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ABSTRACT

In a phased mission the functional organization of the system chan-

ges at selected times which mark the boundaries of the phases of the

mission. Existing methods for analysis of phased missions are modified

and extended to permit determination of the reliability of maintained

systems. Results are first obtained for the case when maintenance is

performed only during a standby period, called the operational readiness

phase, during which the system functions solely to maintain its readi-

ness for a later period of active operations, as is the case for strate-

gic weapons and safety devices. These results are then extended to

systems which perform complex multi-objective missions to permit assess-

ment of system performance at levels intermediate between total failure

and total success. The reliability of systems which are maintained

throughout a multi-phase mission is. also considered. Two bounds on sys-

tem reliability are developed—one based on the within-phase reliability

of the system and the other on the phase minimal cut sets. Compatible

lower bounds on the reliability of phase minimal cut (parallel) systems

of independent components with exponential failure and repair times are

considered. •
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1. INTRODUCTION

1.1 BACKGROUND

The area of reliability theory known as structural reliability,

with which this paper deals, is the study of relationships between the

performance characteristics of systems and those of their components.

This field has grown in importance along with the sophistication of the

devices upon which modern society depends. The cost of complex devices

makes the analytical approach afforded by structural reliability an

essential element of system design. Even if it were always possible

to build a prototype and test its performance, structural reliability

would be an important tool for designers and engineers. There are many

instances, moreover, when it is impossible to observe system performance

directly. It is not unusual for the customer, who frequently must bear

a substantial portion of the cost of system development, to require an

evaluation of system performance before any construction is authorized.

Even when systems are available for testing, it may be impractical to

create the environment necessary to obtain the desired observations or

the consequences of testing may be unacceptable. Most importantly, the

knowledge of the qualitative and quantitative relationships in system

design provided by structural reliability allows the reliability engi-

neer to study the sensitivity of system performance to changes in struc-

ture and component performance characteristics. Such parametric studies

permit meaningful examination of the trade-offs made to satisfy a con-

straint on system design such as a weight limitation or a budgetary

restriction.





There are several essentially different approaches to the relia-

bility analysis of a complex system. The approach taken here is an

analytical one, but as Ziehms I 1974] noted, computational and simu-

lation methods are also employed in applications. Each technique has

its merits and its shortcomings. Advances on the analytical front can

be profitably incorporated into other methods when appropriate, making

them both more efficient and more accurate. Monte Carlo techniques

can cope with complexities for which analytical methods are unavailable.

The best approach for any application will likely be a synthesis of

these methods which is more robust than any single technique.

The scope of this paper is confined to analysis of systems which

core designed to accomplish a series of tasks during each period of

operation. This situation is what Esary and Ziehms 11975] called the

phased^mission problem.

1.2 THE PHASED MISSION PROBLEM

The concept of a phased mission was introduced in the early papers

of Rubin 11964] and Weisburg and Schmidt [1966] which were motivated by

the need for reliability and crew-safety predictions in the manned space

programs. Ziehms [1974] summarizes the approaches taken by these and

other authors and proceeds to show that the performance of a system of

non-maintained components with a multi-phase mission can be analyzed

by considering an equivalent system with a single-phase mission. The

transformation from a multi-phase mission to a single-phase mission

makes possible the application of standard structural reliability

techniques.

The elements of the phased-mission problem to be considered here

are described in the following situation.

9





A system consists of several components which, perform independently

of each, other. Each component is said to be functioning (up) if it

is performing satisfactorily; otherwise it is said to be failed (down)

.

The system performs a mission which can be divided into an active

portion and a standby or readiness portion. The standby portion of

the mission is called the operational readiness (0 R) phase. The

active portion is further divided into consecutive time periods or

phases of known duration during which the functional organization

of the system does not change. Implicit in the specification of the

mission are the levels of performance which are satisfactory and the

environment in which it will be undertaken. The functional organ-

ization for each phase can be represented as a block diagram built

of a subset of the system's components (or equivalently as a fault

tree) . The system is designed to accomplish a specific task during

each phase and the mission has one or more goals or objectives

about which it is desired to make probability statements.

The phased-mission problem as described above introduces two con-

cepts not previously considered in this context—the R phase and the

possibility of multiple mission objectives. The duration of the R

phase will generally be unknown since the timing of the event which

causes its termination will be difficult to forecast. Some system com-

ponents will usually be required to function during the R phase in

order to maintain the system's readiness. Because of the prolonged

nature of this phase it is highly likely that failures will occur among

these active components and possibly among those that are dormant. Thus

it is reasonable to expect that some means of monitoring components and

correcting failures will be provided. Previous work on the phased

-
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mission problem has been limited to non-maintained systems. When sys-

tems are not maintained, the usual measure of the performance of a

system or component is its reliability—that is, the probability that

it will perform satisfactorily in the prescribed environment for the

period intended. If a system's components are subject to maintenance,

the mission reliability cannot be expressed as a function of component

reliabilities alone. Consequently, the incorporation of maintenance

actions in a model of system performance adds significantly to the com-

plexity of the problem. Fortunately, the increased complexity does not

cause severe problems when maintenance is limited to the R phase.

The notion of multiple objectives serves primarily as a means of

recognizing more than two levels of system performance. It is a gen-

eral concept which the reliability engineer can tailor to the individ-

ual application. It provides means with which he can formulate more

incisive and meaningful reliability statements than those afforded by

the binary success/failure measure of system performance. This concept

is used in a highly-structured context in Chapter 3.

Examples of situations which fit the description of the phased-

mission problem are numerous. Safety systems, in particular, provide

prime examples. Even as simple a system as the local fire station con-

tains all of the ingredients described above. Many military systems,

especially strategic weapon systems, are designed to remain in readiness

until activated in response to a threat to the national security.

Indeed, many of these systems are never activated throughout their

entire lifespans.

Much of the work in this paper was motivated by the author's con-

ception of the Navy's Fleet Ballistic Missile (FBM) weapon system.

11





This system consists of a nuclear-powered submarine and its associated

subsystems and sixteen ballistic missiles, each, containing many sub-

systems of its own. The R phase for any one of the systems commences

when it relieves its predecessor in a patrol area and terminates when

it is relieved in turn or when a command to launch a missile strike is

issued. System components are monitored and maintained throughout the

R phase. Upon activation the system proceeds through phases during

which missiles are prepared for launch, the submarine is positioned,

and the missiles ejected. As each missile is ejected, it becomes inde-

pendent of the submarine-borne subsystems and itself progresses through

several phases of flight. Each missile is assigned to a target (or

more than one target if it has multiple warheads) and destruction of

that target is one of the mission objectives. Thus this system is one

with sixteen or more objectives and several active phases following an

extended R phase. While maintenance is not performed on the missile

components during flight, it is conceivable that limited maintenance

can take place during submarine-borne phases. This situation is one in

which it is natural to seek the expected value or even the probability

distribution of the number of objectives attained (targets destroyed)

during the mission. These notions are among those which are discussed

in Chapter 3.

1.3 CONTENTS AND SUMMARY

A mathematical model of a single-objective mission with an oper-

ational readiness phase and multiple active phases is introduced in

Chapter 2. In this model, system maintenance is permitted only during

the R phase. The concepts of component and system availability are

used to provide a mathematical statement of mission reliability, which

12





can be transformed into an equivalent statement for a single-phase

mission. The lower bounds discussed in Ziehms 11975] can be applied

directly to provide lower bounds on mission reliability. A reduction

in the number of components in the equivalent system for any phased

mission is shown to result from the use of component availabilities.

The model presented in Chapter 3 is an extension of that developed

in Chapter 2 which incorporates the concept of multiple-objective mis-

sions. General measures of system performance are discussed which per-

mit great flexibility in applications. Derivation of the distribution

of the number of successful objectives is illustrated for the case in

which all objectives are of the same type. This also provides a

straightforward method for calculating the expected number of objec-

tives successfully completed during the mission.

Chapter 4 develops the theoretical machinery needed to deal with

systems which can be maintained throughout a multi-phase mission. The

approach extends and combines results for maintained systems performing

single-phase missions contained in Esary and Proschan 11970] and results

for non-maintained systems performing multi-phase missions obtained by

Ziehms 11975] . Two lower bounds on system reliability are developed

for the case when the joint component performance process has a property

known as association in time. Finally, it is shown that the joint com-

ponent performance process which results when independent components

have exponential times to failure and exponential repair times within

each, phase of the mission has this property.

The reliability of a parallel system of independent components with

the exponential-exponential performance process discussed above is con-

sidered in Chapter 5. The distribution of component states at the

13





beginning of the period during which, the parallel system performs is

allowed to be arbitrary to permit application of the results to the

phased-mission problem. Lower bounds on the reliability of a parallel

structure are developed which, when used in conjunction with the results

of Chapter 4, provide lower bounds on the reliability of a system with

multiple mission phases.

Suggestions for possible extensions of these results and areas for

further research are discussed in Chapter 6.

14





2. THE SINGLE-OBJECTIVE , PHASED-MISSION WITH AN R PHASE

The situation considered in this chapter is that of a system which

performs a single-objective mission with an R phase and several ac-

tive phases. A mathematical model is constructed in several stages

which relates system performance to that of its components. The devel-

opment uses the standard tools of structural reliability and extends and

modifies the model of Esary and Ziehms [1975] . The various aspects of

the extended phased-mission problem are illustrated in the following

section by an example motivated by the Fleet Ballistic Missile system.

2.1 THE SLBM SYSTEM EXAMPLE

The following example introduces a hypothetical system which will

serve both as motivation and illustration of the model development

throughout this chapter and again in Chapter 3.

Example 2.1 . A hypothetical submarine-launched ballistic missile

system (SLBM) consists of the following components:

--the submarine (S) which provides propulsion, stability, power, and

household services.

—the inertial navigation subsystem (N) which provides information

on platform position and orientation.

—the communication subsystem (C) which provides the link between the

submarine and its command center.

—the fire control subsystem (FC) which provides trajectory informa-

tion to the missile guidance computer.

—the missile ejection subsystem (E) which launches the missile from

the submarine while the latter is submerged.

15





—-the missile guidance component tG) which, computes and transmits to

the rocket engines the control commands required to maintain the tra-

jectory stored within its memory and triggers stage separation.

—-two missile internal power sources (VP and VS)

.

—the first and second stage rocket engines (RF and RS)

.

—the first-stage igniters (IP and IS) .

-"-the second-stage igniter (J) .

—the missile warhead (W) .

The operational characteristics of the system can be summarized as

follows:

(a) During the operational readiness phase the submarine patrols

its assigned area, maintaining current position information with the

inertial navigation subsystem. Should the inertial component fail,

then position information can be obtained periodically from a naviga-

tion satellite, providing the data necessary for calibration after re-

pairs are completed. The communication subsystem is used continually

during the phase for routine ship-shore message traffic. The fire

control subsystem is exercised periodically during the R phase to

monitor its status. Similarly, the performance of the missile power

sources and guidance component is checked through routine tests. All

components which are monitored can be repaired or replaced if found to

be failed during the R phase. Other failures go undetected. In order

for the system to be ready to commence active operations, it must have

submarine services and current navigation information available, and it

must be able to receive the launch command via the communication

subsystem.

(b) When a launch command is received, all maintenance actions

16





cease, and launch, preparations commence. The fire control subsystem

transmits trajectory data to the missile guidance component, and the

submarine is positioned for launch.

(c) During the launch phase the submarine is held stable while

the missile is ejected, severing its link, with the platform and causing

it to switch to internal power. The power sources, although activated,

are not required to supply power during this phase.

(d} The first-stage engine ignites as the missile breaks through

the surface of the water and boosts the missile along its trajectory.

The port igniter can be powered by only the port power source and the

starboard igniter by only the starboard power source, but one igniter

is sufficient to fire the engine. The guidance component, which can

take power from either source, must function throughout the phase.

(e) The second-stage igniter, second-stage engine, guidance com-

ponent, and at least one power source must function during the flight

phase.

(f

)

Shutdown of the second-stage engine marks the beginning of the

terminal phase during which the warhead follows a ballistic trajectory

to the target.

2.2 THE EXTENDED PHASED-MISSION MODEL

The mission consists of an R phase followed by m active phases.

The R phase commences at time t=0 and continues until time t when

active operations begin. For j=l,...,m, the duration of active phase j

is assumed to be d.. Recognizing that t is unknown, let

t .
= y. . d. + 1

,

j=l»...,m. Thus t. is the time at which phase j ends and (except when

17





j = m) the next phase begins.

The system has n components (or subsystems) C, , . . . , C , which
1 n

function independently of each other. Assigned to each component C ,

k=l,...,n, is a Bernoulli performance state indicator variable X (t)

defined for all t > by

1 if C. is functioning at time t,

\ Ct) =

otherwise.

The stochastic process {x (t) , t £ 0} is called the performance process

of component C , and the multivariate stochastic process
Jv

{x (t) , t > 0} = { [X. (t) , . . . , X (t) ] , t > 0}— In
is the joint component performance process of the system.

As in Example 2.1, it will generally be the case that some portion

of the system's components can be repaired or replaced upon failure dur-

ing the O R phase; however it is assumed that no system maintenance is

performed after time t . Then the performance process of each repair-

able component C has the properties:

(2.2.1)

X (t) = <* X (s) = 0, for all s > t > t

X, (t) " 1 «• X, (s) =1, for all s > tn such that s < t.
k. k

The performance processes of the remaining components satisfy these

relations when t is replaced by 0. Thus a sample path of the perfor-

mance process for a non-repairable component is non-increasing and con-

tinuous from the right/ and that for a repairable component is also

continuous from the right and is non-increasing after time t as shown

in Figure 2.1.

18





1
x Ct) = l

X Jc

- i

;
\m - o

1 >. t

Figure 2.1. Performance process sample path.

of repairable component C .

JC

The joint component performance process is a complete mathematical

description of the performance of the system's components. It is use-

ful to summarize the characteristics of a component's performance pro-

cess in the form of probability statements. The reliability of a

component is a statement about its performance over a period of time.

Thus the reliability of component C during the period [t, t + dj is

defined as P[3C (s) = 1, t < s < t+d] . There are also instances when it

is desired to make statements about the performance of a component at

a point in time. Hence the availability of component C at time t is
JC

defined by

a
k
(t) - P[X (t) = 1]

If the performance process is non-increasing over the interval [t, t+d]

then the reliability of component C over the period is equal to its
JC

availability at time t+d by Relations 2.2.1.

The state of the system at any time is assumed to be completely

determined by the states of its components. The system structure is

the connecting link. In a phased mission this structure does not remain

fixed throughout the mission, but is allowed to change from phase to

phase. Thus, letting the R phase be phase zero, there is a binary

19





structure function
<J>

. of the binary variables x , . .., x for each
3 In

phase j, j=0,...,m, defined by

1 if the system functions , and

<J>. (x^ ... , x^) =

otherwise.

The composition 4>IX(t)] where
<J>

is defined by

*IXCt>]

<» [xCt)j , o < t < t

^IxCtJJ , t
Q

< t < t

* lx it) 2 , t . < t < tm — m-1 m

is itself a Bernoulli random variable called the system performance

indicator variable. The corresponding stochastic process {$ [X(t) ] ,t>0}

is called the system performance process. Although the sample paths of

{(J>IX(t)]/ t > 0} are not necessarily right continuous, the right con-

tinuity of the sample paths of the component performance processes leads

to right continuity of the system performance process sample paths with-

in each phase.

In order for the system to satisfactorily complete its mission, it

must function throughout each active phase. The R phase, however, is

different, for it is merely a readiness period. It is not necessary

that the system function throughout this phase. The single requirement

is that the system be available when the R phase ends. Thus the

mission reliability is given by

P - P{$ lXCt )] = 1, * 1
[XCs

1
)] - l f t

Q
< a

x
i t][l

(2.2.2)

...,
<f»

lx(s )]=i f t <s <;t}
m — m m-1 m m'
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The structure of a system is typically represented as a block

diagram of its components (or equivalently as a fault tree) . Structures

which, can be so depicted belong to a special class whose structure

functions are said to be coherent. Birnbaum-Esary-Saunders [1961] de-

fined a coherent structure function to be one for which

Ca)
<J)

(x_) ^
<J) (y_) whenever x > y , k=l,...,n,

C2.2.3) Cb) <H£) = <K0/0,...,0) = 0, and

(c) <J>(1) = t(l,'l r ...,l) = 1.

Since nearly all physical systems have a block-diagram representation,

it is assumed that the structure function for each active phase is

coherent

.

The general model makes provision for the inclusion of a structure

function for the O R phase. The system of Example 2.1 provides an il-

lustration of circumstances in which a phase structure function is

appropriate, since active operations cannot commence unless certain

components are available. The following example shows a case in which

use of the function
<f

= 1 is appropriate.

Example 2.2 . A system with a three-phase mission has two compo-

nents, C and C , both of which are dormant during the O R phase. Dur-

ing the first active phase the system functions only if both components

function, but during the second phase the functioning of either compo-

nent will allow the system to function. The structure functions for

this mission are:

for phase 0, <{> (x , x ) = 1

for phase 1, <j> (x , x ) = x x

for phase 2, <$> (x , x ) = x v x

where the symbol v is the arithmetic "or" operator defined by

21





X
1
VX

2
=

1 if -x = 1 or x = 1,

if x =0 and x =

Computationally, x v x = x + x - x x . The corresponding block

diagrams for the phases of this mission are shown in Figure 2.2. D

phase phase 1 phase 2

Figure 2.2. Block diagrams for the
mission of Example 2.2.

In general, the R phase structure function will be
<J>

= 1 unless

one or more of the components is actively required at time t , in which

case <(> will be a coherent structure function. Thus it is assumed that

4»n is at least semi-coherent (satisfies Relation 2.2.3a) in all cases.

Since the joint component performance process is non-increasing

after time t , it follows from Relation 2.2.3a that the system perfor-

mance process is also non-increasing within each phase. Thus the mis-

sion reliability as given by Equation 2.2.2 reduces to the less complex

expression

p = P{* lx(t )j = l,
1
lxCt

1
)J = l,...,*mlx(tm)] = l}

or more simply

(2.2.4) p = P{TTj=0
^[XCtJJ = 1} .. E(]Tj=0

yxtuj)
m m
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The SLBM system of Example 2.1 can now be used to illustrate the

extended phased-mission model. The verbal description of that system's

operation translates into the following mathematical structure:

for phase 0, ^(x) - x x x
xT— S C N

for phase 1, 4>

1
Cx) = x

s
x
fc

x
G

for phase 2, $2^— = X
S
X
E

for phase 3, ^(x) =
[U^^) v (x^x^)Jx^

for phase 4, <f>

4
(x) = (x

yp
V x^x^^

for phase 5, ^c^ = xw

The equivalent block-diagram representation of the system is shown in

Figure 2.3.

A mathematical statement of mission reliability for this system

results from substitution of the phase structure functions into

Equation 2.2.4. Thus, mission reliability is

p = E{rx
s
(t )x

c
(t )x

N
(t )]IVVWVVV 1

lX
S
it

2
)X
E
it

2
)][\P

{t
3
)X

II>
{t

3
) V X
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(t

3
)X
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(t

3
)]
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Evaluation of Equation 2.2.5 is not straightforward. Even though

the components perform independently, the performance indicator variables

for the same component at different times are obviously not independent.

Hence it is not clear at this stage how to proceed. In the next section

the transformation due to Esary and Ziehms 11975] will be used to con-

vert expressions such as Equation 2.2.5 into the expectation of sums and
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products of independent random variables.. The cost associated with

this procedure—that of a significant increase in the number of var-

iables—will be made readily apparent when the system of Example. 2.1

is transformed.

Phase N

Phase 1 FC

Phase 2

Phase 3

VP

VS

IP

IS

RF

Phase 4

VP

VS

RS

Phase 5 W

Figure 2.3. Phase configurations for the
system of Example 2.1.
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2.3 TRANSFORMATION OF THE MULTI-PHASE MISSION PROBLEM

In the context of the phased-miss ion problem under investigation,

the transformation suggested by Esary and Ziehms [1975] consists of the

following steps:

Ca} Replace each component C in the configuration for phase j

,

j-O/l/. . . ,m, by a series arrangement of independent pseudo components

C , . . . , C . with performance state indicator variables U ,..., U . ,

where

and , for i=l , . . . , j

,

\i - p[u
ki

1! = PIW " lIVW = 1]

(b) Connect the transformed phase configurations in series.

The result of this procedure is an eguivalent system of at most n(m+l)

pseudo components which is coherent and performs a single-phase mission.

Since P[X, (t.) = 1] = P[U. -U_ _••• U. . = 1] , X, (t . ) has the same
k j kO kl kj k 3

distribution as the product U, „U, , • • • U, .. (X, (t.) is said to be sto-
kO kl kj k 3

st
chastically equal to ( ==

) U,„U„ ••• U, ..) It follows from Theorem 3.1
kO kl kj

of Esary-Ziehms [1975] that

'VV'VV x^tj] SS tu
k0

,u
k0

u
kl \ «

kl
" ,lW

and by independence of the components of the original system that

IX(t ),X(t_ ),..., X(t )J == [U^U_U.,..., U.U ••« u ]— — 1 — m . -0 - —l —0—1 —

m

where

and
2j

= Iu
ij'

u
2j V

^-q—k lj Ik 2j 2k nj nk

25





Thus the reliability of the original system as given by Equation 2.2.4

is the same as the reliability of the equivalent system given by

m
C2.3.1) p- pnT>0 *

j
iu -- v i}

or more compactly as

C2 * 3 - 2) p = EttT^ VV" <y}

The random variables in Equations 2.3.1 and 2.3.2 are mutually

independent by construction, and hence computing the expected value is

theoretically routine. Application of this transformation is illus-

trated in Figure 2. 4 .which shows the transformed phase configurations

for the system of Example 2.1.

Figure 2.4 provides a graphic demonstration of the practical dif-

ficulty to be encountered when applying the transformation. The number

of components in the equivalent system will likely be large for any

moderately complex system. Even though computer algorithms for eval-

uation of block diagrams and fault trees are available, the computation

time and memory requirements associated with such a large number of

components would be excessive.

Rubin [1964] and Weisburg and Schmidt [1966] pointed out a tech-

nique which results in simplified configurations for the early phases

of a phased mission. Esary and Ziehms [1975] provide justification for

this procedure called cut cancellation. It is well known that every

coherent system can be represented as a series structure of subsystems,

each of which consists of the components belonging to a minimal cut set

connected in parallel. (See, for example, Barlow and Proschan [1975a].)

A cut set is a set of components which by all failing causes the system
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Phase 1
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Phase 2 -E uu
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3

Phase 4

Phase 5 w. w. w. w. w w.

Figure 2.4. Transformed phase configurations
for system of Example 2.1.
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to fail. A minimal cut set is one which, is no longer a cut set if any
of the components are removed. The cut-cancellation procedure involves

the following steps

:

(a) Find the minimal cut sets for each phase.

00 Remove from the list of minimal cut sets for any phase each
minimal out set which contains a minimal cut set for a later phase.

(c) Reconstitute the system from the remaining minimal cut sets.

The reliability of the resulting configuration is unchanged from that

of the original system. Performing cut cancellation does not, however,

reduce the number of components in the equivalent system.

Example 2^3. The minimal cut sets and indicated cancellations for

the system of Example 2.1 are:

for phase 0, ia±, {C }, {N }

for phase 1, -fe*, {FC } , ie±

for phase 2, {s}, {e}

for phase 3, *«-*£*, {VP,IS }, {vs,IP}, {ip, IS }, **, {rf}

for phase 4, {VP,VS}, {g}, {j}, { Rs }

for phase 5, {w}

Examination of Figure 2.4 suggests a procedure which does result

in a reduction in the number of components in the equivalent system.

Look, for example, at phase 5. The pseudo components W
Q

*
5
appear

nowhere else in the system configuration. Thus it is not necessary to

transform component w into W
Q Wf_ in order to gain independence

among components of the equivalent system. Leaving W untrans formed,

however, would nullify one of the other appealing features of the trans-

formation technique
.

It is completely natural to use conditional phase

reliabilities to describe component performance in each active phase
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and to keep separate the question of initial availability. A compro-

mise which, retains this aspect and yet reduces the number of components

results from lumping pseudo components W , ..., W together into a new

pseudo component W-* where

Plu
w?

= a = piu
w4

= UPIu
w3

= UPIu
w2

= U piu
w1

= i]Plu
w0

= i]

- Plx
w
(t

4
) = 1]

In general, a component is said to be relevant to system operation

during any phase only if it appears in the configuration for that phase,

If component C becomes relevant for the first time in phase j of a

mission, a general rule for component reduction is to replace pseudo

components C , ..., C . with a new pseudo component C * where-

ever they appear in the equivalent system. The new pseudo component

has reliability given by

p[V}-i 1] " Wi' k (V\i--- \,j-i

and the reliability of the reduced equivalent system is the same as

that of the original system.

The equivalent system configuration for the SLBM system of

Example 2.1 which results from the use of cut cancellation and compo-

nent reduction is shown in Figure 2.5. In this case the number of

pseudo components is reduced from 53 to 26.

In spite of efforts to reduce the number of components, many sys-

tems are so large and complex that direct calculation of mission relia-

bility is infeasible. In these cases the upper and lower bounds on

mission reliability contained in Ziehms [1975] can be applied directly

to the model presented here. Ziehms provides a detailed development
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of these bounds ana offer* some criteria for choosing the best amo„g
them

Before mission reliability or bounds thereon can he coated, the
component availabilities and ph.se reli^ilities must he calculated.
This is the subject of the next section.

2.4 AVAILABILITIES AND PHASE RELIABILITIES

NO attempt is made in this section to cataiog existing models
for component availabilities nnr a^6S

'
n°r are ^y ne" ™>dels developed, stan-

dard models are used to illustrate * t-^- -,nustrate a typical approach to the develop-
ment of component availabilities. Barlow and Proschan 11975a] and
Cox I1962J are good sources for additionai detaiis ^ ^^ ^^

There are two different situations to be explore it-u ce explored in connection
With component availabilities. First is the issue of ^^^^
of components which remain dormant during the R phase (and thus are
not maintained)

. Let the random variable T h. «,variable T
fc

be the active lifelength
of component C that is, the time from t until rhflx lum ^ until the component fails.
Then, for all t > 0,

PlT
fc

> tj = P tT
k

> t|T
k

> 0JP[T
k

> 0]

- \<t )P[T
k

> t|T
k

> 0]

^us Vt
>

is the probability that component C
k

is avaiiable when
first activated, and II - ^j is the probabmty^ ^^ ^
to operate because of a manufactory defect, mishandling, or some
other cause unrelated to service failure, since faiiures of this type
will generaliy he independent of the !ength of the R phase, the argu-
ment t

Q
can usually be dropped to yieid the constant availability a .
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The second case is that of repairable components. There are as

many models for the performance processes of repairable components as

there are different maintenance schemes; however unless it is assumed

that components have exponentially-distributed times to failure, there

are serious difficulties in accounting for the residual time to failure

for those components functioning at time t . Thus here, as in most

applications of reliability theory, constant component failure rates

are assumed. It is convenient (but not necessary) to assume that com-

ponent repair times are exponentially distributed as well. The resul-

ting performance process for each component is an alternating renewal

process, hereafter called the exponential-exponential performance pro-

cess. Specifically, it is assumed that during the R phase component

CT has a constant failure rate X, and a constant repair rate y, _. A
k kO kO

standard renewal theory argument (see Cox {1962] or Barlow and

Proschan I1975aJ) shows that if component C is functioning at time t=0,

then its availability at a later time t is given by

l
' "" (Xvn

+ yvn}t

(2.4.1) a
fc
Ct) = IX

k0+ v
k0
r (yk0

+X
kQ
e

)

and if it is down at time t=0 then

(2.4.2) cl (t) = u rx + u. ^(l - e " *° k0
)

If, as generally assumed, time t is unknown, then Equations 2.4.1

and 2.4.2 are of little use in providing the required numerical value

for a (t ) . Unless component availabilities are known from some other

source (similar systems or testing programs) there is no analytic al-

ternative to the use of bounds. The most common approach is to approx-

imate a, (t rt ) by the (long-run) availability given by
k
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(2.4.3) a = 11m a
k Ct) = M^U t v r1

This is equivalent to assuming that the performance process is in equi-

librium or steady state at time t=0, i.e. that P[X, CO) =1] = a. ; It
k k

is easy to see that the availability a as given by Equation 2.4.3 is a

lower bound on a, (t) as long as P[X„ (0) =1] ^ a, .
k k k

A better lower bound on a (t ) is available if there is an upper

limit t on the duration of the O R phase. Since a (t) as given by

Equation 2.4.1 is a decreasing function of time, a (t ) is bounded

below by

i-> a a* ri , -1 r .
~ (Vo+ yk0

)T

(2.4.4) a
k

= [X
ko+

y
kQ

] [^ X^e

provided component C is functioning at time t=0

.

Example 2.4 . Consider the navigation component of the SLBM system

of Example 2.1, and suppose it is subject to failure at rate X _ and
NO

repair. at rate u during the R phase. Assume that the submarine pa-

trols for a maximum of x days. Upon completion of its patrol/ the sub-

marine is relieved on station by another of the same type and returns

to its home base for an upkeep period, during which all repairable com-

ponents are restored to working condition. Then a conservative estimate

of the availability of the navigation component at time t is given by

Equation 2.4.4.

Other bounds of this type can be found when there is random selec-

tion of the component initial state. As long as the availability of

component C at time t=0 is at least a , a (t) is decreasing with time,
k K K

and a (t) provides a lower bound. Otherwise, the initial availability

is a lower bound on a, (t^)

.

k
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It is not unrealistic to assume that every component has a constant

failure rate within each phase. In this case the phase reliabilities,

which are the final ingredients needed to perform calculations, take on

a particularly simple form. Let the failure rate of component C in

active phase j be A , , k=l,...,n; j=l,...,m. Then the conditional
kj

phase reliability is given by

• *
kr PIVV =l|x

k
CVl)=l]=e

wi

k=lf...,n; j=l,...,m.

After the component availabilities and conditional phase relia-

bilities have been determined, the final step is calculation of mission

reliability. This chapter is concluded with a brief sketch of this

Step for the SLBM system of Example 2.1. Similar calculations are

shown in much greater detail for a less complex system in Example 3.2.

Assume that the initial availability and conditional phase relia-

bilities have been determined for each component of the SLBM system.

The statement of mission reliability can be written down in reduced

form (after cut cancellation and component reduction) directly from

Figure 2.5. Thus mission reliability is given by

p = e(u UU U U -* U U -» UP l CO NO FCO FC1 SI S2 El E2

* I (U -» U U ± U ) V (U -» U U -» U )]1V VP2 VP3 IP2 IP3 VS2 VS3 IS2 IS3
;J

x U^U^[(U^U U ) v (U -v U U J ]
RF2 RF3

lv VP2 VP3 VP4 v

VS2 VS3 VS4

(2.4.5)

G3 G4 J3 J4 RS3 RS4 W4 W5 ;

Let II . be the unconditional reliability of component C at the end of
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phase j where

"kj °\ it ) \l'" \j

Then, after expanding Equation 2.4.5 and performing idempotent cancel-

lations (u
k ^

u
ki

= u
k^)

/ the mission reliability as a function of com-

ponent availabilities and reliabilities is

P a
c
(t
O
)a
N
Ct
O
)1T
FCi

n
s2

,I

E2
!I

RF3
II

G4
n
j4

,,

RS4
n
W5 "

Kps'VssKpsW^'W + niS3V4 (1-\s4 )

" :i
IP3

n
iS3

(V4 +
^84 " V

VBi"vS^

+ WlPS + II

VS4
,,

IS3>

Extension of the model presented in this chapter to the case of a

multiple-objective mission is discussed in Chapter 3. The methods for

bounding component availabilities and calculating phase reliabilities

discussed in this section are equally relevant there.
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3. MULTIPLE OBJECTIVE MISSIONS

The performance of systems having more than one objective is

considered in this chapter. There are obviously many ways in which

a mission statement could be written to recognize multiple objectives.

Here, the investigation is limited to those cases in which the objec-

tives are all of approximately the same importance or rank. Further,

it is assumed that all objectives are of the same type—that is, are

in some sense repetitive in nature. Even with these restrictions,

there remains too much latitude in system organization and performance

characteristics to permit the development of a universally applicable

model. The mathematical model developed in the following sections,

which is motivated by the Fleet Ballistic Missile system, is one par-

ticularization. Nevertheless, the approach is sufficiently general to

allow its adaptation to other situations.

3.1 TEMPORAL STRUCTURE OF THE JMULTItOBJECTIVE MISSION

The system to be considered is assumed to have a multi-phase mis-

sion as before. The mission consists of r > 1 objectives, each, contain-

ing several tasks-'-one per phase. The performance of the tasks assoc-

iated with any one of the objectives involves the use of some components

which must also be used (either simultaneously or at another time) in

the performance of tasks associated with other objectives. It is assumed

that associated with each objective is a subset of components which are

used only in the performance of tasks related to that objective. Com-

ponents associated with more than one objective will be said to comprise

the master system and components unique to objective i, i=l,...,r, will
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make up the i— subsystem. All objectives are assumed to have the

same structure. Thus the block diagram (or structure function) for

the j— phase of objective i is the same as that for the j— phase

of any other objective (but may involve physically different components

The time sequence of phases is shown in Figure 3.1. Those phases

whose configurations involve master system components are depicted on

the horizontal time line and are called trunk phases. Those phases in

which only subsystem i components are relevant are shown on the i— ver-

tical time line and are called branch i phases. The sequence of

trunk phases consists of

—the R phase, shared in common by all objectives and involving

only master system components;

—a active phases shared in common by all objectives, involving

only master system components

;

—b phases associated with objective 1, in which master system and

subsystem 1 components are relevant;

—b phases associated with objective 2, in which master system and

subsystem 2 components are relevant;

—b phases associated with objective r, in which master system and

subsystem r components are relevant.

Each branch consists of c-b phases so that for each objective there

are a total of a+c+1 phases.

The trunk phases shared in common by all objectives are denoted

F •» j=0,l,...,a, and those phases unique to objective i, i=l,...,r,

are denoted successively by F. ., j=l,...,c.
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The time labels displayed in Figure 3.1 are based on the following

conventions

:

TIME

t ., j=0,...,a-l

t = t
Oa 10

t , . / i=l , . . . , r ; 3
=l/..« , c—J.

t, , i=l,...,r

t . ,
= t., _ , i=If... , r

lb l+l /

u
rb

EVENT

Phase F . ends and phase F . begins.

Phase F^ ends and phase F_. begins.
0a ^11

Phase F. . ends and phase F. ,, begins.
13 i#D+l

Phase F. ends.
ic

Phase F., ends and phase F. ,, , begins,
lb 1+1,1

Phase F . ends.
rb

For objective i to be successfully completed, the system must be

available at the end of phase F CO R phase) , and it must function

satisfactorily throughout phases F , ..., F , and phases F ,..., F. .

System performance in other phases is irrelevant to this objective.

Aside from the changes in phase arrangement, this is precisely the prob-

lem considered in Chapter 2, and the methods presented there could be

used to calculate the probability of successfully completing objective i,

i=l,...,r. Because of the obvious dependencies among the objectives,

some additional mathematical structure is required to support joint

probability statements about two or more of the objectives. This struc-

ture is developed in the following section.
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3.2 MATHEMATICAL MODEL OF THE MULTI-OBJECTIVE MISSION

The master system is assumed to have n components , C , . • . • C / and
1 n

subsystem i to have m components, D, ,..., D , i=l,..., r. The mas-
1 m

ter system performance state indicator vector at time t is

X(t) = [X. (t),..., X (t)]
"— ± n

and, for i=l,...,r, the performance state indicator vector for subsys-

tem i at time t is

Y U) (t) = [Y.
(l)

(t),..., Y
(l)

(t)].— l m

A vector of objective indicator variables J_ = [J , . . . , J ] is defined by

1 if objective i is successful,
J.

otherv/ise.

The R phase is assumed to have a semi-coherent structure function

^ , phase F . , j=l,...,a, to have a coherent structure function ty . , and

phase F.. f i=l,...,r; j=l,...,c, to have a coherent structure function

4» . . For notational convenience , let X, (t . . ) = X, . . , Y. (t . . ) = Y, . .

,

j k xj ki3 k 13 kij

X(t. .) X. ., and Y (t. .) = Y. .. Then the probability of successfully- 13 -ID - ID -ij

completing objective i, i=l,...,r, is given by

a b c

(3.2.1) p. = POT- «*.<£».) T- ,*.(X.., Y..) T , A1 *.(Y. .) = l}.
x Ul ]=0 ] —O3 3=1 D -3-D "ID '

' j=b+l 3 -13 '

Thus, for i=l,... f r,

a b c

(3.2.2) J. SS'T. J>.(X^.) "T. .*.(X.. f Y..) ' T. A1 *.(Y. .) .

x M 3=Or
3 -O3 M

D=1 D -T-D -3-D
M D=b+l D -3-D
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In Chapter 2, the system was required to function satisfactorily

in all active phases in order for the mission to be successful. Thus,

after each phase structure had been transformed, the resulting struc-

tures were connected in series to form the equivalent system. It seems

natural, then, to consider a generalization of this procedure which per-

mits the transformed phase structures to be connected in other config-

urations. Such an arrangement is appropriate in the case of the multi-

objective mission.

Clearly, the transformed structures for the phases associated with

any single objective should still be connected in series; however only

when mission success is defined as successful completion of all objec-

tives should the phase structures associated with one objective be con-

nected in series with those for all other objectives. A link between

mission success and success in each of the objectives is required so

that the method of connecting transformed phase structures can be pre-

scribed. Accordingly, it is assumed that mission success is completely

determined by the outcomes on the r objectives and that there is a bi-

nary function r\ of the binary random variables J , . . . , J defined by

1 if the mission is successful,
n.[J , ...,J ]

=

otherwise.

It is further assumed that this mission success structure function is

coherent. Then mission success can be represented pictorially as a

block diagram in which the "components" are objectives. This is a mild

assumption since most measures of mission success will be increasing

functions whose ranges can be partitioned into regions defining success

and failure which can then be re-scaled to satisfy the requirements for

coherence. The following example illustrates this concept.
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Example 3.1 . A multi-component system performs a mission which

has five objectives. The mission is considered a success if objectives

1 and 2 and at least one of the remaining objectives are accomplished.

Then the mission success block diagram is

D

In those instances when a mission success structure is not or can

not be specified/ artificial mission success structures can be used to

obtain other quantities of interest. In such cases it may be particu-

larly useful to obtain the probability distribution which governs objec-

tive accomplishment. When, as assumed in this chapter, objectives are

of the same type and carry the same rank, it is sufficient to determine

the distribution of the number of objectives accomplished during the mis-

sion. If N is a random variable representing the number of objectives

accomplished and fl is the k out of r structure function, k=l,...,r, then

P[N £ k] = P[n
k

(J) - 1] - Elnk
(J)3 / k=l,...,r,

Thus the probability distribution of N is given by

P[N = 0] = 1 - Etn-^J)],

(3.2.3) PIN - k] =Eln
k
(£)3 -E[n (J)], k=l,...,r-l,

. P[N - r] - E[n
r
(J)l.

It may frequently be useful to summarize system performance by

specifying the expected number of successes among the r objectives.
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This expected value can be found using the k out of r structure functions

or directly from the objective success probabilities, since

r r r

(3.2.4) EIN] = lx
PfN > k] = ^ElTlj^J)] = ^[J^ .

Once the mission success structure function to be used is speci-

fied, the mathematical description of the mission is complete. If the

structure function is based on actual mission requirements ( rather than

being a device to obtain other quantities) then the probability of mis-

sion success is given by

(3.2.5) p = P[rj(J
1
r...» J

r
) = U.

Substituting for J , ..., J from Expression 3.2.2 yields the probability

of mission success in terms of the component performance indicator var-

iables. Of course the same procedure is appropriate even when the struc-

ture function n is just an intermediate device, but the resulting ex-

pression is not the probability of mission success.

As was the case in Chapter 2, the expression for the mission suc-

cess probability is the expected value of a combination of component

performance indicator variables which are not mutually independent, since

a component's state at one time point is correlated with its state at

another. The next section provides the details of the transformation

which yields the probability of mission success as the expected value

of a function of mutually independent random variables.
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3.3 TRANSFORMATION OF THE MULTI-OBJECTIVE MISSION

The procedure for transforming the system with a multi-objective

mission into one with an equivalent single-objective/ single-phase mis-

sion is essentially the same as that presented in Chapter 2. Some of

the details are changed because of the modified layout of the mission;

however the basic concept remains that of breaking each component of

the system into a series of pseudo components. The transformation pro-

cedure consists of the following steps:

(a) Replace master system component C , k=l,...,n, in phase F.

.

by a series system of pseudo components C , . .., cv .-» 1=0, j=0,...,a;

i=l#...,r/ j=l,...,c, which perform independently.

(b) Replace component D of the i— subsystem in every phase F .

.

in which it appears by a series configuration of independent pseudo

components D
n / . .., D

v
- • 1 i=l,...,r, j=l,...,c, k=l,...,m.

(c) Connect the transformed phase structures for all phases assoc-

iated with objective i in series to form the equivalent system for

objective i.

(d) Connect the equivalent systems for all objectives in the manner

prescribed by the mission success structure function.

To see that this transformation procedure yields an equivalent sys-

tem having a single-objective, single-phase mission and the same mission

success probability as the original system, performance state indicator

variables for the pseudo components must be introduced. For k=l,...,n,

let U. __,..., U, . . be independent performance state indicator variables
kOO kij

for pseudo components C
vftft

»«*«» C . . with

Plu
k00

= 1] - Ptx
k00

= 1]
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and, for i=0, j=l,...,a and i=l,...,r, j«l,...,b,

For k=l, . . . /in and i=l,...,r, let V , . .., V . be independent per-

formance state indicator variables for pseudo components D . , ...»

D
t . . with

P[V
k

. = 1] = P[Y
k

. = 1] and

P[V
k

.. = 1] = P[Y
kij

= llY^.^ = 1], j-1 c.

It is immediate that X. . .
== U, ^... U, . . and that
st

xT

'kOO"* ~kij
st

Y, . .
== V, , n . . . V, . . . Further, from Theorem 3.1 of Esary-Ziehms [1975],

k±j kxO kxj J

it follows that for k=l,...,n,

st
IX
kOO

/X
kOl"** fX

krb ]
== [U

k00
,U
k00

U
k0l'--"

U
k00

U
k01*" "krb1

and, for i=l,...,r and k=l,...,m, that

IYkio'\ii'"-'
y
kio

] ~ tVki0'\i0\il v
kio

Vkii- W'
Then, since the original components perform independently,

st
-00 -01 -rb -00 ' -00-01 -00-01 -rb

C3.3.11

IY_, Y. .,..., Y. ] i= IV. , V. V ..., V. nV. •• V. ],
—xO -il -tlc —xO -xO-^lI -xO—il —xc

i-l,«..,r, where

Xlj- 1V
ltj'

V
2ij W

' HiAd * IU
lij

U
lkZ'

U
2ij

U
2ki "nijW
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vv =[V V , V V . .V V 1

^i;rdUl
l
lij lifc'

V
2ij

V2i£'"" mij mU J *

Further, any vector created by combining the left-hand sides of Equa-

tions 3.3.1 is stochastically equal to the same arrangement of the right-

hand sides. Substituting into Equation 3.2.2 yields the result:

J
i
i% TTj=0^ j

(Li00
---y

oj )]Tj=1* j
(u
00-^j^ ...v

dj
) x

(3.3.2) c

TTjHb*i*j«M—V' i=1 r *

For i=l,...,r, let $ . . - <fr.(Uf _... LLi -; ' ¥•_... V,..), j=l,...,b, and
ij j —00 —ij —xO —I}

*ij
=

*j (^io-'- V' j=b+1 c
' "* let % =

*j<2oo"" V'
j=0,...,a. Then Equation 3.3.2 can be written more compactly as

a c

r * ttj=0 0d ' ' j=l 'ij<3 - 3 - 3 ' j
i

IS ' rj=0
f
oi '

i"i=i v
Finally, the reliability of the equivalent system for its single-

objective, single-phase mission as given by

Pi C cL C

(3.3.4) P = p{nuT.,. *
oj TTj=1*1:j

TT^oj TTj=1
*
rj ) - 1}

is equal to the probability of success in the original mission given

by Equation 3.2.5.

The major benefit of the transformation which results in the equiv-

alent system whose reliability is given by Equation 3.3.4 is the elim-

ination of dependencies among the performance state indicator variables.

Thus the probability of mission success can be obtained as the expected

value of sums, products, and differences of independent random variables-

a task which is conceptually straightforward. The procedure suffers

from the same drawback as the transformation of Chapter 2, however,
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since the number of pseudo components in the equivalent system is

likely to be quite large. Some techniques for reducing the complex-

ity of the equivalent system are discussed along with approximation

methods in the next section.

3.4 SIMPLIFICATIONS AND APPROXIMATIONS

The cut cancellation procedure (appropriately modified) and the

component reduction technique, which were discussed in Chapter 2,

can also be applied to the multi-objective mission problem. The change

in the cut cancellation method amounts to limiting the cancellations to

only those minimal cut sets which contain a minimal cut set for a

later phase associated with the same objective. Thus the step-by-step

procedure for the multi-objective mission problem as formulated in this

chapter is:

(a) Find the minimal cut sets for each phase associated with objec-

tive 1. (The minimal cut sets for the phases of any other objective i

are the same with component D replaced by D .

)

(b) Remove from the list of minimal cut sets for phase F
.

,

j=0,...,a, each minimal cut set which contains a minimal cut set for

phase F , £=j+l,...,a or phase F_ , k=l,...,c.

(c) Remove from the list of minimal cut sets for phase F .

,

j=l,...,c-l, each minimal cut set which contains a minimal cut set for

phase F , k=j+l,...,c, and remove the corresponding minimal cut sets

from the list for phase F , 1=2,..., x.

(d) Reconstitute the system from the remaining minimal cut sets.

It follows from the proof of Remark 4.2 of Esary-Ziehms [1975] that

this cut cancellation procedure does not affect the probability of
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mission success.

Some component reductions have been incorporated into the trans-

formation of Section 3.3. A potentially large number of pseudo compon-

ents has been eliminated by automatically leaving component C ,

k=l,...,m; i=l,...,r, untransformed over the period from time t=0 until

time t. , during which the component is irrelevant to system operation.

Additional reductions will be possible in most applications. Thus if

master system component C first becomes relevant to system operation
Jib

in phase F. . then the series arrangement of pseudo components C , ...,

C . . can be replaced wherever it appears in the equivalent system

by a single pseudo component C "t with performance state indicator

variable U_ . -t , , where
ki,D-l

PIU, . "t , = 1] = P[X, . , = 1] - P[U, nn ... U, . , = 1] .

kio-1 kio-1 kOO ki,:-l

If subsystem i component D first becomes relevant in phase F. . then

the series configuration of pseudo components D .,..., D . . can be

replaced wherever it appears in the equivalent system by the pseudo

component D -> with performance state indicator variable V ->

ki/3 —1 Ki/D -
-'-

where

PIV, . -t . =1] = P[Y. . . . =1] = P[V. ..... V, . . - 1] .

ki,;j-l ki/3-1 kiO ki,;j-l

Although component reduction is a worthwhile technique, it cannot

always be expected to reduce the number of pseudo components in the

equivalent system to a manageable level. The last analytical resort

when the number of pseudo components is too large to permit direct

calculations is to approximate or bound the mission success probability,
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The series organization of transformed phase structures ,which

was appropriate in Chapter 2 and in the work of Ziehms 11975] , led to

convenient upper and lower bounds on mission reliability. Unfortunately

the general nature of the mission success structure n rules out bounds

based on either phase reliabilities or objective success probabilities.

It is tempting to try to bound the mission success probability from

below by

P - ElnCJ.r-.-fJ )] > n (EJ. , . . . ,EJ )

because this inequality holds when r\ is a series structure function.

This is not true, however, since it is well known that the direction of

the inequality is reversed when n is a parallel structure function.

When T) is other than a series or parallel structure function, such an

inequality does not usually exist.

Although less convenient, it is still possible to place upper and

lower bounds on the mission success probability by finding the minimal

cut sets and minimal path sets of the equivalent system as a whole.

(A minimal path set is a minimal set of components which by all func-

tioning cause the system to function.) Then the minimal cut lower and

minimal path upper bounds due to Esary and Proschan [1963] can be used

to bound the reliability of the equivalent system. (See Barlow and

Proschan [1975a] for a development of these bounds.)

It should be noted that in order to use Equations 3.2.3 to obtain

the distribution of the number of objectives accomplished, Equation 3.3.4

must be computed exactly for each structure function n, #•••»!! • Any

ordering established by the bounds discussed above would be destroyed

by the subtraction required in Equations 3.2.3. Such is not the case,
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however, when using Equation 3.2.4 to find the expected number of objec-

tives accomplished. In this case the orderings are maintained so that

lower bounds onEln, (J)] or E [J, J , k=l,...,r, yield, a lower bound on
k — k

E IN] and upper bounds on E In, (J) ] or E [J ] , k=l,...,r, yield an upper

bound on E [N]

.

3.5 EXAMPLE

It was stated at the beginning of this chapter that the multi-

objective mission problem formulation was motivated by the Navy's Fleet

Ballistic Missile system. The SLBM system of Example 2.1, which can be

viewed as a hypothetical version of the FBM system, can be extended to

provide an illustration of the basic notions of this chapter. Let the

submarine of the SLBM system now carry r missiles. Then the system can

be viewed as having r objectives—each of which is the destruction of a

designated target. The master system would consist of those components

which remain aboard the submarine, and the components of each missile

would make up one subsystem. Those phases of the mission which take

place aboard the submarine would be trunk phases, and branch i phases

would commence when the i— missile is launched.

This extended version of the SLBM system, while ideally suited for

illustrating the basic elements of the multi-objective mission problem,

is somewhat more complex than necessary for the purpose of demonstrating

the mechanics of the transformation, cut-cancellation, and component-

reduction procedures. The following example introduces a very simple

system and then tracks it through the formulation and computation steps

discussed in the earlier sections of this chapter.
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Example 3.2 . A system with a three-objective mission has eight

components. Components C and C make up the master system, and com-

ponents D and D make up subsystem i, i=l,2,3. Each objective

entails the successful completion of an R phase and five active

phases as shown in the following diagram.

F
14

P
24

F
34

• F
13

F
23

F
33

• F
00

F
oi

F
ll

F
12

F
21

F
22

F
31

F
32

COMMON
FIRST

objective"
_ SECOND
objective"

THIRD
OBJECTIVE

Thus, for this example, n=2, m=2, a=l, b=2, and c=4. The block dia-

grams for the trunk phases are

111

00 01
P
±1

, i=l,2,3

+1
11 -

c
l

L- c
2

-j
:

L
2
-?

F
i2'

i=s1 ' 2 ' 3

and those for the branch phases are

F
±3

, 1=1,2,3

— -1*

<
l) *?

"f
F.., i=l,2,3
14
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After cut cancellation/ the phases of objective i become

— C.

F
00 01 il

(i) D^h-

±2 13 14

After transformation and incorporation of component reduction, the

equivalent structures for the objectives are:

for objective 1,

~ C100~ C
2lt " C212~ °113 " D114~ D

2lt "W
for objective 2,

— C — C •* ~- C — C — C — D -> — D — n -»- — D
100 211 212 221 222 123 124 223 224

for objective 3,

C
100

C
211

C
212

C
221

C
222

C
231 °232 °133 D._ .— D + — D -

134 233 234

Thus,

(3.5.1)

stj==U u -> u V •* V V -> V
1 100 211 212 113 114 213 214

stj==n U->-U U U V -> V V->V
2 100 211 212 221 222 123 124 223 224

j~u u-^-u U U U U V -W V -w
3 100 211 212 221 222 231 232 133 134 233 234

Instead of specifying a particular mission success structure for this

example/ the distribution and expected value of the number of objectives

accomplished, N, will be obtained. The structures needed to obtain the

distribution are r\ , the 1 out of 3 structure; r\ , the 2 out of 3 struc-

ture; and x\ , the 3 out of 3 structure, whose block diagrams are
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J
3

fLTUa

j — j — j12 3

Computational ly

,

\W = J
!

v J
2

v J
3

(3.5.2) n
2
(£)

n
3 (£)

1 2 3 12 13 23 123

(J
1
J
2

) V (J
1
J
3

) V (J
2
J
3

}

JJ +JJ +JJ -2JJJ12 13 2 3 12 3

J
1
J
2
J
3

Then, from Equations 3.2.3, the distribution of N is given by

(3.5.3)

P[N=0]

P[N=1]

P[N=2]

P[N=3]

1 - E[ J;L + J
2

+ J
3

- J
X
J
2

- JlJ3 - J
2
J
3

+ J^]

B[J + J
2

+ J
3

- 2J
X
J
2

- 2JlJ3
- 2J

2
J
3

+ 3JlJ2
J
3

]

= E[JlJ2 + J^ + J
2
J
3

- 3JlJ2J3
]

= EtJ
l
J
2
J
3

]

Expressions for the product terms in Equations 3.5.2 and 3.5.3 can be

obtained by multiplying the right-hand sides of Equations 3.5.1 and

using idempotent cancellation. Thus,

V2 " IU
100

U
211

U
212

U
221

U
222'

*

[v -* V V-vV v -* v v -> v ]1
113 114 213 214 123 124 223 224

J
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J
1
J
3 ~ IU

100
U
2lt

U
212

U
221

U
222

U
231

U
232 ] "

IV -* v v -* v V -*• V V -+ V ]1
113 114 213 214 133 134 233 234 J

(3.5.4) J
2
J
3
tt tO100

O
2iJ

U
212

«
221

U
222

"
231

U
232 1

X

[V -* V v->v V -*• V V ->• V ]1 123 124 223 224 133 134 233 234 J

st
J J J w [I] u -> u U U U U V -»- V x
12 3

l 100 211 212 221 222 231 232 113 114 J

IV -> V v -*- v v -> v V -*• V V -> V 11 213 214 123 124 223 224 133 134 233 234
J

Let the availability of component C at time t be ctvon / its con-

ditional reliability for phase F.., i=0, j=l,...,a; i=l,...,r, j=l,...,b,

be it . . , and its unconditional reliability through the end of the same

phase be II, . . , where
kxD

n
kij ° "W" = p[\ir1|x

ki.j-i
=1] •" Pt)w1]

(3.5.5)
= 7T .IT . •••IT a

kij ki,j-l kOl kOO

Similarly, let the availability of component D ., i=l,...,r, at time t

be 6, .„, its conditional reliability for phase F. ., j=l,...,c, be to. . .,
kxO ij ^13

and its unconditional reliability through the end of that phase be ft .

.

,

where

(3.5.6)

\i3
= p[Y

kir11 = PtY
kij

=1
i
Y
ki, J-i-

11 - p[Y
kio=

i]

= to . .tji . •••to 8
kij ki,j-l kil PkiO

Then taking expected values in Equations 3.5.1 and 3.5.4 yields

E(J1» = a
l00

n
212

n
il4

n
214

E(J
2' = °100n222

n
il4

n2lA24 n
224





E (J
3>

=
°100n232

n
i34

n
234

(3.5.7) BfrjJ,) - °
10

n
222

n
il4

n
214

ni24S2 4

E(jj)=a it si n n n1
1 3' 100 232 114 214 134 234

EV
2
J
3>

= a
i00

n
232

n
i24

n
224

n
i34

fl

234

E(J
1
J
2
J
3'

=a
l00

n
232

n
il4

n
214

J!

124
!J
224

n
i34

n
234

If the component availabilities and conditional phase reliabilities

are as given in Figure 3.2, then the unconditional reliabilities shown

in Figure 3.3 can be calculated using Equations 3.5.5 and 3.5.6. Then,

from Equations 3.5.7, E (J ) = .403, E (J ) = .344, E (J ) = .295,

Er(J
l
J
2

)
=

* 184
'
E(J

1
J
3

)
=

• 157, E(J
2
J
3

}
=

' 157
'
andE (J

1
J
2
J
3

)
=

- 084 *

Substitution into Equations 3.5.3 yields the distribution

P[N = 0] = .372

PIN = 1] = .298

P[N - 2] ~ .246

P[N = 3] = .084

Finally, from Equation 3.2.4, the expected number of objectives accom-

plished during the mission is E [N] = 1.042. D
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4. PHASED MISSIONS FOR MAINTAINED SYSTEMS

In the preceding chapters it has been assumed that all system

maintenance actions ceased at the end of the operational readiness

phase and that components were not repairable during any of the active

phases. If, in a particular application, some system maintenance is

performed during active phases, then use of the models presented in

Chapters 2 and 3 leads to results which, though conservative, are ade-

quate for most purposes. Nevertheless, it is conceivable that some

circumstances may justify an attempt to account for maintenance efforts

in a model of system performance. Esary and Proschan [1970] , hereafter

referred to as E-P [1970] , showed that the minimal cut lower bound on

(single phase) mission reliability, derived originally for coherent,

non-maintained systems of independent components in Esary-Proschan [1963]

,

also holds under some maintenance policies. The results in E-P [1970]

are extended to the phased mission problem in this chapter.

4 . 1 BACKGROUND

The development in this chapter and the one which follows uses

several concepts and results from the literature which were not required

in previous chapters. This section provides a brief review and summary

of these results.

Basic to the investigation of the reliability of maintained systems

for multi-phase missions is the concept of association introduced by

Esary-Proschan-Walkup [1967] , who present proofs of properties P - P
g

below. Random variables T, , . . . ,T are associated if Cov[f (T) ,g (T) ] >In — —

for every pair of increasing (non-decreasing) functions f ,g for which
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the covariance exists. Associated random variables have the following

basic properties:

(P ) Any subset of a set of associated random variables is itself

a set of associated random variables.

(P ) If two sets of associated random variables are independent of

one another, then the union of the two sets is a set of associated ran-

dom variables.

(P ) Any set containing a single random variable is a set of asso-

ciated random variables.

(P ) Increasing functions of associated random variables are asso-

ciated.

(Pc ) The limit in distribution of a sequence of sets of associated
b

random variables is a set of associated random variables.

(P.) If X,,..., X are associated binary random variables, thenbin
n n

pfiTi=i \ = 1 1 * TTi=1 p[x. = i].

Association is a very general kind of positive dependence which includes

the boundary cases of independence (by properties P and P ) and that

of positive total dependence (by properties P and P ) . (A set of ran-

dom variables is positively totally dependent if each element is an

increasing function of the same random variable. [E-P 1970])

The concept of association can also be applied to stochastic pro-

cesses, and E-P [1970] say that the joint performance process

(x_(t) , t e t} of a set of components is associated in time if for each

set of times {t, ,..., t, } c t the binary random variablesIk
X, (t ) , . . . , X- It, } , • . . , X (t),.*., X (t, }11 Ik nl nk

are associated.
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Several of the results contained in the remarks and examples of

E-P 11970] will be needed in the course of investigating the multi-

phase-mission reliability of maintained systems. These results are

summarized below for easy reference.

(R ) The performance process of a component with a life is associated

in time.

(R ) The joint performance process of a set of components with lives

is associated in time if and only if the lifetimes of the devices are

associated.

(R ) The joint performance process formed from independent perform-

ance processes which are associated in time is itself associated in

time.

(R ) The joint performance process of a set of coherent systems is

associated in time if the joint performance process of all their compo-

nents is associated in time.

In an unpublished- paper , Esary and Proschan [1968] defined a sto-

chastic process (x(t), t z t} to be stochastically increasing in time

if, for all {t < ••• < t } c T ,

P[X(t ) > x |X(t ) = x ] is increasing in x. ,

P[X(t ) > x |x(t ) = x , X(t ) = x ] is increasing in x , x ,

P(X(t ) > x |X(t )=x , . . . ,X(t
1
)

s=xt ,1 is increasing in x ,.../ x. , .

They showed the following results:

(R ) A stochastic process which is stochastically increasing in

time is associated in time.
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(R ) Let (X(t), t e t} be a Markov performance process. If for all
o

t < t e T, P[X(t )=l|x(t )=1] £ P[X(t
2
)=l|x(t )=0] , then the process

is stochastically increasing in time.

A proof of R may be found in Barlow and Proschan [1975a] (Theorem 4.7,

page 146) . The result R. is just a special case of the definition of
o

a process which is stochastically increasing in time.

Armed with this background, it is now possible to proceed with the

development of a model for the performance of a maintained system dur-

ing a phased mission.

4.2 PHASED MISSIONS WITH TIME-ASSOCIATED JOINT COMPONENT PERFORMANCE
PROCESSES

The phased mission problem to be considered in this chapter is

similar- to that of Chapter 2 in structure. A system of n components,

C, ,..., C , performs a single-objective mission which consists of m
I n

phases. For simplicity, the mission phases are all assumed to be

active—that is, there is no R phase structure function for the mis-

sion. It is assumed that there is a coherent structure function <f> .

D

relating system performance to component performance during phase j

,

which begins at time t. and ends at time t., j=l,...,m. The mission

reliability of the system is given by

(4.2.1) p = P{<HX(s)] s lr < S S tj ,— m

where

:

lf - t
Q

< . * t±t

(4.2.2) * - *2 » *1
< S * V

<fr , t , < S «s tTm m-1 m
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In previous chapters, the absence of maintenance during the active

phases of the mission led to non-increasing sample paths for the compon-

ent performance processes, and this in turn resulted in statements,

such as 'Equation 2.3.2, relating mission success to the state of the

system at the end of each phase. With the incorporation of maintenance

into the model of system performance, the component performance pro-

cesses are no longer non-increasing, and mission success is a function

of the state of the system at every time point during the mission, as

indicated in Equation 4.2.1.

Attention is restricted in this and subsequent chapters to main-

tenance policies which result in time-associated joint component

performance processes. The following lemma states that such joint com-

ponent performance processes lead to time-associated system performance

processes.

Lemma 4.1 . If the joint component performance process

(X(s), < s < t } is associated in time, then the system performance— m

process (<HX(s)], < s ^ t }, with <j> defined by Equation 4.2.2, is— m

associated in time.

Proof. Since the process (x(s) , < s < t } is associated in— m

time and the structure functions <{>,,'..., <t> are coherent, the stochastic
1 m

process

U,[X(s)3, 4>_[X(s)],..., 6 [X(s)], < s < t }I — 2 — m — m

is associated in time by R . Thus for every set of times {s ,..., s }
ft J. fv

such that < s. <, t , j=l,...,k, the random variables in the array
3 m

<KIX(s )], ..., A [X(s.)]
1 — 1 m — 1

1 — k m — k
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cure associated, and by P. so are the random variables in the set

UlxCSjH, ..., MxCs^)]}

Thus the stochastic process (<}>lX(s), < s ^ t } is associated in time.— m

Theorem 4.2, below, contains one of the main results of this chap-

ter. It states that the procedure of calculating the reliability of

the system for each phase separately and then multiplying the results

together gives a conservative bound on mission reliability when the

joint component performance process is associated in time. It is a

generalization of the lower bound given in Theorem 5.1 of Ziehms [1974]

for non-maintained systems of independent components.

Theorem 4.2 . If the joint component performance process

(x(s), < s < t } is associated in time, then the mission reliability— m

as given by Equation 4.2.1 is bounded below by the product of the phase

reliabilities, i.e.,

m
(4.2.3) p > TT P{<f>.[X(s.)] = 1, s. e (t. , t.]} .

Proof. Let S ,-««,S be countable subsets of (0,t, ],..., (t ,,t ]
1 m-1 m

which are dense in their respective intervals. Since the sample functions

of the stochastic process {<J> . [X_(s . ) ] , s. e (t . ,t.]} are continuous

from the right, it follows that, for j=l,...,m,

P(4».[x(s.)] = l,s e (t yt.]} = P{*.[X(s.)] = l,s e s
D

}

and

p = P{i[X(sJ] = l,s. e S ,..., 4> [X(s )] = l,s e S } .

1 — l l m — m m

Let S^ = {s. ,..., s. }, k=l,2,... ; j=l,...,m, be subsets of S ,..., S

such that S? c s, , and S? U S„ U ••• S . Ey monotone convergence,
k k+1 12
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PU.[X(s.)] = l,s e S^} + P(*.IX(s.)] = l,s. c Sj },

j=l# • . • / m, and

P{*,lxcSl )J = l, s. e s*,..., *rx(sJ] = l, sm c s™} +
1 — 1 Ik m — m m k

P{*,lX(s.)] - 1, S_ E S ,..., if> [X(sJ] = 1, s E S
m

}1—1 1 m — m m

It will be convenient to write

P{f,IX(S.)] = 1/ S, E S} t ..., <f>
[X(S )] = 1, S 6 S™}

1 — 1 Ik. m — m m k

as

k k

p{TT£=1 1ac11)]
- 1 TT1=1 *m tx<s

ro
,)i = i}

or more compactly as

m k

Since the joint component performance process is associated in time,

the system performance process is also associated in time by Lemma 4.1.

Thus {<p . [X (s . ) ] , 1=1, ... ,k; j=l,...,m} is a set of associated random

variables, and by P. the random variables T„ , <t> . [X(s . „) ] , j=l
4 " 1=1 j — 3 ic

are also associated. Then from P^ it follows that
6

=1, . . . ,m,

m k m

p{TTj=1 TT£=1 ,!£(•,»)] - i} >- TTj=1 p(TT,=1 J
n<.Jt>i

i}

m
= TTjssl pt^rxts.)] = i, Sj B s^} .

Since this holds for all values of k, it also holds in the limit as

k approaches infinity.
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Thus,

pf^ttts.)] = 1, s. c S
1
,..., 4 [X(s )] = 1, sm e S

m
} Z

TTj=1 '{
j
CX(«

j
)] = 1, Sj e S

j
}.

It follows directly that

m
p * "nrj=1

pf^txcs.)] = i, Sj e ctj-lf t.i}. d

The following result is a restatement of Theorem 5.2 of E-P [1970]

.

It relates the reliability of a coherent system with a time-associated

joint component performance process to the reliabilities of its minimal

cut structures.

Theorem 4.3 . If the joint performance process of the components

of a coherent system with structure function <j> and minimal cut (parallel)

structure functions <_,..., k is associated in time, then
1 c

c

(4.2.4) P.{*[X(t)] = 1, t e t} > Jf P{<
i
[X(t)] = 1, t e t}

Theorem 4.3 can be used in conjunction with Theorem 4.2 to yield

a lower bound on multi-phase-mission reliability which is based on the

reliability of the phase minimal cut structures, as stated in the fol-

lowing theorem.

Theorem 4.4 . If in a multi-phase mission the joint component per-

formance process (x(s), < s 5 t } is associated in time and <.,,...,— m jl

K. are the minimal cut (parallel) structure functions for phase j,
^C

j

3=1,...,m, then the mission reliability given by Equation 4.2.1 is

bounded below by the product of the phase minimal cut reliabilities, i.e.,

m c

.

(4.2.5) p > TT^TT^! Pfcji&tej)] - If s
j

G (tj.!- tjll-
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Proof. From Equation 4.2.3/

m
p * TTj=1 pf^rxcs.)) - i, Sj c (t.^, t.i}

It follows from Equation 4.2.4 that, for j=l,...,m,

c.

W^TXCsJ^l, s. e ft.^t.]} :> TT"^! PfK^tXCsJHl, s.eft^t.l}.

Thus,

p * TTj=1 TTji pf^i^sjj = i, Sj £ (t.^, t.i} n

Theorems 4.2 and 4.4 are significant results in that they permit

the use of a "divide and conquer" approach in the analysis of multi-

phase missions for maintained systems. There is little hope of obtain-

ing the exact mission reliability analytically in other than the most

trivial applications. Depending on the size and complexity of the

problem, simulation offers a possible alternative means of estimating

the mission reliability directly.

Theorem 4.2 allows the original problem to be broken down into m

separate problems—-calculation of the system reliability within each of

the phases; however this gain in simplicity is obtained at the expense

of an exact solution. Unfortunately, the remaining problems are, in

general, still too complex to be solved analytically. Here again, com-

puter simulation methods are an alternative.

Theorem 4.4 allows an even finer breakdown of the original problem.

It provides for bounding mission reliability by the product of the reli-

abilities of parallel structures which typically will be small to mod-

erate in size. The problem of calculating the reliability of a parallel

structure of maintained components, though still complex, is much more
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amenable to analytic methods. Bounds on the reliability of such paral-

lel structures are developed in Chapter 5.

The circumstances which lead to time-associated performance pro-

cesses have yet to be discussed. A system of independent components

which are not maintained has a time-associated joint components per-

formance process by R and R . The time association of Markov component

performance processes is explored in the next section.

4.3 TIME ASSOCIATION OF MARKOV PERFORMANCE PROCESSES

The conditions leading to time-associated Markov performance pro-

cesses in a single-phase mission context were discussed in E-P [1970]

.

It remains to be verified that time association is not destroyed at

phase boundaries.

The following lemma, which is needed in the proof of the main

theorem of this section, uses the notion of stochastically increasing

random variables. Esary and Proschan [1968] defined the random vari-

able T to be stochastically increasing (+st) in the random variable S

if P[T > t|S = s] is non-decreasing in s for each fixed t.

Lemma 4.

5

. If the sequence of binary random variables X , . . . , X

is Markov and if X. +st in X. , j=2,...,n, then X. +st in X , k < j,
D D~l D k

j—'/> t . . • ,n.

Proof. The lemma is vacuously true if n=l or n=2. Consider the

case when n=3. By assumption, P[X =1|X =x ] is increasing in x and

PlX =1|X =x ] is increasing in x . It must be shown that P[X =1 j X =x, ]

is increasing in x . By the law of total probability,

Plx
3
«i|x »i] = p[x

3
=i|x

2
=i]p[x

2
=i 1x^=1] + PtXj-lJx^OlPCXj-OlXj-l].

Similarly,

PlXg-ilXj-o] = PEXj-llXj-UPrXj-llXj-o] + PiXyO-lx^oiPix^olx^o].
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Thus,

PfX^llx^l] - p[x
3
=i 1x^=0]

= p[x
3
=i|x

2
=i]{p[x

2
=i|x

1
=i] -p[x-i|x-oi)

+ p[x
3
=i|x

2
=o]{p[x

2
=o|x

1
=i] - Ptx^olx^o]}

£ p[x
3
=i|x

2
=o]{p[x

2
=iix

1
=i] + p[x

2
=o|x

1
=i]

- Pix^ilx^o] - Ptx^olx^o]}

•

Now assume the lemma is true for n=m. Then X tst in X, . By hypothe-
m 1

sis, X ,, +st in X , so that, from the case when n=3, X , fst in X,.
m+1 m m+1 1

Thus the lemma holds for all n > 1. Q

The following theorem establishes that if a component performance

process is Markov and stochastically increasing in time within each

phase, then the resultant association is not disrupted at phase boun-

daries, and the component performance process is associated in time

throughout the mission.

Theorem 4.6. If the Markov performance processes (X(s), t. <s<t.},
3-1 3

j=l,...,m, are each stochastically increasing in time, then the combined

stochastic process {x(s), t <s<t } is stochastically increasing in time
m

and thus associated in time.

proof. Let tn < s, < s < t . If s_ , s_ e [t. , t .] , for some j

,

12m 12 3-1 3

then X(s ) +st in X(s ) since (x(s), t. ^s^t./is stochastically increas-

ing in time by assumption. If s e [t. ., t.] and s e [t. ., t^] , fc>j

,

then by assumption, X(s ) +st in X(t ), X(t. ) +st in x ( t o_2
^' •*•»

X(t. ,) +st in X(t.), and X(t.) +st in X(sJ. Thus the sequence of ran-
}+l 3D 1

dom variables X(s ), X(t.), ..., x ( t o_i ) ' X(s 2^ satisfies the conditions
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of Lemma 4.5, and hence X(s ) +st in X(s ). Then the stochastic pro-

cess (x(s), t^s<t } is stochastically increasing in time by R_ and is
m 6

associated in time by R . D

E-P [1970] showed in Example 4.7 that if a component has a perform-

ance process that is an alternating failure-repair process in which the

time to failure and the repair time are exponentially distributed, then

the performance process is associated in time. Example 4.1 below demon-

strates a similar result for multi-phase missions.

Example 4.1. Let {X, (s) , t. <s<t . } be the performance process of
' k 3-1 j

component C , k=l,...,n, in phase j of a multi-phase mission. Let the

process be the exponential-exponential process discussed in Section 2.4

in which the time to failure is exponentially distributed with rate par-

ameter X . and the time to repair is exponentially distributed with rate

parameter \i .. It follows from Equations 2.4.1 and 2.4.2 that, for
k}

t. < s < t < t.; j=l,...,m; k=l,...,n,

-(X +y ) (t-s)

(4.3.1)

Then,

, -(X +u )(t-s)

P[X
k
(t)=l|x

k
(s)=0] =U

kj
(X
kj+yk

.)- [1-e ^
]

p[x
k
(t)=i|x

k
(s)=i] - p[x

k
(t)=i|x

k
(s)=o]

" (X
k-i

+ Vi )(t~s)
= e

K3 K3
*

The processes {x, (s) , t. <s<t.}, j=l,...,m, are each stochastically
k 3-1 d

increasing in time by R . Thus, from Theorem 4.6, the processes
6

{X. (s) , t <s<t }, k=l,...,n, are each associated in time. If the com-
k m

ponent performance processes are independent of one another, then the
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joint component performance process (x/s) , fc
n
^s^ t } is associated in

time by result R .

The reliability of parallel structures built of independent com-

ponents which have exponential-exponential performance processes is

explored in Chapter 5.
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5. RELIABILITY BOUNDS FOR A PARALLEL SYSTEM

OF INDEPENDENT EXPONENTIAL COMPONENTS

Many authors have studied the reliability of parallel systems in

which the component states are governed by the independent alternating

failure-repair processes described in Example 4.1. Most recent are the

inter-related works of Barlow and Proschan [1975b] , Brown [1975] , Keil-

son [1975], and Ross [1974] and that of Vesely [1970]. All of these

authors considered systems in which all components were functioning at

time t=0. Such an assumption is inappropriate in the context of a

multi-phase mission in which the parallel structures to be studied are

the phase minimal cut parallel systems. In his Example 1.2, Ziehms [1974]

illustrated how this assumption could lead to erroneous results in the

case of non-repairable components. Brown [1975] indicated that his ap-

proach could also be used in the case of an arbitrary distribution over

the initial component states, and much of the following work, parallels

his development.

5.1 THE EMBEDDED RENEWAL PROCESS

Even though the development of bounds on the reliability of a par-

allel structure is motivated by the results of Chapter 4, it will be

more convenient to proceed in a general framework and then show how to

couple the results with those obtained previously. Thus, consider a

parallel system of n components which fail and undergo repair indepen-

dently of one another. Let the time to failure of component C be

exponentially distributed with mean (X )

L

and the repair time be simi-

larly distributed with mean (u ) , and assume that repair effort begins
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immediately upon failure. If the initial availability of component C

is given by

then the initial system availability is

and/ / from Equations 2.4.1 and 2.4.2, the availability of component C
k

at time t is

k k

(l-a J -t(X + M )

k k

or.

yk r
Pk %

~t(V V
k k k k

The characteristic of a parallel system which makes it more amen-

able to analysis than other structures is that it fails only when all

of its components are failed. The epochs at which the system fails

form a delayed or modified renewal process. (See, e.g., Cox [1962].)

Let the time to the first renewal, T, have distribution function F.

Then the reliability of the parallel system for a mission of duration

t is given by

(5.1.2) p = PJT > t] « 1 - F(t).

Since it is possible for the system to fail at time t=0, the distribu-

tion F has the form
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F(t) = (1 - a) + oG(t) , t £ 0,

where G(t) is a proper distribution function with G(0) = 0.

Let M(t) be the renewal function for the delayed renewal process,

defined as the expected number of renewals in the interval [0,t] , i.e.,

M(t) = E[N(t)J.

Note that any renewal at time t=0 is counted in N(t). The renewal func-

tion will be exploited to obtain a bound on the unknown distribution

function F in Section 5.2. It follows from the definition of the re-

newal function and the form of F Ctl that

t

MCt) = M(0) + / M ,; (u)du

t
= (1 t- a) + / M' (u)du

G

The. physical interpretation of the renewal density, M'(t), is that

M'(t)At represents the limiting probability of a renewal in the small

interval (t, t+At) . (See Cox 11962], p. 26.)

The embedded delayed renewal process experiences a renewal in the

interval (t, t+At) if and only if the parallel system fails in the in-

terval. The probability of a system failure in (t, t+At) is the prob-

ability that all components but one are down at time t, the surviving

component fails in (t, t+At) , and no failed components are repaired in

the interval plus the probability of a series of other events which is

small with respect to the length of the interval, At. That is,

M*(t)At = p{a11 components but one down at t, no failed compo-

nents repaired in (t, t+At), and surviving component

fails in (t, t+At)} + o(At)
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. ,. o(At)
vhere lim — •» 0.

At-0
At

Conditioning on the surviving component this becomes

n
M'(t)At = £ P[System failure in (t, t+At) |c. is lone survivor

at t] P[C. is lone survivor at t] + o(At)

Thus,
n

M'CtlAt - Jis5l
X
i
At(TT

j^i
Tl-P

j

At]]a
1 Ctl]Tj^i

Tl-a
j
Ct)J + oCAt)

or
n X.At a.Ct)"[T-^^ U - a.(t)'J + o(At)

M .Ct, = 1^ l^ -*--* ^^-^
At-K)

Then.

M«Ct) = I. =1 X
±
o
t
(t) TTj^ II - cx.Ct)]

and

t
M.(t) = 1 - a + J l

n
i=1 Vi^Tr.^ [1 - a.(u)]}du.

Brown 11975] obtains this result for a parallel system with all compo-

nents functioning at time t=0 using a slightly different approach.

Xt is easily shown that

and consequently,

n n t n

MCt) = TTj=1 II - ^(t)] + C^wJ J Tl^ U - a.(u)]du.
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Substituting from Equation 5.1.1 and letting

a. « a. + t*»- (a. - 1)
j 3 Vj 3

and
n X

b "j=l X.+ y.
3 3

the integral becomes

t n t n -u(X .+ y .)

/ TTj=1 [1 - ctjCu)] du =
.J

TTj=1
(l - a.e 3 )du

-uE(X. + y. )

-kj &'£!<-»"*'. fn-j-x-t.}-
x

lj lj

}dU
1 r J

where the symbol J represents summation over the
( J

subsets
i <•••< i
1 r

of size r from the set {1,2,... ,n}. After performing the integration

it follows directly that

, n -t(X + y )

M(t) - 1 {TTj=1 (1 - a.e V3
)

(5.1.3)

• (t - Ir=1 (-D
r

X = 1- [l - e
1

' > ])}
i 7. , (X. + y. )

**T=1 i. i.
3 3

where
n

c =
h* v

i
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5.2 A RELIABILITY BOUND BASED ON THE RENEWAL FUNCTION

The renewal function as given by Equation 5.1.3 provides the basis

for the first of several lower bounds on the reliability of a parallel

system. By definition, the renewal function is

M(t) = 1 PlN(t) = 1] + 2 P[N(t) - 2] + 3 P[N(t) = 3] + • • •

and thus it is bounded below by

M(t) > P[N(t) > 1]

- 1 - P[N(t) = 0] = F(t)

From Equation 5.1.2/

p - 1 - F(t) > 1 - M(t)

and thus the first lower bound on the system reliability is given by

(5.2.1) £ = 1 - M(t)

The bound SL suffers from several obvious drawbacks. First, its

computation, while entirely feasible by machine, is more complex than

is desirable. More seriously, it may well be an extremely poor bound,

since for even moderately large values of t it can be negative. Its

usefulness in any application will depend on the values of the para-

meters, but it should not be expected to be of any value unless the

component mean times to failure and mean repair times are large rela-

tive to the length of the mission. Alternate bounds are explored in

the following sections.
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5.3 A RELIABILITY BOUND BASED ON THE INITIAL SET OF WORKING COMPONENTS

Brown [1975] showed that the reliability of a parallel system of

n components which are all functioning at time t=0 is bounded below by

(5.3.1) p s ettc/(b-l)]

This can provide the basis for a second bound on the reliability of a

parallel system of components with arbitrary initial availabilities.

If the set W is the set of indices of components which are functioning

at time t=0, then, using Equation 5.3.1 and ignoring components which

are not functioning at time t=0, the system reliability is bounded be-

low by

«p -t{CieW .gQTTleW^ -1)"
1
}

x

It follows then that

p» £, I CITj=1 v)rTTMi i
a - v) *

i <• • •< i
1 r

X. + y.
r i

-
L> -1,

exP -t{(Ij=1 y. K[TTj=1 -V-1
1 " 1)1

3

This bound can be improved by using the true reliability for the case

when r=l , giving

(5.3.2, '
+U . J, K

.

nT- =1 vJCTW t
o - V)

1 r *

3 i
3
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Although the bound I is still computationally complex, it is

always positive and thus offers an alternative to I in those cases

when the latter is unsuitable. The bound developed in the next section

is easily computed but, unfortunately, is not universal in applicability.

5.4 A BOUND BASED ON STEADY-STATE RESULTS

The final bound on the reliability of a parallel system which will

be considered is again based on the exponential lower bound contained

in Equation 5.3.1, which Brown [1975] showed to be a lower bound on sys-

tem reliability when all components are in steady state and the system

is functioning at time t=0. It seems reasonable that if each component's

availability at time t=0 is no smaller than its steady-state or equilib-

rium availability, then the time to the first system failure should be

stochastically larger than the steady-state time to first system failure,

and thus the system reliability can be bounded below using Equation 5.3.1.

To demonstrate that this is indeed true, some additional results are

needed.

A random vector X. is said to be stochastically larger than the ran-

dom vector Y if and only if f (X) >St f(Y), i.e., P[f(X)>z] > P[f(Y)>z]

for all z, for every increasing, real-valued function f. Proschan and

Pledger [1973] extended this concept to stochastic processes and defined

the stochastic process (X(t) , t £ 0} to be stochastically larger than

the process (Y(t), t > 0} if

[X(t.),..., X(t )] £
St

[Y(t.),..., Y(t )]In In
for every choice of £ t, £ ••• £ t , n=l,2,...

1 n

Lemmas 5.1 and 5.2 and Theorem 5.3, below, also come from Proschan

and Pledger [1973]. Lemma 5.1 is a restatement of a result due to
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Veinott [1965], and Lemma 5.2 is attributed to Esary and Proschan [1968]

Lemma 5.1 . Let X_ and Y be n-dimensional random vectors such that

(a) X
x

*
St

Y
x

,

(b) Y , ..., Y are stochastically increasing in sequence—that is,
1 n

P[Y. > z|y = a ,..., Y._ = a._ ] is increasing in a ,..., a._ , for

2 £ j £ n and for all z—and

(c) {X |[X =a ,..., X =a ]}>
St

{Y |[Y =a ,..., ^1=3]} for
J J- J- J X J X

_J
X X J X J X

each a ,..., a. and 2 £ j £ n.

Then X >St Y.

Lemma 5.

2

. Let X. and Y_ be n-dimensional random vectors and X' and

st st
Y_* be m-dimensional random vectors such that X_ > " Y_ and X_' > '

Y_* with

X and X.' independent and Y_ and Y" independent. Then

st
IX,,...,X ,X,..., X J 2. [Y , a . fY ,Y,...,Y J.

1 nl m 1 nl m

Theorem 5.

3

. Let f be a "well-behaved" continuous, increasing

functional, and let

(X(t), t 2> 0} >St (Y(t), t > 0} .

Then

,

f({X(t), t > 0}) 2s
St

f({Y(t), t > 0}) ,

and thus
Ef({x(t), t > 0}) £ Ef({Y(t), t > 0})

Now let {X.(t), t £ 0|a.} represent the exponential— exponential

performance process of component C. when its initial availability is a.

and (X.(t), t £ je
.
} be its performance process when its initial avail-

ability is the equilibrium or steady-state availability given by

e. *= y.(X.+ u.) . The following theorem states the conditions under
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which the equilibrium time to the first system failure provides a

bound on system reliability.

Theorem 5.

4

. If the initial component availabilities are each no

smaller than the component steady-state availabilities, i.e., if

a. > e., i=l,...,n, then the reliability of a coherent system of inde-

pendent components with performance processes which are stochastically

increasing in time is bounded below by the reliability of the system

when all components are in steady state at time t=0.

Proof. Choose arbitrary time points = t ^ ••• £ t , k=l,2,...
J- JC1st I

a.] > [X.(t„) e.]. Further, the process
x a. 1 l 1 1

{x.(t), t > 0|e.} is stochastically increasing in time, and thus by

definition {x. (t, ) , . . . ,X. (t, ) e. } are stochastically increasing in se-
i 1 i k ' i

quence. Finally, since condition (c) of Lemma 5.1 is obviously satis-

fied,

IX. (t_ ),..., X.(t.)|a.] >
St

[X. (t.),..., X.(t,)|e.], i=l,...,n.
i 1 ik'i l 1 ik'i

Since the component performance processes are assumed to be independent,

it follows from Lemma 5.2 that

[X. (t. ),..., X. (t, ),..., X (t. ),..., X (t,)|a]11 Ik nl n k '

—

£
St

[X. (t. ),..., X. (t, ),..., X (t. ),..., X (t.)|e].11 Ik nl nk

Then
(•MXtt^ ],..., *[X(t

k
)]|a) >

S
[X(t

1
) ],..., *[X(t

k
)]|e} ,

since for any increasing f,

f(<J>rx(t
1

) ],..., 4>[X(t
k
)] |a) ^

3t
fCtCXCtj^) ],..., <HX(t

k
)j|e) .

Consider the functional defined by f{<frlx(t)] f t £ 0} = inf 4>[X(s)]

0^s<t
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Then by Theorem 5.3,

E( inf <f>IX(s)J | a} ^ E( inf 4>[X(s)] |e} ,

0£s<t 0<s£t

or

P[T > t|aj > P[T > t|e] ,

where T is the time to the first system failure. D

Brown [1975] showed that for a parallel system of independent

components with exponential-exponential performance processes,

PlT > t |e]
,b^l

e
-ct/(b-l)

n A .+ y . n
where b = ,

—*^ *- and c = / . , y. . Thus, when the joint com-
1 'n=l X

.

^3=1 3
J

3

ponent performance process is exponential-exponential and a . > e .

,

i=l,...,n, it follows from Example 4.1 and Theorem 5.4 that

^ « b-1 -ct/(b-l)
(5.4.1) p > ^

3
= — e

5.5 APPLICATION TO PHASED-MISSION PROBLEMS

To apply the results of the preceding sections of this chapter to

the phased-mission problem, it is only necessary to recognize that the

mission is one phase of the multi-phase mission and the system is a

minimal cut structure. To use any of the bounds it is necessary tc

calculate the availability of each component of the system at the be-

ginning of each phase. Starting with the initial component availabili-

ties at time t=0, these phase-initiation availabilities can be computed

recursively using Equation 5.1.1. Thus, for j=l,...,m, and k=l,...,n,

ajt-) =
i 4,

kj— * (a.(t. .) - . .

k
3

)k 3 X
kj

+ y
kj

k 3-1 X
kj

+ V
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where A . (u .) is the failure (repair) rate of component C, during
kj kl k

phase j and d. is the phase duration.

Next it is necessary to obtain the minimal cut sets for each phase

of the mission using any of the standard methods. Then a lower bound

on the reliability of each of these phase minimal cut structures can be

calculated using one of the bounds presented here or the bound which

results from assuming that the components are not repairable during the

phase. In these calculations, the a.*s are understood to be the compo-

nent availabilities at the beginning of the appropriate phase, and the

mission length t to be the phase duration d .

.

3

Once this has been done, the mission reliability of the system can

be bounded below using Equation 4.2.5, giving

m c

.

(5.5.1) p ;> "n". . T-
3

-, *••
1 '3=1 'l=l 11

4- Vt

where % . . is a lower bound on the reliability of the i— minimal cut

structure for phase j and c. is the number of. minimal cut structures
D

for the phase.

If, as may be the case, a minimal cut set contains both repairable

and non-repairable components, all is not lost. Examination of the

bound I reveals that in the case when no components are repairable

(u =0, k=l,...,n), H gives the correct reliability of the structure.
JC JL

Further, the bound continues to be valid for any combination of repair-

able and non-repairable exponential components.
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6. SUGGESTIONS FOR FURTHER RESEARCH

The phased-mission models of Chapters 2 and 3 appear to be well

suited for the reliability analysis of systems which have the addition-

al flexibility of real-time configuration selection. In their crudest

form such systems may be visualized as traversing a network from mission

origin to mission success in which each node represents a point at

which a configuration decision is made and the arcs emanating from the

node represent the alternatives. A classic example of this situation

is provided by what is called the crew safety problem. Reliability

engineers connected with U.S. manned spaceflight efforts have long been

concerned with assessing the probability of safe return of the crew in

addition to mission reliability. Procedures for obtaining crew-safety

predictions were discussed in the early papers of Rubin [1964] and

Weisburg and Schmidt 11966] . The following example is a much-simplified

version of this crew safety problem.

Example 6.

1

. The designers of a manned space mission are concerned

about the safety of the crew and have provided an abort option at a

critical point in the mission. The decision to abort or continue the

mission is to be made based on the current system status as reflected

by the value of a coherent function of the component performance indi-

cator variables, i.e.,

the mission continues if <J>.,IX(tJ] = 1, and
a - a

the mission is aborted if 6 [X(t,)] = 0.
d *~ d

.

The network representation for the purpose of determining crew safety is
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4>
V̂

^

o safe

a

completion
mission
start

safe
abort

fc
d

fc
d

t t
a c

where <{> represents the structures of phases prior to the abort decision

Cand {$ = 1} is understood to mean successful completion of all prior

phases) , <£' represents the structures of phases subsequent to the deci-

sion when the mission is completed, and
<f>

represents the structures of
a

the abort phases.

The decision is included as a dummy phase of zero duration, and

thus the probability of safe crew return is given by

p = P{4> = 1, *_ = 1, * = 1} + P{$ =1, [1 - •_] = 1, * =1}
s pdc P cl a

or

p = P{* $> * = 1} + P{$ $ = 1} - P{$ * * m 1}
s pdc pa pda

Each term in this expression is of the same form as Equation 2.2.4, and

thus could be evaluated using the methods of Chapter 2. D

The mathematical structure of the phased-mission models could be

used to aid in determination of the decision functions to be used in

a mission with real-time configuration selection using criteria de-

signed to maximize the probability of mission success. If, for example,

the objective in the crew safety problem is to maximize mission relia-

bility subject to a lower bound on crew safety, the phased-mission

model could aid in selecting among alternative decision functions.

The area of reliability of maintained systems appears to be fer-

tile with opportunities for research. Little is known of the properties
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of time-associated performance processes, and the limited results avail-

able have mostly been obtained by relying on processes which are sto-

chastically increasing in time. It is conjectured that this is an

unnecessarily restrictive requirement. For example, the proofs of The-

orems 4.6 and 5.4 require the processes to be stochastically increasing

in time when time-association may well be sufficient.

The practicality of the assumption of exponential repair times in

much, of Chapter 4 and all of Chapter 5 is subject to challenge. It is

likely a difficult problem (but one worthy of study) to generalize to

other repair distributions. The resulting performance processes must

be shown to be time-associated in order to use either the phase lower

bound or the minimal cut lower bound. As indicated in the preceding

paragraph, a catalog of such processes is not yet available. In a

recent paper, however, Barlow and Proschan 11975b] study a system of

independent components in which each repairable component has an expo-

nentially distributed failure time and a repair time distribution which

has a decreasing repair rate (a DFR distribution) . They show that the

resulting joint component performance process is stochastically increas-

ing in time and hence time-associated. In addition, they develop sev-

eral bounds on the reliability of a coherent system with this joint

component performance process for the case when all components are new

•(and thus functioning) at time t=0. Aside from the question of whether

the assumption of decreasing repair rates for all components is any

more realistic than assuming them to be constant, it is not clear that

their results could be modified to allow components to be used (and

thus possibly failed) at time t=0 as would be the case at the beginning

of phases in a phased mission. It would be necessary to specify not
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only the availability of each, component at the beginning of each phase

but also the distribution of the length of the current repair period

for each failed component.

It may be possible to obtain additional information about the

time to first failure of a parallel system of exponential components

like that studied in Chapter 5 by obtaining the Laplace transform of

its distribution. Then, by proceeding as Brown 11975] does, it should

be possible to obtain the moments of the system failure time, from

which an approximate distribution function could be constructed. Exam-

ination of the Laplace transform may also suggest additional lower

bounds on the system reliability.

The foregoing discussion has been directed primarily to the study

of maintenance policies which prescribe immediate maintenance upon fail-

ure of a component. A slightly more complicated policy, which seems to

be very realistic for a multi-objective mission model like that of Chap-

ter 3, is possible when the mission has some slack time available.

That is, more time is allotted for mission accomplishment than is re-

quired in the absence of system failures. This concept is best illus-

trated by example.

Consider once again the multiple-objective version of the SLBM

system and suppose the time allowed to complete a launch sequence ex-

ceeds the time required if no system failures occur. Assume that main-

tenance can be performed during any submarine-borne phase of the mission,

but that whenever undertaken, the group of components involved (master

system or a subsystem) must be taken out of service. Thus if a master

system failure occurs, all active operations cease aboard the submarine.

If a subsystem (missile) failure occurs during a submarine-borne phase,
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then there are two alternatives--cease operations until repairs are

completed or cycle to the next missile and continue the mission while

commencing repairs to the defective missile. In any of these cases it

is possible to successfully complete all objectives if the system down-

time does not exceed the slack time available.

It should not be necessary to continue this discussion of possible

extensions and variations to convince the reader that there is a bona-

fide need for additional research. The cases for which analytical re-

sults are available represent but a small fraction of those worthy of

investigation. Hopefully, the methodology and theoretical results

presented in this thesis will serve to stimulate additional efforts in

this field.
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