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ABSTRACT

The extreme values which a random variable X may take

on are usually best characterized by the guantiles of the

random variable. Known non-parametric methods for the

statistical estimation of extreme guantiles ail suffer from

serious shortcomings, however. In this thesis a robust and

efficient method for guantile estimation is described; both

the asymptotic and finite sample properties of the estimator

are determined and computer implementations are given.

Possible applications for the technique include the analysis

of computer simulations and data analysis in large data

bases or real time computer systems.
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Chapter I. INTRODUCTION

A. Description of the Problem

The problem addressed in this thesis is the

non-parametric estimation of population gnantilss. Given a

random variable X with continuous distribution function

F (•) , we define the a-quantile s as the solution to the
a

equation

(D F(s )

a

for some given value of a between and 1. We shall assume

in what follows that s is unique, i.e. that we are dealing
a

with continuous or partly continous distributions.

Completely discrete distributions with relatively small

numbers of atoms present a much simpler estimation problem.

Quantiles find application, for example, in testing

statistical hypotheses and in characterizing the extreme

values of the distribution of X when a is near or 1.

At the outset we note that there is a related problem,

namely, given a value s, to estimate the quantity p given
s

by

(2) F(s) = p .

s

The value p found in this way will be called a Percentile.
s

Percentiles may be used, f-.->r example, to find the power of a

statistical test under a non-null hypothesis. By way of

10
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contrast we note that a is the known value in (1) while s is

the known in (2) .

The non-parametric estimation of percentiles is

relatively straightforward; the number of values of the

random variable less than s in a random sample X , X , ... ,

1 2

X is clearly a binomial random variable with parameters n
n

and p so that this number divided by n is an unbiased
s

estimator of p .

s

If the distribution function F(») in (1) is completely

known, finding s becomes a problem of numerical
a

approximation, i.e. one must evaluate

(3) s = F-M a ).
a

Note that if the random variable X has an infinite support

the slope of F(«) will be very small in one or both tails of

the distribution (i.e. as the guantile level a approaches

or 1) ; this means that in evaluating (3) for extreme

quantiles one is likely to encounter serious numerical

instabilities. If the distribution function F (• ; © ) is

known except for a finite vector 9 of unknown parameters we

may still proceed as in (3) provided we have some estimate

of the parameters. The resulting parametric estimate of s
a

is given by

(4) s = F-M a; 8 ) .

a

The properties of s will depend on both the underlying
a

11
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distribution F {•) and the nature of the estimate 9; the

sampling variation of 0, however, is likely to increase the

numerical difficulties with extreme juantiles.

If nothing is known about F (•) , one must resort to

non-parametric or distribution-frea methods for estimating

s . Non-parametric guantile estimation is considerably more
a

complex than non-parametric percentile estimation. Two

solutions have been proposed for this problem (Goodman,

Lewis and Robbins [14]) : the order statistic estimator, s ,

a

and a class of stochastic approximation estimators, s .

a

The order statistic estimator is obtained by sorting

the random sample X , X , ... , X into order, thus12 n

determining the order statistics X , X , ..., X
(1) (2) (n)

Then the estimator is

(5)
A
s = X

<[a(n+1) ])

where [z] denotes the integer part of z. It is known (David

[5]) that s has an asymptotically normal distribution with
a

(6) E[s ] = s +0 (1/n)
a a

and

12
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A

nf*Ts"
(7) Var[s ] = a.l1_-_a) + O(n-z)

where f (x) = F' (x) is the density function of the random

variable X. Unfortunately, the time required to order a

complete sample of size n is proportional to n In n; thus

the computational effort for this estimator increases faster

than the sample size. Furthermore, considerations of finite

computer memory size limit order statistic estimators to

samples of perhaps 10,000 observations (less if several

distributions must be investigated at once as might be the

case in a systems simulation study) . We discuss some other

considerations relating to order statistic estimators in

Chapter III; because partial sorting can be done in time

proportional to n some improvement is possible, but these

estimators still suffer from serious shortcomings.

To overcome these drawbacks, we consider a sequential

estimation scheme. This may be defined by a sequence of

functions {h } ; our estimates are given recursively by
n

(8) s (j+1) = h.(s (j), X ), j=1,...,n-1,
a j a 3+1

where s (j) is the estimator at step j of the procedure. In
a

the sequel, we denote this j-th sequential estimator by s ,

j

suppressing the dependence on a when this will cause no

confusion.

13
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B. Stochastic Approximation Estimators

The most important class of functions to be used in

sequential quantile estimation schemes are stochastic

approximation estimators. There is an extensive literature

on so-called stochastic approximation methods; these methods

are intended to find the root x = 6 of the regression

function

(9) F [Y(x) ] = M(x) = a,

where the only information available consists of independent.

observations on the random variable Y (x) . We note that this

is a more general problem than the quantile estimation

problem considered here. Most work on stochastic

approximation has been concerned with specifying conditions

under which the sequence of estimators converges

probabilistically to the correct value. Many of these

conditions are trivially satisfied in the quantile

estimation case; for example, the regression function will

always be bounded since it is a distribution function, ?(x)

.

The simplest type of stochastic approximation quantile

estimators are based on the work of Robbins and Monro [30].

They are defined by the relationship

(10) s = s - a Y (s ) , n=1,2,...
n+ 1 n n n n

In this formulation {a } is a sequence of positive constants
n

of the form

(11) a = Vn nA
A > 0,

14
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and Y (s" ) is a random variable which depends only on X and
n n n

s and which is defined by
n

(12) Y(s)= -a if X > s
n n n n

1 - a if X < s
n n

The initial estimate s and the parameter A may be chosen
1

arbitrarily or at random.

The procedure given by (10) is called a Robbins-Monro

(RM) process; under suitable conditions (which are satisfied

by (10)- (12) as long as Var[s ]<=»), Blum [2] and Dvoretzky

[7] have shown

(13) s — > s almost surely (a.s.)/
n a

(14) lim E[ (s - s )
2

] =
n->« n a

Furthermore, Sacks [33] has shown that if F(x) has a

continuous derivative f (x) at s then
a

(15) s — > N ( s , a.P_z 3.1 ) ,

n a nA"[2r"(s ) - A)
a

as long as < A < 2f (s ) . The asymptotic variance is
a

minimized by taking A = f(s ); this results in the same
a

15
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asymptotic normal distribution for s as for the order
n

statistic estimator, s .

a

C. Improving the RM Estimators

An intuitive discussion of the operation of the RM

process (10) will serve to point out ways in which the

resulting guantile estimators can be improved. First, we

note that the seguence [s } is a Markov process, although a
n

non-homogeneous one. Moreover, as long as A is fixed, s
n

n
may take on one of only 2 distinct values at stage n. This

is because Y is a discrete random variable: it increases
n

,

the estimate value ("step up") when the latest observation

is larger than the current estimate and decreases the value

("step down") when the observation is smaller.

The actual magnitude of the step is governed by the

gain seguence {a } . The factor 1/n in (11) is necessary so
n

that successive steps become smaller, thus allowing the

00

estimator to converge; however, since 2 (1/n) = °° the
n = 1

seguence of estimators can reach any guantile value s
a

starting from an arbitrary initial value s . Note however
1

that if s is still far from s for even moderately large n,
n a

16
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a prohibitive number of steps may be needed to obtain a

reasonable estimate.

The first improvement to the basic RH process was

suggested by Kesten [18]. To cut down the number of steps

reguired to converge to the true value after the difference

s - s becomes large, the divisor n in (11) is modified so
n a

that it is increased only when the current step direction

differs from the step taken at the previous stage. This

suggests that we have "straddled" the true guantile value.

Although the stochastic approximation estimator obtained in

this way has the same asymptotic distribution as the RM

estimator (Davis [6]), its convergence properties in small

samples seem to be superior (Cochran and Davis [4]; Davis

[6]). The Kesten procedure does have the disadvantage,

however, that it often fails to reduce the step size even

when s is close to s . The optimum procedure is probably
n a

to keep the step size constant until s is "close" to s and
n a

then to carry out the usual RM procedure. Such a "delayed"

process has been studied by Cochran and Davis [4] and Davis

[6].

A related difficulty with the basic RM process is that

it does not work well at all for the estimation of even

moderately extreme quantiles (a < 0.25 or a > 0.75). This

problem was first noted by W'etherill [36]; he traced the

difficulty to the slow rate of increase of the harmonic

series 2 (1/n) when k >> 1 .

n=k

17
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A solution to this problem was developed by Goodman,

Lewis and Robbins [14]. Instead of carrying out the

operation (10) for every sample value X we use only the
n

maximum (or minimum for a < 0.5) of some number of

observations, say v, where v is chosen so that

(16) a = a 1 = 0. 5

The RM process can then be applied to estimate the

a'-guantile of the maxima (or minima) ; this has the same

value as the a-guantile of X. The basic idea is to use a

data transformation to shift the problem to the estimation

of a population median, for which RM is known to be

well-behaved. It is unnecessary to go all the way to the

median; good results are obtained for 0.3 < a' < 0.7.

Convergence rates are apparently much improved by this

procedure; the cost, as Goodman, Lewis and Robbins [14]

show, is an inflation of the asymptotic variance

(17) Var[s«] = Var[s ] _aM -_aM .

n n vaT (T - a)

In most cases the inflation is less than 40 %.

A natural extension of this so-called maximum

transformation process is to consider a next-to-maximum

transformation, i.e. applying the RM process (10) to the

second largest (or smallest) in a sample of size w where

(18)
w — 1 w

wa - (w-1) a = a" = 0.5

The appeal of this procedure in dealing with highly skewed

real world data is that it may give a more robust estimation

procedure. Once again, there is an inflation of the

asymptotic variance

18
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(19) Var[s"] = Var[s ] _a^M z.^lL
n n 2 Zw-3 " 3

w(w-1) a (1-a)

The inflation is somewhat greater in this case than for the

maximum transform but it may still be limited to less than

50 % by the proper choice of w.

In the remainder of this thesis, a single prime (as in

a' or s') will denote an estimate or parameter which is
n

based on the maximum transform while the double prime (e.g.,

s") will denote a next-to-maximura transformed value. Except
n

for eguations (17) and (19) , a subscript n appended to a

primed value will indicate the number of step_s taken by the

corresponding stochastic approximation process and not the X

sample size, which will be larger. In fact, we will need at

least n«v X observations to obtain s' ; more will be needed
n

if the initial estimate s is chosen at random.
1

For efficient estimation of a set of several guantiles

we prefer to use v (or w) values for higher guantiles which

are integral multiples of the values for lower guantiles;

this greatly simplifies determination of sample maxima and

minima. In this research, a set of 19 guantiles has been

arbitrarily selected; these include the 16 guantiles of

Goodman, Lewis and Robbins [14] together with the median

(a = 0.5) and the guartiles (a = 0.25, 0.75). The values of

v and w for each of the transformation schemes together with

the respective variance inflation factors are shown in Table

I.

19
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Having dealt with the effects of the 1/n term in the

gain sequence {a } we now consider the parameter A. The
n

0(n _1 ) variance implied by (15) will result when A is not

too large, i.e. when the initial step size is not too small.

It is known (Major and Revesz [26]) that the order of

V"

001 672 .4895 1.425 1536 .45 42 1. 476

002 336 .4897 1.425 768 .4543 1. 476

005 112 .4296 1.338 384 .5726 1.608

010 56 .4304 1.336 192 .5732 1.608

020 28 .4320 1.331 96 .5745 1.606

025 28 .5078 1.437 48 .3383 1. 423

050 14 .5123 1.426 24 .3392 1 . 420

100 7 .5217 1.402 12 .3410 1.414

250 1 .2500 1.000 6 .4661 1.414

500 1 .5000 1.000 3 .5000 1. 33?

750 1 .7500 1.000 6 .5339 1. 414

900 7 .4783 1.402 12 .6590 1.414

950 14 .4877 1.426 24 .6608 1.420

975 28 .4922 1.437 48 .6617 1. 423

980 28 .5680 1 .331 96 .4255 1 .606

990 56 .5696 1 .336 192 .4268 1 .608

995 112 .5704 1 .338 384 .4274 1.608

998 336 .5103 1.425 768 .5457 1.476

999 672 .5105 1.425 1536 .5458 1.476

Table I. Sample sizes, transformed levels and variance

inflation factors for maximum transformation (v, a* and V)
and next-to-maximum transformation (w, a" and V") stochastic

approximation quantile estimation designs.

20
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convergence may be substantially worse when A > 2f (s ) .

a

When the optimum value A = f(s ) is chosen, the RM process
a

acts like steepest descent approximation with small steps;

the steps are the same as those for a linear approximation

to the distrib

(Fabian [ 10 ]) .

to the distribution function through the point (s , a)
a

Evidently the initial choice of A has an important

influence on the efficiency of the basic RM process, but in

general the magnitude of the effect cannot be determined

since f (s ) is unknown. In fact, the asymptotic normality
a

of s stated by (15) cannot even be asserted since it will
n

not be known whether A < 2f (s ) . For this reason^ we
a

consider procedures which simultaneously estimate s__ and
*" "a

f_£s_J_ and are thus more generally applicable^
a

Practical application of stochastic approximation

guantile estimation then requires that we have both a

starting value s and an estimate of f (s ) . Although there
1 a

is an improvement over order statistic estimators in both

speed and memory, the additional values required in the

stochastic approximation case introduce a degree of

complexity. In fact the selection of these two values is

critical to the feasibility of stochastic approximation

guantile estimation and is one of the main problems

addressed and solved in this thesis.

21
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D. Venter's Method and Confidence Intervals

The first method for simultaneously estimating s and
a

f (s ) is due to Venter [37]. Note that although this solves
a

the problem of finding a suitable A value we must still

select an initial estimate s ; this is not nearly as crucial
1

or as difficult as the choice of A. In Venter's method we

observe two X values at each stage of the procedure and

determine

(20) Y'
n

-a ifX >s+c
2n-1 n n

and

1-a ifX <s+c
2n-1 - n n

(21) Y" = - a if X > s - c
n 2n n n

1-a ifX < s - c .

2n n n

The sequence {c } is a sequence of positive constants called
n

the finite difference sequence; it must satisfy

(22) c n — > c,
n

c> 0, 0. 25 < r < 0.50

A sequential estimator of f (s ) is then given by
a

(23) A =
n y» _ y»

l

Zc

22
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Finally to estimate s we apply the basic RH recursion
a

relation (10) with

(24) Y = (Y» + Y") / 2
n n n

The latest estimate A of f (s ) is used in the qain sequence
n a

in the place of the arbitrary value A, i.e. we use the

random value 1/(nA ) for a in (10). In a practical
n n

application of the method to quantile estimation, we

accumulate only the sum in (23) thus obtaining nA ; this
n

quantity is used directly as the denominator of the gain

sequence (11).

The chief practical difficulty encountered in using the

estimator (23) is that A may become negative, in which case
n

the Rtl process will take steps in the wrong direction, or

else A may get too large in which case the 0(n -i
) variance

n

will be lost. For this reason, Venter uses as an estimate

of f(s ) in the gain sequence the value A*, where
a n

(25) A = a

n

if A < a
n

* *
if a < A < b

n

if A > b
n

and where it is known a priori that a < f (s ) < b
a

*
long as b is not too large, we have (Venter [37])

;

As

23
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(26) s --> s a . s. ,

n a

(27) A — > f (s ) a.s.

,

n a

and

L
(28) s — > N ( s , al1_-_a). )

n a 2

Thus, the Venter estimator has the same asymptotically

normal distribution as the other stochastic approximation

estimators we have considered. (Recall that s is based on
n

a total X sample of size 2n in this case.)

The advantage of the Venter procedure is that we no

longer need an independent initial estimate of f (s ) since
a

the procedure converges for any initial value of f (s ) in
a

the interval (a ,b ). We also obtain (asymptotically) the

minimum possible variance and we have the additional

estimate A which may be used to determine a confidence
n

interval on s . Sielken ([34] and [35]) has investigated

the application of the Venter process to the estimation of

confidence intervals and stopping times.
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The problem of finding the interval (a ,b ) was solved

by Fabian [9]; he suggested the use of

(29)
* -La=Cn, 0<L< 1/2,

b = C log (n+1)

,

< C < C
1 2

From a practical point of view, we may establish the lower

bound by setting nA to some small positive constant
n

whenever the accumulated sum becomes negative. Venter's

results also indicate that the upper bound b may be

arbitrarily large when the density function is analytic in

some neighborhood of s , so that this does not represent a
a

restriction in many applications.

E. A New Method

A modification of the basic RM stochastic approximation

process along the lines of Venter's work is the major

contribution of this thesis. The new process is

asymptotically equivalent to the other processes discussed

in this Chapter but its finite sample properties seem to be

much better. Just as in the case of the Venter process, we

obtain an estimate of f (s ) which is plugged recursively
a

back into the basic stochastic approximation relation; a
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different technique for density estimation is employed,

however.

In seeking an estimate of an unknown density function

at some point one is lead to the work of Rosenblatt [32] and

Parzen [28] on kernel estimators. A kernel function W {•) is

a bounded integrable function with

(30) fw(x) dx = 1

An example is the triangular weight function

(31) W(x) = 1 -
| x| if | x| < 1

otherwise.

The empirical density function estimator at the point x is

then given by

(32)
n rx - X -,

f (x) = 1 .2 i[__ a]
n nb n=1 L 5 -»

n n

where (b } (called the "bandwidth" sequence) is a sequence
n

of positive constants which tends to zero with increasing n;

for example,

(33)
-1/3

b = b n ,

n
b >

We now define an estimator B of f (s ) using a. kernel
n a

density estimator:

n rs - X -i

(34) B = 1 2 J
WM 2]

n n i=1 b L 5 *

and establish a new stochastic approximation process which

uses the RM recursion formula (10) with B replacing A in
n

26





Non-parametric Quantile Estimation Through
Stochastic Approximation

the gain sequence (11).

One advantage of the new density estimator (34) is that

we are able to take twice as many steps as in Venter's

method for the same sample size; this seems to permit faster

convergence in small samples. Some computational experience

with the new estimators shows them to be far superior to any

other known non-parametric technique for quantile

estimation. Almost sure convergence and asymptotic

normality for the new procedure are established in Chapter

II.

F. Scope of Research

The goal . of this thesis is to investigate the

application of the stochastic approximation techniques

described in this Chapter to the problem of non- parametric

quantile estimation in the hope of developing a practical

method which is fairly robust with respect to the underlying

distribution F(»). The chief disadvantage in using any

stochastic approximation estimator - including Venter's

procedure as well as the basic RM process - seems to be that

in some cases the estimators are nowhere near s , even after
a

as many as 20,000 steps. It is in this case that the RM

process (10) has the worst convergence rate because reaching

the immediate neighborhood of the true value may require an

astronomical number of additional steps. Unless this

unfortunate tendency can be overcome, stochastic

approximation estimators cannot be recommended in practical

applications.

Encouraging results have been achieved with the new

estimator proposed here, particularly whan it is combined

with the maximum transformation technique and when some care
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is taken in selecting the starting value, s . When an

entire set of quantiles is to be estimated a further

improvement is possible. Since the quantiles are by

definition ordered, a gross error in a single estimate can

often be detected because the erroneous value is usually out

of order with respect to the other estimates in the set. In

this case alternate types of estimate can be used to replace

the erroneous one, thus bypassing the lengthy path that the

stochastic approximation process requires to reach the true

quantile value. Assuming that only one or two of the set of

estimates is in error, this approach should overcome the

tendency of the stochastic approximation process to "blow

up".

The thesis is organized as follows: in Chapter II, we

establish the asymptotic properties of the new estimator and

show it to be equivalent to the Venter process as n --> <x> .

Chapter III describes some practical considerations relating

to quantile estimation in finite samples of data using both

order statistic and stochastic approximation estimators,

while Chapter IV describes the results of an extensive

digital computer simulation undertaken to determine the bias

properties of the new estimator. Chapter V discusses the

simultaneous estimation of an entire set of population

quantiles and considers several techniques such as

James-Stein estimation and isotonic regression to exploit

the order relationships which are known to exist in such a

set of estimates. Chapter VI discusses the estimation of

functions of quantiles, in particular the estimation of the

level of a test based on a given statistic and the

estimation with the same simulation data of the power of the

test. The last Chapter summarizes the work and discusses

possible applications for the methods developed.
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In summary, this thesis describes a method for

estimating an entire set of quantiles with their

corresponding densities for any statistic or other random

quantity. The method is quite, fast and uses a small fixed

amount of memory; it is robust enough to be used as a basic

building block in computer simulation programs.

G. Limitations of Research

In this thesis we deal only with non-parametric

quantile estimators; substantial improvements are often

possible if we know enough about the underlying distribution

function F (•) to apply maximum likelihood or other

parametric estimates. For example, if F(») is the

exponential distribution then

(35) s = -p[X] In (1 - a)
a

(where u[X] denotes the sample mean) is the maximum

likelihood estimator of s and is therefore asymptotically
a

fully efficient. Clearly,

(36) E[s ] = - u In (1 - a)
a

= s ,

a

so that s is unbiased; furthermore,
a

(37) Var[s ]
a

1 [ ja In (1
n

s ? / n,
a

- a) ]
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which is at most 65 % as large as the asymptotic

non-parametric variance. As a approaches or 1 the

relative efficiency of the parametric estimator in this case

becomes much greater.

This work is also limited to the consideration of

continuous or partly continuous distributions. When the

random variable X has a completely discrete distribution its

a-guantile may not exist or may not be unique; to overcome

this difficulty we may redefine the a-guantile as the

solution of

(38) inf F (s ) > a r

s a

which reduces to (1) in the continuous case. It is not at

all clear, however, that the solution to (38) has any

reasonable interpretation, particularly if X has only a few

atoms.

The methods developed here have been investigated using

only pseudorandom simulation data and this is typical of the

proposed applications for the techniques. Real world data

can certainly be used but the sample sizes required for

reasonable results from stochastic approximation quantile

estimation are so large that only in special cases will

sufficient observations be available. It seems likely that

the next-to-maximum transformation will prove more useful in

dealing with real data than was found to be the case with

the artificial samples used here since there is usually more

difficulty with outliers in the former case. As Gaver and

Lewis [12] point out the maximum transform will intensify

any problems caused by outliers.

One final limitation of this work is that we consider
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only samples with sequential independent observations; thi.s

will clearly not be the case for much real world data or for

many kinds of simulation studies. We may be able to apply

our methods in the simulation case by using the regenerative

techniques of Iglehart [ 16 ] but the general problem of

dependent observations is much more complex and is not

considered further here.
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Chapter II. ASYMPTOTIC PROPERTIES OF THE NEW ESTIMATOR

A. Definitions and Preliminaries

We wish to estimate the solution x = s to
a

F (x) = a, < a < 1,

where F (•) is the distribution function of the random

variable X. We assume:

F1.

F2.

F (x) has a derivative f(x) which is

continuous in some neighborhood of s with
a

f (s ) = £ > 0.
a

F"(x) exists and is bounded in some

neighborhood of s .

a

Note that (F1) is sufficient for s to exist and be unique.
a

A sequential estimation scheme is used with s the
n

estimate of s at step n. The initial estimate s is chosen
a 1

arbitrarily (or at random with E[ s 2
] < oo ) and we apply the

1

recursion

(D s = s - a Y ,

n+ 1 n n n
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where Y is given by
n

(2) Y= -a if X > s ,

n n n

= 1 - a if X < s
n n

In (2) X is a random variable with distribution F (•) which
n

is assumed independent of (s ; X , ... ,X }.11 n-1

The gain sequence (a } is given by
n

(3) a = 1 / nd ,

n n

where d is essentially a "bounded" kernel density estimator
n

(see Rosenblatt [32] or Parzen [28]):

(4) d = Max [ Z n , Min { B , C log(n + 1) } ],
n 1 n 2

with < L < 1/4 and < C < C . The estimator B is
1 2 n

defined by

(5) B = 1 .2 * . <

n n 3=1 3

(6)
r s - X -,

j ft L 5 J

3 3

where {b } is a bandwidth sequence of positive constants
n

satisfying

(7)
-g

b = 0(n ) , 1/5 < q < 1/2 .

n
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The function W(») is called the kernel function; it is

assumed to satisfy

W1.

W2.

W (U) >
r - oo < U < oo .

sup W (u) = K < w .

-eo<us°o

W3. f°°W(u) du = 1.
J-cc

W4. lim | uW (u) |
= 0.

|U|->oc

Note that W( e
) i s a probability density under these

assumptions.

In what follows, we show first that s -> s almost
n a

surely (abbreviated a.s.) and that d -> a.s. ; then, using
n

a theorem of Fabian [9], we develop the asymptotic

distribution of s . Throughout, {0/5 , P} will be a
n

probability space and 8 = a (s ; X , . . . ,X )
c S a sequence

n 1 1 n-1

of a-fields (i.e., the smallest cr-field with respect to

which the indicated variables are measurable)

.

We begin by rewriting the basic relation (1) in the

form

(8) s = s - T + U ,

n+ 1 n n n

in which we define
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T = a [F(s )
- a],

n n n

U = -a Z ,

n n n

(9) Z = Y - ET Y | 8 ]

n n n n

Y - F(s ) + a
n n

We note that jZ |
< 1.

n

Since we will deal with sequences of the form (9) , we

begin by stating two lemmas relating to sequences of this

type. Proofs may be found in Loeve [24].

Lemma \ (Loeve) Let {V } be a sequence of random variables
n

00 00

with 2 var[ V ] < °°
; then if £ E[ V | V , . . . , V ] converges

n=1 n n=1 n 1 n-1

00

a.s. f 2 v converges a.s. to a random variable.
n= 1 n

00

Lemma 2 (Loeve) If c(n) ->°° and 2 1 Var[ V ] < oo then
n=1 c7nj~? &

1 T (V - E[ V |V ,...,V ]} — > a.s.
clhy k=1 k k 1 k-1

B. Convergence of s
n

The proofs in this Section follow the lines of Blum's
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work [2]. In fact, the convergence of s follows at once
n

from the bounds indicated by (4) (Fabian [9]) if we are

willing to adopt a slightly different definition of B . Now
n

we deal with the relation (8) and show

CO

Lemma 3 2 u converges a.s. to a random variable.
n=1 n

Proof

:

Clearly,

Var[U ] < E[a2 Z* ]
n n n

< 1 E[ Z^ / d2 ]
n? n n

2-2L
< 1 / (n C^)

,

00

so that 2 Var[ U ] < °o

n = 1 n

Now X is independent of {s ; X ,...,X } and since
n 1 1 n-1

these random variables uniquely determine d we have
n- 1

E[ Z /d | 8 ]= o a.s. Thus,
n n-1 n

E[ U | B ] = E[ -a Z | B ] + _1 E[Z /d | 8 ]

n n n n n n-T n n-1 n

= E[ {1/(n-1) d - 1/nd }Z | 8 ]

n-1 n n n

1_ E[{(n-1)d - nd }Z /d d | 8 ] .

n"[n-"TJ" n-1 n n n-1 n n

Now we use the definition (4) of d to set an upper bound:
n
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-L-,-1
|E['J I B 31 < 1_ [C2 n (n-1)

n n n^n-Tf «- 1 J

• E[ |nd - (n-1) d
I |Z | |

B ]

n n-1 n n

L-1 L-1 -2
< n (n-1) C E[ |nd - (n-1)d

I IB]
1 n n-1 n

where we have used the fact that |Z | < 1. The relationship

| Max[a,b] - Max[c,d] |
< Max[ |a - c| f |b - d| ]

and the definition (4) then imply that

1-L 1-L
|nd -(n-1)d j < Max { |C n - C (n-1) |,

n n-1 1 1

|nB - (n-1)3 | r

n n-1

|C n log(n+1) - C (n-1) log n| }.
2 2

-L -L-1
Now the first term here approaches C (1-L) n + 0(n ) as

1

n --> oo so in this case we have

L-1 L-1 -2 -L -L-1
|E[U | B ]l ^ n (n-1) C [C (1-L)n + 0(n ) ]

n n 11
L-2

= (n ) a. s.

For the last term we get

C n log(n+1) - C (n-1) log n = C log(n + 1) + C (n- 1) log (1 + 1)
2 2 2 2 n

< C log (n+1)
2

so that

L-1 L-1 -2
|E[U | B ]| < n (n-1) C C log (n + 1)

n n 12
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2L-2
= (n log n)

.

Finally we consider

| nE - (n-1) B |
= v

n n-1 n

< K / b
n

g
= 0(n ),

in view of (W2) and (7) . Thus we conclude for this case

that

L-1 L-1 -2
| E( U |

B ]| < n (n-1) C K / b
n n 1 n

2L+g-2
= 0(n ) .

CO

We thus have that 2 |2[U | B ]| converges almost surely in
n=1 n n

all three cases because of the definitions of L (4) and g

(7) . An application of Lemma 1 then completes the proof.

Lemma 4 (Blum) s converges a.s. to a random variable,
n

Proof

Iterating (8) back to s yields

n n

n+1 1 j=1 j j§1 j

so that

(10)
n n

s + 2 T=S + 2 U
* converges a.s.

n+1 j=1 j 1 j=1 j

in view of Lemma 3. Next we show

38





Non-parametric Quantile Estimation Through
Stochastic Approximation

(11) Pr { lim s = oo } =
n-> «> n

Suppose, for example, there exists a sample sequence {s }
n

with lira s = <x ; then s < s for only finitely many n so
n-> co n n a

that T = a [ F (s )
- a] > when n is large enough. Thus

n n n

_ n
lim [s + 2 T ] -->°° which occurs with probability

n->oo n + 1 j=1 j

zero by (10). This establishes (11) and we similarly show

(12) Pr { lim s = -oo } = 0.
n-> =0 n

Now suppose the lemma is false; then there must exist

sample sequences for which

_ n

/ s + 2 I converges to a finite number
I n+1 j=1 j

(13)

lim inf s < lim sup s
' n->°° n n->°° n

Letting {s } be such a sequence, we assume that lim sup s >
n n

s (a similar argument handles the case lim sup s < s for
a n a

then lim inf s < s by (13) ) . We then choose numbers c
n a

and d such that c > s and lim inf s < c < d < lim sup s .an n

n
In view of (5)- (7), a -> 0; and since s + 2 r

n n+1 j=1 j
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converges, we may choose N so that N < n < m implies

a < d - c ,

n T'
(14)

m-1
|s - s + 2 T

|
< d_-_c .

m n j=n j 2

Now we select m and n with N < n < m such that

s < c,
n

(15) < s > d,
m

c < s < d for n < j < m .

j

We may clearly do this. Thus,

m-1
(16) s - s < d_-_c - 2 T < d_-_c - r ,

m n 2 j=n j 2 n

since T = a [F(s ) - a] > for s > c > s . Ndw if s >

1 j j j a n

s we obtain
a

s - s < d_-_c ,

m n ~2

in contradiction of (15) which implies s - s > d - c. If
m n

s < s we have
n a

-T = a [ a - F (s ) ] < a < d_-_c
n n n n 2

from (14) ; thus (16) becomes s - s < d - c, which again
m n
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contradicts (15) . This means no sequence (s } can satisfy
n

(13), thus establishing the lemma in view of (11) and (12).

JJl£2E§I!! 1 (Blum) s --> s a.s.
n a

Proof

:

We suppose Pr { lim s = S} = 1 as guaranteed by Lemma 4 and
n-> oo n

we also suppose that Pr{S * s } > 0. Now we choose c and d
a

with s < c < d < cc and Pr {c < S < d} > 0. (Alternatively
a

we take - oo < c < d < s .) Then for every sample sequence
a

{s } for which lim s = S, c < S < d, we have c < s < d
n n-y™ n n

for almost all n. Lemma 3 and Lemma 4 show that

(17)
n n

2 T = 2 a C F ( s )
~ a ] converges;

j=1 J j=1 J J

however, F (s )
- a > F(c) - a > for almost all j so, (17)

J

must diverge because a > (j C log(j+1)} -1
; this follows

j 2

from the definitions (3) and (4) and the fact that C > C .

2 1

Thus,

2 a > 2 {C j log(j + 1)}-i = 0[ log (log n) ]

3=1 3 3=1 1

41





Non-n-parametric Quantile Estimation Through
Stochastic Approximation

This contradiction establishes the theorem.

C. Convergence of d
n

We begin by proving three preliminary Lemmas.

Lemma 5 Let {t (x) } be a sequence of measurable functions
n

uniformly continuous for every n > N in some neighborhood of

the point X € E with

(18) lim t (X) = t (X)
n-> oo n

and {X } a sequence of random variables with
n

(19) X — > X a.s.

,

n

where X 6' R is a constant. Then

(20) t (X )
— > t (X) a.s.

n n

Proof

:

The convergence (18) implies that for each

n > N ( n ) we have
1

17 > , whenever

(21) it (x) - t(x)
i

< v n .

n

The uniform continuity of t (X) for n > N likewise implies
n

that given *7 > there exists an e > depending only on 17

such that
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(22) |X (co) - X| < e = = > |t (X (co)) - t (X) | < r? /2 ,
n n n n

for each co € fi . Combining (21) and (22) yields

(23) |X (co) - X| < e = = > |t (X (co)) - t (X) | < 1 .

n n n

Now by Egoroff's Theorem (19) implies that for each 5 >

there exists a set A., c S with P(A~) > 1 - 5 such that
o o

X ( co ) converges uniformly in co for every co in A .

n 5

Evidently then if n > N (e) ,

2

co e A^ = = > |X (co) - X| < e.
o n

Now since e in (23) depends only on >7 , whenever n > N ( 77 )
=

max [ N ( J7
) , N (e) 1 we have

1 2

co e A = = = > |t (X (0) )) - t(X) I
< ri ,

o n n

which means that t (X )
-> t(X) uniformly on A_. Since 8

n n o

is arbitrary, this means that t (X ) -> t(X) almost
n n

uniformly which implies (20) because of the equivalence of

almost sure and almost uniform convergence (see Lukacs

[25]) .

Lemma 6 Let {X } be a sequence of bounded random variables
n

with

(24) X — > a.s.,
n
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S = 1 .2, x
.

n 3 = 1 j

Then S — > a.s.
n

Proof:

Because of (24) , given e > there exists a set A c S with
e

P (A )
= 1 such that

e

g>6 A = = > |X (co) \ < e/2
e n

for all n > N(e,6>). Now for t > 0,

(25) IS (o>) j

N + t

N + t
1 2 X (co )

ft+f 3=1 j

* 1 .2J .(co)
TT +^

j
3=1 3

+ 1

FT+T

N + t

3=fr+1 3

Nov we take

(26) C(N, co ) = sup |X (o> ) | < °°
;

n<N n

this follows from the hypothesis that (X } is bounded, but
n

the lemma will hold for any sequence satisfying (26). Now

(25) becomes

j S (co
) | < N C (N, co ) + t e

N+t &+T IT+T 2

< e + e = e
2 2

whenever we choose t > T(e,co ) . Thus,

co € A = = > |S (co ) | < e
e ra
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for all m > M(e,w ) = N + T. Since P (A )
= 1, we conclude

e

that S -> a.s.
n

Lemma 7 Under assumptions (F1) and (W1) through (W4) the

function

(27) t (x) = 1 / M fx - yl dF(y)
n 5 / L 5 J

n

is uniformly continuous in some neighborhood of x = s for
a

every n > N.

Proof

:

Suppose in accordance with (F1) that the density f(x) exists

and is continuous for x^I= [s-A,s+A] for some
a a

A > 0. Following Parzen [28] we may rewrite (27) in the

form

/.t (x) - f(x) = / Jf(x-y) - f (x) ] b-i W(yb-M dy
n \Y\-o n n

+ / 1 wf x - y ] dF (y)J\Y\>8 B~ L "S J

n n

- f(x) / b-i H(yb-i) dy
I y I

> 6 n n

where x 6 I and 8 is chosen such that < 5<A. Thus when

x € I,

|t (x)-f(x)| ^ sup | f (x-y) -f (x)
| / W(u) du

lyl<<5 ^lyl<5
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+ / ill W r v -. 1 dF (x-y)J\Y\>8 5 L 6 J jy T
n n

+ f(x) / b- 1 W(yb-i) dyJ\y\>8 n n

|t (x)-f (x) |
< sup If (x-y) - f (x)

|

n |y| <<5

dF(z)+ 1 / sup | z W (z)
| /

5 Jz>3 /b J
n

+ f(x) / W(z) dz .J \z\> 5/b
n

Now given some e > we may, by the continuity of f (x) on I,

choose a 8 > such that the first term will be less than

e/3 . Having chosen § we may then select N such that when

n > N (W4) implies that the second terra will also be less

than e/3. Finally, (W3) allows us to conclude that the last

term will also be less than e/3 when n is large enough. We

thus have that

sup ] t (x) - f (x)
I

< e
x G I n

when n > N(e), i.e. t (x) is uniformly continuous on I.
n

lh§2E®!H 2 d — > fi a.s.
n

Proof

:

In view of the bounds (4) it suffices to show that

(28) B — > fi a. s.
n

We first note that
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y ~ X
w (y) = 1 w[ _n]
n d L 5 J

has a bounded variance whose bound is independent of y:

Var [w (y) ] < 1 /Wy. - u] dF(u)
n 5^ J L 5 J

/•< K 2 IdF(u) = K 2
,

n n

which follows from (W2) . Thus,

CO 00

2 1 Var[w ] < K 2 Z (n b )~ 2

n=1 n 2 n n=1 n

which is finite by (7) . Lemma 2 with c = n then implies
n

(29) 1 § (w " El> I
s ]} — > ° a - s -

n j=1 j j j

Now

(30)
n

B = 1 Z, w
.

n n 3 = 1 j

n

n D = 1 3

E[w | B ]} +1 £ E[w | B. ]

j j n 3=1 3D

E[w.|B .] = E[l if 111
J 3

8
^

= 1

5_/«[!,B:.:]
dF(y)

= t (s ) a. s.

,

j j
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with t
m
(•) given by (27). Now Parzen [28] has shown that

(W1) - (W4) and (F1) imply

lim t (s )

n-> oo n, a
= f(s ) =

a

Clearly t (•) is measurable and t (s ) is continuous for
n n a

every n greater than some fixed N by Lemma 7 so we may apply

Lemma 5 to assert

so that (26) is

E[v | 8 ] —> a.s.
J J

Now by (W2) , |E[w | g ] | < K / b <co
J J J

satisfied for X = E[ w
J 8 ] -

fi and an application of
J D J

Lemma 6 and (29) to the right-hand side of (30) establishes

(28).

D. Asymptotic Normality

We first state a Lemma due to Burkholder (see [3] for a

proof) and then use it to obtain a result on the convergence

of s in the quadratic mean,
n

Lemma 8 (Burkholder) Let {X } be a non-negative sequence
n

of real numbers and {q } , [r } real number sequences with
n n

lim inf q = q > p > and lim sup r = r > such that for
n n

every n > N
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g p+1
x < (1 - _n) X r / n
n+1 n"~ n n

-p -p
X < r_ n + o (n ) .

n g - p

Lemma 9 E[ (s - s )*] = Ofn- 1
)

n a

Proof

:

n

In what follows we write s*
n

= s - s . Expanding (8) , we

obtain

(31) s* = s* - a [F(s )
- a + Z ].

n+1 n n n n

If we expand F(s ) in a Taylor's series about s we then get
n a

(32) F (s )
- a = F(s ) + (s - s ) f(s

)

n a n a a

+ § (s - s )
- a

n a

= /?s* + S(s*) ,

n n

where §(x) = o(x) as x-> because of (F2) . We write 8
n

for S(s*) in what follows. Substituting (32) into (31),
n

squaring and simplifying yields

(33)
2

;*

n+1
(1 - 2a P ) s* - 2a fi s* ( Z + § ]

n n n n n n
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+ a 2
( £ s* + 5 +Z)2

n n n n

In order to apply Lemma 8 to (33) we define

g = 2 n a £ (1 + Z /s* + 5 /s*)
n n n n n n

— > 2n£_ (1 + o (1) ) a.s.
n/T

--> 2 a.s.,

where lim <$ /s* — > by the definition of §(•) . We
n ->co n n

also take

r = n 2 a 2
( fi s* + 5 + Z )

2

n n n n n

= n 2 a 2 [ F (s )
- a + Z ]

2

n n n

--> Z 2 / 2 a.s.
n

— > a(1 - a) / p 2 a.s.

We then rewrite (33) as

2 q 2 r
s* = (1 - _n) s* + _n ;

n+

1

n n n 7

an application of Lemma 8 with c=2, p=1 then shows that s*
n

= 0(n -1 ) a.s. and so we conclude

E[ (s - s )
2

] = (n- 1
) .

n a

2

We pjw state a special ization of a theorem due to
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Fabian [9] to show the asymptotic normality of s The

notation I stands for the indicator function of the set
(t)

{t} , i.e.

I (x) = 1 x e {t}
{t}

= x £ {t}

Lemma 1_G (Fabian) Let B be a non-decreasing seguence of
n

cr-fields, B c S m Let A , B , V , and T be
n n n-1 n-1 n-1 n-1

B -measurable random variables with
n

A — > a a. s . ,

n

B — > b a. s. ,

n

T — > t a. s. or E[ (T
n n

- t) 2] — > d,

with a,b,t € R. V satisfies
n

E[ V | B ] = a.s.

,

n n

C > E[ V2 - o 2j B ] --> a.s.,
n n

(34)
n 3=1 {V 2 > ne} n n

n

for every e > 0, while U is defined by
n

-3/2
U = 1~_n U+lBV+n T.
n+1 L n J nnnn n

Then

1/2 L
n U > N [ t/(a - 1/2), cr^b 2

] .

n
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Theorem 3s is asymptotically normal with mean s and
n a

variance a(1-a)/n£ 2
.

Proof:

To apply Fabian's theorem we use the Taylor's series

expansion of F (s ) ; putting (32) into (8) and simplifying we
n

get

s* =(1-a£)s*-aZ -a§
n+1 n n n n n n

Now we can take

A = £ /d --> 1 a.s.

,

n n

B = -n a --> - /S
-1

/ a.s,
n n

3/2
T = n a &
n n n

E[T 2 ] = n S [ § 2 / ^2

]

n n n

--> 0,

since 8 2

n

-1
= o (n ) by Lemma 9. Furthermore, we have

E[Z |
B ] = a.s. ,

n n

E[Z2| 8 ] = F (s ) [ 1 - F(s ) ]
n n n n

--> a (1 - a) a.s.,

while the convergence of (34) follows at once from the fact

that Z is bounded. Thus we conclude from Lemma 10
n
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(35)
1/2 L

n (s - s ) > N [ 0, a(1-a) 8 -«].
n a

To show that d also has an asymptotically normal
n

distribution we need a Central Limit Theorem for the sum of

a sequence of dependent summands. For a proof, see Loeve

[24], p. 377, Theorem C.

Lemma XI (Loeve) Let (X } be a sequence of random
n

variables with S = 1 2 x • If
n n j=1 j

(i)

(ii)

E[X | X , . . . , X ] = a.s. ,

n 1 n-1

n
Var[S ] = 1 2 E C X2 1 = ° 2 < °° i

n n 2" j = 1 j n

n
(iii) 1 2 E[ |E{X2jX ,...,X

. } - E[X2}| ] — > 0,
n7 ]=1 3 1 D-1 3

and (iv) for each e > 0,

1 2 E[I (X 2
) ] --> 0,

n? j=1 {|X |>e} k
k

then S has an asymptotically normal distribution with mean
n

and variance a 2
.

n

Theorem U d has an asymptotically normal distribution
n

g-1
with mean $ and variance D (n ) .

Proof:
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From (30) we have

B =1 2 ( w " E[v |B ]} + 1 2 E[ w | 8 ],
n n j=1 j j j n j=1 j j

where the second term converges a.s. to ^ . In order to

apply Lemma 11 to the first term we define

v =w - Ef w I B ] .

k k k k

Clearly,

(36)

E[v | B ]

k k

E[v2| B 1

k k

= 0.

E[ (w - E[w | B ])2 | B ]

k k k k

E[w2| B ] - 2 E[w t (s ) | 8 ]

k k k k k k

+ E[t2(s ) |
B ],

k k k

where we have used the fact that

E[ w ! B ] = t (s ) a.s.
k k k k

from Theorem 2. Also

E[w2| B ] = 1

k k 5*
W 2

[ _!S dF(y)
00 ,

= T (s )

- k k

Simplifying (36) then yields

E[v2| B ] = T (s )
- t2(s )

k k k k k k

= e (s )" k k

Now Parzen [20] has shown that
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lira 9 (s ) = b-i f(s ) / W2 (u) du;
n->oo n a n a J

we note that /w* (u) du is finite by (W2) and (W3) but that

the limit diverges because of the definition of b (7) . The
n

proof of Lemma 7 may be extended at once to show that 9 (s
)

n a

is continuous (at least foe all n greater than soie fixed N)

so an application of Lemma 5 shows that

E[ v2| 8 ] --> b-i f (s )

k k k a
/ W2 (u) du a . s.

Now we conclude

E[v2] = E[ E[v2j 8 ] ]

k k k

— > b-i f(s )

k a
/ H2 (u) du,

so that

n /* n

I £ E\ v2] — > f (s ) / W2 (u) du £ n- 2 b-i .

n* j=1 " j ay j=1 j

-g
The summation clearly converges; if in fact b = b n ,

n

1 < g < 1, an application of Euler's summation formula shows
5 2

f (s ) f W2 (u) du n g
° z — > __ al_J_ ______ Z j
n B'n ? j = 1

—

>

f(s ) rw2( U )du
r

g-1 g-2 -,

a J n + (n ) I.
B7T+ar L J
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Chapter III. FINITE SAMPLE CONSIDERATIONS

In this Chapter we describe some methodological

considerations in guantile estimation using both order

statistic and stochastic approximation estimators. The

emphasis throughout is on practical application of the

techniques in finite samples of data rather than on the

asymptotic theory of the first two Chapters.

It has long been known that the finite sample behavior

of the basic stochastic approximation guantile estimators is

seriously flawed from a practical viewpoint (Cochran and

Davis [4]; Wetherill [36]; and Davis [6]). Since the

problem of finite sample analysis of stochastic

approximation estimators is analytically intractable we rely

for the most part on digital simulation to examine the

finite sample properties of our new estimator; it will be

seen that most of the drawbacks have been overcome.

The asymptotic distributions asserted by (1.6) and

(1.7) for order statistic estimators and by (1.15) , (1.28)

and (2.35) for the various stochastic approximation

estimators may fail to describe the actual distribution of

the estimator for some given n either because this actual

distribution is markedly non-Gaussian in shape or because

its mean and variance deviate appreciably from the

theoretical values. In this Chapter we are for the most

part concerned with the first difficulty, leaving the

discussion of estimator bias and mean squared error for

Chapter IV.
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A. Order Statistic Estimators

1. Basic considerations

As pointed out in Chapter I, the order statistic

quantile estimator s for the a-quantile is given by
n

A
s = X ,

n (u)

with u = [ a(n+1) ]. Unlike the stochastic approximation

case, here we need not rely on the asymptotic normality of

A
to obtain a confidence interval on s ; non-parametric

confidence intervals may be constructed from the

relationship (David [5])

(D
v-1

Pr { X < s < X } = Z
(t) a (v) i = t

j-n-j a (1-a)
n-i

This formula may be evaluated using a table of the

incomplete Beta function (see, for example, Kendall and

Stuart [17]).; however, direct use of the relation (1) is

impractical and unnecessary for choosing the values of t and

v for large sample sizes n since suitable values for given n

and a may be obtained by using the normal approximation to

the binomial random variable. For a 100 p % confidence

interval we have

t ~ a(n+1) - /^JT-afn u
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and

v = a(n+1) + /inT-aJ"n a ,

P

where u is the upper 1 - 1 p significance point of a unit
P 2

normal variate. To obtain a conservative interval, we round

t down and v up to the nearest integer.

The guantile estimation problem may then ba reduced to

thisfinding three order statistics X ,

(t)
X and X ;

(u) (v)

does not require that the entire X sample be sorted nor need

we save the entire sample. In fact, just a bit more than

a n sample values (or (1-a)n values for a > 0.5) must be

stored. The three order statistics may then be found by

applying Floyd and Rivest's SELECT algorithm [11] which

requires an average amount of work proportional to n. This

then represents a substantial computational advantage over

the naive method of sorting the entire sample, as well as

decreasing the memory requirements somewhat.

There remain, however, several serious shortcomings to

the order statistic method. First, if more than just a

single quantile must be estimated the memory requirements

will probably increase drastically and the amount of work

also increases quickly. For the simultaneous estimation of

the 19 quantiles of Table I it will still be necessary to

store the entire sample and the work needed to find the 57

order statistics of interest will be comparable to the

effort required to sort the sample as a whole.

This may be shown to be the case by considering that

the number of comparisons between observation values is a

rough measure of the total amount of work required to sort a

sample (or to find the order statistics of interest) . The
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SELECT algorithm [11] requires an average of about

n[ 1 + min(a,1-a) ] comparisons to find X so that finding

the median requires about n/2 comparisons. Once the median

is found, the upper sample quartile (i.e., 0.75 order

statistic) must be found in a set of data which is only half

as large as the original sample (this is a result of the

sorting method employed) ; this requires n/8 comparisons, on

the average. Proceeding in this manner, we find that

determining all 57 order statistics will take about 15 n

comparisons; a complete sort, on the other hand uses about 2

n In n comparisons (see Knuth [19]). The advantage will

then be with the complete sort for values of n less than

1500 and the amount of work will be about the same for

1500 < n < 10,000.

Since order statistic estimation is not basically a

sequential scheme, a second shortcoming of order statistic

estimation arises when it is found that a larger sample is

needed, perhaps because the estimates in a sample of size n

are not precise enough or perhaps because more data become

available. If one wishes to take advantage of the savings

possible in storing only a n of the observations one must

fix the value of n in advance. When a larger sample is to

be investigated it will not in general be possible to find

the exact order statistic of interest in the pooled sample

unless all of the discarded data from the original sample

can also be reviewed. Furthermore, the operation of the

SELECT algorithm will still require an amount of time

proportional to the new (larger) sample size.
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2. Decreasing the storage - Payne's method

The most serious difficulty with order statistic

estimators is the inescapable linear growth in storage

requirements with sample size. For this reason, a technique

due to Payne [29] may be considered. A value m < n is first

chosen; Payne shows that m may be proportional to ./n. An

array of size m is set aside and filled with the first m

observations on X. The array is sorted and then, using (1)

,

a confidence interval on s is obtained. Observations
a

outside the confidence interval are discarded and new

observations are obtained to fill the array. Any

observation which does not fall within the confidence

interval is counted toward the total number of observations

but is not put into the array. When the array is again

filled it is sorted in place and a new, narrower confidence

interval is chosen. (The new interval is narrower in the

sense that it is shorter than the earlier one, but it will

have the same probability mass from (1) since it is based on

a larger sample. Note that it will in general have more

observations than the earlier interval.) The procedure is

repeated until all the observations have been examined.

The main drawback to Payne's method is that if the

initial confidence interval is not wide enough the technique

may fail to cover the reguired order statistic when the

entire sample has been examined. For this reason, the

technique should probably be employed with extremely

conservative confidence intervals - say 4-5 standard

deviations - with the actual desired confidence interval
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chosen at the final step. For example, to determine the

median of a sample of 10 6 observations with very low

probability of failure a total storage requirement of some

8000 observations should be ample.

The estic.ation of several quantiles by this so-called

partial sorting method appears to involve a fairly complex

algorithm, but the method should be useful for a small

number of quantiles (say two or three) in fairly large

samples of data. Although the method still requires memory

which increases with sample size, the presence of more

observations can often be handled by simply decreasing the

coverage of the last confidence interval.

3. Approximate order statistics - Averaging

Another possible application of the order statistic

method is to consider the X sample in sections of some fixed

size, say 100 observations. We can then choose Y = X
i (100a)

in section i. The final estimate could then be the average

of the Y 's or we may once again sort the Y sample and
i

choose an appropriate order statistic as an estimate. If

the second technique is adopted one may obtain yet another

level of sections of the Y order statistics and then choose

Z = Y ; we call this a "nested" method. Both the
i (100a«)

average and nested methods can be thought of as approximate

order statistic methods since they do not find the actual

order statistic in the entire sample but rather a value

close to it.

The chief drawback to the averaging method is that

there may be appreciable bias in the Y values if these are
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drawn from samples small enough to be practical; Table II

indicates some results for extreme guantiles from several

Distribution

Exponential

Quantile

Alpha Value

Normal

Uniform

Cauchy

0.5 0.6931

0.9 2.3026

0.99 U. 6052

0.999 6.9077

0.5 0.0

0.9 1.2316

0.99 2.3263

0.999 3.0902

0.5 0.5000

0.9 0.9000

0.99 0.9900

0.999 0.9990

0.5 0.0

0.9 3.0777

0.99 31.820

0.999 318.31

Bias for Sample of

100 1000 10000

0050

0442

4175

0125

0320

1732

-.0045

-.0089

-.0198

0159

0098

0103

0005 -5X10-5

0045 -.0004

0487 -.0049

4223 -.0491

0013 -.0001

0033 -.0003

0206 -.0021

1361 -.0158

0006 -5X10-5

0010 -.0001

0020 -.0002

0010 -.0001

0015 -.0002

0010 -.0001

0010 -.0001

0010 -.0001

Table II. Bias of the order statistic quantile estimator

for various distributions. Note that these biases are for

single order statistics; unbiased estimates of the median in

the normal, uniform and Cauchy cases may be obtained by

taking the usual sample median. Biases were evaluated

analytically for the exponential and uniform distributions

and by Ga uss-Legendre quadrature for the normal and Cauchy

distributions.
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common distributions. The presence of bias means that the

estimator will converge to the wrong value as larger and

larger samples are obtained. Whether this asymptotic error

is objectionable or not depends on pragmatic consideration

of the total sample size available but it would certainly

seem preferable to adopt an asymptotically unbiased scheme.

It should be pointed out that for the exponential

distribution the bias is about 10 % of the true 0.99

guantile value for a sample of 100 observations and about

1 % when 1000 observations are considered. The normal

distribution has similarly poor properties so that quite

large sections may be required in these cases if bias is not

to be a problem in the final approximate order statistic

estimate.

Usually bias can be removed by using the jackknife

technique (see Miller [27]) but since the order statistics

are very non-linear functions of the observations the

jackknifinq eliminates bias only at the cost of a serious

inflation of the variance. This inflation was found to be

very bad for small samples by Goodman, Lewis and Robbins

[14], where empirical evidence demonstrated that the mean

square error of the jackknifed estimators was 50 % larger

than for the ordinary order statistic method for samples of

from 1000 to 10,000 observations. Moreover, implementation

of a jackknife scheme is complicated by the requirement to

sort not only the entire section but also a set of

subsections.

1 . Approximate order statistics - Nesting

If we use sections of size n in an approximate order

statistic method and then choose

63





Non-parametric Quantile Estimation Through
Stochastic Approximation

Y = X
i (u)

with u = [a(n + 1) ], then s has the same value as the
a

a -quantile of the Y values, where
Y

a = Pr{ Y < s }

Y a

= Pr{ X < s }
(u) a

n r n-, i
= .2 C i ] a (1

-
i=u

a)
n-i

This is just a generalization of the two transformation

methods of Section I.e. For a nested scheme, then, we

accumulate a sample of n Y observations and choose
Y

Z = Y
i (u )

Y

with u [a (n +1) ]. The extension of this technique to
Y Y

higher levels of nesting is straightforward.

The price we must pay for this reduction in the storage

requirements is an inflation of the asymptotic variance just

as in the case of the maximum and next-to-maximum

transforms; note that the averaging method involves no such

inflation as long as the X sections are large enough for the

asymptotic variance (1.5) to hold approximately. If Z
i

were taken directly as an order statistic from an X sample

of n n observations we would have
Y

Var[Z ]
i

aj[1 - aL
n nf*ls

T

Y a

with the nesting scheme, however
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where

Var[Z ]
i

a 1 - a
Y Y

~n~F2"Ts~r~
Y Y a

r n, u-1 n-u
f (s )

= MiJ u a (1 - a) f (s ) .

Y a a

(See David [5].) Thus, the variance will be inflated by an

approximate factor of

n a (1 - a )

Y Y

ni 2 2 2u-

1

u J u a (1 - a)
2 (n-u) +1

For example, if we estimate the 0.99 quantile by

considering a Y sample generated by taking the 99th order

statistic in X sections of 100 the variance of an estimate

based on a Y order statistic will be 1.437 times the

variance of an estimate taken from the X sample as a whole.

Since a = 0.73576 in this case, we may continue the nestinq
Y

process by choosing n = 100 in which case we take
Y

Z = Y ; the variance will then be further inflated by a
i (74)

factor of 1.566 for an overall inflation of 2.242. We may

obtain results with the same precision by considering a

larger sample (assuming data is available) ; in the present

case, we need a total X sample of 14,400 to obtain a

variance equivalent to n = 10,000 in an untransformed case.

The total storage requirements, however, are now ^ust 244

observations - 100 for the X samples and 144 for the Y

sample. Similarly, we may deal with a total X sample of

2,250,000 by using a triply nested scheme with 100 X, 100 Y

and 225 Z observations, thus obtaining a variance equivalent

to n = 1,000,000 in the unnested case.
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The nested order statistic scheme results in the

smallest asymptotic memory requirements - 115 In n for

repeated sections of 100 - but the increase in variance by a

factor of about 1.5 per level is a very serious drawback.

There is also the problem of determining the proper sample

sizes and order statistics at each level - a problem which

is most easily solved if the sample size can be specified in

advance. The determination of the bias of the nested

estimators and investigation of some reasonable way for

finding confidence intervals are areas for further research,

but the problem of variance inflation would seem to rule out

these estimators unless a virtually unlimited amount of data

is available.

Asymptotic

Method Memory. Size

Full Sort n

Censored .01 n

Payne 1 s .8/n

Average 1000

Nested 115 In n

n = 10,000

Memory_ Bias

10,000 -.0049

130 -.0049

n = 106

Memory Bias

10 6 -5X10-5

10,300 -5X10-5

100 -.0049 8,000 -5X10-5

1,000 -.0487 1,000 -.0487

200 -.0013 300 -.0063

244 -.0 07 9 425 -.0064

Table III. Comparison of various order statistic estimation

methods for finding the 0.99 quantile. Bias values given

are for the exponential distribution. Total samples of

14,400 and 2,250,000, respectively, are needed to give

equivalent variance results in the nested method; memory and

bias results for these larger samples are also given.
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5. Summary

A summary of the order statistic quantile estimation

methods discussed here appears in Table III; biases given

are for the 0.99 quantile of the exponential distribution.

Despite the conceptual simplicity and well-understood

behavior of these estimators, we have shown then all to lack

some desirable features. If we wish to estimate a set of

quantiles based on a fairly large amount of data (say

100,000 observations) order statistic estimators are clearly

inadequate.
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B. Robbins - Monro Estimators

It should be mentioned at the outset that the basic

Robbins-Monro (RM) process cannot be applied directly as a

quantile estimation technique in any practical method since

its properties depend so heavily on the unknown parameter

- f(s ), i.e. the value of the derivative of the unknown
a

distribution function at the unknown quantile. The

properties also depend to a lesser degree on the starting

value s but the situation is not nearly so critical there.
1

Both modifications to the basic RM process considered here

overcome this difficulty by simultaneously obtaining an

estimate of s and £ ; we thus investigate the RM process
a

applied to a known distribution using the optimum step size

A = in order to obtain results which should be better

than those for- methods which employ estimates of 0.

1. Selecting the starting point

The first problem to be faced when dealing with RM

quantile estimation is the selection of the initial guess,

s . The results of Hodges and Lehmann r 15] indicate that
1

the bias of the RM estimator is closely related to that of

s so that starting with a value which is close to s is
1 a

desirable. We must have E[ s ?
] < °° in order to preserve
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mean square convergence. One approach is to take a pilot

sample with perhaps 1000 or 2000 observations and begin RM

with an order statistic estimator; a second approach is to

use a nested approximate order statistic estimator, as

discussed in the previous section.

This latter approach is in fact adopted here; since we

will for the most part be employing the maximum transform in

this work, we begin all the stochastic approximation

estimation procedures by choosing

X« = max f X , X , .. . , X }

1 12 v

X« = max {X , X , ... , X }

2 v+1 v+2 2v

X' = max {X , X , . . . , X }

3 2v+1 2v+2 3v

and then setting

s = X'
1 (2)

This procedure requires very little computer memory and

turns out to be very convenient for the simultaneous

estimation problem; it is adopted in other cases not

employing the maximum transform in order to have an

equivalent basis for comparison between stochastic

approximation methods.

Throughout much of this work we deal with the problem

of estimating the 0.99 quantile of the exponential

distribution. This case was chosen because it is one in

which the bias of the order statistic estimator in

reasonable samples may be objectionable (see Tables II and

III). The exponential distribution is also widely applied

69





Non-parametric Quantile Estimation Through
Stochastic Approximation

as an empirical model for lata and the 0.99 quantile is

commonly used in statistical inference; thus, this case is

typical of the contemplated application of our stochastic

approximation estimators.

r
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Mean

Variance
Standard

Deviation

Skewness
Kurtosis

1.121577E-01

6.673908E-01

8. 169399E-01

7.798659E-01
1.001406E 00

Minimum
Quartile
Median
Quartile
Maximum

-2.041833E 00
-6.886933E-01
-2. 153153E-01
3. 552980E-01
4. 213145E

Figure 1. Bias of the initial estimate s for the 0.99
1

guantile of the unit exponential distribution; v for maximum

transformation is 56. True quantile value is 4.6052.

Histogram sample size is 5000 observations on s*.
n
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The bias of the initial estimate s for the exponential
1

0.99 case is indicated by the histogram of Figure 1. The

histograms for stochastic a pproxi mation quantile estimators

in this Chapter display the bias of the estimators, i.e.

s* = s
n n

s ,

a

rather than the estimator values themselves. In this

Chapter, we use the term bias to refer to the entire

distribution of s* rather than to E[s*] as is usual. Data
n n

for Figure 1 , as well as for the other histograms, was

obtained by sampling pseudo-random numbers from various

distributions; these were generated by the Naval

Postgraduate School random number package LLRANDDM [21] and

its extensions [31], Note that the information of Figure 1

could have been obtained analytically, but the details would

be messy.

The caption for each histogram in this Chapter

indicates two sample sizes: one (the "X sample") for the

total number of X observations from the underlying

population used to compute the statistic (for example, s*)
n

whose distribution is displayed and the other (the

"histogram sample") for the number of replications of this

, statistic used to compute the histogram and the sample

summary statistics printed. Note that the X sample size

will be larger than the indicated number of stochastic

approximation steps taken because the X sample includes the

3 v values used for the starting point. Also, the number of

steps taken in the stochastic approximation will be smaller

than the corresponding sample size by a factor of v when the
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maximum transform is used (or w for the next- to-maximum

transform)

.

The letters "Q" printed below the histogram and above

the scale indicate the location of the sample quartiles

(including the median as the second quartile) while the

letter "M" indicates the sample mean. The M may be printed

instead of one of the Q's if they appear in the same column;

this phenomenon occurs in Figure 1.

2. The basic RM process

We begin our investigation of the distribution of s* in
n

the RM process by considering ' the untransf ormed RM

estimator, i.e. one which takes a step with every sample

f (s ) = 0.01
0.99

value. He use the optimum step size A -

for the exponential distribution. The results are shown in

Figures 2 and 3 for s* and s* ; the distributions are
1121 5601

clearly grossly non-normal, despite the asymptotic normality

indicated in Chapter I. Note that the appearance of Figure

3 does not suggest much of an improvement despite an

additional 4M80 X observations; the skewness and kurtosis of

the estimator are, if anything, increasing with sample size.

An explanation of this behavior becomes clear if we

consider the effect of the first observation, X . Because
1

of the negative bias in s (see Figure 1) , the probability

that X > s is slightly greater than 0.01; this means that11
about 1.5 % of the time the second quantile estimate is
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s = s + 0.99 / (0.01 X 1)
2 1

= s + 99.0
1

This is obviously much larger than the true quantile value

of 4.60 so we expect that all of the observations on X will

be less than s with high probability until the estimate has
n
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-9.772558E-01
1. 099984E 00
4.579803E 00
1. 158600E 01
9. 311420E 01

Figure 2. Bias of the RM stochastic approximation estimator

s* for the 0.99 quantile of the exponential distribution.
1121

Maximum transform was not used, ;ample 1288

observations: histogram sample - 2500 replications of s*y v
1121
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reac'ied a reasonable level, perhaps 6.0. This in turn

requires that the RM process take downward steps for about

90 units. These downward steps are proportional to 1 - a

according to (1.10) and in this case are exactly equal to

1/n. The value of n such that

I i-i = 90
i = 2

946 +

710 +

473 +

237 +

I

I

I.

*
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*

*
**
** *
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-3. 4778023-01
3.437433E-01
2.965771E 00
9. 932393E 00
9. 143U04E 01

Figure 3. Bias of the RM stochastic approximation estimator

for the 0.99 quantile of the exponential distribution for an

X sample of 5768 observations; maximum transform was not

used. True value is 4.6052. Histogram based on 2500

observations on s*
5601
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is about 2 X 10 39 so that the RM process will in this case

have 1.5 % of its distribution in the extreme right-hand

tail at a substantial distance from the true quantile value

for any_ reasonable sample size.

An additional 4 % of the quantile estimates will also

move upwards a distance of 49.5 units after having taken the

first step down, while 5 % and 8 %, respectively, will take

the third and fourth steps upwards. Thus, nearly one-fifth

of the time the RM process will be over 20 units from its

starting point (and from the vicinity of the true value)

after only four observations. This then accounts for the

appearance of Figures 2 and 3; a similar situation exists

with random samples from a wide variety of parent

populations, i.e. it is not particular to the exponential

distribution.

3. The gain sequence shift

What is needed is a way to decrease the size of the

first few upward steps without changing the asymptotic

behavior of the RM process. This can be done by using the

gain sequence

(2) a = 1
n 7n + kTE

instead of the 1/n sequence of (1.11), where k is some

positive constant, referred to hereafter as the shift

constant. The proofs of Dvoretzky [7] and Sacks [33] allow

for gain sequences of the form (2) and so we preserve the

almost sure convergence and asymptotic normality of s .

n

For the exponential 0.99 quantile case a k value of 98

would reduce the initial upwards step to a reasonable size
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of 1 unit; from this point we need to move down a distance

of only about 0.9 (on the average) to reach the true value

of s
0.99

The n value such that

n + 99
2 i- 1 = 0.9

i=T00

is 146 so that there will be no difficulty in reaching the

close proximity of the true value given a reasonable sample

size.

Since the initial estimate s is actually based on a
1

sample of 168 X observations, we adopt a shift constant k of

167; the resulting distribution of s* is shown in Figure
1121

4. The data from the X population for this Figure are the

same as in Figure 2 with which Figure 4 should be compared.

Clearly the introduction of the shift constant has greatly

improved the finite sample properties of the estimator.

Under more general conditions we wish to determine a

gain seguence shift k such that the effects of a bad initial

step can be reversed in a reasonable number of additional

steps. Assuming that a > 0.5, the "bad" direction is upward

and the initial step is a / (k+1) , using the optimum step

divisor A = 0. Writing j for k+1 we must then find an n

large enough that

n
2 1 Z a > a ,

i=1 fil^jT 03

or

j+n

i=^i TFin
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Table IV shows values of n for various values of a and j.

It is clear that using a shift constant of 100 to 200 may be

useful for 0.01 < a < 0.99.

Another interpretation of Table IV is also possible:

the entries show the minimum number of additional
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8.416826E-02

1.053326E-01
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1. 163162E 01

Minimum
Quartile
Median
Quartile
Maximum

-7. 4339582-01
-1. 386166E-01
6. 168079E-02
2.729588E-01
4.016244E 00

Figure 4. Bias of the RM stochastic approximation estimator

s* for the 0.99 quantiie of the exponential distribution
1121

using a shifted gain sequence with k = 167. Maximum

transform was not used. X sample was 1288 observations;

histogram sample size = 2500.
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observations needed to overcome an incorrect step upwards at

stage j of the RH process. Note that as j increases this

number of steps approaches a limit which is approximately

a / (1 - a) . This means that the RM process tends to remain

in the vicinity of the true value s once it has reached it
a

since here it will take a steps down on the average for each

1 - a steps upward.

D Quantile Level, a

(k+1) 0.75 0.900 0.990 0.999 Unit Step

1 30 12302 2X10*3 10*3* 3

2 9 225 2X1021 10217 5

3 7 68 8X101* 101*5 7

4 6 39 2X10H 101O9 8

5 5 28 2X109 3X10 Q 7 10

10 4 16 2X105 2X10** 19

20 4 12 2874 1X1023 36

50 4 10 316 2X10io 87

100 4 10 170 2X106 173

200 4 1TJ 129 29310 345

300 4 10 118 8095 517

500 4 10 110 3191 861

1000 a 10 105 1717 1720

Table IV. Number of additional observations required for a

shifted stochastic approximation method to reverse an

initial unfavorable step. The shift constant is one less

than the entry in the first column. The entries may also be

interpreted as the number of observations needed to reverse

an incorrect step upward at step j. The last column gives

j + n
the value of n satisfying Z i-1 > 1 •

i = j + 1

78





Non-parametric Ouantile Estimation Through
Stochastic Approximation

We thus see that estimating the stochastic

approximation starting point s by an order statistic method

from an initial sample whose si?.e is roughly proportional to

a / ( 1 - a) and then beginning the RM process with a shift

constant k = a / (1 - a) will avoid most of the serious

instabilities of Figures 2 and 3. An interesting feature of

this result is that it is distribution-free in the sense

that the optimum step size multiplier 1/ does not appear

in an explicit way. However, whether shifting the gain

sequence will result in an effective estimation procedure

depends on the bias of s as well as the properties of the

random variable X whose quantile we are estimating.

For example, if the random variable X is widely

dispersed it is quite possible that the RM process will take

two or even mor-e steps in the wrong direction. Since the

harmonic series on which Table IV is based grows

logar ithmically the effect of several such incorrect steps

may require many times the sample sizes indicated to

overcome. The typical shape of the distribution of

stochastic approximation quantile estimators is that of

Figure 4; the long tail to the right is made up of

estimation sequences which are in the process of correcting

multi-step errors.

If there is an appreciable bias in s then a large
1

shift constant may seriously impede the convergence of the

estimator to the near proximity of s . The biases indicated
a
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in Tables II arid III in some cases are large enough to cause

difficulties here and the order statistic estimators used to

obtain the initial estimate s estimators are subject to
1

considerable sampling variation. If the initial sample size

for finding s is n , then on asymptotic grounds from. (1.7)

the initial variance is

o* = a(1 - a)
1 -*E—fi*

1

which might be inflated somewhat if a nested scheme is

used. Since n - a / (1 - a) , the initial standard
1

deviation will be

o = *\ -_a ,

1
'"fi

which is n times the size of the first downward step. Thus
1

if the initial estimate s is just one standard deviation
1

high we need a sample of at least n observations to overcome

this, where

or

(3)

n + j
2 1_~ a > 1_z a

n+j
.2. i* 1 > 1-

The last column of Table IV gives values of n satisfying

80





Non-parametric Quantile Estimation Through
Stochastic Approximation

(3) .

In a given case it is thus possible that both the bias

and the sampling variation of s will combine to produce a
1

starting point which is far from s . If this is sa an
a

unreasonably large sample may be needed to obtain a nearly

Gaussian distribution for 5 when a is close to or 1 . The
n

long tail of Figure 4 is at least partially due to this

phenomenon, especially in view of the skewed distribution

of Figure 1

.

4. Maximum and next-to-maximum transforms

The only way to overcome this problem is to transform

the a values being used to values closer to 0.5; this of

course can be done by means of the maximum or

next-to-maximum transform methods of Chapter I. In the

context of our present discussion, it is clear that these

transform techniques work because the effect of steps in the

wrong direction can be readily reversed. Examples of the

maximum transform (s*') and next-to-maximura transform (s*")
20 6

used for estimating the 0.99 quantile of the exponential

distribution are shown in Figures 5 and 6. The theoretical

(asymptotic) variances of s' for these Figures are .1242 and
n

.1848, respectively, which compare well with the observed

values of .1431 and .1842. The distributions in both cases

are normal or nearly so.

Examination of Figures 4, 5 and 6 (together with a
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great deal of data from other distributions and quantiles)

leads to the general conclusion that the distributional

properties of the stochastic approximation estimator s are
n

greatly improved by these transformation schemes. The
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Figure 5. Bias of the RH stochastic approximation estimator

for the 0.99 guantile of the exponential distribution using

the maximum transform with v = 56. X sample is 1232

observations: histogram based on 2500 replications of s**.
20
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next- to-maximum method seems to result in a more nearly

Gaussian shape (as measure! by the sample coefficients of

skewness and kurtosis) for the distribution and agrees more

closely with the asymptotic variance, but both transform

methods give quite satisfactory results even in relatively

small samples.
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Figure 6. Bias of the RM stochastic approximation estimator

for the 0.99 guantile of the exponential distribution using

the next-to-maxiraum transform with w = 192. X sample is

1028 observations; histogram based on 2500 observations of

s*".
6
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A further advantage of the transform jnethods is that

they involve less computational effort than does the

untransformed (direct) technique. In fact the computation

time for the untransformed case is over four times that for

either transform method. Thus if the X sample is being

generated by a pseudo-random process within the computer it

may be more efficient computationally to use one of the

transform methods despite the variance inflation which

requires us to generate a larger X sample for the same

estimate precision; the time saved in the estimation

procedure may be sufficient to offset the generation time

for the larger sample.

5. Direct application of the RM method

In the previous Subsection we used a fixed step size

A = /? , chosen so as to give the best asymptotic variance.

As indicated earlier, the RM process cannot be applied

optimally (i.e., with minimum asymptotic variance) in any

real situation simply because we do not know the actual

value of P . If a reasonable initial estimate of can be

found, however, it may be possible to use the RM process

directly for quantile estimation.

This was done in the work of Goodman, Lewis and Robbins

[14] and also by Yuguchi [38]. They used the same starting

value as in the present work, but with a random A value

given by

X' - X*
f = C3 > _£ 1

2._

8(X« - X' ) (X' - X« )

<2) (1) (3) (2)

This A* is used for ail steps in the stochastic approximation
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estimation process as opposed to the Venter method and the

new method which use a dynamically changing A value. A

second instance in which direct application of the RM

process was attempted is given by Iglehart [16]; in this

case a fixed estimate of ffs ) based on the empirical
a

distribution function was used.

Now the convergence of s* to a limiting normal
n

distribution with variance 0(n-* 1
) requires that we have A <

2/9 (Sacks [33]) . This will not in general always be the

case for A" or for any other estimate of $ . It is known

that the convergence may be much worse for A > 2/9 ; for

example, when A = 20 the variance is (log n/n) (Major and

Revesz [26]). Thus, the stochastic approximation process

with a fixed gain sequence multiplier may result in very

poor convergence properties even if the distribution does

not blow up as in Figures 2 and 3.

In particular, the results of Yuguchi [38] indicate the

-1/4
presence of an (n ) component in HSE[s']; also, the

n

sample coefficients of skewness and kurtosis of the 3M

estimators increase with increasing sample size rather than

decreasing as we would expect if the distributions were in

fact approaching normality. The RM quantile estimators were

also found to give "erratic results" by Iglehart [ 1 6 ] and he

recommended that they not be used. .

It is possible that these results couT be improved if
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a density estimator with better properties than I or the

derivative of the empirical distribution function could be

found. A possible candidate is just the kernel estimator of

(1.32); see Rosenblatt [32] or Parzen [28]. We prefer to

use a method which is guaranteed to have the minimum

asymptotic variance, however, and so in Section III.C we

turn to techniques which have this property.

6. Summary

The general conclusions of this Section are that the

nested method for selecting s is sufficiently robust and
v 1

that the maximum transform is a computationally and

statistically effective technique for RH quantile estimation

for well-behaved X populations. The next-to-maximum

transformation and the gain sequence shift are also useful

and may be ^necessary in some cases to increase the

robustness of the RM process. Finally, the finite sample

and asymptotic properties of methods using random values for

the gain sequence divisor A will be much better if those

values converge to the optimum value £ rather than

remaining fixed.

C. Venter' s Estimator

With Venter's method we enter the realm of techniques

which can be applied to real estimation problems, i.e. those

in which £ is unknown. Seneral experience with the Venter

estimator, however, shows that it is not very robust and

often tends to bio-' up.
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1. Choice of parameters

The first question to be addressed in a practical

implementation of this stochastic approximation method is

the choice of the finite difference sequence {c } , which
n

from (1.22) is given by

<«) c = c n ,

n
0.25 < r < 0.50.

-r
In order to avoid the necessity of computing n at each

step of the estimation process (this requires a logarithm

and an exponential to be calculated) we adopt instead the

sequence defined recursively by

(5)

e - ( 1

n-s-1

e3
n ) e

3" n

This sequence requires only elementary arithmetic operations

and may be generated about 100 times faster than the

sequence (4) .

The properties of {e } may be readily found. First we
n

note that e > and that e < e for all n, i.e. the
n n+ 1 n

sequence is bounded below and monotone decreasing. At stage

n suppose that

-1/3 -4/3
e = n + o ( n ) ;

n
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then using (5) we have

-1/3 -4/3e=(1"1)n +o(n )

n+1 In

-1/3 -4/3
= (n + 1) + o ( n ) .

Thus taking c = c e results in a Venter process with r =
n n

1/3; Venter's proof [20] allows for gain sequences of this

form.

Selection of the modulating constant c is the next

problem. Intuitively it seems that c should be larger when

the X population is more widely dispersed in the vicinity of

s ; thus c = 1 / fi would be a reasonable choice except that
a

ft is usually unknown. We might thus decide to estimate

from the same initial sample as s and so use a random value
1

for c or else choose a reasonably robust fixed value for c.

It turns out that the behavior of the Venter guantile

estimator is bad regardless of the value chosen for c. The

selection of c, however, does not seem to influence the

estimation process as much as the bounding process (1.25) or

(1.29). Venter's convergence proof required that the

estimate A of /3 be restricted to the interval (a*,b*) [37]
n

while Fabian [9] showed that we may take

-L
a* = C n

1

(6)

b* = C In (n+1)
2

88





Non-parametric Quantile Estimation Through
Stochastic Approximation

It has been found empirically that in most applications only

the lower bound a* is essential, though the upper bound

improves the estimates somewhat. Following the discussion

of the previous Section we can understand the function of

the lower bound as limiting the size of the steps which we

allow the Venter process to take.

We may generate the bounds (6) by using the {e }

n

sequence (5) with the multiplier C for a* and the sequence

{H } defined by
n

(7) H = .§ i" 1

n 1=1

with the multiplier C for b*. It i s well known that
2

H =lnn+y+0( n- 1
) ,

n

where Y = 0.51122 is Euler's constant; this approach is

about 20 times faster than computing the logarithm directly

but still preserves the asymptotic behavior required, for

example, in the proof of Theorem 1 in Chapter II.

2. Simulation results

Considerable simulation effort was devoted to

investigating optimum values for c, C and C ; in general,
1 2

it was found that the Venter estimator is not very robust

when random values are used and that it is difficult to

select fixed values which give good results in a variety of

applications. Figure 7 shows a typical example of the
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Venter estimator with c = C =1 and C = 2 applied to the
1 2

0.99 quantile of the exponential distribution. It was found

that increasing the value of C decreased the spread of the
1

estimator somewhat while altering the value of C seems to
2

have little effect on the distribution of s'

.

n
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Figure 7. Bias of the Venter stochastic approximation

quantile estimator for the 0.99 quantile of the exponential

distribution based on an X sample of 5768 observations.

Maximum transform with v = 56 used. Histogram sample = 2500

observations of s* * .
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Increasing C does improve the distributional
1

properties of the Venter quantile estimator but only at the

cost of introducing considerable bias into the estimation

process. In fact, the Venter estimator seems to be

particularly bias-prone. In pseudo-random sampling

experiments in which several quantiles from normal, uniform,

exponential and gamma populations were estimated it was

found that the Venter estimators had biases which were from

50 to 1000 times as high as those of the RM estimators.

A further drawback to this method may be seen in Figure

8 which displays the density estimate A' obtained in the
n

same sampling experiment as the quantile estimates of Figure

7 (the notation A* indicates that the estimate is based on a
n

maximum transform scheme) . The negative estimate values for

£ = f (s ) are quite common for the Venter procedure, but
a

they prevent us from obtaining any reasonable estimate of

the variance of s'. We denote Var[s'] by o* and based on
n n n

the asymptotic theory we estimate this variance by

(8) o z -
n

v v
va (1-a )
*"

n \w
n

where v is the size of the maximum transform sample.

Normally, the larger A' is the less variable is 3' but when
n n

A' < we can say very little about a 2
,

n n
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Note that the appearance of Figure 8 is quite Gaussian

and that the mean of A' is.very close to the theoretical
n

value for the exponential 0.99 quantile

v-1
« = va f (s )

a

= 0.3222 .
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for the

exponential distribution based on the same experiment as

Figure 8. Venter estimator A' of f (s )

100 0.99

Figure 7. True value is 0.3222. X sample = 576

observations; histogram based on 2500 observations of A'y
100

92





Non-parametric Quantile Estimation Through
Stochastic Approximation

The distribution of A* thus agrees with the asymptotic
n

results of Venter [37] but the negative values are

unacceptable for the determination of confidence intervals

or for assessing the variability of s'

.

n

D. The New Estimator

1. Choice of parameters

To use the new estimator of Section I.E and Chapter II

we must first decide on a number of parameters, just as in

the Venter case. These decisions include the choice of a

kernel function W(«) and a bandwidth sequence {b \ as well
n

as the specification of the bounding method (2.4), analogous

to the interval (a*,b*) for the Venter process.

Considerable experience with density estimators, both

in this thesis and in [23], indicates that the triangular

weight function

(9)
1 -

W (x) =
t

if | x | < 1

otherwise

gives results comparable to those of smoother kernels with

some saving in computational efficiency. Other kernels

investigated include the uniform

W (x)
u

1 if -1/2 < x < 1/2

otherwise

which is somewhat unstable and subject to bias, as well as

the smoother guadratic weight function
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V x) =
1.5 ( 1 - x2 ) if | x | < 1

otherwise

and the exponential weight function

W (x) =
e

1 e
2

-IX!

All of these functions clearly satisfy assumptions (W1) to

(W4) of Chapter II and so are admissible for stochastic

approximation guantile estimation.

For the bandwidth seguence we again adopt the {e }
n

seguence used for the Venter case. Selection of b = b e
n n

satisfies (2.7) with g = 1/3; once again, the savings in

computation time make the use of the {e } seguence very
n

attractive. As an alternative we might use the sequence

{e'} based on the recursion
n

e 1 = 1

1

e 1 = ( 1

n+ 1

e«2

2 n

-V2
which may be shown to be 0(n ) . Since excellent results

were obtained with {e } this other sequence has not been
n

investigated.

Selection of the bandwidth multiplier b must take into

account the spread of the random variables. If too small a

value is used it is unlikely that any X observations will

fall close enough to the s values to make a contribution to
n
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the density estimate. (Recall that

s - X
(10) w = 1 W [ n n

will be positive only if |s -X | < b .) On the other hand,
n n n

if b is too large it is possible that B will be unable to
n

increase fast enough in a small sample to reach very large

values of /3 .

Practical experience with the method shows it to be

quite robust with respect to the choice of b; most of the

work reported in this Chapter and in Chapter IV was done

with a fixed b value of 1. In data where the observations

are more widely dispersed than those considered here, it may

be desirable to use a random value for b. If the nested

method is used for finding s a convenient b value to use is
1

b = X« - X'
(3) (1)

using this value guarantees that further X' observations

will be within a single bandwidth b of §'.
n n

The lower bound on the, sequential estimate A of ft in
n

the Venter process was absolutely essential since the Venter

technique sometimes results in negative A values. If these
n

values were used, steps in the wrong direction would be

taken and so a lower bound on the value of A must be
n

established. For the new process all of the increments to
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the density estimator B are positive, so that once a
n

positive estimate is obtained we need not be concerned with

this type of behavior. We may assure that the s estimator
n

will be fairly stable by setting the initial value of B ,

n

which we call B , to a positive value: either some random a

priori estimate of /3 or else a fixed number. The larger

the bandwidth sequence multiplier b is, the smaller the

value for B we want to use. We thus set B = 1/b whether b

is fixed or random.

As mentioned above, we adopt here the fixed values

b = B =1. i.e. we use the estimate B criven by
n

B == i r 1 + | w
]

n n L j^i j J

where w is given by (10). Note that this is equivalent to
j

a lower bound with C = 1 and L = 1 ; although this does not
1

satisfy the requirements of (2.4) the results in all cases

investigated so far do not seem to call for a more stringent

method.

For an upper bound we again adopt the {H } sequence
n

used in the Venter case, using a C value of 1. Although
2

the upper bound makes very little difference in most cases

it seems prudent to use it to avoid any possible instability

in the early phases of the estimation process.
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2. The basic stochastic approximation algorithm

A succinct description of the estimation process may

now be given by setting forth its three phases as

follows. (Note that the same basic method holds for both

untransformed and maximum transformed estimators.) For

notational simplicity, we write "m" for B in the algorithm.

1 • Initialize. Obtain the initial estimate s and the

bandwidth multiplier m and initialize:

2.

3.

s=s; f = 1 / m

;

1

n=1; b=m; h=1.

X observationUpdate^. For each new

estimates as follows:

update the

a. Density Set t = |s - X|. If t < b increase

f = f + (b-t) .

b. Quantile If X < s set y = a-1 otherwise sst y = a.

If f > h*n set d = h*n otherwise set d = f (this is the

upper bound operation) . Finally adjust s according to

s = s + y / d.

c. Cons tants Update the constants for the next phase:

h = h + 1/n; n = n + 1

;

b = ( 1 - b^ / 3m3 ) b.

Results^ The final estimate of the a-quantile is s.

An estimate of Var[s] is given by

Var[s] = (n-1) a (1-a) / f 2
,
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while f/(n-1) is an estimate of f (s ).
a

The process thus requires us to store just five

variable values (s , f, n, b and h) and a pair of fixed

values (a and m) . After the kth X value has been used in

step 2, s has the value s
k+1

f is k B n is k+1, b is e
k+1

321 +

241 +

161 +

80 +

**
**
**
**

* * * *
****
****

******
3jC >Jc jjc 5JC 3p ^C

******
******

********
********

**********
** ********

*
***
***
***
***
***
***
* **
***
* **
***
***
***
* **
* **

* **
***
* **

*
*
**
**
**
**
**
**
**
**
**
**
**
* *
**
**
**
**
**

***
***
***
***
***
***

***
***
***
***
* **
***
* **
***
* **

**
**
**
** **
****
****
*** *
******
******
**********
**********

**********************************************
H Q

~T

-0.600 -0.350 -0. 100 0. 150 0.400 0.650

Mean

Variance
Standard
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Skewness
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Figure 9. Bias of the stochastic approximation estimator

for the 0.99 quantile of the exponential distribution using

kernel density estimators. Total X sample = 5768

observations; maximum transform with v = 56 was used.

Histogram based on 2500 observations of s* 1
.
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and h is H
k + 1

To carry out the maximum (minimum) transform with

v v
sections of size v, we use the value a 1 = a (a* = (1-a) )

in steps 2. b and 3 and carry out step 2 only for each of the

section maxima (minima) . The estimate of f (s ) in step 3 is
a

v-1 v-1
then f /[ va (n-1)] {or f/[v(1-a) (n-1) ] for the minimum

case} . Here we will require one more constant (v) to be

stored as well as two more variables which keep track of the

number of observations considered so far in the current

section and the value of the maximum (minimum) value

encountered.

3. Simulation results

An example of the new stochastic approximation quantile

estimator applied to the 0.99 quantile of the exponential

distribution appears in Figure 9. The asymptotic variance

for this maximum transformed case is

(11) Var[s« ]
=

n
a' (1-a 1

)

v-T ~ ~ 2
n {va f (s ) }

a

= 2.3615
n

or 0.02362 for n = 100. This corresponds quite closely to

the observed value of 0.02435 and the shape of the histogram

also appears reasonably Saussian. We thus conclude that the

asymptotic theory is a generally acceptable description of

the behavior of the new stochastic approximation quantile

estimation scheme for moderately large samples.
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Comparing this distribution to that of the

corresponding Venter estimate (Figure 7) we see that the new

method results in an estimator whose properties are much

more reasonable; the observed mean bias is less for the new

estimator while the variance is smaller by a factor of 7.

The distribution also appears much more Gaussian and the

sample coefficients of skewness and kurtosis are smaller in

r
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guantile of the exponential distribution based on 5768 X
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Figure 9. We conclude that the new procedure is decidedly

better than the Venter technique for quantile estimation.

Figure 10 shows the distribution of the density

estimate B* (or f/(n-1) from the algorithm) which was
n

obtained at the same time as the data of Figure 9. Once

again the distribution appears approximately Gaussian and

r
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Figure 11. Bias of the stochastic approximation quantile

estimator for the 0.99 quantile of the exponential

distribution based on an X sample of 5768 observations.

Maximum transformation was not used in this case. Histogram

sample size = 2500 observations on s*
5601
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the observed mean of 0.3264 is quite close to the

theoretical value of 0.3222. On asymptotic grounds from

Theorem 4 the variance should be

Va
j3* /'w 2 (u)du g-1

r[B« ] =
P J n

n IT?gf"—
'-

=
J/3'

n
-2/3

= 7.478 X 10-3
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Figure 12. Density estimate B for the 0.99 quantile of
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the exponential distribution; based on an X sample of 5600

observations without maximum transform. Actual value is

0.01. Histogram sample is 2500 observations of B
5600
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which is very close to'the observed value of 7.812 X 10-3 .

Also there are no negative values of B* so that all of them
n

are admissible as variance estimators.

The new estimator was also applied to the 0.99 guantile

of the exponential distribution without using the maximum

transform; the results appear in Figure 11. Clearly the new

process is far more stable than either the RM or Venter

methods; the distribution of s is very nearly normal
5600

with an observed variance (0.02328) close to the asymptotic

value (0.01768) . The density estimate B for this case
5600

is shown in Figure 12; the mean is close to the true value

of 0.01 while the observed variance of 2.07X 10 -5 is also

close to the asymptotic value of 1.59 X 10~ 5 although the

distribution is skewed to the right and does not appear

Gaussian.

Despite the results of Figures 11 and 12 we still

prefer to use the maximum transformed version of the new

process both because it is computationally faster and

because its finite sample properties are generally superior,

especially for guantiles more extreme than the 0.99. It is

nevertheless encouraging to find the new process

sufficiently stable to avoid the very heavy tails displayed

by the untr ansformed RM estimator (see Figures 2 and 3).
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4. The stability of the new estimator

An explanation of the stability displayed in Figure 11

follows if we consider the role of the variable f in the

algorithmic description of the new method given above.

Recall that f = n B , i.e. it is the divisor in the basic
n

stochastic approximation recurrence relation. Now f will

increase at each step when we use the triangular kernel

function only as long as the latest X observation is close
n

to s . If f does not increase, however, the size of the
n

steps taken by the process will remain the same; we thus

have an analog to the accelerated process of Kesten [18]

where the step size remains constant until we have straddled

the true value by taking steps in both directions.

The new method is an improvement on Kesten's technique

because the step size adjustment here is made for each X

observation. Instead of determining that the estimator s
n

is in the vicinity of s by looking at the changes in step
a

direction we examine directly the relationship between X
n

and s . For example, if s is a long ways from s so that
n 1 a

none of the X observations are near s for small j values
J

then the process will take steps of size 1/B = 1 until it
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reaches a point where s is close to the latest observation
n

value X . Once the s values are close to the X
n n n

observations the w terms added to f will be positive and so
n

the step size will decrease.

5. Confidence intervals

The final area to be investigated here is that of

applying the new estimation procedure to the determination

of confidence intervals on s . To obtain a 100 p %
a

confidence interval on s we use
a

(12) s ± /IHEII B-» u
n+ 1 y/ n n p

where u is the upper 1 - p/2 point of a standard normal
P

random variable. It would be possible to establish the

asymptotic properties of confidence intervals estimated in

this way following the work of Sielken [34]; this has not

been done here.

To investigate the finite sample properties of the

confidence intervals in the exponential 0.99 case, however,

further simulation experiments were undertaken. Based on

10,000 replications the coverage of the confidence interval

(12) for various p values was as follows:
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H Actual Coverage

0.90 0.8777 ± 0.0033

0.95 0.9265 ± 0.0026

0.99 019755 ± 0.0015

The data of Figure 13 show the distribution of the upper

95 % confidence limit (with the mean of 4.605165 subtracted)

for a sample of 5768 X observations. On asymptotic grounds,

the expected value for this limit should be 0.25271 which

corresponds very well to the observed mean of 0.25623.
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Figure 13. Value of the upper 95 % confidence limit for the

0.99 quantile of the unit exponential distribution; the

true value of 4.605165 has been subtracted from each

observation. Estimated by stochastic approximation from X

samples of 5768. Histogram sample size = 2500.
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6- Summary

The new estimator has been used to estimate all the

quantiles in Table I for random variables from tha uniform,

normal, exponential, gamma and Cauchy distributions. So

much data was obtained that it would be impractical to

attempt to display it all here; the results were, with few

exceptions, in general agreement with those shown here for

the exponential 0.99 case. Serious irregularities were

noted in the Cauchy case; these were due to the infinite

variance of the initial estimate s . When the Cauchy
1

experiment was repeated with the fixed starting value s
1

0, however, reasonable agreement with the asymptotic theory

was obtained.

The other major limitation found was in using the

maximum transform for the estimation of extreme quantiles

from distributions whose densities do not approach zero in

one or both tails; examples include the uniform distribution

and the left-hand tail of the exponential distribution. In

these cases the transformed density (3 ' is very large

31.90 for the 0.01 quantile of the exponential distribution,

for example - and it requires very large X samples for the

value of B' to increase sufficiently to obtain good
n

estimates of 0' The resulting values have

distributions which agree with the asymptotic theory, but

the too-small density estimates result in confidence

intervals which are much too wide. In other words, in this

107





Non-parametric Ouantile Estimation Through
Stochastic Approximation

situation the point estimator of s is satisfactory but the
a

density estimate (and hence the confidence interval) is

relatively poor.

We conclude this Chapter with the observation (based on

the above digital simulation experience) that the new method

overcomes most of the limitations of stochastic

approximation techniques for quantile estimation. The

asymptotic theory appears to be an adequate description of

the behavior of the estimators in samples large enough to

give reasonable variances and we are confident enough of the

distribution of s that we may use the estimate of f (s ) for
n a

the construction of confidence intervals.
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Chapter IV. BIAS AND MEAN SQUARED ERROR

In the previous Chapter we examined the problem of

finite sample performance of stochastic approximation

quantile estimates by investigating the distribution of the

difference s* = s - s , which we refer to hereafter as the
n n a

bias of the estimator. Considering the distribution of s*
n

was done because simply looking at its expected value is not

sufficient if one is to explain the extremely poor

performance of some stochastic approximation quantile

estimators. As illustrated by Figures 2 and 3, this poor

performance is characterized by very heavy tails and

exceptionally wide dispersion of s*. By using the maximum
n

transform, however, and the new technique of Section III.D,

we were able to overcome these drawbacks and obtain

estimates s whose distribution is approximately Saussian.
n

Bias is usually taken to be E[s*] and once the problem
n

of extremely large deviations has been overcome it is

necessary to look at bias in this average sense. This is

because one facet of the poor performance of stochastic

approximation quantile estimators is that convergence of

E[s ] to the true value s is very slow as measured
n a

empirically even though the estimates are asymptotically
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unbiased. In fact, Yuguchi [38] found empirical evidence

-1/4
that the rate of convergence of the bias is 0( n ) for

the stochastic approximation estimator proposed by Goodman,

-1
Lewis and Robbins [14]. This compares with 0( n ) for the

order statistic case.

We examine this question here for the new estimator

through simulation because no analytical results are

available or easily obtained. Our goal is to determine

-1/2
whether the bias converges as n as indicated by the

theory or whether the rate of convergence is slower, as

indicated by Yuguchi [38]. By developing a model for the

convergence of the bias, we will be able to compare

stochastic approximation estimators with order statistic

estimators; we may also be able to use techniques such as

the jackknife [27] to reduce the bias in situations where it

is significant.

A. Description of the Model

In a general statistical problem, if T is an
n

estimator of the fixed but unknown parameter based on a

sample of size n then we have for the mean squared error of

T
n

(1) MSE[T ] = E[ (T - 9) 2
]

n n
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= {E[T - -9]} 2 Var[T ],
n n

where the first term is due to estimator bias and the second

to sampling variation. Now it may be that T converges
n

weakly (i.e., in distribution) to a random variable T (which

is often normal) and also that MSE[T ] --> M. (In either
n

event we may have T suitably normalized, e.g. n T — > T.)
n n

He may thus choose either MSE[T] or H as a measure of the

expected error of the estimator. Hodges and Lehmann [15]

point out that MSE[T] < M and that strict inequality is

possible.

For the stochastic approximation guantile estimation

problem, the result of Lemma 9 in Chapter II implies that

(2) n HSE[s ] --> M >
n

while the asymptotic normality result of Theorem 3 shows

(3) n MSE[S] = aM-a) ,

""IF?

where s is weakly convergent to S. Now similar results
n

exist for the basic RM process [7] as well as for the Venter

method [36]; the asymptotic variance (3) is the same in all

three cases as long as we select A = /3 for RM. Thus to

assess the practical utility of any given stochastic

approximation method which has a suitably Gaussian

distribution we attempt to measure the value of B which

results when we sample from a population with known

properties, e.g. independent and identically distributed

exponential variates.
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Hodges and Lehmann [15] have found for a linear model

of the FM process that the mean square error components of

(1) result from a bias term related to the squared error of

the initial estimate and a variance term related to the

asymptotic variance. The quantile estimation problem does

not satisfy the hypotheses of the Hodges and Lehmann model

but those authors state that some Monte Carlo

experimentation has indicated that their results are fairly

robust. He thus begin our analysis of stochastic

approximation quantile estimation with the assumption that

the differences between methods will be due to differing

estimator bias.

In view of (2) , we have that the bias of s is
n

'1/2
( n ) and we adopt the model

-1/2 -1 -1
(4) E[s*] = r+rn +rn +o(n ),

n 1 2

in accordance with the Hodges and Lehmann results. (Recall

that s* = s s .) We recognize that (4) must be
n n a

empirically validated before it can be applied in a specific

case. Despite the Hodges and Lehmann result, it is possible

-3/4 -1/2
that terms of other orders (such as n or n /log n)

may be present. Nevertheless, this model provides a

convenient means of assessing the relative bias of different

stochastic approximation estimators.

One possible objection to (4) can be raised based on

the results of Yuguchi [38] who found that there was a
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significant n term in the bias of stochastic

approximation quantile estimators. Following Goodman, Lewis

and Robbins [14], Yuguchi used the basic RM process with a

fixed random divisor A". The problem with this approach is

that due to sampling variation I will sometimes be larger

than 2/3 and then, according to the results of Sacks [33]

and Major and Revesz [26], the convergence of s to s may
n a

-1/2
.

be much slower than the n implied by (1.13). Lemma 9

guarantees that this situation will not exist with the new

estimator; however, it is prudent to see whether the

simulation results show bias terms of a lower order than

-1/2
n and also to compare the model (4) with alternative

schemes.

The estimation of r , r and r from specific
1 2

realizations of {s } is a difficult problem because of the
n

high degree of autocorrelation within any stochastic

approximation process, i.e. between If and s . The
n n + 1

general design problem of assessing the model (4) with

dependence has not been addressed. To overcome this strong

dependence we generate n independent realizations of the

» process:
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1: s*
1

s*, s*
V 2

n: s*, s*, . . . , s* , s#12 n-1 n

and select as our sample the final estimate value in each

realization. The result is a sample fs*, s*, .../ s*} of
1 2 n

independent random variables; note that a total of n

different starting values and n_[n-1.L observations of X from

the parent population are required to obtain each

independent sample. If we are using the maximum transform

(as we will be throughout this Chapter) each new s* f value
n

will be based on v observations of X so that the total X

sample will consist of vn_(n-1_L values. We repeat this

scheme to obtain m independent (s*'} samples; s* 1 will
n k.; i

denote the bias of s* in the ith independent sample.
k ~-

The evaluation of a specific stochastic approximation

method with respect to bias will then consist of estimating

the value of r subject to some sort of validation effort.
1

(Note that (1) and (2) imply that r = 0.) We then obtain

the required estimates r , r and r by generalized least12
squares from the linear model

-1/2 -1
(5) s*=r+rn +rn +v; n= 1,2,...,

n 1 2 n
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where the v 's are mutually independent random variables
n

with

(6)

E[ v ] =
n

Var[ v ] = a 2 /n .

n

In this formulation, a 2 is unknown and is also to be

estimated; one criterion of the adequacy of the model (U)

will then be how closely we approach the asymptotic value

° z = ajQ-aL .

0*

B. A Variance Reduction Scheme

When using the new estimator with the maximum transform

to estimate s for the unit exponential distribution, one
0.99

finds that the bias is about -0.007 for X samples of size

7000 (i.e., about 125 maximum transformed steps with v =

56) . The asymptotic standard deviation in this case is

0.137 from (3.11). Thus to determine the bias for each

maximum transformed step to within a sampling variation

equal to one-tenth of the absolute value of the bias

requires a total of

m = r 0.137 -.2 38,500

replications of the independent {s*'} sequences of the
n

previous Section.

The amount of work required by this naive approach

leads us to investigate methods of reducing the sampling
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variation of s* without changing its expected value. The
n

classical simulation techniques of variance reduction

represent an obvious means of doing this; for more details

on these methods see Gaver and Thompson [13]. The approach

we adopt here is to define a control variate P which is a
n

statistic computed from the same X sample used to find s*
n

and which is highly correlated with s*. The technique can
n

be applied with or without the maximum transform.

In general we choose as our control variate P a
n

statistic whose distribution (or at least whose moments) we

can find. As our estimate of the bias E[ s* ] we then use
n

(7) s+ = s* + P - E[ P ],
n n n n

where E[ P ] is known. Clearly
n

E[s+] = E[ s* ]
n n

Var[s-»-] = Var[s*] + Var[P ] + 2 Covar[s*,P ],
n n n n n

so that if P is negatively correlated with s* there may be
n n

a decrease in the variance. One way to insure that there

will be such a decrease is to use instead the value

(8) s* = s* + IT {P - E[P ]}
n n n n n

where the constant fT is chosen to minimize Var[s+ ]. Note
n n

that the estimate (8) is also a variance duced estimate
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usirtg TT P as a control variate so we are justified in
n n

using the same symbol s+ as for the estimate (7)

.

n

As Gaver and Thompson [13] show, the optimum value' of

TT is given by
n

TT = - Covar[s*,P ] / Var[ P ];
n n n n

the resulting variance of s+ is then given by
n

(9) Var[s+] = Var[s*] - Covar[s*,P ] / Var[ P ]

n n n n n

= Var[ s*] (1 - p 2) ,

n n

where p is the correlation between s* and P . Thus if P
n n n n

is highly correlated with s* we may expect substantial
n

improvement in the variance of our final result.

Of course we will not in general know Covar[s*,P ]

n n

(although Var[ P ] will sometimes be known) and so we are
n

unable to choose the optimum value for TT 5 we may estimate
n

the optimum, however, by using

m
A -.2,(3* ." PCS*]) (P .- E[P ])

(10) TT = _i=i nii . n. mi o.

Var[P ]
n
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where ji[s*] is the mean of the m realizations of s*. When
n n

A
we use the TT value given by (10) in (8), however, the

n

resulting s+ is no longer an unbiased estimate of E[s*],
n n

although as Gaver and Thompson [13] point out we expect the

bias to decrease with increasing m.

It has been found that the values of TT do not change
n

very much with n, at least not when n is moderately large.

Since by the design of the simulation experiment s* and
j;i

s* are based on disjoint X samples for j * k, the value
k;i

A A A
(11) TT = ( TT + TT , ) / 2

n n-1 n+1

will be independent of s* and P and therefore it will not
n n

cause s+ to be biased. Furthermore, for large m values it
n

should be close enough to TT to allow for a close approach
n

to the variance reduction (9)

.

The foregoing analysis applies no matter which control

variate P we choose. The art in control variate variance
n

reduction lies in choosing a suitable P ; a good choice will
n

be easy to compute sequentially from the X sample, will have
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known moments and will be highly correlated with s*. One
n

such choice for the stochastic approximation quantile

estimation problem is to use an estimate of the

s -percentile, i.e. we take
a

(12) P = {Number of X values < s } / n .

n a

Since we are performing a synthetic sampling experiment, s
a

is known and from the definition of s we conclude that n P
a n

has a binomial distribution with parameters a and n.

Furthermore,

E[P ] = a
n

Var[P ] = a (1 - a) / n.
n

Now if the observed value of P is greater than a we
n

expect the X values in the sample to be larger than usual

and consequently the value of s to be larger than s . This
n a

conjectured positive* relationship between P and *§ (or,
n n

equivalently , s*) is borne out in sampling experiments; what
n

is surprising is the very high correlation coefficient

observed between -these two random variables in many

applications. For example, in the case of the 0.99 quantile

of the exponential distribution we observe correlations as

high as 0.90 for moderate values of n; this results in

variance reductions of about 80 % based on (9) . This in

turn leads to confidence intervals on E[ s* ] which are just
n
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40 % as wide as those obtained using the uncontrolled s*
n

values.

A plot of a joint simulation sample of p and s*' for
n n

the exponential 0.99 q.uantile is shown in Figure 14. The X

sample in this case was 5768 observations which corresponds

to 100 maximum transform steps (v = 56) . A total of 2500

replications were generated to produce this plot. The

computer program used to produce Figure 14 is typical of the

software tools developed in the course of this research;

other examples include the histogram Figures of Chapter III

and the histogram plots of Section IV. D.

C. Regression Analysis

For the purposes of analysis we adopt the general bias

model

(13) E[s*] = 2 r. g.(n),
n 3=0 3 3

where g (n) = 1 for all n and g (n) , j>1, is some
j

of n; for example

function

-J/2
g (n) = n ; j = 1, 2,
3

corresponds to the model (4)

.

To estimate the r 's in (13) , we obtain a set of m

3 n

independent realizations of s* for n = L, L+ 1 , . .., N and
n

then use generalized least squares with the relation
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(1U) s* = § r g (n) + v ; n = L,L+1,...,N;
n;i j=0 j j n;i

l = 1, 2 r . . .,nt .

n

As before, we assume that the v »s are independent random
n ; i

variables with zero mean and variance proportional to 1/n;

we choose L large enough that we may invoke the asymptotic

distribution of s* to claim a normal distribution for v .

n n

This will allow us to apply the ususal F and t tests in the

regression.

To apply generalized least squares to (14) we multiply

the relation by /n; the random errors in the transformed

equation are now independent with zero mean and common

variance a 2
. We express this transformed relationship in

the compact form

(15) s = G r + v,

where boldface lower case letters represent vectors and

upper case ones, matrices. We define

r S ,

L

L+1

s
«- N -»

s = /n

r s* ,

n;1

s*
n; 2

s*
n; in

n J

n = L , . . . N ;
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r G

G = G = /n
n

L + 1

G

Note that G has m identical rows.
n n

p 1 g (n) ... g, (n)-.
k

1 g (n) ...

• • •

g. (n)
k

1

L
g (n) ... g, (n)

k J

n = L, . . . , N;

r =

rr
o

'

r
l k J

v =

r V !

L

L+1

V
«- N J

v = /n
n

r v i

n;1

n ; 2

n; m
nJ

n = L, . . . , N.

The least squares estimate of r is then

(16)
T -1 T

r = ( G G ) G s r

while an estimate of a z from the residual sum of sguares is

given by the well-known relationship

(17)
A T T T
ct 2 = ss-EGs ,

where M is defined as the total number of s* observations,
n

i. e.
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N
M = £ m

n = L n

Some straightforward analysis then establishes that

T NT
(18) G G = ^ G G

n=L n n

= [g. ] ; ir j=0, 1,.. . ,k;
ID

where the general element of the matrix is given by

N

9. .
= 2 n m g. (n) g .(n) ;

13 n=L n 1 j

T
note that G G depends only on the model selected and not at

all on the observed s* values. We also have that
n

T NT
(19) G s = 2 G s

n=L n n

= [y ]; j-0,1,. . . ,k .

3

In this case the general term is

N m

y .
= 2T

[n g .
(n) .2 s* ]

3 n=L 3 1=1 n;i

N
= 2 n m g.(n) u[s*],

n=L n j n

where pT s * ] is the mean of the m observations of s*
n n n

Finally,
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T NT
(20) s s = £ s s

n=L n n

N m 2
= E n .2 s*

.

n=L 1=1 n;i

N
= 7 nm p [ s* ]

n=L n *2 n
J

where u [s*] is the sample second moment of the s*
2 n n

observations.

As indicated above we expect /n v to be normally
n;i

distributed, or approximately so. Thus it will be

reasonable to use F-tests to test the significance of the

regression and also to compute multiple correlation

coefficients as long as the transformed equation (15)

contains a constant term. This will be the case only if one

of the functions g (n) is equal to 1 / /n for some j. We
3

will then also require the value

N
(21) D = 2 /n m fi[s*]

n=L n n

for use in the analysis of variance table in the regression

We may thus accumulate data for the regression by

recording m , p[ s* ] and u [ s* ] for the n values of interest,
n n 2 n

The necessary regression values are computed by means of

(18)- (21) and may then be used to estimate r and ^ 2

according to (16) and (17). This means that we may deal
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with arbitrarily large values of m with a relatively modest
n

(and fixed) amount of memory. Furthermore, we may estimate

the parameters for several models with the same simulation

output values.

When we substitute the control variate estimate s+ for
n

s* in this analysis we obtain random errors v+ which still
n n

have zero mean but whose variance properties are unknown.

FrofQ (9) we have

Var[s+] = Var[s*] (1 - p ?)
n n n

= ai1 zal (1 - p*)
n 0* n

so that Var[s+
] decreases at least as quickly as 1/n. We

n

adopt the hypothesis, then, that Var[ s+ ] = (n_l ) ,

n

recognizing that we will have to validate the conjecture

based on the simulation output. The constant of

proportionality in this case will be less than a 2 because

of the variance reduction obtained through the use of s+.
n

Since the control variate P will have a distribution close
n

to normality for moderately large values of n, we expect the

distribution of v* to be once again approximately Gaussian.
n

D. Simulation and Regression Results

A summary of the output from a simulation in which

s for the exponential distribution was estimated appears
0.99

in Table V. The estimation used the algorithm of Section
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III.D.2 and the maximum transform with v = 56 (see Figure 9

in Chapter II for an example of the distribution of s*' in
101

this case). Values of n (i.e., number of steps) ranging

from 1 to 150 were investigated with ra = 40,000
n

replications per step. A regression using all this data

will thus have 6,000,000 degrees of freedom.

The first question we address here is whether the

observed variances are adequately described by our

assumption of a 2/n or not. The variance of s*' is
n

asymptotically 2.361 / n (see (2.11) ) but the order of the

variance of s + * is in general unknown. A simple linear
n

regression on the data of Table V shows, however, that

Varfs*'] = -0.00003 + 2.53712 .

n
'—n

—

Var[s+«] = -0.00322 + CL 82262 .

n ^n

The regressions are both significant (respective F-ratios

are 141,550 and 12,311) and neither suffers from lack of

fit; we thus conclude that our assumption of a 1 / n factor

in the variances of s* and s+ is justified. The relative
n n

sizes of the coefficients of the 1/n terms indicate that the

control variate scheme results in a 35 % variance reduction

in this case; in fact, 0.87762/2.53712 = 0.346.
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X Sample

n Size
n

ff2[S*' ]
n

PCs*']
n

a 2 [s + «
]

n

1 168 -0. 11274 0.65112 -0. 11274 0.65112

2 224 -0.04441 0.55387 -0.04338 0.45698

3 280 -0.01716 0.45439 -0.01847 0. 32622

4 336 -0.01009 0.39033 -0.01015 0.25298

5 392 -0.00954 0.34222 -0.00719 0.20001

6 448 -0.00673 0.30674 -0.00708 0. 17032

7 504 -0.00691 0.27737 -0.00625 0. 14684

8 560 0.00241 0.25076 -0.00059 0. 12566

9 616 0.00133 0.23395 -0.00124 0. 11364

10 672 -0.00245 0.21860 -0.00450 0. 10212

11 728 -0.00734 0.20184 -0.00742 0.09279

12 784 -0.00821 0. 18674 -0.00506 0. 08458

13 840 -0.00710 0. 17652 -0. 00840 0. 078 19

14 896 -0.00600 0. 16646 -0.00623 0. 07073

15 952 -0.00662 0. 15746 -0.00603 0. 06600

16 1008 -0.00553 0. 14916 -0.00604 0. 06108

17 1064 -0.00872 0. 14253 -0.00854 0. 05872

18 1120 -0.00928 0. 13442 -0.00835 0. 05400

19 1176 -0.00391 0. 12725 -0.00760 0.05001

20 1232 -0.00760 0. 12209 -0.00777 0. 04712

21 1288 -0.00901 0. 11687 -0.00887 0. 04490

22 1344 -0.00596 0. 11210 -0.00872 0.04184

23 1400 -0.01158 0. 10711 -0.00964 0. 04074

24 1456 -0.00847 0.10286 -0.00921 0. 03823

25 1512 -0.00955 0. 10043 -0.00744 0.03684

Table V. Estimated bias and variance of the improved

stochastic approximation estimator for the 0.99 quantile of

the exponential distribution. Algorithm of Section III.D.2

and maximum transform (v = 56) were used.
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X Sample

n Size
n

ct z[s*' ]
n

p[s+«]
n

a 2 [s + «
]

n

26 1568 -0.00889 0.09470 -0. 00936 D. 03448

27 1624 -0.00865 0.09208 -0.00894 0.03272

28 1680 -0.00670 0.08803 -0.00878 0.03116

29 1736 -0.00897 0. 08668 -0. 00880 0.03046

30 1792 -0.00807 0. 08380 -0.00852 0.02841

31 1848 -0.00914 0.08040 -0.01007 0. 02738

32 1904 -0.00938 0.07866 -0.00931 0.02660

33 1960 -0.01160 0. 07589 -0.00981 0.02526

34 2016 -0.00945 0.07496 -0.00881 0.02488

35 2072 -0.01082 0.07106 -0.00923 0. 02275

36 2128 -0.01093 0.06944 -0.01005 0.02256

37 2184 -0.00918 0.06846 -0.00906 0.02181

38 2240 -0.00832 0.06662 -0.00806 0.02086

39 2296 -0.00976 0.06461 -0.01057 0.01993

40 2352 -0.00931 0.06278 -0.00918 0.01965

41 2408 -0.00927 0.06100 -0.00872 0.01875

42 2464 -0.00945 0.06044 -0.00918 0. 01823

43 2520 -0.00915 0.05885 -0.00964 0. 01793

44 2576 -0.01071 0.05782 -0.00982 0. 01717

45 2632 -0.01146 0.05545 -0.00977 0. 01640

46 2688 -0.00819 0.05434 -0.00822 0.01603

47 2744 -0.00989 0.05362 -0.00901 0.01599

48 2800 -0.00689 0.05316 -0.00902 0.01545

49 2856 -0.01275 0.05165 -0.01001 0.01491

50 2912 -0.00889 0.05052 -0.00960 0. 01434

Table V. (Continued) Estimated bias and variance of the

improved stochastic approximation estimator for the 0.99

quantile of the exponential distribution. Algorithm of

Section III.D.2 and maximum transform (v = 56) were used.
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X Sample

n Size PCs*' ]
n

ff2[S*' ]
n

p[[s+«]
n

a 2 [s + «
]

n

51 2968 -0.01104 0.04972 -0. 00994 0.01394

52 3024 -0.01072 0.04852 -0.00934 0.01369

53 3080 -0.00788 0.04734 -0.00798 0.01326

54 3136 -0.00847 0.04653 -0. 00956 0.01297

55 3192 -0.00839 0.04571 -0.00910 0. 01238

56 3248 -0.01078 0.04513 -0.00971 0.01232

57 3304 -0.00999 0.04454 -0.00924 0.01203

58 3360 -0.00985 0.04361 -0.00992 0.01167

59 3416 -0.00778 0.04257 -0.00907 0. 01140

60 3 4 72 -0.00843 0.04242 -0.00854 0. 01136

61 3528 -0.00739 0.04161 -0.00875 0. 01108

62 3584 -0.00581 0.04053 -0.00318 0.010 57

63 3640 -0.00891 0.04038 -0.00854 0.01049

64 3696 -0.00919 0.03911 -0.00831 0.01007

65 3752 -0.00965 0.03870 -0.00856 0. 00992

66 3808 -0.00841 0.03795 -0.00863 0. 00968

67 3864 -0.00825 0.03750 -0.00882 0. 00958

68 3920 -0.00753 0.03665 -0.00829 0.00926

69 3976 -0.00879 0.03666 -0.00840 0.00937

70 4032 -0.00731 0.03593 -0.00906 0.00893

71 4088 -0.01065 0.03508 -0.00916 0.00879

72 4144 -0.00814 0.03477 -0.00777 0.00872

73 4200 -0.00876 0. 03449 -0.00845 0.00841

74 4256 -0.00906 0.03344 -0.00848 0.00823

75 4312 -0.00932 0. 03330 -0.00941 0.00807

Table V. (Continued) Estimated bias and variance of the

improved stochastic approximation estimator for the 0.99

quantile of the exponential distribution. Algorithm of

Section III.D.2 and maximum transform (v = 56) were used.
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X Sample

n Size PCs*' ]
n

a 2 [s*« ]
n n

a 2 [s + «
]

n

76 4368 -0.00798 0.03328 -0.00758 0.00794

77 4424 -0.00903 0. 03 2 99 -0.00872 0.00795

78 4480 -0.00863 0. 03210 -0.00828 0.00777

79 4536 -0.00820 0.03166 -0.00756 0.00751

80 4592 -0.00952 0.03082 -0.00853 0.00732

81 4648 -0.00921 0.03091 -0.00816 0.00731

82 4704 -0.00949 0.03085 -0.00777 0.00717

83 4760 -0.00662 0.03082 -0. 00744 0.00725

84 4816 -0.00911 0.02989 -0.00807 0.00692

85 4872 -0.00711 0.02934 -0.00771 0.00679

86 4928 -0.00773 0.02907 -0.00782 0.00669

87 4984 -0.00815 0.02899 ^0.00823 0. 00662

88 5040 -0.00794 0.02860 -0.00836 0.00643

89 5096 -0.00846 0.02844 -0.00823 0.00648

90 5152 -0.00765 0.02811 -0.00736 0.00634

91 5208 -Q. 00767 0.02742 -0.00796 0. 00612

92 5264 -0.00778 0.02732 -0.00773 0.00607

93 5320 -0.00662 0.02703 -0,00710 0.00608

94 5376 -0.00714 0. 02662 -0.00778 0.00602

95 5432 -0.00786 0.02626 -0.00743 0.00578

96 5488 -0. 00800 0.02632 -0.00791 0.00577

97 5544 -0.00789 0.02584 -0.00804 0.00569

98 5600 -0.00735 0.02541 -0.00704 0.00554

99 5656 -0.00828 0.02512 -0.00798 0.00549

100 5712 -0.0081

1

0.02535 -0.00744 0.00555

Table V. (Continued) Estimated bias and variance of the

improved stochastic approximation estimator for the 0.99

guantile of the exponential distribution. Algorithm of

Section III.D.2 and maximum transform (v = 56) were used.
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X Sample

n Size
n

a 2 [s*« ]
n n

a 2 [s+' ]
n

101 5768 -0.00796 0.02534 -0.00747 0.00543

102 5824 -0.00758 0.02427 -0.00747 0.00521

103 5880 -0.00579 0.02421 -0.00699 0.00513

104 5936 -0.00662 0.02404 -0.00718 0.00512

105 5992 -0.00628 0.02405 -0.00756 0.00512

106 6048 -0.00754 0.02367 -0.00761 0.00501

107 6104 -0.00690 0.02326 -0.00692 0. 00490

108 6160 -0.00764 0.02328 -0.00748 0.00486

109 6216 -0.00787 0.02296 -0.00729 0.00481

110 6272 -0.00776 0.02271 -0. 00710 0.00476'

111 6328 -0.00723 0.02263 -0.00698 0.00471

112 6384 -0.00856 0.02194 -0.00695 0. 00450

113 6440 -0.00719 0.02212 -0.00710 0.00459

114 6496 -0.00794 0.02200 -0.00697 0. 00444

115 6552 -0.00691 0.02140 -0.00681 0.00443

116 6 6 08 -0.00687 0.02177 -0.00731 0.00439

117 6664 -0.00690 0.02124 -0.00726 0.00429

118 6720 -0.00634 0.02106 -0.00690 0.00422

119 6776 -0.00795 0.02066 -0.00726 0.00417

120 6832 -0.00711 0.02082 -0.00721 0. 00415

121 6888 -0.00578 0.02053 -0.00653 0.00414

122 6944 -0.00684 0.02069 -0.00652 0.00409

123 7000 -0.00696 0.02058 -0.00723 0. 00404

124 7056 -0.00644 0.02007 -0.00670 0.00397

125 7112 -0.00606 0.02019 -0.00725 0.00391

Table V. (Continued) Estimated bias and variance of the

improved stochastic approximation estimator for the 0.99

quantile of the exponential distribution. Algorithm of

Section III.D.2 and maximum transform (v = 56) were used.
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X Sample

n Size p[s*« ]
n

ct
2 [s*« ]

n
p[s+']
' n

a 2 [s+« ]
n

126 7168 -0.00605 0.01991 -0. 00641 0.00387

127 7224 -0.00779 0. 01968 -0.00712 0.00383

128 7280 -0.00720 0.01934 -0.00695 0.00377

129 7336 -0.00660 0.01922 -0.00661 0.00375

130 7392 -0.00597 0.01929 -0.00713 0. 00370

131 7448 -0.00751 0.01891 -0.00649 0.00369

132 7504 -0.00681 0.01903 -0.00679 0. 00360

133 7560 -0.00851 0.01885 -0.00722 0. 00362

134 7616 -0.00595 0.01874 -0.00671 0.00361

135 7672 -0.00651 0.01842 -0.00614 0.00353

136 7728 -0.00601 0.01831 -0.00640 0.00347

137 7784 -0.00658 0.01829 -0.00663 0.00345

138 7840 -0.00646 0.01795 -0.00636 0.00339

139 7896 -0.00635 0.01793 -0. 00693 0.00336

140 7952 -0.00634 0.01762 -0.00634 0.00328

141 8008 -0.00608 0.01773 -0.00631 0.00333

142 8064 -0.00630 0.01761 -0.00618 0.003 26

143 8120 -0.00617 0.01724 -0.00640 0.00323

144 8176 -0.00701 0.01737 -0.00635 0.00322

145 8232 -0.00702 0.01702 -0.00638 0.00312

146 8288 -0.00735 0.01706 -0.00640 0.00313

147 8344 -0.00559 0.01695 -0.00602 0.00307

148 8400 -0.00637 0.01680 -0.00621 0.00315

149 8456 -0.00614 0.01704 -0.00610 0. 00310

150 8512 -0.00607 0.01668 -0.00575 0. 00304

Table V. (Continued) Estimated bias and variance of the

improved stochastic approximation estimator for the 0.99

quantile of the exponential distribution. Algorithm of

Section III.D.2 and maximum transform (v = 56) were used.
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Figure 15. Expected bias Df the stochastic approximation

estimator s for the 0.99 quantile of the exponential
n

distribution (Y-axis) vs. step number n (X-axis).
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1. Order of the bias

We now proceed to direct consideration of the bias

estimates in Table V; the control variate estimates of the

bias are plotted in Figure 15 where it may be seen that

there is a definite decreasing trend. The rate of decrease

appears to be very slow, however; furthermore, there are

marked irregularities in the first few steps. Since we are

for the most part interested in the large sample behavior of

the stochastic approximation quantile estimators we suppress

the initial instability by including in the regression only

the estimate values from steps greater than 50 (i.e., X

samples larger than 2912).

Carrying out a linear regression using the model (5)

results in the estimates

f = 0.00264 ± 0.00174,

(22) f = -0.14103 ± 0.03330,

f = 0.39692 ± 0.15633;
2

the second figure given is the standard deviation of the

estimate. Assuming that the errors in (5) are approximately

normally distributed, we compute the following analysis of

variance table:
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Source Sum of Squares Degrees of Mean Square

Freedom

Constant 21,985. 10983 1 21,,985.1098

r(0) 1.28580 1 1.2853

r(1) , r(2) 29.01798 1 29.0180

Regression 30.30378 2 15.1519

Explained 22,015.41361 3 7,,338.4712

Pure Error 2, 245,341.29442 4,,039,,899 0.5558

Lack of Fit 47. 68185 98 0.4865

Residual 2, 245,388.97627 ^r039 (
,997 0.5558

Total 2, 267,404.38989 4,,040,,000 0.5612

The regression is significant as measured by the

F-ratio of 27.2618 which is significant at the 0.999 level.

The ratio of the sum of the squared deviations about the

regression line ("pure error") to the squared deviations

between the fitted and mean biases ("lack of fit") is 0.8754

which is not significant at the 0.9 level; we thus conclude

that the fitted line adequately describes the data of Table

V. Note that our hypothesis that r = is certainly

consistent with these results although the F-ratio of 22.568

will not allow us to reject the r term as not significant

in the regression.

One problem encountered in most of the regressions

carried out on this data is the high degree of

T
multicollinearity in the G G matrix when more than just a

-J/P
few terms of the form g (n) = n are included in the

J

model. The result of this multicollinearity is considerable
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variability in the r estimates as measured by the standard
J

errors as well as some irregularities in the analysis of

variance. This is one reason that so much data had to be

accumulated for this experiment.

Discriminating between the model (5) and a model such

as

(23)
-1/4 -1/2 -3/4

E[ s* ] = r n +rn +rn
n 1 2 3

also requires a great many observations on s*. The results
n

of a regression using (23) are

f = 0.03821 ± 0.02146,
1

f = -0. 34324 ± 0.13249,
2

r = 0.46642 ± 0.20350.
3

The r coefficient estimate is thus -just significant at the
1

0.9 level while f is significant at the 0.99 level. An
2

-1/4
analysis of variance indicates that the n term

contributes 1.763 to the regression sum of squares while

the other two terms contribute 28.565. Although neither an

F-test nor a t-test will allow us to reject the low order

term as not statistically significant this regression

provides convincing evidence that the order of the bias is
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-1/2
in fact n as indicated by the theory. This is certainly

a considerable improvement over the results of Yuguchi [38].

A regression was also carried out using the model

(24) E[s*]|
n

-r
= c n ,

1

to attempt a direct verification of the order of the bias.

(24) can be handled as a linear model by using a logarithmic

transform on the data. It is apparent from Figure 14 that

higher order terms have an important effect on the bias;

-r
therefore a power series in n was also fitted using

nonlinear regression. Unfortunately, the results were too

unstable to be of much use. To minimize the effect of

higher order terms, then, we include in the regression only

data from the later steps. The resulting estimates are:

Lowest Step _
5 r

in Regression 1

-0.04258 ± 0.03146

-0.21628 ± 0.01374

-0.38227 ± 0.01562

-0.46887 ± 0.04677

1 0.00912

20 0.02002

50 0.04305

100 0.05525

Based on these results we conclude that the data of

-V2
Table V display a definite n trend and that the evidence

does not seem to warrant the assumption of a lower order of

bias.

One way to explore more fully the effect of the initial

starting point on the bias of the stochastic approximation
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quantile estimator is to begin the procedure with s fixed

at some value of interest instead of using random values as

in Table V. This has been done for values of s between
1

and 9 (corresponding to initial biases from -4.5 to 4.5).

We then carry out a regression using the model

-1/2 -1
E[s*] = rn +rn ;

n 1 2

the resulting estimates r are plotted in Figure 16 and
1

summarized in Table VI.

We conclude from Figure 16 that the bias of the initial

estimate plays a significant role in determining the

asymptotic bias of the stochastic approximation quantile

estimator. This is in general agreement with the results of

Hodges and Lehmann [15]; although the relationship of Figure

16 is clearly not linear, the asymptotic bias apparently

increases with increasing deviations in s . There is
1

insufficient data here to investigate the relationship more

fully, but the quadratic fit

r = -0.112 + 0.023 s - 0.004 s*
1 1 1

plotted in Figure 16 seems to describe the data fairly well
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s
1

r
1

Standard

Error

0.0 -0.09672 0.00652

0.5 -0. 12741 0.01783

1.0 -0.07937 0.01741

1.5 -0. 13922 0.01699

2.0 -0. 11091 0.01641

2.5 -0. 10804 0.01582

3.0 -0.09765 0.01508

3.5 -0.09152 0.01460

4.0 -0.10550 0.01430

a.

5

-0.07405 0.01406

14.605 -0.07898 0.00503

5.0 -0.07215 0.01432

5.5 -0. 12150 0.01694

6.0 -0.09135 0.01602

6.5 -0.09890 0.01694

7.0 -0. 15344 0.01799

7.5 -0.16990 0.01883

8.0 -0. 19678 0.01931

8.5 -0. 19446 0.02061

9.0 -0.26129 0.02151

-1/2
Table VI. Estimated coefficients for the (n ) term in

the bias of the stochastic approximation estimator for the

0.99 guantile of the exponential distribution as a function

of the initial starting point, s . Estimated by linear

regressions which included 1000 replications of steps 50 to

150 of the stochastic approximation process.
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_
1 j

—

6

-1/2
Figure 16. Estimated coefficient of the n term in the

bias of the stochastic approximation estimator for the 0.99

guantile of the exponential distribution (Y-axis) vs. the

bias of the initial starting point s . The vertical lines
1

represent two estimated standard deviations about the

estimated coefficients.
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2. Comparison with order statistics

-1/2
The presence of the n bias terra puts stochastic

approximation quantile estimators at a disadvantage when

compared with order statistic estimators whose bias is

O(n-i). The data of Table V, however, indicate that the

stochastic approximation biases are quite small as compared

with the estimator variance. The net effect of the bias,

then, will be to inflate the asymptotic mean squared error

slightly. Based on (1) and (22) we have

r2
MSE[s' ] = Var[s'] + 1 + (n* 1

)

n n n

— > 2.381 ,

which should be compared with the order statistic case:

MSETs ] = Var[s ] + o(n-i)
(n+2) v (n + 2)v

— > 1^.768 .

(Recall that the order statistic estimator will be based on

the entire X sample and not just on the section maxima.)

Most of the asymptotic difference between the two quantile

estimators is thus due to the variance inflation (1.15)

which accompanies the use of the maximum transform.

A comparison between finite sample order statistic and

stochastic approximation quantile estimators is presented in

Table VII and plotted in Figures 17 and 18; Figure 17
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Stochastic Approximation Order Statistic

Bias MSE Bias MSE

-0.11274 0.66383 0.09898 0.64880

-0.04333 0.55576 -0.11403 0.40349

-0.01847 0.45473 0.10862 0.40317

^0.01015 0.39043 -0.04269 0.28267

-0.00719 0.34227 0.11125 0.29365

-0.00708 0.30679 -0.00538 0.21912

-0.00625 0.27741 -0.08772 0.18704

-0.00059 0.25076 0.01754 0.17985

-0.00124 0.23395 -0.05390 0.15483

-0.00450 0.21862 0.03305 0.15315

-0.00742 0.20189 -0.02982 0.13265

-0.00506 0.18676 0.04423 0.13382

-0.00840 0.17659 -0.01181 0.11646

-0.00623 0.16650 0.05269 0.11917

-0.00603 0.15750 0.00217 0.10412

-0.00604 0.14920 -0.0(4070 0.09583

-0.00854 0.14260 0.01334 0.09440

-0.00835 0.13449 -0.02630 0.0867Q

-0.00760 0.12730 0.02247 0.08656

-0.00777 0.12215 -0.01437 0.07935

-0.00887 0.11695 0.03007 0.08009

-0.00872 0.11217 -0.00431 0.07332

-0.00964 0.10720 -0.03493 0.06944

-0.00921 0.10294 0.00427 0.06827

-0.00744 0.10049 -0.02466 0.06444

Table VII. Comparison of order statistic and stochastic

approximation estimators for the 0.99 quantile of the

exponential distribution.

X Sample

n Size

1 168

2 224

3 280

4 336

5 392

6 448

7 504

8 560

9 616

10 672

11 728

12 7 84

13 840

14 896

15 952

16 1008

17 1064

18 1120

19 1176

20 1232

21 1288

22 1344

23 1400

24 1456

25 1512
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X Sample

n Size

26 1568

27 1624

28 1680

29 1736

30 1792

31 1848

32 1904

33 1960

34 2016

35 2072

36 2128

37 2184

38 2240

39 2296

40 2352

41 2408

42 2464

43 2520

44 2576

45 2632

46 2688

47 2744

48 2800

49 2856

50 2912

Stochastic Approximation

Bias MSE

Order Statistic

Bias MSE

•0.00936

-0.00894

-0.00878

•0.00880

0.00852

0.01007

0.00931

•0.00981

0.00881

•0.00923

•0.01005

•0.00906

0.00806

0.01057

•0.00918

•0.00872

0.00918

•0.00964

•0.00982

•0.00977

•0.00822

•0.00901

•0.00902

•0.01001

0.00960

0.09479

0.09216

0.08811

0.08676

0.08387

0. 08050

0.07875

0.07598

0.07504

0.07115

0.06954

0.06854

0.06668

0.06472

0.06286

0.06108

0.06053

0.05894

0.05791

0.05555

0.05441

0.05370

0.05324

0.05175

0.05062

0.01169

0.01573

0.01816

0.00788

0.02386

0.00093

•0.02372

0.00526

0.01658

0.01082

0.01014

0.01583

0.00431

0.02037

0.00099

0.01715

0.00583

•0.01170

0.01027

•0.00668

0.01436

0.00206

•0.01757

0.00223

•0.01284

0.06399

0.06022

0.06032

0.05661

0.05714

0.05350

0.05131

0.05079

0.04855

0.04841

0.04614

0.04630

0.04401

0.04442

0.04212

0.04069

0.04044

0.03895

0.03893

0.03740

0.03757

0.03600

0.03504

0. 03474

0.03372

Table VII. (Continued) Comparison of order statistic and

stochastic approximation estimators for the 0.99 guantile of

the exponential distribution.
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X Sample Stochastic Approximation Order Statistic

n Size Bias MSE Bias MSE

-0.00994 0.04982 0.00620 0.03360

-0.00934 0.04861 -0.00844 0.03252

-0.00798 0.04740 0.00991 0.03256

-0.00956 0.04662 -0.00434 0.03144

-0.00910 0.04579 0.01336 0.03161

-0.00971 0.04522 -0.00050 0.03046

-0.00924 0.04462 -0.01371 0.02973

-0.00992 0.04371 0.00309 0.02956

-0.00907 0.04265 -0.00979 0.02879

-0.00854 0.04249 0.00647 0.02874

-0.00875 0.04168 -0.00611 0.02792

-0.00818 0.04060 0.00964 0.02798

-0.00854 0.04046 -0.00264 0.02713

-0.00831 0.03918 0.01263 0.02728

-0.00856 0.03877 0.00064 0.02640

-0.00863 0.03803 -0.01087 0.02583

-0.00832 0.03753 0.00373 0.02573

-0.00829 0.03671 -0.00752 0.02512

-0.00840 0.03673 0.00666 0.02511

-0.00906 0.03601 -0.00436 0.02446

-0.00916 0.03516 0.00944 0.02453

-0.00777 0.03483 -0.00135 0.02386

-0.00345 0.03456 -0.01174 0.02343

-0.00848 0.03351 0.00151 0.02330

-0.00941 0.03339 -0.00863 0.02283

Table VII. (Continued) Comparison of order statistic and

stochastic approximation estimators for the 0.99 quantile of

the exponential distribution.

51 2968

52 3024

53 3080

54 3136

55 3192

56 3248

57 3304

58 3360

59 3416

60 3 4 72

61 3528

62 3584

63 3640

64 3696

65 3752

66 3808

67 3864

68 3920

69 3976

70 4032

71 4088

72 4144

73 4200

74 4256

75 4 312
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X Sample Stochastic Approximation

n Size Bias MSE

Order Statistic

3ias MSE

76 4368

77 4424

78 4480

79 4536

80 4592

81 4648

82 4704

83 4760

84 4816

85 4872

86 4928

87 4 9 84

88 5040

89 5096

90 5152

91 5208

92 5264

93 5320

94 5376

95 5432

96 5488

97 5544

98 5600

99 5656

100 5712

0.00758

•0.00872

0.00828

0.00756

0.00853

0.00816

•0.00777

0.00744

•0.00807

•0.00771

0.00782

•0.00823

0.00835

0.00823

•0.00736

0.00796

•0.00773

0.00710

•0.00778

•0.00743

•0.00791

0.00804

0.00704

•0.00798

0.00744

0.03334

0.03307

0.03216

0.03172

0.03089

0.03098

0.03091

0.03088

0.02996

0. 02940

0.02913

0.02905

0.02867

0.02851

0.02817

0.02749

0.02738

0.02708

0.02668

0.02632

0.02638

0.02591

0.02546

0.02518

0.02540

0.00422

0.00577

0.00681

•0.00299

0.00928

0.00034

0.00964

0.00219

0.00695

0.00461

•0.00437

0.00693

0.00190

0.00915

0.00047

0.00795

0.00274

-0.00554

0.00493

0.00323

0.00703

•0.00101

0.00881

0.00114

•0.00656

0.02278

0.02228

0.02229

0.02177

0.02185

0.02129

0.02093

0.02085

0. 02046

0.02043

0.02002

0.02005

0.01961

0.01969

0.01922

0.01892

0.01886

0.01853

0.01853

0.01817

0.01822

0.01784

0.01760

0.01752

0.01726

Table VII. (Continued) Comparison of order statistic and

stochastic approximation estimators for the 0.99 quantile of

the exponential distribution.
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X Sample Stochastic A pproximation Order Statistic

n Size Bias MSE Bias MSE

101 5768 -0.00747 0.02540 0.00320 0.01723

102 5824 -0.00747 0.02433 -0.00433 0.01694

103 5880 -0.00699 0.02426 0.00519 0.01695

104 5936 -0.00718 0.02410 -0.00228 0.01664

105 5992 -0.00756 0.02411 0.00711 0.01669

106 6048 -0.00761 0.02373 -0.00026 0.01636

107 6104 -0.00692 0.02330 -0.00744 0.01615

108 6160 -0.00743 0.02333 0.00169 0.01610

109 6216 -0.00729 0.02301 -0.00539 0.01587

110 6272 -0.00710 0.02276 0.00358 0.01585

111 6328 -0.00698 0.02268 -0.00340 0.01560

112 63 84 -0.00695 0.02198 0.00541 0.01562

113 6440 -0.00710 0.02217 -0.00143 0.01535

11 '4 6496 -0.00697 0.02205 0.00717 0.01540

115 6552 -0.00681 0.02144 0.00037 0.01511

116 6608 -0.00731 0.02132 -0.00627 0.01493

117 6664 -0.00726 0.02129 0.00217 0.01489

118 6720 -0.00690 0.02111 -0.00439 0.01469

119 6776 -0.00728 0.02071 0.00391 0.01468

120 6832 -0.00721 0.02087 -0.00257 0.01446

121 6888 -0.00653 0.02057 0.00560 0.01448

122 6944 -0.00652 0.02073 -0.00080 0.01424

123 7000 -0.00723 0.02063 -0.00705 0.01409

124 7056 -0.00670 0.02011 0.00091 0c01404

125 7112 -0.00725 0.02024 -0.00527 0.01387

Table VII. (Continued) Comparison of order statistic and

stochastic approximation estimators for the 0.99 quantile of

the exponential distribution.
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X Sample Stochastic A pproxiraation Order Statistic

n Size Bias MSE Bias MSE

126 7168 -0.00641 0.01995 0.00258 0.01385

127 7224 -0.00712 0.01973 -0.00353 0.01367

128 7280 -0.00695 0.01938 0.00419 0.01367

129 7336 -0.00661 0.01927 -0.00185 0.01347

130 7392 -0.00713 0.01934 0.00576 0.01350

131 7448 -0.00649 0.01895 -0.00021 0.01329

132 7504 -0.00679 0.01907 -0.00605 0.01315

133 7560 -0.00722 0.01890 0.00138 0.01311

134 7616 -0.00671 .0.01879 -0. 00440 0.01296

135 7672 -0.00614 0.01846 0.00293 0.01295

136 7728 -0.00640 0.01835 -0.00278 0.01278

137 7784 -0.00663 0.01834 0.00443 0.01279

138 7840 -0.0063S 0.01800 -0.00122 0.01261

139 7896 -0.00693 0.01798 0.00590 0.01265

140 7952 -0.00634 0.01766 0.00031 0.01245

141 8008 -0.00631 0.01777 -0.00518 0.01232

142 8064 -0.00618 0.01765 0.00179 0.01230

143 8120 -0.00640 0.01728 -0.00363 0.01216

144 8176 -0,00635 0.01741 0.00324 0.01216

145 8232 -0.00638 0.01706 -0.00213 0.01200

146 8288 -0.00640 0.01710 0.00465 0.01202

147 8344 -0.00602 0.01699 -0.00066 0.01186

148 8400 -0.00621 0.01684 -0.00583 0.01175

149 8456 -0.00610 0.01707 0.00076 0.01172

150 8512 -0.00575 0.01671 -0.00440 0.01160

Table VII. (Continued) Comparison of order statistic and

stochastic approximation estimators for the 0.99 quantile of

the exponential distribution.
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Figure 17. Mean squared error of the ordar statistic

estimator (lower curve) iod the stochastic approximation

estimator (upper curve) for the 0.99 quantile of the

exponential distribution vs. the number of stochastic

approximation steps.
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Figure 18. Bias of the orier statistic estimator for the
0.99 quantile of the exponential distribution; the same
horizontal scale as in Figure 17 is used.
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displays the mean squared errors of the two estimators while

Figure 18 is a plot of the bias of the order statistic

estimator. Values for the stochastic approximation

estimator were obtained from the simulation data of Table V

while the order statistic values were computed from the

formulas for the exponential distribution (see David [5])

a n
E[s ] = J i-i

,
n i=n-u+1

a n
Var[s ] = % i-2 ,

n i=n~u+1

where u = [ a (n+1) ].

The characteristic jagged appearance of Figure 18

reflects the truncation inherent in calculating u; it also

makes direct comparison of bias terms difficult.

Nevertheless it is clear that the stochastic approximation

estimators are generally less biased than the corresponding

order statistic estimators for X samples smaller than 3500

observations while the biases are roughly the same for

samples of from 3500 to 5500 observations. For larger

samples, the asymptotic advantage of the order statistic

estimators begins to assert itself and we find that the

stochastic approximation estimators are for the most part

more biased. The mean squared error plot (Figure 17) merely

confirms the asymptotic superiority of the order statistic

estimator in terms of variance. Note that even when the

stochastic approximation estimator is more biased this does

not seem to have much influence on the mean squared error.

In practice the approximate order statistic estimators

of Section III. A are often used in order to conserve

computer memory; the problem with these techniques is that

they may introduce an objectionable bias into the estimates

(see Tables II and III) . If stochastic approximation
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quantile estimators were used in an approximate design,

however. Table VI shows that for sample sizes small enough

to be practical for the order statistic estimators the bias

will be smaller for the stochastic approximation case,

although the variance will be greater. This trading of bias

for variance is also seen when the jackknife ([27], [38]) is

applied to the order statistic estimators.

Of course there is no need to carry out a section

averaging or nesting procedure with stochastic approximation

quantile estimators; this is necessitated in the order

statistic case because the requirement to store and sort an

entire section imposes an upper limit on permissible section

size. The fixed memory size for the stochastic

approximation estimator, however, means that we may reduce

both bias and variance by considering larger X samples

directly without sectioning the data. In a practical sense,

then, the stochastic approximation estimates are less biased

than the corresponding order statistic estimators for very

large data samples.

E. Higher Moments and Distribution of s
n

-1/4
Besides the significant (n ) term in the bias,

another disturbing result of Yuguchi's thesis [38] was the

apparent increase in the coefficients of skewness and

kurtosis of s' with increasing values of n. The coefficient
n

of skewness of a random variable X is

Y = E[ (X - p)3] / a 3
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where \i = E[ X ] and a 2 = Var[X]. y is zero for any
1

symmetric random variable, e.g. normal. The coefficient of

kurtosis (sometimes called excess kurtosis) we define as

y = E[ (X - u)*] / a - 3;
2

y is also zero for a normal random variable.
2

If 3' converges weakly (i.e. in distribution) to a
n

normal random variable it is desirable from a practical

point of view for y (s ) and y (s ) both to approach zero
1 n 2 n

as n increases. Of course, weak convergence (or even almost

sure convergence) does not imply convergence in pth mean,

p > 1, so that y and y need not even approach a finite
1 2

limit; an example is provided by Figures 2 and 3 where the

RM estimator converges in quadratic mean and in distribution

but apparently not in third or fourth means.

This problem does not occur for the new estimator,

however. The sample means, variances and coefficients of

skewness and kurtosis are tabulated in Table VIII for

one-fourth of the data from Table VI, i.e. 10,000

independent replications of s*' for the exponential 0.99
n

guantile using the maximum transform with v = 56. The third

and fourth central moments were not obtained for the

remaining 30,000 observations for each n value in Table VI

in order to save computer time; the data that was collected
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Skewness Kurtosis

0.72596 0.9386U

0.62491 1.31966

0.46303 0.68834

0.49609 0.61954

0.44722 0.50377

0.46074 0.48721

0.46856 0.54782

0.44417 0.51575

0.38892 0.33607

0.44614 0.50744

0.45871 0.81734

0.34032 0.24865

0.38481 0.45498

0.36231 0.36680

0.37063 0.61999

0.36837 0.45296

0.26925 0.26946

0.35880 0.32412

0.33897 0.53789

0.33085 0.42341

0.33706 0.32702

0.35054 0.36447

0.31868 0.31489

0.29160 0.27693

0.33703 0.40463

Table VIII. Sample moments for 10,000 realizations of the

stochastic approximation quantile estimator for the 0.99

quantile of the exponential distribution.

X Sample

n Size Mean Variance

1 168 -0. 11274 0.65112

2 224 -0.05081 0.54749

3 280 -0.01345 0.45878

4 336 -0.01079 0.38981

5 392 -0.01409 0.34421

6 443 -0.00117 0.30619

7 504 -0.00101 0.28681

8 560 -0.00628 0.25554

9 616 -0.00112 0.23298

10 672 -0.00347 0.21493

11 728 -0.00430 0. 20665

12 784 0.00011 0. 18656

13 840 -0.00320 0. 17232

14 896 -0.00479 0. 16871

15 952 -0.00115 0. 15853

16 1008 -0.00776 0. 14934

17 1064 -0.01065 0. 13933

18 1120 -0.00710 0. 13890

19 1176 -0.00797 0. 12758

20 1232 v -0.01016 0. 12054

21 1288 -0.00948 0. 11434

22 1344 -0.00987 0. 11342

23 1400 -0.01199 0. 10640

24 1456 -0.00879 0. 10344

25 1512 -0.00898 0.09392
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X Sample

n Size Mean Variance Skewness Kurtosis

26 1568 -0.00785 0.09412 0.31614 0.62028

27 1624 -0.01234 0. 09181 0.27344 0.32623

28 1680 -6.01041 0.08664 0.24567 0.39986

29 1736 -0.00649 0.08490 0.25753 0.15673

30 1792 -0.00879 0.08245 0.21642 0.15205

31 1848 -0.00996 0.08109 0.28204 0.14137

32 1904 -0.00900 0.08013 0.25671 0.20375

33 1960 -0.00595 0.07546 0.25526 0.18383

34 2016 -0.00698 0.07306 0.23054 0. 11701

35 2072 -0.01030 0. 07136 0.28635 0.31507

36 2128 -0.00765 0.06857 0. 19870 0.08330

37 2184 -0.01157 0.06731 0.28060 0.27422

38 2240 -0.00767 0.06548 0.27972 0.26658

39 2296 -0.00703 0.06339 0.24303 0.14686

no 2352 -0.00493 0.06313 0.24346 0.16414

41 2408 -0.00963 0.06112 0. 24595 0.19981

42 2464 -0.00833 0. 06057 0.24375 0.23653

43 2520 -0.01114 0.05890 0.22788 0.23471

44 2576 -0.01300 0.05687 0.29007 0.49698

45 2632 -0.00895 0.05617 0.30909 0.37786

46 2688 -0.01024 0.05525 0.25985 0.21686

47 2744 -0.00915 0.05378 0.25192 0.18870

48 2800 -0.00799 0.05225 0.22194 0.29575

49 2856 -0.00881 0.05202 0.28420 0.51976

50 2912 -0.00671 0. 05032 0.24716 0.12429

Table VIII. (Continued) Sample moments for 10,000

realizations of the stochastic approximation quantile

estimator for the 0.99 quantile of the exponential

distribution.
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X Sample

n Size Mean Variance

51 2968 -0.01012 0. 04907

52 3024 -0.01059 0.04704

53 3080 -0.00681 0. 04792

54 3136 -0.00419 0.04660

55 3192 -0.01063 0.04529

56 3248 -0.00697 0.04626

57 3304 -0.00725 0.04409

58 3360 -0.00981 0.04296

59 3416 -0.00738 0.04314

60 34 72 -0.01049 0.04 116

61 3528 -0.00903 0.04072

62 3584 -0.00984 0.04113

63 3640 -0.00832 0.03954

64 3696 -0.00730 0.03929

65 3752 -0.00947 0. 03800

66 3808 -0.00937 0.03806

67 3864 -0.00703 0.03837

68 3920 -0.00721 0.0366Q

69 3976 -0.00788 0-03624

70 4032 -3.00718 0.03656

71 4088 -0.00322 0.03535

72 4144 -0.00846 0.03435

73 4200 -0.00973 0. 03501

74 4256 -0.00830 0.03363

75 4312 -0.01061 0.03401

Skewness Kurtosis

0.24310 0.28737

0.23455 0.15058

0.21635 0.12167

0.21268 0.11278

0.18625 0.24244

0.23597 0.13575

0.18121 0.12925

0.20815 0.11342

0.23661 0.13994

0.23520 0.35075

0.19669 0.06457

0.12989 0.15193

0.18986 0.13455

0.20019 0.19601

0.15993 0.12546

0.17441 0.03580

0.19802 0.23513

0.15186 0.14438

0.16858 -0.04834

0.20713 0.14707

0.21347 0.25922

0.19317 0.15211

0.16768 0.07293

0.16786 0.02438

0.19544 0,11400

Table VIII. (Continued) Sample moments for 10,000

realizations of the. stochastic approximation quantile

estimator for the 0.99 quantile of the exponential

distribution.
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X Sanple

n Size Mean Variance

76 4368 -0.00740 0.03339

77 4424 -0.00650 0.03280

78 4480 -0.00837 0.03264

79 4536 -0.00812 0.03185

80 4592 -0.00781 0.03163

81 4648 -0.01054 0.03183

82 4704 -0.00963 0.03032

83 4760 -0.00795 0.02969

84 4816 -0.00731 0.02947

85 4872 -0.00968 0.02950

86 4928 -0.01065 0.02851

87 4984 -0.00693 0.02897

88 5040 -0.00924 0. 02800

89 5096 -0.00709 0.02854

90 5152 -0.00830 0.02816

91 5208 -0.00901 0. 02795

92 5264 -0.00654 0.02701

93 5320 -0.00688 0.02680

94 5376 -0.00843 0.02677

95 5432 -0.00797 0.02617

96 5488 -0.00751 0.02623

97 5544 -0.00658 0.02546

98 5600 -0.00448 0.02596

99 5656 -0.00572 0.02508

100 5712 -0.00439 0.02514

Skewness Kurtosis

0.23192 0.40494

0.17281 0.14084

0.14122 0.00701

0.21379 0.12254

0.18469 0.08219

0.20911 0.24620

0.18384 0.18129

0.18287 0.19079

0.15839 0.16455

0.17036 0.00225

0.17953 0.11817

0.16184 0.05916

0.15865 0.11181

0.18523 0.15899

0.17175 0.20298

0.19455 0.03783

0.13790 0.09320

0.13519 0.07674

0.11591 0.02051

0.14022 0.10174

0.14651 0.18201

0.13555 0.08283

0.11760 0.07470

0.13814 0.06399

0.17241 0.14293

Table VIII. (Continued) Sample moments for 10,000

realizations of the stochastic approximation quantile

estimator for the 0.99 quantile of the exponential

distribution.
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X Sample

n Size Mean Variance Skewness Kurtosis

101 5768 -0.00581 0. 02448 0. 15044 0. 14362

102 5824 -0.00637 0.02 50 4 0.15366 0.11828

103 5880 -0.00872 0.02453 0.15101 0.05956

104 5936 -0.00564 0.02385 0. 17769 0.11094

105 5992 -0.00838 0.02428 0. 13391 0.13484

106 6048 -0.00903 0.02366 0. 13756 0.07061

107 6104 -0.00825 0.02338 0.15209 0.06478

108 6160 -0.00581 0.02292 0.13397 0.10493

109 6216 -0.00541 0.02304 0.13187 0.10158

110 6272 -0.00810 0.02254 0.14520 0.00261

111 6328 -0.00507 0.02230 0. 17181 0.10032

112 6384 -0 .00959 0.02188 0. 15548 0.07619

113 6440 -0.00836 0.02209 0. 11682 0.00358

114 6496 -0.00758 0.02165 0. 14474 0.06447

115 6552 -0.00714 0.02170 0. 14750 0.07069

116 6608 -0.00212 0.02154 0. 14713 0.10814

117 6664 -0.00851 0.02154 0. 13412 0.03059

118 6720 -0.00606 0.02113 0. 15224 0.03194

119 6 776 -0.0046 2 0.02115 0.15435 0.07507

120 6832 -0.00603 0.02020 0. 13705 -0.00582

121 6888 -0.00690 0.02029 0. 11964 -0.06280

Table VIII. (Continued) Sample moments for 10,000

realizations of the stochastic approximation quantile

estimator for the 0.99 quantile of the exponential

distribution.
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Figure 19. Coefficient of skewness of the stochastic

approximation estimator for the 0.99 quantile of the

exponential distribution vs. stochastic approximation step

number.
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Figure 20. Coefficient of kurtosis of the stochastic

approximation estimator for the 0.99 quantile of the

exponential distribution vs. stochastic approximation step

number.
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clearly supports the conjecture that s' converges in the
n

fourth mean and that both V and y rapidly approach zero.
1 2

See Figure 19 for a plot of the skewness and Figure 20 for

the kurtosis.

The generally positive kurtosis values indicate that

confidence intervals for the mean based on the asymptotic

normal theory will be slightly too narrow since the tails of

the distribution of s* will be heavier than those for the
n

i

normal case; this is confirmed empirically in Section

III.D.5. The positive skewness values probably derive from

the shape of the distribution of the starting value s ,

which from Figure 1 is markedly skewed to the right. Note

that neither y nor y is great enough for X samples1-2
larger that 3000 observations to cause objectionable

departures from normality.

Figures 21 through 23 allow us to examine the

convergence of s* { in distribution more directly. These
n

histograms were computed from samples of 2500 replications

of s*', s* 1 and s* ' , respectively. In this case the
50 100 150

replications were not independent; this enables one to gauge

the progress of a specific {s'} seguence. The F's plotted
n

on the histoqrams are a kernel estimate of the underlying
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density of the s* 1 population; such density estimates have
n

been founl to give better insight into the nature of the

underlying distribution than does the histogram alone.

In general, the histograms reinforce the conjecture

that S"' is converging rapidly to normality; in all three
n

cases, the density has a definitely Saussian shape which is

slightly skewed to the right, the degree of skewness

decreasing with increasing n. The sample extrema and range

also decrease in a satisfactory manner.
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Chapter V. JOINT ESTIMATION OF A SET OF QUANTILES

In this Chapter we address the problem of obtaining

estimates for several different guantiles from the same X

population based on a single sample X ,...,X . This problem
1 n

is one of considerable practical interest since one usually

wishes to estimate more than just a single extreme guantile

in data analysis or simulation studies. The problem also

constitutes the primary area of application for the new

stochastic approximation methods described in this work; as

long as only one guantile is to be estimated the order

statistic technigues of Section III. A can be guite modest

in terms of both computation time and memory but they are

completely impractical when dealing with ten or more

guantiles at a time.

The major development in this Chapter is a computer

program which is capable of providing estimates of the

moments and guantiles of an arbitrary population given only

seguential independent observations on the random variable.

The total computer memory reguirement (besides the code for

the program) is just 150 memory cells per random variable.

As Lewis [22] points out r there is often a reguirement in

statistical sampling experiments or systems simulation

studies to collect simultaneous estimates on 30 or more

random guantities; the FORTRAN subprogram QUANT given in the

Appendix represents a way to do this with a reasonable

amount of memory. The subroutine could thus be used

directly in Lewis' COMPSTAT package [22] at a considerable

saving in memory.

166





Non-parametric Ouantile Estimation Through
Stochastic Approximation

A. An Estimation Algorithm

Our basic approach to joint quantile estimation is to

employ the nested design of Table I of Chapter I with , the

algorithm for the new stochastic approximation method. given

in Subsection IV. D. 2. The main complication is that we must

now provide a data structure to accommodate all of our set

of estimates as well as the other information required to

find the respective section maxima and minima.

We assume that the population median is to be estimated

along with the a and (1-a ) quantiles, j=1 , . . . , top. The
J J

quantile estimates are to be kept in array s with the median

estimate in s[0], the a quantile in s[2j-1] and the (1-a )

J J

quantile in s[2j]. A second array f is also required; f [ k

]

will contain the density estimate corresponding to the

quantile estimate in s[k].

Each quantile estimate also requires the five values n f

b, m r h and a to be stored, just as in the single quantile

algorithm of Section III.D.2; we may use the same value for

each of these variables for both the a and the (1-a )

J J

quantiles in this case, however, so we can save some memory

storage here. Since we will be applying the maximum

transform, we also require arrays u, max and rain; u[ j ] will

contain the size of the sample section considered so far for

the a quantile, max[j] the largest value in the section and
j

min[j] the smallest. One final array v will contain the v

values for the maximum transform for each quantile. Since

we use a nested method for determining the respective maxima

here, a v[j] value of 2 means that the section for the a

j
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quantile is twice as large as the section for the a

quantile.

j-1

The values in the a and v arrays must be precomputed

and will remain fixed throughout the estimation process.

The remaining arrays must be initialized at the beginning of

the algorithm just as in Subsection IV. D. 2. In the ALGOL

description below we suppress the initialization steps as

they tend to obscure the operation of the method. We give

an ALGOL-like description both because ALGOL is the standard

language for setting forth algorithms and also because the

result is more easily understood than a FORTRAN program. A

FORTRAN implementation is given in the Appendix.

comment This first section carries out the stochastic

approximation process for the median.

The algorithm updates the various

stochastic approximation arrays given

the single input observation X;

t := | s[0] - Xj ;

if t < b[0] then f [ ] := f [ ] + (b[0] - t) / b[0]2;

comment upper bound on divisor;

nh := n[0 ] * h[ ];

if f[0] > nh then d := nh else d := f[0];

s[0] := s[0] + y / d;

h[0] := h[0] + 1 / n[0];

n[0] := n[0] + 1;

b[0] : =
. ( 1 - b[0P , * b[0];

3m[0 J
3

comment here we pass the X values one at a time outwards

to the other quantiles;

max[ 1 ] := X; min[ 1 ] : = X;

j : = 1 ; k : = 1

;

while j < top do
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begin

comment first we update the current max and min values;

if j > 1 then

begin

if u[ j] = then

begin

max[ j ] := max[j-1]; min[j] := min[ j-1
]

end

else

begin

if max[j] < max[j-1] then max[j] := max[j-1];

if min[j] > min[j-1] then min[j] := min[j-1]

end

end;

u[j] := u[j] + 1;

comment determine if the current section is complete;

if u[j] # v[ j ] then j := top + 1 else

begin

u[ j] := 0;

comment this section is for the alpha[j] quantile;

t := |s[ k] - max[ j ] j

;

if t < b[j] then f[k] := f [ k ] (b[ j]-t) /b[ j ]«;

if max[ j ] < s[k] then y := a[j]-1 else y := a[j];

nh := n[ j] * h[ j];

if f[k] > nh then d := nh else d := f[k];

s[k] := s[k] + y / d;

comment this section is for the (1-alpha[j])

quantile;

t := Js[ k+1 ] - min[ j ]|

;

if t < b[j] then f[k+1] := f[k+1] +

(b[j]-t)/b[ j]2;

if min[j] < s[k+1] then y := -a[ j ]

else y := 1 - a[j];

if f[k+1] > nh then d := nh else d := f[k + 1];
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s[k+1 ] := s[k + 1 ] + y / d;

comment here we update the constants for the

alpha[ j ] quantile;

h[j] := h[j] + 1 / n[j]; n[ j ] :^ n[ j ] + 1;

b[j] : ( 1 - J8C.1M ) * b^];

j:=j+1; k := k + 2

end

end;

The introduction of an initialization section makes the

algorithm somewhat more complex, but even greater difficulty

ensues when we combine all the arrays into a single data

structure (which is also an array) as we do in the FORTRAN

subroutine QUANT which is listed in the Appendix. This use

of a single array has the advantage, however, that we may

now accumulate quantile estimates on several different

random variables as long as each one is allocated its own

estimation array.

We may incorporate the next-to-maximura transform into

this scheme by adding yet another array nextraax to our

algorithm (or an extra set of memory locations into the

single array as has been done in QUANT, for example.) The

section maximum update steps in the algorithm now become

if raax[j-1] > nextmax[j] then

if max[ j-1 ] > max[j] then

begin

nextmax[j] := raax[j];

max[ j ] : = max[ j-1 ];

if nextmax[ j-1 ] > nextmax[ j ] then

nextmax[ j ] := nextmax[j-1]

end

else nextmax[j] := max[j-1J;
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A second i rray nextmin with a similar update sequence will

also be required for the lower quantiles. The stochastic

approximation operations will then be carried out using the

values in nextmax[j] and nextmin[j].

Either version of the joint estimation algorithm

requires that we have available fairly large samples of

data. In order to obtain varaince estimates for the most

extreme quantiles we need a minimum of 4v+3 observations,

i.e. a total of 2691 for the maximum transform design of

Table I and 6147 for the next-to-maximum transform design.

This emphasizes the point that stochastic approximation

quantile estimation is a large sample technique.

B. Reordering Techniques

The first discrepancy noted when using Monte Carlo

methods to investigate the performance of the algorithm of

Section A is that the resulting quantile estimates are

sometimes not in the proper order. In what follows, v;e

assume that we are to estimate the a (1) , a (2) , . . . ,a (m)

quantiles, where a (i) < a(j) for i < j. Since s satisfies
a

F (s ) = a and since every distribution function F (•) is
a

monotone, we must have

(1) s < s for a(i) < a (j)
a(i) a(j)

with strict inequality when F(e) is continuous. In any

event, if the joint estimates s (n) > s* (n) result
a(i) a(j)

from a sample X .....X from the parent population weIn
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clearly have an error for which we should make some

adjustment.

This adjustment may be made only after the final set of

estimates is obtained or it may be carried out dynamically

throughout the estimation process whenever any of the set of

quantile estimates violates the relation (1). It turns out

that the dynamic readjustment of the estimates can

materially improve the overall precision of the final

estimates, where we adopt as a measure of this precision the

total squared error of the set of m quantile estimates, i.e.

m
T =§ T s (n) - s ]2 .

ran j=1 a(j) a(j)

The expected value of T is just the sum of the mean
mn

squared errors of the individual quantile estimates. None

of the readjustment processes considered here changes the

asymptotic distribution of H since none of them will be
n

used if the set of quantile estimates satisfies (1) ; the

almost sure convergence of s implies that the order
n

relationship (1) will hold almost surely for any sequence

of joint estimates. A reduction in the value of E[T ] thus
mn

represents a decrease in the bias of the individual

estimates s (n) rather than a change in the asymptotic
a(j)
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variance

One way to reduce the expected value of T for m > 3
Din

is to employ the James-Stein estimation process (for an

explanantion with examples see Efron and Morris [8]).

Briefly, the idea is to decrease the value of each s (n)
a (j)

slightly [the amount depends on the actual variance of

s" (n) ] so as to move the estimate closer to the surface
a (j)

of the nt-dimensional hypersphere on which the point

[ s ,. . . , s ] lies.
a(1) a(m)

The set {s ,...,s } of guantile estimates does
a(1) a{m)

not exactly satisfy the reguirements for the James-Stein

adjustment since we do not know the. precise theoretical

variances. Furthermore, although some perturbation of the

order of the set of estimates occurs, the adjusted set does

not in general satisfy (1). The James-Stein technique was

applied dynamically (using estimated variances) during the

stochastic approximation joint guantile estimation procedure

and it was found to make the properties of the extreme

guantile estimates materially worse. We thus reject this

method of adjustment.

The most straightforward of the methods that has been

found to reduce the expected value of T in some cases is
wn
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simply to adjust any of the s (n) values which fall
a (j)

outside of the interval [X ,X ] back to the nearest
(1) (n)

boundary of the interval. It is quite easy to keep track of

the sample extrema X and X since the process requires
(D (n)

only two additional memory cells; the subprogram QUANT in

the Appendix was designed with this capability.

From (3.1), the probability that the sample range

[X ,X ] covers the a-quantile is just
(D (n)

Pr
n-1 r nn i

(1) a (n) 1=1 LjlJ

n-i

(n)

n n
= 1 - a - (1-a) ;

thus the adjustment is more likely to reduce the bias of s
n

as the sample size increases. Since the initia.1 estimate is

v .

based on a sample of size 3 v f where a = 0.5, the

probability that the interval for the first maximum

transformed estimate 2' contains s is approximately 0.875;
2 a

this follows because the interval is [ X ,X ] and
(1) (4 v)

a v .

a = 0.0625. The probability that the interval for s'
n

contains s is similarly 1 -
r 1

a

n+1

c i i
, which rapidly

approaches 'I . 0.
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For reasons of practical utility we prefer to carry

this so-called extremum adjustment (as well as the other

adjustment methods) only when the value of the most extreme

quantile estimate s changes; in the maximum transformed
a(m)

case this will occur for each v[ m ] observations on X. This

not only decreases the amount of time devoted to the

adjustment process but it also can be done very conveniently

in the algorithm. In subroutine QUANT r the call to

subroutine CHECK near the end of the quantile estimation

loop is an invocation of the order adjustment method.

As can be seen in Table IX the extremum adjustment

apparently helps slightly in the small sample exponential

case but there seems to be very little basis for adopting

this method in general. Furthermore, the extremum

adjustment will have no effect on violations of (1) unless

both quantile estimates lie outside [X ,X 1 in the same
(1) (n)

direction* We thus seek a general technique for dealing

with estimates which are in reverse order.

Such a technique arises from considering the problem of

estimating the means u and u of two independent normal

random variables X and X with respective known variances
1 2

a 2 and a 2
. If we have a single pair of realizations x

1 2 1

and x . the maximum likelihood estimators II and yi arise
2 1 2
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from minimizing the quadratic form

i

the result is clearly ji = x , i=1,2. If we know a priori,
i i

however, that u > n and it happens that x < x , we must12 12
solve the quadratic programming problem

min Q(u ,u )

subject to

u > ii

1
r
2

in order to obtain the maximum likelihood estimators

required minimum occurs at

The

p: = pr =
1 2

1/a 2 + 1/ a 2

1 2

Note that this is just a weighted average of the x *s, the
i

weights being chosen as 1/ a 2
; in a sense, the weight w for

i i

x is just a measure of the precision of x as an estimate
i i

of u .

' i

The foregoing discussion is an example of so-called

"isotonic" regression techniques (the terra isotonic means

"order preserving"). These techniques ar° applicable in

situations far more complex than our present simple
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requirement that s < s < . . . < s ; for more
a(1) a (2) a(m)

sophisticated applications as well as a summary of the basic

theory see Barlow et al [1]- The isotonic adjustment

technique for the situation where s (n) > s (n) is
a(i) a(i+1)

then to use as estimates for both quantiles the same value,

namely

w s (n) + w s (n)
_i_aj[i}_ i:tl_aji+1}_ ;

w + w
i i+1

the weights used here are just the reciprocals of the

estimated variances, i.e.

n B 2

(2) w = n ,

i aTirpn—Tin

where B is the density estimate for f (s ) . The value of
n a (i)

n in (2) may change with a (i) depending on the maximum

transform scheme used, if any.

The main complication here is that the entire set of ra

quantiles must be ordered rather than just adjacent pairs of

estimates; thus, if it is found that s < s after
a(i + 2) a(i+1)

the adjustment of the previous paragraph is made it will be

necessary to set all three of the estimates to the same

value which is now

w s (n) + w s (n) + w s (n)

_i_aiiJ_ itl_a.(itiL it2_§Ji+21

w + w + w
i i+1 i+2
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He have now created a block {s ,s f s } of
a (i) a (i+1) a (i+2)

estimates whose values are equal; if this constant value is

not in the proper order with respect to some othar adjacent

block of estimates it will then become necessary to coalesce

the two blocks together in the same fashion.

An algorithm for manipulating the blocks in this manner

was developed by Kruskal [20]; it is also given by Barlow et

al [ 1 ]. This so-called "up-and-down blocks" algorithm has

also been implemented using the weights (2) for the data

structure used by the QUANT subroutine. The resulting

FORTRAN program is called CHECK and is listed in the

Appendix.

A possible extension to the isotonic adjustment is to

adjust the density estimates B at the same time that the
n

guantile estimates are adjusted. There is of course no

reason to suppose that the densities will also be in order,

but it seems reasonable that if all the guantile estimates

in a block have the same value that all the corresponding

density estimates should also be constant. This may be

accomplished using the same weights as used for updating the

s values. Alternatively, we may adjust each B so that
a(i) n

the estimated variance calculated by (3.8) for each

estimator in the block is the same. Recalling that we chose

w = 1/ cr 2
, the variance of the block average in block b is

i i

given by
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Z W 2 O 2

V. = i i
b

( I ».) 2

1

2 *

(
2

'

w )
2

1

( I w.)- 1

1

The adjusted density estimates are then given by

(3)
n / nliy

where n (i) is the sample size for the a (i) -quantile. This

second scheme was in fact investigated; Monte Carlo results

for both the isotonic adjustment technique and the isotonic

technique with density modification are given in Table IX.

It is apparent from Table IX that the isotonic

adjustment method greatly improves the expected total

squared error of the set of quantile estimates. The

decrease is over 50 % for both the normal and exponential

cases. The density adjustment, however, does not improve

E[T ] nearly as much if r indeed, it improves it at all.
mn

One difficulty encountered in using the isotonic

adjustment technique is that if one of the extreme quantile

estimates (say s ) is out of order with respect to an
0.995

estimate on the other extreme (e.g., s < s ) then
0.995 0.05
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Adjustment Normal Distribution Exponential Distribution

Method

n=6720 n=67,200 n=6720 n=67,200

Unmodified 1.9348 0.0444 7.8323 0.5722

(0.5396) (0.0328) (1.7157) (0*4473)

James-Stein 2.5162 6.7694 * *

(0.0561) (0.0607)

Extrema 1.9347 0.0444 7.8300 0.5723

(0.5396) (0.0328) (1.7158) (0.4473)

Isotonic 0.9262 0.0105 3.5547 0.2131

(0.0362) (0.0007) (1.0650) (0.1332)

Isotonic 1.5109 0.0492 6.2388 *

(Density) (0.4205) (0.0132) (1.3962)

Limited 1.5188 0.0197 2.0328 0.1343

Reorder (0.5766) (0.0075) (1.0749) (0.0501)

Limited 1.4605 0.0612 * *

Reorder (0.4939) (0.0426)

(Density)

Table IX. Mean of the total squared error T for the m -
mn

19 quantiles of Table I using various reordering methods to

adjust for estimates which are out of order. Values are

the mean of 100 replications of each T statistic; numbers
mn

in parentheses are the estimated standard deviations of the

given estimates of E[T ]. Asterisks (*) denote experiments
mn

that were not conducted.
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all of the intervening quantile estimates will be set to the

same value even though they may be close to their correct

values. The extent to which this may occur depends on the

parent population but it is likely to be a problem since the

extreme quantile estimates will be the most variable,

especially for moderate sample sizes.

One way to overcome this difficulty is to use a

"limited" reorder scheme in which each estimate is checked

with respect to those immediately adjacent. If it is found,

for example, that

§ < s
a(i) a(i-1)

but that

s < s
a(i-1) a(i + 1)

then we discard the old estimate s and set
a(i)

w s + w s
- = _i" 1 _aii-li_ i+1 aji+1)_
a(i)

w + w
i-1 i+1

If the estimates s and s are also out of order
a (i-1) a (i + 1)

we merely carry out the usual isotonic regression

adjustment.

The limited reorder adjustment may also be applied with

the density adjustment (3) used in the isotonic case. The

results from Table IX indicate that this method shows some

promise but it does not appear to be generally as good as

the isotonic case. Once again, the density adjustment does
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not seem to be useful.

The results in Table IX show a substantial reduction in

E[T ] when we adopt the isotonic adjustment; as mentioned
mn

previously, this is an indication of a reduction in the bias

of the s (n) • s. It is possible that this bias reduction
a(i)

will now make the stochastic approximation estimators more

competitive with order statistic estimators. Direct

computation shows for the order statistic case, however,

that the total squared error for a sample of 6720

exponential variates is 0.2907 and it is 0.0285 for 67,200

observations. Thus, a better reordering method is needed to

obtain comparable bias results. Even though it is possible

that the stochastic approximation estimators can be further

improved, we will be unable to improve the order statistic

estimators any further in this way since none of the

reordering methods are applicable in this case.

Our conclusion then is that the isotonic adjustment is

a robust and flexible method for reducing the expected total

squared error of a set of stochastic approximation quantile

estimates and that simultaneous adjustment of the step size

parameters is not indicated. The limited reorder adjustment

may be better in some applications; more work could be done

in this area.

182





Chapter VI. FUNCTIONS OF QOANTILES

In this Chapter we investigate the question of whether

our methods can ba adapted to the joint estimation of an

unknown guantile and some random function of that quantile.

Of course, one case in which we already know that this can

be done is the estimation of R = f(s ) using a kernel
a

estimator since this density estimate is used directly in

the quantile estimation process. We first determine what

kinds of functions we may use in this joint estimation

procedure and we then give an example which is of practical

use in statistical simulation studies.

A. Sufficient Conditions for Convergence

Given a sample X ,...,K from a population with
1 n

distribution function F(®) satsifying (F1) and (F2) we

obtain the corresponding a-quantile estimates

s ,£,... r s . At each stage of the process we also have a
1 2 n+1

random vector Y (possibly empty) which we use to compute
n

the value of the known function P (s ,X ,Y ) ; we are then
n n n n

interested in the properties of

(1) P = 1 .1, P. (3.,X.,Y.) .

n n i=1 l l l i
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Of course more general formulations involving several

previous X or s values are possible but since our emphasis
n n

throughout this work is on methods which conserve storage we

limit ourselves to the formulation (1).

We approach (1) in the same way as we proved Theorem 2

in Chapter II; first, however, we must redefine the sequence

of o-fields B = ct(s ;X ,...,X ;Y ,...,Y ) to include
n 1 1 n~1 1 n-1

the T variables. Then we write

(2) t (s ) = E[P (s ,X ,Y ) | B ]
n n n n n n n

Expanding (1) we have

(3) P = 1 .1 (P. (s.,X.,Y.) - t. (s.)J
n n i=1 1111 li

+ 1 .2 t.(s.) .

n i=1 i l

The first term in (3) will approach almost surely

according to Lemma 2 if we have

(4) Var[P (s ,X ,Y ) ] = o(n) ,

n n n n

since then g n~ 2 Var[ P (s ,X ,Y )] will converge
n=1 n n n n

The second term in (3) will converge a.s. according to

Lemma 5 as long as t (•) is measurable and uniformly
n

continuous for every n > N; in this case we have
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t (s ) -»-> t (s ) and so
n a a

t (s ) --> t (s ) a.s.
n n a

In view of Lemma 6 we have thus proved

Theorem 5 As long as P (s ,X ,Y ) satisfies (4) and t (•)
n n n n n

given by (2) is measurable and uniformly continuous then

p — > t (s ) a.s.

,

n a

where p is given by (1),
n

B. Applications

In a statistical simulation study we may generate

sufficient pseudo-random samples of X to obtain a
n

satisfactory estimate s of the a-guantile and then repeat
n

the experiment and compute p using the final quantile
n

estimate value, i.e. we calculate

P' = 1 .$„ P. <s /X.,Y.) .

n H 1=1 i n+1 l i

This value should have a lower bias than p (at, least in the
n

first few terms) since it is based on a more correct
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estimate of s . We may also use the p* estimate with a
a n

fixed data sample which is recorded on a storage medium

which allows re-examination of the data, e.g. magnetic tape.

If the X values are difficult to generate, however, it

may become prohibitively expensive to repeat the entire

experiment from the beginning to take advantage of the

presumably lower bias of p' . It may also be impossible to
n

repeat the early X values if the source of the data is a

real-time system of some sort, for example. In these cases

we prefer to use the dynamic estimate p in order to
n

conserve memory storage reguirements.

The basic application envisioned for this technique is

the estimation of empirical distribution functions and

percentiles (see the next Section). It may also be used for

estimating density values from other distributions, i.e. we

take

s - Y
P (s ,Y ) = 1 W _n n
n n n 5 »- b J

n n

Evidently then p — > f (s ) in this case as long as the
n Y a

distribution function F (•) of the Y population satsifies
Y

(F1) (see Lemma 7). This same method may be readily

extended to the estimation of joint density functions.
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C. Power and Level of a Test

As an application of our method we consider the

statistical simulation problem of estimating the level of a

statistical test and then determining the power of the test

against various alternative hypotheses at the chosen level.

Suppose, then, that we have a simple hypothesis H and a

finite set of simple alternate hypotheses H ,...,H . The
1 ra

test statistic T is proposed for testing H ; the (unknown)

distribution of T under H will be denoted by F («) ,

J J

j=0,1,».«,m. We assume that F (•) satsifies (F1) and (F2)

and that each of the F (<») , j = 1,... r ra, satisfies (F1).
J

He wish to determine a level T for the test statistic
a

T such that the probability of a Type I error in testing H

will be a. Assuming that the test region is T < T , the
a

test level is the solution to

Pr{T < T |H } = 1 - a,
a

or

F (T ) = 1 - a,
a

i.e. T is the 1 - a guantile of F («) . It is
a

straightforward to extend this to other test regions.

Realizations of the statistic T are now obtained by
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sampling sets X ,X # ...,X of k values each from a
1 2 k

population satisfying H ; in the simulation context, these

samples are generated by a pseudo-random number generator.

The value T is then computed from the nth (X } sample and
n

may be used to obtain a new stochastic approximation

estimator of T using the algorithm of Chapter III (or
a

Chapter V if several different values of a are of interest)

.

We denote this nth sequential estimate of T by T .

a n

Now suppose that in addition to the {X } sample we have

samples from populations satsifying H , j=1,...,m; we
J

denote such a sample by {X } . Note that it may bs very easy

to generate such samples given the basic {X } sample; if,

for example, the null hypothesis involves E[ X ] - while H

J

requires E[ X ] = fi * then each {X } sample may be
D

generated by adding an appropriate constant to (X } . From

each {X } sample, then, we compute the statistic r, denoting

the nth realization by T
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The power of the test based on T is just the

probability that under H the statistic T fails the test,
J

i.e.

(5) p = Pr{ T > T I
H }

a j

= 1 - F (T ) .

j a

Note that the power defined by (5) is one minus the

T -percentile of F (•) . According to Theorem 5 we may then
a j

use as an estimate of p

j n j

P = 1 £ P (T ,T )

n n i=1 l l l

as long as P (T ,T ) has the correct properties. In fact,
i i i

if we choose

(6)

( if T
1

< T

111) j
I 1 if T > T
v i i

P
#
(T. ,T) =

then we have

and

Var[P (T ,T ) ] < 1 = o(n)
i i i 5

(7) E[P (T ,T ) i B ] = 1 - F (7 ) a.s,
i i i i j i

Now (F1) guarantees that F (•) will be continuous in some
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closed neighborhood of s and since F (•) is bounded it will
a J

be uniformly continuous there. Thus,

_j J
p — > 1 - F (T )

= p a.s.
n j a

j
Note that (7) does not require that T and T be

i i

independent; in fact if we are able to use the {X } sample

to generate (X } they will certainly not be. A degree of

j
positive correlation between T and T , moreover, may

i i

j
actually improve the estimate p . If T is large then T

n i i

will also be large; however, T is also large in this case
i

so that the tendency will be for (6) to add an appropriate

„j
value to p .

n

Since we are usually interested in very small

probabilities of Type I error, we will generally have the

probability of error, a, very small. Hence, it will most

often be necessary to use the maximum transform to estimate

T . In this case we continue to accumulate P (T ,T ) terras
a i i i

even though the value of T has not changed since the
i

previous step. This does not change the analysis to any

great extent; we are merely adding a binomial random

variable to the sum instead of a Bernoulli as before.
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It is not hard to show, using Lemma 11 and following

the lines of the proof of Theorem U, that p has an
n

asymptotically normal distribution. In fact,

„j L D J J
(8) P — > N [ p , E_J1_1_E_L ]

n n

Some empirical investigation of this method has been

carried out using the FORTRAN subprogram POWER listed in the

Appendix. The example chosen was the estimation of the

power of the t-test. The statistic is

z + d
t -
n s~

z

where z is a zero-mean normal random variable, d a constant

and s an independent estimate of Var[z] based on n degrees
z

of freedom. When d is zero t has Student's t-distribution
n

with n deqrees of freedom while t has a non-central
n

t-distribution when d * 0.

The quantiles of both the central and non-central

t-distributions may be readily approximated so that the

results of the joint estimation procedure can be checked.

The null hypothesis is FI : d = while the alternate

hypotheses are H : d = d #0. Because of the time required
J J

to carry out the simulation no attempt was made to determine

the order of the bias or to verify the asymptotic

distribution (8) ; the results for several different n

values, however, were in good agreement with theory.
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Chapter VII. SUMMARY AND CONCLUSIONS

A. Main Results

The main contribution of this research is the

development of a practical sequential quantile estimation

method which can be applied even for extreme quantiles.

Both the asymptotic and finite sample properties of this new

method have been shown to be comparable to those of the

order statistic method which is the most commonly used

non-parametric technique for estimating quantiles; the new

method requires only a small, fixed amount of memory for its

implementation, however, and is thus superior to the order

statistic estimator for large samples of data.

Monte Carlo experience with the new estimation method

shows that it is quite robust with respect to the underlying

distribution of the random variable whose quantile is to be

estimated. Use of the maximum transform of Goodman, Lewis

and Robbins [14] allows the method to be applied even for

extreme quantiles without the qrossly unstable finite sample

behavior which has characterized most attempts at stochastic

approximation quantile estimation; see, for example,

Wetherhill [36], Cochran and Davis [ 4 ] or Iglehart [16].

Since the method also provides an estimate of the variance

of the quantile estimate, confidence intervals on the

quantile may be computed. This is a sine qua non of good

simulation practice. The technique thus qualifies as a

flexible building block for use in data analysis or

simulation computer programs. Because of the modest memory

requirements it may be used in such programs for dealing

with more than a single random variable.
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Extension of the scheme to the estimation of a set of

quantiles allows further improvement of the results by

taking advantage of the known order relations in the set of

quantiles; the resulting reduction in the bias may be

substantial. Furthermore an entire set of quantiles such as

the 19 values considered in this thesis provides an

excellent characterization of the distribution of a random

variable X; this information may be much more meaningful

than just the moments of X, especially for highly skewed or

outlier-prone data.

The development of a technique for the simultaneous

estimation of both the level and power of a statistical test

is also a useful contribution. When carrying out such

statistical estimation experiments Monte Carlo methods are

generally applied for a wide range of test sample sizes.

The overall savings can be substantial since use of the

simultaneous estimation method results in a saving for each

test investigated.

All of the algorithms described in this thesis have

been implemented as FORTRAN subroutines; some of these are

particularly flexible and are listed in the Appendix.

Subroutine QUANT implements the joint quantile estimation

algorithm of Chapter V while subroutine CHECK implements the

isotonic adjustment algorithm of Chapter V. Subroutine

POWER is for the simultaneous level/power estimation

technique of Section VI. C while QOUT and PWROUT print out

the estimates accumulated by QDANT and POWER, respectively.

Specific details of the data structures and algorithms

employed may be found in the comments which accompany the

subroutine listings.

Sample output from subroutine QUANT is also included in

the Appendix; the input data in this ca-se was a pseudorandom
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sample from the exponential distribution. The accuracy of

the results may be judged by comparing them with the true

values which are also listed in the Appendix. A sample of

the application of subroutine POWER is also included; the

input was the t-test experiment data described in Section

VI. C. Once again the true values are also listed for

comparison.

B. Proposed Applications

As has been mentioned several times, Monte Carlo

simulation is the primary application envisioned for the

improved stochastic approximation quantile estimator

developed in this work. The large samples of data required

to obtain reasonable results from the procedure are easily

obtained in a simulation experiment; further, the experiment

can be designed so that the seguential X observations are

independent and have a continuous distribution. The

inevitable development of larger and faster computers will

make the techniques even more valuable as larger simulation

experiments become possible. Finally, in simulation work we

usually wish to obtain estimates of high precision so that

the magnitude of the bias encountered in some order

statistic methods is often unsatisfactory.

The algorithm of Section V.A could profitably be

employed as. a part of a large-scale simulation package (even

though the implementation given in subroutine QUANT is for

independent use) . An example is the COMPSTAT program of

Lewis [22] which was designed to allow the user to employ

Monte Carlo methods to investigate statistical distribution

problems; a large part of COMPSTAT is concerned with

providing summary data on the statistics generated by the

user and subroutine QUANT is ideal, for that purpose.
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The method is not as readily applicable to more general

systems simulation studies (e.g., queueing problems) because

sequential observations are often not independent in this

case. If one is interested in steady-state behavior,

however, the regenerative simulation techniques of Iglehart

[16] can be used to generate independent replications.

Since these regenerative techniques tend to be fairly

specific to the problem at hand some care must be exercised

in using the improved stochastic approximation quantile

estimator here.

The question of independence is also an important one

in deciding whether the new quantile method can be applied

in a qeneral data analytic role with "real world" data. A

more important consideration here, though, is whether

sufficient observations are available; subroutine QUANT, for

example, requires a minimum of 2691 data points and this

number will be much larger if the next-to-maximum transform

is used. Given the memory size of modern-day computers,

however, it is reasonable to accommodate arrays of up to

5000 observations in core storage; it will then be possible

to use one of the order statistic methods of Section III.

A

directly on the sample. Since the order statistic

estimators avoid the maximum transform variance inflation of

the stochastic approximation estimators they should be used

when it is possible to do so.

Two cases in which enough data will be available are

real time systems and large data bases; in both cases

obtaining information for system management is a topic of

considerable current interest (see Gaver and Lewis [12]).

In fact, so much data may be available in these instances

that order statistic estimators cannot be applied because of

memory restrictions. The modest memory requirement for

subroutine QUANT would make it ideal for dynamically
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accumulating data in • a real time system; for example,

estimating job execution time parameters in a computer

operating system can be done very easily without the

necessity for saving a complete record of all the job times

on some external storage medium as is usually done.

Gaver and Lewis [12] give an example of applying

stochastic approximation quantile estimation in large data

bases. They suggest that the next-to-maximum transform be

used and that sample maxima which deviate too far from the

quantile estimate be subjected to verification by the

original source of the data as an automatic error correction

device. In this application the density estimates provided

by the improved method should be useful for deciding just

when the maximum is "too far" from the quantile estimate.

When working with data base information, however, care must

be exercised that the data is sufficiently continuous to

allow application of stochastic approximation.

C. Areas for Further Study

Three general areas in which more work could profitably

be done suggest themselves: improving and refining the

stochastic approximation quantile estimation procedure given

here, investigating the performance of the procedure when it

is applied to other kinds of data than those considered for

this thesis and extending the procedure to handle more

general kinds of inputs.

The basic method set forth in Section III.D could

perhaps be improved if a better kernel function or a better

bandwidth sequence were chosen. There is the danger that a

combination of density estimation parameters may be nearly

optimal in one application and yet lack the robustness

displayed by the present choices; a practical choice musl
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also be fairly rapid computationally. A specific

combination may be evaluated by using the regression methods

-V2
of Chapter IV to estimate the n bias component in a set

of independent realizations of s*, n = 1,2,...; some
n

investigation of the distributional properties of the

estimator along the lines of Section IV. E would also be

indicated.

The joint estimation method could also possibly be

improved by a better reordering scheme; the limited reorder

technique, for example, shows some promise here. Once again

a new adjustment method should be fairly robust, not disturb

the distributional properties of the individual estimators

and be computationally fast. A more careful comparison with

the order statistic case might also be carried out here.

The data used in the testing of the improved stochastic

approximation guantile estimator was all from fairly

well-behaved distributions and the resulting estimates were

also well-behaved; the performance of the method in the face

of outlier-^contaminated data should also be investigated.

The idea of Gaver and Lewis [12] for the possible rejection

of section maxima as outliers based on quantiles estimated

from the next~to-maxima would be a good place to begin this

investigation. General use of the method as presented in

this thesis on real world data might also disclose

shortcomings which might be overcome by using other kernel

functions or by changing the starting values.

It would also be interesting to determine the effect of

using the stochastic approximation algorithm on data samples

from discrete distributions or from an autocorrelated

process of som& sort. Although convergence in these cases
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is not guaranteed one has the feeling that the results ought

not to be too bad for samples which are not too extreme.

One criticism of the stochastic approximation estimator

is that it is sensitive to the order in which the sample is

obtained; a determination of the effect of the order of the

original sample on the final estimate might disclose how

robust the procedure is in this case. Note that the process

of reordering a sample may be used to introduce dependencies

into the data, if desired.

Finally we turn to extending the theory behind the

stochastic approximation method to include X samples from

populations more general than those allowed in Chapter II,

e.g. those with weak dependencies of some sort or those

which are discrete. Almost nothing has appeared in the

literature on these questions but weakening some of the

assumptions of Chapter II would provide a powerful extension

to the method presented here.
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