CONSTANT INTEGER::- 10

TYPE DwnlinkRec IS RECORD

nor previously defined, L0?

pr~_one
prt_:wo
prt_three
?rt_four
prt_five
prt_six
prt_seven
prt* eight

•ND RECORD":

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

TYPE P.trMsslDwnlnk IS ACCESS DwnlinkRec;

TYPE DwninKArray IS ARRAY:(l....num_mssl_msgs) OF PtrMsslDwnlnk;

Tissi_iwnlnk: "DwnlnkArray

;

END ;aol0 :

83

— OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 11 Oct 86
-- MODULE TYPE: External Table
-- PURPOSE: Common Memory Interface
-- NAME: Missile Downlink Message ... TAB10.PKG

-- This table holds the communication information required for
-- downlink data from own ship's SM-2 missiles.

pragma arithcheck(off) ; pragma debug(off);
pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on)
;
pragma debug(on);

@ pragma enumtab(on); pragma rangecheck(on)

;

PACKAGE 30DY tab10 IS

1: INTEGER;

BEGIN
cOR 1 IN I.. p.um

r
_nssi_nsgs LOOP

ms3i_dwnlnk(i) := NEW DwniinkRec;
END LOOP;

END :abi0?

84

OWNER: AEGIS Modeling Group
DATE OF LAST UPDATE: 11 Oct 86
MODULE TYPE: External Table
PURPOSE: Common Memory Interface

a.-- NAME: R_to_S ... TABU. LIB

-- This interface data structure contains the replenishment flags
-- which inform the Search Management Process which search queues
-- require filling. The Radar Scheduler Process sets the flags as
-- necessary when it has used a preset number of search request
-- beams.

pragma arithcheck(of f) ; pragma debug(off
<
) ;

pragma enumtab(ofr) : pragma rangechecfc(off)

;

@ pragma arithcheck(on) ; pragma debug^on);
t§ pragma enumtab(on) ;

pragma rangecheck(on)

;

PACKAGE tabll IS

TYPE RtoS IS RECORD
hs_que_repln: BOOLEAN;
ahs_que_rsoln: BOOLEAN;

END RECORD;

TYPE RtoSPtr IS ACCESS RtoS

r

R_tO_S: RtoSPtr;

END tabll;

85

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 11 Oct 86
-- MODULE TYPE: External Table
-- PURPOSE: Common Memory Interface— NAME: R_tO_S ... TAB11.PKG

-- This interface data structure contains the replenishment flags
-- which inform the Search Management Process which search queues
-- require filling. The Radar Scheduler Process sets the flags as
-- necessary when it has used a preset number of search request
-- beams.

pragma arithcheck(off) ; pragma debug(off) ;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
!§ pragma anumtab(on); pragma rangecheck(on)

;

PACKAGE 30DY tabll IS

BEGIN

R_tO_S:= NEW RtoS;

END tabll;

86

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Sep 86
-- MODULE TYPE: external table
-- PURPOSE: common memory interface
-- NAME: R_to_0 ... TAB32.LIB

-- This table is the interface between the Radar Scheduler Process and the
-- Radar Output Process.

pragma arithcheckfoff) ; pragma debug(off)

;

pragma enumtab(of f) ; pragma rangecheck(off)

;

@ p'ragma arithcheck(on) ; pragma debug(on) ;

@ pragma enumtab(on); pragma rangecheck(on)

;

PACKAGE tab 3 2 IS

TYPE DwlData 13 RECORD
node
race
sub_mode
dwl_idx
beam_purpose
dwl_start_idx
doct_unbInk gates
rlutter unbInk gates

3ND RECORD:

INTEGER
INTEGER
ARRAY (I
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

2) OF INTEGER;

TYPE RtoO;
TYPE PtrRtoO 13 ACCESS RtoO;
TYPE RtoO IS RECORD

3wl data : DwiData;
.ink : PtrRtoO:

END RECORD:

R to 'trRtoO

TYPE ROPtrArray IS ARRAY(1
ptr_r_to_o: ROPtrArray;

END tab32;

2) OF PtrRtoO;

87

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 23 Oct 86
-- MODULE TYPE: external table
-- PURPOSE: common memorv interface
-- NAME: R_tO_0 ... TAB32.PKG

-- This table is the interface between the Radar Scheduler Process and the
-- Radar Output Process.

pragma arithcheck(of f) ; pragma debug(off)

;

pragma enumtab(of f) ; pragma rangecheck(of f)

;

@ pragma arithcheck(on)
;
pragma debug(on);

d pragma enumtab(on); pragma rangecheck(on)

;

PACKAGE 30DY tab32 IS

BEGIN

otr r_to_o (1):= MEW RtoO;
ptr_r_to_o(2) := MEW RtoO:
ptr_r_to_o(l) .link:= null;
ptr_r_to_o(2/ .link:= null;

END ".3032;

88

OWNER: AEGIS Modeling Group
DATE OF LAST UPDATE: 30 Sep 86
MODULE TYPE: data buffer
PURPOSE: internal data structure
NAME: Output Control Channel Buffer .TAB40.LIB

-- This interface data structure is a buffer between the Radar Control
-- program and the Radar Channel program. It communicates with the
-- Radar Scheduler and Radar Output processes. The Radar Channel program
-- uses the data to process commands for the SPY-1 radar.

pragma arithcheck(off) ;
pragma debug(off);

pragma enumtab(of f) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug~i(on) ;

@ oragma ^numcab(on) ; pragma rangecheck(,on) ;

PACKAGE tab4Q 13

TYPE CntrlWord IS RECORD
rdr_xmsn_on :

adi detect_enable :

sd!5_canx_cn :

chni_a_video :

cnnl_o_'-rideo :

freq_group_3ict
rng_3calihg_

r
^nabie

II _iubchni^lisaois
t2_3ubcnni_disaDie
i3_5ubchni_iisaoie
t4_iUDchni~iisacie
juocnni_weignt_enaDia
cltr_lock_ops :

,:Itr_locK_e"rr :

END RECORD:

BOOLEAN;
BOOLEAN

;

BOOLEAN;
BOOLEAN;
BOOLEAN;
300LSAN

;

BOOLEAN

;

BOOLEAN

;

BOOLEAN

:

300LEAN

:

BOOLEAN

:

: BOOLEAN
BOOLEAN

;

300LEAN

;

TYPE FreqGroupSelect 15 RECORD
>ri_mode_a
b_submode
c_submode

END RECORD;

INTEGER;
INTEGER;
INTEGER;

TYPE OaType IS RECORD
cntrl_word
freq_group_select
data_block_code

END RECORD;

CntrlWord;
FreqGroupSelect;
INTEGER;

TYPE ObType IS RECORD
detectl_thrsld : INTEGER
detect2_thrsld : INTEGER
detect3_thrsld : INTEGER
sdlb_thrsld : INTEGER

END RECORD;

TYPE OcType IS RECORD
mnlb_thrsldl
cvr_pulse thrsldl
satl_thrsTd
sat2_thrsld

END RECORD;

INTEGER
INTEGER
INTEGER
INTEGER

TYPE OdType IS RECORD
ratio_thrsld : INTEGER
limit_thrsld : INTEGER
cltr_thrsld : INTEGER

END RECORD;

TYPE OeType IS RECORD

89

comptr_lock init : INTEGER;
truncl_thrsld : INTEGER;
trunc2_thrsld : INTEGER;

END RECORD;

TYPE OfType IS RECORD
phsel_code : INTEGER;
phse2_code : INTEGER;
phse3_code : INTEGER;
phse4_code : INTEGER;

END RECORD;

TYPE OgType IS RECORD
fdbkl : INTEGER;
fdbk2 : INTEGER
fdbkS : INTEGER
fdbk4 : INTEGER

END RECORD;

TYPE OhTvpe IS RECORD
pril^mti : INTEGER;
pri2_mti : INTEGER;

END RECORD;

TYPE OiType IS RECORD
cntrl_bit
iwl_l~start_time
dwl_2~s tart time

2ND RECORD:

300LEAN:
INTEGER:
INTEGER;

TYPE OjType IS RECORD
cntrl_bit : 300LEAN:
doct T unblnk_s tart : INTEGER:
subcEnI_freq_group : INTEGER;

END RECORD:

TYPE OkType IS RECORD
cntrl_bit : BOOLEAN
doct l_unblnk_stop : INTEGER
fixe3_atten_cntrl : INTEGER
stc_cntrl : INTEGER

END RECORD;

TYPE OiType IS RECORD
cntrl_bit : BOOLEAN
doc t_2_unblnk_s tart : INTEGER
xmit freq : INTEGER
rcvJFreq : INTEGER

END RECORD;

TYPE OmType IS RECORD
cntrl_bit : BOOLEAN;
doct_2_unblnk_stop : INTEGER;
face : INTEGER;
fore_beam_alarm_inhib: INTEGER;
cos_alphal_mn_array : INTEGER;

END RECORD;

TYPE OnType IS RECORD
cntrl_bit : BOOLEAN;
cltr l_unblnk_start : INTEGER;
aft_Beam_alert inhib: INTEGER;
cos_alpha2_sdlb"_blnk_ary: INTEGER;

END RECORD;

TYPE OoType IS RECORD
cntrl_bit
cltr l_unblnk_start
cos_Hetal_mn_array

BOOLEAN
INTEGER
INTEGER

90

END RECORD;

TYPE OpType IS RECORD
cntrl_bit : BOOLEAN;
cltr 2_unblk strt : INTEGER;
cos Eeta2 sdlb blnk ary: INTEGER;

END RECORD;

TYPE OqType IS RECORD
cntrl_bit
cltr_2_unblk_stop
elev_sector
dply_ctrl
trk_num

END RECORD;

BOOLEAN
INTEGER
INTEGER
INTEGER
INTEGER

TYPE OrTvpe IS RECORD
::-:;_gai:e_strt : INTEGER' ,-

doly_elev : INTEGER:
END RECORD;

TYPE OsType IS RECORD
video_axtnc :

t • INTEGERaoiv vd
iDiv_azim

END RECORD:
INTEGER

TYPE DtTvpe 13 RECORD
Jtmsb : INTEGER;
otlsb : INTEGER:

END RECORD;
TYPE OtArrav IS ARRfiYQ

TYPE OccbT
TYPE Ptr.Oc
TYPE DccbT

oa
ob
oc
od
oe
o_f
o

oi

°oi

ol
om
on
oo
op
oq
o_r
OS
ot
link

END RECORD

v"C a

:

:b IS ACCESS
7pe IS RECORD
OaType
ObType
OcType
OdType
OeType
OfType
OqType
OhType
OiType
OiType
OkType
OiType
OmType
OnType
OoType
OpType
OqType
OrType
OsType
OtArray

;

PtrOccb;

.15) OF OtType

ccbType

occb: PtrOccb;

TYPE OCCBPtrArray IS ARRAY(1..2) OF PtrOccb;
occb_ptr: OCCBPtrArray;

END tab40;

91

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 23 Oct 86
-- MODULE TYPE: data buffer
-- PURPOSE: internal data structure— NAME: Output Control Channel Buffer ...TAB40.PKG

-- This interface data structure is a buffer between the Radar Control
-- program and the Radar Channel program. It communicates with the
-- Radar Scheduler and Radar Output processes. The Radar Channel program
-- uses the data to process commands for the SPY-1 radar.

pragma arithcheck(off) ;
pragma debug(off)

:

praqma enumtab(off) ; braqma rangecheckt^off)

"? praqma arithcheck(on) ; oragma debug(on;,-
§ pragma anumtao^on); pragma rangecheck(on)

;

PACKAGE 30DY :aD40 IS

3EGIM

occb_ptr(l) := NEW OccbType;
occb_ptr(2) := MEW OccbType;
occb_ptr(l) ..linlc:= null";
occb_ptr(2) .link:= null;

iND :ao40

;

92

APPENDIX B

GLOBAL SOURCE CODE

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 22 Oct 86— MODULE TYPE: Global data
-- PURPOSE: System's Data Structure declarations
-- NAME: GLOBAL DECLARATIONS .. .GLOBAL .LIB

pragma arithcheck(off) ; pragma debug(off

)

•

pragma enumtab(ofr) ; bragma rangecneck(off

)

@ pYagma arithchecK(,on) ; pragma deoug^cn;,-
<a pragma enumcab(onj; pragma rangecheck^on; ,-

PACKAGE global IS

--SES CONSTANTS

numo_event:s : CONSTANT INTEGER := 23;
buff_3ize: CONSTANT INTEGER :=i0;
infinity: CONSTANT INTEGER := 32000;
numo orocs: CONSTANT INTEGER := 21;

— nmr<*recess identifiers

a_pi
c_pi
b_pic
d_pi
a pi
£-Pi
k_pi
lji
m_pi
w_pi
X-Pi
h_pi
o_pi

P-Pi

s_pi
r_pi
main
idle

a:
d:
d:
d:
O:
d:
d:
d:
d:
d:
d:
d:
d:
d:
d:
d:
d:
d:
_i

i

CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT
CONSTANT

INTEGER
INTEGER = x

CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER
CONSTANT INTEGER

d: CONSTANT INTEGER
d: CONSTANT INTEGER

o

7

8
9
10
11
12
13
14
15
16
17
18
:= 19;
;= 20;

--event count identifiers, reserved event count identifiers: 0,1,2,6,20

main event_id:
display_evc_

r
id

:

time_count_Id

:

idle event_id:
ea_iH: CONSTANT
ec_id: CONSTANT
eb_id: CONSTANT
ed_id: CONSTANT
ee_id: CONSTANT
ef_id: CONSTANT
ek_id: CONSTANT
el_id: CONSTANT
em_id: CONSTANT
ew_id: CONSTANT
ex_id: CONSTANT
eh id: CONSTANT

CONSTANT
CONSTANT

CONSTANT
CONSTANT
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

INTEGER :

INTEGER
INTEGER ;

INTEGER
= 3
= 4
= 5
= 7
= 8
= 9
= 10
= 11
= 12
= 13
= 14
= 15

= 1;
:= 2;
= 6;
= 20;

93

eo_id: CONSTANT INTEGER
ei_id: CONSTANT INTEGER
ep_id: CONSTANT INTEGER
et_id: CONSTANT INTEGER
es_id: CONSTANT INTEGER
er id: CONSTANT INTEGER

= 16
= 17
= 18
= 19
= 21
= 22

--common service routines

FUNCTION clock RETURN INTEGER;
FUNCTION rand RETURN INTEGER;
PROCEDURE ipl;
PROCEDURE await(proc_id,event_id.event_value: IN INTEGER);
PROCEDURE advance (proc_id,event_id: IN INTEGER);
FUNCTION ticket RETURN INTEGER;
PROCEDURE disable;
PROCEDURE enable;

--System's Data Objects

TYPE EveValArray IS ARRAY (0 . .numb_events) OF INTEGER;
event_val_cnt : EveValArray;

TYPE process IS RECORD
INTEGER
INTEGER
INTEGER
INTEGER

status
context
scunt
event

END RECORD:
TYPE ProTabArray IS ARRAY < . .numb_procs) OF process:

prcs_~oie

[ND glooai .-

OvoTabArray;

94

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 26 Nov 86
-- MODULE TYPE: global package body
-- PURPOSE: to define common service routines
-- NAME: global ... GLOBAL. PKG

pragma arithcheck(off) ; pragma debug(off)
;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on)
;
pragma debug(on)

;

@ pragma enumtab(on); pragma rangecheck(on)

;

WITH Longops , tabO , tabl , tab2 , tab7

;

PACKAGE 30DY global IS

USE Longops , cabO , tabi , tao2 , :ab7

;

-- OWNER: AEGIS Modeling Group
-- DATE OF .AST UPDATE :.' 1 Dec 86
-- MODULE TYPE: common service routine
-- PURPOSE: generata a random number
-- NAME: RAND . . .csr5

-- This oseudo-random numoer jenarator uses the :ongruence algorithm— io generate a list zf random numoers with a period approximately
-- -equal to "t." . The eauation is of the form:

X(n+I) = nod (A T 1(11) - 3) Z)

X: INTEGER := -I;

FUNCTION rand RETURN INTEGER IS

INTEGER :- 357
INTEGER
INTEGER = 31099:

seed: INTEGER :- 19879;
y: Long_In eager;

BEGIN
IF X=-l THEN

x:= seed;
END IF;

-- compute the random number
y:= Ladd(Lmul(Lint(a),Lint(x)),Lint(b)) ;

x:=L_to_int(Lmod(y,Lint(t)))

;

RETURN X;
END rand;

95

OWNER: AEGIS Modeling Group
DATE OF LAST UPDATE: 30 Nov 86
MODULE TYPE: external initialization routine
PURPOSE: initialize the priority event list for the Radar Scheduler Model
NAME: Initialize the Radar Event Priority List...csr6

This routine initializes the Priority Event List which is used by the
Radar Scheduler, Search Management and Track Management processes to
request and schedule radar dwells.

PROCEDURE ipl IS

i: INTEGER:

BEGIN
for i in l..max_pri LOOP

pri_lst(i) .status:- false;
pri~lst(i) .b_pri.:= i,-

pri_lst(i) .c_pri:= i;
pri_lst(i) .ltX:= 0;
pri_lst i) .slct_flg:= false:
pri~lst(i) .nxt .= i+1;

IF ((i<=8) OR ((i>=l.a) AND (i<=13))') THEN
pri Lst(i) .allwd Ltx:- 100:

2LSIF (Ti>=14) AND (1<=21.)) THEN
pri lst(i) .allwd itx: = 500;

ELSI"F (1=9) THEN
pri Lst(i). allwd ltx.:^ 25;

EESTF 1=22) THEN
ori Lst(i) .allwd ltx.: = 50;

2L2E
pri:_lst< i) . allwd_ltx':= infinity;

END IE;

IF ((i<io_enhnc; OR (i>22)) THEN
pri_lst(i) .enhnc := false;

ELSE
pri_lst(i) .enhnc := true;

END IF;

IF ((i<=3) OR ((i>=10) AND (i<=13)) OR (i>=23)) THEN
pri_lst(i) .max_noaes := 5

j

pri_lst(i) .que_id:= special_request

;

pri_lst(i) .que_ptr .kind:= special_request;
pri_lst(i) .que_ptr. Snode := NEW SearchNode;
pri lst(i) .que otr. Snode. nxt := null;

ELSIF CU=4) OR ((i>=6) AND (i<=8)) OR ((i>=14) AND (i<=21))) THEN
pri_lst(i) .max_nodes := 5;
pri_lst(i) .que_id:= track;
pri_lst(i) ,que_ptr .kind:= track;
pri_lst(i) .que_ptr .Tnode := NEW TrackNode;
pri_lst(i) .que_ptr. Tnode. info. p_trk:= NEW TrkFile;
pri_lst(i) .que_ptr. Tnode . info. p_trk.beam_data := NEW TrkData;
pri lst(i) .que otr. Tnode .nxt := null;

ELSIF C\i=9) OR (i=22)) THEN
pri_lst(i) .max_noaes := 10;
pri_lst(i) .que_id:= search;
pri_lst(i) .que_ptr .kind:= search;
pri_lst(i) .que_ptr .Snode := NEW SearchNode;
pri_lst(i) .que_ptr. Snode . info := NEW SrchData;
pri_lst(i) .que_ptr .Snode. nxt := null;

ELSE
pri_lst(i} .max_nodes :- 2\
pri_lst(i) ,que_id:= missile;
pri_lst(i) .que_ptr .kind:= missile;
pri_lst(i) .que_ptr. Tnode := NEW TrackNode;
pri_lst(i) .que_ptr .Tnode. nxt := null;

96

END IF;

END LOOP;

--reset "nxt" on last element in Priority List to point to
pri_lst(max_pri) .nxt := 0;

-- assi
pri_lst
pri_lst
pri_lst
pri_lst
pri_lst
pri_lst
pri_lst
pri_lst
pri_1st
pri_lst
pri_lst
pri_ist
pri_lst
pri_lst
pri_lst
pri~lst
pri^lst
pr.i_lst
pri~lst
bri~lst
pri_L3t
ori_lst
pri~lst
pri_ls
pri~1 s t
pri_lst

END ipl;

n
1

2

3

4
5

5
7)
a).
9).
10)
ID
12)
13)
14)
15)
16)
17)
13)
19)
(20
(21)
(22
(

(

3t
24)

26)

event name
.eventnm:=
.eventnm:=
.eventnm:=
.eventnm:=
.eventnm:=
. eventnm :=

. aventnm :=

. eventnm :=

.eventnm:=
eventnm
eventnm
eventnm
eventnm
eventnm
eventnm
aventnm
eventnm
eventnm
aventnm
eventnm
aventnm
aventnm
aventnm
aventnm
aventnm
aventnm

s to each
]

"A-EVENT
"B-EVENT
"C-EVENT
"D-EVENT
"E-EVENT
"F-EVEMT
"G-EVEMT
"H- EVENT
"I -EVENT

' I—EVENT
'K- EVENT
'L-EVEMT
'M-EVENT
'M- EVENT
'0- EVENT
'?- EVENT
'0- EVENT
'R- EVENT
"3- EVENT
'T- EVENT
U- EVENT
'V-EVENT
•W-EVENT
'M-EVENT
"Y-EVENT
"Z-EVENT

iriority
ECM BURNTHROUGH"

;

TARGET DEFINITION";
SPECIAL TEST";
ENGAGED HOSTILE TARGET";
OWN SM-2 MISSILE GUIDANCE";
PRE-ENGAGED HOSTILE TARGET";
HIGH PRI TRACK TRANSITION";

• HIGH PRI TRACK CONFIRMATION"

;

HORIZON SEARCH"

r

- SPECIAL ECM BURNTHROUGH";
- SPECIAL TARGET DEFINITION";
- SPECIAL MANUAL SCAM"

;

- SPECIAL TARGET ACQUISITION";
- CONFIRMED HOSTILE TRACK";
- ASSUMED HOSTILE TRACK";
- UNEVALUATED TRACK"

;

- CONTROLLED FRIENDLY TRACK"

•

- TRACK CONFIRMATION"

;

- TRACK TRANSITION" •

- ASSUMED FRIENDLY TRACK"

;

- CONFIRMED FRIENDLY TRACK"

;

- ABOVE HORIZON SEARCH"

;

- SPECIAL ABOVE HORIZON SEARCH"
- SIMULATION DWELL";
- DIAGNOSTIC DWELL";
- DUMMY DWELL";

97

OWNER: AEGIS Modeling Group
DATE OF LAST UPDATE: 24 Jun 86
MODULE TYPE: common service routine
PURPOSE: simulates a real time millisecond clock
NAME: clock ...csr7

This common service routine simulates a real time millisecond clock,
when the routine is invoked the variable "time" is incremented by
one. The new value of time is then RETURNed to the invoking PROCEDURE

time: INTEGER;

FUNCTION clock RETURN INTEGER IS

BEGIN
time:=time + 1;
RETURN time;

END clock;

98

-- The following functions and procedures are only stubs for testing

PROCEDURE await(proc_id,event_id,event_val:IN INTEGER) IS
BEGIN

null;
END await;

PROCEDURE advance (proc_id,event_id: IN INTEGER) IS
BEGIN

null ;

END advance

;

FUNCTION ticket RETURN INTEGER IS
BEGIN

RETURN 0;
ZND ticket;

PROCZDURE disaoie IS
BEGIN

null;
END disable

;

PROCEDURE enable IS
BEGIN

null

;

END enaoie:

-- initialization
BEGIN

:ime:- -I;

END giooai;

99

APPENDIX C

RADAR SCHEDULER SOURCE CODE

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 29 Aug 86
-- MODULE TYPE: Process vers 6.0
-- PURPOSE: Model the Radar Scheduler Function
-- NAME: Radar Scheduler ... RRCM.LI3

-- The Radar Scheduler selects requested beams from queues generated— by the Search Management and Track Management functions.- The
-- selected beams are 'then processed ano formatted into iwells. The
-- dwells are transmitted to the Radar Output function and are oacked
-- into the Channel Output Suffer. Seams are selected for dwell
-- processing oased on a priority scheme.

pragma arithcheck(off) ; pragma debug(off)

;

pragma enumtab(off.) ; pragma rangecheck(off) ;

@ pragma arithcheck(on) ; pragma debug (on)

;

'? pragma anumtao(on); pragma r.angecheck(on)

;

PACKAGE •cm IS

PROCEDURE radar_scheduler;

END rrcm;

100

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 2 Dec 86
-- MODULE TYPE: Process vers 6.0— PURPOSE: Model the Radar Scheduler Function
-- NAME: Radar Scheduler ... RRCM.PKG

-- The Radar Scheduler selects requested beams from queues generated
-- by the Search Management and Track Management functions. The
-- selected beams are then processed and formatted into dwells. The
-- dwells are transmitted to the Radar Output function and are packed
-- into the Channel Output Buffer. Beams are selected for dwell
-- processing based on a priority scheme.

oragma arithcheck(off) ; pragma debug(off);
pragma enumcab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumcab(on) ; pragma rangecheck(on)

WITH Io , Util
,
global , tabO , tabl , tab2 , tab4 , tab7 , tab32 , tab40 , rsmO , rsm2

,

rsm3 , rsm5 , rsm9 , rsmlO , rsml2 , rsml3 , rsml4;

PACKAGE BODY rrcm IS

USE Io , Util
,
global , tabO , tabl , tab2 , iab4 , tab 7 , :ab32 , iab40 . rsmO , rsm2 ,

rsm3 , rsm"5 , rsm9 , rsmiO , rsmi2 , rsml3 , rsmi4

:

PROCEDURE radar_3cheduler IS

1: INTEGER := 0;

J : INTEGER :' 2

;

--beam selection module CONSTANTS

rdrint: constant integer s= 21;
srch_que: CONSTANT INTEGER := 1;
sr_que: CONSTANT INTEGER := 2;
srch_dwls: CONSTANT INTEGER:= 9;
sr_dwls: CONSTANT INTEGER := 2;
rdr_rsrcs: CONSTANT INTEGER := 100;
trk que: CONSTANT INTEGER := 3;
mssT que: CONSTANT INTEGER := 4;
trk Hwls: CONSTANT INTEGER := 10;
mssl_dwls: CONSTANT INTEGER := 5;

rru : INTEGER;
sru : INTEGER;
sra : INTEGER;
tot_dwl_schd: INTEGER;
tot dwls : INTEGER;
srcH_sra : INTEGER;
trk sra : INTEGER;
mssl_sra : INTEGER;
sr_sra : INTEGER;
hwc : boolean;

et
rtim
oltim
dltatim

INTEGER
INTEGER
INTEGER
INTEGER

BEGIN

Delete("RSOUT.Txt");
Create (Text/'RSOUT.Txt" ,Write_Only)

;

Open(Text,"RSOUT.Txt" ,Write_Only);

WHILE (i < A_to_R.op_doct.mintvls) LOOP

101

i:= i + 1;
intvl_num:= i;

-- advance the radar loop event counts

advance (r_pid,es_id)

;

advance (r_pid.et_id)

;

rtim:= clock(); ' -- from csr7 in global. pkg

-- swap external dwell buffers
swap(buff_ptr,cm_ptr, j) ; -- from rsm2.pkg

-- enhance event priorities
enhance (et); -- from rsm3.pkg

-- resvnchronization module never written
-- rsm4.pkg

-- begin beam selection
-- initialize the priority list traversal constraints
et:= 0;
rru.-= 0;
tot dwl_schd:= 0;
srcH_sra:= srch_dwls;
trk_sra:= trk_dwls;
sr_sra:= 5r_dwis;
mssi sra:= mssl_dwls;
tot_3wis:= srch_dwls + trk_dwls + sr_dwls + mssl_dwls;

-- traverse the Priority Lis"
od L : = i ;

WHILE ((et < rdrint) AND I rru < rdr_rsrcs) AND
(tot_dwl_schd < tot_dwls) AND (ppl /= 0)) LOOP

-- check for an empty queue
IF pri_lst(ppl) .status THEN

-- traverse the priority event queue
-- initialize the event queue traversal constraints
sru:= Of
CASE pri_Lst(ppl) .que_id IS

WHEN search => sra:= srch_sra;
WHEN special_request => sra:= sr_sra;
WHEN track => sra:= trk_sra;
WHEN missile => sra:= mssl_sra;

END CASE;

-- select a search type beam or a track type beam
CASE pri_lst(ppl) .que_id IS

WHEN search | special_request =>

--traverse the search event queue
sp:= pri_lst(ppl) .que_ptr .Snode;
WHILE (sp /= null) LOOP

-- get a Radar Event node
r:= get_rect_node() ; -- from RSM5B

-- insert beam information into the node
r .srch^.dwl.ALL:= sp. info. ALL;
r.beamid:= r.srch_dwl.bid;

-- format the selected beams
-- do supplementary processing
-- rsm6 not writen
-- do face assignment
-- rsm7 not written
-- radar doctrine
-- rsm8 not writen

102

-- satisfy the hardware constraints
hw_constraint(pri_lst(ppl) .que_id, rru, r .dru,hwc)

;

IF hwc THEN

-- indicate to the Priority List that this
-- event has been scheduled
pri_lst(ppl) .slct_flg:= TRUE

;

-- fill the external table module
fill_ext_tab(buff_ptr ,occb_ptr(j) ,cm Dtr,

ptr_r_to_o("3) ,r.ocb_data) ;
-- rsmlC

-- insert the dwell at the end of the Radar
-- Event Control Table list
llend(r , rect_ptr) ; -- from rsm5a.pkg

-- load the evaluation module
-- rsmll never written

-- update the used resources
IF (pri_lst(ppl) .que_id = search) THEN

srch_sra.-= srch_sra - 1;
ELSE

sr_sra:= sr_sra - 1;
END I?:
tot_dwl_schd:= tot_dwl_schd +• 1 •

s ru : = s ru f 1 ;

ELSE
-- hardware constraints have not be^n satisfied
free_rect_node(r) ; -- from rsm5c.pkg

END :f ;

-- get next event in search or special request
--queue
sp:= sp.nxt;

END LOOP;

--traverse the search event queue
tp:= pri_lst(ppl)

.
queotr.Tnode;

WHILE (sp /= null) LOOP

-- get a Radar Event node
r:= get_rect_node() ; -- from rsm5b.pkg

-- insert beam information into node
r. trk_dwl.ALL:= tp. info.p_trk.beam_data.ALL;
r.beamid:= tp. info. bid;

-- format the selected beam
-- do supplementary processing
-- rsm6 not written
-- do face assignment
-- rsm7 not written
-- radar doctrine module
-- rsm8 not written

-- satisfy the hardware constraints
hw_constraint(pri_lst(ppl) .que_id, rru,r .dru,hwc)

;

IF hwc THEN

-- indicate to the Priority List that this
-- event has been scheduled
pri_lst(ppl).slct_flg:= TRUE;

103

-- fill the external table module
fill_ext_tab(buff_ptr,occb_ptr(j) ,cm otr

,

ptr_r_to_o(3) ,r.ocb_data) ;
-- r:.

-- insert the dwell at the end of the Radar
-- Event Control Table list
llend(r , rect_ptr) ; -- from rsm5a.pkg

-- load the evaluation module
-- rsmll never written

update the used resources
' pri_lst(ppl) .que_id =
:rk_sra:= trk_sra - 1;

IF (pri_lst(ppl).que_id = track) THEN

ELSE
mssl_sra:= mssl_sra - 1

;

END IF;
tot_dwl_schd:= tot_dwl_schd + 1;
sru:= sru + 1;

ELSE
-- hardware constraints have not been satisfied
free_rect_node(r) ; -- from rsm5c.pkg

END IF;

-- get next event in track or missile queue
tp:= tp.nxt;

END LOOP;

END CASE;

END IF; -- end traverse event que & check for empty que

-- compute time elapsed
elapsed_time(et,rtim) ; -- from rsml2.pkg

-- point to next priority in the list
ppl:= pri_lst(ppl; .nxt;

END LOOP; -- end traverse priority list

IF ((intvl_num MOD A_to_R.op_doct.dply_rect) = 0) THEN
dump; -- from rsml3
Put("Completed interval : ") ;Put(intvl_num) ;New_Line;

END IF;

-- free memory for next interval
free_memory(pool_ptr, rect_ptr) ; -- from rsml4.pkg

END LOOP; -- end do one interval
Close(Text)

;

END radar_scheduler;

END rrcm;

104

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 23 Oct 86
-- MODULE TYPE: local data structure declarations vers 4.0
-- PURPOSE: declare Radar Scheduler local data structures
-- NAME: Radar Scheduler Local Declarations ...RSMO.LIB

-- This file contains all data structures internal to the Radar Scheduler
-- Process.

pragma arithcheck(off) ; pragma debug(off);
pragma enumtab(of f) ;

pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on) ; pragma rangecheck(on)

;

WITH tabl , tab2 , tab 7 , tab32 , tab40

;

PACKAGE rsmO IS

USE tabl,tab2,tab7,tab32,tab40;

--beam selection module CONSTANTS

rdrint: CONSTANT INTEGER := 21;
srch_aue: "CONSTANT INTEGER: 3 1;
sr_aue: CONSTANT INTEGER:- 2;
Srch dwls: CONSTANT INTEGER: 3 9;
sr.dwls: CONSTANT INTEGER: 3 2;
rdr_rsrcs: CONSTANT INTEGER: 3 100:
trk que: CONSTANT INTEGER := 3;
mssljaue: CONSTANT INTEGER: 3 4;
trk awls: CONSTANT INTEGER: 3 10;
nnssl awls: CONSTANT INTEGER: 3 5;

pp-1 : INTEGER

;

intvl_num : INTEGER

--Radar Event Control table node

type OcbData IS RECORD
ocb_purp : INTEGER
xmit_flg
face_assign
pri_mti
doct_blnk_gte
cltr_blnk_gte
mis_up com
mis_ind*x
xmit freq_chnl
rcv_Trec> chnl
subchnl treq_grp: INTEGER;
phse_co3e : INTEGER
fdbk_phsecode
m j r_a_mode
b_submode
c_submode
freq_grp_slct
dwl_strt ctl
detect_tHrslds
trunc thrslds
dwl_i3x_num
elev_sctr
dply_azim
dply_elev
vid_extnt
rge_trk_gte_strt

END RECORD;

boolean
INTEGER
ARRAY (

1

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER
INTEGER
boolean
INTEGER
ARRAY (1
ARRAY (1
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER;

.2) OF INTEGER;

OF INTEGER;
OF INTEGER;

105

See TAB1.LIB
See TAB7.LIB

type RadEveConTab;
type RECTPtr is access RadEveConTab;
type RadEveConTab IS RECORD

srch dwl : SrchDatPtr;
trk_dwl : TrkDatPtr;
ocb_data : OcbData;
beamid : string(3);
dru : INTEGER;
nxt_event : RECTPtr;

END RECORD;
--end Radar Control Table node declaration

sp : SearchPtr;
tp: TrkPtr;
r: RECTPtr;
rect_ptr: RECTPtr,
Dool_ptr: RECTPtr
ouff_ptr: PtrOccb
cm_ptr: PtrRtoO;

See TAB1.LIB
See TAB2.LIB

•- See TAB40.LIB
- See TAB32.LIB

END rsmO;

106

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Nov 86
-- MODULE TYPE: Radar Schedular Module vers 4.0
-- PURPOSE: Initialize lists and variable for the Radar Schedular Process
-- NAME: Radar Schedular Initialization ...RSMO.PKG

pragma arithcheck(off) ; pragma debug(off)

;

pragma enumtab(off) ;
pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on); pragma rangecheck(on)

;

WITH tabl , tab2 , tab7 , tab32 , tab40

;

PACKAGE BODY rsmO IS

USE tabl,tab2,tab7,tab32,tab40;

-- initialization module constants

>ool_length: CONSTANT INTEGER := 22;p00l_lengtn: CONSTANT INTEGER :=

buff_pool_length: CONSTANT := 2;

-- Procedure make_pool is derived from PL1 RSM1A module (MAKE POOL).
-- This procedure creates a pool of available Radar Event Control
-- Table' nodes (see RSMO).

PROCEDURE make_?ool(FirstNode: IN OUT RECTPtr ; numb_nodes :IN INTEGER) IS

count: INTEGER;
p,q: RECTPtr := MEW RadEveConTab:

BEGIN
p .nxt event := null;
p.srcE dwl:= New SrchData;
p.trk_dwl:= New TrkData;
p:= FirstNode;
p.ALL:= FirstNode. ALL;

FOR count IN 2. .numb_nodes LOOP
q:= NEW RadEveConTab;
q.srch dwl:= New SrchData;
q.trk_3wl:= New TrkData;
q.nxt_event := null;
p.nxt_event := q;
p.nxt_event.ALL:= q.ALL;
p:= p.nxt_event;

END LOOP;

END make_pool;

107

-- This procedure is derived from PL1 RSM1B (CREATE DWELL BUFFER POOLS).
-- This procedure creates two circular lists for each of the common
-- memory interfaced data structures (see TABLE32 & TABLE40) which
-- receive the formatted dwells from the Radar Scheduler Process.

PROCEDURE ex_buff_create(buffl:IN OUT OCCBPtrArray ; buff2 :IN OUT ROPtrArray;
length: IN INTEGER) IS

pl,ql :PtrOccb := NEW OccbType;
p2,q2:PtrRtoO := NEW RtoO;
Ctr,j: INTEGER;

BEGIN
FOR j IN 1 . . 2 LOOP

pl:= buffl(j);
pi. link := null;

p2:= buff2(j):
p2.1ink:= null;

FOR ctr IN L.lenath LOOP
ql:= NEW OccbType;
ql.link:= null*-
pi. link := ql;

q2:= NEW RtoO;
q2.1ink:= null;
p2.1ink:= a2;

END LOOP;

-- create circular lists

ql.link:= buffl(j) •

a2.1ink:= buff2(j)

;

END LOOP;

END ex_buff_create;

108

BEGIN
pool_ptr:= NEW RadEveConTab;
pool_ptr.nxt event := null;
pool_ptr .srcH dwl:= NEW SrchData;
pool_ptr.trk_3wl:= NEW TrkData;
make_pool(pool_ptr , pool_lengtn)

;

buff_ptr:= NEW OccbType;
buff_ptr . link:= null;
cm_ptr:= NEW RtoO-
crnotr . link:= null;
ex"buff create (occbex_buff_create(occb_ptr ,ptr_r_to_o,buff_pool_length)

;

sp:= NEW SearchNode;
sp.info:= NhW SrchData;
3D.nXt:= null;
tb: = NEW TrackNode:
tp.info.p_trk:= NEW TrkFiler
tp.in£o.p_trk.beam_data:= NEW TrkData,-
tb.nxt:= null;
r*:= NEW RadEveConTab;
r.srch dwl:= MEW SrchData;
r.trk_3wl:=NEW TrkData;
r .nxt_event := null;
rect_ptr:= NEW RadEveConTab:
recrlp tr • srch dwls= MEW SrchData;
recc_ptr . trk_lwl:= MEW TrkData;
rect ptr-nxt_event:= null;

END rsmO

;

109

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Sep 86
-- MODULE TYPE: internal routine for the Radar Scheduler vers 2.0
-- PURPOSE: swap output buffers for the next scheduling intervial
-- NAME: SWAP... RSM2.LIB

-- This module maintains the pointers to the two non-current dwell buffers
-- which are the destination of the formated dwells scheduled during the
-- current scheduling intervial.

pragma arithcheck(off) ;
pragma debugCoff)

;

pragma enumtab(off) ; pragma rangecheck(of f)

;

@ pragma arithcheck(on) ; pragma debug (on)

;

@ pragma enumtab(on) ; pragma rangecheck(on)

;

WITH tab32,tab40;

PACKAGE rsm2 IS

USE tab32,tab40 ;

PROCEDURE swap (buff: IN OUT PtrOccb ; cm:IN OUT PtrRtoO; index: IN OUT INTEGER);

END rsm2;

110

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Sep 86— MODULE TYPE: internal routine for the Radar Scheduler vers 2.0
-- PURPOSE: swap output buffers for the next scheduling intervial
-- NAME: SWAP... RSM2.PKG

— This module maintains the pointers to the two non-current dwell buffers
-- which are the destination of the formated dwells scheduled during the
-- current scheduling intervial.

pragma arithcheck(off) ; pragma debug(off');
pragma enumtab(of f) ;

pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on); pragma rangecheck(on)

;

WITH tab32,tab40r

PACKAGE 30DY rsm2 IS

USE tab32,tab40;

PROCEDURE swaD(buff:IN OUT PtrOccb ; cm:IN OUT PtrRtoO; index: IN OUT INTEGER)
IS

BEGIN
IF (index=2) THEN

index:- I;
ELSE

index:- 2;
END IF;

buff:= occbjptr(index)

;

cm:= ptr_r_to_o (index)

;

END swap;

END rsm2;

111

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Sep 86— MODULE TYPE: Radar Scheduler Module vers 3.0
-- PURPOSE: enhance and dehance priorities of events in the Radar Event
-- Priority List
-- NAME: enhance... RSM3.LIB

— This module enhances the priorities of the radar events as listed in
-- the Priority List if certian conditions are met. The conditions are:

1. The enhance flag must be set to true
2. The ltx value must be greater than the allwd_ltx value

pragma arithcheck(off) ; pragma debug(off) ;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab^on) ; pragma rangecheck(on) •

PACKAGE rsm3 IS

PROCEDURE enhance(elapsed_time: IN INTEGER);

END rsm3;

112

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Sep 86
-- MODULE TYPE: Radar Scheduler Module vers 3.0
-- PURPOSE: enhance and dehance priorities of events in the Radar Event
-- Priority List
-- NAME: enhance... RSM3.PKG

pragma arithcheck(off) ; pragma debug(off);
pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on); pragma rangecheck(on)

;

WITH tabO;

PACKAGE 30DY rsm3 IS

USE tabO;

-- OWNER: AEGIS Modeling GrouD
-- DATE OF LAST UPDATE: 26 Nov 86
-- MODULE TYPE: Radar Scheduler Subroutine
-- PURPOSE: remove, insert and reset the current priorities of Priority
-- List Events
-- NAME: Remove and Insert ... RSM3A

-- This module locates a request event node in bhe orioritv list,
-- removes it from its current priority, cnen locates its new position— in che priority list, and inserts it thei> *"f»

PROCEDURE ripi(curnt. new_p: IN INTEGER) IS

O: INTEGER := 1;
b4: INTEGER := 1;
tempi , temp2 : INTEGER

;

BEGIN
IF (curnt /= new d) THEN
-- remove the node from its current position
WHILE (pri_lst(p).c_pri /= curnt) LOOP

b4:= p ?

p:= pn_lst(p) .nxt;
END LOOP;
tempi := P;
pri_lst(b4) .nxt:= pri_lst(templ) .nxt;
pri_lst(templ) .nxt:= 0;

-- insert the node at the new priority
b4^= 1;

WHILE' (pri_lst(p) .c_pri /= new_jD) LOOP
b4:= p ?

p:= pri_lst(p) .nxt;
END LOOP;
temp2 := p;
pri_lst(b4) .nxt := tempi;
pri_lst(tempi) .nxt:= temp2;

-- reset all current priority values
tempi := 0;

WHILE '(p /= 0) LOOP
tempi := tempi + 1;
pri_lst(p) .c_pri:= tempi;
p:= pri_lst(p) .nxt;

END LOOP;
END IF;

END ripl;

113

-- This module enhances the priorities of the radar events as listed in
-- the Priority List if certian conditions are met. The conditions are:

1. The enhance flag must be set to true
2. The ltx value must be greater than the allwd_ltx value

PROCEDURE enhance (elapsed_time: IN INTEGER) IS

p: INTEGER := 1;
new_pri: INTEGER;

BEGIN

-- reset the value of ltx for all events

WHILE (pri lst(p).nxt /= 0) LOOP
IF prijlst(p) .slct_flg THEN

priT_lst (p) . ltX: = ;

pn_lst(p) .slct flg:= false;
ELSE

pri_lst(p) .ltx:= ori_lst(p) .ltx + elapsed time;
END IF ;

p:= pri Istfp) .nxt;
END LOOP;

-- traverse the priority list
FOR p IN Io_enhnc. .max_pri LOOP

-- look onlv for events which can be enhanced
IF ((pr£_lst(pj .annnc; AND (prri_lst(p) -status)) THEN

-- is eiaosed time more than allowed time?
IF (pri_lst(p) .ltx > pri_lst(p) .aliwd_ltx) THEN

-- current priority is move standard enhancement value
-- but below che lowest enhancement value

IF ((pri lst(p).c_pri <= (pri_lst(p) .b_pri - 4)) AND
(prO-St(p) .c_pri > lo_enhnc)) THEN

new_pri:= pri_lst(p) .c_pri - 1

;

ELSE
new_jpri:= pri_lst(p) .b_pri - 4;
-- do not enhance past the lowest enhancement value
IF (new_pri < lo_enhnc) THEN

new_pri:= lo_enhnc;
END IF;

END IF;

-- insert the event at its new priority in the Radar Event
-- Priority List

ripl(pri_lst(p) .c_pri, new_pri); -- from rsm3a
END IF;

END IF;
END LOOP;

END enhance;

END rsm3;

114

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 8 Dec 86
-- MODULE TYPE: Radar Scheduler Subroutines— PRUPOSE : Support the Beam Selection process
-- NAME: Beam Selection Routines... RSM5.LIB vers 2.0

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Aug 86
-- MODULE TYPE: Radar Scheduler Subroutine
-- PRUPOSE: insert a node at the end of a linked list— NAME: llend . . . RSM5A

-- This subroutine has two input parameters: "q" is a pointer to the
-- node which is to be inserted, "s" is a pointer to the list to which
-- the node is to be inserted at the end of.

-- OWNER: AEGIS Modeling GrouD
-- DATE OF LAST UPDATE: 30 Aug 36
-- MODULE TYPE: 3eam selection subroutine
-- PURPOSE: assign a Radar Event Control Node from a pool of available
-- nodes
-- NAME: Get Rect Node ... RSM5B

-- This module locates the first available RECT node from the pool. It
-- removes the node from the pool and passes its pointer back bo the
-- invoking procedure.

-- OWNER: AEGIS Modeling GrouD— DATE OF LAST UPDATE: 20 Aug 36
-- MODULE TYPE: Beam Selection subroutine
-- PURPOSE: return an unused RECT node to the available pool of nodes
-- NAME: Free RECT node ... RSM5C

-- This module returns an unused radar eevent control node to the
-- available pool of radar event control nodes.

pragma arithcheck(off) ; pragma debug(off);
pragma enumtab(of f) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on)

;

@ pragma enumtab(on); pragma rangecheck(on)

;

WITH rsmO;
PACKAGE rsm5 IS

USE rsmO;
PROCEDURE llend(q,s: IN OUT RECTPtr);

FUNCTION get_rect_node RETURN RECTPtr;

PROCEDURE free_rect_node(p: IN OUT RECTPtr);

END rsm5;

115

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 8 Dec 86
-- MODULE TYPE: Radar Scheduler Subroutines vers 2.0— PRUPOSE: Support the Beam Selection process
-- NAME: Beam Selection Routines... RSM5.PKG

pragma arithcheck(off) ; pragma debug(of f)

;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on); pragma rangecheck(on)

;

WITH tabl,tab7,rsm0;
PACKAGE BODY rsm5 IS

USE tabl , tab 7 , rsmO

;

-- oointers for procedure/function use only
p: RECTPtr;

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Aug 86
-- MODULE TYPE: Radar Scheduler Subroutine
-- PRUPOSE: insert a node at the end of a linked list
-- NAME: -lend ... RSM5A

-- This subroutine has two input parameters: "q" is a pointer to the
-- node which is co be inserted, "s" is a pointer Co the list to which
-- the node is to be inserted at the end of.

PROCEDURE llend(q,S: IN OUT RECTPtr) IS

BEGIN
-- set the new node's pointer to null
q.nxt_event .-= null;

-- check for an empty list
IF (s = null) THEN

S:= q;
ELSE

WHILE' (p.nxt_event /= null) LOOP
p:= p.nxt_event;

END LOOP;

-- insert the new node at the end of the list
p.nxt_event:= q;

END IF;

END llend;

116

OWNER: AEGIS Modeling Group
DATE OF LAST UPDATE: 26 Nov 86
MODULE TYPE: Beam selection subroutine
PURPOSE: assign a Radar Event Control Node from a pool of available
nodes
NAME: Get Rect Node ... RSM5B

This module locates the first available RECT node from the pool. It
removes the node from the pool and passes its pointer back to the
invoking procedure.

FUNCTION get_rect_node RETURN RECTPtr IS

BEGIN
I? (pooljptr = null) THEN

pool__ptr:= NEW RadEveConTab

;

oooi_ptr .srch^iwi:^ NEW SrcnData;
pooi_pcr. trk_awl:= NEW TrkData,-

END IF;

-- set p to pool_ptr then relink the list
D:= DOOlJptr;
pool"_pT:r :- pool_ptr .nxt_event ,-

o.nxt avenif:- null;
RETURN o;

END ast_rect_node

:

117

-- OWNER: AEGIS Modeling Group— DATE OF LAST UPDATE: 2 Dec 86
-- MODULE TYPE: Beam Selection subroutine
-- PURPOSE: return an unused RECT node to the available pool of nodes
-- NAME: Free RECT node ... RSM5C

-- This module returns an unused radar event control node to the
-- available pool of radar event control nodes.

PROCEDURE free_rect_node(q: IN OUT RECTPtr) IS

BEGIN
-- set link to null
q_. nxt_event :.- null;

-- insert the node at the and of the node oool list
IF (pool_ptr = null) THEN

pooi_ptr:= a;
ELSE"

p:= OOOl_ptr;
WHILE (p.nxt_event /= null) LOOP

o:= p.nxt_avent:
END 'LOOP

;

-- insert unused node
p.nxfc event:.- a;

END "IF;

END free_rect_node

;

BEGIN

-- initialize pointer one time to avoid reinitiaization every
-- time procedure/ function is called.
p:= NEW RadEveConlab

;

END rsm5

;

118

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Sep 86— MODULE TYPE: internal radar scheduler routine vers 2.0
-- PURPOSE: ensure dwells satisfy the hardware constraints
-- NAME: hw_constraint ... RSM9.LIB

-- For test purposes this routine assigns a fixed percentage of
-- the Radar Resources available to the current beam being formatted.

pragma arithcheck(off) ; pragma debug(off)

;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
d pragma enumtab(on); pragma rangecheck(on)

;

WITH tabO;
PACKAGE rsm9 IS

USE tabO;
PROCEDURE hw_constraint(id:IN QueType ? rru,dru:IN OUT INTEGER;

hwc:O0T BOOLEAN)

;

END rsm9

;

119

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Sep 86
-- MODULE TYPE: internal radar scheduler routine vers 2.0
-- PURPOSE: ensure dwells satisfy the hardware constraints
-- NAME: hw_constraint ... RSM9.PKG

-- For test purposes this routine assigns a fixed percentage of
-- the Radar Resources available to the current beam being formatted.

pragma arithcheck(of f) ; pragma debug(off) ;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on); pragma rangecheck(on)

;

WITH tabO;

PACKAGE BODY rsm9 IS

USE tabO;
PROCEDURE hw_constraint(id:IN QueType ; rru,dru:IN OUT INTEGER;

hwc:OUT BOOLEAN) IS

srch_pcnt: CONSTANT INTEGER := 3;
sr ocnt: CONSTANT INTEGER:^ 6:
trk ocnt: CONSTANT INTEGER:- 7;
mssllpcnt: CONSTANT INTEGER:= 7;

percent: INTEGER:

BEGIN
-- determine correct percent of resource for type queue

CASE id IS
WHEN search => percent := srch_pcnt;
WHEN soecial_reauest => oercent:= sr_pcnt;
WHEN tracK => pe'rcem::= trkjpcnt;
WHEN missile => percent := mssl_pcnt;

END CASE;

rru:= rru + percent;

-- are the hardware constraints satisfied ?

IF (rru < 100) THEN
dru:= 100 - rru;
hwc:= true;

ELSE
rru:= rru - percent;
hwc:= false;

END IF;

END hw_constraint;

END rsm9;

120

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Sep 86
-- MODULE TYPE: internal radar scheduler routine vers 2.0
-- PURPOSE: output selected and formatted dwells
-- NAME: fill external tables ... RSM10.LIB

-- This module fills the two common memory interface dwell buffers
-- with the data on the formatted dwells. The buffers are double
-- buffered circularly linked lists. Each time this module is executed
-- the pointers are advanced to the next node in the list.

pragma arithcheck(off) ; pragma debug(off)

;

pragma enumtab(off) ; pragma rangechecK(off)

;

@ pragma arithcheck(on) ; pragma debug (on)

;

@ pragma er.umcaoi on; ,- pragma rangecneck(on) ;

WITH tab3 2 , tab40 , rsmO

;

PACKAGE rsmlO IS

USE tab32, tab40,rsm0;

PROCEDURE fill_ext_tab(pl,p2:IN OUT PtrOccb :p3
.

p4 :IN OUT PtrRtoO;
pr :TN OcbData) ;

END rsmlO:

121

OWNER: AEGIS Modeling Group
DATE OF LAST UPDATE: 30 Sep 86
MODULE TYPE: internal radar scheduler routine
PURPOSE: output selected and formatted dwells
NAME: fill external tables ... RSM10.PKG

vers 2.0

-- This module fills the two common memory interface dwell buffers
-- with the data on the formatted dwells. The buffers are double
-- buffered circularly linked lists. Each time this module is executed
-- the pointers are advanced to the next node in the list.

pragma arithcheck(off) ; pragma debug(off);
pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on)

;

@ pragma enumcab(on) ; pragma rangecheck(on)

;

WITH tab32 , tab40 , rsmO

;

PACKAGE BODY rsmlO IS

USE tab32, caD40,rsm0 ;

PROCEDURE fill_ext_tab(pl.,p2:IN OUT PtrOccb ;o3 ,p4 :IN OUT PtrRtoO;
or: IN OcbData) IS

BEGIN
IF ((pi /= oZ) AND (p3 /= p4)) THEN

pi := Dl . link;
bi:^ b3. link

;

END IF;

- fill channel buffer structure

pl..oa
p 1 . om
pi .oh
pi .oh
pl.ot
pl.ot
pl.ol
pl.ol
pl.oj
pi .o_
pl.og
pi .oa
pl.oi
pi .ob
pi .ob
pi .ob
pi .oe
pi .oe
pl.oq
pi .OS
pi .0_
pi .OS

cntrl vord.rdr
:ace:- pr
pril_mti
.pri2_mti
m.otlsb
(1) .otmsb

race
_xmsn_on:=
_assign:
pri_mtii 1)

i_mti(2)

pr..xmit_f.lg;

:a chnl;
rcv_freq_cnnl

;

pr.pr:
pr.mis_up com;
pr .mis^.in3x;

•xmit freq:= pr.xmit_fre<
. rcv_Treq:= pr.
. subchnl_freq_group := pr .subchnl_freq_grp;
f .phsel_code := pr.phse_code;
. fdbkl:= pr . fdbk_pnsecode;
.cntrl_word. freq_group_slct := pr. f rec; grp_slct;
.dwl_l_start_time := pr. detect thrslds(l);
.detectl_thrsld:= pr .detect_tHrslds(l

>

.detect2_thrsld:= pr .detect_thrslds(2\

.detect3_thrsld:= pr. detect thrslds(3'

. truncl_thrsld:= pr . trunc_tHrslds(l)

;

. trunc2_thrsld:= pr . trunc_thrslds(2)

;

.elev_sector := pr.elev_sctr;

.dply_azim:= pr .dplvazim;
r .dply_elev:= pr .dply_elev;
. video_extnt := pr . rge_trk_gte_strt;

-- fill R_to_0 Table structure

p3 .dwl_data.mode := pr.mjr_a_mode;
p3 .dv;l_data. face := pr . face_assign;
p3.dwl_data.sub_mode(l) := pr .b_submode;
p3.dwl_data.sub_mode(2) := pr.c submode;
p3.dwl_data.dwl_idx:= pr.dwl_i3x num;
p3.dwl_data.beam_purpose := pr .ocb" ourp;
p3.dwl_data.dwl_itart_idx:= pr .dwT_strt_ctl;
p3.dwl_data.doct_unblnk gates := pr.doct blnk gte;
p3 . dwl_data . clutter_unblnk_gates := pr . cltr_blnk_gte

;

122

END fill_ext_tab;

END rsmlO;

123

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 21 Aug 86
-- MODULE TYPE: internal Radar Scheduler routine vers 2.0
-- PURPOSE: compute scheduling interval elapsed time
-- NAME: Elapsed Time ... RSM12.LIB

-- This module is designed to compute the amount of time the Radar
-- Scheduler has spent selecting a beam from the current requested
-- event queue. The routine swaps the old real time value for the
-- current real time value (in milliseconds) and then computes the
-- new value of the real time and updates the elapsed time.

pragma arithcheck(off) ; pragma debug(of f)

;

pragma enumtab(of f) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on)

;

@ pragma enumtab(on); pragma rangecheck(on) ,-

PACKAGE rsml2 IS

PROCEDURE elapsed_time(et,rtim: IN OUT INTEGER);

END rsml2;

124

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 21 Aug 86
-- MODULE TYPE: internal Radar Scheduler routine
-- PURPOSE: compute scheduling interval elapsed time vers 2.0
-- NAME: Elapsed Time ... RSM12.PKG

-- This module is designed to compute the amount of time the Radar
-- Scheduler has spent selecting a beam from the current requested
-- event queue. The routine swaps the old real time value for the
-- current real time value (in milliseconds) and then computes the
-- new value of the real time and updates the elapsed time.

pragma arithcheck(off) ; pragma debugCoff) ;

pragma enumtab* off) ; pragma rangecheck(off

)

•

@ p'ragma arithcheck(on) ; pragma debugt,onii
-

? pragma anumcatx on; ; pragma rangecnecic(on) ;

WITH giobai;

PACKAGE 3CDY rsml2 IS

USE global;

PROCEDURE elapsed_time(e.t,rtlm: IN OUT INTEGER) IS

oitim: INTEGER;

BEGIN

oItim:-= rtinv;
rtim:- clock(); -- riocx from csr7 in giobai
et:= et - rtim - oltim;

END eiapsed_time;

END rsml2;

125

-- OWNER: AEGIS MODELLING GROUP
-- DATE OF LAST UPDATE: 30 Sep 86
-- MODULE TYPE: Internal Radar Scheduler routine vers 2.0
-- PURPOSE: Print out the results of the latest scheduling interval

for analysis
-~ NAME: Dump ... RSM13.LIB

-- This routine prints out the information on the radar request queues
-- and the scheduled dwells for the current interval. The information
-- printed consists of:

1. Requested Beam Listing
a. The name of the Event whose queue is being printed
b. The identification code of the requested beam
c. The requested beam's position within the queue

2. Scheduled Dwell Listing
a. The scheduled dwell' s unique identification code
b. The amount of Radar Resources remaining after "he

scheduling of the dwell - expressed as a percentage
c. The index into "he current interval's Radar Event

Control Table

pragma arithcheck(off) ; oraqma debug(off)

;

pragma enumtab(ofx) ; oragma rangecheck.(off

)

3 oragma arithcheck(on; ,- oraqma deouq^on);
@ pragma ^numtaoi on) ; pragma cangecheck(on)

;

WITH to;

PACKAGE rsml3 IS

USE Io;
Text: .

T iie;

PROCEDURE lump:

END rsm!3;

126

-- OWNER: AEGIS MODELLING GROUP
-- DATE OF LAST UPDATE: 26 Nov 86
-- MODULE TYPE: Internal Radar Scheduler routine vers 2.0
-- PURPOSE: Print out the results of the latest scheduling interval

for analysis
-- NAME: Dump ... RSM13.PKG

-- This routine prints out the information on the radar request queues
-- and the scheduled dwells for the current interval. The information
-- printed consists of:

1. Requested Beam Listing
a. The name of the Event whose queue is being printed
b. The identification code of the requested beam
c. The requested beam's position within the queue

2. Scheduled Dwell Listing
a. The scheduled dwell ' s unique identification code
b. The amount of Radar Resources remaining after the
c. The index to the current interval's Radar Event

Control Table

pragma arithcheck(off)

;

pragma debug(off

)

pragma enumtab(off)

;

pragma rangecheck(of f)

;

f? p"ragma arithcheck(off)

;

pragma debug(off);
? pragma enumtab(off)

;

pragma rangecheck^off)

;

WITH tabO , tabl . cab2 , rsmO , lo , Util ,-

PACKAGE BODY rsmi3 15

USE laoO . taol , "ao2 . rsmO , lo , Utii;

dsh: string(55) :="

sptr: SearchPtr;
tptr: IrkPtr,-

PROCEDURE dump IS

Ctr: INTEGER := 1;
start ,ctn,i: INTEGER;

BEGIN

Put (Text, REQUESTED BEAMS FOR SCHEDULER INTERVAL: ");
Put(Text,intvl_num,5) ; New_Line(Text)

;

Put(Text,dsh) ; New_Line(Text)

;

WHILE (ctr /= 0) LOOP
Put(Text,pri_lst(ctr) .eventnm) ; New_Line(Text)

;

IF pri_lst(ctr). status THEN
Put(Text,"BEAM ID ");
i:= 0;

CASE pri_lst(ctr) .que_id IS

WHEN search | special request =>
sptr:= pri_lst(ctrr) .que_ptr .Snode

;

WHILE ((i < 10) AND (sptr /= null)) LOOP
i:= i + 1;
Put(Text,sptr.info .bid); Put(Text," ");
sptr:= sptr.nxt;

END LOOP;

WHEN track | missile =>
tptr := pri_lst(ctr)

.
que_ptr .Tnode;

WHILE ((i < 10) AND (tptr /= null;) LOOP
i:= i + 1;
Put(Text, tptr. info .bid); Put(Text," ");

127

tptr:= tptr.nxt;
END LOOP;

END CASE;

New Line (Text)

;

PutTText, "QUEUE POSIT ");
FOR ctn IN l..i LOOP

Put(Text,ctn,4)

;

END LOOP;

New Line (Text)

;

PutTText, dsh) ; New_Line(Text)

;

ELSE

?ut(Text," NO REQUESTS THIS INTERVAL");
New_Lme(Text) ; ?ut(Text ,dsh) ; New_Lme(Text) ;

END IF;

ctr:= pri_lst(ctr) .nxt;

END LOOP;

Mew Line (Text) •

PutTText, "SCHEDULED DWELLS FOR SCHEDULER INTERVAL: ");
Put (Text , intvl_num ,

z) ; Mew_line (Text) ;

Put ; Text , dsn) ; Mew_Line (Text)

;

rptr:= rect_ptr,-
start := 1;

WHILE (rptr /= null) LOOP
p:= rptr;
1:= 0';

Put (Text. ''BEAM ID ");
WHILE ((i < 10) AND (p /= null)) LOOP

1:= 1 + 1;
Put(Text,p.beamid) ; Put(Text," ");
p:= p.nxt_event;

END LOOP;
New Line (Text)

;

PutTText, "RESOURCES ");
i:= 0;
p:= rptr.-
WHILE ((l < 10) AND (p /= null)) LOOP

i:= i + 1;
Put(Text,p.dru,4)

;

p:= p.nxt_event;
END LOOP;
New Line (Text)

;

PutTText, "DWELL # ");
FOR ctn IN start.

.
(start + i - 1) LOOP

Put(Text,ctn,4)

;

END LOOP;
New Line (Text)

;

PutTText, dsh) ; New_Line(Text)

;

IF (p /= null) THEN
rptr:= p ;

start:= start + i;
ELSE

rptr:= null;
END IF;

END LOOP;
Put(Text,dsh) ; New_Line(Text) ; New_Line(Text)

;

END dump;

BEGIN

128

-- initialize working pointers one time to avoid reinitialization
each time procedure is invoked.

sptr
tptr
rptr

= NEW SearchMode;
= NEW TrackMode;
= NEW RadEveConTab;

p:= NEW RadEveConTab;

END rsm!3;

129

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 29 Aug 86
-- MODULE TYPE: internal Radar Scheduler routine vers 2.0
-- PURPOSE: free memory for the next scheduling interval
-- NAME: Free Memory ... RSM14.LIB

— This module traverses the available RECT pool list and inserts the
-- current Radar Event Control Table list at the end of the pool.

pragma arithcheck(off) ; pragma debug(off) ;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on)

;

@ pragma enumtab(on); pragma rangecheck(on)

;

WITH rsmO;

PACKAGE rsml4 IS

USE „-sm0 ;

PROCEDURE £ree_memory(pool_ptr,rect_ptr:IN OUT RECTPtr)

;

END rsml4;

130

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 29 Aug 86
-- MODULE TYPE: internal Radar Scheduler routine vers 2.0
-- PURPOSE: free memory for the next scheduling interval
-- NAME: Free Memory ... RSM14.PKG

-- This module traverses the available RECT pool list and inserts the— current Radar Event Control Table list at the end of the pool.

pragma arithcheck(off) ; pragma debug(off);
pragma enumtab(off)

;
pragma rangecheck(off)

;

@ pragma arithcheck(on)
;
pragma debug(on)

;

@ pragma enumtab(on); pragma rangecheck(on)

;

WITH rsmOr

PACKAGE BODY rsml4 IS

USE rsmO;

-- pointer for procedure use only
p: RECTPtr;

PROCEDURE free_memory(pooi_ptr,rect_ptr:IN OUT RECTPtr) IS

3EGIN
IF (pool_ptr = null) THEN

pooi_ptr:= rectjptr;
rec t_p t r •. = null ;

ELSE
o.-= oool_ptr-
WHILE (p.nxtr_event /= null) LOOP

p:= p.nxt" event;
END LOOP;
p.nxt_event := recc_ptr:
rect ocr:= null;

END IF;
END free_memory;

BEGIN

-- initialize working pointer one time to avoid
-- reinitialization each time procedure is invoked.
p:= NEW RadEveConTab;

END rsml4;

131

APPENDIX D

TEST HARNESS SOURCE CODE

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 24 Sep 86
-- MODULE TYPE: Display Subroutine vers 2.0
-- PURPOSE: Operator Interface
-- NAME: Operator Interface Module ... SADM1.LIB

-- This module orovides the user of the Radar Scheduler Test
-- Harness (SPY.COM) with the ability to alter some of the
-- major program parameters prior to* execution of the program
-- with out having to alter the source code, recompile, and
-- link the program.

pragma arithcheck(off) ; pragma debug(off)

;

pragma enumtab(of f) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on)

;

@ pragma enumtab(on) ; pragma rangecheck(on)

;

PACKAGE sadmi IS

PROCEDURE oim(numtrks,nummtvls,skipintvls : OUT INTEGER);

END sadml

;

132

-- OWNER: AEGIS Modeling Group— DATE OF LAST UPDATE: 24 Sep 86
-- MODULE TYPE: Display Subroutine vers 2.0
-- PURPOSE: Operator Interface
-- NAME: Operator Interface Module ... SADM1.PKG

-- This module provides the user of the Radar Scheduler Test— Harness (SPY.COM) with the ability to alter some of the
-- major program parameters prior to execution of the program
-- with out having to alter the source code, recompile, and
-- link the program.

pragma arithcheckfoff) ; pragma debug(off);
pragma enumtab^off) ; pragma rangecheck(of f)

;

@ p'ragma arithchecx(on) ;
pragma deoug(on) ;

@ pragma enumtabion/,- pragma rangecheck(on) ;

WITH Util";

PACKAGE 30DY sadml IS

USE Util;

PROCEDURE oim(niimtrks,numintvl"s,skipintvls: OUT INTEGER) IS

astrklS: CONSTANT STRING:- "***************" .

^paceiO: CONSTANT STRING.-:= "

BEGIN
Pufcf astrklS.); Put(" AEGIS AN/SPY.l-A ");
?ut(astrklS) ; Mew Line;
Put(astrkl5j; Putt" RADAR SCHEDULER PROGRAM ";
Putt astrklS) ; New Line

;

Put (astrklS) : PutTastrkl5") ; Put(astrkl5) ; Put; astrklS) •

New Line.-; New_Line; lew Line-; Mew_Line;
PutT"Input the number or tracks to be initialized;.");
New Line; New_Lme; Put(spacelO) ;

PutT"NUMBER OF TRACKS ---> "); Get (numtrks) ; New_Line ;

New Line; New_Line;
PutT"Input the number of scheduling intervals to be run.");
New Line,- New_Line,- Put(spacelO) ;

PutT"NUMBER OF INTERVALS ---> "); Get (numintvls)

;

New Line ; New Line ; New Line

;

PutX"Define tEe interval display delay period.");
New Line; New_Line; Put(spacelO)

;

PutT"SKIP INTERVALS ---> fl
); Get (skipintvls) ; New_Line ;

New Line; New_Line; New_Line;
PutTspacelO); Put(spacelO) ; Put ("BEGIN EXECUTION");
New_Line

;

END oim;

END sadml;

133

OWNER: AEGIS MODELING GROUP
DATE OF LAST UPDATE : 31 AUG 86
MODULE TYPE: PROCESS VERS 3.0
PURPOSE: MODEL THE RADAR SCHEDULER FUNCTION
NAME: SEARCH MANAGEMENT ... SRCM.LIB

-- The purpose of this module is to manage the
-- request of search and special request radar
-- events. The current design processes static
-- data for the Radar Scheduler Test Harness.

pragma arithcheck(off) ; pragma debug(off);
pragma enumtab(off) ; bragma rangecheck(off

)

(? pragma arithcheck(on) ; pragma debugi'on) ;

£ pragma enumtao^on) ; pragma rangecheck(on)

PACKAGE 3 rem IS

PROCEDURE searchmgmt;

END srem;

134

-- OWNER: AEGIS MODELING GROUP~ DATE OF LAST UPDATE : 30 Sep 86
-- MODULE TYPE: PROCESS VERS 3.0
-- PURPOSE: MODEL THE RADAR SCHEDULER FUNCTION
-- NAME: SEARCH MANAGEMENT ... SRCM.PKG

-- The purpose of this module is to manage the
-- request of search and special request radar
-- events. The current design processes static
-- data for the Radar Scheduler Test Harness.

pragma arithcheck(off) ; pragma debug(off');
pragma enumtab(off) ; pragma rangechecfc(off)

;

@ pragma arithcheck(on) ;
pragma debug(on)

;

@ pragma enumcaoi on) ; pragma rangecheck(on)

;

WITH global, tabO , smml ,smm2

;

PACKAGE BODY srcm IS

USE global, tabO, smml ,smm2;

PROCEDURE searchmgmt IS

Lquad: INTEGER-
TYPE BeamCount IS ARRAY(1..2) OF INTEGER;
bm ctr: 3eamCount;
ppl,rnum,i: INTEGER;

BEGIN

-- not initialized for test purposes, taken from smml
.cuad: =

:- 0;
:= 0;

- bm_ctr(l)
- bm_ctr(2)

sm_init; -- from smml.pkg
FOR i IN 1.. infinity LOOP

await(s_pid,es_id, i)

;

-- traverse the radar event priority list

WHILE (ppl /= 0) LOOP
IF ((pri^lst(ppl) .que_id = search) OR

(pri_lst(ppl) .que_id = special_request)) THEN

fill_que(pri_lst(ppl))

;

END IF;
-- point to the nest priority in the list
ppl:= pri_lst(ppl) .nxt;

END LOOP;
END LOOP;

END searchmgmt;

END srcm;

135

-- AEGIS MODELING GROUP
-- DATE OF LAST UPDATE: 31 AUG 86
-- MODULE TYPE: SEARCH MANAGEMENT MODULE vers 2.0
-- PURPOSE: INITIALIZE THE SEARCH EVENT QUEUES IN THE

PRIORITY LIST
-- NAME: SEARCH MANAGEMENT INITIALIZATION ... SMM1.LIB

-- This module is executed once. Its purpose is to allocate
-- memory for search nodes (Table 1) and create empty request
-- queues for each search and special request radar event in
-- the Radar Event Priority List (Table 0)

.

pragma arithcheck(off) ; pragma debug(off);
pragma enumtab(ofr) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on)

;

d pragma enumtab(on); pragma rangecheck(on)

;

PACKAGE smml IS

PROCEDURE sm_init;

END smml

;

136

-- AEGIS MODELING GROUP
-- DATE OF LAST UPDATE: 26 Nov 86
-- MODULE TYPE: SEARCH MANAGEMENT MODULE vers 2.0
-- PURPOSE: INITIALIZE THE SEARCH EVENT QUEUES IN THE

PRIORITY LIST
-- NAME: SEARCH MANAGEMENT INITIALIZATION ... SMM1.PKG

-- This module is executed once. Its purpose is to allocate
-- memory for search nodes (Table 1) and create empty request
-- queues for each search and special request radar event in
-- the Radar Event Priority List (Table 0)

.

pragma arithcheck(off) ; pragma debug(off) ;

pragma enumtabfoff) ; oragma rangechecki off)

;

@ p'ragma anthcheciu on) ; pragma debug"(on);
@ pragma enumcao(on); pragma rangecheck(on)

;

WITH tabO,tabi;

PACKAGE BODY immi 13

USE tabO , tab! ;

PROCEDURE sm_init IS

p,qptr: SearchPtr:- MEW SearchNode;
q: 5earchPtr;
cur: INTEGER:- I

;

node ctr: INTEGER;

3EGIII

-- traverse the Priority Event Lisz
WHILE ctr /= 0) LOOP

*

CE , (pri_Ist'. etc ; . que_id = search) OR
(prr_lst(ctr.) .que_i.d = special_request)) THEN

-- initialize the queue to length - max_nodes

p:= pri_lst(ctr) .que_ptr .Snode;
node_ctr:= 0;
WHILE (node_ctr < pri_lst(ctr) .max_nodes) LOOP

node_ctr:= node_ctr + 1

;

q:= NEW SearchNode;
q.info:= NEW SrchData;
q.nxt:= null;
-- insert at the end of event queue p
IF (p = null) THEN

p:= g;
bri_lst(ctr) .que_ptr. Snode := q;

ELSE
-- search for the end of the event queue
qptr:= p;
WHILE (qptr.nxt /= null) LOOP

qptr:= qptr.nxt;
END LOOP;
-- insert the new node
¥3tr.nxt:= q;
F;

END LOOP;
END IF;
ctr:= pri_lst(ctr) .nxt;

END LOOP;

END sm_init;

END smml

;

137

— OWNER: AEGIS MODELING GROUP
-- DATE OF LAST UPDATE: 30 Sep 86
-- MODULE TYPE: SEARCH MANAGEMENT SUBROUTINE vers 2.0
-- PURPOSE: FILL A PRIORITY LIST SEARCH QUEUE
-- NAME: FILL SEARCH QUEUE ...SMM2.LIB

-- This routine is responsible for filling a priority
-- event queue with the proper synchronous beam request
-- data. It executes the following functions for each
-- event in the priority list which corresponds to a
-- Search Management event. The Fill Search Queue
-- subroutine calculates; beam mode, unique beam id,
-- beam position (azimuth and elevation), instrumented
-- range, blanking crates, the end of frame indicator,
-- the Radar Event Priority List (Table 0)..-- and requestor identity.

oraqma arithcheck(off) ; pragma debua(off);
pragma enumtaoi off) ; braama ranqecneck(off)

;

@ pragma arithcnecK(on; ; pragma debug(on);
@ pragma enumtab^on; ,- pragma rangecheck^on)

;

WITH taoO:

PACKAGE 3mm2 IS

USE tabO

;

PROCEDURE fill_que(pri_lst: IN OUT PriLstPtr)

;

TYPE BeamCtrArray IS ARRAY(1..2) OF INTEGER;
bm_ctr: 3eamCtrArray;

Iquad: INTEGER;

END smm2 ,-

138

-- OWNER: AEGIS MODELING GROUP
-- DATE OF LAST UPDATE: 30 Sep 86
-- MODULE TYPE: SEARCH MANAGEMENT SUBROUTINE vers 2.0
-- PURPOSE: FILL A PRIORITY LIST SEARCH QUEUE
-- NAME: FILL SEARCH QUEUE ...SMM2.PKG

-- This routine is responsible for filling a priority
-- event queue with the proper synchronous beam request
-- data. It executes the following functions for each
-- event in the priority list which corresponds to a
-- Search Management event. The Fill Search Queue
-- subroutine calculates; beam mode, unique beam id,
-- beam position (azimuth and elevation), instrumented
-- range, blanking aates, the end of frame indicator,
-- the Radar Event Priority List (Table 0).-- and requestor identity.

pragma arithcheckt off) ; pragma debug('off)
•

pragma enumtabi off) ; pragma rangecheck(off)

;

@ p'ragma arithcheck(cn) ; pragma debug(on) ;

@ pragma enumtab(on); pragma rangecheck(on)

;

WITH global, tabO , tabl ,StrLib

;

PACKAGE 30DY smm2 IS

USE global, tabO, tab 1, StrLib;

-- OWNER: AEGIS Modeiina GrouD— DATE OF LAST UPDATE: 1 Oct' 36
-- MODULE TYPE: Search Management subroutine
-- PURPOSE: Calculate oeam oosition— NAME: 3eam Position ... "5HM2A

-- This subroutine calculates the beam position for search type
-- beams oased on the calling parameters - que identity and random
-- number, the last quadrent from which the "beam was requested
-- and a pointer to the event node for which the beam position is
-- being calculated.

PROCEDURE bm_pos(qid:. IN QueType ; rnum: IN INTEGER; quad: IN OUT INTEGER;
p: IN OUT SearchPtr) IS

BEGIN
IF (quad = 1) THEN

3uad:= 3
'= 2) THENELSIF (quad

quad:= 4
ELSIF (quad

quad:= 2
ELSIF (quad

mad:= 1

= 3) THEN

'= 4) THEN
quae

END IF;

-- the rest of this module has not been implemented yet

END bm_pos

;

139

OWNER: AEGIS Modeling Group
DATE OF LAST UPDATE: 1 Oct 86
MODULE TYPE: Search Management subroutine
PURPOSE: Calculate end of frame for search type beams
NAME: End Frame ... SMM2B

This subroutine sets the end of frame indication flag based on
its input parameters - beams requested and event identity. An
end of search frame is indicated for the horizon search event
after 600 beams have been scheduled. An end of search frame is
indicated for the above horizon search after 3600 beams have
been scheduled.

FUNCTION end_frm(num_bms,eid: IN INTEGER) RETURN BOOLEAN IS

BEGIN
IF ((eid = 9) AND (num_bms >= 600)) THEN

RETURN true;
ELSIF ((eid = 22) AND (num_bms >= 3600)) THEN

RETURN true;
ELSE

RETURN false;
END IF;

END end frm:

140

PROCEDURE fill_que(pri_lst: IN OUT PriLstPtr) IS

nodes_filld: INTEGER := 0;
temp: STRING (10);
qptr,p: SearchPtr:= NEW SearchNode,-
rnum: INTEGER;

BEGIN

-- set event que status
rnum:= rand()

;

IF ((pri 1st . que_id = special request) AND
((rnum MOD max_pri) /= 0]~) THEN

Dri ist.status:^ false;
ELSE

ori 1st. status:- true-;
END. IF f
pri_lst .que_ptr .Snoae . info := NEW SrcnData;
p. info := NEW SrchData;
qptr. info := MEW SrchData;
-- set queue pointer to event(trip) pointer
qptr ;- pri_lst.que_ptr .Snode

;

-- traverse the -avent queue and fill data fields
D:= qptr;
WHILE" ((p /= null) AND (pri_lst. status)) LOOP

-- increment the numoer of nodes filled co maintain mique
-- beam id. set mode to event base pri
nodes _fiild:= ;iodes_fiild -1- I ;

p. info. moos :- pri_'.3t .o_pri;

— assign uniaue id :oae to "his beam
o. info. bid:- ExtracfcQpri 1st. eventnm, 1, 1); — from Striib
temp:- Int to Str(nodes_Filld) ; -- from StrLib
IF nodes_fIlld" < 10 THEN

temp:= lnsert("0" , temp,l)

;

END IF;
p. info. bid := Insert (temp, p. info. bid, 2)

;

-- calculate beam position - 1) queue id #, 2) random #,
-- 3) last quadrant entered, 4) pointer p
rnum:= randp ;

bm_pos(pri_lst.que_id,rnum, lquad,p)

;

-- calculate the instrumented range
-- calculate blanking gates
-- not implemented in this version

-- calculate end of frame
IF (pri 1st. que id = search) THEN

IF (pri_lst.~b__pri = 9) THEN -- horizon search frame
bm^ctr(l):= bm^ctr(l) + 1;
p. Info.eof_indic := end_frm(bm ctr(l),9);

ELSE -- above horizon search "frame
bm^.ctr(2):= bm^ctr(2) + 1;
p.info.eof_indic:= end_frm(bm_ctr(2) ,22)

;

END IF;
ELSE -- is a special request event

p.info.eof_indic:= false;
END IF;

-- assign requestor id. for this version the requestor id
-- is assigned the value of the beam mode,
p. info. req_id:= p. info. mode;

-- point to the next node in the event queue

141

p:= p.nxt;

END LOOP;

END fill_que ;

END smm2;

142

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 29 Sep 86
-- MODULE TYPE: Process vers 3.0— PURPOSE: Model the Radar Scheduler function— NAME: Detection Processing ... DRCM.LIB

-- This process models the Detection Processing process for the
-- purpose of modeling its interface to the Radar Scheduler process

pragma arithcheck(off) ; pragma debug(off);
pragma enumtab(of f) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug (on)

;

@ pragma enumtab(on)
;

pragma rangecheck(on)

;

PACKAGE drcm IS

PROCEDURE detectproc;

END drcm;

143

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 2 Dec 86
-- MODULE TYPE: Process vers 3.0
-- PURPOSE: Model the Radar Scheduler function
-- NAME: Detection Processing ... DRCM.PKG

-- This process models the Detection Processing process for the
-- purpose of modeling its interface to the Radar Scheduler process

pragma arithcheck(off) ;
pragma debug(off)

;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on)

;

d pragma enumtab(on); pragma rangecheck(on)

;

WITH global, tab7,dpml;

PACKAGE BODY drcm 15

USE global, tab7 ,dpml

;

PROCEDURE detectproc IS

Ctr,i: INTEGER;

BEGIN
-- initialize the Track File
trkfilinit(ptrk) ; -- See DPM1.PKG

"OR i IN 1 . . infinity LOOP
await (d_pid, ed_£d, i)

;

FOR ctr IN 1. .126 LOOP
null;

END LOOP;
2ND LOOP;

END detecuproc;

END drcm;

144

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 1 Oct 86
-- MODULE TYPE: Detection Processing routine vers 2.0— PURPOSE: Initialize the Track File
-- NAME: Track File Initialization ... DPMI. LIB

-- This module creates the Track File (table 7) used by the test
-- harness to provide the Radar Scheduler with viable track data.
-- This subroutine invokes the common service routine - rand and
-- the Detection Processing subroutine dpinend.

pragma arithcheck(off) ; pragma debug(of f)

;

pragma enumtabCof r) ; pragma rangecheck(of f)

;

@ pragma arithcheck(on) ; pragma debug (on)

;

@ pragma enumtabCon); pragma rangecneck(on)

;

WITH nab?

;

PACKAGE dpml IS

USE tab7;

PROCEDURE trkfilinit(ptrk:OUT PtrTrkFile)

;

2ND dpmi

;

145

— OWNER: AEGIS Modeling Group— DATE OF LAST UPDATE: 2 Dec 86
-- MODULE TYPE: Detection Processing routine vers 2.0
-- PURPOSE: Initialize the Track File
-- NAME: Track File Initialization ... DPM1.PKG

-- This module creates the Track File (table 7) used by the test
-- harness to provide the Radar Scheduler with viable track data.
-- This subroutine invokes the common service routine - rand and
-- the Detection Processing subroutine dpinend.

pragma arithcheck(off) ; pragma debug(off
<
) ;

pragma enumtab(off) ; pragma rangecheck(of f)

;

@ pragma arithcheck(on) ; pragma debug(on)

;

(§ pragma enumtabvon) ; pragma rangecheck(on)

;

WITH global , tab4 , tao? , dpmia , Longops •

PACKAGE 30DY dpml IS

USE global , iab4 , iab7 , dpmla , Longops

;

PROCEDURE trkfilinit(ptrk: out PtrTrkFile) IS

p:: PtrTrkFile;
1 , j , rnum : INTEGER

;

BEGIN
ptrk:=null

;

FOR i IN L...A_toJ-t..op_docfc..mtrks LOOP

-- create a Track File node
p-;= MEW Tri:Fiie;
p.beam_data:= MEW TrkData;

— initialize the beam data based on a ranaum .lumoer
rnum:= rana()

;

-- compute the mode and priority
j := (rnum MOD 22)

;

IF (((j >= 4) AND (j <= 8)) OR ((j >= 14) AND (j <= 21))) THEN
p.Deam_data.mode := j;

ELSE
p.beam_data.mode := j + 5;

END IF;
p. beam_data. priority := p.beam_data.mode;

-- these flags are constant valued
p.beam_data.xmit_reqflg:= true;
p.beam_data.sim_tgt_Tlg:= false;

-- compute log amplitude estimate of echo signal
p.beam_data. log_ampld_est := (rnum MOD 100);

-- compute "z" position
?.beam data. posit .z := (rnum MOD 1000);
F (p.b"eam_data.posit.z < 1000) THEN

p.beam_data. low_elev_trk_flg:= true;
ELSE

p.beam_data. low_elev_trk_flg:= false;
END IF;

-- compute "x" and "y" positions
IF ((rnum MOD 2) = 0) THEN

p.beam_data.posit.x:= rnum;
rnum:= rand()

;

p.beam_data.posit.y:= - rnum;
ELSE

p.beam_data.posit.y := rnum;

146

rnum:= rand()

;

p.beam_data.posit.x:= - rnum;
END IF;

-- compute slant range
p.beamldata. posit .slnt_rnge := Labs(Lmul(Lint(p.beam_data.posit.x)

,

Lint(p.beam_data.posit .y)))

;

-- compute velocity vectors
p.beam_data.posit.x_dot := (p.beam_data.posit.x MOD (-200]
p.beam_data.posit.y_dot := (p.beam_data.posit.y MOD (-200*
p.beam_data.posit .z_dot := (p.beam_data.posit.z MOD (-10));
p.beam_data.posit. rge dot:=

L_to_int(Lmod(p .b~eam_data .posit . slnt_rnge ,Lint(-100))) ;

-- compute cross gate bin number
p.beaml_data.xgte_Sin_num:= (rnum MOD 1000);

-- assian track numbers
p.beam_data.ctl grp_trk_num:= i;
p.beam_data.ctsl:= I + 100;

-- comDUte track transition flag
IF (i. < 5) THEN

o.beam iata.tr:-; rssitn :iag:= true;
ELSE" " "

o.beam_data. trk_xsitn_flag: = false;
END IF;

-- insert the track node at the end of the TracK File
dpinend(p .perk; .- -- from dpmia.pKg

END LOOP;

END trkfilinit;

END dpml;

147

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 1 Oct 86
-- MODULE TYPE: Detection Processing subroutine vers 2.0— PURPOSE: Insert a node at the end of a linked list
-- NAME: dpinend ... DPM1A.LIB

-- This subroutine has two parameters: new_node is a pointer to the
-- node which is to be inserted, list head is a pointer to the list
-- to which the node is to be inserted" at the end of.

pragma arithcheck(off) ; pragma debug(off) ;

pragma enumtab(off) ; pragma rangecheck(of f)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on) ; pragma rangecheck(on)

;

WITH tab7 ;

PACKAGE dpmla IS

USE tab7;
PROCEDURE dpinend(new_node,list_head: IN OUT PtrTrkFile);

END dpmla;

148

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 1 Oct 86
-- MODULE TYPE: Detection Processing subroutine vers 2.0
-- PURPOSE: Insert a node at the end of a linked list
-- NAME: dpinend ... DPM1A.PKG

-- This subroutine has two parameters: new_node is a pointer to the
-- node which is to be inserted, list head is a pointer to the list
-- to which the node is to be inserted" at the end of.

pragma arithcheck(off) ; pragma debug(off};
pragma enumtab(of f) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debugs on);
(§ pragma enumtabion); pragma rangecheck(on) •

WITH tab 7

-

PACKAGE 30DY dpmla IS

USE tab7;

PROCEDURE dpinend(new_node,list_head: IN OUT PtrTrkFile) IS

tp: PtrTrkFile:- MEW TrkFiie ;

BEGIN
:iev_node . nxt_trk : - null

;

— check for an ^mocv list
IF (list head = null") THEM

lisc3 2aa ; - new node-;
SLSE

-- nearer, for the ^na of the list
tp:= _-.3-_:;eadr
'WILE tp7nxt_trk = null) LOOP

tp:= tp.nxt trk;
END LOOP;

-- insert the new node at the end of the list
tp.nxt_trk:= new_node

;

END IF;

END dpinend;

END dpmla;

149

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 3 Sep 86— MODULE TYPE: process vers 3.0
-- PURPOSE: Model the Radar Scheduler Function— NAME: Switch Action And Display Processing ... ARCM.LIB

-- This process is a single thread module which models the Switch
-- Action And Display module on the INTELLEC[tm] MDS system.

pragma arithcheck(off) ; pragma debug(of f)

;

pragma enumtab(off) ; pragma rangecheck(of f)

;

@ pragma arithcheck(on) ; pragma debug(on);
d pragma enumtab(on); pragma rangecheck(on)

;

PACKAGE arem IS

PROCEDURE swtchactdply;

ZND a rem,-

150

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 3 Oct 86
-- MODULE TYPE: process vers 3.0
-- PURPOSE: Model the Radar Scheduler Function
-- NAME: Switch Action And Display Processing ... ARCM.PKG

-- This process is a single thread module which models the Switch
-- Action And Display module on the INTELLEC[tm] MDS system.

pragma arithcheck(off) ;
pragma debug(off

)
);

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on) ; pragma rangecheck(on)

;

WITH sadml
,
global, tab4;

PACKAGE BODY a rem IS

USE sadml, global, tab4;

PROCEDURE swtchactdply IS

ctr,i: INTEGER;

3EGIN

— execute operator interface .nodule ffrom sadmi.pkgj
oimt'A_to_R.op_doct.mtr]-:s , A_co_R.op_doct.mmtvis

,

A_to_R.op_.doct.. dply_rect]";

-- initialize Radar Ivent Priority List
ipl; -- from global. pKg

FOR i IN 1..-. infinity LOOP

await(a_pid, ea_id, i)

;

FOR ctr IN 1. .126 LOOP
null;

END LOOP;

END LOOP;

END swtchactdply;

END arcm;

151

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 3 Sep 86
-- MODULE TYPE: process vers 2.0
-- PURPOSE: Model the Radar Schedular function
-- NAME: Track Management .. TRCM.LIB

-- The purpose of this module is to manage the request of track and
-- missile radar events. The current design produces static data for
-- the radar scheduler Test Harness.

pragma arithcheck(off) ;
pragma debug(off)

;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on)
;
pragma debug(on);

@ pragma enumtab(on) ; pragma rangecheck(on)

;

PACKAGE trcm IS

PROCEDURE trackmgmt;

END trcm;

152

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 3 Oct 86
-- MODULE TYPE: process vers 2.0
-- PURPOSE: Model the Radar Schedular function
-- NAME: Track Management .. TRCM.PKG

-- The purpose of this module is to manage the request of track and
-- missile radar events. The current design produces static data for
-- the radar scheduler Test Harness.

pragma arithcheck(off) ;
pragma debug(off) ;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on)

;

@ pragma enumcab(on); pragma rangecheck(on)

;

WITH giobal . tabO , ^ab2 . tab? . :mmi , 5 trLib

;

PACKAGE BODY "rem IS

USE giobal , iabO , tab2 , cab? , tmml , 3 trLib

;

PROCEDURE trackmgmt IS

i,ppl: INTEGER:
node :tr: INTEGER:
temol STRING (10);
p : T rkP tr : - NEW Trac :<Node :

q: ?trTrKfiie:= 'JEW TrkFile;

BEGIN
tm_inic

;

FOR i IN 1 . . infinity LOOP
-- wait for the Viaar _ood avenc "alue
await(t_pid. at__a. i)

;

-- traverse ~.":e .-aaar -ivent. ~nori::y list
on 1 :

=
WHILE vppl /= 0) LOOP

IF ((prills t (ppl) .que_id = track) OR
(pri_lst(ppl) .que_id = missile)) THEN— traverse the event queue and Track File

node_ctr:= 0;
p:= pri lst(ppl) .que otr .Tnode

;

q:= ptrk"; -- ptrK from global. lib
WHILE ((q /= null) AND (p /= null) AND

(node ctr < pri_lst(ppl) .max_nodes)) LOOP
-- identify this event

IF (q.beam_data.mode = pri_lst(ppl) .b_pri) THEN
node_ctr:= node_ctr + 1;

-- set track node mode
p. info. mode := pri_lst(ppl) .b_pri;

-- set unique beam identifier
temp:= Int_to_Str(node_ctr)

;

IF node_ctr < 10 THEN
temp:= lnsert("0" , temp,l)

;

END IF;
p.info.bid:= Extract(pri_lst(ppl) . eventnm, 1,1);
p.info.bid:= Insert(temp, p. info. bid, 2)

;

p.info.p_trk:= q;
p.info.p_trk.beam_data.bid:= p. info. bid;
pri_lst(ppl) .status := true;

-- reset pointers
p:= p.nxt;

END IF;

153

q:= q.nxt_trk;
END LOOP;
IF (p /= null) THEN

p. info.p_trk:= null;
END IF;

END IF;
ppl:= pri_lst(ppl) .nxt

;

END LOOP; -- end traverse priority list

END LOOP; -- end for loop

END trackmgmt;

JND trcm;

154

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 3 Sep 86
-- MODULE TYPE: Track Management Module vers 2.0
-- PURPOSE: Initialize track events in the Radar Event Priority List
-- NAME: Track Management Initialize .. TMM1.LIB

-- The purpose of this module is to allocate memory for track nodes
-- (table 2) and create empty request queues for each search and
-- special request event in the Radar Event Priority List (table 0).

pragma arithcheck(off) ; pragma debug(off)

;

pragma enumtab(of f) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on); pragma rangecheck(on)

;

PACKAGE tnunl IS

PROCEDURE tm_mit;

END tmml;

155

-- OWNER: AEGIS Modeling Group
-- DATE OF LAST UPDATE: 30 Nov 86
-- MODULE TYPE: Track Management Module vers 2.0
-- PURPOSE: Initialize track events in the Radar Event Priority List
-- NAME: Track Management Initialize .. TMM1.PKG

-- The purpose of this module is to allocate memory for track nodes
-- (table z) and create empty request queues for each search and
-- special request event in the Radar Event Priority List (table 0).

pragma arithcheck(off) ; pragma debug(off)

;

pragma enumtab(off) ; pragma rangecheck(off)

;

@ pragma arithcheck(on) ; pragma debug(on);
@ pragma enumtab(on)

; pragma rangecheck(on)

;

WITH tabO, tab2, tab?;

PACKAGE BODY tmml IS

USE tab0,tab2,tab7 ;

PROCEDURE tm_init IS

qptr,p: TrkPtr:= MEW TrackNode;
q: TrkPtr;
ppi: INTEGER := I;
node_ctr : INTEGER

;

BEGIN

-- traverse the Radar Event Priority List
WHILE (ppl /= 0) LOOP

IF ((pri_lst(pol) . aue_id = -rack) OR
(prf_lst(ppt) .que_id = missile)) THEN

p:= pri_lst(ppl) .que_ptr .Tnode;
node_ctr:= 0;

WHILE (node_ctr < pri_lst(ppl) .max_nodes) LOOP

node_ctr:= node ctr + 1;
q-.= NEW TrackNode;
q.info.p_trk:= NEW TrkFile;
q.info.p_trk.beam_data:= NEW TrkData;
q.nxt:= null;

-- insert node at end of event queue
IF (p = null) THEN

P== 9;
,

bri_Ist(ppl) .que_ptr. Tnode := q;
ELSE

WHILE (qptr.nxt /= null) LOOP
qptr:= qptr.nxt;

END LOOP;
qptr.nxt:= q;

END IF;

END LOOP;

END IF;
ppl:= pri_lst(ppl) .nxt;

END LOOP;

END tm_init;

END tmml;

156

APPENDIX E

SAMPLE RADAR SCHEDULER OUTPUT

******************************* ************************
************** AEGIS AN/SPY-1A **************
************** RADAR SCHEDULER PROGRAM **************

Instructions to the Operator:

Input the number of tracics to be initialised:

NUMBER OF TRACKS > 50

Input the number of scheduling intervals to be run:

NUMBER OF INTERVALS > 100

Define interval lispiay delay period:

SKIP INTERVALS ,0

3EGIN EXECUTION

Completed interval: 1.0

Completed interval: 20
Completed interval: 30
Completed interval: 40
Completed interval: 50
Completed interval: 50
Completed interval: 70
Completed interval: 80
Completed interval: 90
Completed interval: 100

157

REQUESTED BEAMS FOR SCHEDULER INTERVAL: 10

A-EVENT - ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

B-EVENT - TARGET DEFINITION
NO REQUESTS THIS INTERVAL

C-EVENT - SPECIAL TEST
NO REQUESTS THIS INTERVAL

G-EVENT - HIGH PRI TRACK TRANSITION
BEAM ID G01 G02 G03 G04 G05
QUEUE POSIT 12 3 4 5

I -EVENT - HORIZON SEARCH
BEAM ID 101 102 103 104 105 106 107 108 !09 110
QUEUE ?OSIT 1 2 3 4 5 6 T Q.-9' 10

F-EVENT - PRE -ENGAGED HOSTILE TARGET
3EAM ID ?01 FQ2 F03 F04 F05
QUEUE POSIT 12 3 4 5

E-EVENT - OWN 5H-2 MISSILE GUIDANCE
3EAM ID 301 302
QUEUE POSIT i 2

D-EVENT - ENGAGED HOSTILE TARGET
BEAM ID D01 302 D03 304 D05
QUEUE POSIT 12 3 4 5

H- EVENT - HIGH PRI TRACK CONFIRMATION
3EAM ID HOI HO

2

QUEUE POSIT L 1

J-EVENT - SPECIAL ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

K-EVENT - SPECIAL TARGET DEFINITION
NO REQUESTS THIS INTERVAL

L-EVENT - SPECIAL MANUAL SCAN
NO REQUESTS THIS INTERVAL

M-EVENT - SPECIAL TARGET ACQUISITION
NO REQUESTS THIS INTERVAL

N-EVENT - CONFIRMED HOSTILE TRACK
BEAM ID N01 N02 N03 N04
QUEUE POSIT 12 3 4

O-EVENT - ASSUMED HOSTILE TRACK
BEAM ID 001 002 003 004 005
QUEUE POSIT 12 3 4 5

P-EVENT - UNEVALUATED TRACK
BEAM ID P01 P02
QUEUE POSIT 1 2

Q-EVENT - CONTROLLED FRIENDLY TRACK
BEAM ID Q01 Q02 Q03 Q04
QUEUE POSIT 12 3 4

V-EVENT - ABOVE HORIZON SEARCH
BEAM ID V01 V02 V03 V04 V05 V06 V07 V08 V09 V10
QUEUE POSIT 123456789 10

158

R-EVENT - TRACK CONFIRMATION
BEAM ID R01 R02 R03 R04 R05
QUEUE POSIT 12 3 4 5

S-EVENT - TRACK TRANSITION
BEAM ID SOI
QUEUE POSIT 1

T-EVENT - ASSUMED FRIENDLY TRACK
BEAM ID T01
QUEUE POSIT 1

U-EVENT -

BEAM ID
queue ?os:

CONFIRMED FRIENDLY TRACK
U01 U02

CT 1 2

W-EVENT - SPECIAL ABOVE HORIZON SEARCH
BEAM ID W01 W02 W03 W04 W05 W06
QUEUE POSIT 12 3 4 5 6

X-EVENT - SIMULATION DWELL
NO REQUESTS THIS INTERVAL

Y- EVENT - DIAGNOSTIC DWELL
NO REQUESTS THIS INTERVAL

Z- EVENT - DUMMY DWELL
NO REQUESTS THIS INTERVAL

SCHEDULED DWELLS FOR SCHEDULER INTERVAL: 1C i

3EAM ID
RESOURCES
DWELL it

GOl G02 G03 G04 G05 101 102
93 36 "9 n

2 65 52 5912 3 4 5 5 7

:03
56
3

104
53
9

135
50
10

BEAM ID
RESOURCES
DWELL #

106 107 108 109 110 111 F01
47 44 41 38 35 32 25
11 12 13 14 15 16 17

F02
18
18

F03
11
19

F04
4

20

BEAM ID
RESOURCES
DWELL #

V01
1

21

159

REQUESTED BEAMS FOR SCHEDULER INTERVAL: 20

A-EVENT - ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

B-EVENT - TARGET DEFINITION
NO REQUESTS THIS INTERVAL

C-EVENT - SPECIAL TEST
NO REQUESTS THIS INTERVAL

F-EVENT - PRE-ENGAGED HOSTILE TARGET
BEAM ID F01 F02 F03 F04 F05
QUEUE POSIT 12 3 4 5

E-EVENT - OWN 5M-2 MISSILE GUIDANCE
BEAM ID E01 S02
QUEUE POSIT 1 2

I -EVENT - HORIZON SEARCH
BEAM ID 101 102 103 104 105 106 107 108 109 110
QUEUE POSIT 123456789 10

?- EVENT - "DEVALUATED TRACK
BEAM ID P01 ?02
QUEUE POSIT 1 2

O-EVENT - CONTROLLED FRIENDLY TRACK
3EAM ID 001 002 Q03 004
QUEUE POSIT 12 3-4
R- EVENT - TRACK CONFIRMATION
3EAM ID R01 R02 R03 R04 R05
QUEUE POSIT 12 3 4 5

S -EVENT - TRACK TRANSITION
BEAM ID SOI
QUEUE POSIT 1

T-EVENT - ASSUMED FRIENDLY TRACK
BEAM ID T01
QUEUE POSIT 1

U-EVENT - CONFIRMED FRIENDLY TRACK
BEAM ID U01 U02
QUEUE POSIT 1 2

D-EVENT - ENGAGED HOSTILE TARGET
BEAM ID D01 D02 D03 D04 D05
QUEUE POSIT 12 3 4 5

O-EVENT - ASSUMED HOSTILE TRACK
BEAM ID 001 002 003 004 005
QUEUE POSIT 12 3 4 5

N-EVENT - CONFIRMED HOSTILE TRACK
BEAM ID N01 N02 N03 N04
QUEUE POSIT 12 3 4

H-EVENT - HIGH PRI TRACK CONFIRMATION
BEAM ID HOI H02
QUEUE POSIT 1 2

G-EVENT - HIGH PRI TRACK TRANSITION
BEAM ID G01 G02 G03 G04 G05
QUEUE POSIT 12 3 4 5

160

V-EVENT - ABOVE HORIZON SEARCH
BEAM ID V01 V02 V03 V04 V05 V06 V07 V08 V09 VIO
QUEUE POSIT 123456789 10

J-EVENT - SPECIAL ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

K-EVENT - SPECIAL TARGET DEFINITION
NO REQUESTS THIS INTERVAL

L-EVENT - SPECIAL MANUAL SCAN
NO REQUESTS THIS INTERVAL

M- EVENT - SPECIAL TARGET ACQUISITION
WO REQUESTS THIS INTERVAL

W-EVENT -

BEAM ID
queue ?os:

SPECIAL ABOVE HORIZON SEARCH
W01 WO 2 WO 3 W04 WO 5 WO

6

CT I I 2 4 5 6

X-EVENT - SIMULATION DWELL
NO REQUESTS THIS INTERVAL

Y- EVENT - DIAGNOSTIC DWELL
MO REQUESTS THIS INTERVAL

Z- EVENT - DUMMY DWELL
:J0 REQUESTS THIS INTERVAL

SCHEDULED DWELLS FOR SCHEDULER INTERVAL >
- 20

3EAM ID
RESOURCES
DWELL #

F01 F02 F03 F04 F05 101 I

33 35 79 72 65 58
: I 4 5 6

02
51

101
48

5

102
45
9

103
42
1.0

BEAM ID
RESOURCES
DWELL #

104 105 106 107 108 109 I

39 36 33 30 27 24
11 12 13 14 15 16

10
21
17

111
18
18

P01
11
19

PC2
4

20

BEAM ID
RESOURCES
DWELL #

V01
1

21

161

REQUESTED BEAMS FOR SCHEDULER INTERVAL: 30

A-EVENT - ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

B-EVENT - TARGET DEFINITION
NO REQUESTS THIS INTERVAL

C-EVENT - SPECIAL TEST
NO REQUESTS THIS INTERVAL

F-EVENT - PRE-ENGAGED HOSTILE TARGET
BEAM ID F01 F02 F03 F04 F05
QUEUE POSIT 12 3 4 5

E-EVENT - OWN SM-2 MISSILE GUIDANCE
BEAM ID 101 E02
QUEUE POSIT i 2

D- EVENT - ENGAGED HOSTILE TARGET
BEAM ID D01 D02 D03 D04 D05
QUEUE POSIT 12 3 4 5

H-EVENT - HIGH PRI TRACK CONFIRMATION
SEAM ID HOI HO

2

QUEUE POSIT 1 2

U.-EVENT - CONFIRMED FRIENDLY TRACK
BEAM ID fJOl U02
QUEUE POSIT L I

I-EVENT - HORIZON .SEARCH
BEAM ID 121 102 103 104 105 106 107 108 109 110
OUEUE POSIT .1:4557 39 10

5 -EVENT - TRACK TRANSITION
BEAM ID SOI
QUEUE POSIT 1

T-EVENT - ASSUMED FRIENDLY TRACK
BEAM ID T01
QUEUE POSIT 1

R-EVENT - TRACK CONFIRMATION
BEAM ID R01 R02 R03 R04 R05
QUEUE POSIT 12 3 4 5

G-EVENT - HIGH PRI TRACK TRANSITION
BEAM ID G01 G02 G03 G04 G05
QUEUE POSIT 12 3 4 5

Q-EVENT - CONTROLLED FRIENDLY TRACK
BEAM ID Q01 Q02 Q03 Q04
QUEUE POSIT 12 3 4

P-EVENT - UNEVALUATED TRACK
BEAM ID P01 P02
QUEUE POSIT 1 2

O-EVENT - ASSUMED HOSTILE TRACK
BEAM ID 001 002 O03 004 005
QUEUE POSIT 12 3 4 5

V-EVENT - ABOVE HORIZON SEARCH
BEAM ID V01 V02 V03 V04 V05 V06 V07 V08 V09 V10
QUEUE POSIT 123456789 10

162

N-EVENT - CONFIRMED HOSTILE TRACK
BEAM ID N01 N02 N03 N04
QUEUE POSIT 12 3 4

J-EVENT - SPECIAL ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

K-EVENT - SPECIAL TARGET DEFINITION
NO REQUESTS THIS INTERVAL

L-EVENT - SPECIAL MANUAL SCAN
NO REQUESTS THIS INTERVAL

M-EVENT - SPECIAL TARGET ACQUISITION
NO REQUESTS THIS INTERVAL

W-EVENT - SPECIAL ABOVE HORIZON SEARCH
BEAM ID WOl W02 W03 W04 W05 W06
QUEUE POSIT 12 3 4 5 6

X-EVENT - SIMULATION DWELL
NO REQUESTS THIS INTERVAL

Y-EVENT - DIAGNOSTIC DWELL
NO REQUESTS THIS INTERVAL

Z- EVENT - DUMMY DWELL
NO REQUESTS THIS INTERVAL

SCHEDULED DWELLS "OR SCHEDULER INTERVAL: 30

SEAM ID F01 F02 F03 704 F05 SOI £02 D01 D02 D03
RESOURCES 32 36 79 72 65 53 51 44 37 30
DWELL # 123456739 10

BEAM ID D04 D05 HOI H02
RESOURCES 23 16 9 2
DWELL # 11 12 13 14

163

REQUESTED BEAMS FOR SCHEDULER INTERVAL: 40

A-EVENT - ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

B-EVENT - TARGET DEFINITION
NO REQUESTS THIS INTERVAL

C-EVENT - SPECIAL TEST
NO REQUESTS THIS INTERVAL

E-EVENT - OWN SM-2 MISSILE GUIDANCE
BEAM ID E01 E02
QUEUE POSIT 1 2

I -EVENT - HORIZON SEARCH
BEAM ID 101 102 103 104 105 106 107 108 109 110
QUEUE POSIT 123456739 10

D-EVENT - ENGAGED HOSTILE TARGET
BEAM ID D01 D02 D03 D04 D05
QUEUE POSIT 12 3 4 5

H- EVENT - HIGH PRI TRACK CONFIRMATION
3EAM ID HOI H02
QUEUE ?OSIT 1 2

G- EVENT - HIGH PRI TRACK TRANSITION
BEAM ID G01 G02 G03 G04 GO

5

QUEUE POSIT 12 3 4 5

U- EVENT - CONFIRMED FRIENDLY TRACK
BEAM ID U01 U02
QUEUE POSIT 1 2

F-EVENT - PRE-ENGAGED HOSTILE TARGET
BEAM ID F01 F02 F03 F04 F05
QUEUE POSIT 12 3 4 5

S -EVENT - TRACK TRANSITION
BEAM ID SOI
QUEUE POSIT 1

T-EVENT - ASSUMED FRIENDLY TRACK
BEAM ID T01
QUEUE POSIT 1

R-EVENT - TRACK CONFIRMATION
BEAM ID R01 R02 R03 R04 R05
QUEUE POSIT 12 3 4 5

Q-EVENT - CONTROLLED FRIENDLY TRACK
BEAM ID Q01 Q02 Q03 Q04
QUEUE POSIT 12 3 4

P-EVENT - UNEVALUATED TRACK
BEAM ID P01 P02
QUEUE POSIT 1 2

O-EVENT - ASSUMED HOSTILE TRACK
BEAM ID 001 002 003 004 005
QUEUE POSIT 12 3 4 5

V-EVENT - ABOVE HORIZON SEARCH
BEAM ID V01 V02 V03 V04 V05 V06 V07 V08 V09 V10
QUEUE POSIT 123456789 10

164

N-EVENT - CONFIRMED HOSTILE TRACK
BEAM ID N01 N02 N03 N04
QUEUE POSIT 12 3 4

J-EVENT - SPECIAL ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

K-EVENT - SPECIAL TARGET
NO REQUESTS

DEFINITION
THIS INTERVAL

L-EVENT - SPECIAL MANUAL
NO REQUESTS

SCAN
THIS INTERVAL

M- EVENT - SPECIAL TARGET
NO REQUESTS

ACOUI
mis

SITION
INTERVAL

W- EVENT -

3EAM ID
queue ?os:

SPECIAL ABOVE HORIZON SEARCH
WOl WO 2 WO 3 WO 4 WO 5 WO

6

IT 12 3 4 5 6

X- EVENT - SIMULATION DWELL
NO REQUESTS THIS INTERVAL

7- EVENT - DIAGNOSTIC DWELL
MO REQUESTS THIS INTERVAL

Z-EVENT - DUMMY DWELL
NO REQUESTS THIS INTERVAL

SCHEDULED DWELLS FOR SCHEDULES . INTERVAL 4C

BEAM ID
RESOURCES
DWELL #

EOl E02 101
93 36 33

2

102
30
4

103 E04 I

77 74
5 6

05
71

106
63

n
o

107
65
9

108
62
10

BEAM ID
RESOURCES
DWELL #

109 110 111
59 56 53
11 12 13

D01
46
14

D02 DOS E
39 32
15 16

04
25
17

D05
18
18

HOI
11
19

HO 2
4

20

BEAM ID
RESOURCES
DWELL #

V01
1

21

165

REQUESTED BEAMS FOR SCHEDULER INTERVAL: 50

A-EVENT - ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

B-EVENT - TARGET DEFINITION
NO REQUESTS THIS INTERVAL

C-EVENT - SPECIAL TEST
NO REQUESTS THIS INTERVAL

D-EVENT - ENGAGED HOSTILE TARGET
BEAM ID D01 D02 D03 D04 DOS
QUEUE POSIT 12 3 4 5

H-EVENT - HIGH ?RI TRACK CONFIRMATION
SEAM ID HOI HO

2

3UEUE POSIT 1 2

I-EVENT - HORIZON SEARCH
BEAM ID 101 102 103 104 105 106 107 103 109 110
QUEUE POSIT 123455739 10

0-EVENT - ASSUMED HOSTILE TRACK
3EAM ID 001 002 003 004 005
QUEUE POSIT 12 3+5
G-EVENT - HIGH PRI TRACK TRANSITION
BEAM ID 301 G02 003 004 005
2UEUE POSIT L £ 3- 4- 5

P- EVENT - DEVALUATED TRACK
BEAM ID P01 ?02
QUEUE POSIT . 2

7- EVENT - PRE-ENGAGED HOSTILE TARGET
BEAM ID F01 F02 F03 FG4 F05
QUEUE POSIT 12 3 4 5

Q-EVENT - CONTROLLED FRIENDLY TRACK
BEAM ID Q01 Q02 Q03 Q04
QUEUE POSIT 12 3 4

N-EVENT - CONFIRMED HOSTILE TRACK
BEAM ID N01 N02 N03 N04
QUEUE POSIT 12 3 4

E-EVENT - OWN SM-2 MISSILE GUIDANCE
BEAM ID E01 E02
QUEUE POSIT 1 2

U-EVENT - CONFIRMED FRIENDLY TRACK
BEAM ID U01 U02
QUEUE POSIT 1 2

S-EVENT - TRACK TRANSITION
BEAM ID SOI
QUEUE POSIT 1

T-EVENT - ASSUMED FRIENDLY TRACK
BEAM ID T01
QUEUE POSIT 1

V-EVENT - ABOVE HORIZON SEARCH
BEAM ID V01 V02 V03 V04 V05 V06 V07 V08 V09 V10
QUEUE POSIT 123456789 10

166

R-EVENT - TRACK CONFIRMATION
BEAM ID R01 R02 R03 R04 R05
QUEUE POSIT 12 3 4 5

J-EVENT - SPECIAL ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

K-EVENT - SPECIAL TARGET DEFINITION
NO REQUESTS THIS INTERVAL

L-EVENT - SPECIAL MANUAL SCAN
NO REQUESTS THIS INTERVAL

M-EVENT - SPECIAL TARGET ACQUISITION
NO REQUESTS THIS INTERVAL

W-EVENT - SPECIAL ABOVE HORIZON SEARCH
BEAM ID W01 W02 W03 W04 WO 5 W06
QUEUE POSIT 12 3 4 5 6

X-EVENT - SIMULATION DWELL
NO REQUESTS THIS INTERVAL

7- EVENT - DIAGNOSTIC DWELL
NO REQUESTS THIS INTERVAL

Z- EVENT - DUMMY DWELL
NO REQUESTS THIS INTERVAL

SCHEDULED DWELLS FOR SCHEDULER INTERVAL: 5C

BEAM ID
RESOURCES
DWELL #

DOi D02 D03 D04 D05 HOI H02
93 86 79 72 55 53 5112 3 4 5 6 7

101
43

3

102
45
g

102
42
LO

BEAM ID
RESOURCES
DWELL #

104 105 106 107 108 109 110
39 36 33 30 27 24 21
11 12 13 14 15 16 17

111
18
18

001
11
19

002
4

20

BEAM ID
RESOURCES
DWELL #

V01
1

21

167

REQUESTED BEAMS FOR SCHEDULER INTERVAL: 60

A-EVENT - ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

B-EVENT - TARGET DEFINITION
NO REQUESTS THIS INTERVAL

C-EVENT - SPECIAL TEST
NO REQUESTS THIS INTERVAL

H-EVENT - HIGH PRI TRACK CONFIRMATION
BEAM ID HOI H02
QUEUE POSIT 1 2

G- EVENT - HIGH PRI TRACK TRANSITION
BEAM ID G01 G02 G03 G04 GO

5

QUEUE POSIT 12 3 4 5

I-EVENT - HORIZON SEARCH
BEAM ID 101 102 103 104 105 106 107 108 109 110
QUEUE POSIT 123456789 10

Q-EVENT - CONTROLLED FRIENDLY TRACK
SEAM ID 001 002 003 004
QUEUE POSIT 12 3 4

R-EVENT - TRACK CONFIRMATION
SEAM ID R01 R02 R03 R04 R05
QUEUE POSIT 12 3 4 3

5- EVENT - TRACK TRANSITION
BEAM ID SOI
QUEUE POSIT 1

T- EVENT - ASSUMED FRIENDLY TRACK
BEAM ID T01
QUEUE POSIT 1

F-EVENT - PRE-ENGAGED HOSTILE TARGET
BEAM ID F01 F02 F03 F04 F05
QUEUE POSIT 12 3 4 5

E-EVENT - OWN SM-2 MISSILE GUIDANCE
BEAM ID E01 E02
QUEUE POSIT 1 2

D-EVENT - ENGAGED HOSTILE TARGET
BEAM ID D01 D02 D03 D04 D05
QUEUE POSIT 12 3 4 5

P-EVENT - UNEVALUATED TRACK
BEAM ID P01 P02
QUEUE POSIT 1 2

O-EVENT - ASSUMED HOSTILE TRACK
BEAM ID 001 002 003 004 005
QUEUE POSIT 12 3 4 5

N-EVENT - CONFIRMED HOSTILE TRACK
BEAM ID N01 N02 N03 N04
QUEUE POSIT 12 3 4

V-EVENT - ABOVE HORIZON SEARCH
BEAM ID V01 V02 V03 V04 V05 V06 V07 V08 V09 V10
QUEUE POSIT 123456789 10

168

U-EVENT - CONFIRMED FRIENDLY TRACK
BEAM ID U01 U02
QUEUE POSIT 1 2

J-EVENT - SPECIAL ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

K-EVENT - SPECIAL TARGET DEFINITION
NO REQUESTS THIS INTERVAL

L-EVENT - SPECIAL MANUAL SCAN
NO REQUESTS THIS INTERVAL

M-EVENT - SPECIAL TARGET ACQUISITION
NO REQUESTS THIS INTERVAL

W- EVENT - SPECIAL ABOVE HORIZON SEARCH
BEAM ID W01 W02 W03 W04 W05 W06
QUEUE POSIT i 2 3 4 5 6

X-EVEMT - SIMULATION DWELL
NO REQUESTS THIS INTERVAL

T- EVENT - DIAGNOSTIC DWELL
MO REQUESTS THIS INTERVAL

2-EVENT - DUMMY DWELL
MO REQUESTS THIS INTERVAL

SCHEDULED DWELLS TOR SCHEDULER INTERVAL. 60

3EAM ID HOI HO 2 001 002 003 004 GO 5 101 102 103
RESOURCES 03 36 "9 ~:2 55 53 31 43 45 42
DWELL ft I 2 2 4 5 o 3910
BEAM ID 104 105 106 107 103 109 110 111 Q01 Q02
RESOURCES 39 36 33 30 27 24 21 18 11 4
DWELL # 11 12 13 14 15 16 17 18 19 20

BEAM ID V01
RESOURCES 1

DWELL # 21

169

REQUESTED BEAMS FOR SCHEDULER INTERVAL: 70

A-EVENT - ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

B-EVENT - TARGET DEFINITION
NO REQUESTS THIS INTERVAL

C-EVENT - SPECIAL TEST
NO REQUESTS THIS INTERVAL

D-EVENT - ENGAGED HOSTILE TARGET
BEAM ID D01 D02 D03 D04 D05
QUEUE POSIT 12 3 4 5

H-EVENT - HIGH ?RI TRACK CONFIRMATION
3EAM ID HOI HO

2

QUEUE POSIT 1 2

S-EVENT - HIGH ?RI TRACK TRANSITION
BEAM ID G01 G02 G03 G04 G05
QUEUE POSIT 12 3 4 5

F-EVENT - PRE- ENGAGED HOSTILE TARGET
3EAM ID F01 F02 F03 704 F05
QUEUE POSIT .2:^5
E-EVENT - OWN SM-2 MISSILE GUIDANCE
3EAM ID 301 302
QUEUE POSIT L 2

I -EVENT - HORIZON SEARCH
3EAM ID 101 102 103 104 105 106 107 108 109 110
QUEUE POSIT 12 1^56" 3 9 10

S-EVENT - TRACK TRANSITION
3EAM ID 301
QUEUE POSIT 1

U-EVENT - CONFIRMED FRIENDLY TRACK
BEAM ID U01 U02
QUEUE POSIT 1 2

T-EVENT - ASSUMED FRIENDLY TRACK
BEAM ID T01
QUEUE POSIT 1

R-EVENT - TRACK CONFIRMATION
BEAM ID R01 R02 R03 R04 R05
QUEUE POSIT 12 3 4 5

Q-EVENT - CONTROLLED FRIENDLY TRACK
BEAM ID Q01 Q02 Q03 Q04
QUEUE POSIT 12 3 4

P-EVENT - UNEVALUATED TRACK
BEAM ID P01 P02
QUEUE POSIT 1 2

O-EVENT - ASSUMED HOSTILE TRACK
BEAM ID 001 002 003 004 005
QUEUE POSIT 12 3 4 5

N-EVENT - CONFIRMED HOSTILE TRACK
BEAM ID N01 N02 N03 N04
QUEUE POSIT 12 3 4

170

V-EVENT - ABOVE HORIZON SEARCH
BEAM ID V01 V02 V03 V04 V05 V06 V07 V08 V09 VIO
QUEUE POSIT 123456789 10

J-EVENT - SPECIAL ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

K-EVENT - SPECIAL TARGET DEFINITION
NO REQUESTS THIS INTERVAL

L-EVENT - SPECIAL MANUAL SCAN
NO REQUESTS THIS INTERVAL

M-EVENT - SPECIAL TARGET ACQUISITION
NO REQUESTS THIS INTERVAL

W-EVENT - SPECIAL ABOVE HORIZON SEARCH
BEAM ID W01 W02 W03 W04 W05 W06
QUEUE POSIT 12 3 4 5 6

X-EVENT - SIMULATION DWELL
NO REQUESTS THIS INTERVAL

Y-EVENT - DIAGNOSTIC DWELL
NO REQUESTS THIS INTERVAL

Z- EVENT - DUMMY DWELL
NO REQUESTS THIS INTERVAL

SCHEDULED DWELLS FOR SCHEDULER INTERVAL: 70

3EAM ID D01 D02 DOS D04 D05 HOI HO 2 G01 G02 G03
RESOURCES 93 36 79 72 65 53 31 44 37 30
DWELL & 2 3 4 5 6 7 3 9 10

BEAM ID G04 G05 F01 F02
RESOURCES 23 16 9 2
DWELL # 11 12 13 14

171

REQUESTED BEAMS FOR SCHEDULER INTERVAL: 80

A-EVENT - ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

B-EVENT - TARGET DEFINITION
NO REQUESTS THIS INTERVAL

C-EVENT - SPECIAL TEST
NO REQUESTS THIS INTERVAL

G-EVENT - HIGH PRI TRACK TRANSITION
BEAM ID G01 G02 G03 G04 G05
QUEUE POSIT 12 3 4 5

F-EVENT - PRE-ENGAGED HOSTILE TARGET
3EAM ID F01 F02 F03 F04 F05
QUEUE POSIT 12 3 4 5

E-EVEMT - OWN SM-2 MISSILE GUIDANCE
BEAM ID E01 E02
QUEUE POSIT 1 2

D-EVENT - ENGAGED HOSTILE TARGET
BEAM ID 001 D02 D03 004 005
QUEUE POSIT 12 3 4 5

M-EVENT - CONFIRMED HOSTILE TRACK
BEAM ID M01 N02 M03 M04
QUEUE POSIT 12 3 4

I -EVENT - HORIZON SEARCH
BEAM ID 101 102 103 104 105 106 107 108 109 110
QUEUE POSIT 123455739 10

0- EVENT - ASSUMED HOSTILE TRACK
BEAM ID 001 002 003 004 005
QUEUE POSIT 12 3 4 5

H-EVENT - HIGH PRI TRACK CONFIRMATION
BEAM ID HOI H02
QUEUE POSIT 1 2

U-EVENT - CONFIRMED FRIENDLY TRACK
BEAM ID U01 U02
QUEUE POSIT 1 2

P -EVENT - UNEVALUATED TRACK
BEAM ID P01 P02
QUEUE POSIT 1 2

S-EVENT - TRACK TRANSITION
BEAM ID SOI
QUEUE POSIT 1

T-EVENT - ASSUMED FRIENDLY TRACK
BEAM ID T01
QUEUE POSIT 1

V-EVENT - ABOVE HORIZON SEARCH
BEAM ID V01 V02 V03 V04 V05 V06 V07 V08 V09 V10
QUEUE POSIT 123456789 10

R-EVENT - TRACK CONFIRMATION
BEAM ID R01 R02 R03 R04 R05
QUEUE POSIT 12 3 4 5

172

Q-EVENT - CONTROLLED FRIENDLY TRACK
BEAM ID 001 Q02 Q03 Q04
QUEUE POSIT 12 3 4

J-EVENT - SPECIAL ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

K-EVENT - SPECIAL TARGET DEFINITION
NO REQUESTS THIS INTERVAL

L-EVENT - SPECIAL MANUAL SCAN
NO REQUESTS THIS INTERVAL

M-EVENT - SPECIAL TARGET ACQUISITION
NO REQUESTS THIS INTERVAL

W- EVENT - SPECIAL ABOVE HORIZON SEARCH
3EAM ID W01 W02 W03 W04 W05 W06
QUEUE POSIT 12 3 4 5 6

K-EVENT - SIMULATION DWELL
NO REQUESTS THIS INTERVAL

Y- EVENT - DIAGNOSTIC DWELL
MO REQUESTS THIS INTERVAL

3- EVENT - DUMMY DWELL
MO REQUESTS THIS INTERVAL

SCHEDULED DWELLS "OR SCHEDULER INTERVAL

:

30

BEAM ID SOI G02 303 304 DOS F01 F02 F03 F04 F05
RESOURCES 33 36 79 r

2 65 53 51 44 37 30
DWELL i L 2 3 4- 5 6.. 7 8. 9 10

BEAM ID E01 £02 D01 D02
RESOURCES 23 16 9 2
DWELL # 11 12 13 14

173

REQUESTED BEAMS FOR SCHEDULER INTERVAL: 90

A-EVENT - ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

B-EVENT - TARGET DEFINITION
NO REQUESTS THIS INTERVAL

C-EVENT - SPECIAL TEST
NO REQUESTS THIS INTERVAL

F-EVENT - PRE-ENGAGED HOSTILE TARGET
BEAM ID F01 F02 F03 F04 F05
QUEUE POSIT 12 3 4 5

E-EVENT - OWN SM-2 MISSILE GUIDANCE
3EAM ID EOl £02
QUEUE POSIT L 2

D- EVENT - ENGAGED HOSTILE TARGET
BEAM ID D01 D02 D03 D04 D05
QUEUE POSIT 12 3 4 5

H-EVENT - HIGH PRI TRACK CONFIRMATION
3EAM ID HOI HO

2

QUEUE POSIT I 2

P- EVENT - UNEVALUATSD TRACK
BEAM ID POl ?02
QUEUE ?OSIT 1 2

I -EVENT - HORIZON SEARCH
3EAM ID 101 102 103 104 105 106 107 103 109 110
2UEUE POSIT 12 3 15 5 7 3 9 10

G- EVENT - HIGH PRI TRACK TRANSITION
3EAM ID G01 G02 G03 G04 G05
QUEUE POSIT 12 3 4 5

O-EVENT - ASSUMED HOSTILE TRACK
BEAM ID 001 002 003 004 005
QUEUE POSIT 12 3 4 5

N-EVENT - CONFIRMED HOSTILE TRACK
BEAM ID N01 N02 N03 N04
QUEUE POSIT 12 3 4

Q-EVENT - CONTROLLED FRIENDLY TRACK
BEAM ID Q01 Q02 Q03 Q04
QUEUE POSIT 12 3 4

U-EVENT - CONFIRMED FRIENDLY TRACK
BEAM ID U01 U02
QUEUE POSIT 1 2

R-EVENT - TRACK CONFIRMATION
BEAM ID R01 R02 R03 R04 R05
QUEUE POSIT 12 3 4 5

S-EVENT - TRACK TRANSITION
BEAM ID SOI
QUEUE POSIT 1

V-EVENT - ABOVE HORIZON SEARCH
BEAM ID V01 V02 V03 V04 V05 V06 V07 V08 V09 V10
QUEUE POSIT 123456789 10

174

T-EVENT - ASSUMED FRIENDLY TRACK
BEAM ID T01
QUEUE POSIT 1

J-EVENT - SPECIAL ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

K- EVENT - SPECIAL TARGET DEFINITION
NO REQUESTS THIS INTERVAL

L-EVENT - SPECIAL MANUAL SCAN
NO REQUESTS THIS INTERVAL

M-EVENT - SPECIAL TARGET ACQUISITION
NO REQUESTS THIS INTERVAL

W-EVENT - SPECIAL ABOVE HORIZON SEARCH
BEAM ID W01 WO 2 WO 3 W04 WO 5 WO

6

QUEUE POSIT 12 3 4 5 6

X-EVENT - SIMULATION DWELL
NO REQUESTS THIS INTERVAL

Y- EVENT - DIAGNOSTIC DWELL
NO REQUESTS THIS INTERVAL

Z- EVENT - DUMMY DWELL
NO REQUESTS THIS INTERVAL

SCHEDULED DWELLS FOR SCHEDULER INTERVAL: 90

3EAM ID
RESOURCES
DWELL 4

FOl F02 F03 F04 F05 501 E02
93 36 79 72 55 53 5112 3 4 5 5 7

DOl D02 D03
44 37 30
3 9 10

BEAM ID
RESOURCES
DWELL #

D04 D05 HOI H02
23 16 9 2
11 12 13 14

175

REQUESTED BEAMS FOR SCHEDULER INTERVAL: 100

A-EVENT - ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

B-EVENT - TARGET DEFINITION
NO REQUESTS THIS INTERVAL

C-EVENT - SPECIAL TEST
NO REQUESTS THIS INTERVAL

H-EVENT - HIGH PRI TRACK CONFIRMATION
BEAM ID HOI H02
QUEUE POSIT 1 2

I -EVENT - HORIZON SEARCH
SEAM ID 101 102 103 104 105 106 107 108 109 110
QUEUE POSIT 123456789 10

E-EVENT - OWN SM-2 MISSILE GUIDANCE
BEAM ID E01 E02
QUEUE POSIT 1 2

Q- EVENT - CONTROLLED FRIENDLY TRACK
3EAM ID 001 002 Q03 Q04
QUEUE POSIT 12 3 4

S- EVENT - TRACK TRANSITION
3EAM ID 501
QUEUE POSIT 1

R- EVENT - TRACK CONFIRMATION
3EAM ID R01 R02 R03 R04 R05
QUEUE POSIT 12 3 4 5

D- EVENT - ENGAGED HOSTILE TARGET
BEAM ID D01 D02 D03 D04 D05
QUEUE POSIT 12 3 4 5

G-EVENT - HIGH PRI TRACK TRANSITION
BEAM ID G01 G02 G03 G04 G05
QUEUE POSIT 12 3 4 5

P-EVENT - UNEVALUATED TRACK
BEAM ID P01 P02
QUEUE POSIT 1 2

F-EVENT - PRE-ENGAGED HOSTILE TARGET
BEAM ID F01 F02 F03 F04 F05
QUEUE POSIT 12 3 4 5

O-EVENT - ASSUMED HOSTILE TRACK
BEAM ID 001 002 003 004 005
QUEUE POSIT 12 3 4 5

N-EVENT - CONFIRMED HOSTILE TRACK
BEAM ID N01 N02 N03 N04
QUEUE POSIT 12 3 4

U-EVENT - CONFIRMED FRIENDLY TRACK
BEAM ID U01 U02
QUEUE POSIT 1 2

T-EVENT - ASSUMED FRIENDLY TRACK
BEAM ID T01
QUEUE POSIT 1

176

V-EVENT - ABOVE HORIZON SEARCH
BEAM ID V01 V02 V03 V04 V05 V06 V07 V08 V09 V10
QUEUE POSIT 123456789 10

J-EVENT - SPECIAL ECM BURNTHROUGH
NO REQUESTS THIS INTERVAL

K-EVENT - SPECIAL TARGET DEFINITION
NO REQUESTS THIS INTERVAL

L-EVENT - SPECIAL MANUAL SCAN
NO REQUESTS THIS INTERVAL

M-EVENT - SPECIAL TARGET ACQUISITION
NO REQUESTS THIS INTERVAL

W-EVENT - SPECIAL ABOVE HORIZON SEARCH
3EAM ID W01 W02 W03 W04 WO 5 W06
QUEUE POSIT 12 3 4 5 8

X- EVENT - SIMULATION DWELL
NO REQUESTS THIS INTERVAL

Y-EVENT - DIAGNOSTIC DWELL
NO REQUESTS THIS INTERVAL

Z- EVENT - DUMMY DWELL
NO REQUESTS THIS INTERVAL

SCHEDULED DWELLS FOR SCHEDULER INTERVAL: 100

3EAM ID HOI H02 101 102 103 104 105 106 107 108
RESOURCES 93 36 32 30 77 74 71 68 65 32
DWELL {* 1.2 3 4: 5' 6. T 8 9 10

BEAM ID 109 110 111 E01 E02 Q01 Q02 Q03 Q04 SOI
RESOURCES 59 56 53 46 39 32 25 18 11 4
DWELL # 11 12 13 14 15 16 17 18 19 20

BEAM ID V01
RESOURCES 1

DWELL # 21

177

LIST OF REFERENCES

1. Gavler. R., A Multi-microprocessing Approach to The AEGIS Combat System,
M.S. Thesis, Naval Postgraduate School, M<

2.

[onterey, California, June 1980.

Dilmore. W. D., The INTEL MCS-36 as a Functionally Dedicated Microprocessor
in AN.' SPY- i A Radar Control, VI. S. Thesis. Naval Postgraduate School.
Monterev, California. June 1980.

3. Riche, R. S. and Williams. C. E., A Software Foundation For AN/SPY-1A Radar
Control, .VI. S. ihesis. Naval Postgraduate School, Monterev, California.
December 1981.

4. U.S. Department of Defense. Specification ANSI/MIL-STD-1815A, Military
StandardAda Programming Language, 22 January 1983.

5. Grant. ?'.M., A Muiti-Micronrocessor Based Model of The AEGIS AN!SPY- 1

A

Radar Control: Radar Scn'eauler. M.S. Thesis. Naval Postgraduate School.
Monterey, California. June 1982

6. RR Software. Inc.. JanusiAda Package Users Manuals. 8086 version 3.2. March
198 j.

178

BIBLIOGRAPHY

Barnes, J. G. P., Programing in Ada, 2d ed., Addison-Wesley Publishers Limited, 1984.

Fairley, R. E., Software Engineering Concepts, McGraw-Hill, Inc., 1985.

Johnson P. I., The Ada Primer, McGraw-Hill, Inc., 1985.

179

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library Code 0142 2
Navai Postgraduate Schooi
Monterey, California 93943-5002

3. Department Chairman. Code 52 1

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Dr. L'no R. Kodres. Code 52Kr 3

Department or Computer Science
Naval Postgraduate 'Schooi
VIonterey, California 93943

5. CDR Gary S. Baker, Code 52Bj I

Department or Computer Science
Naval Postgraduate School
.VIonterey, California 93943

6. Daniel Green. Code 20F 1

Naval Surface Weapons Center
Danrgren. Virginia 22449

7. CAPT. J.Hood, USN 1

PMS 400B5
Naval Sea Svstems Command
Washington,' D.C. 20362

8. RCA AEGIS Repository 1

RCA Corporation
Government Svstems Division
Mail Shop 127-327
Moorestown, New Jersev 08057

Library (Code E33-05) 1

Naval Surface Weapons Center
Dahlgren, Virginia 22449

10. Dr. M. J. Gralia 1

Applied Physics Laboratory
John Hopkins Road
Laurel, Maryland 20707

11. Dana Small, Code 8242 1

Naval Ocean Svstems Center
San Diego, California 92152

LT J. H. Purdum
Long Beach Naval Shipvard
Long Beach, California 90822-5099

12. LT J. H. Purdum 2
Long Beach Naval Shipvard

<#?180 18 7

DUDLEY KNOX LD3RARY ^
NAVAL POSTGRADUATE SCHOOL
MONTE ..LIEORNIA 93943-6008

***** ,

$>,> of *

Thesis

P9485 Purdum

c.l An ADA model of the_

AEGIS radar scheduler.

