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ABSTRACT

It has been conjectured by Fettweis that wave-digital

filters designed after doubly terminated ladder networks by

means of a transmission line transformation have a low

sensitivity against coefficient variation. The theory of

wave-digital filters is summarized together with the design

procedure for deriving wave-digital ladder structures based

upon an analog design. To investigate this conjecture

nineteen Chebyshev low-pass filters are realized and

experimentally evaluated using the IBM-360 general purpose

digital computer. The realization was done in two forms:

as wave-digital ladder structures and as recursive digital

filter. The sinusoidal steady state response is determined

for both filters in floating-point arithmetic with quantized

coefficients. The analysis shows the validity of the

conjecture for all nineteen cases over a wordlength range

of the mantissa of four to twenty two bits.
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I. INTRODUCTION

Transfer properties of analog LC-filters in a ladder

configuration are known to have exceptionally low sensitivity

characteristics against element variations. Digital ladder

structures derived from analog L-C filters retain this low

coefficient sensitivity (Fettweis conjecture [Ref. 1]).

This thesis summarizes wave-digital ladder filter theory

and presents a design procedure for deriving wave-digital

ladder filter based upon an analog design, and investigates

the coefficient sensitivity properties of the digital filter

experimentally. This is accomplished by realizing a Chebyshev

low-pass filter in two forms : as a wave-digital ladder

filter and as a recursive digital filter. The theoretical

sinusoidal steady state response for both filter types is

calculated in floating-point arithmetic with the filter

coefficients being quantized. The experimental response is

determined using a computer program on the IBM 360 by

carrying out the filter algorithm in floating-point repre-

sentation under truncation of the mantissa for wordlength

of four to twenty two bits. A comparison of the results

demonstrates the validity of the conjecture.





II. WAVE DIGITAL FILTER THEORY

A. PRINCIPLES

In conventional digital filter theory filters are

designed directly from the required transfer function in

the s-domain so that lengthy analog realization procedures

can be avoided. Two problems that arise in all digital

filter design procedures are that of the high sensitivity

of the transfer function versus coefficients, and roundoff

noise effects due to finite precision arithmetic. Since

analog LC-ladder structures exhibit low sensitivity for

element variations Fettweis [Ref. 1] has suggested modeling

digital filters directly after these analog structures.

Most of the following introduction is based on that article.

The basic principle involved is to carry out a frequency

transformation to convert the system of differential equa-

tions of the analog structure to a system of difference

equations that allows implementation by a digital computer.

The first step in doing this is to perform a Richard's

transformation [Ref. 2] which converts the analog LC-ladder

structure to a transmission line circuit by replacing each

inductor with lengths of short-circuited transmission lines

and each capacitor with lengths of open-circuited trans-

mission lines. The length, I, of the transmission line is

related to the inherent delay, t,, by

T, » - II-l
1 V





where v is the propagation velocity. If one assumes a

traveling sinusoidal signal of wavelength X moving along

the transmission line then the period x
2
between arrival

of two successive peaks is given by

x = - II-2
2 v

By choosing the length of the transmission line to be equal

to A one has

tj. - t2
- t I*-3

Modeling the transmission line by two parallel pieces of

delay lines each with an inherent delay x one arrives at

the unit-element [Fig. 1] which is the basic building block

for transmission line or also called microwave filters.

FIGURE 1. Unit-element of length I = X and delay t

The input impedance to a transmission line of length I and

velocity v is given by

Z(s) = R
Q

tanh(sx) II-4





where R is the characteristic resistance of the transmission
o

line and t = %/v.

Defining a new frequency variable as

ijj
= tanh (st) = tanh (^-) with T = 2t II-5

one arrives at the Richard's transformation. II-5 can also

be written as

sT sT

. e - e z-1 T-r t-

" "H—IH ~ 2"+^
2 . 2

e + e

for

ST __ _
z = e _ II-7

Now the input impedance of a short-circuited transmission

line can be written as

Z(ty) = #R . II-8a

and of an open circuited

R
8(40 - -y n-8b

10





In the standard bilinear z-transform, s in T(s) is replaced

by

s = § (^) II-9

This is equivalent to the following process starting from

any analog LC-circuit which has T(s) as its transfer

function:

1 z — 1
(a) Replace each sL by R tanh

(

) = R (—

—

r ) wherec * O V oz + 1

r> t 2 , ST _
l
lR

o
= L

T
an z = e

'
T = 2v

•

1
S£

2 • $ l*
(b) Replace each —^ by R ctnh

(

)
-

v t, T , sT _
%
2where R_ = tttt and z = e ; T = «— .

o 2C 2v

Since resistors are frequency independent elements they

remain unchanged by this frequency transformation. Thus all

analog LC-elements are replaced by pieces of open- or

short-circuited transmission line.

Fettweis proves very elegantly in Ref. 1 that the

realization of a digital filter algorithm directly based

upon the circuit by interconnecting transformed elements

is physically unrealizable. Also there is no direct way

of writing an algorithm which takes care of the inter-

connection of elements.

Take as an example an inductance. One has to realize

the voltage-current relation

11





A'

V = R I 11-10

2
with RQ

= ^ L .

Using II-6 to carry out a z-transformation leads to

v FTT r
o
i "- 11

which results after inverse z-transformation in the following

difference equation

n
v(nT) + v[(n-l)T] = R

Q
-{i(nT) - i [ (n-1) T] } . 11-12

Small letters are used to denote instantaneous values.

It is easily seen that the computation of v(t) at t = nT

not only requires the knowledge of v(t) at the previous

sampling instant but also the current at the present one.

Representing the above difference equation in a signal-flow

graph in the ^-domain, one has generated a feedback loop

without delay which is known to be physically unrealizable.

This will be true for the v-i relationships of all other

digitized circuit elements.

This can be avoided by using wave quantities in signal-

flow graphs and getting from there the algorithm for the

digital filter. For any transmission line the voltage and

12





current at any point can be defined by a wave traveling

to the right, A, and a wave, B, traveling to the left after

reflection. At any instant of time the effective voltage

is a sum of both waves at any point along the line

V = A + B 11-13

and the current is given by

I = ^- (A - B) . 11-14
o

Adding both equations gives

A = ^ (V + R I) II-15a
2. O

and

B = j (V - R
Q
I) . II-15b

Leaving off the scaling factor 1/2 gives as the general

relations between the analog circuit quantities current and

voltage and the wave quantities A and B

A = V + R I II-16a
o

B = V - R I II-16b
o

13





The next step in the procedure has to be to convert a

signal-flow graph to a wave-flow diagram. By using 11-16

which holds at any point along the line one calculates

the v-i relationship which holds only at the input port to

the transmission line.

Taking as an example an inductor one has

V = \pR
Q
I 11-17

2with R = — L . Substituting 11-17 into 11-16 and dividing

II-16a and b gives

^ + i i + i>

The final step in the process is now to carry out a

z-trans formation of the standard z-transfcrm as given by

II-7. By substituting

z - 1

one finally arrives at

B = -z"
1 A 11-19

In carrying out an inverse z-transform one finally arrives

at

b(nT) = -a[(n-l)T] 11-20

14





using small letters to denote instantaneous values. The

sampling interval is twice the basic delay t. Since a signal

has to return to the input port after reflection it has gone

twice through the delay t of the transmission line on a

round trip to arrive at the next sampling instance. The

overall process is summarized in Figure 2.

ANALOG
LC-LADDER

RICHARD'S
TRANSFORMATION Z-TRANSFORM

TRANSMISSION
LINE CKT

Z-TRANSFOPM
WAVE RELATIONS

INVERSE
Z-TRANSFORM

SIGNAL
FLOWGRAPH

VOLTAGE

ALGORITHM
UNREAL! ZABI

WAVEFLOW
DIAGRAM

VOLTAGE
WAVES

ALGORITHM
REALIZABLE

FIGURE 2, Summary of the steps involved

Because of the use of waves these digital filters are called

wave-digital filters.
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b. Capacitors

The V-I relation for a capacitor is defined

as

V = ? I 11-21

Substituting 11-21 into 11-16 and dividing II-16a and b

results in

B = ±=4 A = z"
1 A

1 + \\)

The final difference equation is

11-22

b(nT) = a[(n-l)T] 11-23

o-

-©-

JR

Bo-

0o-

bo-

FIGURE 4. Realization of a capacitor

a. circuit diagram
b. wave-flow diagram
c. algorithm
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c. Resistors

The V-I relation for a resistor is defined as

V = RI 11-2 4

which leads immediately by 11-16 to

B = 11-25

and for the difference equation

b(nT) = . 11-26

There is no reflected wave from a resistor if R^ = R, and henceo

what has to be required, and hence it is also called a wave sink

d. Open Circuit

The relation to be realized is I = which leads

by 11-16 to

A = B 11-27

and

a(nT) = b(nT) 11-28

e. Short Circuit

A short circuit has V = giving by 11-16

A = -B 11-29

18





and

a(nT) = -b(nT) 11-30

f. Unit-Element

A unit-element is only defined in transmission

line filters by the relations

_sT

B
l

= A
2

e
2

B
2

= A
l

e

sT
"T

II-31a,b

Note from Figure 1 that the unit-element is used as a two-

port network.

The difference equations are

b
1
(nT) = a

2
[(n-i)T]

b
2
(nT) = a

x
[(n-j)T]

II-32a,b

The delay of T/2 has to be taken into account in determining

the calculation sequence for the filter algorithm.

2 . Active Elements

a. Resistive Source

A source of voltage V with a series resistance

R
g

has a V-I relation

V = V + R I 11-33
s s

19





where V is the voltage at the output port of this oneport.

Using 11-16 yields

V
g

= A 11-32

and

a(nT) = v_(t) at t = nT . 11-33

b. Ideal Voltage Source

An ideal voltage source has the source voltage

appearing at the output port and hence

V
s

= V 11-34

which leads upon substitution into 11-16 to

A = V + RI
s

B = V
s

- RI

II-35a,b

taking R to be an arbitrary constant which will drop out.

Adding II-35a and b gives

B = 2V - A 11-36
s

and

b(nT) = 2v (nT) - a(nT) 11-38
5

20





c. Ideal Current Source

Taking the ideal source in combination with a

series arbitrary R one gets by use of 11-16

B = 2V - A 11-38
s

and

b(nT) = 2v(nT) - a(nT) 11-39

The wave-flow diagrams for the elements of section a. and b.

are summarized in Table I.

3. Structural Elements

So far the different circuit elements have been

realized. Two problems arise now in interconnecting these

elements: Reflections from interconnections that are not

matched in port impedance and realization of the nodes of

the analog structure. In the transmission line filter these

nodes collect and redistribute the forward and reverse

traveling voltage waves.

The process of impedance matching is shown best on

a two-port interconnection

J .fc-o +-f o-

- o

1

Op

*>!- • ^
R, R2

FIGURE 5. Interconnection of two ports w:' th
port resistances R, and R

2

21





TABLE I

ELEMENT TRANSMISSION
LINE

EQUIVALENT

WAVEFLOW
DIAGRAM

STEADY STATE

WAVEFLOW
DIAGRAM

INSTANTANEOUS

NDUCTOR

Ro = L

A O-

B O-

-I

oo-

J
CAPACITOR

Ro='/C

J o AO-

Bo-

oo —

1

bo

T

o—
RESISTOR

5
A o- 1

B=0«

a»-

i
b--0 •

UNIT

ELEMENT

o———en o

R
o

O Q O

Z"2

,<HdJ~°

<^

-V*r—~0

RES. SOURCE

vs H-

————

o

0-

» o

€
DEAL SOLfRCE

2V>
•——

o

£ V
R

IDEAL SOURCE

O
2V« « o

SHORT CKT

V =

c

-i

A O » -O—*—

°

8

-I

-cb
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At each port 11-16 is valid which can be written in closed

form as

a
k

= vk
+ Vk

II-40a,b
b
k - v

k - Vk

k = 1,2.

Since above shown interconnections are ideal without

attenuation and delay we have by inspection

V
l

= V
2

x
l

= ~ L
2 .

II-41a,b

Substituting 11-41 into 11-40 and eliminating the v's and

the i's results in

b
1

= a
2

+ 3 (a
2
- a

1 )

b
2

= a
±

+ 6(a
2
-a

x )

ft

II-42a,b

where 3 is given by

R
l " R

2
8 =

rT^T "

The wave-flow diagram representation for equation 11-42 is

called an adaptor and the symbol is shown in Figure 6.

23





a b

I—

r

a
2

b
2

1M

I
Rnl

n b n

I—

r

FIGURE 6. Wave-flow diagram symbol of a

a. parallel adaptor
b. series adaptor

Note that due to the fact of R, > and L > we have

| 3 | < 1 and one can see clearly that £ is the reflection

coefficient of transmission theory. As shown in Figure 6

this matching can be extended bo any number of ports. The

second purpose of an adaptor is to serve as node for the

wave-flow diagram.

To arrive at a digital ladder structure of the

combination of elements one has to generate an algorithm

that is equivalent to Kirchoff's current or voltage lav/.

A series connection of any number of elements has to satisfy

the relation

v n + v + v- + . . . + v =0
l z 3 n

II-44a,b

2 3 n

24





Using 11-40 for k = l,n one arrives after use of 11-44 and

elimination of v's and i's at a system of linear algebraic

equations that can be written in matrix form. For a three-

port series adaptor this matrix is

b
3
J

1~ 3t *" $i ~"^i

-B 2
l-3

2
-B

2

-3. -8
3

I-63

11-45

The constant matrix relating output waves to input waves is

often referred to as scattering matrix. The 3's are given

by

2R,
r = is 1Pk R., + R + . . ,+R

11-46
n

and equation in 11-45 is of the form

n
bk

= a
k ~ 3 k

Z
,

amm=l
11-47

The sum of the coefficients 3 can easily be shown to be

constant

3 X
+ 32

+ • • • + Bn = 2 11-48

25





This signifies the presence of only n-1 independent

coefficients with the nth coefficient as a linear combination

< of all the other ones.

The corresponding relations for a parallel connection

of elements are

v, = v~ = v, = . . . = v 11-4912 3 n

i, + i + ... + i =0 11-5012 n

which upon substitution into 11-40 can be shown to lead to

after elimination of the v's and the i's

n
*H- - £ <* a ~ a, 11-51
k . m m k

m=l

where the a's are given by

2G
a
k

=
G, +G + ... +G H-5212 n

and G = 1/R. The sum of the coefficients is again constant

ou + an + . . . + a =2 11-5312 n

giving again n-1 independent ones. The matrix equation

for a three-port parallel adaptor is given as

26





a-, -1

a-

a.

a.

a
2
-l

a.

a.

a.

a
3
-l

11-54

4 . Ground Rules

Any realization of a wave-digital ladder filter

diagram from analog structures has to obey the following

ground rules

:

1. Connections of ports only pairwise to ensure proper
wave- flow.

2. The wave- flow must be compatible, i.e. the outflow
of one port must flow into the connected port.

3. The wave flow diagram must not contain delay free loops

27





III. REALIZATION

There exist several methods in design of digital ladder

structures. A direct design was proposed by Bruton [Ref. 3].

Another possibility is to synthesize transmission line

filters by using the theory of unit-element filters [Ref. 4].

As a third way one starts from the analog ladder structure

consisting of reactive elements with resistive termination

and converts this structure to a digital ladder structure

by the digitization methods shown earlier. This way was

chosen in this thesis.

A. ANALOG DESIGN

The design of an analog ladder structure was found to

be quite difficult because driving-point impedance synthesis

procedures cannot be used to guarantee a maximum power

transfer over most of the passband range. The synthesis

procedure to be used is the insertion loss design procedure

a good introduction to which can be found in Skwirzynski

[Ref. 5] where also a great amount of design data is supplied

Numerous evaluated filters can be found by Saal [Ref. 6]

from where the values for the analog ladder filters for

the experimental realization of the wave-digital ladder

filter had been obtained.

28





B. DIGITIZATION

The first step is to replace each analog circuit ele-

ment in the circuit diagram by its digital counterpart and

each node by the appropriate adaptor. This procedure leads

to direct connections of series - and parallel adaptors which

generates at the interconnection inner loops without delays

since any output wave is dependent on any input wave without

delay. A violation of one of the ground rules can be

avoided if one changes the structure of the analog network

by use of Kuroda's identities [Ref. 4].

With these identities it is possible to convert reactive

elements from one type to another by introducing unit-elements:

Unit-elements if matched to the load can be introduced between

network and load without changing the insertion loss cf

the network (a phase delay will be introduced) . By applying

Kuroda's identities two of which are shown in Figure 8 it

is possible in a step by step procedure to move these unit-

elements through the network one by one until all the shunt

capacitors are converted to series inductors and all inductors

are separated by unit-elements as shown in Figures 9, 10 and II

Figure 8a. One of Kuroda's Identities

29





L
n =

*-o

Zo

u.e.

-0

-o

o—

o—

nZ

u.e.

. n-l

nZo

Figure 8b. One of Kuroda's Identities

til
Lumped

Constant

Ladder

Z
o
=l

u.e. u.e.

\Q.

Figure 9. Introduction of Arbitrary Number
of Unit-Elements Between Ladder and Load

The resistors at both ends in Figure 10 don't have to be

equal depending on the particular design.

Iflt

V

-**'S'a~&.

i-o

u.e.

"V
1

_x.T
i

i

u.e.

-* ;o?'

u.e.

•mVM)

u.e. m

Figure 10. Application of Kuroda's Identites,
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Figure 1.1. Final network with Terminations not
Shown since they Remain Unchanged.

This new structure can now be converted to a signal-flow

diagram without violation of any of the ground rules since

each adaptor will be separated by a delay represented by

the unit-element. This realization approach introduces

unit-elements not contained in the original filter. Since

they do not generally contribute to the filter action of

the network their use is not desired. Crochiere [Ref. 7] in

his work on sensitivity of wave-digital ladder filters uses

this approach. The main purpose of this section is to

introduce Kuroda's identities and the use of unit-elements.

C. TRUE DIGITAL LADDER STRUCTURES

Another way of solving the problem with the delay free

loop at the interconnection of adaptors was proposed by

Fettweis [Ref. 8]. The delay free loop was created due to

the dependence of any of the output signals on any of the

input signals. If one of the two multipliers of the inter-

connected ports is chosen to be equal to 1 then the depen-

dence of the output signal on the input signal at that port

31





is broken and a direct interconnection of adaptors becomes

possible. No unit-elements are required. This is shown

on an interconnection of a series - and a parallel 3-port

adaptor [Fig. 12].

Ri

I
R2|

,

- R.

I

R
? I

Ri

Figure 12. Interconnection of a Series 3-port
and a Parallel 3-port Adaptor.

The output equation for port R-> is given by

b
3

= a
1
a
1

+ a
2
a
2

+ a
3
a
3

- a
2

III-l

where the coefficients are given by

2 G,

a,

G
l

+ G
2

+ G
3

and for port R, by

III--2
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b
4

= a
4

" a
4
(a

4
+ a

5
+ a

6
} III ~' 3

where one has

2 R
4

a = 2 III-4
R„ + R c + Rc4 5 6

The delay free loop is easily recognized. Making an arbi-

trary choice between a-, and a., say cx_, one wants

cu 1 . III-5

Since R-^ is the port of the parallel adaptor this equation

is arrived at from III-2 only if

G
3

= G
1

+ G
2

. III-6

Since the port impedances of ports at interconnection of

adaptors are not determined by analog circuit element

values this choice of G-. can be made. The resultant output

equation for R^ is

b~ = a
i
a

i
+ a 9 a2

III-7

Applying the condition that the sum of all multipliers for

each adaptor equals two, one can replace a- by (1 - a,) and

arrives finally at
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Figure 14. Parallel t-hree-pcrt. adapter

2 4





D. SUMMARY OF STEPS

(a) By insertion loss design one gets a resistivity

terminated analog LC-ladder structure [Fig. 15]

-o o-
*3

±R-

-O O- I

"5

R, 4=R,

Figure 15. Resistivity terminated LC-ladder network

(b) Apply digitization methods element by element one

arrives at the wave-digital wave-flow diagram

[Fig. 16]. VAy
\fi\

UH 1

r T-i

R2

\ pT-i

R4

1-T-1

Rs—
R
12

R
23

R
34

a

J±
R3 i

L T J
R5 i

L Tr-l

*-l

-0

Figure 16. Wave-flow diagram for analog filter of
Figure 15.

The port impedances R, through R
7

are predetermined

by the analog element values

.

(c) Choose the port-impedance for interconnections.
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Carrying out step three on Figure 16, choosing in each case

the right port of each adaptor to have a = 1, (except for

the last adaptor) , leads to the following port impedance

G12
= G

l
+ G

2
III-9a

R
23 " R

12
+ R

2
IIX -9b

G34
= G23

+ G
3

III-9c

R
45

= R
34

+ R
4

III" 9d

The total number of multipliers is six, one for each adaptor

and two for the last one which corresponds directly to the

degree of freedom of the analog network (number of resistive

passive elements minus one) .

E. NUMERICAL IMPLEMENTATION

To actually implement the wave-digital ladder filter one

must carefully evaluate the correct computational order to

ensure the knowledge of all input quantities for the output

at hand. Figure 17 shows a conventional signal flow graph

for the fifth order digital filter of Figure 16 with the

input and output waves as state variables. For each adaptor

port two is connected to a delay. From the signal flow graph

of Figure 17 the computational order can be obtained by

inspection. Calculations are assumed to take place
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a
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=
°I3 b

3l
=
°23 b

4.
= a

33
b5f °43 °53

= °

Figure 17. Signal flow graph for filter of Figure 16.
a_. denotes input to port 1 of adaptor number 3.

simultaneously and to take now time. The values at the

nodes are assumed to be zero between sampling instants except

for the wave values stored in the delay line. Since an

actual computer algorithm cannot provide this ideal situation

one has to follow the signal flow graph. Initial conditions

are assumed to be zero. First the output values for node

three can be evaluated since it is independent from the

present input to that port. Going through the signal flow

graph to the end one is able to calculate all output values

for the last adaptor since the resistive termination of the

last port supplies zero input. Going back through the signal

flow graph the other outputs can be evaluated. The equations

for the fifth order filter example in correct computational

order are:
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(1) b
13 = a

i
(an~ a

i2 ) + a
i2

(2) b
23

= -a
21

- a
22

(3) b
33

= a
3
(a
31

-a
32

) + a
32

(4) b
43

= -a
41

- a
42

r

111-10

(5) b
53

= a
51

a
51

+ a
52

a
52

(6) b
52

= a
51

a
51

+ cx

52
a
52

- a
52

(7) b
51

= a
5l

a
51

+ a
52

a
52

- ^
(8) b

42
= -a

41
- a

43
+ oc

4
(a41+a42+a43 )

(9) b
41

= a
41 " a

4
(a
41

+a
42

+a
43 )

(10) b
32

= a
3
(a

31
-a

32
) + a

33

(11) b
3]_

= a
3
(a

31
-a

32
) + a^ + a^ - a

(12) b
22 = -a

21 - a
23 + «

2
(a

21
+a

22
+a

23 )

(13) b
21

= a
21

- oc
2
(a
21

+a
22

+a
23 )

(14) b
12

= a
1
(a
11

-a
12

) + a
13

(15) b
xl

= a
1
(a
11

-a
12

) + a±2 + &13 - au

In addition to these equations a storage of output to the

delays is required. One should also keep in mind the

equality of waves at directly connected ports, i.e. at any

instant of time for example b~, is identical to a21 and a
3

,

to b
21 .
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F. THEORETICAL RESPONSE

To get the theoretical response it is possible to

evaluate the transfer function from Figure 17 and let

z = e J
. A considerably shorter way via matrix theory

is shown on the fifth order filter. At the interconnections

of ports in Figure 16 the right hand values of a left adaptor

are identical to the lefthand values of a right adaptor. So

all one has to do is to eliminate port two by algebraic

procedures which means for a 3-port adaptor:

(a) Get b~ = ± za~

(b) Substitute (a) into the corresponding output

equation of the adaptor to eliminate b
2

(c) Substitute the resultant a =fn(a.. ,a_) into the

remaining output equations.

By changing the dependent quantities in the resultant

equations of the form

b
1

= fn(a
1
,a

3
)

b
3

= fn(a
1
,a

3
)

III-lla,b

one finally arrives at

a
1

= fn(b
3
,a

3
)

III-12a,b

b
1

= fn(b
3
,a

3
)
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In matrix form, 11-12 can be written as

r p p
11 12

P P*21 22

111-13

The entries in the P-matrix are generally functions of a

and of z. Since b^ and a., are identical to the leftside

values of the next adaptor one immediately generates a chain

matrix relating a, and b, of the first adaptor to b
3

and a^

of the last one. The last a^ will always be zero (wave sink

at port 3 of adaptor) so that the chain matrix finally is

of the form for the example. The matrices for the usual

l

ll

11

11 12

21 22

: 11 v
12

Qo '22

11 R
12

R
21

R
22

11 "12

'21 °22

rv

L 2

53

circuit arrangements are shown in Table II. Solution of

the matrix equation will directlv lead to the transfer
b
53function H,(z) = . Since the complementary output can

be taken from b. . one also is able to evaluate the transfer

function for the high pass complementary filter

H
2
(z) = -11

11

using z - e one generates the frequency response
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TABLE II

CIRCUIT

ELEMENTS

E

TRANSMISSION

LINE
EQUIVALENT

m —

D

R2

H3

WAVE
MATRIX

d p
II 12

P
2I 22

Q.. Q
12

°2I °22

u 2

MATRIX
ELEMENTS

A«a(z*o

fj,=*(z*a)/A

fj>

2
=(a-i)/A

|fz(a-i)/A

p= (z-a+D/A
22

A- * I

Q
|(

=-(z.a)/A

Q, 2«(a-i)/A

q
2|

= z(a-i)/A

Q =-(Oz* i)/A
22

A r a;(z+D

u » (z-a* D/A
I 2 "

u A - iz
q
2

!

A

V
a u,

,^-

• 1-1

% i )

c>

t-
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IV. THEORETICAL SENSITIVITY

In analog ladder structures resonant frequencies corre-

sponding to attenuation poles are determined by the product

of two element values. The pole and zero positions are

shifted about their true values with variation of circuit

element values causing a change in magnitude and phase

characteristic of the response including bandwidth and

cutoff frequencies. This variation is either caused by

inaccurate circuit element values or drifting due to various

physical phenomena.

In digital filters drifting of values does not exist

since the filter coefficients are stored in the computer and

can be considered constant as long as the filter is opera-

tional. But since the design generates decimal coefficients

their representation in a binary number of finite wordlength

generates what is called quantization error. Assuming a

coefficient obtained with infinite accuracy to be a = 0.82

its representation in the binary system is 0.11010001 ... .

A wordlength of 4 binary digits after the decimal point

gives 0.1101 which converted to decimal leads to .8125,

close to .82 but not exact.

The inaccuracy which is dependent on the number of

binary digits causes a change in the response. Hence the

effect of finite wordlength for the digital filter is the

same as that of inaccurate analog element values for the
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analog filter. Analog LC-ladder filters are very insensi-

tive in their transfer characteristics against element

variations. It has to be determined whether these sensi-

tivity properties are preserved and carried over by trans-

formations. Gupta and Renner [Ref. 9] prove this as follows:

The voltage-wave into the load in Figure 17 is equal to the

effective voltage V"
2

over R
2

since a
2

= for all times.

Figure 17. Wave-Digital Two Port

Since a. = e(t) the voltage transfer functions H(s) is

given by

V,

H(s) I

= IV-

1

and the voltage-wave transfer function is given by

|H(z)
|

=
R,

IV-

2

They show the sensitivity of H(s) to be zero against analog

element variation at particular points, the maximum available
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power points, only.

6|H(s)
63

= IV-3
f

where f is the MAP transfer point and 6 6 is given by IV-10,

Consider the wave-digital filter multiplier a as a function

of the analog network elemaents

:

a = fn(L,C,R) IV-

4

where L,C,R are row vectors.

A small variation of the nominal value of a will cause

a corresponding change in L, C and R:

a + 5a = f (L + 6L,C + <5C,R + 5R) . IV-

5

Taking only the first order terms of a Taylor series expansion

leads to

6L 6C 6R
IV-

7

or

6a = K 63
T IV-

8
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where

K .
(
«i . 4 . % IV_ 9
6L 6C 6R

66 = (6L6C6R)

.

IV-10

From IV- 1 and IV-2 |H(z)
|
and |H(s)

|
are equal:

|H(z) I = |H(s) I .

Hence

6|H(z)

1

= 6|K(s)

1

iv- 11
6a 6a

which upon substitution of IV- 8 can be written as

6)H(z)
1

6|H(s)
1

_.. 19—"

—

j—-J —

i

rs

—

L IV- 12
6ct

K 6B
T

so the zero sensitivity of |H(s)
j
with respect to variations

of the analog element values is carried over to the sensi-

tivity of |H(z) I with respect to variations of provided

only small variations in the digital-filter coefficients are

made such that the approximation of the Tayler series expansion

by the first order term is valid. The zero sensitivity of

|H(z) I can also be shown in a more qualitative picture
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directly or. the wave-digital filter shown, ir. Figure 1".

Introducing the concept cf theoretical power r.c power is

cor.su~.ei by ar. algorithm) absorbed by the wave-twopcrt one

can write the relation

E
2

- 3,
2

3
2

P = = *
=f— . EV-13

3
Solving IV-13 for |B«|" and substituting ir.tc IV- 2 leads to

2
B

i

2
?R -

|K(z)
| " 1 " ~

R 2 _n

This rives the cbvicu

H(z)
2

< 1

At points where the full voltage wave is transferee to the

output and r.c re f la cr :. crs lack tc the scarce occur, equiva-

lent to the MA? points, one -.•.'ill get the limiting case

H(z]
:

= i . iv-ic

The attenuation A of the wave-digital filter rr.ay be defined

as :

A = - In H(z) I . IV-
1"





The power P absorbed in the two-port will always be zero.

So as long as IV-16 is valid at MAP points w we have

A = IV-18

This in turn implies

~ = IV- 19
6a

One can conclude with the statement the smaller the attenua-

tion in the passband the smaller is the sensitivity of the

wave-digital filter transfer properties with respect to

coefficient variations

.
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V. RESULTS

To investigate the sensitivity properties of wave-

digital filters experimentally 19 different Chebyshev

low-pass filters were realized. On the basis of analog

ladder structures taken from Saal [Ref. 7], five filters of

order N = 5 with ripple (in dB) in the range from R = 1.25

to R = 0.1 were realized, in addition six filters of order

N = 7 with ripple in the range from R = 0.28 to R = 0.1.

The cutoff frequency was normalized to ai = 1. The sampling

time was taken to be T = 2.0 for all filters which corres-

ponds to f /f = 0.32. The filter with ripple R = .177

for order N = 5 and order N = 7 was arbitrarily chosen for

an investigation of dependence of sensitivity properties

versus sampling time. The sampling times taken were

T = 2.0, 1.0, 0.5, 0.1, and 0.0 5 corresponding to f /f =0.32,
s c s

.16, .08, .016 and .008.

Corresponding to the realization of the wave-digital

filter a recursive series-cascade digital filter with first

and second order sections [Fig. 17] was realized directly

from the transfer function.

X(nT)

K

K
&£0

y.(nT)

22

K '

12 (nT)

Figure 17. Series-Cascade 'Second Order
Recursive Digital Filter Sections.
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The choice was made because both filters have the same

number of multipliers and in general cascade structures are

known to be less noisy and less sensitive against multiplier

variations than direct realizations. The design of the

recursive filter is based upon the transfer function H(s)

for analog Chebyshev low-pass filters

H(s) = £5 5 V-l
1 + e T (s)

n

where T is the n-th Chevyshev polynomial and e is directly

related to the ripple by

£ = (10
,lR

- 1.0)
1/2

V-2

with R denoting the desired ripple in dB and K being a

constant. Factorization of the denominator polynomial gives

the pole locations. Collection of complex conjugate poles

results in the transfer function

H( S )
= V-3

2 2
(s+a ) (s +b,s+c, ) . . . (s +b s+c )o 1 1 mm

the relation between pole locations and coefficients in V-3

is obvious. After application of the bi-linear z-transform

z = — f

2 " 1
) V-4
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one gets H(z) as

K
n
(z+l)

n

H(z) =

(z
2+d

1
z+e

1
) (z

2
+d

2
z+e

2
) • •

• (z+dQ )

which can be written as

H( Z ) = v -
"*

• -4^1^
2

(Z+1)2 IV-5.
z ao (z^d^e^ (z

z
+d

2
z+e

2
)

= Kj^ • H
1
(z) ••• Hm (z) IV- 5b

Application of the inverse z-trans formation gives the system

of difference equations that constitute the algorithm of

the digital filter.

The response was generated in two ways. After conversion

of the ideal multipliers to binary floating-point representa-

tion the wordlength of the mantissa was reduced in steps of

two bits from 22 bits to four bits. The truncated multipliers

were substituted back into the filter and by use of z = e-*

the theoretical response was calculated for each step of

wordlength for both filters, wave-digital and conventional.

The calculation was carried out in double precision on the

IBM 360 general purpose digital computer.

The experimental response was obtained by going through

the digital filter algorithm up to ten thousand times to

arrive at the steady-state value. It was assumed that the

steady state value was arrived at once the normalized output
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peak had settled down to within 0.001 of the previous peak

for a sinusoidal input. This was done in steps of Aoo = .02

within the passband. Multipliers were quantized according

to the present wordlength of the mantissa and after each

algebraic step the mantissa of the result was truncated to

the present wordlength to simulate operation of the digital-

filter with shorter wordlength for both, memory locations

and arithmetic element.

The quantities measured in either case were the maximum

and the minimum output in the passband, JH(ja))| andmax

|H(jto) i . , respectively. The experimentally determined
1 J 'min c J r

ripple is given by

|H( joj)
|

.

R =20 log, n — . V-6max ^10 i TT , . . 1

H (too)
1 J 'max

The measure of the error in the response is the relative

error

R - R
, ,

. max spec £ _ . -,relative error = =r c— for R > R
R max spec
zpec

V-7

relative error = for R „ < R„^^^
max — spec

where R is the specified ripple for the design and denotes
spec e

the maximum variation of the response in the passband.
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The experimental results confirm Fettweis conjecture

if one looks just at the theoretical response errors. The

response after simulation shows no remarkable difference in

general except for the cases with higher sampling frequency.

The simulated response is very much affected by the trunca-

tion noise in the calculation process which is larger for

the wave-digital filter due to the higher number of additions

than for the recursive filter, thirty-nine versus fourteen.
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VI. CONCLUSIONS

From the observed results it can be concluded that the

wave-digital filter is a valuable alternative to conventional

digital filters. In most cases wave-digital filter can be

realized with a considerably shorter wordlength than

conventional digital filters thus allowing an overall

reduction in size and cost. The larger number of adders

is insignificant due to the steadily decreasing hardware

cost and the particular cheapness of adders. The difficult

access to wave-digital filter due to the unfamiliar insertion

loss design procedures for the analog LC-ladder filter could

be eased by generation and publicizing of an insertion loss

design computer program. Since the sensitivity of wave-

digital filter transfer function properties to coefficient

variation does not change noticeably as it is the case with

the recursive digital filter an application in systems

with varying or high sampling rates seems very desirable.
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EXPERIMENTAL RESULTS

In the following figures the relative error, as specified

earlier, is plotted versus the number of bits in the word-

length of filter coefficients and, for the simulation of

each filter, also in the wordlength of the arithmetic unit.

Since the range of three decades is not sufficient to display

all data the results are also shown in tables. An "X" was

used in all cases where either the filter had become unstable

or the cutoff frequency was outside the range of observation,

1.1 radians for a design continuous cutoff frequency of one

radian.
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