
A MICROCOMPUTER-BASED NETWORK OPTIMIZATION
PACKAGE

Richard Henry Duff

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A MICROCOMPUTER-BASED NETWORK OPTIMIZATION PACKAGE

by

Richard Henry Duff

September 1981

Advisor: G. G. Brown

Approved for public release, distribution unlimited

T200643

SECURITY CLASSIFICATION OF THIS PAGE (Vhon Dolo Bntotod)

REPORT DOCUMENTATION PAGE
1 RIFOHT NOWlIK 2. GOVT ACCESSION NO.

4. TITLE i
and Sublltlo)

A Microcomputer-Based Network Optimization
Package

7. AUTMO«t'«>

Richard Henry Duff

t. PERFORMING ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School

Monterey, California 93940

1 I. CONTROLLING OFFICE NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 93940

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPOB' ft PEP.IOO COVEREO
Master's Thesis
September 1981

«. PERFORMING ORG. REPORT NUMBER

• • CONTRACT OR GRANTNT NUMSERC.J

10. PROGRAM ELEMENT. PROJECT TASKAREA ft WORK UNIT NUMBERS
'

12. REPORT DATE

September 1981
IS. NUMBER OF PAGES

130
U MONITORING AGENCY NAME ft AOOHCSaTflMMtNRl Irom Controlling Ollleo) IS. SECURITY CLASS, (ol thl, raRort)

Unclassified

Hi. DECLASSIFICATION' DOWN GRAOING
SCHEDULE

« DISTRIBUTION STATEMENT (ol tnlt Ropott)

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (ol iho abairmct ontotod In Block 30, II dllloront /ran Rmport)

• SUPPLEMENTARY NOTES

'* KEY WORDS Conttnvo on roworoo tido II nocoommrr «"* Identity *r ftJeeft .nattr)

Networks, microcomputer, optimization, linear programming, nonlinear
programming, mixed integer programming, minimum cost network flow,
mathematical programming assignment model, transportation model,
transshipment model, fixed charge network, nonlinear network.

20. ABSTRACT (Contlmto on rovoroo aido II mmimit ond Idontlty *T block ttumoot)

An important branch of mathematical programming is concerned with optimization
in systems described by networks. This paper describes an integrated suite
of advanced techniques for dealing with minimum cost network flow formulations
Written in Pascal and implemented on a microcomputer representative of current
small computer technology (the APPLE II), this package places unprecedented
modeling versatility and solution capability on the analyst's desktop. Able

DO (jan 7J 1*173 COITION OF I NOV SB IS OBSOLETE
S/H 0103-014* ««01 I

1

SECURITY CLASSIFICATION OF THIS RAOE (9non Doto Knlotod)

HtuWt» CV.*M'*'C**«0«1 O* Twit »4«|fiw n»«« ggwgg<

to solve small to medium size problems (3000 arcs or less) at reasonable
speeds, programs to handle capacitated linear, nonlinear (convex separable),
mixed integer and elastic ranged linear models in addition to comprehensive
control and data management routines are included. Problem size and solution
speed benchmarks are given for a variety of models.

DD Form 14-3 2
1 Jan 73 __________———

S/N 0102-014-6601 iteuMvv CL*MineATio«» o* >"• *»otr»»~ o*

Approved for public release, distribution unlimited

A Microcomputer-Based
Network Optimization Package

by

Richard Henry puff
Major, United States Marine Corps

B.S., Drexel Institute of Technology, 1968

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September, 1981

ABSTRACT

An important branch of mathematical programming is concerned with

optimization in systems described by networks. This paper describes an

integrated suite of advanced techniques for dealing with minimum cost

network flow formulations. Written in Pascal and implemented on a

microcomputer representative of current small computer technology (the

APPLE II), this package places unprecedented modeling versatility and

solution capability on the analyst's desktop. Able to solve small to

medium size problems (3000 arcs or less) at reasonable speeds, programs

to handle capacitated linear, nonlinear (convex separable), mixed

integer and elastic ranged linear models in addition to comprehensive

control and data management routines are included. Problem size and

solution speed benchmarks are given for a variety of models.

TABLE OF CONTENTS

I. INTRODUCTION 14

II. DESIGN AND IMPLEMENTATION CONSIDERATIONS 19

A. BACKGROUND 19

B. HARDWARE 20

1. Microcomputer Characteristics 20

2. Target Microcomputer 21

3. Machine Independence 22

C. MODEL AND SOLUTION TECHNIQUE SELECTION 22

1. Models 22

2. Solution Methods 23

D. PROGRAMMING LANGUAGE 26

1. BASIC 26

2. FORTRAN 27

3. Pascal 27

a. Standard Pascal 27

b. UCSD Pascal 29

c. Limitations of Pascal 31

E. MEMORY MANAGEMENT 33

F. THE USER INTERFACE 34

1. Data Input 34

2. Program Control 35

3. Programming Tactics 36

III. ALGORITHMS 37

A. GNET 37

1. Primal Revised Simplex Algorithm 37

2. Network Specializations 40

B. NLPNET 43

1. Basic Properties of Solution and Methods for

Nonlinear Optimization 43

2. Newton's Method for Unconstrained Optimization 45

3. Truncated-Newton Methods for Unconstrained

Optimization 47

4. Truncated-Newton Methods for Linearly Constrained

Optimization 53

a. The "Reduced Problem" 54

b. The Search Direction 55

5. Primal Truncated-Newton Method Specialized for

Networks 58

C. ENET 62

1. Ranged and Bounded Model 63

2. Elastic Model 64

3. Elastic Primal Revised Simplex Specialized for

Networks 67

D. UNET 70

IV. PACKAGE DESCRIPTION 76

A. OVERVIEW 76

1. Package Components 76

2. Data Files 78

6

a. Structure 78

b. File Naming Conventions 80

3. User-Friendly Features 80

B. CONTROL AND UTILITY PROGRAM DESCRIPTIONS 82

1. Master Program 82

2. EDITOR Program 86

a. File Creation 88

b. File Alteration 89

c. File Transfer 89

3. Preprocessor Programs 89

C. SOLUTION PROGRAMS 90

1. GNET 91

a. Input Requirements 91

b. Internal Data Structure 92

c. Solution Segment 93

2. NLPNET 93

a. Input Data Requirements 93

b. Internal Data Structure 97

c. User Definable Parameters 97

d. Reports 100

3. ELASTICNET 100

a. Input Data Requirements 101

b. Internal Data Structure 102

c. Model Alteration 105

d. Reports 105

V. COMPUTATIONAL RESULTS 106

7

A. MAXIMUM PROBLEM SIZE 106

B. SOLUTION TIMES 109

C. MODELING FLEXIBILITY Ill

VI. CONCLUSIONS AND RECOMMENDATIONS 118

APPENDIX A PACKAGE EXTERNAL DATA STRUCTURE (DATA FILES) 120

APPENDIX B TYPICAL REPORTS 121

LIST OF REFERENCES 127

INITIAL DISTRIBUTION LIST 130

8

LIST OF TABLES

1. NOMINAL PACKAGE DATA PARTITION 108

2. PACKAGE MEMORY USAGE 108

3. ALLOWABLE ARC/NODE PARTITIONS 110

4. TYPICAL SOLUTION TIMES 112

5. OPTIMAL SOLUTION COMPARISON 113

6. THREE ECHELON DISTRIBUTION MODEL SOLUTION TIMES 117

LIST OF FIGURES

1. Development Hardware 21

2. Pascal Block Structure 28

3. Relationship Between P-Code and Pascal 31

4. Characteristics of the Newton Method 48

5. Truncated-Newton Method 50

6. Truncated Conjugate-Gradient Algorithm 51

7. An Elastic Ranged Constraint 65

8. A Rigid Ranged Constraint 65

9. Classical Equality Constraint 66

10. Relationship Between Logical Variables for ERLNP 67

11. Logical Arcs Generated for Node i 68

12. Primitive Enumeration Restrictions 73

13. Generic Enumeration Tree (Fixed Order) 75

14 Package Block Diagram 77

15. Typical Option Selection Menu 81

16. Typical Parameter Control Menu 82

17. Outer Command Logic 83

18. Solution Process Logic 84

19. Linearization Options 86

20. EDITOR Block Diagram 87

21. Generic Solution Program Segment Map 90

22. GNET Input Data Requirements 92

10

23. GNET Basis Representation 94

24. GNET Data Structure 95

25. NLPNET Input Data Requirements 96

26. NLPNET Basis Representation 98

27. NLPNET Data Structure 99

28. NLPNET Default Modification Menu 100

29. ELASTICNET Input Data Requirements 102

30. ENET Basis Representation 103

31. ENET Data Structure 104

32. UNET Data Structure 105

33. Three Echelon Distribution Model With Handling Costs 114

34. Modeling Fixed Costs 116

11

NOTATION

Except as otherwise indicated in the text, the following notational

conventions have been used for all mathematical expressions:

Scalars

Vectors

Vector Components

Matrices

Matrix element

Transpose

Sequences

Lower case Greek and Latin letters (e.g., a, a)

Lower case Latin letters with a bar above (a).

Lower case Latin letters with a lower case

Latin subscript (a-)

.

Upper case Latin letters (A).

Lower case Latin letters with lower case

Latin subscripts (a.:-).

Superscript T (A)

.

Enclosed in braces ({a.}).

12

ACKNOWLEDGEMENT

I am grateful to Professor Ron S. Dembo of Yale University for

his assistance rendered in the implementation of NLPNET. Additionally I

would like to express my appreciation to Professors Victor A. Cabot of

Indiana University and Richard E. Rosenthal of the University of Tennessee

for their academic support and many valuable suggestions. Although

thesis advisors are normally implicitly recognized, I feel that such

acknowledgement is inadequate in this case. Professors Brown and Washburn

have expended great effort to ensure that this project was a worthwhile

learning experience in every respect. To both of these gentlemen, a

sincere thank you. Finally, I wish to thank my wife Cheryl for her

patience and support.

13

I. INTRODUCTION

Mathematical programming can be defined as the use of mathematical

representations (models) to plan (program) an allocation of scarce

resources among competing activities [Ref. 1]. An important branch

of mathematical programming deals with optimization in systems described

by networks or collections of points (nodes) connected by links (arcs).

Such models arise explicitly in a variety of applications and include

many familiar distribution and transportation problems. Bradley [Ref. 2]

suggests that network models have been so widely used because: (1) they

accurately model many applications, (2) they are more readily accepted by

nonanalysts than other models (they pictorially resemble the physical

process being modeled), and (3) efficient algorithms are available.

Additionally, many models can easily be transformed into equivalent

network representations by direct manipulation (e.g., assignment problems)

or exploitation of a primal-dual relationship (e.g., critical path

problems). The object of all these formulations is usually to minimize

the cost of moving a single commodity through the network. The general

form of this problem, the network programming problem (NPP), is

(NPP) MINIMIZE f(x) (cost function)

s.t. Ax = b (node flow-conservation constraints)

1 < x < u (arc flow bounds),

14

where x is an n-dimensional vector

(n is the number of arcs),

x- represents the magnitude of the flow on arc i,

A is an m by n (m is the number of nodes)

matrix defined as follows:

+1 if arc j is directed away from node i

a- • =
(-1 if arc j is directed toward node i

J

otherwise,

b is an m-dimensional vector of flow requirements at

each node, and

f(x) is some function that relates cost to arc flow.

Although NPP can be solved by classical general purpose constrained

methods (depending on the exact form of f(x)), better techniques exist.

Specialized data structures employed in conjuction with modifications

of traditional optimization procedures have resulted in the development

of extremely efficient algorithms for the solution of NPP [e.g., Ref. 3].

This work has been motivated in part by the intrinsic usefulness and wide

applicability of these models and further stimulated by the increased

availability of computational devices. Due to these advances, the

operations analyst is now able to represent larger network models, and

answer questions concerning their optimal flow easier than ever before.

As interest in network programming continues to grow, the supply

of applications software will undoubtedly keep pace. This has been the

case to date; however, the vast majority of the emerging software appears

very specific in nature and tailored to particular classes of network

models. Certainly there are many superb codes available, but if, for

15

example, the capability to work with both linear and nonlinear cost

functions is desired, then the employment of two separate and possibly

quite different programs is required. Even a relatively mundane task

such as linearizing a nonlinear model to obtain a feasible starting

solution point either requires incorporation of extra code or an exercise

in data manipulation and program linking. Such shortcomings indicate

that unified network flow programming packages able to cope with several

different types of models would be quite useful.

Concurrent with these advances in network programming, computer

technology has experienced breath-taking progress. Not only have com-

puters improved in sheer power, but they have become increasingly

compact and less expensive (relative to capability). A dramatic example

of this data-processing revolution is the evolution of desk-top computers

These small computers, the so-called microcomputers, appeared on the

scene in the early 1970's and today can provide computer power comparable

to some room-sized machines of a decade ago at a tiny fraction of the

cost. More importantly, these devices are becoming so common that their

accessibility to technical personnel is forecasted to be virtually

universal in the near future [Ref. 4]. E. M. L. Beale [Ref. 5] commented

on this dissemination of computer power and predicted increased use of

microcomputers by operations analysts to solve smaller models locally

with reliance on computer centers for large projects. Tanenbaum [Ref. 6]

suggests that the cost of small computers relative to communication

expenses now makes it attractive to analyze data at its source and send

only summaries back to large computers via networking arrangements.

16

Even though the hardware is available and its potential clearly

recognized, suprisingly little operations analysis software of reasonable

complexity and generality has been reported for microcomputers. Aside

from a few decision analysis programs [e.g., Ref. 7, 8, 9], effort has

been mainly concentrated on statistical applications. Morgenson

[Ref. 10] and Isbell [Ref. 11], for example, have developed extensive

data analysis packages incorporating sophisticated techniques. Addition-

ally, there are numerous commercial statistical products of varying

quality and capability for microcomputers.

Surprisingly, microcomputer-based mathematical programming software

is still virtually non-existant, despite the obvious utility of such

programs. Undoubtedly, there are many ad hoc, rudimentary implementa-

tions of basic methods; however, no reference to any work of consequence

has been found in the open literature. Feasibility studies [Ref. 12, 13]

verify the desirability of optimization packages for small computers, but

only explore rather elementary network algorithms. These studies further

suggest that network flow problems are likely candidates for microcomputer

solution because of the efficient algorithms at hand. Economic justifi-

cation for employing the microcomputer for optimization purposes has not

been established conclusively. One attempt to favorably compare such use

with the alternative of large, general purpose computer systems [Ref. 13]

has been severely criticized [Ref. 14] and the issue remains undecided.

The research reported here investigates the construction of unified

network flow optimization packages, the mathematical programming potential

of microcomputers, and (secondarily) the economic feasibility of such

17

devices with respect to optimization applications. This work was under-

taken with the following (superficially disparate) goals:

1. Development of a unified, versatile network-flow optimization

package capable of handling a variety of models and utilizing

"state-of-the-art" algorithms.

2. Implementation of this package on a widely available micro-

computer to explore the usefulness of smaller computers in an

optimization context.

Portions of this work were presented at the CORS/ORSA/TIMS joint

meeting in Toronto, May, 1981. At that international meeting, attendees

expressed surprise that such an integrated network optimization package

used a microcomputer as a host.

18

II. DESIGN AND IMPLEMENTATION CONSIDERATIONS

Microcomputer implementation of large programming projects requires

careful consideration of every aspect of program design in order to fully

exploit the limited resources available. This section briefly discusses

the design criteria utilized and outlines the rationale for the decisions

that shaped the package.

A. BACKGROUND

Invariably many different program configurations can be constructed

to accomplish a given task, however, some approaches are better than

others. Program effectiveness is a well-studied field and the literature

contains many characterizations of superior software designs. Kreitzberg

and Shneiderman [Ref. 15], for instance, define a "good" program as one

that is correct (provides desired results), fast, accurate, hardware inde-

pendent, efficient with storage, and easily modified. Thenson [Ref. 16]

and Lientz [Ref. 17] further suggest that operations analysis software

should place heavy emphasis on "user impact" or ease of use. These

attributes, commendable as they may be, are of little value if the

program cannot solve meaningful problems in a reasonable amount of time.

Meaningful, in this context, includes not only the intrinsic usefulness

and generality of the modeling facilities provided, but also the size and

complexity of the representable formulations. Since it is highly unlikely

that a program can be optimal in every respect, compromises are inevitable,

19

Numerous factors interact to establish program limitations with

the inherent capabilities of the host computer playing the dominant

role. Choice of algorithms, data structures, programming language,

memory and peripheral management, and programming tactics are also

significant determinants of ultimate software efficiency. For the

traditional user of large computer systems, the improper choice of one or

more of these variables usually results in merely a slightly degraded

package rather than outright failure. The smal 1 -computer environment is

less forgiving and does not allow this luxury without severe performance

penalties.

B. HARDWARE

1. Microcomputer Characteristics

A typical microcomputer system consists of a central processing

unit, memory, peripheral devices, and software. Exclusive of peripherals,

such packages physically resemble an electric typewriter. The specific

form of the processing unit varies, but most can directly address 65,536

eight-bit words of random-access memory. This "fast" (typically 200-400

nsec) or core memory is usually supplemented by slower (but more plentiful)

storage (worst case, 1-2 seconds seek time) in the form of disk drives. Each

disk drive provides approximately one hundred thousand (or more) words of

memory space on removable magnetic media. The number of disk drives allowed,

their individual capacities, and access times depend on the microcomputer.

More sophisticated (and expensive) offline memory devices are also available,

capable of storing millions of words. Common peripherals include communica-

tion equipment to access other computers, video displays, and printers.

20

2. Target Microcomputer

Clearly, as technology is changing so rapidly, any attempt to

identify an optimal hardware selection would be futile. Instead, an

acceptable system representative of available products, the APPLE II

microcomputer, is considered. All software development has been per-

formed on an APPLE II system configured as shown in Figure 1.

1. APPLE II microcomputer with 65,000 words
of memory.

2. Two disk-drive offline storage devices
(150,000 words each).

3. UCSD Pascal (language card).
4. Communications device (modem).
5. Printer.
6. Eighty character by twenty-four line

video display.

Fig. 1. Development Hardware

Although this machine is not the most powerful of its class, it

is a reasonable choice for many operation analysis applications due to

its availability, capability, and low cost. Introduced in 1977, the

APPLE II is a widely-used device, still in production, and likely to

remain so for the next few years [Ref. 18]. As over 200,000 units have

been manufactured and distributed worldwide, a broad base of technical

support exists and numerous firms offer peripheral products. The APPLE

II can support all of the popular microcomputer programming languages

(BASIC, Pascal, FORTRAN, and Assembly language). Easily expandable,

APPLE II is a trademark of Apple Computer Inc

21

complete systems can be purchased for between two and four thousand

dollars.

3. Machine Independence

All computers, regardless of size, have unique features and one

must be careful if machine independence of software is desired. Given the

variety of microcomputers available today and the rapid changes expected,

portability between existing and conceptual machines is necessary if the

considerable investment involved in the development of sophisticated

programs is to be protected. Thus the importance of machine independence

should not be underestimated. For this reason, features peculiar to the

APPLE II have been avoided wherever possible. Thus the software presented

should run, with minimal modifications, on any equivalent hardware

package.

C. MODEL AND SOLUTION TECHNIQUE SELECTION

The determination of specific processes to model and subsequent

selection of solution techniques compatible with computing resources are

critical issues in the design of any optimization software.

1. Models

Once the general class of problems has been established, a few

carefully chosen models often can adequately represent the majority of

anticipated situations. Specialized models can then be added as necessary.

The following minimum cost network flow models are considered essential

for any comprehensive package:

o Linear cost function with bounded variables.

o Nonlinear convex separable cost function with bounded variables.

22

As useful as these two models are, they cannot depict some

desired formulations. Additional flexibility is provided by:

o Linear cost function with bounded variables and elastic ranged

constraints (see Section III, Subsection C).

o Linear cost function with elastic range constraints and bounded

variables, any of which may also be specified as "1-u" variables

(only allowable flow is at one of the bounds).

These four models comprise a basic package capable of repre-

senting a wide variety of single commodity network flow problems.

Included are fundamental examples of linear, nonlinear, and mixed-integer

network optimization models. Building from this network paradigm, these

features can be used to represent myriad mathematical models. Other

models could easily be added, however, time constraints precluded further

extension of the package.

2. Solution Methods

When dealing with microcomputers, algorithms are difficult

to select. Simple algorithms require little storage, but are typically

inefficient and slow. More complicated approaches offer speed at the

expense of increased memory usage and expanded data structure requirements.

Large computers are able to use the efficient algorithms because the

additional storage requirements are infinitesimal compared to the total

memory available. For small machines, the choice is not so clear. A

large portion of memory is consumed by the added complexity of the

advanced algorithms, resulting in significant reduction of maximum problem

size. If one chooses the simpler methods, larger programs are accommo-

dated but processing time can soar to unacceptable levels for all problems,

23

Execution speed appears to be far more important than maximum

problem size. Providing quick answers to small problems is the most

likely optimization role for microcomputers at the present time. Very

large problems will continue to require extensive computational facilities

well beyond the capabilities of current microcomputers. Given the

predicted advances in small computers, memory-saving techniques should

decrease in importance as devices with greater storage capacities become

available. Using inefficient methods instead of the more capable but

memory-intensive algorithms does not seem to be justified.

Numerical representation must also be considered. Small computers

are usually more restricted than their larger counterparts in (1) mantissa

precision, (2) real variable exponent range, and (3) maximum allowable

integer size. If provisions exist (or can be created) to deal with these

problems, performance degradation may result. Thus candidate algorithms

for microcomputer use must be relatively insensitive to such limitations.

The programs selected for these models are considered state-of-

the-art and all represent current research efforts. Utilizing advanced

algorithms and efficient data structures, these programs have been

included on the basis of their suitability for microcomputer adaptation

and mutual compatability. The original programs were coded in FORTRAN

for implementation on large computers. Each program has been translated

into UCSD Pascal and modified as necessary to enhance its efficiency in a

microcomputer environment.

GNET [Ref. 3] is the foundation of the package. A highly regarded

and widely-used code, it is one of the fastest methods available for

solving linear minimum cost network models with bounded variables.

24

Additionally, GNET can be used to linearize nonlinear problems and

produce initial feasible solutions. The documented speed of the method

[Ref. 2] and its efficient data structures make it ideal for microcomputer

implementation.

Nonlinear formulations are solved by NLPNET [Ref. 19], a program

by Dembo that utilizes data structures in the spirit of GNET and new

adaptable direction-finding techniques. The user of NLPNET can control

the accuracy of the direction-finding process and thus the amount of

computation effort expended for a solution. This feature makes such an

algorithm perfect for microcomputers.

Elastic ranged constraints are handled by ENET, a recently

introduced code by Brown and Graves [Ref. 20]. An extension of GNET, it

uses the same efficient methods and data structures.

Finally, UNET, another new code by Brown and Graves [Ref. 20], is

used to solve elastic ranged constraint problems with bounded variables,

some of which may be specified as "1-u" variables (flow at either bound,

only). Also employing data structures similar to GNET, this algorithm

requires successive calls to ENET to solve enumeration subproblems.

Although ENET can duplicate the capabilities of GNET, the latter

is explicitly retained to solve larger problems of the simpler structure

amenable to GNET. This is not an algorithmic disadvantage of ENET, but a

consequence of the package design. Since UNET reoeatedly calls ENET,

both procedures are kept in memory together to reduce disk access time.

Therefore, as the programs are constructed, GNET is a more compact code

than the ENET/UNET combination. It is intended that future revisions of

the package will employ only ENET and UNET.

25

D. PROGRAMMING LANGUAGE

Pascal, specifically the University of California at San Diego (UCSD)

version, appears to currently offer the best programming language facil-

ities for large-scale microcomputer programming projects. Possible

alternatives are BASIC and FORTRAN, languages that suffer from crippling

shortcomings as presently implemented on microcomputers.

1. BASIC

Once the only high-level language available for small computers,

BASIC remains very popular. While BASIC is perhaps suitable for some

applications, serious mathematical programming efforts are hampered by

its limited speed, primitive programming power, and lack of transport-

ability. When installed as an interpreted language (the usual case),

each source statement must be translated into machine language every time

it is encountered in the logical flow of the program. This results in

long execution times, especially for complex programs with many iterative

structures (i.e., optimization programs). Additionally, most dialects of

BASIC allow only global (accessable to all program portions) variables

with restrictive naming conventions. Variable name conflicts often arise

in such circumstances greatly reducing the portability of subprograms.

The use of subprograms is further hindered by the inability to pass

parameters between program fragments without resorting to global variable

reassignments. Compiled versions (one-time translations of source

statements to machine language) of BASIC are available that supposedly

alleviate these problems, however, they are necessarily machine-specific,

further aggravating the transportability issue. There are probably as

many different versions of BASIC on the market as there are types of

26

microcomputers. Hardware manufacturers modify the language to fit their

particular needs resulting in potential difficulties when programs are

moved to different machines. It is indeed a rare BASIC program that can

be transported without modification, with the chances of such success

diminishing as program length and complexity increases.

2. FORTRAN

Implementations of FORTRAN for microcomputers, although increasing

in number, are still rather uncommon. A compiled language, FORTRAN

compares favorably to other languages in terms of speed and programming

power. The biggest drawback of FORTRAN is lack of standardization, a

hinderance that has plagued FORTRAN users on large computers for years.

Compiled code is completely machine-specific and thus not portable.

Transportability of the source statements varies depending of the degree

of similarity between the two versions of FORTRAN in question. This lack

of standardization combined with the inability to exchange compiled code

between different microcomputers makes FORTRAN a poor choice if program

portability is a goal

.

3. Pascal

a. Standard Pascal

Pascal is a relatively new language (compared to BASIC

and FORTRAN) having been formally defined by N. Wirth in 1971 [Ref. 21].

Named after the famous mathematician Blaise Pascal, the language was

originally intended as a vehicle to teach computer programming. An

excellent instructional tool, Pascal is now recognized as a powerful

general -purpose language. Similar to ALGOL, Pascal provides a rich

set of program and data structuring tools. Thus a great portion of

27

the housekeeping tedium of programming is assumed by the language itself

(in the form of the compilation process) and is totally transparent to

the user. Some of these facilities can be simulated in other languages

through skillful programming, but this adds complexity to the development

process. Pascal, by admitting long variable names and free-form coding,

is a self-documenting language further reducing development and mainte-

nance effort. Totally modular in concept, programs consist of blocks of

similarly structured code with true local and global variables allowed at

all levels. A Pascal program is therefore a logical collection of

independent modules that allows direct translation of complicated algo-

rithms into source code by partitioning the problem into smaller and more

manageable pieces. This divide and conquer technique, commonly known as

"structured programming," is an effective method to address large projects

Figure 2 is an example of this block structure. Extension of Pascal

programs is a simple matter of adding modules of code and linking them to

the original program via parameters. Pascal also requires explicit type

definition of all variables, thus minimizing the chance of a non-local

typographical mistake introducing a program error.

Block Heading (Program, procedure, or function)
Variable declarations
Local blocks

Begin body of block
Executable statements

End body of block

Fig. 2. Pascal Block Structure

28

b. UCSD Pascal

These impressive programming features alone are enough to

warrant the use of Pascal for difficult microcomputer programming projects

When one examines the UCSD version, however, the evidence seems over-

whelming. An extension of standard Pascal, UCSD Pascal was developed

by a group headed by K. L. Bowles in 1975. Explicitly designed to run in

a small computer environment, it retains most of the features of standard

Pascal while adding many extensions that increase the power of the

language. For our applications, we are interested in two of these

additional facilities that (1) enhance memory manipulation capabilities

and (2) provide for extremely transportable programs.

The memory management techniques offered by UCSD Pascal are

truly remarkable for a microcomputer software system. The programmer has

complete control over which portions of code are to be in memory at a

given point in the program execution. For small programs, the entire

code is generally loaded into memory at the beginning of execution while

larger programs can be segmented to provide the desired partitions. A

small portion of the program, again totally definable by the programmer,

must be in residence at all times to control the overlaying process.

Complete programs can be called into memory, each with its own local

memory control, executed, and other programs subsequently activated. In

this manner, programs can be chained together to form coherent packages.

Additionally, groups of often-used blocks of code can be pre-comDiled and

2
UCSD Pascal is a trademark of the Regents of the University of

California.

29

placed in libraries. When activated, the specific library code is loaded

into memory with the calling program and executed. Library routines can

either remain in memory for the entire program execution process or be

discarded after each use (at the programmer's option). These methods

allow programs that would otherwise be impossible to implement on a

microcomputer—the package presented is such a case as the combined

code of the component programs far exceeds the memory capacity of most

microcomputers.

UCSD Pascal is a hybrid compiled/interpreted language, a

concept that produces unprecedented machine independence. Source state-

ments are first compiled to an intermediate pseudo (p) code that is then

executed by a machine-dependent interpreter. This greatly enhances

portability as the interpreter, which normally takes about six man-months

to write [Ref. 22], is the only part of the system that must be changed

to take advantage of a new hardware configuration. The original compiled

source code can be transported without modification to any machine that

has a p-code interpreter installed. Figure 3 depicts the relationship

between the components of the p-code system (Lewis [Ref. 23]). Such

interpreters now exist for all the commonly used microcomputer central

processing units [Ref. 24]. The use of p-code is not restricted to UCSD

Pascal; other languages (e.g., FORTRAN-77 and PL/I) have been treated in

this manner to achieve similar portability. However, UCSD Pascal is

currently the only p-code implementation that is widely available.

As previously indicated, speed is an important programming

language attribute. The hybrid nature of UCSD Pascal results in

30

Compi le

Execute

Pascal Program

P-Code Program

P-Code Interpreter

Hardware

Fig. 3. Relationship Between P-Code and Pascal

execution time somewhat slower than pure-compiled languages such as FORTRAN,

but much faster than interpreted languages. Gagne [Ref. 25] reports that

Pascal runs three times as fast as the very best BASIC and ten to thirty

times faster than most. Informal timing tests comparing Pascal with APPLE II

BASIC confirms these performance assertions. Any loss of speed through the

interpretation of p-code is more than offset by the other desirable features

of the language, especially portability,

c. Limitations of Pascal

Pascal is not without its difficulties—some are minor

irritants while others are more important. Foremost is the precision of

real variables allowed by the APPLE II version of UCSD Pascal. Without

taking any special programming measures, six to seven significant figures

can be accommodated in a mantissa representation equivalent to IBM 360/370

31

single precision. It must be understood that this is an implementation

issue on the APPLE II and not an intrinsic limitation of Pascal. By

suitable programming, the precision can be extended; however, it was

decided not to do so because of the speed degradation that would surely

have resulted. The only package module that utilizes vast amounts of

real arithmetic is NLPNET, the nonlinear network code. As shall be

shown, for the nonlinear problems that have been attempted, limited

precision does not appear to hinder performance.

Another disturbing omission is that all arrays are static

and created with a size and type dope vector. Linkage conventions

require that actual parameters in subprogram calls and formal parameters

in the routine called must agree in type and dimension. This precludes

problem-dependent memory management as an automatic feature. Since array

bounds must be predeclared, their alteration, for any reason, requires

complete recompilation.

Also, compilation itself is a rather slow process. The

nominal compilation rate for APPLE II UCSD Pascal is two hundred source

statements per minute. This becomes tedious for the long programs devel-

oped for this package, some of which are on the order of three thousand

source lines (exclusive of comments).

The final important criticism is the lack of a predefined

exponentiation operator, a crucial primitive for nonlinear optimization

work. For development purposes, an exponentiation operator has been

written in UCSD Pascal. A much better solution would be a fast machine

language function, or utilization of special arithmetic processing

hardware.

32

E. MEMORY MANAGEMENT

A major challenge to the microcomputer programmer attempting to code

a complicated algorithm is memory management. The interaction between

the two types of memory (fast "core" and slower peripherial) is a deli-

cate affair and an extremely important influence on overall program

efficiency. As a general rule, optimization programs will always expand

to fill available core memory. Memory not occupied by program code will

contain the data structure representation. In order to extend problem

size further, either the data or the program code (perhaps both) must be

partitioned in some manner and the resulting pieces moved in and out of

fast memory as needed. Both these approaches are feasible with today's

microcomputers, but the intrinsic code management features of UCSD Pascal

make program code segmenting much easier to implement.

Data partitioning (so-called "in-core/out-of-core" operations)

requires additional control logic and data structures to work effectively.

As the purpose of this research is demonstrative in nature, data parti-

tioning experimentation has been deferred for future package enhancement.

Only program code segmentation has been utilized to dynamically manage

memory resources. Such a process is termed "swapping" or "overlaying."

Due to the iterative nature of mathematical programming algorithms

and the time expense involved in accessing current disk drives, one must

be extremely mindful of how the program is segmented. It is desirable to

have minimal program code in residence at all times during the critical

solution process. If the divisions are too fine, then execution speed

suffers as the disk is constantly being accessed. Keeping too much of

the program in core reduces disk access at the expense of data storage.

33

Therefore, each program must be examined carefully and partitioned

to yield the best compromise of speed and storage management.

F. THE USER INTERFACE

All computer programs require a certain level of human interaction

to produce results. Depending on the particular application, this

participation may range from minimal operations such as data input and

output interpretation to complex control decisions. Whatever the degree

of interaction necessary, software must be designed with the user in mind

if maximum benefit is to be derived from its use. Programs that properly

take the human element into consideration and attempt to promote meaning-

ful man-machine dialog are termed "user-friendly." As microcomputers are

interactive devices usually operated by a single person with the entire

computing system at arm's reach, user involvement is inescapable.

Software designed for the small computer must therefore be user-friendly.

1. Data Input

Thenson [Ref. 16] states that programs should be designed to

minimize the probability of errors in the user input process. Likely

causes of these errors are incompatible input format, invalid characters

in the input field, and inadmissible input values.

Input formats should be flexible whenever possible, allowing

user control to effect format reconfiguration. Otherwise, as a default,

the easiest method for the user should prevail and internal conversion

can then be undertaken as needed.

The frustrating problem of invalid characters in the input stream

can be avoided by the use of buffering and filtering techniques to

isolate undesired values. This error is often encountered during

34

keyboard input where, for example, an alphabetic character is entered

when a numeric digit is required. Most operating systems respond to this

difficulty by terminating program execution, an intolerable situation.

Morgenson [Ref. 10] describes a procedure in detail where all numeric

values are input as string variables. A lexicographic scan on the string

is then performed to identify offending characters and construct the

number for program use. We use a modification of his technique.

Inadmissible values can be isolated by screening all input

prior to its use. Preferably, this is performed as the data is received

by the program. Simple precautions such as confirming that the data

conforms to required numerical ranges (range screening) and sign restric-

tions can prevent unexplained abnormal program terminations.

Every attempt should be made to not only detect errors, but also

to inform the user of their presence. This involves either providing

facilities to correct the error and continue if possible, or executing a

graceful program exit in the event of fatal errors. Meaningful error

messages must be displayed in order that proper corrective action can be

taken.

2. Program Control

User-friendly techniques can also be easily applied to interactive

control during program execution. A popular method to do this involves

menu-driven selections where various choices are displayed along with

simple commands. The user selects a command thereby activating either

the desired program segment or additional sub-menus as appropriate. By

using single keystroke commands, combined with range screening and

35

suitable error messages, a very large number of alternatives can quickly

be considered.

Displays should be designed so that the user has enough informa-

tion to make decisions without being overburdened visually by extraneous

material. Selections should be arranged with the most frequently used

choices the easiest to invoke. A good example of this is providing

access to default parameters only on demand. These values are then

transparent to the user, yet readily available if changes are to be

made.

3. Programming Tactics

The addition of user-friendly features invariably results in

more complicated code and longer development time. This is a small price

to pay in view of the utility gained. Programs that are difficult to use

typically go unused and often must be changed, at far greater cost than

an equivalent original design, to instill user confidence. If user-

friendly facilities are incorporated at the conceptual phases of software

development and sensibly blended into the program structure, their cost

can be minimized.

For optimization programs, there is a clear delineation between

interface and solution modules. Even with time-shared, or dedicated

microcomputer systems, the code supporting user-friendly facilities can

be easily isolated from the iterative portions of the program. In this

manner, the programmer can take advantage of these indispensable input/

output techniques without impairing the solution process. With proper

memory management discipline, the only penalty is increased secondary

(offline) storage consumption.

36

III. ALGORITHMS

The solution programs chosen for inclusion in this package represent

advanced methods for solving minimum cost network flow problems. Detailed

descriptions of the algorithms employed are scattered among various

references, and are not available in a collected form. This section

outlines the fundamental ideas underlying each algorithm to provide a

single source document. The discussions are necessarily brief and the

reader is directed to the primary references for in-depth descriptions.

A. GNET

GNET is an extremely efficient and elegant code that solves network

flow problems with linear costs and bounded variables. GNET uses the

well-known primal revised simplex algorithm specialized for networks.

1. Primal Revised Simplex Algorithm

Consider the following linear program:

(LP) MIN c
T
x

s.t. Ax = b

where c is a vector of cost coefficients and A is a matrix of technological

coefficients. Any lower bounds on the variables, x, have been eliminated

by transformation. The matrix A may be partitioned into two sub-matrices

B and N to yield

A = [B : N]

where a matrix of linearly independent columns, a basis, is represented

by B and N consists of the remaining columns of A.

37

The vectors c and x may be similarly partitioned to form

c
T

= (c
B

c") ,

X - \ Xg Xi.) ,

which implies that

c x = c x
B

+ c x
N

.

Redefining variables so that e\/ery nonbasic variable is at its lower

bound simplifies the procedure. Utilizing the notation of Bradley, Brown

and Graves [Ref. 3], let x. be replaced by u. - x. (reflection) whenever

x. reaches its upper bound.

Given a feasible basis, there exists a unique solution x, such that

Bx = b, and a basic solution where x = (x
R

0) .

Any solution satisfying the constraints can be written as

Ax = [B N](x
B

x
N)

T
= Bx

B
+ Nx

N
= b ,

or

x Q = B^b - B'
1
Nxw .

B N

Denoting B" N as Z yields

x
B

= B" b - Zx
N

.

The value of the objective function c x, expressed in terms of x^. is

then c
T
x = CgB^b + (cl - CgB"

1
N)x

N
.

Differentiating with respect to x
N

provides the rate of change of the

objective function in response to changes in x •

3C
~ T

* = cl - cIb^N .

3x
N

"N

The vector CgB" is the solution to

w
T
B = cj , (1)

where w is commonly referred to as the dual solution vector.

38

Favorable movement of the objective function (minimization)

from a feasible solution is indicated by

c. - w^ < (2)
J J

for nonbasic variables j at zero flow. Any nonbasic variable x.

satisfying (2) will induce the following change in the solution (assuming

all other nonbasic variables remain fixed):

x
B

= B^b - Zj Xj (3)

x
N

= (0,...,Xj t ... 0) . (4)

As this solution satisfies the explicit constraints, enforcement of the

bound constraints will ensure that feasibility is maintained. Updating

the variable partition completes the procedure.

Bradley, Brown, and Graves [Ref. 3] give the following interpre-

tation of the revised simplex procedure:

STEP 0: Obtain a feasible solution.

REPEAT

STEP 1: Priceout. Select a candidate variable to enter the

basis that satisfies (2).

STEP 2: Ratio. Find the greatest bound such that the incoming

variable:

a. does not exceed its upper bound, or

b. drives a basic variable to its lower bound, or

c. drives a basic variable to its upper bound.

STEP 3: Pivot. Update the solution using (3) and (4). If

case (a) of STEP 2 applies, reflect the candidate incoming

variable chosen in STEP 1 and leave the basis and dual

39

solution unchanged. For case (b), change the basis

(pivot) and find a new dual solution. Case (c) requires

that the outgoing variable first be reflected and then a

basis and dual solution update performed.

UNTIL STEP 1 fails to find a favorable candidate (optimal ity)

.

2. Network Specializations

Recall NPP
3

(NPP) MINIMIZE f(x)

s.t. Ax = b

T < x < u

where A is a node-arc incidence matrix. Restricting f (x) to be a

linear function yields a linear network programming problem (LNP):

(LNP) MINIMIZE c
T
x

s.t. Ax = b

1 <_ x <_ u

Two well-known results that characterize the bases of LNP allow

for an extremely efficient specialization of the primal simplex procedure

to be applied to LNP. First, all bases for LNP are formed by a set of

columns which correspond to a spanning tree for the graph represented

by LNP. Additionally, any such basis matrix B can always be placed in

triangular form by simple row and column permutations. The background

pertaining to these results can be found in any elementary network

programming reference (e.g., Kennington and Helgason, [Ref. 26]).

Triangulation of the basis matrix B implies that Z, which is

defined as B N and thus the solution to BZ = N , can be obtained

3
See Section I.

40

by direct solution (back substitution). Also, the dual variables w

can be found by forward substitution of (1).

Characterization of network bases represented as spanning trees

for the underlying graph suggests an easy method to perform the ratio

test and pivot steps of the simplex method. Since a spanning tree by

definition [Ref. 26] is a connected acyclic graph, any incoming nonbasic

variable will form a cycle with the basis tree. Changes in flow as a

result of an introduced arc will exclusively occur in unit amounts on the

cycle in question. All off -cycle basic arcs will be unaffected. The

direction of flow change (decrease or increase) will depend on the

orientation of a particular basic arc with respect to the incoming arc.

The basic arc on the cycle that reaches its bound first is removed from

the basis (unless the incoming arc reaches its bound first).

Bradley, Brown, and Graves [Ref. 3] employ the following

algorithm:

STEP 0: Given a feasible starting solution

REPEAT

STEP 1: Priceout. Given the dual variables w, the priceout

becomes c. - w- + w- for nonbasic arc k that is

directed from node i to node j. Select an incoming arc

k with c. - w- + w. < or terminate with the

current solution as optimal.

STEP 2: Ratio Test. Three cases analgous to bounded variable

simplex for which:

41

a. The incoming arc reaches its opposite bound u. .

Otherwise a basic variable is selected as the outgoing

variable (for basic arcs on cycle with incoming arc with

opposite orientation).

b. Incoming arc drives basic variable down to its

lower bound, (for basic arcs on cycle with incoming

arc with same orientation).

c. Incoming arc drives basic variable up to its opposite

bound.

STEP 3: Update (depending upon ratio test case result).

a. Reflect incoming arc.

b. Pivot update (see below).

c. Reflect outgoing arc, pivot update.

Pivot Update: simultaneously perform a one-pass

update to:

1) modify flow on arcs in cycle by constant equal

to ratio result,

2) update basis tree representation ("rehang"),

3) update dual variables for nodes whose precedessor

chain to the root is changed by pivot operation

(these are the rehung nodes).

UNTIL OPTIMAL.

The algorithm requires only integer arithmetic with most operations

involving only addition and subtraction. Use of programming tactics and

coding efficiencies described in Reference 3 results in an extremely

efficient and compact code, ideal for microcomputer applications.

42

B. NLPNET

Minimum cost nonlinear network flow problems are solved utilizing

NLPNET [Ref. 19], a primal approach based on controlled truncation of a

conjugate-gradient method for solving the Newton equations. As such,

NLPNET is an extension of the unconstrained Truncated Newton methods

described in [Ref. 27]. Operating on a maximal basis in the manner of

Dembo and Klincewicz's Scaled Reduced Gradient method [Ref. 28], NLPNET is

designed to take advantage of the highly desirable local convergence

properties afforded by Newton methods while avoiding the global conver-

gence problems and computational overhead traditionally associated with

these procedures. These methods belong to the class of "inexact Newton

Methods" [Ref. 29].

1. Basic Properties of Solutions and Methods for Nonlinear

Optimization

Consider the unconstrained nonlinear programming problem (NLP).

(NLP) MINIMIZE f(x)

x e R
n

where

f: R
n
-*R is a nonlinear function with the following properties.

a. f is continuous and twice differentiable.

b. At a relative minimum x*, the gradient g(x*) vanishes and the

hessian matrix H(x*) is positive definite.

c. For all x,eR
n

, the level sets

L(x) h [x : f(x)£ f(x)] are bounded

(e.g., Dembo and Steihaug, [Ref. 27]).

43

Algorithms to solve NLP vary considerably in specific approach,

however, most are iterative descent methods. (Iterative means that the

algorithms generate a series of points based on the preceeding points

while descent implies that each new point produced by the algorithm

improves the solution by reducing the value of the objective function.)

In this manner, such methods would in the ideal case converge to a

solution point of NLP.

For NLP, we must distinguish between two types of solution points:

local minimum points and global minimum points.

Definition [Ref . 30]. A point x* e R
n

is a local minimum point of

NLP if there is some e > such that f(x) >_ f(x*) for all x e R
n
within

distance e of x*.

Definition [Ref. 30]. A point x* e R
n

is a global minimum point of

NLP if f(x) >_ f(x*) for all x e R.

Similarly, the concept of convergence can be viewed in a global

and local context. Global convergence deals with the actual determina-

tion of a solution point from an arbitrary starting point and is not to be

confused with convergence to a global optimum.

Definition [Ref. 30]. An algorithm is said to be globally

convergent if for arbitrary starting points, it is guaranteed to generate

a series of points converging to a local solution point (local minimum).

Local convergence, on the other hand, refers to the properties of

the algorithm in the vicinity of a solution. For example, asymptotic

speed of convergence. One of the more important measures of this speed

is order of convergence .

44

Definition [_ Ref. 30]. Let the sequence {r. } converge to r*.

The order of convergence of {r. } is defined as the supremum of the

non-negative numbers p satisfying

1
r
k+l " r

k I

0<iim £± ^— <«. (5)

k—
I

r
k

- r*
|

p

Larger values of p in (5) imply faster convergence since the distance

x. u

from the limit r* is reduced by the p power in a single step.

For example, quadratic convergence (p = 2) doubles precision at each

step while for linear convergence (p = 1) the reduction ratio remains

constant.

Finally, if a sequence has order p convergence, then as k becomes

very large, we have

I
r
k+1

- r* |
= S| r

k
- r* |P

,

where 8 is a constant termed the convergence ratio [Ref. 30].

2. Newton's Method for Unconstrained Optimization

NLP can be solved using the well-known Newton method

[e.g., Ref. 30], where the function of f being minimized is approximated

locally by a quadratic function and this approximating function is then

minimized exactly. Thus near the point x , we can approximate f by the

truncated Taylor series:

f(x) * f(x.) + g(x)

T
(x - x.) + l/2(x - x)

T
H(x)(x - x) .

45

Minimizing the approximation by setting the derivative equal to zero

yields:

g'(x) = g(x) + g'(x)(x - x)
= ,

where g(x) is defined as the gradient vector of the function f

evaluated at the point x and g'(x) is equivalent to H(x), the

hessian matrix of f evaluated at x .

Making the appropriate symbol replacements and defining the

vector (x - x) as p gives us:

H(x) p = -g(x) . (6)

Equation (6) is the classical representation of the Newton method in

an unconstrained setting with p often referred to as the Newton

direction or the Newton step. This suggests the following iterative

procedure given an initial guess x :

Step 0. k = 0.

REPEAT

Step 1. Solve H(x"
k
)p

k
= -g(x

k
) for p

k
.

Step 2. x
k+1

*x
k

+ p
k

.

UNTIL convergence.

An equally familiar result is that under the regularity assump-

tions given earlier this method, although well defined near a solution

point, may not converge when far from a solution. One reason for such

behavior is that the quadratic function is a poor approximation of f at

the point x. . Since in its pure form the Newton direction contains

both direction and steplength (the magnitude of the direction vector),

46

information based on the assumption of quadratic properties for f, either

or both of these quantities may be inappropriate for the function under

consideration. Traditionally, the method has been modified to enhance

its convergence properties and accommodate arbitrary functions. The most

frequent modification is the introduction of a search parameter x as

fol lows:

Vi * x
"k

+ Vk (7)

wher e x. is chosen to minimize f in the direction p. . For points

where the Newton quadratic approximation is "good," x. should be

approximately one. When x. i 1, the ray search (7) is used as

insurance that descent with respect to f is realized on the Newton

direction.

Finally, Newton's method can fail if H(x.) becomes non-positive

definite at points far from a solution. In such cases the method may not

yield a direction of descent and can in fact seek a relative maximum

point. The method's characteristics are summarized in Figure 4.

3. Truncated-Newton Methods for Unconstrained Optimization

Since the benefits of the Newton direction are greatest in the

immediate vicinity of a solution, where the quadratic approximating

function best describes the actual function, an accurate determination of

the Newton Direction appears unnecessary when far from a solution. The

use of iterative methods to solve the Newton equations suggests a direct

trade-off between computational effort and Newton solution accuracy. It

47

ADVANTAGES

1. Locally and quadrat ically convergent.

DISADVANTAGES

1. The method is not globally convergent.

2. It is not defined at points x, where H(x)

is singular or essentially singular in a

numerical sense.

3. For nonconvex problems, it does not

necessarily generate a sequence of descent

directions.

4. An n-dimensional linear system of equations

must be solved at each iteration.

Fig. 4. Characteristics of the Newton Method.

is precisely this relationship that the Truncated-Newton class of methods

[Ref. 27] seeks to exploit. At the outset of the optimization, easily

obtainable but relatively inaccurate approximations to the Newton Direc-

tion are tolerated with increasing accuracy demanded as x. approaches x*.

In order to control such a method, a measure of required accuracy

is needed that reflects how "far" the present value of the objective

48

function is from a solution. The currently preferred measure [Ref. 27]

is the relative residual

II r
k

|| / || g k
|| where r

k
is defined as

r
k

= HU
k)P k

+ g(x
k

) .

The iterative method applied to the Newton equations is therefore

truncated when the relative residual is "small enough."

The basic outline of a Truncated-Newton method [Ref. 27] is

given in Figure 5. Equations (8) and (9) are conditions guaranteeing

"sufficient descent" [Ref. 27]. It can be shown [Ref. 31] that if these

conditions are satisfied for x
k

and if {x. } converges to an optimal

point x* at which H(x*) is positive definite, then there is an iteration

index k >^ such that x. - 1 admissible for k >_ k and {x\} converges

superlinearly (order > 1) to x*. These conditions therefore operate in

conjunction with the direction finding mechanism to produce desirable

terminal convergence properties (when the method does in fact converge).

Using a conjugate-gradient (CG) algorithm to iteratively

calculate the search direction p. , Dembo and Steihaug [Ref. 27] pro-

pose the truncated conjugate-gradient algorithm (TNCG) illustrated

in Figure 6 to serve as the minor iteration.

There are three different ways in which the TNCG minor iteration

can terminate:

49

Given an initial solution x :

k

REPEAT

Major
Iteration

Compute f(x
k),

g(x
k
), H(x"

k
)

Test for convergence
IF (NOT convergence) THEN

Minor
Iteration

Calculate p. such that

H(x
k
)p

k
= -gU

k
)

Using a Truncated Newton iterative method

Calculate some x
k

that satisfies

f(x
k

+ x
k
p
k

) < f(x
k

) + aX
k
g(x

k
)

T
p
k

; a e(0,l/2) (8)

^\ + Vk^k - 89^ k
)

T
P
k

; 6 e (a, 1) (9)

Vl * X
k

+ Vk
k - k+1

ENDIF

Until convergence

Fig. 5. Truncated-Newton Method

50

Denoting k as the major iteration counter and f(x.), g(x.), H(x.)

as f. , g. and H, respectively

Minor
Iteration I"

Step 1: p +

REPEAT
Step 2:

Step 3

Step 4:

d - r

3
T
d - r]?

,

q. . Hkdi

J- -J-
IF a!q

i

< e {d\d.) THEN

EXIT: d if i =

ENDIF
p. otherwise

-T- , ;,T-

Pi+1
* P

i
+ «

i

d
i

r
i+l * r

i

a.q-

IF II r
i+1 II / II gk

II < n
k

THEN

EXIJ: P
k

* P i+ l

ENDIF

6
i

* ?
i+l

r
'i + l

I *Vi

d
i+1

* r
i+1

+ 9
i
d

i

3T 3 -T - 2-3T-3
d
i+l

d
i + l

* r
i+l

r
i+l

+ B
i
d

i

d
i

i * i+1

UNTIL EXIT

Fig. 6. Truncated Conjugate-Gradient Algorithm

51

a. The gradient vector g. points in a direction of

negative curvature (g^H^g^ < 0). In this case, the minor iteration

returns with p. = -g. , the steepest descent direction.

b. A direction of negative curvature is encountered in the

CG iteration (^H.d- < 0) prior to satisfying the Truncated-Newton

termination criterion. The CG procedure is terminated and the current

estimate pY is used. Dembo and Steihaug [Ref . 27] show that p. is a

direction of descent.

c. The algorithm terminates with the Truncated-Newton

criterion. Dembo and Steihaug [Ref. 27] show that this always occurs

in the vicinity of a strong local minimum and thus is the determining

factor in the rate of convergence.

Dembo and Steihaug [Ref. 27] define {r\.} as the forcing

sequence, case c above as the Truncated-Newton termination and directions

resulting from either cases a or c as Truncated-Newton directions.

It can be shown [Ref. 27] that the TNCG algorithm is globally

convergent and capable of coping with regions where the hessian is

indefinite. The following theorem indicates that the order of convergence

can be controlled with the proper choice of the forcing sequence.

Theorem 1 . (Dembo and Steihaug [Ref. 27]) Properties of the

Forcing Sequence.

Assume that the Truncated-Newton iterates {x. } converge to

x*. Then

52

a. {x. } + x* superli nearly (order > 1) if {n. } - 0.

b. {x. } + x* with order (1+t) if

n
k
<c || gk M*

for some c > and < t <_ 1.

c. {x.} + x* linearly (order 1) if n. is uniformly less

than one and bounded away from zero.

Theorem 1 indicates that by choosing

n
k

= c || g k
||* (k = 0,1,2,...)

for some c > and < t <_ 1, the TNCG algorithm will possess

any prescribed order of convergence (1 + t) between one and two.

The result is an adaptive algorithm that solves NLP. When far

far from a solution, || g. || is large as is n. and little

effort is needed to satisfy the Truncated-Newton criterion. As

{x. } -> x*, {g. } - which implies {n. } + thereby forcing {f. } - and

p. to the Newton direction. The method therefore automatically

incorporates an increasing amount of second-order information as the

optimization process progresses just when such information is of

greatest use.

4. Truncated-Newton Methods for Linearly Constrained Optimization

Truncated-Newton methods derived for unconstrained optimization

can be extended to solve linearly constrained nonlinear problems of the

form

53

(LCNLP) MINIMIZE f(x)

x . R
n

s.t. A x = b

1 <_ x £ u,

where the function f(x) is convex and separable (i.e.,

f(x) = s. • f^U,-) and each f,-(x.j) is a convex function).
J J J J J

a. The "Reduced Problem"

In the manner of Murtagh and Saunders [Ref. 32], partition

the columns of A as follows:

A = [B S N],

where the columns of B form a basis; the columns of S correspond to super-

basic variables (nonbasic variables whose flow is allowed to vary

between bounds); and the columns of N to nonbasic variables with flow

fixed at either bound and not allowed to vary. Similarly, the other

important vectors can be partitioned.

x = [i(n Xr)L] (primal solution),

9(x) = [g(x
B) g(x

s) g(x
N)] (gradient vector),

P
= [Pg Pc Pm] (search direction vector),

as can the function f(x) = f(x
B
,x

s
,x

N).

This partition allows us to re-express the constraint set

A x = b

as

or
[B S N][x

B
x
s

x
N
] = b

B x„ + S x, + N Xn = b

54

solving for x
g

(utilizing the fact that B represents a basis and thus

B" exists),

x
B

= B
_1

b - B"
1
Sx

B
- B"

1
Nx

N
.

Now we are able to express f completely in terms of [x<-)L] and denote
A

this function by f.

f(x
s

, x
N

)
= f(Z~

l
b - B^S^ - B

-1
Nx

N
, x

$
, x"

N
) .

Calling f(x<-, JL) the "reduced problem" or RNLP, we note the following

^ ^ rs •n

9 = f (x
s

, x
N

)
= [g s g N]

and by the chain rule,

9S
=
Tx

s
" H

s

+
-3x-

B
lx^ - g S " ^ B S)

Therefore the modified problem becomes

(RNLP) MINIMIZE f(x
$

, x
N

)

x
s

, x
N

e R

s.t. L < x. < u<- (10)

As the bound constraints (10) and (11) can be handled implicitly, we

essentially are now dealing with an unconstrained problem,

b. The Search Direction

A generic minimization algorithm for RNLP would calculate

successive search directions from a feasible initial point, updating x

until convergence. Since for iteration k of this sequence,

A
*k = Pk = Vi - x

"k

55

and from previous results we know that

AX
k

= [AXg AX
S

AX
N J ,

ax
n

= by definition,

ax r
= B~

l
b - B^SiL - B"

1
NxN - B^b + B^Sx. +B"

1
Nx MB b

(k+l) V+l) (k) V)

,-1,= -B S(x^ ~ *c)
= -B Sax,-.

5
(k+l) ^(k)

a

It follows that

AX
Ik)

AX r

AX,

AX,

'(k)

'(k)

and

Pk
=

**k

Vs"
I

I

"-B"
1
Sax,

AX,

(k)

"-bV
(k)

= I

)

. -

PS
(k)

AX
S '

(k)

Given a feasible point x , a Newton method to solve RNLP

would involve successive solutions of a quadratic program to compute

search directions.

MINIMIZE l/2p
T
H(x)p + g(x)

T
p (12)

P

s.t. p. <_ 0, x. =]. (j e S)

Pj > 0. x
j

= u
j U e B) .

Denoting the matrix
-B^S

I as Z and altering (12) for RNLP implies

56

MINIMIZE l/2pjZ
T
H(x,)Zp

s
+ g(x,)

T
Zp

s
(13)

h

s.t. Pj < 0, Xj = lj (14)

Pj > 0, Xj = Uj . (15)

The feasibility constraints (14) and (15) limit admissible

search directions for variables at bounds. As p N
is chosen to be

zero and p<- can be handled explicitly during solution of (13), only

the components of p R
are likly to cause trouble. Dembo and Klincewicz

[Ref . 28] point out that the major difficulty is one of wasted computational

effort. If after p<- is determined the induced p B
violates (14) or (15),

a new basis must be found and a new search direction [p R
p-] calculated

until all constraints are satisfied. They further show that if one

operates using a basis with the greatest number of variables between

bounds (free variables), the only nonbasic variables that cause concern,

with respect to feasibility, are those moving away from a bound. Such a

basis is termed a maximal basis [Ref. 28].

The solution to (13) when H(x) is positive definite (recall f

and thus f are convex) is,

Z
T
H(x)Zp

s
= -Z

T
g(x) .

Z H(x)Z and Z g(x) are often referred to as the reduced hessian and

and reduced gradient respectively.

We now have a system of equations in the unknown vector p

that provides the solution to the direction finding problem for RNLP

57

and hence for its equivalent, NLP. Additionally, we can recover the

complete p vector through the relationship,

P = zp
s

.

The Truncated-Newton Congugate-Gradient method can now be applied

directly to the quadratic approximation of RNLP.

5. Primal Truncated-Newton Method Specialized for Networks

The material presented to this point is totally general and

nothing in its development relies on the fact that the problem in question

is a network program. With this in mind, it is now time to examine some

of the special structure afforded by the network representation.

Define A of LCNLP (and RNLP) to be a node-arc incidence matrix

of a directed network. The result is the usual formulation of the

capacitated minimum cost network problem with a convex separable objective

function. We shall label these new problems NLN and RNLN.

Any solution technique for NLN can naturally take advantage of

the special structure of network optimization problems, dispense with

explicit representations of the basis inverse and perform update and

solution operations directly on a network specialization of the basis

representation.

First consider the form of the reduced gradient of RNLN,

i

B g s \
'3 ' ' '

Z
T
g = [-sV T

I 0] [g R g- gJ
T

= -sV T
g R

- i

Recognizing B" g B
as the estimates of the dual variables (denote

as w) and the solution to

B
T
w = -g R ,

58

suggests that w can be determined by solving a triangular system of

equations since network bases B (and hence their transpose) can always be

placed in triangular form by simple permutation. Calculation of the dual

variables in this manner would allow easy computation of the reduced

gradient. This is a relatively standard approach to NLN.

The solution technique just developed serves as a framework

in which to embed an adaptive direction finding mechanism and thus

produce a Truncated-Newton method. With the addition of control logic

and procedures to monitor and manipulate the variable partition, we

have all the necessary ingredients of a complete algorithm to solve

NLN [Ref. 19].

Consider NLN and the associated problem RNLN. Given an initial

feasible solution x ,

STEP 0: Partition x into basic, superbasic and nonbasic sets in

such a manner that a maximal basis is established. Likewise,

partition g and H.

k -

STEP 1: Calculate the dual variable estimates (w) by solving

B
T
w = -g

B
(w = -B"

T
g B

).

STEP 2: Compute the reduced gradient,

3f _ 7 T- cT D -T- - CT--y - Z g = -S B g B
+ g $

= S w + g<. .

59

STEP 3: Test for optimal ity on subspace defined by active superbasic

vari ables.

IF || Z g II £ tolerance THEN optimal on current subspace

FIND those nonbasic variables eligible to enter superbaisc

set. Eligibility is determined by potential for feasible

displacement from bound and subsequent reduction in objective

function value.

Compute il = -N
T
B-

T
g B

+ g, = N
T
w § N

IF (3f/3x
N

> and (x
N

) . = 1 .) OR

(af/ax.. £ and [xJj . - u.) for all j € nonbasic set

THEN

STOP - OPTIMAL solution has been found.

ELSE

Add the nonbasic variable(s) not satisfying the above

conditions to the superbasic set.

GOTO STEP 1.

ENDIF

60

STEP 4: Compute a feasible, improving direction (Truncated-Newton

direction) by solving

(Z
T
HZ)p

s
= -Z

T
g

using a Conjugate-Gradient (CG) algorithm with the

termination rule

r
i

'_J_
<_ force .

II Z
T
g\ ||

where

force. = min (force , II Z g || }, force < 1, t e (0,1],

r
i

= -(Z
T
HZ(p

s
)

i

+ Z
T
g) ,

i = CG iteration number.

STEP 5: Ensure all components of p<- calculated in STEP 4

maintain feasibility.

Let (p$)j
= if (ps)j

< and {x
$

) . =
1^ ,

(p
s)j

= if {p
s
). > and {*

s
) . = Uj .

STEP 6: Calculate a search direction for the basic variables by

solving
Bp

B
= -Sp

s
.

STEP 7: Find a steplength x giving "sufficient descent"

(Goldstein-Armi jo conditions).

STEP 8: Update the flow,

Vi * x\ + x
kPk

IF (xp)- at bound then pivot and replace with free arc

from x<. (if possible) to maintain maximal basis.

IF (x<-). at bound then remove from superbasic set.
^ J

k k + 1.

GOTO STEP 1.

61

Changes of bases are performed using the pivot mechanism of

GNET [Ref. 3]. The single variable linesearch to determine x is a

safeguarded successive cubic approximation method [Ref. 33] modified to

incorporate the Goldstein-Armi jo conditions, (8) and (9). This par-

ticular linesearch is not crucial to the success of the method and any

reasonable substitute could be used; although quite complex, it is

reported to be very robust [Ref. 33]. The TNCG algorithm requires that

both gradient and hessian information be available. Finally, the algo-

rithm requires an initial feasible solution. This is not a limitation,

but rather an advantage as the first solution can easily be provided by

efficient linear network programs (i.e., GNET) thereby allowing the

nonlinear code to be streamlined and overall computational effort reduced.

C. ENET

ENET solves network programming problems with "elastic" ranged

constraints and bounded variables using a modified revised primal simplex

method.

Elastic constraints can be violated by incurring a linear penalty

as opposed to the rigid or inviolate constraints of the classical (network)

programming problem. Brown and Graves [Ref. 20] point out that such

an elastic model is a realistic and powerful portrayal of many real

world situations. Hence it may be advantageous to relax some constraints

(and incur a penalty) in order to satisfy others, or improve the value of

the objective function. This class of models, therefore, offers the

analyst complete flexibility in the formulation of NPP.

62

1. Ranged and Bounded Model

The traditional bounded linear (network) model (LNP) is

(LNP) min c
T
x

s.t. Ax = 6 (16)

1 <_ x < u

Addition of upper and lower ranges on the (flow conservation)

constraints (16), yield the following ranged and bounded model (RLNP):

(RLNP) min c
T
x

b_ <_ Ax _< "b

1 <_ x < u .

By introducing additional (structural) variables y and (logical)

variables s as follows:

y = x - T ,

and

<_ s £"5" - £ ,

RLNP is transformed into the equivalent equality-constrained model with

translated ranges and bounds:

min c y + c T

s.t. Ay + s = "b - AT

< y < u - 1

< s < b - b .

s is a vector of nonnegative slack variables one for each constraint,

that measure deviation of the current constraint value from the appropriately

translated upper range.

4
Section III, Subsection A.

63

2. Elastic Model

Now consider the enhancement to RLNP where the constraint (flow)

ranges are allowed to be violated. For the purposes of this paper, the

penalty functions will be restricted to the linear case to maintain

piecewise linearity of the objective function. Let z and z_ be vectors of

the penalty coefficients (the i elements define the cost per unit

t h
violation for the i constraint) for the upper and lower constraint

ranges respectively. The resulting model is:

(ERLNP) min c
T
y + c

T
T + 7Tr + z

T
a

s.t. Ay-r + a + s = b"-AT

<_ y < u - 1

0< s < b - b (17)

a, r >_

The vectors a and r are (logical) artificial and surplus variables

introduced to maintain equality constraints with all nonnegative variables

as is the custom for the simplex method.

A mathematically equivalent model for ERLNP is

min c
T
y + c

T
T + z(Ay - b + Al) (18)

with _
z if Ay >_ b - Al

z =
{ -z i f Ay < B - Al

otherwise .

Y, z > (for convexity) .

This is known as the Lagrangian form, and illuminates the fact

that T and z are actually bounds on the variables of the dual formulation.

64

A graphical representation of the elastic cost implication for each

constraint of ERLNP is given by Figure 7.

Cost

Region of Zero
Penalty

< >

AiV + A.1

Hi

Fig. 7. An Elastic Ranged Constraint

In this sense, with i = ~z = », each constraint can be depicted as

in Figure 8 where the discontinuities at the upper and lower ranges

indicate that the ranges are rigid as in (RLNP) and cannot be violated

(i.e., an infinite penalty beyond the defined range). Flow within the

allowable range incurs zero penalty.

Cost

Region of Zero

Penalty
< >

*1
b

i

A,-y + A^ = A.x

Fig. 8. A Rigid Ranged Constraint

65

When b- = b^ = b^ , the range collapses to a point as shown in

Figure 9 and the model specializes to LNP.

Cost

A,y + A
n
i = A

n

x

Fig. 9. Classical Equality Constraint

Consider the relationship between the logical variables s, a, and

r in ERLNP. The slack variable s- measures the distance a solution is

from the upper range of constraint i. As given by (17), s- has an

upper bound equal to the difference between the upper and lower ranges.

The artificial variable a- measures the distance a particular solution

is below the lower range while the surplus variable r measures distance

above the upper range (both are unbounded variables in the current

presentation). Figure 10 shows this relationship for a given constraint.

s.j, a-, and r. are mutually exclusive in any basic solution since they

are evidently linearly dependent columns. Additionally, a, and r, must be

equal to zero if non-basic, while s. can be non-basic at either zero or its

upper bound "b- - b^ • . Thus, for any given solution, the status of s^

,

a-, and r. may be summarized (Figure 10):

66

1. Upper range violated by r- at cost 7- r- (a- = s- = 0).

2. No violation (a, = r. = 0).

3. Lower range violated by a^ at cost z- a- (s- = b- - b- t r- = 0)

Cost

1

1

1

1

1

1

1

1

1

1

1

Li

1

N. 1

1

' z
i

a
i

<-

b.—

i

s
i

<"

-> r.

Fig. 10. Relationship Between Logical Variables for ERLNP.

3. Elastic Primal Revised Simplex Specialized for Networks

All solutions to ERLNP which satisfy bounds (1 . _< x. <_ u.)
J w w

are feasible since the artificial and surplus variables are unbounded.

Therefore, a solution technique for ERLNP does not need to be partitioned

into the usual two phases: (I) where feasibility is achieved, and (II)

where optimality is obtained while maintaining feasibility. Any starting

solution satisfying bounds 1 and u will serve to begin the solution

process. Essentially, ENET employs the primal revised simplex technique of

GNET with modifications in logic and data structure to accommodate

the additional arcs (variables) implied by the elastic model. Figure 11

shows the logical arcs employed for each node. For any solution, all

67

Artificial

Fig. 11. Logical Arcs Generated for Node i

required information for each (flow conservation) constraint and its

penalty contribution to the objective function is generated logically

from:

1. which logical arc (if any) is in the basis, and

2. which bound the slack arc s^ assumes when non-basic.

Brown and Graves [Ref. 20] describe the following Elastic Prima'

Simplex Network Algorithm:

STEP 0: Select a starting solution.

68

REPEAT

STEP 1: Price Out . Given the dual variables w, the reduced

cost of each explicit arc is:

r. -*- c. - w- + w. (arc k orientated i to j, or non-
basic arc k at upper bound
orientated j to i

)

and for logical arcs,

Ui + w
i

for a-

r
i

*
|

+ w
i

for s-

7
i

* w
i

for r- .

Select an incoming arc with r. < or terminate with the

current solution OPTIMAL.

STEP 2: Ratio Test . Determine outgoing arc as in GNET.

STEP 3: Update . Same as GNET, substituting obvious specializa-

tions for updates involving logical arcs.

UNTIL OPTIMAL

The only data required by this enhanced elastic model in addition

to classical GNET are for each node the new penalties, the difference

between the upper and lower ranges, and whether s- is reflected.

The resulting algorithm and data structures are well-suited

for microcomputer implementation. The moderate increase in data storage

is compensated by a significant model enrichment. In particular,

1. Total supplies and total demands no longer need be equal, nor

must supply nodes be connected to demand nodes by paths of

sufficient capacity to insure classical feasibility. Infeasible

problems are intrinsically diagnosed and optimally treated.

69

2. All problems possess feasible primal solutions in the extended

elastic formulations, and this provides reliable bounds for dual

solutions.

3. All bounded problems possess optimal solutions yielding optimal

dual solutions.

4. Informal relaxation (e.g., Lagrangian Relaxation) methods are

naturally accommodated in this context.

5. Formal decomposition methods are provided much more robust

primal and/or dual proposals.

6. (Mixed) integer models produce strictly feasible solutions in this

extended Lagrangian context.

and perhaps most important:

7. Solutions are reliable, inexpensive, and managerially appealing.

Finally, as we shall see, the complete Lagrangian objective function

yields a unifying perspective of solution properties and intrinsically

gives profound information to the analyst or algorithms using ENET.

D. UNET

UNET solves elastic ranged bounded linear network problems where

certain arcs are designated as "1-u" or binary arcs. These arcs can

admit flow at one of two possible values—the lower or upper bound,

hence the label "1-u". Consider first the simplest bounded "1-u" model:

(LULNP) min c
T
x"

s.t. Ax = 5

T <_ x <_ u

x = {)L, x >, x e (T, u> (integer restriction)

70

By adding the now familiar elastic range framework LULNP becomes

(ELULNP) min c
T
y + c

T
l + 7T r + _z

T
a

s.t. Au-r + a + s = b-Al

< y < u - 1

< s <F - b

a, r >_

y = {y
f , y

u
>, y e {T, u} (integer restriction).

Such a formulation is termed a mixed integer problem (MIP) since

there are both fractional (with respect to flow bounds, x
f

) and integral

(again with respect to flow bounds, x) arcs present. Note that the

cost coefficients c associated with y may be interpreted as fixed

charges in the sense that for admissible solutions, the cost contribution

is either c 1 or c u for each "1-u" arc, and that each "1-u" arc is

essentially equivalent to a binary decision variable.

Brown and Graves [Ref. 20] employ an enumeration technique to

solve ELUNLP which exploits the elastic model structure and produces

excellent solutions satisfying the integer restrictions with very little

computational effort.

Their approach is analogous to classical branch and bound [e.g.,

Ref. 1] with the following specializations and supporting observations:

1. Any continuous relaxation of ELULNP (with integrality violated

by one or more arcs in y) provides a lower bound for the

value of an optimal solution to ELULNP.

2. Any continuous relaxation of ELULNP can be rounded to an integer

solution (satisfying integrality for y) with very little

71

effort. Further, such rounded solutions are all admissable

(feasible in the extended elastic sense).

3. Restrictions of ELUNLP (with one or more arcs in y,, fixed

at a bound) are all admissible (elastically feasible) and possess

solution values no higher than the lower bound of their respec-

tive relaxations.

Thus, enumeration by branch and bound may be organized:

STEP 0: Relax (free) all integrality restrictions on y ,

prepare for storage of an incumbent solution, set the

lower bound for solution value to + «.

REPEAT

STEP 1: Solve ELUNLP with current restrictions.

STEP 2: Improve lower bound on solution value, if possible.

STEP 3: Round solution (heuristically) to satisfy integer

restrictions.

STEP 4: Compare rounded solution with the incumbent, replace

incumbent if possible.

STEP 5: IF current solution value is worse than current lower

bound, go to STEP 7.

STEP 6: Fix a variable. Heuristically select a free member of

y,. and fix it at a bound. Go to STEP 1.
•'u

STEP 7: Heuristically select STEP 8 or STEP 9.

STEP 8: Reverse a variable. Select a previously fixed variable

and reverse it to its opposite bound, go to STEP 1.

If no fixed variable exists, go to STEP 9.

72

STEP 9: Backtrack. Select a reversed variable and free it. Go

to STEP 1.

UNTIL TERMINATION.

Note that the heuristic decision rules involve the method of

rounding a solution and the selection criteria for candidate variables to

fix, reverse, and free (Figure 12). Within this framework, particular

heuristics yield a wide variety of enumeration strategies. The particular

strategy chosen for microcomputer use:

1. rounds the current restricted solution in three passes, each of

which selects variables from a class defined in terms of e,

where _< e _< .5 and eu <_ y < u or 1 <_ y £ el

.

Class 1: nearly integral (0 < e <_ .2)

Class 2: fractional (.2 < e <_ .4)

Class 3: ambivalent (.4 < e <_ .5)

The rounding heuristic sequentially exhausts variables from each

class and rounds using a "minimal regret function," rounding away

from the worst penalty.

y- = opposite
bound

y.j
= bound

Fig. 12. Primitive Enumeration Restrictions

73

2. variables are selected for fixing by minimal global regret,

and

3. variables are fixed, reversed and freed via a LIFO List operating

exclusively on the last entry in the list:

Fix: Push fixed variable on LIFO.

Reverse: Update status of top variable on LIFO.

Free: Pop reversed variable from LIFO, mark it as

freed (Figure 12)

.

Also note that there are only depth and value-motivated fathoming

rules (decision rules for reversal or backtracking); feasibility plays no

role in the enumeration except via the value of the Lagrangian objective

function.

Finiteness of this class of enumeration methods is evident

as long as the fix/reverse/backtrack mechanism cannot yield successive

solutions with identical restrictions.

What is not immediately apparent is the remarkable effectiveness

of these heuristics with the elastic enumeration model. Integer solutions

and lower bounds of excellent quality are empirically produced quite

early in the enumeration effort, permitting routine early termination of

the search based on an optimal ity tolerance or on a maximum depth (per-

missible number of fixed variables in any restriction); tuning of the

method is easily accomplished via these two limits and the elastic

penalties used to express the underlying model.

74

y, = opposite
bound

*2

Restriction
{V(S.)}

opposite
bound

= bound

A Fathom
_by Value
"or Depth

Sq = "relaxed" solution, V(S.) solution values

Fig. 13. Generic Enumeration Tree (Fixed Order)

75

IV. PACKAGE DESCRIPTION

The mathematical programming package described here provides an

integrated repertoire of minimum-cost network flow models for use with a

microcomputer. Various interface and control modules are also described

which reduce the user's workload and automate the solution process.

Extensive facilities for data file management and provisions for incor-

porating custom problem generators complete the package.

A. OVERVIEW

1. Package Components

Actually a suite of separate programs coordinated by a master

program, the package is automated wherever possible and completely

interactive. Designed in a highly structured manner, each program is

modular, relatively standardized and, with minor modifications, capable

of independent operation. Routines common to more than one program or

subject to frequent modification reside in the system library. These

features simplify modification or deletion of existing modules, addition

of new programs, or even the incorporation of the entire package (or some

subset) into a larger structure. A macro view of the package is given in

Figure 14.

THE APPLE II microcomputer version of the package, exclusive of

data files, spans two disk volumes (removable floppy disks). The Pascal

operating system, system library, master program, and all solution

programs reside together on a volume that is always on-line. The editor

and associated preprocessor programs are on a second volume that can

76

SYSTEM*
LIBRARY

MASTER
PROGRAM

|
EDITOR

| IELASTICNETI
|

GNET | |
NLPNET |

I I I I I
UNET

| |
ENET

|

PREPROCESSORS

* ACCESSIBLE TO ALL PROGRAMS

Fig. 14. Package Block Diagram

77

be taken off-line after the desired program is loaded into main memory.

Data files occupy additional volumes present only for read/write opera-

tions. This partition is dictated by the size of the package code and

has been chosen to minimize disk manipulation requirements in a two-drive

system (the minimum practical configuration). Package operation is thus

able to proceed with volume exchange required only for data file access

and editing procedures.

2. Data Files

a. Structure

Although several quite distinct models are supported, a

common format is possible through the use of Pascal's facility of variant

records. A Pascal record is a compound structure of arbitrary types of

data which, when composed of types with partly identical components, is

termed a variant record. A portion of the record is the same for all

occurences while the remainder (the variant part) may differ depending on

the value of an indicator variable (also part of the record). Wirth

[Ref. 34] gives an excellent description of such data structures and

their employment. This allows use of a single data structure for inter-

program transfer of information with specific portions of the package

extracting only those items they actually need. Each program then

converts this input data into the required internal data representation.

Solution technique selection can thus be accomplished without user

intervention as the data record contains enough information to determine

problem class and a record can be accessed by any portion of the package.

The use of the same type record for all problems provides streamlined

78

data access procedures without sacrificing the efficiency of custom

internal data structures for each program.

A typical data file is a collection of randomly accessable

records, each of which has three possible structures: (1) header, (2)

arc, and (3) node. The Pascal interpretation of this scheme is described

in Appendix A. Although only one header record is allowed per file, any

number of arc and node records (subject to free disk volume space) can be

contained in a single file without regard to order. All arcs of the

model must be explicitly represented in the data file; however, only

those nodes with attributes not equal to default values must be included.

Solution programs assign appropriate default values to all nodes and then

process the input file making note of the nodes that deviate from default

settings. A disk volume dedicated to one file can accommodate approxi-

mately three thousand such records (APPLE II).

Constructed by the EDITOR during file creation, the header

record describes the problem represented by the file. Problem name,

problem type, number of nodes, number of arcs, and access history are

included in this record.

Each arc record contains the arc name, source and destination

nodes, bounds on flow, initial flow, and cost information. Depending on

the type of arc represented, the cost data varies. For linear cost

functions, only the cost per unit flow and the "1-u" status are needed.

Nonlinear cost functions require specification of the function identifica-

tion (assigned number in the function library) and coefficient structure.

Node records specify name, identification number in the

model, type, flow requirements, flow range, and penalty for range violation

79

The identification number must be unique for a given model (enforced by

the EDITOR on file creation and update). Flow requirements determine

the node type as follows: zero f low—transshipment, positive flow-

supply, and negative f low—demand.

Internal data representations will be presented as the

various programs are discussed.

b. File Naming Conventions

In order to reduce operator workload, a menu-driven data

file selection technique is employed. Each data file name, regardless

of the type model it represents, contains the suffix ".net." Whenever a

file is to be accessed, a directory for the on-line volumes is displayed,

files with this suffix are identified, and a single keystroke selects the

desired file. This approach ensures that only files compatible with the

package are accessed and greatly simplifies their retrieval (from the

user's point of view). The EDITOR program appends the required suffix to

user-designated file names upon file creation.

3. User Friendly Features

Menu-driven displays and single keystroke option selection

make the package easy to use. On input, all user entries are examined

for errors in the sense of range, type matching (numeric vs. alpha), and

context as applicable.

Two general menu formats are standard throughout the package.

The first is used for selecting courses of action. In such a situation,

one of the displayed items must be selected before the program continues.

The option selection menu from the EDITOR program serves as an example of

this process and is shown in Figure 15. A common decision point in

80

EDITOR PROGRAM

OPTIONS
#######

A(lter an existing file
B(rowse through file
C(reate a new file
R(emove a file [permanently]
T(ransfer a file

<ESCAPE> EDITOR program and return to MASTER program

OPTION DESIRED

— []—

Fig. 15. Typical Option Selection Menu

optimization programs concerns the setting of program parameters. The

second menu format deals with this by displaying the default values or

choices as appropriate. To change a particular value, the user enters

the menu-designated symbol associated with the parameter in question. If

the parameter is an ON/OFF choice, the change is made when the symbol is

entered; for numerical quantities, the user is prompted for the new

value. Menu updating occurs automatically until the user indicates that

all values are correct. Figure 16 illustrates a typical parameter

control menu. Choices from either format may invoke further sub-menus.

Only selections contained in the current menu are admitted: when the

user enters a choice symbol not depicted by the menu in use, an appro-

priate error message is issued.

81

ELASTICNET

OPTIONS
#######

C(omplete printout —

>

ON

D(etailed printout —

>

OFF
F(ile output —

>

OFF

H(ard copy —

>

OFF

I(nternal array dump --> OFF

M(odel alteration ~ > OFF

Are options satisfactory ? Y(es or N(o —

>

Fig. 16. Typical Parameter Control Menu

B. CONTROL AND UTILITY PROGRAM DESCRIPTIONS

1. Master Program

The master program orchestrates package operation by passing

control to appropriate programs as requested by the user (either directly

or indirectly). This is accomplished with two levels of command internal

to the master program as shown in Figure 17. The outer command level

allows the choices of (1) data file manipulation, (2) problem solution,

and (3) package exit. The first and third choices transfer control to

the EDITOR program and the Pascal operating system respectively. A

problem solution request activates the solution command level and package

flow proceeds as depicted in Figure 18.

Problem solution begins with user selection of the input file.

Once the data file has been identified, the course of action is determined

by problem size (number of nodes, number of arcs) and type as indicated

82

Fig. 17. Outer Command Logic

83

* indicates user interaction required (otherwise automatic)

t indicates elastic & "o-u"

£ indicates warning message issued

Fig. 18. Solution Process Logic

84

by the file header record. Linear problem files are those with all

linear arc cost functions to include problems with explicit elastic

ranged or "1-u" constraints. Nonlinear elastic or "1-u" problems are not

supported and are treated as ordinary nonlinear models.

All linear problems, size permitting, are routed to ELASTICNET

(the combination ENET/UNET program), otherwise GNET is invoked (again

size permitting). Nonlinear problems are first examined to ensure that

their size is commensurate with NLPNET capabilities and that all required

cost functions are resident in the system library. If either one of

these tests fails, the user is given the option to linearize and use

only GNET for an approximate solution (assuming size is within GNET

limits). Once it has been decided that NLPNET can safely be called,

initial flow feasibility is determined by a straightforward node flow

conservation calculation. Feasible problems go directly to NLPNET for

solution, however, infeasible problems are temporarily linearized and a

feasible starting point obtained by GNET prior to being sent to NLPNET.

In the event that GNET determines that no feasible solution exists, the

solution process is terminated. Error messages are issued whenever the

outcome of the process differs from that expected for the type file in

question.

A variety of elementary linearization options are offered as

noted in Figure 19. The arc cost functions are evaluated at user desig-

nated points and combined as specified to obtain point or interval

approximations which then serve as cost coefficients for GNET. These

costs are discarded after use by GNET. It should be noted that this is

not a piecewise linearization and is not intended to be a complete

85

1. Point gradient eval @ LCC* of bounds (t*l + (l-t)*u).
2. Point gradient eval @ midpoint of bounds (t = 0.5).
3. Point gradient eval @ LCC of lowerbound and present flow.

4. Point gradient eval @ LCC of present flow and upperbound,
5. Interval linearization from lowerbound to specific point.
6. Interval linearization over entire bound interval.
7. Assign zero cost to all arcs.

* LCC = Linear Convex Combination

OPTION DESIRED

— C I—

Fig. 19. Linearization Options

solution technique. GNET can support piecewise linearizations if the

model is explicitly described by addition of the appropriate arcs. The

user can request that all nonlinear problems be linearized, regardless of

feasibility status, by overriding a default parameter.

The program calls depicted in Figure 18 are automatically gener-

ated by the solution control module of the MASTER program. Information

such as data file names and package control instructions are passed to

activated programs through the Pascal operating system. Once control is

passed to a program, this information is retrieved and the subject file

is verified as still being on-line. In the event that the volume contain-

ing the data file has been moved off-line, the program issues an error

message and awaits user action.

2. EDITOR Program

The EDITOR program allows the user to create, alter, transfer, and

examine data files as indicated in Figure 20. Since this portion of the

86

O
i- +J
QJ

CO 01
c i—
ro i—

?
o
i-
Ll_

O
CD 1— QJ
r— r"—

<v ^" s- •i—

Li_ QJ QJ l_u

o -M 4->

CO to c o +J
c +J •r— E X
o (O S- <v a>o o a. en \—

<T3

<D a)
> I

—

o «-
E u-
aj
as.

o a; a;
-t-> i

—

(T3 •-
OJ u_
s_

E
o
s-

QJ O)
(/) <

—

2 -r-

O U_
s_
CO

o
CO

I CO
QJ OJ
s- a
a. o

3 a.
c c

M OJ
X I—
O) i-

OJ
c to

O E
>— fO
« i_

• I C7>

-a o
c s-
(T3 Q_

on

cr.

o
o
CO

o
+>

o

o
C\J

en

A3

OJ
i_ r—

i/i

O) -o CO
+-> s- u
OJ o s_— o <
oj a>o a: ——

a> </>

c <—
« oj

<_> to-

co

o i-

QJ
C£

CO
QJ CO

X3 U
O i_z <
"—

CO

QJ CO

-a o
o '_

z <
——

87

package requires the most user participation, every attempt has been made

to make the program as user-friendly as possible. In addition to employ-

ing the standard interactive techniques, the EDITOR program input format

can be reconfigured to conform to the user's needs. This redefinition of

the input field order can be effected at any time during the editing

process. For example, one file can be created utilizing the default

input order, reconfiguration performed, and a second file altered with a

completely different input field order. Instead of reordering the raw

data, one merely changes the order in which the program expects data

fields to be received. Additionally, fields can be omitted entirely from

the input format and default or user-definable constant values assigned.

Input field order for arcs and nodes may differ,

a. File Creation

Files can be created from text (human readable) files,

keyboard input, or through the use of preprocessor programs. For all

modes of file creation, the program keeps track of the filetype by typing

the arcs as they are received (i.e., one nonlinear arc changes a linear

file to nonlinear). Input from text files and the keyboard is examined

for the following inconsistencies:

1. Prohibited node numbers (nonpositive or greater than number

of nodes.

2. Inconsistent upper and lower limits on quantities (lower

limit not less than or equal to upper limit).

3. Assignment of quantity values outside of established

limits.

88

b. File Alteration

Records can be added, deleted and their individual data

fields updated. Addition of records is allowed for both node and arc

records; however, only arcs may be deleted. This restriction is imposed

because no connectivity analysis is performed by the EDITOR on the

network representation resulting from alterations. Deletion of arcs can

isolate portions of the network, but the solution programs accommodate

this situation effectively. Removing nodes requires an exhaustive search

of the data file to detect arcs that must also be deleted. This capabil-

ity is not presently supported by the EDITOR.

c. File Transfer

Data files can be transferred to the console, printer,

another data file, a text file, or a remote computer. The data field

format in effect at transfer governs the order of field transmission so

the package can be linked to data bases with diverse format requirements.

File transfers to and from other computers are limited to text files

only, thus the ability to convert between data files and text files has

been provided. A stand-alone file transfer program [Ref. 35] has been

used for such communication with great success.

3. Preprocessor Programs

These programs are created for specific models to assist in

data base reduction. For example, if data on a certain network exists in

raw form such as physical measurements on the actual entities represented

by the nodes and arcs of the model, the user can write a custom program

to translate such information to a form suitable for package use and then

execute the conversion directly from the EDITOR program. A catalog of

89

existing preprocessor programs is maintained by the EDITOR program and

presented to the user upon request. After selecting the new data file

name, control is passed to the desired preprocessor and returned to the

EDITOR upon completion of preprocessing.

Facilities are provided by the EDITOR to maintain the preprocessor

catalog (a data file) and manually activate uncataloged preprocessors

(which are then automatically added to the catalog). The preprocessors

are stand-alone programs not constrained to reside on one of the package

volumes with no (package imposed) limits on their number or individual

size.

C. SOLUTION PROGRAMS

Each program is partitioned into four segments as shown in Figure 21.

The main segment (of the particular solution program) calls subordinate

segments into memory sequentially, thereby maximizing memory available for

data. The input, initialization, and report segments contain all proce-

dures that communicate with either the user or other portions of the

package. Solution segments are therefore minimal representations of

their respective algorithms and data structures, and are devoid of any

nonessential information.

INPUT* j

MAIN
INITIALIZATION* I

SEGMENT |

SOLUTION j

j
REPORT* j

*User-friendly structures used

Fig. 21. Generic Solution Program Segment Map

90

The report segment automatically updates the data file with the

new solution and displays the results of the optimization on user-

designated peripherals. Detailed reports of the solution process may be

provided upon user request. Subsequent program calls are controlled by

logic contained in the report segment.

1. GNET

This program is constructed so that both linear and nonlinear

problems are processed in essentially the same manner. Two minor dif-

ferences are accommodated by a flag that keys on the problem-type field

of the header record. First, nonlinear files sent to GNET for solution

have the linearized arc costs placed in the initial-flow field of the arc

data record as GNET does not use this field for linear problem input

data. Additionally, on obtaining a feasible solution, control is passed

to NLPNET vice the MASTER program when GNET terminates from a nonlinear

problem.

a. Input Requirements

Upon activation, GNET extracts the information listed in

Figure 22 from the input data file. Certain compacting operations take

place, as each arc record is processed, to reduce storage requirements.

The arc flow range is stored as one number, the upper bound, after

translation by the lower bound. Also, the destination node list is

maintained with all arcs having the same destination node stored in

contiguous locations. This allows the list to be a node-length array

instead of an arc-length array. The arc costs and source nodes are

read directly into arc-length arrays.

91

ARCS:

Source node number
Destination node number
Lowerbound on flow
Upperbound on flow
Cost information

NODES:

Net flow

Fig. 22. GNET Input Data Requirements

Node information, other than net flow, is ignored as GNET

does not support ranged constraints. In the event that total supply does

not equal total demand, the program will terminate abnormally. GNET

operates with integer arithmetic; therefore all input values not explic-

itly integer are truncated upon receipt,

b. Internal Data Structure

GNET introduces an artificial node called the "root" to

complete the basis tree. Three node length arrays are used to represent

the basis tree and provide a mechanism to easily traverse the tree. The

predecessor array defines the next node on the path from a given node to

the root. For example, predecessor (i) contains the node number of the

predecessor of the i node. The depth array stores, for each node,

the number of nodes on the path to the root. Finally, the traversal

array provides for each node the next node to evaluate during forward-

substitution of the basis. This array gives a sequence of nodes which,

combined with the respective node predecessors, define an upper triangu-

lation of the basic arcs. The i element of this array is the next

92

5
node that would be visited from node i in a classical preorder tra-

versal. Arrays to store flow on basic arcs and the simplex dual variables

complete the data structure. Figure 23 illustrates the basis representa-

tion and Figure 24 describes the various arrays.

These arrays are used by GNET to perform the simplex opera-

tions with elementary algebraic and logic operations. A detailed

description of this data structure and its employment is given by

Bradley, Brown, and Graves [Ref. 3].

c. Solution Segment

An all-artificial starting technique is used to begin the

solution process. The initial basis consists of artificial arcs between

each node and the root node. The flow on these arcs is set equal to the

demand or supply requirements of the respective node. Arcs are oriented

from the root to demand nodes and to the root from supply nodes. Assign-

ing a relatively large cost to each artificial arc ensures that a feasible

basis will contain no artificial arcs at positive flow. Artificial arcs

present at the conclusion of the optimization with non-zero flow are

explicitly identified.

2. NLPNET

a. Input Data Requirements

NLPNET requires the input data illustrated in Figure 25.

The source node, destination node, arc flow bounds, and initial flow are

read directly into arc-length arrays. Since, in a nonlinear problem, all

arcs potentially can have non-zero flow at optimal ity, the flow array

5
As defined in the computer science literature [e.g., Ref. 36].

93

/A
^

©
-©

V
©-->©
<\

->©

Node: i

Predecessor: 3 5 -5 3 7 -5 A
Traversal : 4 6 1 2 3 7 5 1

Depth : 3 2 2 3 1 2

— > Traversal

Fig. 23. GNET Basis Representation

94

Problem Definition (All Arc-Length Arrays Except as Noted)

H ()
- A node-length array of entry points into arc-length arrays

for each head node (e.g., all arcs directed toward head
node i are found in locations H(i),..., H(i + 1) - 1

of arc length arrays).
T () - Tail node indices (i.e., nodes which arcs are

directed away from).
C () - Cost per unit flow.

CP ()
- Upper bound (capacity) on flow. (The sign bit is used

to indicate a reflected arc.)

Basis Representation (All Node-length Arrays)

P () - The predecessor of each node on its backpath to the root
node. The orientation of the basic arc connecting
node i to its predecessor is indicated by the sign

of P(i), a negative value indicating an arc

(i> - P(i))» and a positive value signifying an

arc (P(i), i).

IT () - Preorder traversal successors. IT(i) gives the
node number of the next node to visit in preorder
after node i. With P(), IT() defines a basis
tri angulation and can be used for substitution
solution.

D () - Depths of the nodes in the current basis. D(i)

gives the length of the backpath from node i to
the root node (used in column generation).

Solution Representation (All Node-length Arrays)

X (),- Current flow of each basic arc, and capacity minus
CPX () current flow of each basic arc (i.e., if

P(i) = j < 0, flow is X(i)).

Fig. 24. GNET Data Structure

95

ARCS:

Source node number
Destination node number
Lowerbound on flow
Initial flow
Upperbound on flow
Cost function type
Cost function coefficients

NODES:

Net flow

Fig. 25. NLPNET Input Data Requirements

must be an arc-length structure. The bounds and the node pairs

associated with each arc are explicitly maintained, in contrast to

the GNET scheme where non-basic arcs are coded with a single bit to

indicate status (at upper or lower bounds).

Nonlinear cost function definitions reside in the SYSTEM

LIBRARY where they can easily be modified without requiring changes to

any of the programs comprising the package. Each function is assigned

a unique number upon inclusion in the library, so determination of a

function's presence is a trivial matter. This is accomplished by checking

function identification numbers against a master list located in the

SYSTEM LIBRARY. Also required in the function definition are analytical

expressions for the gradient and hessian. Functions can be defined using

up to three coefficient terms; if more than three such coefficients are

needed, then a small coding change in NLPNET is required.

Input node information is the same as for GNET (net flow

only for non-default nodes). As in GNET, total supply and demand

96

conservation must be achieved or the program terminates at the input

stage.

b. Internal Data Structure

NLPNET also uses a root node to complete the basis. The

basis tree is depicted by the familiar predecessor, depth, and traversal

arrays which are functionally equivalent to the corresponding GNET

structures. A fourth array, a reverse-traversal array, allows mobility

opposite to that provided by the traversal array. This array is the

inverse of the preorder traversal and is used for back-substitution

during the calculation of the basic variable search direction induced by

a superbasic direction. The basis representation is described by

Figure 26. Arrays to maintain the variable partition, gradient vector,

hessian diagonal vector, search direction, and dual variable estimates

complete the data structure. These arrays allow NLPNET to perform primal

simplex procedures directly on the basis representation in the spirit of

GNET. A summary of the data structure is shown in Figure 27. A complete

description of the arrays and their use is given by Dembo [Ref. 19].

c. User Definable Parameters

Real arithmetic is used extensively throughout NLPNET so

various tolerances are necessary. Additionally, the solution process

employs several parameters that control the performance, convergence, and

accuracy characteristics of the solution process. Default settings for

these values are built into the program, however, the user may redefine

these settings (within established limits) if desired. Figure 28 is the

menu that the user receives when the default settings are to be modified.

97

Node i

Predecessor* 3 4 5 -5 6 6

Traversal 6 3 1 2 4 5 1

Inverse Traversal 3 4 2 5 6 1 |

Depth 3 3 2 2 1 o
1

— > Traversal Path— > Inverse Traversal Path

*Negative I = predecessor (J) implies that the arc is orientated
from node I to node J.

Fig. 26. NLPNET Basis Representation

98

Problem Definition Arrays

IFROM ()

ITO ()

LOWER ()

UPPER ()

ITYPE ()

COEF
IPTC

()

()

RHS ()
-

Source nodes of arcs.
Destination nodes of arcs.

Lower bounds on arc flow.

Upper bounds on arc flow.
Library identification numbers of arc objective
functions.
Coefficients of objective function (0-3 per arc).
Pointers to index of coefficient array contains first
coefficient of each objective function.
Node net flow requirements

Variable Partition

LB ()
-

IS ()
-

LN ()
-

ISBEST()
-

Basic arc indices.
Superbasic arc indices.
Nonbasic arc indices.
Best superbasic variable to replace a given basic
variable.

Basis Representation

LTHRD ()
-

LPRED ()
-

LRTHRD()
-

NDEPTHJ)
-

Traversal array (thread).
Predecessor array.
Inverse of traversal array (reverse thread)
Depth array.

Solution Representation

FLOW
F

G

H

P

W

()
- Arc flow.

()
- Arc contribution to objective function (at FLOW)

()
- Gradient vector.

()
- Hessian diagonal vector. (Hessian is a diagonal

matrix.)

()
- Search direction vector.

()
- Dual variable estimates.

Fig. 27. NLPNET Data Structure

99

CURRENT PARAMETER VALUES

GENERAL TOLERANCES

1.

2.

3.

4.

Alpha
Flow
Gradient
Price-out

= 0.0001
= 0.0001
= 0.001
= 0.0001

LINESEARCH TOLERANCES

5.

6.

7.

8.

Eps

T

Eta
Epsd

= 0.001
= 0.02
= 0.1
= 0.001

OTHER

9.

10.

Forcing ft
Max Iterat

n

ions

= 1.0
= 50

Parameters OK? : Y(es or symbol to change -->

Fig. 28. NLPNET Default Modification Menu

d. Reports

The program prints iteration reports and final solution

reports without user intervention. Either of these reports may be

selectively disabled. In any event, the input data file's initial flow

fields will always be updated upon normal program termination. Appendix

B describes these reports.

3. ELASTICNET

This program combines both ENET and UNET into one composite

solution module that is resident in memory for the duration of the

optimization process. In this manner, costly disk access operations

100

resulting from UNET communication with ENET during "1-u" problem solution

are eliminated. Of course, such a scheme requires more memory resources

for code storage than would be the case with a partitioned format; however,

UNET is a very concise code and the storage reduction is minimal.

The selection of the appropriate solution mechanism is auto-

matically controlled by logic internal to ELASTICNET activated by the

presence of "1-u" arcs in the input data file. Invocation of UNET

in response to such arcs can be suppressed from the program option menu

and only ENET utilized to process a file with "1-u" arcs (giving only a

relaxed solution). This option allows a single file to represent both a

free and "1-u" model

.

a. Input Data Requirements

ELASTICNET exercises virtually the entire input data struc-

ture and extracts the data given in Figure 29 from the data file. For

arcs, the source node, destination node, and unit cost are read into

arrays identical to the GNET counterparts already described. ELASTICNET,

unlike GNET, maintains explicit representations for each arc's upper

and lower bounds on flow. This simplifies the program and results in a

miniscule increase in storage requirements. Finally, the "1-u" status of

each arc is maintained in an arc-length array with zeros indicating free

arcs and ones marking "1-u" arcs.

Input node information consists of five numbers for each

node: net flow at the node, upper and lower range on flow, and penalties

for upper and lower range violation. In the absence of input information

for ranges and penalties, default values are assigned by the input

module. As with the other programs, all supply and demand nodes must

101

ARCS:

Source node number
Destination node number
Lowerbound on flow
Upperbound on flow
Cost information
"1-u" status

NODES:

Net flow
Lower range on flow
Upper range on flow
Lower penalty for range violation
Upper penalty for range violation

Fig. 29. ELASTICNET Input Data Requirements

explicitly be present in the input file. Additionally, any transshipment

nodes for which ranges or penalties differ from default values must be

included. The magnitude of the default settings is user definable from

the option menu. Flow conservation (supply = demand) is not required

for the elastic model accommodated by ELASTICNET and therefore only a

warning message is issued when supply does not equal demand,

b. Internal Data Structure

ELASTICNET maintains a basis representation (Figure 30)

very similar to the GNET structure. Additional arrays are required to

control the UNET enumeration process and record incumbent solutions.

These structures are described in Figures 31 and 32.

102

\

Node : i 1 2 3 4 5 6 7

Predecessor: 3 5 -5 3 -7 -5 A

Traversal : | 1 2 7 4 3 6 5
1

Depth 3 2 1
|

Aggregate : C
13

C
25

2 C
34

2 C
56 I

Fig. 30. ENET Basis Representation

103

Problem Definition

Arcs : (All Arc-Length Arrays Except as Noted)

H () - A node-length array of entry points by head node into

arc lists (sign bit indicates S, reflected).
T () - Tail node indices (sign bit indicates fixed arc).
C () - Cost per unit flow.

BL () - Lower bounds on flow.
BU () - Upper bounds on flow (sign bit indicates reflected arc)

Nodes : (All Node-Length Arrays)

RL ()
- Lower ranges.

RU ()
- Upper ranges.

DL ()
- Penalties for lower range violation.

DU ()
- Penalties for upper range violation.

Basis Representation (Similar to GNET)

P () - Predecessor array (sign bit indicates basic arc

orientation)

.

IT () - Traversal array.

D () - Depth array.

A ()
- Aggregated successor array (for an aggregated node,

the cost is stored for its basic arc predecessor;
for a disaggregated node, the number of aggregated
successor nodes/basic arcs is stored) [Ref. 3, p. 28].

Solution Representation (All Node-Length Arrays)

X (),- Arrays with current flow of each basic arc, and
BUX () capacity minus current flow of each basic arc

(i.e., P(i) = j < 0, flow is X(i)).
U () - Dual variables.

Fig. 31. ENET Data Structure

104

Enumeration Control

IF IX () - A last-in-first-out (LIFO) structure that records the

arcs currently fixed at a bound. IF IX (i) is the arc

number in the current enumeration of the i

restriction.
LGB () - Maintains (3-bit) "1-u" status of each arc. On input

"1-u" arcs are assigned a LGB value of one while all

other arcs are given a value of zero. During enumer-
ation, nonzero values of LGB indicate bounds at which
arcs are fixed or reversed. Fixed arcs have negative
T () while free arcs have positive T () values.

Incumbent Solution Record

IPS () - The best primal solution encountered.
IDS ()

- The dual solution corresponding to the best primal

solution.
IB () - Initial right hand side of constraints.

Fig. 32. UNET Data Structure

c. Model Alteration

Model alteration capability has been provided that allows

the user to adjust arc and node parameters and resolve the modified

problem. After viewing the new solution, the final problem attributes

may be saved to a data file, the original file updated, or another adjust-

ment cycle performed.

d. Reports

The program displays (on user designated peripherals) an

echo print of the input file and final solution reports. Automatic

generation of these reports is the default case, however, either report

may be disabled. Appendix B contains examples of these reports.

105

V. COMPUTATIONAL RESULTS

This section describes the capabilities of the package with respect

to problem size, solution speed, and versatility. As with most applied

mathematical programming projects, availability of suitable example

problems hindered the testing effort. Although standard test problems

have been described in the literature, most are either very small academic

examples or randomly-generated problems. The difficulty with using

randomly-generated problems is that they are unstructured and therefore

may not adequately exploit the efficiency of a programming code designed

to solve "real -world" problems. It has been suggested [Ref. 3] that such

random problems may even be harder to solve than naturally occurring

formulations. Nevertheless, it has been necessary to include some

randomly-generated problems to provide a complete assessment of package

capabilities. All randomly generated problems were produced by NETGEN

[Ref. 37] running on an IBM 370/3033 computer and subsequently transferred

to the microcomputer using package file transfer features (EDITOR program

and commercial data transfer program [Ref. 35]). Additionally, a few

small academic examples were utilized. Finally, a preprocessor has been

written to construct models which (although fictitious) more closely resemble

real world situations than either of the two previously mentioned

problem classes.

A. MAXIMUM PROBLEM SIZE

The maximum representable formulation (in terms of numbers of arcs

and nodes) is a function of model type, the relative proportion of arcs

106

and nodes, and the microcomputer employed. All statements concerning

problem size apply to the APPLE II microcomputer and no attempt has been

made to translate the results to other hardware configurations.

Although one may specify a nominal ratio of arcs to nodes and con-

figure the programs in that manner, it might be necessary to alter this

proportion to accommodate a particular model. A limitation of this package

is that in order to effect such an alteration, both the solution program

pertaining to the class of models in question and the MASTER program must

be recompiled. The coding change itself is trivial (two constants in

each program control the partition), but the compilation process is time

consuming. One solution to this dilemma would be to maintain multiple

copies of the package, each with different problem size capabilities, to

represent anticipated modeling requirements. Table 1 gives the partition

employed during the development of the package.

The APPLE II microcomputer has approximately 39,900 words of memory

available for program use after the Pascal operating system has been

loaded. The combined code of the main segment of a solution program

(always in memory) and that of its largest subordinate segment (typically

the solution segment) will determine the memory available for data

storage. In the absence of data partitioning, this also defines the

maximum size of a representable model. The memory budget for each

solution program is shown in Table 2.

Data storage memory requirements can be expressed as a function of

the number of arcs and nodes represented and will, of course, differ for

each solution program. These relationships are as follows:

107

TABLE 1

NOMINAL PACKAGE DATA PARTITION

Nodes Arcs

GNET 400 2000

ELASTICNET 300 500

NLPNET 50 175

TABLE 2

PACKAGE MEMORY USAGE

Main

Segment

Largest
Auxiliary
Segment

Available
for Data

GNET 5072 7517 27311

ELASTICNET 6565 13898 19442

NLPNET 6804 19941 13155

Requirements are given in BYTES (8-bits) with 39,900
total BYTES available for program use.

108

1. GNET: 6 | A
|

+ 20 | N
|

< 27311,

2. ELASTICNET: 14 | A
|
+ 26 | N

|
< 19442,

3. NLPNET: 56 | A |
+ 22

|
N |

< 13155,

where
|
A | signifies the number of arcs and

| N | the number of nodes

represented. A summary of this information for selected combinations of

arcs and nodes is presented in Table 3.

B. SOLUTION TIMES

Solution times vary with the complexity of the model under considera-

tion. The simplest formulation, inelastic linear models (GNET), requires

only integer arithmetic for logical comparisions and therefore produces

the fastest solution times for a given model size. Elastic models,

although able to take advantage of some of the efficiencies associated

with linear models, represent a versatile but complex formulation that

necessitates additional work to cope with the increased information

requirements. By specifying "1-u" arcs in a model , numerous subproblems

(each equivalent to a single ENET run) must be solved and coordinated.

The maximum number of such enumerations (worst case) grows exponentially

with the number of "1-u" arcs (2 +1, where k is the number of

"1-u" arcs), hence solution time increases proportionally. Nonlinear models

require the most time to achieve optimality. These models employ vast

amounts of real arithmetic (including transcendental function computations

which are very time consuming on the APPLE II) to perform the necessary

functional evaluations, direction finding and linesearch solutions.

Nonlinear solution times are also highly sensitive to the form of the

objective functions.

109

TABLE 3

ALLOWABLE ARC/NODE PARTITIONS

ARCS

NODES GNET ELASTICNET NLPNET

20 3368 1351 227

30 3346 1333 223

40 3323 1314 219

50 3301 1295 215

60 3278 1277 211

70 3256 1258 207

80 3233 1240 203

90 3211 1221 199

100 3188 1203 185

150 3076 1110 175

200 2963 1017

250 2851 924

300 2738 831

350 2626 738

400 2513 645

450 2401 553

500 2288

550 2176

600 2063
650 1951

700 1838
750 1726

800 1613

850 1501

900 1388
950 1287

1000 1163

110

A wide variety of test problems have been examined and the solution

results are presented in Table 4. The solution times are all quite

reasonable (although orders of magnitude slower than those obtained with

large computers) and reflect the expected relationships between model

classes. An example of the accuracy for a representative nonlinear

formulation is given in Table 5.

C. MODELING FLEXIBILITY

To demonstrate the flexibility of the package, a preprocessor program

has been written to model a three echelon product distribution network.

In such a model, products flow from production centers to customers via

distribution centers with storage or handling costs incurred at the

intermediate echelon. The object of this formulation is to meet demands

from available supplies at minimum transportation and handling cost.

Transportation costs are modeled by arcs between components of the

various model echelons. Handling costs can be depicted by adding an

additional arc at each distribution center with appropriate cost function

and flow bounds. Figure 33 shows the basic structure of such a model.

The preprocessor requires geographical coordinates and product flow

requirements for each location to be modeled. All the transportation arcs

are assigned linear cost functions proportional to the great circle

distance between the various locations. Handling arc objective functions

are assigned by the user to reflect the desired formulation. The user

also specifies the minimum number of customers to be linked to each

distribution center. The preprocessor then constructs a model as follows:

111

1/1 </1

-X. u
- s-
to (O

E
OJ <U
on r—

Q.

r— l/l

OJ en

5G

»/l

S- c
oo •r—

UJ t/1 -t->

2: +-> A3
—1 O i-
1— > o;

O. •—

1

CO _l
<c
\— IS)

^_
_l c UO

< -a
c_> "P" a» c
t—

H

-UJ E O
Q_ 3 •<- O
>- r— 1— 0)
1— O

CO
CO

1/1

O

O
Q_

C C
ci o u o

»/i <_>•»-•<- «-
O U '— -UJ *J -i_>

S- 4- <T3 O "3 U
tO to C S- C

= 3 -a 3
s s 3 m- <a vi_

3 3 1 3
t I r— -O CTT3

r— r— = O) <U
S = X <— X

CO r- 1— •«-

1—1 00 t-H E * E

uuu<nuuu<uuuuuu

1^.1—(vor^^rcor--roco<v5«a-rovoroo
<H/ 1^- CT1 «-H CO O CO C\J C\J T-H '«

—

't-H
«—I CO CO t—I CVJ t-H —

wrsHis.ioownom(\ja>0'3-<d-
cvji—ir-^co in o h h m<- h id

T-H C\J C\J C\J t-H

cooOlooocoococococococnjoo
T-H CO O r»v 0*> 0*> >—I O r>» <—• r-H T-H t-H «—

1

T-H co o*> O"! t-h 00

r^LOOOOOi— oof^r^r^-
«—

1 «r o O O <a- oHt\IM t-H

co r-^ co

* * -K

¥ -K -K -K -K r— h— V—
rHCMrO^l^kOrHMfOrHCVJfOUJliJLiJ
t— I— I— 1— h- h- H- I— I— H- I— I— zzz
1 1 i 1 : 1 1 1 1 1 1 1 1 1 1 1 1 n p n

OOCi3C50t3UJLiJUJDD3Z2:Z

E CO
a> c
r—
-Q •T—

O -UJ
'_ to
Q.

-O O-
a>
4->

to +J
i- 3
a> Q.
- 4->

<u 3
CT> O
>> 4->

t— 3
E Q.
O C
•a •f—

c
to C>-

s_ O
a; a> •

s_ > CO
fO

i/i

c
CO 3 •r—

S- p— -UJ

ai u u
j= X c
-UJ a; 3

*

—

n-

1

—

oj s_ *
T— p-" tO -UJ

IT3 3 OJ n c
-a c -UJ aj

** •r— C E
CO E r— ai a.
<1) E •r—
r— c T3 Q--=
O. c •f~ l/l

E (O £ (/I

<0 -UJ i/l C
X 3 s_ (/I <TJ

a; ^— a> C W
O 3 <T3 -UJ

CO O i-
•f— Q. -UJ a
E s_ a)
<u 1 0 -UJ •

-0 lu- Z a> fO -UJ

to M -UJ -UJ C
u <U (/) TJ • r— <D
tO E -UJ u E

•T— u f— to c
CO 4-> •T— u 0. CT>

<D f— fl TJ •T—

-M -O O a. O CO
(O 0) JD trs c v/>

U CO i_ C_) ra <
-T— Q. d)
-O <o a. 1 1 1

c ^— >i
»—

H

LU rn c_) 3 <

112

TABLE 5

OPTIMAL SOLUTION COMPARISON

Optimal Solution Flow

Arc APPLE II

1 52.1063
2 47.8936
3 18.5550
4 33.5514
5 26.4450
6 21.4486
7 5.000
8 6.60537
9 6.9496

10 14.6698
11 10.0000
12 8.88158
13 0.0000
14 13.3946
15 13.0504
16 0.33020
17 0.0000
18 21.1184

Opt imal Value of

Objective Function 1453.420

DEC 20/60
(Double Precision)

52.1063
47.8937
18.5552
33.5511
26.4448
21.4489
5.000
6.6050
5.9502

14.6613
10.0000
8.8898
0.0000
13.3950
13.0498
0.3387
0.0000
21.1102

1453.417

Objective function components are power, linear, and hyperbolic SIN

functions. (Problem is NLPNET3).

113

Production Distribution
Centers Centers Customers

©/—v handling >^^ /—s.>© >0—>0 demand

demand

Fig. 33. Three Echelon Distribution Model With Handling Costs

STEP 1. Production centers are linked with each distribution center.

STEP 2. Handling arcs are added.

STEP 3. Each production center is connected with the required number

of customers selected in order of proximity.

STEP 4. Any customer not linked to at least one distribution center

by STEP 3 is connected to the closest distribution center.

The following types of handling cost functions can be accommodated:

1. Linear.

2. "1-u".

3. Fixed cost.

4. Nonlinear.

The linear formulation results, of course, in a completely linear

model. Addition of "1-u" arcs transforms the model into one where

distribution centers are either open at full capacity (with linear

114

handling costs) or closed. Fixed cost formulations incur an additional

charge just for opening a distribution center (fixed cost) with a linear

handling cost (variable cost) applied to each unit of flow. Such fixed

cost models are generated using "1-u" arcs as shown in Figure 34.

Finally, the handling costs may be represented by various nonlinear cost

functions (potentially different for each handling arc). Two nonlinear

functions that immediately come to mind as appropriate in a handling cost

situation are quadratic functions:

Cost = f(x) = ax
2

+ bx +c

lower bound <_ x _< upper bound,

and hybrid linear/quadratic functions:

icx
lowerbound <_ x _< changeover point,

ax + bx + (c)(changeover point)

changeover point < x <_ upperbound,

a >_ (for convexity),

x = flow

For demonstration purposes, a series of problems were generated with

the following structural characteristics:

1. five production centers,

2. five distribution centers,

3. twenty-five customers, and

4. a minimum of eight customers per distribution center.

The resulting 40-node, 73-arc model was replicated using the various

handling arc objective functions described above. Solution times for

these test problems are given in Table 6.

Numerous modifications of the models are possible by exercising the

"elastic" features of ENET and UNET. In this manner, realistic enhancements

115

-/ »
.
fixed cost + variable cost x (upperbound-lowerbound)

* '

"

upperbound

0, upperbound-lowerbound

Cost

fixed
cost

lowerbound

flow

upperbound

Fig. 34. Modeling Fixed Costs

such as optional surplus or shortage assignment can easily be incorporated

into the model

.

116

TABLE 6

THREE ECHELON DISTRIBUTION MODEL SOLUTION TIMES

(40 Nodes, 73 Arcs With 5 Handling Arcs)

Form of Handling Arc Solution Pivots or

Objective Function Time (Seconds) (Iterations)

Linear (ENET) 40 92

One "1-u" 120 256

Two "1-u" 175 362

Five "1-u" 584 1179

One Fixed Cost 115 260

Two Fixed Cost 180 387

Five Fixed Cost 458 960

Quadratic 65 (4)

Hybrid Linear/Quadratic 68 (5)

117

VI. CONCLUSIONS AND RECOMMENDATIONS

The research effort described by this paper has been quite successful

Microcomputer adaptations of advanced algorithms for minimum cost network

flow problems have been shown to be not only feasible but also practical

for moderate-sized formulations. Additionally, an integrated repertoire

of solution methods has been presented that illustrates the usefulness of

such packages and serves as a prototype for their implementation on

larger computer systems. This software fills a void in the existing

spectrum of computer techniques for network problems by providing a

single package to deal with a variety of diverse modeling situations.

Economic justification for the use of such microcomputer-based

packages requires further investigation and could easily be the exclusive

subject of a formal study. Certainly, the microcomputer will not replace

larger computers, but instead will serve as a useful supplement. The

capabilities of this software package infer that the microcomputer's

niche lies in providing quick answers to relatively small problems. In

this sense, a desktop computational device might be more convenient to

use than the services of a large computer center. This is especially

true if the software is user-friendly and easy to use.

There are certain situations where the microcomputer is clearly

the only choice. Consider remote sites where access to large computers

is limited or nonexistent. In such a scenario, the portability of the

smaller computer provides the analyst with a powerful mathematical

programming capability that would otherwise not be available. Indeed,

118

microcomputers have already been used in primitive locations utilizing

rudimentary power supplies, so such a proposal is not idle conjecture.

The finite time horizons imposed on this project necessarily limited

the scope of the initial study and there are many enhancements that could

be pursued. First, the algorithms presented, although quite efficient,

could be improved and further tuned for the microcomputer environment.

Also, the use of partitioned data structures was not investigated as a

means to solve larger problems with available resources. Successful use

of such procedures could extend the usefulness of the package. Finally,

the most obvious extension would be the inclusion of additional algorithms

to accommodate other classes of network models. For example, a generalized

network code recently made available to us by McBride [Ref. 38] would be

a perfect complement to the algorithms already included.

It is hoped that the success of the work presented here will further

stimulate the development of additional mathematical programming software

for microcomputer use. As smaller and more capable computers are inevi-

table, the operations research community must be prepared to exploit

their considerable potential.

119

APPENDIX A

PACKAGE EXTERNAL DATA STRUCTURE (DATA FILES)

CONST
MXNUMCOEF = 3;

MXNAMELENGTH = 9;

TYPE
SMALLSTRING = STRING[MXNAMELENGTH];
COEFARRAY = ARRAY[1.. MXNUMCOEF] OF REAL:

RECTYPE = (HEADER, ARC, NODE);
NETWORK = (LINEAR, NONLINEAR, ELASTIC, MIXEDINTEGER, GENERAL);
NODETYPE = (SUPPLY, DEMAND, TRANSSHIPMENT);
NETRECORD = RECORD

CASE ENTITY: RECTYPE OF

HEADER: (PROBLEMNAME : SMALLSTRING;
PROBLEMTYPE NETWORK;
NUMNODES INTEGER;
NUMARCS INTEGER;
DATECREATED SMALLSTRING;
DATELASTUPDATE SMALLSTRING);

ARC:

NODE

END

NETFILE : FILE OF NETRECORD:

(ARCNAME : SMALLSTRING;
SOURCENODE : INTEGER;
DESTINATIONNODE : INTEGER;
LOWERBOUND : REAL
UPPERBOUND . REAL
INITIALFLOW : REAL
CASE ARCTYPE: NETWORK OF

LINEAR (UNITCOST : REAL;
ZEROUARC : BOOLEAN);

NONLINEAR : (TYPEFTN : INTEGER;
NUMCOEF : 1. .MXNUMCOEF)

;

COEF: COEFARRAY);

(NODENAME SMALLSTRING;
NODENUMBER : INTEGER;
NODEKIND NODETYPE;
NETFLOW REAL.

LOWERRANGE : REAL.

UPPERRANGE • REAL.

LOWERPENALTY REAL.

UPPERPENALTY REAL'i;

120

APPENDIX B

TYPICAL REPORTS

This appendix contains three examples illustrating typical reports

generated by the various solution programs. These examples are:

Example 1: Linearization of a small nonlinear formulation with an

infeasible starting solution. This serves as an example of both MASTER

program and GNET output.

Example 2: Typical NLPNET run of a feasible (starting solution)

nonlinear formulation.

Example 3: Output from a small linear formulation solved with ELASTICNET,

121

APPLE-NET : SOLUTION MODULE
Version IIA of 29 Aug 81

DATE: 6 SEP 81

PROCESSING DATA:NLPNET1.NET. A NON LINEAR NETWORK PROGRAM.
NUMBER OP NODES = 5 NUMBER OF ARCS = 8
PROBLEM IS INFEASIBLE
LINEARIZATION PERFORMED:
7. Assignment of zero costs for all arcs.

THETA (POINT) = 0.00000

SOLUTION MODULE CHAIN OF EVENTS:
GNET—> NLPNET—> SOLUTION...

APPLENET - GNET MODULE
VERSION IIIA OF 28 AUG 81

2000 ARC, 400 NODE VERSION

PILE: DATA: NLPNET1.NET CREATED: 1-SBP-81
PROBLEM NAME IS NLPNET-1
NUMBER OF NODES = 5 NUMBER OF ARCS = 8

UPDATED: 1-SEP-81

ARC LIST.

ARC
NAME

ONE
TWO

THREE
FOUR
FIVE
SIX

SEVEN
EIGHT

FROM
NODE

1

1

2
2
2
3
3
5

TO
NODE

2
3
3
4
5
4
5
4

UNIT
COST

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

LOWER
BOUND

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

UPPER
BOUND

80.00
60.00
50.00
40.00
50.00
20.00
60.00
60.00

NODE LIST . ..

NODE NODE
NAME NUMBER

SUP1 1

UNAMED 2
UNAMED 3

DEM1 4
DEM2 5

SUPPLIES = 100

FOR THOSE NODES EXPLICITLY IN DATA FILE

NET
FLOW

100.00
0.00
0.00

-30.00
-70.0

DEMAND = 100

NODE
TYPE

SUPPLY
TRANSSHIPMENT
TRANSSHIPMENT
DEMAND
DEMAND

INITIAL COST = 0.00

7 pivots performed

PINAL SOLUTION

FROM
NODE

1

1

2

TO
NODE

2
3
4
5
5

FLOW

80
20
30
50
20

P(X)

OPTIMAL COST = 0.00

Example 1

122

OO
o • oooo

•O tDlDCMOoo • • • •

OO CM«-^CM
r~r-

^
CO
1

M
>SB oooooomo

04 HO OOOlTlOOOP^O
U Ehh »••••••
tO
1

«-(NOO»-C0OO

•" »"35B

aas OOOOOOOO
a Oh oooooooo
w
Eh ir» «-in*-«•"^•o
«: CN r-
Q

W»- II 04
JCO II s inu*10^0v43v£)vOO
S II

oo< ii

OH II oooooooo
SCO II 00 CBO oooooooo

II USB • •••«•••
E-nnll » II o*n oooooooo
W II CO cuo oovouia-uniNvo'-o
SB II 1 W DO
tVW II 04 OJO II u u
SB II to «c

CQ II 1

1 Mil ^» <M M oooooooo
Mil o "C oooooooo

H II Q H3 • •t«**««
USB II u M HO OOOOOOOO
SBO II H a) M.J cocn mm cm
WM II «: .a SSfe
hJCT) II u s H
cuos ii OS 3
O.W II u SB
«S> II

osO
USB

OOOOOOOOOOOOOOOO
SB »D • •••••••
o oo oooooooo
H J CO

as re toXHHOO UC9SBJZZZZ CQU.-I
cuuu<<>< SB -C

Cu on as scan an =fc>
ou DO.D(M« SSOH
o V1HHQQ

uo SB
cuss lOlO
5H to to
EH SB SB Eh

«c«C OSB
03 OS uu
HH UMDOo<

uos
ceo

03 towoz
sc w o^rr»a,iD\or~-ooo^ocN
sduh «-«-
SSQH

^<NHii»mcocr>ov©r-ao

r*» U"lCM <N <N«NOSvO CNmo
inr^roovoin(Nvomooo
vocmr»mm<\to•»r» ir>o
^voco»-t7>or"»ocr»oo
• •#••••••••
OvOOOOlDO'-OfMOO

ai

CM

a.
E
CO

X

H 1 h« U_» cor- U
to Eh Eh SB Pl, «- 1 1 > incojn^^ci^-^T-oof-
05 UU HH 00000000voommcoro
U SB SB EHD
> • Oiin u UJ ocn<Ncocn«r>voinincMCM

vocntTioooo^iotnifitnm
u Eh* 11 OQ cscocos'in^in* r» cfxoor*"f*r»voir>miomm
Q u EhO CQ
O SB tO 05 SB OS O
SBr- 0<M <P UU

00 r4 T> OCQ «-<Nco*in
O sou • oss
mo* •fBSS • acu • SBS
u «s-c • OQ ^•*-<N<N<Nm«nm . • SB SB
wo EhSBM-I • 03O EH O
U «c O H USB to HOS
03V0 asc to H QQ EhU
-3 uu H J <-H«"-(N 409

• • •t|j)<p J uu UOU03UMSB Eh uu ^4 esc scan as an o^<nen^iovor^00c^o
mu ucaja 03 SB I3WD>MWI M Q5C 3«!<WW ura T~
r»tH jo a O «•»«« OHfflOHW>0 a o-« (OSBSBQQ EhSB
*-«« HOS S3 03 SB Shh HH SB SB SB SB H

UOiSB < Eh tOU z DD

123

ZWO
hIM

<H
MH
0305

03 CQCQ OQ
CQCQZCQCOCOCQZ

Z II

O II

H||
En II

S||
-J II

OH
tO II

II

•-111

-C II

Z II

Mil
Cu II

*
*
*
#

M
•4!

£
M
Cm
O
*

*
*
*

w
Q
J
>

>H
U
W
CQ
O

z*
oMm
H«
03 CO
wrsi

Hin
•

wz
CuC

zo
M.-J
CuDu

ceo.
wz
OO
i-im

w
OQ
HO
z

oo
ceo
fez

cmcm© o
v0v£0 O
cm»-oocococ7*o
a»voorn o>^cmo
vor*»ocft«"os©c*o•••••••
\ocooc*o^oa-o

«-00CO<N

oooooooooooooooooooooooo
• •••••••oooooooo

oovom a- ir><Nvo vo

^voo coor»oo
O0*0 00 CN*-ooo
covoocoenvooo
r»cmo co oo»»»»©

(Nt^o^ r^ITXNo

oooooooooooooooo
• •••••••oooooooo

cmcoco^mam s»

" •""(N<N CMm <"> ID

«ac wowccwxzh«« ZSWD>HWS
25 OE-»caOMto>oXWW MM

H COW

O
O
o
CM

*-ao«—

ii ii ii

o
•HZ
•s°3H

03
COW
W6-»IH
tJV
ceto
-<u
wos

toco«<
Howu>ZM
MMtn
CUM**

n
WWOS
OOW

•• ccosd
to WWtO
U WCQ
m asu
H ao>
CO zz«*
M
-e

e-t

to

^rococooooo
I I I Iwwwwoooooooooooooooosoooo

u • • • •

m
W II II || II

CO
w
ss

Q
*<coco
EHQ4Q4
WWWE-t

CM

CD

Q_

CM

cu

Q.
E
<T3

X
UJ

a- a- CM000
I I Iwww000
000000
000

pi
•4 11 II II

03
w
z

.. W E-t

co o z
-c w
S3H
Q«OQ
•4WCC

124

t-400 II

O II

3H
II

II

XOi II

0<NII
M II

H H
D«*4 II

«-1 Oil
O II

en n
ii

••^ii
MH

HMII
W II

XCII
I OH
WWII
•J (Oil
CUUII
0,0)11

II

04
H
10

w
H
Q

OS
O
O
OS
a.

x:m
as^-
O
* ii

H
wen
25U

OS
aa«<
«s
Mm
xo
H
•JOS
w

•403

*h25
03X

HMh
SB
W II

• •

-sen
HH
oo
ts
25 Cm
HO
10
cnos
0303
UOOX
ass
o<x

H
SB
03
>
03

•

o- •

O •

SB
SBO
HH
<<H
33D
U»J
O

03 CO
i-3

DA
Q I

O I

mi*
03

M ||

h) II

D II

G»-Il
O00II
JC ||

O. II

B 03 11DM II

I II

<-3*nn
= ii

il

\PmH
UOII
M II

f-i-fill

VJHII
««HII
-J II

03 SB II

OH
I Mil
ton

Hce ii

0303 11

2>ll
03
k3
Oi

ooHH
DV)
i-J-d

Oh3
OT03

oo
I

a,

03
V)
I

a
03

H
««

O
a-

m^ r»
00
I II

O4
03 V)
OT U
1 as

a
03
H
-e

03
OS
U

04
o
as
03

sa
s
SB

10
S D
OH
I «C
i-JH
S V)

0000000000000
osa 0000000000000
03SB
a-D 0000000000000
o*o oomoooinoinifiinino
003 «-«- m*»*"«"M»»^ *

0000000000000
aso 0000000000000
03SB39 OOOOOOOOOOOOOOO
J 03

OOOOOOOOOOOOO
HS-4 OOOOOOOOOOOOO

03 03
OCU OtCWEX
OX B00303
XH lAVlfiQ

X OOOO
«H OOOO
03 |J
cu3

• . . .OOOO
a. as OOOO
D03 OOOO

04

OOOO
as 03 OOOO
03U . « • •

a. as OOOO
a>«« 0>0(NP»

03 SOS *-»- 1

»J 1H
04

•4
E-i OOOO
< OOOO
O H*

03O OOOO
SB 5= J o>o<Nt-H 04 «-»-

1

1

Sm

•^
H
H
u OOOO

4 in

1HH
0303^*
SB SB
•03 11

HWIO
v- 03H03
co x a

0303O
O4 "US
03 •<-*
IO HSBft.

«« o
\Q Q3C

03 at
.. ••J03
03 030303
H h»OX
<< H0SD
a 0.CUSB

sbo <n^o»-»-<N»©*-»ncou"»3-<N

03

HO

EM '

OO ^^"^rym^9\o*fnnif)nc^
aso
OhSB

H aauouaoo4auo304U04
V) -H-«CQlBUtJWtttfch.OO
M 03
h3 USD

H4
as
•<

H OOOO
tj 0503
Oi 03(3 OOOO
x scss o>o(sr*.
03 Q«t *-*- I

-JOS I

to
03

o o
X OOOO o

X OOOO o
03 OSH »-

CO 03 nJ OOOO
O »«•! OOOO
S OX OOOO
Eh -JW ,-*-,-,-

Oi II

M
O V)
04

as x
0303 »-<Nvor» o
Qfl3 OOE 03

• XD
X i-3

CD

Q.

CO

Lul

H
to
H
-3 0303OX
03 O-e
O XX
o

<U I I

I I ON
O

M
<<
x

125

X
fe

ooooooo
r-cN^voincnvo

oWH
so
w
03

oooomoo
05 iJ
W-< OOOOOOO
cuo ooooooo
OiO ooooooo

2 11

OH
H||
HII
on
l-JII

OH
en 11

II

*-)H
<<H
ZH
Mil
bill

(SO oooooooWZ oinotfiifioo
CUD t" s*^- ro^-
CuO M
DO a-vor-cvj^a-o

1 1 1 1 1

m
w •

•

•

X SB
O ooooooo o\ O
J o>mr**(Nin^m 0SM ooooooo M
a- w«c ooooooo • HSO ooooooo *— O

OO ^^I'l T- »- f -J

H-) 1 1 1 1 1 1 1 O

oso 11 <WZ ooooooo acsa «cu e-t M
00 MO ooooooo Cu Eh
-3 CD CUZ o*o r-cN O.

CU«« r- | r- O

CM

C7>

a.

CO

(1)

'a.
e
(O
X
UJ

mco rn j<Noom*-cN20DU

W

HO ooooooo
20* *-

I
*-

I

wo
• OQ m^invovof**r>- •

• HO
2 OT 03 03 o>

to w WO ooooc:
w H t*2 a\o r*cN •

H s o«< ^ 1 »— rm

s S« 03 >4a= 1

ca Ofl T-fNCsHjOuV^St M
H 030 PS
03 P*2 H
H H
H -e II< u W

05* fN\000CT>O«-rsl pa Q H
U «* f-'»"^ a O** i-<Nms»u ~r* 04
OS 2
-c 2 *

126

LIST OF REFERENCES

1. Bradley, S. P., Hax, A. C. and Magnanti, T. L., Applied Mathematical
Programming , Addi son-Wesley, 1977.

2. Bradley, G. H., "Survey of Deterministic Networks," AI IE Transactions
,

v. 7, pp. 222-234, September 1975.

3. Bradley, G. H., Brown, G. G. and Graves, G. W., "Design and Imple-
mentation of Large Scale Primal Transshipment Algorithms," Management
Science , v. 1, pp. 1-34, September 1977.

4. Covvey, H. D. and McAlister N., Computer Consciousness: Surviving
the Automated 80s , Addison-Wesley, 1980.

5. Beale, E. M. L., "The Blackett Memorial Lecture 1980. Operational
Research and Computers: A Personal View," Journal of the Operational
Research Society , v. 31, pp. 761-767, September 1980.

6. Tanenbaum, A. S., Computer Networks , Prentice-Hall, Inc., 1981.

7. Lee, D. M. and Fox, D. B, A Microcomputer

_

Decision Analysis Support
System (PASS) , paper presented at CORS/ORSA/TIMS Joint Meeting,
Toronto, Canada, 4 May 1981.

8. Visi-Calc , Personal Software Inc., Sunnyvale, California.

9. QuikDirt , Wyman Associates, San Mateo, California.

10. Morgeson, J. D., Statistics Programs for the Apple II Plus Computer ,

M.S. Thesis, Naval Postgraduate School , Monterey, California, March

1981.

11. Isbell, R., A Statistical Analysis Package for the TRS-80 Micro-
computer , M.S. Thesis, Naval Postgraduate School, Monterey,
California, September 1981.

12. Elam, J., Klingman, D. and Mulvey, J., "An Evaluation of Mathe-
matical Programming and Minicomputers," European Journal of

Operational Research, v. 3, pp. 30-39, January 1979.

Visi-Calc is a trademark of Personal Software Inc

QuikDirt is a trademark of Wyman Associates.

127

13. Wyman, F. P., "3000 Arcs for 3000 Bucks: How to Justify a Personal

Computer for Your OR/MS Department," Interfaces , v. 9, pp. 75-80,

August 1979.

14. McNelly, W. F., Letter to the Editor, Interfaces , v. 10, pp. 119-120,
June 1980.

15. Kreitzberg, C. B. and Shneiderman, B., The Elements of FORTRAN
Style , Harcourt Brace Jovanovich, 1972.

16. Thenson, A., Computer Methods In Operations Research , Academic
Press, 1978.

17. Lientz, B. P., Computer Applications in Operations Research ,

Prentice-Hall, Inc., 1975.

18. Rowe, J. L., "Core of Apple Computer's Problem Seems Solved,"
Monterey Peninsula Herald , 3 July 1981, p. 15.

19. Dembo, R. S., "A Truncated-Newton Algorithm for Nonlinear Network
Optimization," (in preparation).

20. Brown, G. G. and Graves, G. W., "Elastic Networks," Unpublished
research notes.

21. Wirth, N., "The Programming Language Pascal," Acta Informatia , v. 1,

pp. 35-63, 1971.

22. Shillington, K., "Structure: The Key to Pascal's Problem-Solving
Power," Datamation , v. 25, pp. 151-152, July 1979.

23. Lewis, R. G., Pascal Programming for the APPLE , Reston Publishing

Co., Inc., 198T.

24. Irvine, C. A., "UCSD Pascal System Makes Programs Portable,"
Electronic Design , v. 28, pp. 114-118, 14 August 1980.

25. Gagne, J., "An Introduction to Pascal," Microcomputing , n. 42,

pp. 68-76, June 1980.

26. Kennington, J. L. and Helgason, R. V., Algorithms for Network
Programming , John Wiley & Sons, 1980.

27. Dembo, R. S. and Steihaug, T, "Truncated-Newton Algorithms for

Large Scale Unconstrained Optimization," School of Management,
Yale University, Working Paper Number 48 (September 1980).

28. Dembo, R. S. and Klincewicz, J. C, "A Scaled Reduced Gradient
Algorithm for Network Flow with Convex Separable Costs," School

of Management, Yale University, Working Paper Number 21 (November

1979), (to appear in Mathematical Programming Studies).

128

29. Dembo, R. S., Eisenstat, S. C, and Steihaug, T., "Inexact Newton
Methods," (to appear in SIAM Journal on Numerical Analysis).

30. Luenberger, D. G., Introduction to Linear and Nonlinear Programming ,

Addi son-Wesley, 197T!

31. Dennis, J. E. and More, J. J., "Quasi-Newton Methods, Motivation
and Theory," SIAM Review , V. 19, pp. 46-89, January 1977.

32. Murtagh, B. A. and Saunders, M. A., "Large Scale Linearly Constrained
Optimization," Mathematical Programming , V. 14, pp. 41-72, 1978.

33. Murray, W. and Gill, P. E., "Safeguarded Steplength Algorithms for

Optimization Using Descent Methods," National Physical Laboratory,
NPL Report NAC 37 (August 1974).

34. Wirth, N., Algorithms + Data Structures = Programs , Prentice-Hall,
1976.

35. Pascal Interactive Terminal Software, Software Sorcery, McLean, Va.

36. Knuth, D. E., The Art of Computer Programming Volume 1 , Addison-
Wesley, 1969.

37. Klingman, D., Napier, A., and Stutz, J. "NETGEN: A Program for

Generating Large Scale Capacitated Assignment, Transportation, and

Minimum Cost Flow Network Problems, Management Science , V. 20, N. 5,

pp. 814-821, January 1974.

38. McBride, R. D. "The Efficient Solution of Generalized Network
Problems," Working Paper, Department of Finance and Business
Economics, School of Business, University of Southern California,
September 1981.

39. Brown, G. G. and Duff, R. H. "A Microcomputer Based Network Optimi-
zation Package." (Presentation and live demonstration). C0RS/0RSA/
TIMS Meeting, Toronto, Canada, 4 May 1981.

129

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22314

2. LIBRARY, CODE 0142 2

Naval Postgraduate School

Monterey, California 93940

3. Department Chairman, Code 55 1

Department of Operations Research
Naval Postgraduate School

Monterey, California 93940

4. Professor Gerald G. Brown Code 55Bw 36

Department of Operations Research
Naval Postgraduate School

Monterey, California 93940

5. Professor Alan R. Washburn, Code 55Ws 1

Department of Operations Research
Naval Postgraduate School
Monterey, California 93940

6. Major Richard H. Duff, USMC 1

9 Revere Road

Monterey, California 93940

130

Thesis
1 94 ^^/C

DT8365 Duff
H ° D 6

A microcomputer-basec
network optimization
package

.

305 7a

Thesis 1 cnc/
D78365 Duff ' ' ^ * ^ °
cl A microcomputer-based

network optimization
package

.

thesD78365

A microcomputer-based network optimizati

3 2768 000 98574 1

DUDLEY KNOX LIBRARY

