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ABSTRACT

The effects of the rotation stress mechanism and the penetration of short-

wave radiation below the sea-surface are examined in determining a one-

dimensional equilibrium mixed layer depth. Starting with the Obukhov-scale

equilibrium theory for the surface ocean boundary layer, a revised

equilibrium theory, which includes rotation stress and radiation effects, is

presented. This new theory is applied using climatological boundary

conditions for the tropical Atlantic, and the results are compared with the

observed climatological mixed layer depth.

In general, the response of the revised model is an improvement over the

Obukhov theory alone. Because the quality of the results are limited by

uncertainties in the boundary conditions, no detailed evaluation of the model

response is justifiable. However, it is concluded here that the physical

mechanisms of rotation stress and penetration of radiation are important in

determining a steady-state equilibrium depth of mixing for the tropical

Atlantic.
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. INTRODUCTION

The study of the oceanic turbulent boundary layer is a relatively recent

field in Physical Oceanography. Since the pioneering work of Kraus and

Turner (1967), a significant effort has been made in understanding and

modelling the dynamics of turbulent mixing in the oceans. However, the basic

contributions made by those authors still provide the theoretical foundation

for much of the current research.

The oceanic boundary layer or mixed layer is considered in this study to

be the fully turbulent region that is bounded above by the air-ocean

interface, and it is where the temperature and salinity are usually observed

to be fairly well mixed. Below, the mixed layer is assumed to be bounded by a

dynamically stable thermocline.

The study of the top few tens of meters of the ocean is of considerable

scientific interest. Ekman pumping effects, originating in the mixed layer by

the action of wind forcing, considerably influences the dynamics of the lower

levels and the interior circulation in general. Also, the interaction between

the oceanic and atmospheric boundary layers is an essential mechanism

which must be considered when making medium and long-range weather

forecasts, since a large part of the atmospheric energy supply comes from

the heat exchanged between these layers . Additionally, this is the region of

primary biological productivity, which is of significant economic importance.

An important military application is, on the other hand, the modelling of

accoustic propagation in the oceans.
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Most of the physics behind existing models of the oceanic mixed layer are

based on the flux form of the Navler-Stokes equations of motion, with the

Bousstnesq approximation. One-d1mens1onal versions, like the one which Is

treated In this study, further assume the horizontal gradients of the mean

fields to be negligible. For a steady-state situation, this will lead to the

basic energy balance, as stated by Kraus and Turner (1967), between the

work done by the wind stress and the surface heating, in defining an

equilibrium depth of mixing. However, a usually neglected term in the

turbulent kinetic energy budgets, the planetary rotation term, was recently

examined by Garwood eta/. (1985a). They suggest a new formulation for the

equilibrium mixed layer depth, which basically describes the interaction

between the zonal Reynolds stresses and the northward component of the

planetary rotation. This new formulation might partially explain the zona!

variation of the observed mixed layer depth in the Tropical Pacific and

Atlantic Oceans.

The goal of this study is to apply the Kraus and Turner (1967) and the

Garwood et al. (1985b) one-dimensional, steady-state models on a relatively

broad grid with realistic boundary conditions in the Equatorial and Tropical

Atlantic Ocean, and to compare the resulting diagnostic mixed layer depths

with the observed mixed layer depths. In this way, insight may be gained Into

the relative importance of the physical mechanisms involved. Also, we

should be able to Identify the regions and time of the year where the turbulent

boundary layer can be represented realistically by such simple steady-state

equilibrium models.



II. THE DYNAMICS OF MIXING

A. THE TURBULENT KINETIC ENERGY BUDGET

In the presence of a constant wind stress and a downward surface heat

flux, the steady-state, one-dimentional turbulent kinetic energy (TKE)

budget is, assuming no vertical advection :

0=d/dt [E/2]=

-u'w" du/dz -v'w' dv/dz + b'w'-d/dz [w'(E/2)+ w'p'/p] - d, (2.1)

where E/2 is the TKE, -u'w' du/dz -v'w' dv/dz represents the production of

kinetic energy associated with the vertical shear in the horizontal flow

induced by the wind stress, b'w' is the buoyancy flux, -d/dz [w'(E/2)+w'p'/p]

is the turbulent diffusion and d is the dissipation. With no loss of generality,

we shall assume the x-axis to be oriented downstream, sothatv=0.

1 . Shear Production of Turbulence

Let u(z) be some monotonic function of z between the surface , z=0,

and the bottom of the mixed layer, z=-h. For the sake of simplicity, it is

further assumed that u(-h)=0, since no entrainement is allowed.

Consider now (Fig. la) that some particle initially at 1 is displaced to

some position 2 by means of a positive turbulent vertical velocity w'.

Because du/dziO, the particle will acquire a negative turbulent horizontal

velocity u' and, then, u'w' will be less tha zero at 2. Alternatively, a
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particle Initially at 1 , which 1s displaced to 3 by means of a negative vertical

turbulent velocity w', will acquire a positive horizontal turbulent velocity u"

and, again, u'w' will be negative. In both situations, the shear production

term -u"w" du/dz will be positive, and when this physical process is

averaged over the whole turbulent layer, it will tend to increase the TKE at

the expense of the mean kinetic energy. Formally,

-uV du/az > 0.

Evaluated over the mixed layer, the shear production will be:

o

G h
( -u'w' du/dz dz = <-u'w'> [u(0)-u(-h)], (2.2)
-h

where < > represents a vertical average. At the bottom of the mixed layer,

and under the assumption of no entrainement, -iTw'(-h) is zero. Then,

disregarding nondlmensional constants, <-i?w'> Is of order -i7w'(0). Also,

we have already assumed u(-h) to be zero. Thus,

G = -CTw'CO) u(0). (2.3)

Furthermore, the Reynold stress -i7w'(0) can be written

| -lTw'CO)) = |T|/p , (2.4)

11



where p Is a typical sea water density and i Is the surface wind stress.

Finally, (2.3) Is rewritten as

G = u(0)|t|/p . (2.5)

2. The Buovancv Flux

Under the Influence of surface heating, there will be a tendency for

stratification, and mixing will only occur in the presence of wind stirring. In

this case, the less dense particles near the surface will mix with the

$

(8)

Z ' ow

w> o

5 y

o©

w'<

/....t

yu >

'CD

h

Fig. 1. (a) Shear production of turbulent kinetic energy, In the presence of
wind stress, (b) Buoyant damping of turbulent kinetic energy, in the
presence of surface heating.

12



underlying water only at the expense of the wind-generated turbulence, thus

converting TKE Into potential energy (Fig. lb). This means that, on the

average, the buoyancy flux -b'w' will be a sink term In the TKE budget. The

equilibrium between the effects of wind mixing and surface heating 1s Indeed

the fundamental energy balance for any steady-state, one-dlmentlonal mixed

layer model, as long as advectlon Is neglected.

To relate the buoyancy flux to the surface heat flux Q we apply the

linearized equation of state and obtain:

b'w' = a g TV, (2.6)

where a is the thermal expansion coefficient, g 1s the acceleration of

gravity and TV 1s the temperature flux. It can further be shown that,

assuming vertical homogeneity in the mean temperature T, TV will be linear

over the mixed layer, and

TV(0)--Qo/( pCp), (2.7)

where Q , the surface heat flux is positive downward.

Integrating the buoyancy flux over the mixed layer,

o o

BH
J
b'w' dz = ag

J
TV dz = agh [TV(0)+TV(-h)]/2, (2.8)

where h is the mixed layer depth. Because no entrainment Is assumed,

TV(-h)=0. Thus,
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B = -aghQ /(2pC
p ). (2.9)

This simple model for the vertically Integrated buoyancy flux also

requires the assumption that the net solar radiation be completly absorbed at

the surface. We will see in the following sections that this assumption is

incorrect when the vertical scale of penetration of radiation below the

surface is comparable to the vertical scale of turbulent mixing. The effect of

the penetration of radiation is expected to be relevant in optically clear

oceanic waters and in summertime conditions, when the mixed layer is

relatively shallow. In those situations, the net downward buoyancy flux may

be significantly reduced, causing the resultant depth of mixing to be

significantly increased.

3. Turbulent Diffusion

Although the diffusion of turbulence is an essential mechanism in

transporting TKE downwards from the upper levels, it does not constitute, by

itself, a source or sink of turbulence, which means that its net value over

the mixed layer must vanish. Formally,

( -d/dz lw'(E/2)+Wp7p] dz = 0. (2.10)

4. Dissipation

Early mixed layer models, including the Kraus and Turner (1967)

model, recognized the existence of dissipation. However, they considered its

influence to be negligible, given the relatively large length scale of turbulent
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mixing. Indeed, a less careful scale analysis of the TKE budget seems to

support the approximation. More recent models, however, include

dissipation In the mechanical energy budget, either as a fraction of the wind-

-stress production or as a fraction of the net TKE production. Although

viscous dissipation may be neglected when dealing with turbulent eddies of

length scales of order of the mixed layer depth, the dynamic interaction

between those eddies produces other eddies of smaller and smaller

dimensions, where the role of dissipation may finally dominate. This fact is

easily understood with the analysis of a spectrum of turbulence, where it can

be verified that the mechanical energy drops rapidly above a limiting

frequency (Tennekes and Lumley, 1962).

If such a dissipation mechanism is included in the TKE budget by

parameterization, for example as a fraction of the TKE production, we will

see in the following sections that the Kraus and Turner model is still usable,

since no adltional degree of freedom is required. That was the approach of

Gelsler and Kraus (1969), Niller (1975) and others.

For now, we will just define the vertically integrated dissipation D as:

o

D^Jddz. (2.11)
-h

B. EQUILIBRIUM DEPTH OF MIXING

From the results of the previous section, the vertically integrated TKE

budget can be written as

15



B + G-D = 0, (2.12)

where

and

B = - agh Q /(pC
p )

6 = u(0)|t|/p .

Work by

wind stress

V
Mean Kinetic

Energy

Shear

production

\S

Surface

heat flux

Potential

Energy

/\
Buoyant

damping

Horiz. Turbul

Kinetic energy

Redistribution

i
:
>

c
Yert Turbul

Kinetic energy

^O^ Dissipation //

(
Heat

)

Fig. 2. The one-dimensional mixed layer equilibrium. The "redistribution*

effects include the pressure redistribution and the rotation stress

mechanism.
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Equation (2.12) illustrates the basic steady-state balance between the work

done by the wind stress and the buoyant damping (Fig. 2). Note that, because

of turbulent mixing, the mean flow will tend to be vertically homogeneous,

except near the surface, where turbulence Is generated, and near the bottom

of the mixed layer, where it falls to zero. Also, the mean temperature

profile will tend to be homogeneous. Thus, the mixed layer potential energy

will approach its theoretical maximum value.

In Fig. 2 an aditional mechanism is Illustrated. This processs, called

"redistribution", does not appear in the TKE budget, since its constituent

terms sum to zero when the three spatial components of the kinetic energy

budget are added. Redistribution consist of two parts: the pressure

redistribution and the planetary rotation. Their roles are to exchange TKE

among the x-y-z directions, tending to restore the system's Isotropy. In

section III, the planetary rotation term will be shown to have a fundamental

role in determining the equilibrium mixed layer depth for the Garwood et al.

(1985a) steady-state model.

1. TheObukhov Length Scale

We have seen that, if dissipation is parameterized in terms of the

other basic turbulent variables, the steadiness of the mixed layer depth will

depend on the surface boundary conditions, i.e. , the surface wind stress and

the surface heat flux. This is equivalent to setting G/B = constant.

We will now define a velocity scale u# , which is representative of the

typical turbulent speed of the largest eddies in a wind-driven mixed layer:

u»2.|T|/p. (2.13)
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Because u(0) depends linearly on the wind s eed and, thus, on the surface

wind stress, the shear production term G In equation (2.5) can be scaled as

G~u*3
. (2.14)

Combining (2.9) and (2.12-14), and setting -G/B =1, the Obukhov

length scale is defined as

L = h = 2pC
p
u*3 / (agQ ). (2.15)

Physically, L represents the scale of maximum depth of turbulent mixing,

given the surface boundary conditions of wind stress and heat flux, for an

equilibrium mixed layer with no advection present.

2. The Kraus and Turner Steadv-State Model

Based on equation (2.12), Kraus and Turner (1967) considered the

dissipation to be negligible, so that

B + G = 0. (2.16)

Also, the vertically integrated shear production G can be written

G = u*3= (N/p)3/2 (2.17)

or G= (p a CD u2/p)3/2
f

(2.18)
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where C& is the drag coefficient, p a is the air density and U is the wind

speed measured at 10 meters above the surface. Substituting (2.9) and

(2. 18) into (2. 16), the equilibrium depth of mixing is written

h = Ci ( p C
p
/ a g Q )( P a CD u2/p)3/2

, (2.19)

where C; is a dimensionless constant of order 1

.

More recent versions of the Kraus and Turner model assume the

dissipation D to be proportional to the total TKE production B+G, so that

equation (2. 12) is written as

(K+ 1)( B + G ) = 0, (2.20)

where K is a dimensionless constant. As stated earlier, this will lead to the

same basic result of equation (2. 19), since no aditional degree of freedom is

included.
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III. THE REVISED STEADY-STATE MODEL

As noted in section I, the dynamics of the oceanic mixed layer in the

equatorial and tropical regions are not fully understood. One of the most

apparent but least understood features is the zonal variation of the mixed

layer depth.

Some of the discrepancies between the observed mixed layer depths and

the predictions made by existing steady-state and one-dimensional models

might be explained by the exceptionally strong vertical and horizontal

advection which are characteristic of the tropical oceans. Also, the effect of

penetration of short wave radiation below the surface is believed to have

some importance for relatively shallow mixed layers, especially in the

presence of large net solar irradiance. Another physical mechanism,

examined by Garwood et ah (1985a), involves the interaction between the

zonal surface wind stress and the planetary rotation, and it may partially

explain the zonal dependence of the steady-state mixed layer depth.

It is beyond the scope of this work to formally treat the effects of

advection on the dynamics of the mixed layer, and we shall restrict our study

to steady-state situations. However, the other two mechanisms referred to

(penetration of radiation and planetary rotation) will be included in the model

derived in the following sections.
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A. EFFECT OF THE PENETRATING RADIATION ON THE BUOYANCY FLUX

The simplest model for the penetration of radiation below the sea-surface

assumes that the net long-wave solar irradiance ( infra-red and red ) is

absorbed at the surface, and the short-wave irradiance decays exponentially

with depth. Recent models ( Paulson and Simpson, 1977 ; Simpson and Dickey,

1980) also allow for the penetration of long-wave radiation. In both

approaches, the predicted vertical profile of absorbed irradiance is sensitive

to the values of two empirical parameters: the vertical scale of penetration,

which mainly depends on the turbidity of the water, and the short-wave

(blue-green) fraction of the net solar irradiance incident on the surface.

Because there is only a limited amount of data on the optical properties of the

oceans, the values of these empirical parameters will either have to be

assumed or adjusted as tunning constants. For that reason, and also because

a steady-state model will be applied to large oceanic regions having variable

optical properties, the simplest model will be used, i.,e., only the short-

wave radiation will be assumed to penetrate below the surface. The vertical

profile of the penetrating irradiance will have therefore the following

exponential form

Q2 (z) = RQ S e z/X
. (3.1)

Here, the downward short-wave irradiance, Q2(z), is the radiant flux density

on a horizontal surface due to contributions from the entire upward

hemisphere; Q s is the net solar irradiance at the surface, R is the short-wave

fraction of the net solar irradiance ( blue-green ), z is the vertical

21



coordinate, positive upward; and A. is the penetration scale, assumed

constant with depth.

Alternatively, the long-wave solar irradiance, assumed to be totally

absorbed at the surface, is given by

Ql«Q -RQ s , (3.2)

where Q = Q s- Gl^- G^-

Q

e is the net solar irradiance at the surface, minus

the long-wave back radiation, minus the sensible heat flux, minus the latent

heat flux.

Assuming horizontal homogeneity of the variables, it can be shown that

the effective heat flux Q contributing to the temperature flux over the mixed

layer will have the form ( Garwood, 1977 )

Q = Qr J
I dQ2 / dz - 2/h

J
dQ2/ds ds 1 dz (3.3)

or Q = Q - R Qs [ 2\/h - e _h/^ ( 1 + 2\/h )]. (3.4)

For deep mixed layers ( h/\ >>1) or, puting R = 0, expression (3.4)

reduces to Q - Q , which corresponds to the net heat flux being absorbed at

the surface. For shallow mixed layers ( h/\<<! ), expression (3.4) reduces

to Q = Q - R Q s . Under these circumstancies the effect of the penetrating

radiation on the effective heat flux Is maximum.

It is also apparent from expression (3.4) that, in summertime conditions

( small h, large Qs ) and in clear oceanic waters ( large A.), Q can be
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significantly smaller than Q , thus reducing the buoyancy flux and Increasing

the vertical extent of the wind generated turbulence.

From expression (2.9), the effective vertically integrated buoyancy flux

will then be

B = -aghQ/( 2pC
p ), (3.5)

where Q is given by (3.4).

A. THE ROTATION STRESS MECHANISM

The steady-state turbulent kinetic energy budgets for the three spatial

components ( x eastward, y northward, z upward ), vertically integrated

over the mixed layer are:

= Gx + Px + Qz h uV(0) + Qy hTx/p
- D/3 (3.6a)

= Gy
+ Py-Qz h uV(0) -D/3 (3.6b)

= B + PZ - Qy hTx/p
- D/3. (3.6c)

Here Gx and Gy are the horizontal components of the shear production, B is

the vertically integrated buoyancy flux, the Pj"s are the components of the

vertically Integrated turbulent transport, and tx Is the zonal component of

the surface wind-stress. The Qj's are the two spatial components of the

planetary rotation and D is the dissipation, assumed to be equally partitioned

among components (local isotropy assumed). Since the transport and

23



planetary rotation terms vanish, the sum of the three above equations simply

leads to :

B + G-D = 0. (2.12)

An aditional process, not apparent in (2.12), is evident in equations

(3.6). This is the exchange between horizontal and vertical turbulent kinetic

energy, in the presence of the zonal wind stress tx and the meridional

component Qv of the planetary rotation. Note that the sign of tx will

determine whether the term Qyhtx/p is a source or sink of horizontal

turbulent kinetic energy. With easterly winds ( tx < ), the horizontal

kinetic energy is expected to be enhanced at the expense of the vertical

kinetic energy, with a consequent shallowing of the mixed layer. With

westerly winds ( tx > ), the exchange between the vertical and horizontal

components will have the opposite sign, leading to an increase of the vertical

extent of turbulent mixing. This mechanism, usually overlooked in planetary

boundary layer models, was first examined by Garwood et aJ. (1985b), in an

attempt to explain the unusually deep extent of mixing in the central and

western Pacific.

If the dissipation is parameterized in terms of the vertical average of the

total turbulent kinetic energy, i.e,

D=m
1
<E>3/2

,
(3.7)
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where mi and subsequent mfs are dimensionless constants, (2.12) can be

written

G + B- m\ < E >3/2 = . (3.8)

Also, the vertical component P z of the turbulent transport can be

parameterized in terms of the vertical average of the TKE. According to Rotta

(1951 ), a first order approximation to the transport term P 2 is

P2 = m2 < E >3/2 . (3.9)

Substituting (3.9) into (3.6c) and combining with (3.8), will yield a

system of two equations which can be solved for the mixed layer depth h and

the vertical average of the turbulent kinetic energy < E >, given the surface

boundary conditions and the meridional component of the planetary rotation.

The predicted value of h will then reflect the interaction between the zonal

wind stress and the Earth rotation.

C. EQUILIBRIUM DEPTH OF MIXING

We define

L = 2pC
p
u* 3/( agQ ) (3.10)

G=m3 u* 3 (3.11)

and <t>
= QyixCp/( ag Q), (3.12)
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where the dimensionless parameter $ is the quotient between the conversion

of vertical turbulent kinetic energy by means of the rotation mechanism and

the buoyant damping of vertical turbulent kinetic energy. Then, a diagnostic

equation for the mixed layer depth can be derived:

h = C
1
L/O+Cz*), (3.13)

where the non-dimensional constants C^ and C2 are related to the m{s:

q = m3(m2/mr 1/3)/(m2/m 1
+2/3) (3.14)

and C2 = 2/(m2/m 1
+2/3). (3.15)

Note that the effective surface heat flux Q in equations (3. 10) and (3. 12)

reflects the penetration of radiation below the surface, as modelled by

equation (3.4). Thus the diagnostic value of h will be dependent on the values

of four tunning parameters: the Cj's, the factor R and the vertical scale of

penetration X. Because Q is a relatively complex function of h, a solution for

h from (3.4) and (3.13) is only possible by iterative techniques. An

alternative method, which significantly reduces the computational effort, is

to substitute the Obukhov length scale L for h in equation (3.4), and then

solve for Q. This simplification is justified and will be utilized in the next

sections, since the primary goal of this study is to examine the gross

characteristics of the solution space.

Substituting (3.13) back into (3.7), the following expression for the

vertically integrated dissipation is obtained:
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D= mj < E >3/2 = C2 m3 u*3 ( 1+2*)/l2(1K2*)]. (3.16)

Physically, the dissipation must always be non-negative, which yields

or

1+2* 2

2-1/2. (3.17)

«...

\

h *

I

25 25 75

Fig. 3. The dlmenslonless depth scale h* plotted against the rotation stress

variable <D.
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For < -1/2, and in absence of advection, no steady-state situation is

possible and the mixed layer will continually entrain. Also, noting that, in

equation (3.13), the denominator must be positive, the limiting case

expressed by (3.17) suggests that C2 < 2 for all situations (since C2 is

assumed to be a constant). Zeman and Tennekes (1975) obtained

n^/m^ 1/2, which gives C2 ~ 12/7. Using the suggested value, a

nondimensional mixed layer depth Is given by ( Fig. 3 )

h* = h/C
1
L= 1/( 1 + 12*/7 ). (3.18)

Note that to the limiting value # = -1/2 corresponds a theoretical maximum of

h* = 7.
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IV. THE EQUILIBRI UM MIXED LAYER DEPTH IN THE TROPICAL ATLANTIC

A. THE BOUNDARY CONDITIONS

In the following sections, the method of application of the steady-state

mixed layer model to an oceanic macro-scale domain is presented. The goal

of this study is to gain insight into the relative importance of the physical

mechanisms involved, as well as to identify the regions and the time of the

year where the observed turbulent layer can be represented realistically by

such a simple steady-state model. This goal is limited to some degree by the

availability and suitability of experimental observations of the boundary

conditions. Although a significant effort has been made in the last decade to

obtain accurate and detailed measurements of the surface boundary

conditions, such data are frequently confined to limited oceanic areas. The

available climatological data for large oceanic areas are often unreliable,

sparse and distributed irregularly, depending on the usual routes followed by

mariners. Given these limitations, the tropical Atlantic Ocean is the best

covered ocean basin.

Except for the observed surface wind-stress, where the digitized data of

Hellerman and Rosenstein (1983) were used, all the other data were

interpolated from climatological atlases. The area chosen was the tropical

and equatorial Atlantic between 6 degrees south and 30 degrees north.

1 . The Observed Mixed Layer Depth

The atlas of Robinson et at. (1979) was used to obtain the observed

monthly values of the mean depths to the top of the thermocline for the
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equatorial and tropical Atlantic. The top of the thermocline is therein defined

as the depth at which the temperature Is 1 . 1 degrees centigrade less than the

surface temperature. Although this definition differs from the usual

definition of "mixed layer depth" (the vertical extent of turbulent mixing), the

difference should not be significant for the present study, provided density is

mostly dependent upon temperature, and the boundary layer Is well mixed.

For the cases where the mixed layer mean temperature decreases

significantly with depth, the above criterion might underestimate the vertical

extent of mixing.

90
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Fig. 4. Zonal variation of the mean mixed layer depth for the month of

September (equator). The curve is the result of an adjusted cubic spline fit

over the observed values, represented in the figure by circles.
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Because the contours displayed in the atlas have a relatively large

increment of 15 meters, a cubic spline fit was made for each parallel of

latitude, and the resulting curve was further adjusted so that the interpolated

values for each interval would lie between extremes. The resulting maximum

graphical error is estimated to be ±10 meters. No indication is given by the

authors about the estimated errors for their analized depths.

Fig. 4 shows the zonal equatorial profile of the mean mixed layer

depth for the month of September, as computed by the above technique.

2. The Surface Heat Flux

The heat budget atlas of Hastenrath and Lamb (1978) was used to

provide best estimates of the net surface heat flux and the net surface solar

irradiance for the area. For the assumptions made and the calculation

details, the reader is referred to the introductory part of the atlas.

The contour interval for the surface heat flux is 40 W/m2
, which

constitutes a low resolution. In order to minimize the resulting errors, a

cubic spline surface was first fitted over a grid of digitized values, and the

resulting interpolated values were further adjusted for each parallel of

latitude. Thus, for each interpolation interval, the calculated values would

lie between extremes. The considerable effort required for this process is

well justified because of the sensitivity of the diagnostic equations to small

deviations in the values of Q , specially when Q is small.

The relative and absolute errors in the net surface heat flux, as

indicated by the authors, are estimated at less than 10 and more than

20 W/m2, respectively. The absolute error in interpolated values is

estimated to be less than 20 W/m2
.
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As an example, Fig. 7a shows the zonal equatorial profile of the mean

surface heat flux for the month of September, as determined by the above

technique.

3. The Surface Wind Stress

The surface wind stress data are those of Hellerman and Rosenstein

(1983), for a mesh grid of 2 degrees of latitude by 2 degrees of longitude,

which is suitable for our purpose. The two components are calculated by

means of the bulk aerodynamic formulation:

tx= Pa<4) Ux (Ux2 + Uy
2 )1/2 (4.1)

and Ty
= p aC Uy (Ux

2 + Uy
2

)
1/2

,
(4.2)

where Ux and Uy are the two components of the wind speed at 10 meters

above the sea-surface. The drag coefficient, Cn, depends upon wind speed

and stability, according to the formulation of Bunker (1976). The maximum

standard error in the surface wind-stress values for the area considered is

estimated to be less than 0.01 N/m2
.

The wind stress data are given for each odd whole degree of latitude

and longitude, and in the present scheme we will be working with even

parallels of latitude. Thus the original data had to be interpolated. The

resulting interpolation errors are considered to be negligible for the purpose

of the present study.

4. Steadv-State versus Time-Dependent Solutions

Formally, a steady-state mixed layer model should only be applied to

a real oceanic situation when entrainment has stopped and the top of the
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thermocllne has retreated to an equilibrium level, dependent on the balance

between the downward surface heat flux and the surface wind-stress. On a

seasonal time scale, i.e., neglecting daily variations, and for mid-

latitudes, the above situation Is expected to occur in spring and summer,

when the mean downward surface heat flux is rising and the wind speed is

decreasing. For the equatorial and tropical regions, however, this process

is complicated, since the mean surface heat flux follows a complex annual

variation, while the wind speed has a strong annual component.

For simplicity, the diagnostic mixed layer depth should be calculated

for the same month throughout the chosen area, though the requirement of

steadiness will not be satisfied in some regions. A logical and simple way to

solve this problem is to plot the annual time series of the zonal profiles of

the observed mixed layer depths for some parallels of latitude and choose

the time of the year which best conforms to the condition of steadiness for all

latitudes. Figure 5 shows these plots, as compiled and further interpolated

from Robinsons's atlas. The month of September was chosen as conforming

best to these conditions. Except at the equator, where the top of the

thermocline seems to be still deepening, the other latitudes show

approximate steady-state situations, during September.

The analysis of Fig. 5a reveals a strong annual component of the

equatorial mixed layer depth, which suggests the domination of the wind

stress in determining the vertical extent of mixing. In Fig. 6, the annual time

series of the net surface heat flux and the wind speed are shown. Indeed, a

qualitative compairason of the contour lines of both figures (5a and 6)

reveals a much stronger correlation between the mixed layer depth and the
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Fig. 5. Annual zonal variation of the mean mixed layer depth, (a) Equator,
(b) 5 degrees north.
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Fig. 5(cont. ). Annual zonal variation of the mean mixed layer depth

degrees north, (d) 15 degrees north.
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Fig. 6. (a) Annual zonal variation, in W/m2
, of the net surface heat flux at

the equator, (b) Annual zonal variation, in meters, of the wind speed at the
equator.
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wind speed than between the mixed layer depth and the surface heat flux. In

particular, the wind speed maximum (August to October) and minimum

(March to April), coincide well with the corresponding relative extremes in

the mixed layer depth. Similar agreement is not apparent between the mixed

layer depth and the surface heat flux, as so far as an equilibrium state is

concerned.

On the other hand, one might expect the annual variation of the surface

heat flux to show a marked response due to the annual variation of the Sun's

declination, i.e., to show a strong biannual component. However, the

exchange of heat between the ocean and the atmosphere is, in the equatorial

and tropical regions, significantly influenced by other variables. These

variables, such as cloudiness and precipitation, have seasonal variations

which are more complex and difficult to explain.

During the months of May to September, another Interesting feature in

the eastern part of the Equator is the mixed layer depth minimum. This

occurs when the surface heat flux is negative (upward). Without advection,

an equilibrium situation is obviously precluded. Interestingly, the atlas of

Robinson et at. (1979) shows that this is also a zone of strong equatorial

upwelling and surface divergence. Thus, an advective mechanism may

largely influence the dynamics of turbulent mixing for that region.

From the above discussion and also from the knowledge that the

equatorial and tropical regions are zones of important oceanic heat

divergence, it might be concluded that horizontal and vertical advection play

an important role in determining the vertical extent of mixing at the equator.

As lateral transport in the ocean diverts much of the heat exchanged with the
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atmosphere, this effect would tend to spaclally homogenize the surface heat

flux available for the vertical turbulent processes. Thus, the seasonal

variations of the mean mixed layer depth would primarily reflect the

seasonal variations of the wind speed.

B. METHOD OF MODEL TUNING

The models described in sections II and III shall be applied to a set of

some parallels of latitude in the tropical and equatorial Atlantic, from 6

degrees south to 30 degrees north. For each parallel, the spacing of

calculated values will be 1 degree of longitude. The purpose of the following

procedure is to identify the zones where the observed mixed layer is well

represented by the above steady-state models, as well as to analyse the

relative influence of the physical mechanisms discussed in section III: the

penetration of radiation below the surface and the rotation stress

mechanism. For each parallel of latitude, a zonal profile of the following

nondimensional depth will be first calculated:

H* = H(1+C2 0)/L , (4.3)

where H is the observed mixed layer depth and C2 = 12/7. To calculate the

Obukhov length scale L and the rotation stress variable 0, the penetration

parameters will be set to , respectively, R=O.Z and X = 6 meters. Note

that, for each longitude point, H* is numerically equal to the constant C^. In

the ideal case of a perfect agreement between the model's results and the

observations, the resulting curve of H* for each latitude would be a constant
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of order 1. The departure of the calculated values from that ideal solution

will constitute a method of identifying the zones where steadiness is not

verified or advection plays an important role. For the situations where the

surface heat flux is upward, i.e. , where a one-dimensional equilibrium is not

possible, H* will be set to 0. The described procedure also makes possible

the selection of the areas where the models will be applied. For these areas,

the below defined diagnostic mixed layer depths will then be calculated:

(i) h : the equilibrium mixed layer depth, assuming R=0, C2=0. This

corresponds to the steady-state Kraus and Turner diagnostic depth, where

radiation is assumed to be totally absorbed at the surface.

(ii) h] : the equilibrium mixed layer depth, assuming R=0.2, X - 6m,

C2=0. This is the same as h , except that radiation is assumed to penetrate

below the surface, according to the model given by equation (3.4).

(iii) h£ : the equilibrium mixed layer depth, assuming R=0.2, X = 6m and

C2*0. Here, the rotation stress mechanism is also included, according to the

formulation of Garwood eta/. (1985a).

The pertinent equations are given in sections II and III, and the following

constants are assumed:

p = 1025 Kg/m3

p a
= 1.2Kg/m3

a = 2x 10
_4

C
_1

Cp = 3890 J Kg-1 C
_1
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g = 9.8 m/s2

=7.29x ICT^s" 1
.

For each of the above defined depths and for each latitude, the tunning

constants Cj and C2 will be adjusted, so that the summation of the squares

of the differences between the diagnostic mixed layer depths and the observed

mixed layer depths is a minimum, and C ji and Oi C2 iZ. Following this

tuning process, a standard deviation will be then computed, according to the

definition:

N

s2 = I(Hrhi)2/(N-l), (4.4)
irl

where the Hj's are the observed mixed layer depths, the \\\'s are the

diagnostic mixed layer depths and N is the number of longitude points. The

standard deviations will serve as a quantitative verification of the models,

the model assumptions, and the accuracy of the boundary conditions.

As discussed earlier, the rotation-stress variable is required

theoretically to be greater than -1/2, the value corresponding to a situation

of zero dissipation. For that reason, d) will be set equal to -1/2 whenever

its calculated value is less than -1/2. During the month of September, this is

likely to occur in the western Atlantic, where the zonal surface wind stress

is large and the surface heat flux is small.

The selection of the factor R and the penetration depth \ is an

imprecise process because of the paucity of data for the optical properties of

the equatorial and tropical oceans. Although the choice here of values for R
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and X was based on a preliminary tunning of the model at a specific site, it is

still somewhat arbitrary. Without a more complete data set, the inclusion of

these parameters as spacially-varying tuning parameters does not seem

justifiable at this time. Such a procedure would tend to mask the effects of

other important physical mechanisms, such as horizontal and vertical

advection. An alternative might be to define two different scales of

penetration for the long and short-wave radiation, and then to use the

experimental results of Paulson and Simpson (1977). However, this would

also complicate the problem. Furthermore, Paulson and Simpson's data are

valid only for a specific spatial and temporal situation in the North Pacific. In

the absence of detailed measurements of the ocean's optical properties,

there is no simple solution to this problem, and the results of the present

work will be somewhat affected.
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C. RESULTS

Appendix 1 shows the zonal variation of the nondimensional depth H* for

latitudes 0, 10, 20 and 30 degrees north. Only two particular cases, the

equator and 10 degrees north, will be presented and discussed in the text.

1 . Equator

Fig. 7 shows the equatorial boundary conditions : the surface heat flux

Q , the net surface solar irradiance Q s ,
the total surface wind stress T, and

the zonal wind stress Tx . Fig. 8a shows the zonal variation of the

nondimensional depth H#, computed using equation (4.3). It is apparent from

this result that only a limited zone, between about 31 degrees west and 4

degrees west seems to be in a steady-state balance. For some of the

remaining regions, the presence of an upward total surface heat flux

precludes the possibility of an equilibrium, causing the top of the thermocline

to continually entrain. We have previously suggested that the turbulent

processes near the eastern boundary are likely to be dominated by equatorial

upwelling, which can reduce significantly the vertical extent of mixing. The

values from Fig. 7a seem to confirme this hypothesis, since the values of H*

are less than 1 near the coast. For the western region, other mechanisms

might partially explain the departure of the model's results from the

observations. The first of those is related to the strong wind-driven current

near the coast of Brazil, the "Guiana current". This flow and the associated

meridional variations in the surface heat flux might cause the local dynamics

to be dominated by horizontal advection. A second possibly contributing

factor is the influence of the Amazon River runoff. According to the data on

the mean surface salinities in Robinson's atlas, this runoff extends to more
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Fig. 7. Mean surface boundary conditions at the equator, during September,

(a) Net downward surface heat flux, (b) Net downward surface solar

irradiance.
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Fig. 7(cont.). Mean surface boundary conditions at the equator, during

September, (c) Total surface wind stress, (d) Zonal surface wind stress.
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than 300 nautical miles eastward from the coast and it affects the upper few

tens of meters of the water column. As examined by Garvine (1984), an

advected shallow plume of buoyant water can decrease the mixed layer

depth. Also, since the water advected from the Amazon is more turbid than

the average sea water, the value chosen for the penetration scale A. is

probably too large for the region, causing the model to overestimate the

mixed layer depth. Fig. 7a shows precisely this effect : approaching the

western boundary, H* falls markedly to about 0.4.

For the equatorial region between 31 degrees west and 4 degrees west,

the diagnostic values were calculated for the mixed layer depths scales h
,

h} and h2 . The results were compared with the observed mixed layer depths.

Fig. 8 shows the zonal profiles obtained for each of the defined scales. The

vertical bars represent the effect of varying Q by ±10 W/m^, which

indicates how sensitive the model is to moderate errors or variations in the

heat flux data. The comparaison of Figures 7a and 8 also shows that h£ is

significantly more sensitive to variations in Q than are the other depth

scales, especially when Q is small. In determining a best fit for h and h^

,

the corresponding standard deviations were s = 5.4 meters and $] = 6.2

meters. These optimized values were obtained with Cp 1 .3 and Cp 1 .0, for

h andh}, respectively.

Fig. 9 illustrates the tunning process of C^ and C2, in computing the

zonal variation of the depth scale h2« Displayed here are isopleths, in m^, of

the sums of the squares of the differences between the diagnostic and the

observed depths, as a function of C] and C2 values. For each grid point of

C] and C2 values, a zonal profile of the diagnostic depth h2 was calculated,
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Fig. 8. Model results for the equator, (a) Zonal variation of the
nondimensional mixed layer depth H«. (b) Zonal variation of the Kraus and
Turner diagnostic mixed layer depth h . The circles represent observed
values, while the small squares represent interpolated values. The vertical
bars show the effect of varying the surface heat flux Q by ±10 W/rn 2
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shaded areas in (a) correspond to the zones where a one-dimensional,
steady-state balance is assumed impossible.
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.

47



as well as the zonal summation of the squares of the differences between

those depths and the observed mixed layer depths. The arrows in Fig.

9

indicate the optimal values of the constants, corresponding to a minimum

standard deviation s^ = 3.3 meters.

There are some interesting features to be noted in the results:

(i) There is no quantitative improvement in the quality of the results

for the Kraus and Turner model (h ) when the effect of the penetrating

radiation is included (hj). This is explained by the fact that the surface heat

flux is relatively large in that region, and the vertical scale \ of penetration

is much less than the computed Obukhov length scale.

(11) The zonal variation of the mixed layer depth near the western limit

is better represented when the rotation stress mechanism is included (h^).

In that region, the zonal wind stress has relatively large negative values,

which causes to also have relatively large negative values.

(iii) The model seems much more sensitive to the value of Cj than to

the value of C?. Fig. 9 shows a relatively large zone, between C£= 1 .2 and

C2=1 .6 where the standard deviation remains practically constant. This fact,

associated with the similarity of the results between h and hj , might indicate

that the effect of the rotation stress mechanism is small, for the region taken

as a whole.

In general, the revised model shows a remarkably good agreement

with the observations. However, and because the Kraus and Turner h 's are

already, per se, in good agreement with the observed values, the results
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are not conclusive concerning the Importance of the penetrating radiation and

the rotation stress mechanism. The eastern part of the equator, where the

observed zonal wind stress is positive, would constitute a suitable domain to

further test the significance of the rotation stress mechanism. There, the

diagnostic depths h£ would be larger than the Kraus and Turner depths h and

hj. However, as we have seen, other mechanisms appear to affect the

dynamics of mixing In the region, and will need to be included in such a test.

1.8

1.6

1.4

1.2

1.0

Fig. 9. Variation of the sum of the squares of the differences, in m^ .between
the observed equatorial mixed layer depths H and the diagnostic mixed layer

depths \\2 with the tunning parameters C] and C2.
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2. 10 degrees North

Fig. 10 shows the mean boundary conditions for 10 degress north

during the month of September. In Fig. 11a, the zonal variation of the

nondimensional depth H* is displayed. This figure shows that the zone which

seems to be in a steady-state balance (between about 38 degrees west and 17

degrees west) is considerably smaller than the corresponding zone for the

equator. Although the surface heat flux is always positive for the entire

domain, the values are usually smaller than at the equator. When the effect

of the penetration of radiation is included, the result is to further reduce the

effective heat flux at the surface, as defined by equation (3.4). This effect

reduces buoyant damping and precludes the possibility of an equilibrium for a

larger area. Although unsteadiness may partially account for these results,

advection seems to be a more plausible explanation for the regions where the

effective heat flux is positive, since H* is always less than 1. A meridional

gradient is present in the surface heat flux because of the strong wind-driven

current in the western part of the tropical Atlantic, and this effect might

cause buoyant water to be advected northward, reducing the vertical extent

of mixing. The variation of H* near the eastern boundary is more difficult to

explain. From about 18 degrees west, where it has a value of 1 , H* continues

to increase eastward, which indicates that the observed depth becomes

larger than the diagnostic depth h2- The analysis of the temperature

distribution 1n the atlas of Robinson et al. (1979) shows that this is a region

of particularly strong coastal upwelling. However, positive vertical

advection can only reduce the depth of the turbulent boundary layer, as
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Fig. 10. Mean surface boundary conditions at 10 degrees north, during

September, (a) Net downward surface heat flux, (b) Net downward surface

solar irradiance.
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September, (c) Total surface wind stress, (d) Zonal surface wind stress.
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stated by Garwood at al. (1985b). Thus, this mechanism cannot be

responsible for the difference.

The diagnostic depths h , h^ and h2 were calculated for the region

between 38 degrees west and 17 degrees west. Fig. 11 shows their zonal

variations. The vertical bars represent the effect of varying Qo by ±5 W/m2,

from which it can be concluded that the model is much more sensitive here to

small variations in the heat flux than it was for the equator, especially when

the penetration of radiation effect is included. This is explained by the

already discussed fact than the surface heat flux at 10 degrees north is

significantly smaller than it is at the equator. In some areas, particularly in

the western half of the domain, the sensitivity is so large that the resulting

depths vary by a factor of three when those effects are considered.

Considering that the relative errors in the surface heat flux data, as

estimated by Hastenrath and Lamb (1978), are less than 10 W/m 2
, only a

qualitative interpretation of the results for this latitude should be made.

For each of the diagnostic scales h , h
1
and h2, the optimized tuning

constants and the corresponding standard deviations have the following

values:

h : C! = 2.6, C2 = 0.0, s= 11.8m

h
1

: C
1
= 0.8, C2 = 0.0, s = 7.1 m

h2 : Cj = 0.8, C2 = 0.7, s = 5.9 m.

A significant improvement in the quantitative quality of the results is

apparent, when the penetration effect is included (hi ). Note that the optimum
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Fig. 11. Model results for 10 degreees north, (a) Zonal variation of the

nondimensional mixed layer depth H«. (b) Zonal variation of the Kraus and

Turner diagnostic mixed layer depth h . The circles represent observed

values, while the small squares represent interpolated values. The vertical

bars show the effect of varying the surface heat flux Q by ±5 W/m2. The

shaded areas in (a) correspond to the zones where a one-dimensional,

steady-state balance is assumed impossible.
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Fig. 1 l(cont). Model results for 10 degrees north, (c) Zonal variation of the
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tuned value of C1 was reduced from 2.6 to a more plausible 0.8, which

approaches the value found for the equator. In general, the inclusion of the

penetration effect tended to homogenize the diagnostic mixed layer depth

field. This caused a better agreement between the results and the

observations, particularly near the extremes of the longitudinal interval. As

expected from the analysis of the boundary conditions for the zonal wind

stress, the western part of the domain is better represented when the

rotation stress mechanism is included. Also, a small improvement is

observed near 22 degrees west, where the observed mixed layer depth has a

minimum. This is explained by the zonal wind stress being positive in that

region. When the eastern boundary is approached, Tx becomes more and

more positive, causing the diagnosed value for h? to be less than the

observed value.

Fig. 1 1 illustrates the tuning process for h£. Again, the contour lines,

in m^, of the sums of the squares of the differences between the diagnostic

and the observed depths, are displayed as a function of C^ and C;?. The

optimal value of C^ = 0.8 has not changed with the inclusion of the rotation

stress mechanism. This tends to verify the merits of the procedure, in the

sense that no other physical mechanisms, absent from the model's

formulation, are being compensated for. On the other hand, although Fig. 11

shows that the model is still more sensitive to variations in Cj than to

variations in C2, the optimal value of C2 is much better defined here than at

the equator. Also, this relative sensitivity seems to verify the importance of

the rotation effect.
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Although a much better representation of the mixed layer depth field

was obtained with the revised model at 10 degrees north, this verification Is

limited by the uncertainty in the boundary conditions. As we have already

noted, the model is so sensitive to small variations in the heat flux data, that

no detailed interpretation of the results is justifiable.

1.2 T

Fig. 12. Variation of the sum of the squares of the differences, in m 2
,
between

the observed mixed layer depths H and the diagnostic mixed layer depths h2

with the tunning parameters Cj and C2 ( 10 degrees north).
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V. CONCLUSIONS

Starting with the theoretical frame work of the one-dimensional,

steady-state Kraus and Turner ( 1967) model for the surface ocean boundary

layer, a revised theory was presented. This new theory includes the effect of

the penetrating radiation below the surface on the buoyancy flux, as well as

the rotation stress mechanism examined by Garwood ( 1935a, b). In the

presence of a downward surface heat flux and a surface wind stress, the

penetration of radiation will tend to reduce the buoyant damping of

turbulence, enhancing vertical mixing. The rotation stress mechanism,

driven by the interaction between the meridional component of the planetary

rotation Q v and the zonal wind stress Tx ,
predicts the equilibrium mixed

layer depth to increase when Tx is negative (westward) and to decrease when

Tx is positive (eastward).

To test its response, and to gain insight into the relative importance of the

physical mechanisms involved, the revised model was applied to a set of

boundary conditions in the tropical Atlantic. Except for the surface wind

stress, where digitized values were used, the other boundary and oceanic

conditions (observed mixed layer depth, surface heat flux and surface

downward solar irradiance) were interpolated from low-resolution

climatological atlases. Since the model is particularly sensitive to small

variations in the heat flux data, the quality of the results is considered to

have been somewhat affected by the amount of uncertainty in the boundary

conditions. Also, in the absence of detailed measurements of the optical

properties of the tropical oceans, the values of the penetration parameters X
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and R were assumed to be constant over the whole domain. Given these

limitations, no detailed interpretation of the results is appropriate here.

In general, the response of the revised model compares favorably with

the observations. The improvement of the results when the two new

mechanisms are included is very significant, particularly at 10 degrees

north. This was expected, in so far as the penetration effect is concerned,

since at 10 degrees north the mixed layer is relatively shallower than at the

equator, and the downward surface heat flux is generally smaller. For this

latitude, an important result which seems to support the need to Include the

rotation stress formulation is that the optimal value of the constant C]

remains constant when that process is Included in the tuning of the model.

In a recent paper, Garwood <?t a/. (1985b) examined the zonal dependence

of the climatological mixed layer depth in the near-equatorial Pacific and

concluded that the rotation stress mechanism is a plausible explanation for

the deep mixing in the central equatorial Pacific. Although that feature is not

so pronounced in the tropical and near-equatorial Atlantic, the results

obtained here seem to support the same conclusion, especially in its western

part. On the other hand, the tropical Atlantic is a relatively smaller ocean

basin, and the influence of coastal physical processes, like coastal

upwelling, are more likely to influence significantly the dynamics of the

boundary layer. Indeed, this effect is apparent from the results, since only

the central part of the domain seems to be in a one-dimensional equilibrium

state. Also, the sensitivity of the model to small variations in the surface

heat flux shows that this equilibrium state is, as it is in the tropical Pacific,

a delicate one.
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The choice of the tropical Atlantic as a domain for application of the model

was primarily motivated by the existence of a suitable set of surface

boundary condition data. Future research on the subject should extend the

domain to the non-tropical regions and should include unsteadiness and

advection. Although the model derived in this paper is a simplistic one-

-dimensional representation of a complex phenomenon, and the quality of the

results were probably affected by the lack of detail of the available data, it

is concluded here that the physical mechanisms of rotation stress and

penetration of radiation are important in determining a steady-state

equilibrium depth of turbulent mixing for the tropical Atlantic.

60



LIST OF REFERENCES

Garvine, R.W. , 1984 : Radial spreading of buoyant, surface plumes in coastal

waters. Journal of Geophysical Research, 89, 1989-1996.

Garwood, R.W., 1977 : An oceanic mixed layer model capable of simulating

cyclic states. Journal ofPhysical Oceanography, 7, 455-468.

Garwood, R.W., P.C. Gallacher and P. Muller, 1985a : Wind direction and

equilibrium mixed layer depth : General theory. Journal of Physical

Oceanography, in press.

Garwood, R.W., P. Muller and P.C. Gallacher, 1985b : Wind direction and

equilibrium mixed layer depth in the Tropical Pacific Ocean. Journal of
Physical Oceanography, in press.

Hastenrath, S., and P.J. Lamb, 1978: Heat Budget Atlas of the Tropical

At/antic andEastern Pacific Oceans. The University of Wisconsin Press.

Hellerman, S., and M. Rosenstein, 1983 : Normal monthly wind stress over
the world ocean with error estimates. Journal of Physical Oceanography,

13, 1093-1104.

Kraus, E.B., and J.S. Turner, 1967 : A one-dimensional model of the

seasonal thermocline, II: The general theory and its consequences. Tellus,

19, 98-105.

Paulson, C.A., and J.J. Simpson, 1977 : Irradiance measurements in the

upper ocean. Journal of Physical Oceanography, 1, 952-956.

Robinson, M.K., R.A. Bauer and E.H. Schroeder, 1979 : Atlas of North
Atlantic-Indian Ocean Monthly Mean Temperatures and Mean Salinities of the

Surface Layer. Naval Oceanographic Office.

Rotta, J.C., 1951 : Statistiche Theorie nichthomogener Turbulenz. Z. Phys.,

129, 547-572.

Simpson, J.J., andT.D. Dickey, 1981 : The relationship between downward
irradiance and upper ocean structure. Jounal of Physical Oceanography, 1 1

,

309-323.

61



Tennekes, H. , and J.L. Lumley, 1972 : A First Course in Turbulence. The MIT
Press, Cambridge, Massachusetts, 300 pp.

62



APPENDIX A - MODEL OUTPUT

H.

i

I
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Fig. 13. Zonal variation of the nondimensional mixed layer depth H*. Top :

equator. Bottom : 10 degrees north. The shaded areas correspond to the

zones where a one-dimensional, steady-state

impossible.

balance is assumed

63



Fig. 14. Zonal variation of the nondimensional mixed layer depth H*. Top '. 20

degrees north. Bottom : 30 degrees north. The shaded areas correspond to

the zones where a one-dimensional, steady-state balance is assumed
impossible.
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APPENDIX B - COMPUTER PROGRAMS

' Program depth - calculates the steady-state mixed layer depth

variation for a given parallel of latitude.
' Joaquim Filipe Gaspar - April 1985 - Naval Postgraduate School.

DEFINT i-k,n

DIM long(200),Qo(200),Qs(200),tau(200),taux(200),depth(200),h(200)

******************** Variables *******************************

lat - latitude in degrees ; long - longitude in degrees

Qo - surface heat flux in W/m? ; Qs - surface solar irradiance in W/m^
Q - effective heat flux in W/m 2

tau - total wind stress in N/m2 ; taux - zonal wind stress in N/m^
depth - observed mixed layer depth in meters
h - diagnostic mixed layer depth in meters
L - Obukhov length scale in meters
Fi - rotation stress parameter
R, lb - radiation penetration parameters
c 1 , cZ - model tunning parameters.
**************************************************************

Inputdata:

INPUT * Enter latitude '; lat: lat$=STR$(lat)

fl$="sh"+lat$ : OPEN "1n",*1,f1$

f2$="qs"+lat$ : OPEN "in*,*2,f2$

f3$="tau'+lat$ : OPEN "in",#3,f3$

f4$=""taux"+lat$ : OPEN "1n",*4,f4$

f5$="mld'-Hat$ : OPEN "in",* 5, f 5$

n=0
WHILE NOT EOF(1)

n=n+l

INPUT*1,long(n),Qo(n)
INPUT#2,lg,Qs(n)
INPUT#3,lg,tau(n)
INPUT#4,lg,taux(n)
INPUT#5,lg,depth(n)

WEND
CLOSE
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Inputparameters:
PRINT "Longitude limits in files are "; longO ),long(n)

INPUT "Enter new longitude limits "; longO,longl

IF longO<long(1 ) OR long1>long(n) THEN Inputparameters
INPUT "Enter value of CI "; cl

INPUT "Enter value of C2 "; c2

10 INPUT "Enter value of R "; R : IF R<0 OR R>1 THEN 10

20 INPUT "Enter value of lambda "; lb : IF lb<=0 THEN 20

Functions:

DEF FNL(tau,Q)=124078!*tau~1.5/Q
DEF FNQ(Qo,Qs,L)=Qo-R*Qs*(2*lb/L-(1+2*lb/L)*EXP(-t/lb))
DEFFNFi(taux,Q)=144.6*taux*C0S(lat/57.2958)/Q

Calculate:

sum=0
FOR 1=1 TO n

IF long(i)<long0 OR 1ong(i)>long1 THEN 30
IF Qo(i)<=0 THEN h(i)=0 : c$="*" : GOTO display

L=FNL(tau(i),Qo(i))
Q=FNQ(Qo(i),Qs(i),L):IF Q<=0 THEN h(i)=0:c$="*":GOTO display

l=FNl(tau(i),Q)
Fi=FNFi(taux(i),Q) : IF Fi<-.5 THEN Fi=-.5

h(i)=d*L/(1+c2*Fi)
sum=sum+(depth(i)-h(i))"2
c$="

*

display:

PRINT long(i);c$,h(i)

30 NEXT i

PRINT "Sum : "; sum

Choose:

INPUT ' Save results( 1 ),New flles(Z), new parameters(3), Quit(4) "; o

ON o GOTO Saveresults, Inputdata, Inputparameters, quit

Saveresults:

INPUT "Enter name of output file "; fo$

OPEN"out",#5,fo$
FORi=1 TOn

WRITE*5,long(i),h(i)
NEXT l

CLOSE
GOTO Choose

Quit:

END
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' Program Spline - fits a cubic spline over a set of (x,y) points.
' Joaquim Filipe Gaspar - January 1985 - Naval Postgraduate School

DIM x(200),y(200),a(200,4),s(200) : DEFINT i,j,n,e

DIM a0(200),a1(200),a2(200),a3(200)

Enterdata:

INPUT "Read disk file(d) or enter data from keyboard(k) "; a$

IF a$="k" THEN key ELSE IF a$="d" THEN disk ELSE Enterdata

disk:

INPUT 'Enter name of file to fit *; f$

OPEN"in",#l,f$
n=1

WHILE NOT EOF(1)
INPUT#1,x(n),y(n)
n=n+1

WEND
CLOSE*!
n=n-1 : GOTO Endc

key:

INPUT "Enter number of points "; n

FORi=l TO n: PRINT i, : INPUT x(i),y(i) : NEXT i

Endc:

INPUT "Enter end condition (1,2 or 3) "; endcond

nm2=n-2 : nm1=n-1
dxl=x(2)-x(1) : dy1 = (y(2)-y(1))/dxl*6

defmatrix:

FORi=1 TO nm2
dx2=x(i+2)-x(i+1)

dy2=(y(i+2)-y(i+1))/dx2*6

a(1,1)=dxl : a(1,2)=2*(dxl+dx2)
a(i,3)=dx2 : a(i,4)=dy2-dy1
dxl=dx2 : dyl=dy2

NEXT i

ON endcond GOTO solve, end2,end3

end2:

a(1,2)=a(l,2)+x(2)-x(l)
a(nm2,2)=a(nm2,2)+x(n)-x(nml)
GOTO solve
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end3:

dx1=x(2)-x(1) : dx2=x(3)-x(2)
a(1,2)=(dx1+dx2)*(dx1+2*dx2)/dx2
a(1,3)=(dx2*dx2-dx1*dx1)/dx2
dxn2=x(nm1 )-x(nm2) : dxnl=x(n)-x(nm1

)

a(nm2, 1 ) = Cdxn2*dxn2-dxn1*dxn1 )/dxn2

a ( nm2 , 2 ) = ( dxn 1 +dxn2 ) * ( dxn 1 +2* dxn2 ) /dxn2

solve:

FOR i=2 TO nm2
a(i,2)=a(i,2)-a(i,1)/a(i-1,2)*a(i-1,3)

a(i,4)=a(i,4)-a(i,1)/a(i-1,2)*a(i-1,4)

NEXT i

a(nm2,4)=a(nm2,4)/a(nm2,2)
FORi=nm2-1 TO 1 STEP-1

a(i,4)=(a(i,4)-a(i,3)*a(i+1,4))/a(i,2)

NEXT i

FOR i=1 TO nm2
s(i+1)=a(i,4)

NEXT i

ON endcond GOTO endll ,end22,end33

end) 1:

s(1)=0: s(n)=0: 60TO coeff

end22:

s(1)=s(2) : s(n)=s(nm1) : GOTO coeff

end33:

s(1)=((dx1+dx2)*s(2)-dx1*s(3))/dx2
s(n)=((dxn2+dxn1 )*s(nm1 )-dxn1*s(nm2))/dxn2

coeff:

FORi=1 TO nml
dx1=x(i+1)-x(i)

a3(i)=(s(i-H)-s(i))/(6*dx1)

a2(i)=s(i)/2

aHi)=(y(i+1)-y(i))/dx1-(2*dx1*s(i)+dx1*s(i+1))/6
a0(i)=y(1)

NEXTi

calculate:

INPUT "Enter Interval betwen points "; dx
PRINT "x-limits on file were : ",x( 1 ),x(n)
INPUT "Enter new x-limits "; xl ,x2

INPUT "Enter name of output file '; f$

OPEN "out\*2,f$
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FOR i=l TO nml
xx*xl-x(i)
WHILE xKx(HI)

yy=a0(i)+al(i)*xx-»-a2(i)*xx*xx+a3(i)*xx»xx*xx

WRITER, xl,yy
xx=xx+dx : x!=xl+dx

WEND
NEXT i

xx=x1-x(nml

)

WHILE x\<=xZ
yy=aO(nmt )+al(nm1 )*xx+a2(i)*xx*xx+a3(i)*xx*xx*xx
WRlTE*2,xt,yy
xx=xx+dx : x1=x1+dx

WEND
CLOSE#2

GOTO Enterdata

69



' Program Graph - plots an Internally defined function or a file from
disk.

' Jo a qui m Filipe Gaspar - Jan 1985 - Naval Postgraduate School

DEFINT a-z : DEFSNGx,y,p: DIM xf(700),y(700),yf(700)
pi=3. 141593 : YNF=3E+38

menudef:

MENU 1,0,

MENU 1 ,

1

MENU 1,2

MENU 1,3

MENU 1,4

MENU 2,0,
MENU 2,1

MENU 2,2
MENU 2,3
MENU 2,4
MENU 3,0,

MENU 3,1

MENU 3,2
MENU 4,0,
MENU 4,1

MENU 5,0,

MENU 5,1

MENU 5,2
MENU 6,0,
MENU 6,1

MENU 7,0,
MENU 7,1

MENU 7,2
MENU 7,3
MENU 7,4
MENU ON

Function"

"Enter new function"

"Use internal function"

"Input new file from disk"

"Use present file"

Resolution"

"Very High"

"High"

"Medium"
•Low-

Scaling"

"Automatic"

"Enter scaling factors"

X-Limits"

"Enter x-limits"

Grid"

Yes"

No"

Title"

"Enter title"

Run"

"Start graph"

"New graph"

"Stop-List"

"Quit"

res=4 : autoscale=1 : grid=1

Menuloop:

IFxrangeTHEN MENU 7,1,1
ON MENU GOSUB Menucheck
GOTO Menuloop

Menucheck:
ON MENU(0)GOSUB Function, Resolution, Scaling, Limits, Grid, Title, Start

RETURN
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Function:

ON MENUU) GOTO Newf unction, 01dfunction,Newfi1e,01dfile

Newfunction:

MENU RESET : STOP
01 dfunction:

foption=0

MENU 1,2,2: IF fflag THEN MENU 1,4,1

RETURN
Newfile:

INPUT "Enter name of file "; f$

0PEN"in',#1,f$
i=0 : yfmin=YNF : yf max=-YNF
WHILE NOT E0F(1)

i=i-H : INPUT* 1,xf(i),yf(i)

IF yf(i)>yfmax THEN yfmax=yf(i) : imax=i

IF yf(i)<yfmin THEN yfmin=yf(1) : imin=i

WEND
CLOSE*

1

xfmin=xf( 1 ) : xfmax=xf(i) : nx=i

fflag=1 : foption=1 : MENU 1,2,1: MENU 1,4,2
RETURN

Oldfile:

foption=l : MENU 1,2,1 : MENU 1,4,2
RETURN

Resolution:

res=2~(MENU(1)-1)
F0Ri=1 T0 4:MENU2,i,1 : NEXT i

MENU 2,MENU(1),2: RETURN

Scaling:

IF MENU(1)=1 THEN autoscale=1 : MENU 3, 1,2 : MENU 3,2,1 : RETURN
autoscale=0: MENU 3,1,1 : MENU 3,2,2
INPUT "Enter x-axis step "; xstep

INPUT "Enter minimum y "; ymin
INPUT "Enter maximum y "; ymax
INPUT "Enter y-axis step "; ystep

IF foption THEN yrange=ymax-ymin
RETURN

Limits:

ON foption+1 GOTO limit 1 ,limit2

limitl:

INPUT "Enter minimum x ";xmin : INPUT "Enter maximum x "; xmax
xrange=xmax-xmin
IF xrange=0 THEN limitl ELSE RETURN
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limitZ:

PRIHT *ln present file, minim and max x's are : *; xfmin,xfmax
INPUT "Enter minimum x "; xmin : IF xmin<xfmin THEM 1imit2

IMPUT 'Enter maximum x '; xmax : IF xmax>xfmax THEN limit2

xrange=xmax-xmin
RETURN

Grid:

IF MENU(1)=1 THENgrid=1 : MENU 5, 1 ,2 : MENU 5,2, 1 : RETURN
grid=0 : MENU 5,2,2 : MENU 5,1,1: RETURN

Title:

t$»" : INPUT Enter title ";t$ : RETURN

Start:

IF MENU( t )«| THEN Graph : RETURN
IF MENU( 1 )=3 THEN MENU RESET : STOP
IF MENU( 1 )=4 THEN SAVE -Graph" : SYSTEM
FOR i=l TO 6 : MENU i,0, 1 : NEXT i : MENU 7,2,0
CLS : CALL TEXTSIZE02) : RETURN

Graph:

FORi=l TO 6: MENU i, 0,0: NEXT i

CLS
ONfoption+1 GOTO graphl ,graph2

graphl:

i=0

IF autoscale=1 THEN ymax=-YNF : ymin=YNF
FOR graphx=4 TO 488 STEP res

i=i+1

x=xmin+xrange*(graphx-4)/484
GOSUB Fx
IF autoscale=0THEN30

IF y(i)>ymaxAND ABS(y(1)<>YNF) THEN ymax=y(i)
IF y(i)<ymin AND ABSCy(i)oYNF) THEN ymin=y(i)

30 NEXT graphx
yrange=ymax-ymin : ni=i-1

GOTO setitle

graph2:

i=1

WHILE xf(i)<xmin
i=i+1

WEND
ii=i : xmin=xf(i)
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i=nx

WHILE xf(i)>xmax

WEND
ifn=i : xmax=xf(i) : xrange=xrnax-xmin
IF autoscale THEN ymax=yfmax : ymin=yfmin : yrange=ymax-ymin

setitle:

CALL MOYETOC 100,20) : PRINT t$;

xlabel:

CALL TEXTSIZE(9)
LINE(4,4)-(4,284) : LINE(4,284)-(488,284)
IF autoscale THEN xstep=xrange/4
FOR x=xmin+xstep TO xmax STEP xstep

graphx=-484*(xmin-x)/xrange+4
PSET(graphx,283)
IF grid=0THEN40
FOR graphy=280 TO 4 STEP -4

PSET(graphx, graphy)
NEXT graphy

40 CALL MOVETOCgraphx-12,295)
IF xoxmaxTHEN PRINT x;

NEXTx

ylabel:

IF autoscale THEN ystep=yrange/4

FOR y=ymin TO ymax STEP ystep

graphy=280*(ymin-y)/yrange+284
PSET(5,graphy)
IF grid=0THEN50
FOR graphx=9 TO 486 STEP 4

PSET(graphx, graphy)
NEXT graphx

50 CALL MOVETO(6,graphy-2)
PRINT y;

NEXT y

Plot:

ON foption+1 GOTO plotl
,
pi ot2

plotl:

FOR 1=1 TO ni : IF (y(i)>ymax OR y(i)<ymin) THEN NEXT i

gy=280*(ymin-y(i))/yrange+284
gx=4+(i-1 )*res : i=0

FOR graphx=4 TO 488 STEP res
1=1-*-

1
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IF (y(i)>ymax OR y(i)<ymin) THEN flagy=0 : GOTO 5

f1agy=flagy+1 : graphy=280*(ymin-y(i))/yrange+284
IF flagy>1 THEN LINE(gx,gy)-(graphx,graphy)
gx=graphx : gy=graphy

5 NEXT graphx
MENU 7,2,1
RETURN

plotZ:

gx=-484*(xrnin-xf(ii))/xrange+4

gy=280*(ymin-yf(ii))/yrange+284
FOR i=ii TO ifn

graphx=-484*(xmin-xf(i))/xrange+4
graphy=280*(yrnin-yf(i))/yrange+284
LINE(gx,gy)-(graphx,graphy)
gx=graphx : gy=graphy

NEXTi
MENU 7,2,1
RETURN

Fx:

y(0=EXP(-x*x)
RETURN
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