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ABSTRACT

This thesis presents the detailed design and implementation

of the kernel of a real-time, distributed operating system

for a microcomputer based multiprocessor system.

Process oriented structure, segmented address spaces and

a synchronization mechanism based on eventcounts and sequencers

comprise the central concepts around which this operating

system is built.

The operating system is hierarchically structured, layered

in three loop free levels of abstraction and fundamentally

configuration independent. This design permits the logical

distribution of the kernel functions in the address space of

each process and the physical distribution of system code and

data among the microcomputers. This physical distribution in

turn, in a multimicroprocessor configuration will help to

minimize system bus contention.

The system particularly supports applications where

processing is partitioned into a set of multiple interacting

asynchronous processes. One such application is that of

smart sensor image processing for which this system has been

specifically developed. The implementation was developed for

the INTEL 86/12A single-board computer using the 8086

processor chip.
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I. INTRODUCTION

The topic of this thesis is the detailed design and

implementation of the kernel of a real-time, distributed

operating system for a multiple microcomputer system.

A. MOTIVATION

In the Electro-Optics Signal Processing Laboratory at

the Naval Postgraduate School, research is currently being

conducted in the area of "smart sensor image processing".

Specifically image processing for long distance missile

detection, high-altitude surveillance and target acquisition

for tactical missiles is the topic presently being investigated.

The smart sensor platform will require on-board data

processing of large quantities of collected image data.

To provide the required "computing power" for a high

input data rate which processes that data in "real time", a

multiple microcomputer system is being developed capable of

performing concurrent asynchronous computations.

A large image processing program can be partitioned into

small interactive parts. These will be dynamically assigned

to the microcomputers available in the system for concurrent

"parallel" and "pipeline" processing.

If properly designed and executed, the concurrent computing

will both increase the throughput and decrease the execution

time.
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To facilitate the dynamic assignment of the partitioned

processes of a program for effective computations by a

multiple microcomputer system, a real-time distributed

operating system is needed and this is the topic of the

present thesis.

B. DISCUSSION

The processing power of microprocessors is increasing.

If this power can be effectively coordinated by an opera-

ting system, it would provide a more affordable and powerful

product.

The application of contemporary microprocessor technology

to the design of large-scale multiple processor systems offers

many potential benefits. For example, the "cost" of high-

power computer systems could be reduced drastically, and

"fault tolerance" in critical real-time systems could be

improved. Designing such systems presents many formidable

problems that have not been solved by the single processor

systems available today.

The multi-microprocessor systems in use today suffer

performance degradation as more processors are added to the

system. Sophisticated interconnections among processors and

memories are needed to reduce this problem.

Despite the rapidly expanding capabilities of modern

microcomputer systems, they still are limited by the

relatively slow execution speeds of their microprocessors,

17





for many real-time military applications. These systems

generally do not provide the power and flexibility required

to address complex and demanding applications. One such

area is that of "real-time digital image processing". This

is a particularly demanding application area, characterized

by the requirement to apply significant "processing power"

to a high input data rate.

An answer to the inadequacies of the single microcomputer

is to provide for miltiple microcomputer systems. Such

systems could provide the processing power necessary to handle

those applications, which are presently addressed by mini-

computers and mainframe systems. However, most of today's

microcomputer operating systems deal only witha single

processor and cannot adequately manage multiple processors.

The integration of large numbers of relatively inexpensive

microcomputers into powerful computer systems has been the

subject of intensive research in universities and industry

for several years.

The primary thrust of this thesis is towards a general

architecture which can be applied to hardware systems, that

are commercially available today (this project is currently

using the INTEL general purpose 16-bit 80 86 Microprocessor)

,

with some custom-developed hardware for intercommunication

network and control.
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C. BACKGROUND

The system software design uses the MULTICS [9] concepts

of segmentation and "per process stack", in conjunction with

Reed's [15] design of virtual processors, and Reed and

Kanodia [10] eventcount synchronization mechanism.

The basic microcomputer operating system design was

developed by O'Connell and Richardson [7] and is based on the

structure of a hierarchical kernel, where security kernel tech-

nology was used. O'Connell and Richardson first developed a

flexible operating system design that is fundamentally

configuration independent and adaptable to a spectrum of

systems.

J. Wasson [8] , in his thesis defined the detailed kernel

design of one member of the above family, a modified real-time

subset, tailored to "real-time image processing" and applied to

the INTEL 16-bit general purpose 8086 Microprocessor.

The objective of this thesis is to complete the above

design and also to write a detailed code implementation.

The result is a layered loop free operating system which

is both small and easy to analyze.

The system supports miltiple asynchronous processes, using

the concept of "two-level traffic control", to accomplish

"processor multiplexing" amongst a greater number of

eligible processes. This dual-level "processor multiplexing"

design allows the system to treat the two primary scheduling

19





decisions, viz., the scheduling of processes and the manage-

ment of processors, at two separate levels of abstraction.

The kernel comprises a complete, albeit primitive,

operating system providing support for a large number of

asynchronous processes.

The kernel manages all physical processor resources, and

provides scheduling and interprocess communication and

synchronization and also provides the user with an execution

environment which is relatively free from concern about the

underlying hardware configuration. The system is capable of

performing in a real-time environment through the use of

"preemptive scheduling" , to ensure expeditious handling of

time-critical processing requirements.

D. STRUCTURE OF THE THESIS

Chapter I presented a general discussion and the thesis'

background.

Chapter II, describes the overall design philosophy of

the operating system, its functional requirements, how

multiple processes communicate and synchronize their tasks,

and finally how these processes are multiplexed on a smaller

set of processors.

Chapter III describes the hardware architecture of the

multiprocessor system. The INTEL 8086 Microprocessor was

chosen for this implementation.

Chapter IV describes the details of the system design.

20





Chapter V presents conclusions and observations that

resulted from this effort and also suggestions for further

research.

21





II. FUNDAMENTAL DESIGN CONCEPTS

A. DESIGN PHILOSOPHY

The kernel primitives which provide multiprogramming

processor management and process management, form one member

of the family of operating systems designed by O'Connell and

Richardson [7] . This member is a modified real-time subset.

The modification consists of the inclusion of a more general

synchronization mechanism, eventcounts and sequencers describ-

ed by Reed and Kanodia [10] , which replace the more tradi-

tional Signal/Wait and Block/Wakeup used in the original

design.

Before presenting the details of this operating system,

the high level design and the detailed "working implementa-

tion" of the system, it is useful to investigate the general

design methodology applied to the development of this

operating system.

Multiple processor systems are intrinsically more complex

than the familiar uniprocessor. Their complexity has proven

to be the major barrier to realize the full potential of

the inherent parallelism available in such a system.

One of the most important components of any computer

system is the operating system. The operating system manages

the system's resources. Thus system performance is critically

dependent upon its effectiveness.
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We can say that basically two issues confront the operat-

ing system designer. First, he must provide system functions

that support the services requested by the user. These

functional requirements affect the logical design of the

system. Second, he must address issues of cost and

performance. Cost and other management considerations will

not be addressed here. Performance issues concern the

management of physical resources and has to do with the

computational speed, and also system attributes such as the

ease of programming, efficiency, correct operation, etc.

There is a considerable amount of literature devoted to

the development of the functional design of operating systems.

Dijkstra [12] has described a technique for reducing the

complexity of the design by allocating operating system

activities to a number of cooperating processes. Process

structure is simplified in turn, by defining its functions

in levels of increasing abstraction, and by applying the

principles of structured programming.

Madnick and Donovan [13] have described an operating

system as a hierarchical extended machine. Program modules

are added to the system to provide many extended instructions,

in addition to the hardware instructions available on the

bare machine. In complex systems, one extended machine may

be constructed upon another to form a system composed of

levels of abstraction (virtual machines) . Figure 1 from

Reference [13] , presents the general idea of that hierarchical

23





USERS

APPLICATION AND
UTILITY PROGRAMS

1 1

DEBUGGING I MACRO
(

TEXT
AIDS | PROCESSOR ,

EDITOR

! i

COMPILERS | LOADERS
I

I

I ASSEMBLERS

OPERATING SYSTEM

1. Memory Management

2. Processor Management

3

.

Device Management

4. Information Management

FIGURE 1. RELATION OF OPERATING SYSTEM TO COMPUTER HARDWARE

24





extended machine and levels of abstraction built on the

bare machine.

Saltzer [14] and Reed [10, 15] have discussed the advan-

tages of resource virtualization and have described useful

interprocess communication and synchronization mechanisms.

The general design strategies presented in this thesis

will aid the operating system designer in developing system

functions in a clean, logical, verifiable design.

Finally, adequate performance can only be assured if

the behavior of the system is well understood and this in

turn imposes a strict requirement for simplicity.

In this design, the requirement for simplicity is

satisfied by utilizing a model based on the notion of

multiple asychronous processes with segmented address spaces.

This is the central unifying concept which provides a

straightforward view of both static and dynamic system

behavior [4] . The principles of structured system design

are also applied to logically organize the operating system

into a hierarchically structured set of easily understood

modules whose interactions are clearly specified and strictly

enforced.

The result is a modular, layered operating system which

makes it easier to ensure correct operation and provides

better opportunity for improving performance through tuning.

Finally, because the system is small, less memory is used for

25





operating system code and less processor time is spent in

its execution.

The operating system design is logically organized into

a hierarchy that separates the user application processes

from the kernel. This modular, layered design lends itself

to "dynamic reconfiguration" where processes can be relocated

among physical processors [19] . Additionally, the system

initialization technique proposed by Anderson [19] provides a

basis for an automatic recovery mechanism that will initialize

the system on a new physical configuration after the detect-

ion of faulty system components.

B. FUNCTIONAL REQUIREMENTS

The functional requirements defined below support the

specific design goals of the system and provide features

desirable in any operating system, such as: a logical struct-

ure, fault tolerance and efficiency of operation. Functional

requirements define services that must be provided to support

the user's environment.

1. Process structure

By dividing a job into asynchronous parts and execut-

ing these parts as separate entities, significant benefits

can be realized. Within a single processor system the

partitioning into asynchronous parts provides the "only"

design simplicity. But in a multi-processor system, the

partitioning into asynchronous parts is essential, if the
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"parallel and pipeline processing" potential of the system

is going to be used.

2 . Definition of a process. Process organization

The abstract idea of a process has been defined

in several ways. A simple one offered by J. Saltzer is

the following:

"a process is a program in execution on a
processor." [14]

A process is the sequence of actions taken by some

processor. In other words, it can be viewed as the past,

present ad future "history" of the state of the processor.

The notion of a process provides a complete description of

all instructions executed and all memory locations referenced

during the performance of a task.

Considering the above definition, it becomes clear

that there are two elements which together completely

characterize and define a given process. These are the

process 1 "address space" and the "execution point."

The address space is the set of memory locations that

could be accessed during process execution. The execution

point is the state of the processor at a given instant

during process execution (and is characterized by the contents

of certain processor registers)

.

In the abstract view, an address space is defined by

a collection of discrete points, each representing a memory

word. The process is described by the path traced through
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this address space from process creation to its destruction.

In Figure 2 the main path, shown by a heavy black line,

traces the process execution point as it moves from one

instruction (i.e., memory word) to another during process

execution. The branches from this execution point path

represent data references.

The concept of a process has proven to be a funda-

mental and powerful one in the organization of computer

systems. By designing a system as a collection of coopera-

ting processes, system complexity can be greatly reduced.

This is because the asynchronous nature of the system can be

structured logically by representing each independent

sequential task as a process and by providing interprocess

synchronization and communication mechanisms to prevent

"race" and "deadlock" situations during process interactions

ADDRESS * - SPACE

PROCESS
CREATION

PROCESS
DESTRUCTION

FIGURE 2. PROCESS HISTORY
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Several advantages result from using this process

oriented design. As a tool for dealing with the asynchronous

nature of system operation, processes provide a simple,

logical, high-level structure for the design. Since each

process is confined to a specific address space, tasks are

isolated from one another and system fault tolerance can be

improved.

Each process is assigned a unique identifier and is

an explicit entity that requires management.

In a "distributed" operating system, those portions

of the operating system that are logically part of the

sequential flow of control (viz., locus of execution) are

within the address space of each user process. This is made

possible by dividing the operating system into procedures

that are called like any other application procedure.

It should be noted that in a distributed operating

system there is no "master" assigning processes to processors,

Rather, each running process "gives up" its processor to the

next process that is ready to run.

The address space of a process we can say, provides

a container for the process which isolates it from any

other process. This eliminates the possibility of inter-

process interference simply because processes are unable

to "escape" the confines of their defined address spaces.
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However, this is rather restrictive in that processes

which are totally ignorant of each other have no hope of

co-operating towards the accomplishment of some greater goal.

In order to mediate this constraint, one desires to allow

some restricted (controlled) form of address space overlap,

(viz. , sharing) , such that co-operation is allowed while

still retaining the benefits of protection offered by

isolation. Sharing requires some way of distinguishing the

shared portions of the address space. This is greatly

facilitated by introducing the notion of memory segmentation.

Finally, to distinguish between a process and a

processor (physical or virtual) , we can say that the major

difference is that a processor is an "actor", while a process

is a sequence of "actions" taken by that actor. A process

results from the actions of a processor.

3. Virtual Memory and Segmentation

In many memory handling schemes, processes cannot run

unless the entire address space is loaded in primary memory.

This may require a large main memory or it may restrict the

size of the address space. An alternative plan requires an

operating system which manages primary and secondary memory

to create the "illusion" of a memory which is larger than

system's primary memory. Since the larger memory is only

an illusion, it is often called "virtual" storage.

Virtual memory is used to implement the concept of a

"per process" address space. In Multics [16] each process is
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provided with its own virtual memory for an address space.

These virtual memories are completely independent of one

another.

A virtual memory (the address space of a process) is

composed of a set of segments. A segment is a logical col-

lection of information (e.g., procedure, data structure,

file, etc.) and is the basic logical object of this design.

Segments are distinct "variable size" memory objects contain-

ing a sequence of words with conventional linear addresses.

Associated with a segment is a set of logical attributes

used to uniquely identify the segment and to control access

to it.

In specifying the set of segments that comprise a

virtual memory, one may include segments that are also

part of "other" virtual memories as well. So in addition,

segmentation supports "information sharing" since a segment

may belong to more than one address space. Segmentation

provides a means of associating logical attributes and labels

with each segment, such as, access class, domain, etc. Thus,

segments can be shared in a controlled manner to provide for

inter-process communication and synchronization.

By using segmentation to provide a virtual memory

environment, the user is presented with a configuration

independent system in that he "sees" a process address space

that he can consider "his own" and is not dependent on the

assignment of physical addresses.
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a. Addressing in a Segmented System

Addressing in a segmented memory system is

"two-dimensional", That is, a complete address consists of

two parts. The first is the "segment number", This identi-

fies the particular segment of interest. One attribute of

the segment is the physical address of the segment's base.

Thus the segment can be located anywhere in physical memory

just by changing this base address. The second dimension

of the address is an "offset" relative to the segment's base

(the beginning of the segment) . This serves to access

specific locations within the segment.

This two-dimensional addressing "frees" informa-

tion from dependence on a particular memory location by

making it arbitrarily "relocatable",

Figure 3 illustrates the two-dimensional nature

of the segment address. The descriptor segment provides a

list of descriptors for all segments in a process address

space. As previously mentioned, one attribute of the segment,

given by the segment descriptor, is the "physical" address

of the segment's base. Then the second dimension needed to

access a specific memory word within this segment is given

as an "offset" from the segment's base, (SEG # n, OFFSET), e.g.,

( 1st dimension, 2nd dimension). So, in segmented addressing,

each address is characterized by an ordered pair of numbers

(1st dimension, 2nd dimension)

.
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Because of the similarities in address mapping

hardware, very often the distinction between paging and

segmentation is confused. To distinguish between page and

segment, we emphasize the conceptual differences here. The

major difference is that a segment is a "logical" unit of

information "visible" to the user's program and is of

"arbitrary size", A page is a "physical" unit of information

strictly used for memory management "invisible" to the user's

program and is of a "fixed size", In this design only segmen-

tation is supported by both the hardware and software.

Segmented memory management can offer several

advantages. It can: control fragmentation; facilitate shared

segments (data areas and procedures) ; and also for future

development in this system can provide dynamic linking and
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OFFSET
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FIGURE 3. SEGMENTED ADDRESSING
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loading, controlled access, dynamically growing and shrinking

segments. More details about segmentation in the present

design will be discussed in the next chapter.

4 . Abstraction - Abstract types

"Abstraction" provides a method for reducing problem

complexity by applying a general solution to a collection

of specific cases [17] . Structured programming provides a

tool for creating abstraction in software design.

An "abstract type" is a class of objects in the

system, for which there is a defined set of operations.

The difference between an abstract type and the "classic"

notion of type, is that the user of an abstract type need

not know the representation of the object or the algorithms

used to implement operations defined on the type, and

furthermore, the only operations allowed to be performed

on the object are specified by the definition of the type.

The concept of abstract type is quite attractive for

the structuring of large systems. The result is the kind of

structuring prescribed by Parnas' "information hiding

principle" [20], for decomposing a system into modules.

Further, abstract types fit naturally into the structure of

an operating system since a major task of an operating system

is to multiplex a set of physical resources to produce a set

of virtual resources that can be viewed as objects of abstract

type. For example, this is exactly what happens in processor

multiplexing (see paragraph C)

.
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An abstract type consists of a set of objects and a

set of operations. For example, a word in virtual memory

is an abstract type. Two operations that can be carried out

by instructions in user processes are read-word, which

obtains the content of a word named by a particular virtual

memory address, and write-word, which takes a bit string and

stores it in the object specified by a particular virtual

memory address. Processors, both real and virtual, also can

be viewed as objects of abstract type.

The abstract type idea clearly furnishes a useful

way to view the virtual objects seen at an operating system,

but for the design of an operating system the abstract idea

is equally important in structuring the internal implementa-

tion of the system.

By strictly applying two special rules in addition

to the general principles of structured programming, a

structure consisting of levels of increasing abstraction can

be constructured.

First, calls cannot be made outward toward higher

levels of abstraction. This frees lower levels from a

dependence on higher levels by creating a loop-free structure

and results in a design which is capable of having subsets.

Second, calls to lower levels must be made through

specific entry points or gates. Each level of abstraction

creates a virtual (hierarchical) machine [13] . The gate to

each level provides a set of instructions created for that
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virtual machine. Thus, higher levels may use the resources

of lower levels only by applying the instruction set of a

lower level machine. Once a level of abstraction has been

created, the details of its implementation are no longer an

issue. Instead users see layers of virtual machines, each

defined by its extended instruction set.

For this particular design when the rules of

abstraction are applied to level j2f, the physical resources

of the system, these resources are " virtualized" . Thus

the first level of abstraction creates "virtual processors"

,

"virtual memory", and "virtual devices" from the system's

hardware. At each higher level the detail of the design

is reduced. The gate at the boundary between the highest

level of the kernel and the lowest level of the supervisor

provides a mechanism for isolating the kernel as well as

ensuring that each memory access is via kernel software.

This mechanism has been implemented in the system by a ring-

crossing mechanism called the Gatekeeper (or Gate)

.

5 . Protection Domains - Levels of Abstraction

a. Protection Domains

The implementation of this operating system has

not considered the "internal security" of the system but in

the design there are all the ingredients for future extensions

in this direction.

An essential requirement [22] of internal security

is that the security kernel be isolated from other elements
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of the system. This can be accomplished by the construction

of protection domains. Protection domains are used to

arrange process address spaces into rings of different

privilege. This arrangement is a hierarchical structure

in which the most priviledged domain is the innermost ring.

The structure essentially divides the address space into

levels of abstraction with strictly enforced gates at the

ring boundaries (Figure 4) .

The protection provided by the ring structure

is not a security policy (security protection is implemented

by a lattice structure). It is, however, a mechanism to

enforce the hierarchy of the virtual machine by creating a

priviledged kernel ring within the supervisor ring.

GATEKEEPER

FIGURE 4. PROTECTION RINGS
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In this implementation to protect kernel proced-

ures from the user, the process' address space is divided

into two hierarchical domains, "user domain" and "kernel

domain". The kernel domain is the most priviledged. Only

the kernel executes in this domain. The user domain is less

priviledged and is separated from the kernel domain to protect

the user from inadvertently causing problems to the operating

system services. These two domains are generated by software

since there is no hardware support,

b. Levels of Abstraction

Abstraction is a way of avoiding complexity and

a tool by which a finite piece of reasoning can cover a

myriad of cases [17] . The purpose of abstracting is not to

be vague, but to create a semantic level in which one can be

absolutely precise.

Levels of abstraction have been demonstrated to

be a powerful design methodology for complex systems. The

use of levels of abstraction in general leads to a better

design, with greater clarity and fewer errors.

A level is defined not only by the abstraction

that it supports (for example, a segmented virtual memory)

but also by the resources employed to realize that

abstraction. Lower levels (closer to the hardware) are

not aware of the abstractions, or resources of lower levels

only by appealing to the functions of the lower levels. This

pair of restrictions reduces the number of interactions among

parts of a system and makes them more explicit.
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Each level of abstraction creates a virtual

machine environment. Programs above some level do not need

to know how the virtual machine of that level is implemented.

For example, if a level of abstraction creates sequential

processes, and multiplexes one or more hardware processors

among them, then at higher levels the number of physical

processors in the system is not important. This way, in

present implementation, since the processes are assigned

virtual processors (and not physical) , there is no effect

on the user when real processors are added or deleted

(except, of course, for the change in performance) . Adding

and deleting processors will have particular interest when

"fault tolerance" and "fault correction" are added to the

attributes of the operating system.

On the present implementation, the operating

system is structured as a hierarchy of the levels of abstrac-

tion shown in Figure 5.

C. PROCESSOR MULTIPLEXING

1. Definition of a Processor

The basic function of a processor is to perform a

sequence of operations on objects in its environment. The

environment of a processor is a set of objects. For example,

the environment of a physical processor is that portion of

memory that it can access through its address mapping hard-

ware. Typically the environment is specified by an object
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such as the "descriptor segment" (in MULTICS) which in turn

names another object.

A processor has internal memory, called its state,

that it uses to pass information from one operation to the

next. The processor determines the next operation to perform

by interpreting an instruction found in the processor's

environment by an instruction pointer that is part of the

processor state. Also included in the processor state is

the name of the current domain in which the processor is

executing.

Each operation performed may modify the contents

of the processor's internal memory. In particular, it changes
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the instruction pointer to select the next instruction to

be interpreted.

As an object of abstract type, a processor may be

part of the environment of other processors. The operations

that can be performed on a processor object are: loading

a new state into the processor, extracting the current state

from the processor, causing the processor to run, causing

the processor to stop, etc.

A processor can be a physical object such as the

INTEL 8086, 16-bit general-purpose microprocessor used to

implement this design. In this case, the processor registers

comprise the state of the processor. The environment of the

processor includes all of the primary memory that is acces-

sible through the processor's descriptor segment. The

descriptor segment in this design is related to the four

hardware segment registers (CS, DS, SS and ES) . Details

are discussed in the next chapter.

On the other hand, a virtual processor which has

no direct hardware manifestation, is a simulation of a

physical processor achieved by using physical processors

to interpret the instructions to be executed by the virtual

processor. The virtual processor idea is discussed in the

following paragraph 3.

2. Definition of Processor Multiplexing

Multiplexing can be defined as the use of a single

resource for different purposes at different times. For
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example, the physical bus lines can be used both for addresses

and data during different times of a machine cycle.

Processor multiplexing is a technique for sharing

scarce processor resources among a number of processes. The

ability to multiplex processors efficiently provides a

mechanism for the virtualization of these physical processors

by simulating the existence of a larger number of virtual

processors. This technique is widely used in conventional

uniprocessor systems where it is called multiprogramming. It

seeks to maximize the use of the available hardware by auto-

mating control of process loading and execution. It also

greatly increases the flexibility of a system allowing it

to be effective in more complex and demanding applications.

J. H. Saltzer [14] presented one of the fundamental

works on the subject of processor multiplexing.

3. Processor Virtualization

The first levels of abstraction, above system hard-

ware, creates virtual representations of physical resources

(virtual processors, virtual memory). Since upper levels of

the design operate on these virtual processors rather than

on physical processors, most of the design (i.e., everything

above virtualization level) is independent of the physical

configuration of the system. This means that by providing

the virtual to real processor binding in the kernel of the

operating system and since the processes are assigned virtual

processors (and not real processors) , there is no effect
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on the user when real processors are added or deleted in the

system (except, of course, for the change in performance).

The physical processor resources (those hardware

devices that execute machine instructions) are virtualized

by creating abstract processors called virtual processors.

Processor multiplexing can be defined also as a

simulation of a number of distinct virtual processors by a

smaller number of real processors.

a. Virtual Processors

A virtual processor is a data structure that

contains a complete description of a process in execution on

a physical processor, at a given instant. This description

is contained in the process execution point. The address

space of the process must be accessible to the virtual

processor when it is "loaded" on ("bound" to) a CPU. To

provide a useful virtualization capability, the CPU must

have the ability to efficiently multiplex process execution

points and address spaces (i.e., it must support

multiprogramming)

.

Virtual processors are simulations of processors.

They can be viewed in essentially the same way as physical

processors, in that they execute the same instructions.

However, the instruction set of a virtual processor has been

expanded to include some instructions which the physical

processors do not directly have. These include "instructions"

to "load" a process, certain operation called interprocess
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communication and synchronization primitives, system service

calls, etc.

For example, the AWAIT operation is not an

operation that requires real processor resources, it is

rather an operation that inhibits use of real processor

resources by the virtual processor.

Virtual processors exist only as "abstract"

processors represented by a data structure. They are used

as the vehicle for the control and manipulation of processor

resources.

Each of the virtual processors executes a sequence

of operations in time. These sequences are actually

performed by the real processors. Successive operations of

the same virtual processor may be separated by a gap of

time, during which operations of another virtual processor

are being executed by the real processors. Figure 6 shows

how the operations of three virtual processors might be

mapped into the operation sequence of one real processor

Real Processor #1 time

Virtual Processor #1

Virtual
Processor #2

Virtual Processor #3L

FIGURE 6. MULTIPLEXING A REAL PROCESSOR
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To define a term used frequently in this thesis,

a virtual processor being simulated by a real processor is

"bound" to that real processor whenever its process is

being executed by the real processor. Thus, Virtual Proces-

sor #2 in Figure 6 is bound to Real Processor #1 during the

first time interval.

Processor multiplexing also requires a policy of

scheduling. Given a number of virtual processors to which a

real processor may be bound at any one time, the real

processor can execute only one virtual processor. The

choice of the processor to run is made by some algorithm

called virtual processor scheduler. This algorithm receives

as input the set of virtual processors belonging to this

real processor and chooses which one is to run (be bound and

execute)

.

4. Multiprogramming

Multiprogramming is used to improve system efficiency

and to create a virtual environment which frees the remainder

of the operating system from a dependence on the physical

processor configuration. Processor management provides a

means of coordinating the interaction of the asynchronous

processes which comprise the system. This implementation

employs a processor multiplexing technique for a distributed

kernel and provides a virtual interrupt mechanism. The

modular hierarchical structure of the software is "loop-free"

to support future system expansion to higher level functions.
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The clean, logical, process-oriented structure of the

system offers other benefits as well, including possible

inclusion of fault tolerance, resource configuration

independence, and efficiency.

In a system where there are more processes than

processors, there must exist a means of switching processors

from process to process. For example, reasons for switching

processes are: current process completes, current process

is blocked, a higher priority process is ready to run, etc.

Whatever the reason for switching, there are certain

tasks that must be done in performing the switch. First,

save the address space and current execution point of the

old process. Secondly, load the address space and the

execution point of the new process.

5. Multiprocessing

The process structure provides the essentials for

parallel processing. That is the support for a set of

asynchronous processes which can communicate with each other.

Parallel processing does not require a multiprocessor

environment. However, in a multiprocessor environment,

parallel processing can provide faster completion of a job.

Whenever a job depends on a mixture of asynchronous

and synchronous tasks and time is a factor, then concurrent

processing is a possible solution to get the job done in

the specified amount of time. Using several processors

working on the same job and each of them doing separate tasks,

the overall time required to to this job can be reduced (job

has been structured into explicit processes)

.
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The above discussion provides some of the major

reasons why this system was designed to support parallel

processing on multiple processors.

6 . Two-Level Processor Multiplexing

In this design there are two levels of processor

multiplexing. The design in two levels arose from the

existence of multiple physical processors. Each of the

levels addresses a distinct requirement. One level supports

virtual processor management, that is, the provision of

inter-process communication and synchronization. The

other supports the management of physical resources by the

operating system. The first one addresses the multiplexing

of virtual processors among processes and is the "Traffic

Controller" . The other addresses the multiplexing of

physical processors among virtual processors and is the

"Inner Traffic Controller".

a. The Traffic Controller

The Traffic Controller represents the upper

level of processor multiplexing (Level 2) and provides the

mechanism for multiplexing virtual processors among processes

Thus it is responsible for inter-process synchronization and

communication.

As an example, consider that a Process A wishes

to synchronize its actions with another Process, B, such

that Process B has to complete some task before A can

continue execution. Thus A will execute to the point where
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it cannot proceed further and then wishes to signal B.

When Process B has finished that task it must notify Process

A of its completion so that Process A may then proceed.

This inter-process synchronization and communica-

tion is handled at the level of the Traffic Controller. In

the above example, when Process A discovered that it could

not proceed further, it "gave away" its virtual processor to

another process that could be run. In this way the Traffic

Controller suspended the execution of Process A and a new

process was bound to its virtual processor. In the same

way, when B completes (viz., it has no more work to perform)

it will also give its virtual processor away,

b. The Inner Traffic Controller

The Inner Traffic Controller comprises the

lower level of processor multiplexing (Level 1) and provides

the second set of multiplexing functions. It multiplexes

physical processors among a fixed set of virtual processors.

In particular, the system's interrupt structure is managed

by the Inner Traffic Controller.

If a user process calls upon some system service,

such as disk I/O or I/O for a real-time sensor, it must wait

for that service to be completed before it can proceed. The

performance of a system service is considered to be part of

the requesting processes. However, the service may actually

be supported by another virtual processor. To control this

interaction, the Inner Traffic Controller provides the
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required inter-virtual processor synchronization and communi-

cation mechanism. In particular, a physical system interrupt

is directly transformed into a synchronization signal to a

waiting virtual processor. This structure is particularly

important for the support of real-time processing, and note

that it is completely distinct from inter-process synchroni-

zation and communication described in paragraph 6a.

7. Processor Multiplexing Strategy

a. Process State Transitions

Figure 7 illustrates the state transitions of

a set of processes as a virtual processor is multiplexed

among them. Some eligible process (one which is in the ready

state) is scheduled to run and is "bound" to the virtual

processor. At this time, the process makes the transition

to the running state. As far as the process is concerned,

once it enters the running state, it is executing.

At some point in its execution, the process may

desire to block itself or signal another process. (For

example, when Process A is at that execution point and needs

data computed by another Process, B. ) In that case, it will

block itself (will enter the blocked state) and will "give

up" the virtual processor to which it is presently bound and

will be out of "contention" for processor resources. It will

remain in the blocked state until some other process will

signal it. (In the above example, when Process B has computed

the needed data for Process A. ) Then this process will make
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After a Traffic Controller ADVANCE operation

After a Traffic Controller ADVANCE operation
(and effect of preemptive scheduling)

.

FIGURE 7. PROCESS STATE TRANSITIONS
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the transition back to the ready state. If the process

signals other processes, it will make a transition from the

running state back to the ready state from which it may be

scheduled to run again. In doing so, it allows the Traffic

Controller to possibly give the virtual processor to some

other higher priority process which may be ready to run.

The mechanisms which decide and permit these

transitions are the Traffic Controller Scheduler and the

Traffic Controller inter-process synchronization and communi-

cation primitives AWAIT, ADVANCE. Their details will be

discussed in Chapter IV.

b. Virtual Processor State Transitions

Figure 8 illustrates the state transitions made

by the virtual processors as a physical processor is

multiplexed. This diagram is very similar to that of Figure

7. However, these transitions are not directly observable

by processes except in the differences of their execution

times, as virtual processor state transitions result from

the management of physical resources by the operating

system.

A running virtual processor can make a transition

to the waiting state or to the ready state. The transition to

the waiting state occurs when a virtual processor must wait

for the completion of some system service (analogous to the

blocking of Process A in the example given in paragraph a)

.

The transition from running state back to ready state occurs

51





READY
VIRTUAL
PROCESSORS!

\

WAITING
VIRTUAL
PROCESSORS

/

\

/
4 RUNNING /

VIRTUAL
PROCESS ORSL

STATES: READY, RUNNING, WAITING

TRANSITION 1:

TRANSITION 2:

TRANSITION 3:

TRANSITION 4:

Decided by the Inner Traffic Controller
scheduler.

After an Inner Traffic Controller AWAIT
operation.

After an Inner Traffic Controller ADVANCE
operation.

After an Inner Traffic Controller ADVANCE
operation.

FIGURE 8. VIRTUAL PROCESSOR STATE TRANSITIONS
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when the running virtual processor signals other virtual

processors. It will allow the Inner Traffic Controller to

possibly run another higher priority virtual processor.

While in the waiting state, the virtual processor is out of

"contention" for processor resources until another virtual

processor signals it to continue. While in the ready state,

the virtual processor is in contention for processor resources

and so may be scheduled to run on the physical processor.

The mechanisms which decide and permit these

transitions are the Inner Traffic Controller scheduler and

the Inner Traffic Controller inter-virtual processor synchro-

nization and communication primitives AWAIT, ADVANCE. Their

details will be discussed in Chapter IV.

D. COMMUNICATION AND SYNCHRONIZATION

For concurrent processing, a job that is composed of

sequential and non-sequential tasks is explicitly divided

into an appropriate structure of processes that can run

concurrently. Inter-process communication and synchroniza-

tion are necessary for concurrent processing.

It is the responsibility of the operating system to

provide mechanisms for communication between cooperating

processes. There are two different kinds of communication

that processes must be able to achieve.

There must exist a way for processes to exchange data

in some way. This mode of communication is called inter-

process communication.
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There must also exist a way for processes to wait for

data prepared by other processes, and for processes that

prepare such data, to signal that this data is available.

This interaction is different than communication of data,

and is called inter-process synchronization. Together these

two modes are called inter-process communication and

synchronization

.

The actual coordination for the exchange of data between

processes is realized by the use of "shared writable" segments

Therefore, to utilize the parallelism and pipelining

afforded by multiple processors, a mechanism is required for

inter-process communication and synchronization. It is used

for controlling the execution of processes and coordinating

the sharing of data.

The most widely used synchronization primitives are

Dijkstra's semaphores [11] or Saltzer's Block and Wakeup [14]

that were used in O'Connell and Richardson's original

design [7] . However, the design decision was made to use

a different mechanism which provides automatic "broadcasting"

,

supports "parallel signalling" and addresses the questions of

"confinement" (or * property) in a secure system. This is the

synchronization mechanism based on the design of eventcounts

and sequencers of Reed and Kanodia [10]

.

The synchronization between processes is supported by

the AWAIT and ADVANCE, that are the kernel calls to the

Traffic Controller level. The Traffic Controller is the
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kernel module that manages processes and supports scheduling

for user processes by multiplexing the user processes into

a limited (fixed) number of virtual processors.

AWAIT and ADVANCE are primitives of the Traffic

Controller. These primitives can be used to provide simple

cooperation, such as mutual exclusion or complex inter-

actions, when required by the application. How the user's

procedures invoke the AWAIT and ADVANCE primitives depends,

of course, on the actual process structure. (Examples will

be given in Appendix A)

.

A process can only block itself (using AWAIT) and cannot

block another process. The AWAIT sets the "calling process"

that invoked AWAIT in the blocked or ready state and then

the Traffic Controller Scheduler schedules another ready

process to run, the highest priority ready process.

The ADVANCE is used to provide asynchronous processes

with a synchronization signal. The ADVANCE takes as parameter

the name of the associated eventcount. It advances the value

of that eventcount by one. This incrementation of the even-

count value is "broadcast" to all the processes waiting for

that event. Then a check is made to determine if the awaited

eventcount value (for the processes waiting that event) is

smaller or equal to the current value of the eventcount. If

this is the case, then these previously blocked processes

will awake and resume the ready state. Otherwise they will

remain blocked. Then a check is made to find out if the
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currently running process is of lower priority than the other

ready processes (after ADVANCE operation) . If that is

the case, the ADVANCE will send to the virtual processor

(which is running this lower priority process) a "pre-empt

interrupt". Finally the scheduler will select the highest

priority ready process to run. So, we see that the ADVANCE

is also responsible for operating the "pre-emption

mechanism"

.

The above describes roughly the idea of AWAIT and

ADVANCE primitives, which are very close to the BLOCK and

WAKEUP described in O'Connell and Richardson's thesis [7],

More details and the whole operation of eventcounting will

be discussed in Chapter IV.

Another system level concerned with synchronization is

the Inner Traffic Controller. This level manages the physical

(real) processors to create the virtual processors, that are

in turn managed by the Traffic Controller.

The Inner Traffic Controller provides the interface and

does the multiplexing among the physical (real) and virtual

processors. Each physical processor has associated with it

several (a fixed number) of virtual processors. Some of

these virtual processors are mutliplexed in turn by the

Traffic Controller among user processes. Each system process

is assigned (dedicated to) a virtual processor. In the current

implementation there are two such processes, and these will

be discussed in Chapter IV.
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The Inner Traffic Controller decides which virtual

processor will run on the physical processor, based on the

priority assigned to each virtual processor. Of course

from the number of virtual processors assigned to a real

processor only one can run on it at a time. The primitives

ITC$AWAIT (Inner Traffic Controller AWAIT) and ITC$ADVANCE

(Inner Traffic Controller ADVANCE) are used to provide

communication and synchronization among the virtual

processors. These primitives are very similar in form

and function to the AWAIT and ADVANCE of the Traffic

Controller.
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III. MULTIPROCESSOR ARCHITECTURE

The manifestation of an operating system design is, of

course, software in execution on a system of equipment. If

the equipment must be selected early in the design, care

must be taken to insure that the overall system design goals

are compatible with the actual hardware capabilities. On the

other hand, if specific design goals must be met, then actual

hardware selection could be made late in the design process.

Then, even if a hardware change must be made, the penalty for

correcting it will be small, since only the lowest level of

the design (where resources are virtualized) , need be changed.

The particular hardware selected for this implementation,

is based on the INTEL 86/12A single board microcomputer [2]

.

A. HARDWARE REQUIREMENTS

One of the principal design goals of the system design

is to provide for configuration independence. That is when

real processors are added or deleted the system will continue

to function except of course for some change in performance.

Therefore, the operating system imposes only a few constraints

on the hardware, that are noted below:

1. Shared Global Memory

The operating system maintains, "system-wide control

data" accessible to each of the processors via "shared"
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segments. The communication path utilized for sharing this

data is shared memory. Thus some shared memory must be made

available to each microcomputer in such a way as to allow

independent access at the level of single memory references,

(a very small part, of a separate memory board (MUPRO) is used

as shared global memory, in this system implementation)

.

2. Multiprocessor Synchronization Support

There must also exist some "hardware-supported multi-

processor synchronization primitive". This can be any form

of an indivisible read-alter-rewrite memory reference. This

capability is required, to implement the global locks on

shared data to prevent race conditions, as the physical pro-

cessors attempt to asynchronously manipulate shared data.

For better understanding of this and the previous paragraph,

consider the following cases of APT and VPM. Two of the

system-wide data control tables are the VPM (Virtual Processor

Mapping) and the APT (Active Process Table) , as shown in

Figure 9. VPM is the principal central data base for the Inner

Traffic Controller which contains entries for all of the

virtual processors in the system. Each entry (there is one

"per virtual processor") has several fields, such as the

virtual processor state, priority, etc., which will be

described in Chapter IV.

Making this table globally available facilitates

communication among virtual processors at the Inner Traffic
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Controller level, on a "system-wide" scale, since every

virtual processor can access this table.

But to prevent race conditions, and also to assure

that only one processor, at a time, accesses the VPM, as the

physical processors attempt to asynchronously manipulate

shared data, we see the need of a global lock for VPM table.

So in the implementation (coding) , every time the VPM is

accessed either to read data or to write, e.g. update a

field, conceptually a "key" is turned and the VPM table is

locked. When the access task is finished, before leaving

we unlock the VPM.

Exactly the same concept is applied for the APT,

which is the principal central data base for Traffic

Controller in LEVEL 2, containing entries for every process.

In the implementation of this design (coding) , we

can see that modules accessing VPM, as for example, ITC$AWAIT

and ITC$ADVANCE, and also modules accessing APT, as TC$AWAIT,

TC$ADVANCE and TC$PE$HANDLER (Traffic Controller Preempt Hand-

ler) , lock and afterwards unlock the corresponding global table

To set these global locks, the implementation of the

present design utilizes the "test-and-set semaphore" oper-

ation. This mechanism, supported by the PL/M built-in

procedure "Lockset" [1] , is a spin-lock with potentially

significant impact on system bus traffic.
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3. Inter-Processor Communication

Finally, some method of communication between physical

processors must be provided. This is satisfied by an ability

to generate interrupts between the physical processors. This

capability is required for the implementation of "Preemptive

scheduling" and is supported by the INTEL SBC 86/12A using a

specific hardware configuration and software control.

B. HARDWARE CONFIGURATION

1. System Configuration

The hardware system is configured as a multi-

processor [18] . It consists of a number of single board

microcomputers and a global memory module, connected by a

single shared bus. The system differs from conventional

multiprocessors in that each of the microcomputers possesses

its own local memory. The global memory module is connected

directly to the system bus, and is the only physical shared

memory resource by all of the processors. The general con-

figuration is shown schematically in Figure 10.

2. Specific Hardware Employed

The particular hardware selected for this implemen-

tation is based on the INTEL 86/12A single board micro-

computer [2], This microcomputer utilizes the INTEL 8086

16-bit microprocessor capable of directly addressing a total

of 1 Mega-byte of physical memory.
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a. The 8086 Microprocessor

The 8086 microprocessor is suitable for a wide

spectrum of microcomputer applications. Systems using 8086

can range from uniprocessor minimal -memory designs, to multi-

processor systems with up to several Megabytes of memory.

The CPU is designed to operate with the 8 08 9

input/output processor and other processors in multi-

processing and distributed processing systems. Built-in

coordinating signals and instructions, and also electrical

compatibility with INTEL'S MULTIBUS shared bus architecture,

support the development of multiple-processors design.

Actual performance, of course, varies from appli-

cation to application. But in comparison to the 8-bit 2-MHZ

8080A, 8086 is seven to ten times more powerful. The high

performance of the 8086 is realized by combining a 16-bit

internal data path with a pipelined architecture that allows

instructions to be prefetched during unused bus cycles.

Furthermore software for high-performance 8086 systems need

not be written in assembly language. The CPU is designed to

provide direct hardware support for programs written in high-

level languages, such as INTEL'S PL/M-86 which is used for

the implementation of this operating system design.

The 808 6 instruction set supports direct oper-

ation on memory operands, including operands on the stack.

The hardware addressing modes provide straightforward
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implementations of based variables, arrays, arrays of

structures, character data manipulation (there is an exten-

sive use of all these features in the implementation)

.

Finally, routines with critical performance requirements

that cannot be met with PL/M-86 may be written in ASM-86,

the 8086 assembly language, and then linked with the PL/M-86

code. For example, the Virtual Processor Scheduler of the

Inner Traffic Controller level is written in ASM-86.

b. Processor Architecture

Microprocessors generally execute a program by

repeatedly cycling through the steps shown below:

(1) Fetch the next instruction from memory.

(2) Read an operand (if required by the instruc-

tion)

(3) Execute the instruction.

(4) Write the result (if required by the instruc-

tion) .

The architecture of 8086, while performing the

same steps, allocates them to two separate processing units

within the CPU (see Figure 11) . The execution unit (EU)

,

executes instructions. The bus interface unit (BIU) fetches

instructions, reads operands and writes results. These two

units can operate independently of one another and are able,

under most circumstances, to extensively overlap instruction

fetches with execution.
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The result is that, in most cases, the time

normally required to fetch instructions "disappears",

because the EU executes instructions that have already been

fetched by the BIU.

A 16-bit arithmetic/logic unit (ALU) in the EU

maintains the CPU status and control flags and manipulates

the general registers and instruction operands. All registers

and data paths in the EU are 16-bits wide for fast internal

transfers. The EU has no connection to the system bus, the

"outside world". It obtains instructions from a queue

maintained by the BIU. Likewise when an instruction requires

access to memory or to a peripheral device, the EU requests

the BIU to obtain or store the data. All addresses manipulated

by the EU are 16-bits wide.

The BIU performs an address relocation that

gives the EU access to the full Megabyte of memory space.

BIU performs all bus operations for the EU. Data is trans-

ferred between the CPU and memory or I/O devices upon demand

from the EU. In addition, during periods when the EU is busy

executing instructions, the BIU "looks ahead" and fetches

more instruction from memory. The instructions are stored

in an internal RAM array called the instruction stream queue

(which can store up to six instruction bytes) . This queue

size allows the BIU to keep the EU supplied with prefetched

instructions, under most conditions without monopolizing the
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system bus. The BIU fetches another instruction byte, when-

ever there are two empty bytes in its queue and there is no

active request for bus access from the EU (BIU normally

obtains two instructions bytes per fetch)

.

Under most circumstances the queue contains at

least one byte of the instruction stream, and so the EU does

not have to wait for instructions to be fetched. The instruc-

tions in the queue are the next logical instructions as

long as, execution proceeds serially. If the EU executes an

instruction that transfers control to another location, then

the BIU resets the queue and fetches the instruction from

the new address, passes it immediately to the EU, and then

begins refilling the queue from the new location. In addition,

the BIU suspends instruction fetching whenever the EU requests

a memory or I/O read or write (except that a fetch already in

progress is completed before executing the EU's bus request),

c. CPU Registers

There are eight 16-bit general registers. The

general registers are subdivided into two sets of four

registers each. The first set, called the "H and L" group

(for "high" and "low"), are the data registers. The second

set, called the "P and I" group, are the pointer and index

registers (see Figure 12) .

The data registers have their upper (high) and

lower (low) halves separately addressable. This means that
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each data register can be used interchangeably as a 16-bit

register or as two 8-bit registers. The other CPU registers

always are accessed as 16-bit units only. The data registers

can be used without constraint in most arithmetic and logic

operations. In addition, some instructions use certain

registers implicitly (see Figure 13) , thus allowing compact

yet powerful encoding.

The pointer and index registers can also par-

ticipate in most arithmetic and logic operations. The P and I

registers (except for BP) also are used implicitly in some

instructions, as shown in Figure 13.

The 16-bit instruction pointer (IP) (analogous

to the program counter, PC, in the 8080 CPU) is updated by

the BIU, so that it contains the offset (distance in bytes)

of the next instruction from the beginning of the current code

segment. IP points to the next instruction. During normal

execution IP contains the offset of the next instruction

to be "fetched by the BIU". Whenever IP is saved on the stack,

it first is automatically adjusted to point to the next

instruction to be "executed". Programs do not have direct

access to the IP, but instructions cause it to change and to

be saved on and restored from the stack.

The 8086 has six 1-bit "status flags" that the

EU posts to reflect certain properties of the result of an

arithmetic or logic operation. A group of instructions is
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available that allows a program to alter its execution

depending on the state of these flags, that is, on the result

of a prior operation. Three additional "control flags" can

be set and cleared by programs to alter processor operations

(see Figure 14)

.

d. Segmentation - Segment Registers

The 8086 does not support the notion of explicit

segmentation. In the 8086, addressing is segmentlike, in

that the base and offset (two-dimensional) addressing is used,

8086 programs "view" the one Megabyte of memory space as a

group of segments that are defined by the application. A

segment is a logical unit of memory that may be up to 64K

bytes long. Each segment is made up of contiguous memory

locations and is an independent separately-addressable unit.

Every segment is assigned (by software) a base

address which is its starting location in the memory space.

All segments begin on 16-byte memory boundaries. There are

no other restrictions on segment locations. Segment may be

adjacent, disjoint, partially overlapped or fully overlapped

(see Figure 15). However, in this operating system design a

physical memory location cannot be mapped on (contained in)

more than one logical segment.

The segment registers point to (contain the base

address values of) the four currently addressable segments

(See Figure 17) . Programs obtain access to code and data in
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other segments by changing the segment register, to point to

the desired segment.

Every application can define and use segments

differently. The currently addressable segments provide a

generous work space of 64K bytes for code, 64K bytes for

stack, and 128K bytes of data storage.

The CPU has direct access to four segments at a

time. Their base addresses (starting locations) are contained

in the segment registers (see Figure 16)

.

In this implementation these four base segment

registers of the 8086 microprocessor are utilized as follows:

(1) Code Segment Register (CS register) is used

for addressing a pure segment containing executable code.

CS register points to the current code segment. Instructions

are fetched from this segment.

(2) Data Segment Register (DS register) is used

for processing local data. The DS register points to the

current data segment that generally contains program variables

(3) Stack Segment Register (SS register) is used

for implementing the per process stacks (kernel stack and user

stack) . SS register points to the current stack segment.

Stack operations are performed on locations in this segment.

(4) Extra Segment Register (ES register) is

typically used for external or shared data. ES register
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points to the current extra segment (which also is typically

used for data storage)

.

In the 8086, a segment can range anywhere up to

64 kilo-bytes in length. Segments can be placed anywhere

within the 1 mega-byte address space of the 8086 as long as

the segment hexadecimal base is placed so that the last digit

of the base is zero. Segment access and bounds checking

are not supported. Although there is no general segmentation

hardware, this design effects a segmented address space

through a combination of operating system support and system

initialization conventions described in a thesis by

Anderson [19]

.

e. Physical Address Generation

It is useful to think of every memory location

having two kinds of addresses, "physical" and "logical". A

physical address is the 20-bit value that uniquely ident-

ifies each byte location in the Megabyte memory space.

Physical addresses may range from OH through FFFFFH. All

exchanges between the CPU and memory components use this

physical address.

Programs deal with the logical rather than

physical addresses and allow code to be developed without

prior knowledge of where the code is to be located in memory

this facilitates dynamic management of memory resources.
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A logical address consists of a segment base

value and an offset value. For any given memory location

the segment base value locates the first byte of the con-

taining segment and the offset value is the distance in

bytes of the target location from the beginning of the

segment.

Segment base and offset values are unsigned

16-bit quantities. The lowest-addressed byte in a segment

has an offset of 0.

Whenever the BIU accesses memory to fetch an

instruction or to obtain or store a variable, it generates

a physical address from the corresponding logical one. This

is done (see Figure 19) by shifting the segment base value

four bit positions to the left and adding the offset,

f. The iSBC 86/12A Single Board Microcomputer

The 86/12A is a complete computer capable of

"stand-alone operation" used as the basic processing node of

the multiprocessor. The iSBC 86/12A Board includes a 16-bit

central processing unit (CPU) , 32K bytes of dynamic RAM, a

serial communications interface, three programmable parallel

I/O ports, programmable timers, priority interrupt control,

Multibus interface control logic, and bus expansion drivers for

interface with other Multibus interface compatible expansion

boards. Provision has been made for user installation of up

to 16k bytes of read only memory (ROM) . iSBC 86/12A is a
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commercial product which satisfies the three basic hardware

requirements for this operating system mentioned in above

subparagraph A (HARDWARE REQUIREMENTS) . First, it must

possess a system bus interface. Each microcomputer is capable

of independently accessing a global shared memory via the

system bus. Secondly, the 8086 CPU supports multiprocessor

synchronization directly with an indivisible "test-and-set

semaphore" instruction, which performs the bus lock. Lock

semaphores reside in the shared global memory. Thirdly,

preempt interrupts can be generated by using a bit of a

parallel I/O port provided on each microcomputer. This

requires connecting a bit of the microcomputer's parallel

I/O port to the system interrupt structure.

g. Preempt Interrupt Hardware Connection

As with most microprocessors, the 8086 itself

does not possess the capability to directly generate interrupts

destined for other devices. The devices of interest here are

the other processors. We need this capability for the

implementation of preemptive scheduling. The system interrupt

lines are accessible through a jumper matrix [2] located on

the microcomputers. The parallel I/O output port of each

iSBC 86/12A is connected to this interrupt jumper matrix.

Preempt interrupts are then generated by the system simply

by outputting a single word, through the parallel port, onto

the system interrupt lines.
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Note that only a single interrupt line is

actually required to implement system-wide preempt interrupts.

For details see the next chapter.

h. On Board Bus Structure - System Bus

The iSBC 86/12A board architecture is organized

around a three-bus hierarchy: the on-board bus, the dual

port bus, and the Multibus interface (see Figure 20). Each

bus can communicate only within itself and an adjacent bus

and also each bus can operate independently of each other.

The on-board bus connects the CPU to all on-board I/O

devices, ROM/EPROM, and the dual port RAM bus. Activity on

this bus does not require control of the outer buses, thus

permitting independent execution of on-board activities.

Activities at this level require no bus overhead and operate

at maximum board performance.

The next bus in the hierarchy is the dual port

bus. This bus controls the dynamic RAM and communicates with

the on-board bus and the Multibus interface.

When the on-board bus needs the Multibus inter-

face, it must go through the dual port bus to the Multibus

interface. The iSBC 86/12A Board is completely Multibus

interface compatible and supports both 8-bit and 16-bit

operations.

The Intel MULTIBUS [2] is utilized as the system

bus. It is a widely used commercial product with a published
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FIGURE 20. INTERNAL BUS STRUCTURE
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set of standards. This bus is specifically designed to

support multiple processors and is fully compatible with the

microcomputers used. It is utilized without modifications.

C. HARDWARE ASSESSMENT

The commercially available 86/12A single board micro-

computer was chosen because it was specifically designed

to provide support for multiple processor systems. In using

the operating system described in the next chapter to manage

the microcomputer's physical resources, this microcomputer

is entirely suitable for use as a basic processing node of

an effective multiprocessor system. For multiprocessor

interconnections see Figure 21.
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IV. DETAILED SYSTEM DESIGN AND IMPLEMENTATION

A. STRUCTURE OF THE OPERATING SYSTEM

The distributed modules of the kernel create a virtual

machine hierarchy which controls process interactions and

manages physical processor resources. The kernel is not

aware of the details of process tasks. It knows each

process only by a name (as an entry in the Active Process

Table) and provides processes with scheduling and inter-

process communication and synchronization services based on

this process identity.

The kernel is constructed in terms of layers of

abstraction. Each layer, or level, builds upon the resources

created at lower levels. The rules of abstraction described

in Chapter II were applied to the design of this structure.

This operating system provides a multiprogrammed multi-

processor system with segmented process address spaces using

the hardware described in Chapter III. The operating system

is structured as a hierarchy of four levels of abstraction,

as follows:

Level 3

Level 2

Level 1

Level

Supervisor

Traffic Controller

Inner Traffic Controller

Hardware (Bare machine) , (See Figure 5)

.

Level is the bare machine which provides the physical

resources (processors and storage) upon which the virtual
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machine is constructed to give the extended machine

view.

The remainder of this chapter will describe the level of

virtualization (or layer of abstraction) created by each

distributed kernel module.

The Inner Traffic Controller (Level 1) forms the first

level of the hierarchy. It is "closest" to the hardware and

encompasses the major machine-dependent aspects of the system.

The Inner Traffic Controller multiplexes the physical

processors among a pool of more numerous virtual processors.

Residing at the next level (Level 2) is the Traffic

Controller, which is responsible for multiplexing the virtual

processors among a larger number of user processes competing

for resources. The user-accessible inter-process communication

and synchronization primitives (Advance, Await and Ticket)

provided at this level allow the user to easily satisfy complex

system-wide inter-process synchronization requirements.

The Supervisor resides at the topmost level (Level 3).

The Supervisor's purpose is to provide common services for

user processes. In this implementation it only provides a

simple assembly language interface to the kernel by having

a single entry point into the kernel (the Gate or Gatekeeper) .

B. CONTROL OF PROCESSOR MULTIPLEXING

There are two common schemes for the control of processor

multiplexing: "centralized control" and "distributed control".
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Centralized control is based on the idea of a central

agent which is responsible for the binding of virtual pro-

cessors to real processors. All these bindings are caused by

the action of the central agent. This agent can be viewed

as a process, since it is a sequential computation that per-

forms operations on the state of the system. In this scheme

of control usually this central agent is permanently bound

to a dedicated real processor. Of course this implementation

requires some kind of communication channel between the real

processors and the central agent.

The main advantage of the centralized algorithm is, "unity".

Since the centralized scheme is executed as a process permanent-

ly bound to one real processor, it can be described by a single

sequential program that makes one decision at a time (that

means a simply structured processor multiplexing policy)

.

An alternative scheme for the control of processor multi-

plexing is one in which the functions are accomplished by a

distributed algorithm, executed by each process on all real

processors

.

The main advantage of the distributed scheme is, "autonomy".

This autonomy afforded by a distributed system can increase

the amount of parallel activity (real processors can execute

in parallel) . This scheme also results in a uniform design

that is identical for every processor.

The advantages of each scheme are disadvantages of the

other. In the centralized case the lack of autonomy prohibits
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the parallelism afforded by the distributed scheme. On the

other hand, in the distributed case, the autonomy makes it

potentially difficult to understand the interaction of the

multiplexing algorithm executed by different real processors.

1. Distributing the Operating System

One of the primary concerns in any multiple computer

system is the issue of performance. The type of system in

the present implementation is a multiprocessor with a "single"

shared system bus. Thus the most glaring potential "bottle-

neck" is the system bus. Thus it becomes desirable to

minimize accesses to this resource which must be shared by

all of the real processors.

The decision was made to "distribute" the operating

system logically and physically to reduce the "system bus"

use. Logically the segments of the operating system kernel

are distributed within (as part) the address space of each

user process. On the other hand, the performance issue is

dealt with by physically distributing copies of the kernel in

the local memories of each of the real processors. This allows

high-speed access to kernel functions without necessitating

the heavy use of the system bus for code fetches thus

reducing "BUS contention".

Since the operating system is small, the memory wasted

by distributing a copy of the kernel to each single board

computer is a small price to be paid to allow performance to

grow with the addition of real processors.
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Thus, each computing node can be regarded as "semi-

autonomous" in that each of the processors schedules itself.

The modes are still centrally controlled by the set of system-

wide data tables, kept in the global memory, which provides

access to all real processors and thus eliminates the need of

a central controlling process. The amount of memory needed

for these system-wide data tables is almost negligible.

In this implementation there is no notion of a master-

slave relationship among individual microcomputers, nor are

individual kernel functions divided among them, as is

commonly done. Rather, the "entire" kernel is distributed on

each single board computer.

C. REAL TIME PROCESSING

Real-time control systems are designed for handling data

within a time period which is consistent with the response

time demanded by the process which generated the information.

Such systems operate in a multi-programmed environment where

the execution of a number of tasks is determined by the soft-

ware priorities, hardware interrupts, timing algorithms and

requests from other tasks (requests from one task to start,

suspend or terminate another task) to pass data from one task

to another.

A real-time operating system must be designed so that it

is impossible for any program and any user to interfere with

the execution of critical tasks by halting the machine, by
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changing interrupt priorities or by innappropriately overwriting

memory.

Real-time processing involves the performance of time-

critical processing often related to the control of external

devices. This application requires that some mechanism be

employed to ensure that the time-critical processing is

given immediate attention.

The hardware- supported "process preemption" mechanism

employed in the system provides the rapid response required

for real-time processing. The priority-driven preemptive

scheduling technique used provides for expeditious handling

of processes which perform the time-critical functions. These

processes are assigned high priorities so that the system will

preempt other processes of lower priority which may be in the

running state. Thus when one of these high-priority processes

is signalled, it can be immediately scheduled and thus gain

control of the processor resources.

The actual system response time for a task request depends

mainly on whether or not another task is running at a higher-

priority level. To prevent high-priority tasks from executing

too long, a "watchdog timer" is often used to guarantee that

all tasks are serviced. This timer is set at the start of each

task with the maximum duration that a task may run at a

particular priority level before being suspended or dropped.

This watchdog timer is not yet implemented but it will be a

useful added capability.
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D. SCHEDULING

Processor multiplexing and process multiplexing require

a policy, called the Processor/Process multiplexing policy

algorithm, or simply "Scheduling" algorithm.

In this design the scheduling functions are divided

between the Inner Traffic Controller and the Traffic Control-

ler levels. The Inner Traffic Controller multiplexes Virtual

Processors among Real Processors. Each Real Processor

possesses a fixed number of Virtual Processors (4 in the

current version) . At any one time the Real Processor can

only execute "one" Virtual Processor. The choice of the

Virtual Processor that will run in each Real Processor is

decided by the Virtual Processor Scheduler (VPSCHEDULER)

that is a routine in the Inner Traffic Controller level.

The Traffic Controller multiplexes Processes among Virtual

Processors. The Traffic Controller Scheduler (TC$SCHEDULER)

is responsible for that scheduling. Both scheduling algorithms

are "priority driven". (The highest priority Virtual Processor

or Process will run first) . These algorithms receive as input

the set of Virtual Processors and Processes respectively, that

can be run and choose the next one to run.

More details will be presented when we will discuss the

algorithm of these two "scheduler" modules.

E. PROCESS ADDRESS SPACE

The address space of a process is a set of PL/M-86 segments

such as procedures (code) , local variables (data) , external
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data (shared data) and a stack. Physical memory is allocated

to the segments of a process in such a way as to limit system

bus contention, as discussed by Anderson [19] . In this

implementation the concept of a "per process stack" is a

key element in the management of processes.

1. The PL/M-8 6 Stack

Intel's high level language PL/M-86 [1,6] utilizes the

stack segments to implement per process stacks. Addressing

of stacks is accomplished by using three of the 8086'

s

registers as shown in Figure 22. The Stack Segment (SS)

Register contains the base location of the stack segment in

memory. The Stack Pointer (SP) Register addresses the current

top of the stack as an offset from the base of the stack

segment, (the value in the SS Register) . The Base Pointer

(BP) Register also holds an offset from the SS Register and

is used to establish the procedure activation records [3, 4,

5] . During the "process creation" in the current version of

the operating system one of the parameters passed to the

operating system for a specific process is the initial value

of the SP register ("maximum stack length") . It is used to

assure no "stack overflow". If the process has only one

module, the "maximum stack length" can be extracted for the

specific process during its preparation (Compilation-Linking-

Locating) . Specifically the LST output file of the Compiler

(file name. LST) at the end provides the information illus-.

trated in Figure 23.
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There is also a second way to extract this information

using the MP2 output file of the Locater (file name.MP2)

.

This method can be used also when a process consists of

V ^D'JL£ INFORMATION:

CZdZ AREA SIZE = 31BCH 4:i4D

CONSTANT AREA SIZE = 0020E 3E
VARIABLE AREA SIZE = 2070H 112:
MAXIMUM STACK! SIZE = 3324H 360
127 LINES REAL
2 PROGRAM ERROR (S)

END OF PL/M-85 COMPILATION

FIGURE 23. MAXIMUM STACK SIZE (SAMPLE LST COMPILER OUTPUT)

several modules linked together. At the end of MP2 file is

found the maximum stack size as shown in Figure 24.

MEMORY MAP OF MODuLE INIIINI
READ FPOM FILE :F1 : TE3TI N . LNX
WRITTEN TO FILE :F1: TEST IN

MODJLE START ADLRESS PARAGRAPH = 0020H OFFSET = 3004:H
SEGMENT MAP

START STOP LENGTH ALIGN NAME GLASS

20233H ddl^E 013CE »
r INITI\T T_COD£ COLE

0G700H 2Z76FH 0870H V INITINT'TAT/ I 4 TA
20770H 30793E 0024H >/ STACK STACK
00794E 00794H 0000H V MEMORY hEMORY

FIGURE 24. MAXIMUM STACK SIZE ( SAMPLE MP2 LOCATER OUTPUT)

To obtain the above "maximum stack size" information the

command "COPY :FI: File name. LST TO :CO:" is typed on the MDS

94





(INTEL'S Microcomputer Development System) after the compila-

tion or the command "COPY :F1: File name.MP2 TO :C0:" after

the Locating Process. These commands will present the

Compiler or Locater output file on the CRT screen of the MDS.

If one prefers to have this output on the printer, just

change " :C0:" to " :T0:"

.

In the same way we can extract the information on the

maximum stack size of the kernel.

In the current version of the operating system, we use

two "per process" stacks dividing the "address space" of each

process into two "domains" of execution and separating the

"user domain" from the "kernel domain". We call the

corresponding stacks the "user stack" and the "kernel stack".

In this version:

Maximum Kernel Stack Length =

Maximum Stack Size for the Kernel +10 and

Maximum User Stack Length =

Maximum Stack Size for the "User Program" "Linked" with
the "Gate" +10.

This value 10 is used to avoid overwriting the "stack

header" shown on Figure 26 which occupies the first words

in the stack, just above the stack base. It is important to

make a distinction between the "User Program" or "Application

Program" and the "User Process" or Application Process". The

User or Application program is the "job" submitted to the

operating system and the User or Application Process is this
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program in execution on a processor and is the submitted job

linked with the distributed part of the Operating system. In

Figure 25, we can see the User Program as the "subset A" and

the distributed part of the operating system as the "subset B",

The running User Process (this program in execution) is

the "Union C" of these subsets A and B, (C = AUB) . This

connection (linking) of the job with the operating system is

accomplished via the "Gate."

2 . The Stack as the "Address Space Descriptor"

In this system the per process stacks are used to

maintain the process state information. This includes the

current execution point (when the process is not actually

running) and the locations of the code and data segments.

This allows the system to "swap" in a new address space

(viz., do a "context switch") by changing "only" the value

in the SS Register which is thus used in a manner somewhat

analogous to the MULTICS "Descriptor Base Register" (DBR) [9]

.

Then the operating system finds the remaining of the needed

information to run the specific Process inside its stack.

Figure 2 6 shows how this information is stored in the

kernel stack while a process is not actually running on a

physical processor. The Base Pointer and Stack Pointer are

stored in reserved locations at the very beginning of the

stack segment, ("header" of the Stack) . Figure 26 illustrates

the status of the kernel stack after an interrupt within the

kernel

.
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In order to identify the stack segment and thus

access the address space of a process, the stack segment base

address is used in a dual role. First, a "unique base address"

is assigned to the stack of each process which provides a

"unique segment" for each stack. This base address is used

for addressing locations within the stack. Secondly, the

base address serves as a descriptor for the address space of

each process. Thus the binding of a processor is changed from

one process to another "merely" by changing the base address,

viz., changing the value in the Stack Segment (SS) Register.

Figure 26 illustrates how the "per process" Kernel Stack is

implemented in the current version of the Operating System.

More details about the currently used Stack mechanism (two

per process stacks, two domains of execution) will be discussed

when we describe the "Create Process" module of the Traffic

Controller.

F. COMMUNICATION AND SYNCHRONIZATION

1 . Process Synchronization

The problem of process synchronization arises from the

need to share resources in a computer system. This sharing

requires coordination and cooperation to ensure correct oper-

ation. This coordination is forced upon the processes by the

operating system because of the scarcity of resources, for

example, the need to wait for access to an I/O channel. In

other cases a simple job may consist of several interactive

processes, such as an airline reservation system.
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Associated with processor allocation and interprocess

synchronization are two synchronization problems, "race

condition" and "deadly embrace" or "deadlock situations".

2. "Race Condition"

A race condition occurs when a desired action cannot

be completed in one indivisible step. For example, in order

to gain exclusive control of a printer in Process 1 in

Figure 27, it is important to check if the printer is already

in execlusive use by Process 2. If a flag is used (F=0, not

in use) (F=l, in use) to indicate whether or not the printer

OPERATING
SYSTEM

PROCESS 1

PROCESS 2

PRINTER

FIGURE 27. A SIMPLE RACE CONDITION

is in execlusive use, then this flag has to be interrogated.

If Process 1 interrogates F and finds its value is zero,

then it can set the value of F to one and enjoy the execlusive

use of the printer. A problem arises when both Process 1

and Process 2 nearly simultaneously interrogate the flag in

the following sequence:
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Process 1 F=0? Yes

Process 2 F=0? Yes

Process 1 Sets F=l

Process 2 Sets F=l

.

In this case both processes falsely gain the impression that

they have exclusive use of the printer. This so called

"race condition" can be avoided by an indivisible test and

set operation which would prevent Process 2 being mislead.

Such a test and lock operation is the 8086 LOCKSET built-in

procedure.

In addition to physical devices, there are other

shared resources, such as a shared database, that require

the same type of synchronization to avoid race conditions.

For example, in this implementation in order to avoid race

conditions in the shared databases APT and VPM, we implemented

a lock per database. When a Virtual Processor needs to read

or update the shared database, it locks this common table

(this way it locks out all the other Virtual Processors)

.

After the completion of this action the Virtual Processor

unlocks the database, so another Virtual Processor can

access it.

3. "Deadly Embrace" or "Deadlock Situations"

A "deadly embrace" is a situation in which two pro-

cesses are unknowingly waiting for resources that are held

by each other and thus unavailable [15]. See Figure 28.
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FIGURE 28. DEADLY EMBRACE SITUATION

"A" and "B" are sharing the use of the printer and card

reader by means of the request and release operations (as

stated in the previous paragraph) . Due to independent

scheduling of the processes the "request" and "release" oper-

ations may be interspersed in several different orders.

Lets consider a case that starts with Al (request

printer for process "A") and Bl (request reader for process

"B"). If then A2 occurs (request reader for process "A"),

process "A" must be blocked because the reader is already in

use by process "B" . Then when B2 occurs (request printer
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for process "B"), process "B" must also be blocked because

the printer is already in use by process "A" . In this way

we confront a situation where each process is waiting for the

other to release a needed resource. A deadly embrace situation

is resulted.

We have already concluded that synchronization primi-

tives like the described "request" and "release" cannot avoid

"race conditions" and "deadlock situations". Several more

sophisticated synchronization primitives have been developed

to overcome these problems. The most commonly used among

them are: Dijkstra's "P" and "V" operations on "counting

semaphores" [12], Saltzer's "Block-Wakeup" or sometimes

called "Wait-Signal" [14] and lastly Kanodia and Reed's

"Eventcounts" and "Sequencers" [10]

.

4 . Shared Segment Interactions. Security

In the paragraph B5 of Chapter II it has been already

discussed that the implementation of this operating system

has not considered the "internal security" of the system, but

in the design there are all the ingredients for future exten-

sions in this direction. A future extension also is the

addition of "file management". We shall mention here two

more problems which are related to the selection of the

synchronization mechanism.

a. Confinement Property

During the last five years the security kernel

technology has demonstrated not only that a kernel can provide
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security but also that it is practical in terms of performance,

functional capability, and compatibility. A successful

implementation of a kernel is based on three [23] engineering

principles: (1) "completeness", in that all accesses to

information must go through the kernel; (2) "isolation", in

that the kernel must be tamperproof ; and (3) "verif iability"

,

in that there must be a direct correspondence to the model

and specification requirements.

A secure computer system will not occur as a

spontaneous result of other design goals. Security must be

explicitly designed in from first principles, and this is

the reason why the confinement problem is discussed and has

influence in the selection of the synchronization mechanism.

The major problem that has to be handled for

proper system security is the "confinement property" or

"* property" [24]

.

The "confinement property" has to prevent a process

from "reading" a file with a "higher classification" or

"writing" (i.e., storing or updating) a file with a "lower

classification"

.

b. Readers/Writers Problems

Another problem closely related to the confinement

problem which involves the Supervisor, is the "readers/writers"

problem [25] . In order to preserve file integrity, reading

and writing of a shared file cannot be allowed at the same

time.
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Both the confinement and readers/writers problems

can be solved in one of two ways. One is mutual exclusion,

a mechanism which forces a time ordering on the execution of

critical regions, forces concurrent processes into a total

order execution sequence. This is counterproductive to the

purpose of the process structure of this implementation,

which inherently allows concurrent execution of processes.

A second and relatively new method is the use of

Eventcounts and Sequencers [10] to control access to critical

regions. This method preserves the idea of concurrent

processing to a much greater extent and also addresses the

confinement property for a security kernel.

5 . Synchronization Background

In order to keep processor multiplexing simple, it is

desirable to have a simple interprocess communication and

synchronization mechanism. Before describing the "Eventcount-

ing" synchronization mechanism employed in the design and

implementation of this operating system, it is worthwhile to

discuss two generally used synchronization mechanisms, the

"Semaphore" and "Block-Wakeup"

.

a. The "Semaphore"

In most synchronization schemes, a physical entity

must be used to represent the resource. This entity is often

called a "lock byte" or "semaphore". Thus, for each "shared

database" (for example APT and VPM in this implementation)

there should be a separate lock byte. We will use the
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convention that lock byte = means the resource is available,

whereas lock byte = 1 means the resource is already in use.

Before operating on such a shared resource, a

process must perform the following actions with no interrup-

tion:

1. Examine the value of the lock byte (either it is

or 1) .

2. Set the lock byte to 1.

3. If the original value was 1, go back to step 1.

After the process has completed its use of the resource, it

sets the lock byte to zero. Some other terms used for this

operation are "Test-And-Set" instruction, "Software Lockout",

"Indivisible Read-Alter-Rewrite" , "Indivisible Test-And-Set"

semaphore, "Spin-Lock" procedure and so on. In this design

we use a built-in PL/M-86 procedure called LOCKSET, an

indivisible test-and-set semaphore, to implement software

locks in shared databases (APT, VPM) . The hardware "bus lock"

is used to make the operation indivisible. It is important

to note that the lock and unlock operations do, in fact,

prevent "Race Conditions".

b. "P" and "V" Operations On Counting Semaphores

A more general form of the above LOCK/UNLOCK

mechanism, called the "P" and "V" operations, has been defined

by Dijkstra (1968) . "P" and "V" operate on the "counting

semaphores" which are variables that take on integer values
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(but not just and 1) . The mechanisms can be defined as

follows:

P(S) :

1. Decrement value of S (i.e., S = S-l)

.

2. If S is less than 0, WAIT (S)

.

V(S) :

1. Increment value of S (i.e., S = S+l)

.

2. If S is less than or equal to 0, SIGNAL (S)

.

WAIT and SIGNAL are primitives of processor manage-

ment. A WAIT (S) sets the process to the blocked state and

links it to the lock byte S. Another process is then selected

to run by the process scheduler. A SIGNAL (S) checks the

blocked list associated with lock byte S. If there are any

processes blocked waiting for S, one is selected and is set

to the ready state. Then the scheduler will select a process

to run.

In order to implement semaphores in the system,

the processor multiplexing algorithm must be informed of all

"V" operations to semaphores, and must keep track of the set

of virtual processors that are waiting for each semaphore to

indicate that the event has occurred.

Unfortunately semaphores have several disadvantages

First, they are limited to cases where the occurrence of an

event will allow a fixed number of virtual processors to

proceed out of the waiting state. (This mechanism has no

"broadcast" capability) . Second, because of this limitation,

107





the ability to proceed past a "P" operation on a semaphore

automatically becomes a kind of scarce resource that can be

used as a communication channel among processes that wait on

the semaphore.

This latter point is quite important in a secure

system design. Although communication of information is

inherent in the inter-process synchronization mechanism

between the virtual processor that causes an event and the

virtual processors that await the occurrence of that event,

there is no inherent requirement that virtual processors

waiting for the same event to occur should have a communication

path among themselves

.

c. "Block-Wakeup"

This mechanism described in detail by Saltzer

[14] is quite similar. A discussion of some problems

encountered with this mechanism is presented in [15]

.

Reed in his thesis [15] notes:

"If virtual processor A can wake up virtual processor B,
there is no guarantee that the reason virtual processor B
is waiting is the reason virtual processor A wakes B up.
Virtual processor A's wakeup will then be misinterpreted
by B, or ignored by B. In the first case, B will proceed
under the false assumption that the event awaited happened,
while in the second case, B will lose the wakeup (This is
the case described by Saltzer as the "lost wakeup" problem)
even though it may be meaningful to B at a later time.
These problems can be serious for system security, if the
wakeups are intended for a protected system operation in
B's virtual processor, because a wait operation executed
outside of the protected part of the system can receive
inter-process synchronization signals intended for the
protected part. The arrival of an inter-process synchro-
nization signal can carry privileged system information.
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An unprotected receiver may either gain unauthorized
access to privileged information, or prevent it from
reaching its proper destination. These occurrences
cannot be prevented because B is multiplexing the meaning
of his wakeup-waiting switch, and so must allow A to wake
him up at all times, even though B waits for A's event
only sometimes"

.

For these reasons, along with the need to deal

with synchronization in "distributed" systems, Kanodia and

Reed [10] have designed an inter-process synchronization

mechanism that is in some sense more general than either

semaphores or block-wakeup, and uses "Eventcounts" and

"Sequencers". We shall discuss eventcounts and sequencers

later on in this Chapter.

6 . Communication and Synchronization In This Implementation

a. Introduction

The design of this operating system supports multi-

programming and multiprocessing. Multiprogramming is used to

improve system efficiency and to create a virtual environment

which frees the remainder of the operating system from a

dependence on the physical processor configuration. On the

other hand the process structure provides the essentials for

parallel (concurrent) processing. In a multiprocessor

environment concurrent processing can provide faster comple-

tion of a job. Using n processors working on the same job

and each of them doing separate tasks (after a suitable

partitioning of the job) , the overall time required to run

the job can be reduced, frequently by a factor n.
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The above discussion provides some of the major

reasons why this system is designed to support concurrent

processing on multiple processors. In addition, the

existence of multiple physical processors gave rise to the

need for the design of processor multiplexing to be done in

two-levels. The Traffic Controller that multiplexes processes

among virtual processors and the Inner Traffic Controller

that multiplexes physical processors among a fixed larger set

of virtual processors.

Since this system will also be used to support

real-time processing, a pre-emption mechanism is provided to

facilitate preemptive scheduling.

The above process multiplexing, processor multi-

plexing, and preemptive scheduling require the following

support in communication and synchronization:

(1) Inter-process communication and synchroniza-

tion, at the Traffic Controller level.

(2) Inter-virtual processor communication and

synchronization at the Inner Traffic Controller level.

(3) Inter-real processor communication needed to

support the preemptive scheduling.

b. Inter-Process Communication and Synchronization

For concurrent processing, a job composed of

sequential and non-sequential tasks, is explicitly divided

(partitioned) into an appropriate structure of processes

that can run concurrently. There is the possibility that
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after the partitioning the resulting processes must interact

(need cooperation)

.

It is the responsibility of the operating system

to provide mechanisms for communication and synchronization

between cooperating processes. There are two different kinds

of interaction that processes must be able to achieve.

First there must exist a way for processes to

exchange data. This mode of communication is called "inter-

process communication". In a computer system that allows

sharing of memory segments between processes (in our case

shared segments will reside in the "global" memory board)

,

there is no need for a special inter-process communication

facility to be built into the processor multiplexing algorithm.

Shared memory segments provide an extremely high bandwidth

data communication channel between the processes sharing

these segments. Any protocol for inter-process communication

can be established by the processes using the shared segments.

Therefore the inter-process communication will be handled

outside of the scope of this thesis. The responsibility is

left to the user of the operating system, since it is dependent

on the specific application program.

Secondly there must exist a way for processes to

wait for data prepared by other processes and for processes

that prepare such data to signal that this data is available.

This interaction is different than communication of data and

is called "inter-process synchronization". Together they are

111





called "inter-process communication and synchronization".

Another term for inter-process synchronization is "inter-

process control communication" since the effect of such

communication is purely to reenable a waiting control point.

The actual coordination is realized inside the

kernel by the use of "shared writable" segments and is used

for controlling the execution of processes and coordinating

the sharing of data.

The synchronization between processes is "visible"

to the user and is supported by the TC$AWAIT and TC$ADVANCE

that are kernel calls to the Traffic Controller level. We

have already discussed the basics of these two synchronization

primitives in paragraphs C6a, C7a and D of Chapter II. The

details are described in the corresponding modules of the

Traffic Controller in this chapter.

The inter-process synchronization is intimately

related to the structure of the "processor multiplexing

mechanism". The ability of a process to indicate that it

does not need virtual processor resources until a particular

"event" happens is basic to the economic advantage of process

multiplexing among virtual processors.

c. Inter-virtual Processor Communication and Synchro-
nization

The ability of a virtual processor to indicate

that it does not need real processor resources until a parti-

cular "event" happens is, similarly, basic to the economic

advantage of virtual processors multiplexing among real
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processors. Otherwise if a dedicated real processor is

actually available for each virtual processor, then the "busy-

waiting" would be an adequate mechanism for synchronization.

("Busy-waiting" is repeatedly testing the state of a shared

memory word in a loop)

.

If for example, a user process calls upon some

system service, such as a disk I/O or an I/O for a real-time

sensor, it must wait for that service to be completed before

it can proceed. (The performance of a system service is, in

this case, considered to be part of the requesting process)

.

However, the service may actually be supported by another

virtual processor. To control this interaction, the Inner

Traffic Controller that multiplexes physical processors among

virtual processors, provides the required inter-virtual

processor communication and synchronization mechanism using

the primitives ITC$AWAIT and ITC$ADVANCE.

We have already discussed the basics of these two

synchronization primitives in paragraphs C6b, C7b and D of

Chapter II. The details are described in the corresponding

modules of the Inner Traffic Controller in this chapter.

This inter-virtual processor synchronization is

"invisible" to the user, and is used by the operating system

for the management of physical resources. This mechanism

provides the solution to a difficult problem: "the

synchronization" that will be faced later on, when the
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"Memory Management" and "I/O Management" are added to the

operating system.

d. Inter-Real Processor Communication

To support real-time processing we need the

preemptive scheduling. Since we are working in a multiple-

processor environment the operating system has to support an

inter-real processors communication mechanism, which is of

course related to the inter-virtual processors synchronization

mechanism. It will be explained by the two examples below.

It is important to note that the preemptive

scheduling mechanism is completely distinct from the synchro-

nization mechanism and its purpose is to cause the "immediate

attention" of a real processor when it is needed for real

time applications.

The TC$ADVANCE and ITC$ADVANCE modules provide

a "broadcast" capability. Let us examine first the case of

TC$ADVANCE. When an application (user) process calls the

TC$ADVANCE, the result is an incrementing by one of the

associated event's current value. This change of the event's

value is "broadcast" to all processes that are awaiting this

value for the specific event. We have to remember here that

the operating system is distributed to each Real Processor

and also that each real processor in this implementation

possesses four virtual processors. If a process waiting for

the above specific event is bound to a Virtual Processor

which belongs to another real processor, then there is no way
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to signal that virtual processor to inform it of the occurrence

of this event. Similarly, if during the physical resources

management (for example I/O management) the ITC$ADVANCE is

invoked by the operating system (this is "invisible" to the

user) , it results again in an incrementating by one of the

associated event's current value (now in the Inner Traffic

Controller level) . If this change has to be "broadcast" to

a Virtual Processor awaiting this event and the Virtual

Processor belongs to another Real Processor, then again there

is no way to inform that Virtual Processor of the occurrence

of the specific event.

To facilitate the inter-real processor communica-

tion, we employ the hardware interrupt. Similar to most

microcomputers, the 8086 microprocessor does not have the

capability to send hardware interrupts destined for other

devices (here the devices of interest are other CPU's). To

solve the problem we have suitably configured the hardware

using the on board (8086 microcomputer) hardware chips, 8259A

Programmable Interrupt Controller and 8255A Programmable

Peripheral Interface and the Multibus interface.

This configuration is discussed in detail in

paragraph G of this chapter.

e. Events, Eventcounts , and Sequencers

The ability to synchronize the execution of pro-

cesses throughout the system (irrespective of which micro-

computer they are loaded on) is the cornerstone of the power
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and flexibility of this system. To accomplish this, process

synchronization is based on the notion of "events".

An "event" is anything that one considers signif-

icant and can direct, in some fashion, the computer to respond

to. For example events of interest are: the completion of a

program, a buffer becomes full or empty, a printer is ready,

a process in execution on a VP reaches a control point defined

by the user. More generally, the events can represent virtually

anything of interest to the programmer.

When an event occurs, the computer recognizes that

it is to respond in some specified manner.

"Eventcounts" and "sequencers" allow processes to

synchronize with each other somewhat indirectly. To synchronize

directly, a process would have to somehow identify the other

processes with which it is synchronizing (viz., explicitly

signal a process by name) . This would require the naming of

individual processes or some similar identification scheme.

Rather than using a process naming scheme, the

individual processes "agree", in a sense, to cooperate by

using a common set of memory objects called eventcounts and

sequencers. In this way, even though the processes must know

the names of the eventcounts and sequencers that they use,

they are not required to know anything at all about each

other's identities. In fact, a process need not even know

how many other processes will be synchronizing with it. This

offers some advantages in parallel processing. Processes that
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synchronize with eventcounts do not have to know how many other

processes will also use the same eventcounts. This means that

fewer coding changes will be required when, for example, a

single process is partitioned into several processes all

executing in parallel. All of the "new" processes will

synchronize on the same eventcount so that no changes are

required in the process that originally synchronized with the

single process.

Eventcounts are used to keep track of the occurrence

of specific events. They are managed for the user by the

system. Sequencers can be used to impose a linear order on

the occurrence of events. They are thus used with event-

counts to provide for mutual exclusion.

f. Eventcounts

"Eventcounts" are used in this implementation to

allow processes to arbitrate access to shared resources. An

eventcount is defined by Reed [10] as: "An eventcount is an

object in the system that represents a class of events that

will eventually occur". Each eventcount represents a distinct

class of events. This class of events is ordered so that by

the time event N occurs all events numbered from to N-l will

have occurred. Consequently, the set of events that have

occurred at any particular time can be represented by the

number of the last event to occur. This number is known as

the "current value" of the eventcount.
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An eventcount is associated with some type of event

of interest, e.g., occurrence of a real-time interrupt, a data

segment being read or written into, etc. Eventcounts are

implemented as sets of positive integers from to infinity

(the current limit in this implementation is actually 65,536

using PL/M-86 "word" variables which is "adequate" for the

applications anticipated) and are used to keep track of the

total number of such events that have occurred.

The eventcount synchronization mechanism has the

useful property that two virtual processors waiting for events

in the same class (thus recorded in the same eventcount) do

not have an inherent intercommunication path. The enabling of

one virtual processor to proceed does not automatically disable

any other virtual processors from proceeding and allows

broadcasting events to multiple virtual processors. This is

a function not easily achieved using semaphores. Consequently,

this mechanism is more desirable for use in a secure system to

address the "confinement property". Further, the implementa-

tion of eventcounts is not inherently more difficult than

that of semaphores.

There are three operations which may be performed

on eventcounts, as follows:

(1) "Read" Operation . The current value of an

eventcount may be obtained by the READ operation. This oper-

ation returns the present value of the eventcount as a "positive
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integer" n. From this value, one may infer that events to n

have already occurred. TC$READ (Traffic Controller READ) in

the present implementation is a function call in the Traffic

Controller Level available ("visible") to the user via the

"GATE" so that it will provide him the capability to obtain,

the current value of the eventcount of interest specified

in the call. Details will be discussed in the corresponding

module of the Traffic Controller later in this chapter.

(2) "AWAIT" Operation . Allows the calling subject

to await a particular event in the class associated with the

eventcount. This operation requires that the event name and

the awaited eventcount value be specified. Particularly in

the present implementation there are two procedures as follows:

TC$AWAIT ( Traffic Controller AWAIT) is an

inter-process synchronization primitive. Allows a process (the

"calling" process) to suspend its own execution (enter the

"blocked" state) until the event specified in the input argu-

ment (by name and value) has occurred, viz., the eventcount

reaches the specified awaited value. The result is that the

process will "give away" the virtual processor to which it is

bound. The effect of this operation is similar as the conven-

tional Saltzer's "Block" operation or Dijkstra's "P" operator

(on counting semaphores)

.

TC$AWAIT is a procedure in the Traffic

Controller Level "visible" to the user via the "GATE". Details

will be discussed in the corresponding module of the Traffic

Controller later in this chapter.
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ITC$AWAIT (Inner Traffic Controller AWAIT) , is

an inter-virtual processor synchronization primitive. It

suspends the execution of the "running" virtual processor

(setting its state to "waiting") until the event specified

(by name and value) in the input argument has occurred, viz.,

the eventcount reaches the specified awaited value. This

synchronization primitive is used by the Inner Traffic

Controller for the management of system resources. ITC$AWAIT, is

"invisible" to the user, and is used only by the operating

system. Details will be discussed in the corresponding module

of the ITC later in this chapter.

TC$AWAIT/ITC$AWAIT will prevent the process/

virtual processor respectively from proceeding until the

current value of the eventcount reaches the awaited event

value specified in the procedure's call.

(3) "ADVANCE" Operation . This operation informs

the processor multiplexing mechanism of the new value of the

advanced eventcount and requires that the event name be

specified as an argument. Particularly in this implementation

there are two procedures as follows:

TC$ADVANCE (Traffic Controller ADVANCE) is an

inter-process synchronization primitive. A TC$ADVANCE opera-

tion is performed by a process when an event has occurred. It

increments the current value of the specified eventcount by

one to reflect the occurrence of the event. This has the

effect of signalling the event's occurrence to other processes
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which were waiting for it by virtue of having previously per-

formed an AWAIT operation on that event. The effect of an

ADVANCE operation is essentially the same as a Saltzer's

Wakeup operation of Dijkstra's "V" operator (on counting

semaphores)

.

The eventcount signalling mechanism has an

"automatic broadcast effect" which offers an advantage in

parallel processing. This broadcast capability allows the

"simultaneous signalling" of several processes which otherwise

would have to be signalled "sequentially".

TC$ADVANCE is a procedure in the Traffic

Controller Level "visible" to the user via the "GATE".

TC$ADVANCE is also in this implementation responsible for

the "preemptive scheduling". Details will be discussed in

the corresponding module of the Traffic Controller later in

this chapter.

ITC$ADVANCE (Inner Traffic Controller

ADVANCE) , is an inter-virtual processor synchronization

primitive. Signals that the specified in the call event

(event's name is the input argument) has occurred by advanc-

ing (incrementing by one) the value of the associated

eventcount. This eventcount signalling mechanism has also

an "automatic broadcast" effect which offers an advantage in

parallel processing. All the virtual processors awaiting

the occurrence of this specific event are informed.

ITC$ADVANCE is a procedure in the Inner Traffic Controller
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Level "invisible" to the user and is used only by the opera-

ting system for the management of system's resources.

Details will be discussed in the corresponding module of the

ITC later in this chapter,

g. Sequencers

There are many situations where accesses to

shared resources must be totally ordered. Eventcounts alone

are not sufficient to accomplish this. To provide the

capability for mutual exclusion, another type of object

called a "sequencer" [10] is employed. A sequencer is

implemented as a positive integer ranging in value from to

infinity (as with eventcounts, the current limit in this

implementation is 65,536). However, a sequencer is used to

provide total order to the occurrence of events.

A sequencer is also necessary to solve the

confinement and readers/writers problems. Some synchroniza-

tion problems require arbitration, e.g., two write accesses

to the same segment. Eventcounts alone as already discussed

do not have the ability to discriminate between two events

that happen in an uncontrolled (i.e., concurrent) manner.

Initially a sequencer has a value of 0. The value

increases by one each time a "TICKET" operation is performed

on it. TICKET is the only operation defined on a sequencer.

TICKET returns a unique monotonically increasing value with

each call. It is similar to getting a ticket and waiting to

be served at a restaurant. Two uses of TICKET will return
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two different values corresponding to the "relative time" of

call. Thus, a set of events can be totally ordered by using

the TICKET operation. Details about TICKET operation will be

discussed in the corresponding module of the TC later in this

chapter.

G. INTERRUPT STRUCTURE

1. Introduction

The operating system has to control a multiple-

processor environment. This generates the need of some method

of communication between physical processors. This need is

satisfied by an ability to generate hardware interrupts

between the physical processors. The interrupts are used

for the implementation of "preemptive scheduling". INTEL'S

8086 microprocessor, as most microprocessors, doesn't possess

the capability to directly generate interrupts destined for

other devices (the devices of interest here are other

processors) . We provide that capability by suitably configur-

ing the hardware and using some software control. Note that

only a "single" interrupt line is actually used to implement

system-wide preempt interrupts. This is the only hardware

configuration adaptation to facilitate the operating system

and we are going to describe it in detail.

The system's interrupt structure is managed by the

Inner Traffic Controller. In particular, a physical system

interrupt is transformed into a synchronization signal to a
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waiting virtual processor. This structure is particularly

important for the support of real-time processing and note

that this is completely distinct from inter-process synchro-

nization and communication.

To implement this desired configuration we use the

8259A PIC (Programmable Interrupt Controller) and 8255A PPI

(Programmable Peripheral Interface) , both on board on the

86/12A microcomputer.

The 8086 instructions support two types of interrupts,

external and internal (or "trap"). An external interrupt is

initiated by some peripheral asserting an interrupt request

to the 8 086 in the hardware. An internal interrupt is one

initiated by the software the 8086 is executing. An inter-

rupt represents a transfer of program execution control. The

type of transfer used in the 8086 is called a vectored

interrupt. An interrupt vector represents an address of a

procedure which services the interrupt.

In the 8086 all interrupts (both external and

internal) perform a transfer by pushing the flag registers

onto the stack (as in PUSHF) , and then performing an indirect

call (of the intersegment variety) through an element of an

interrupt vector located at absolute memory locations through

3FFH. Each vector is a four byte element with the first two

bytes containing the offset of a procedure (or label) and the

second two bytes containing the paragraph number of the

segment containing the procedure (or label) . There are 256

124





possible interrupt vectors. Within the 8086 assembly

language, each vector is given a number from through 255.

Interrupts through 4 (0-13H) currently have the dedicated

hardware functions as defined on Figure 29 below (the dedica-

tion has been made by INTEL Corporation)

.

Interrupt # Location

0-03H

1 04H-07H

2 08H-0BH

3 0CH-0FH

4 10H-13H

Function

divide by zero

single step

non-maskable interrupt

one byte interrupt
instruction (INT 3)

interrupt on overflow

FIGURE 29. INTERRUPTS to 4

.

There are three interrupt transfer operations provided:

- INT pushes the flag registers, clears the TF (Trap Flag)

and IF (Interrupt Flag) flags, and transfers control

with an indirect call through any of the 256 vector

elements, i.e., INT 24 will do an indirect call

through interrupt vector 24 (location 96) . A one byte

form of this instruction is available for interrupt

type 3 , INT 3 . We use INT instruction for the

implementation of the "GATE"

.

- INTO pushes the flag registers, clears the TF and IF

flags and transfers control through vector element 4
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if the OF flag is set (interrupt on overflow) . If

the OF flag is cleared, then no operation takes place.

- IRET transfers control to the return address saved by

a previous interrupt operation and restores the saved

flag registers. This instruction is used several

times for the implementation of the operating system.

For external interrupts, the peripheral device will request

an interrupt from the 8086. When the 8086 grants the inter-

rupt, the device will supply a byte value on the data bus

which represents the type or number of the interrupt i.e.,

through 255. The 8086 will read this value and then

execute the interrupt through the vector.

2 . Hardware Interrupts

The 8086 CPU includes two hardware interrupt inputs,

NMI and INTR, classified as non-maskable and maskable,

respectively.

a. Non-Maskable Interrupt (NMI)

The NIM input has the higher priority of the two

interrupt inputs. A low-to-high transition on the NMI input

will be serviced at the end of the current instruction or

between whole moves of a block-type instruction. Worst-case

response to NMI is during a multiply, divide, or variable

shift instruction.

When the NMI input goes active, the CPU performs

the following:
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(1) Pushes the Flag registers onto the stack
(same as a PUSHF instruction)

.

(2) If not already clear, clears the Interrupt
Flag (same as a CLI instruction). This
disables maskable interrupts.

(3) Transfers control with an indirect call
through vector location 00008.

The NMI input is intended only for catastrophic

error handling such as a system power failure. Upon

completion of the service routine, the CPU automatically

restores the flags and returns to the main program,

b. Maskable Interrupt (INTR)

The INTR input has the lower priority of the two

interrupt inputs. A high level on the INTR input will be

serviced at the end of the current instruction or at the end

of the whole move for a block-type instruction.

When INTR goes active, the CPU performs the

following (assuming the Interrupt Flag is set)

:

(1) Issues two acknowledge signals. Upon receipt
of the second acknowledge signal, the
interrupting device (master or slave PIC)
will respond with a one-byte interrupt
identifier.

(2) Pushes the Flag registers onto the stack
(same as a PUSHF instruction)

.

(3) Clears the Interrupt Flag thereby disabling
further maskable interrupts.

(4) Multiplies by four (4) the binary value (X)

contained in the one-byte identifier from
the interrupting device.

(5) Transfers control with an indirect call
through location 4X.
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Upon completion of the service routine, the CPU

automatically restores its flags and returns to the main

program.

3. 8259A PIC (Programmable Interrupt Controller)

The on board 8259A PIC functions as an overall

manager in an interrupt-driven system environment. It accepts

requests from the peripheral equipment, determines which of

the incoming requests is of the highest importance (priority)

,

ascertains whether the incoming request has a higher priority

value than the level currently being serviced and may issue

an interrupt to the CPU based on this determination.

The on board master 8259A PIC handles up to eight

vectored priority interrupts and has the capability of

expanding the number of priority interrupts by cascading

one or more of its interrupt input lines with slave 8 259A

PIC's. Note that slave PIC's are not used in this

implementation

.

The basic functions of the PIC are to (1) resolve the

priority of interrupt requests, (2) issue a single interrupt

request to the CPU based on that priority, and (3) send the

CPU a vectored restart address for servicing the interrupting

device.

a. Interrupt Priority Modes

The PIC can be programmed to operate in one of

the following modes:
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(1) Nested Mode

(2) Fully Nested Mode

(3) Automatic Rotating Mode

(4) Specific Rotating Mode

(5) Special Mask Mode

(6) Poll Mode

In this design the Nested Mode is used and is

described in the next paragraph.

b. Nested Mode

In this mode the PIC input signals are assigned

a priority from through 7. The PIC operates in this mode

unless specifically programmed otherwise. Interrupt IRO has

the highest priority and IR7 has the lowest priority. When

an interrupt is acknowledged, the highest priority request

is available to the CPU. Lower priority interrupts are

inhibited, higher priority interrupts will be able to

generate an interrupt that will be acknowledged, if the CPU

has enabled its own interrupt input through software. The

End-Of-Interrupt (EOI) command from the CPU is required to

reset the PIC for the next interrupt.

Details for the remaining modes are described in

Reference [2]

.

c. Status Read

Interrupt request inputs are handled by the

following three internal PIC registers:
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(1) Interrupt Request Register (IRR) which
stores all interrupt levels that are
requesting service.

(2) In-Service Register (ISR) which stores all
interrupt levels that are being serviced.

(3) Interrupt Mask Register (IMR) which stores
the interrupt request lines which are masked

These registers can be read by writing a suitable

command word and then performing a read operation,

d. Initialization Command Words

The on board master PIC and each slave PIC

requires a separate initialization sequence to work in a

particular mode. The initialization sequence requires three

Initialization Command Words (ICW's) for a signle PIC system

and requires four ICW's for a master PIC with one to eight

slaves. The ICW formats are shown in Figure 30. Since no

slave PIC's are used we shall describe below only the

initialization command words needed to initialize the

on board PIC.

The First Initialization Command Word (ICW1)

,

which is required in all modes of operation consits of the

following:

(1) Bits and 4 are both l's and identify the
word as ICW1 for an 8086 CPU operation.

(2) Bit 1 denotes whether or not the PIC is
employed in a multiple PIC configuration.
For a single master PIC configuration
(no slaves) bit 1=1; for a master with
one or more slaves bit 1=0. Note that
bit 1=0 only when programming a slave PIC.
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ICW1

D r D
4

D
3

1 LTIMl S 1

»

D

ICW2

D. D. D,

1 - SINGLE
- NOT SINGLE

1 - LEVEL TRIGGERED INPUT
- EDGE TRIGGERED INPUT

l

15
A
14 13

A
J
A
ll

ICW4

SET BY 825 9A
ACCORDING TO INTERRUPT
LEVEL

MOST SIGNIFICANT BITS
OF VECTORING BYTE

D, D P D D. D. D,

FNM BUF M/S AEOl

NOTE: X INDICATED "DON'T CARE"

1 AUTO EOl
- NORMAL EOl

Ox- NON BUFFERED MODE10- BUFFRED MODE/SLAVE
1 1 - BUFFERED MODE/MASTER

1 - FULLY NESTED MODE
~* - NOT FULLY NESTED MODE

FIGURE 30. PIC INITIALIZATION COMMAND WORD FORMATS
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(3) Bit 3 establishes whether the interrupts
are requested by a positive-true level input
or requested by a low-to-high input. This
applies to all input requests handled by
the PIC. In other words, if bit 3=1, a
low-to-high transition is required to request
an interrupt on any of the eight levels
handled by the PIC.

The second Initialization Command Word (ICW2)

represents the vectoring byte (identifier) and is required

by the 8086 CPU during interrupt processing. ICW2 consists

of the following:

(1) Bits D3-D7 (A11-A15) represent the five most
significant bits of the vector byte. These
are supplied by the programmer.

(2) Bits D0-D2 represent the interrupt level
requesting service. These bits are provided
by the 8259A during interrupt processing.
These bits should be programmed as 0's when
initializing the PIC.

Note that the 8086 CPU multiplies the vector byte

by four. This value is then used by the CPU as the vector

address.

Figure 31 lists the vector byte contents for

interrupts IR0-IR7.

D7 D6 D5 D4 D3 D2 Dl DO

IR7 A15 A14 A13 A12 Al] 1 1 1

IR6 A15 A14 A13 A12 Al] 1 1

IR5 A15 A14 A13 A12 All 1 1

IR4 A15 A14 A13 A12 All 1

IR3 A15 A14 A13 All A10 1 1

IR2 A15 A14 A13 A12 All 1

IR1 A15 A14 A13 A12 All 1

IRO A15 A14 A13 A12 All

FIGURE 31. INTERRUPT VECTOR BYTE.
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It is important here to notice that the monitor

of each microcomputer [21] initializes the PIC. For testing

this hardware configuration the interrupt line 4 is connected

and the interrupt vector byte (of Figure 31) is initialized

(just for this kernel program) to 4 OH. Note that the three

LSB bits (DO, Dl, D2) are always initialized to 0. For the

specific initialization, bit D6=l and all the rest are 0.

Since the interrupt line 4 is connected, the PIC upon

receiving an interrupt resolves the priority and sets the

bits D2=l, D1=0, D0=0 (D2D1D0=100=4 ) . Therefore, the

interrupt vector byte is set to 40H+4=44H. The 8086 CPU

multiplies the interrupt vector byte by 4 and the resulting

value, 110H, is the vector address. The CPU will transfer

control to this address to execute the interrupt service

routine corresponding to the interrupt 4. A pointer (four

bytes) pointing to the starting point of the interrupt

service routine must be located in the physical absolute

address (110H) corresponding to the received interrupt.

Since both the monitor and the kernel initialize

the PIC there exists a probability of conflict as follows:

If the first 100 bytes of local RAM memory of every micro-

computer will be displayed using the monitor's display

command, as in Figure 32, then we can see that the monitor

uses 12 bytes (04 to OF) . Also 32 bytes are occupied

(8 OH to 9FH) and these are pointers to a single entry point

(pointer 6C 06 00 FE is repeated 8 times) . If the interrupt
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0000:0000 00 00 00 00 06 04 00 FE DB 05 00 FE DB 05 00 FE

0000:0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000:0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000:0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000:0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000:0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000:0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000:0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000:0080 6C 06 00 FE 6C 06 00 FE 6C 06 00 FE 6C 06 00 FE

0000:0090 6C 06 00 FE 6C 06 00 FE 6C 06 00 FE 6C 06 00 FE

0000:00A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000:0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000: 00C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000:OODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000:00E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000O:00FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

FIGURE 32. DISPLAY OF THE FIRST 100H BYTES
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vector address, after the PIC initialization, happens to be

between 80H and 9FH the interrupt service routine pointer

is overwritten by the monitor. The solution is to substitute

(using monitors' "S" command) the service routine vector in

place of the monitor's interrupt service routine vector. For

example if we initialize the interrupt vector byte of Figure

31 with 2 OH and use interrupt line 4, then after CPU's

multiplication by 4, the resulting vector address is 24H*4=90H.

Before execution we have to substitute the four bytes 90H to

9 3H with the interrupt service routine pointer.

If we avoid the area (from 80H to 9FH) then there

is no problem. Also when the operating system (instead of

the monitor) will be the permanent resident of ROM, this

problem will not exist. (See also Anderson's thesis [19]).

Now the PIC initialization is continued.

The third initialization command word, ICW3 , is

not required for this implementation since we do not use

slave PIC s.

The fourth Initialization Command Word (ICW4),

which is required for all modes of operation, consists of

the following:

(1) Bit DO is a 1 to identify that the word is
for an 8086 CPU.

(2) Bit Dl (AEOI) programs the end-of-interrupt
function. Code bit 1=1 if an EOI is to be
automatically executed (hardware) . Code
Bit 1=0 if an EOI command is to be generated
by software before returning from the ser-
vice routine.
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(3) Bit D2 (M/S) specifies if ICW4 is addressed
to a master PIC or a slave PIC. For example,
code bit 2=1 in ICW4 for the master PIC.
If bit D3 (BUF) is zero, bit D2 has no
function.

(4) Bit D3 (BUF) specifies whether the 8259A is
operating in the buffered or nonbuffered mode
For example, code bit 3=1 for buffered mode.

The master PIC in an iSBC 86/12A, with or
without slaves, must be operated in the
buffered mode.

(5) Bit D4 (FNM) programs the nested or fully
nested mode.

In summary, three ICW's are required to initialize

the on board PIC in this implementation, ICW1, ICW2 and ICW4.

e. Operation Command Words

After being initialized, the master and slave

PIC's can be programmed at any time for various operating

modes. The Operation Command Word (OCW) formats are shown

in Figure3-15 of Reference [2] . The format of the only one

operation command word used in this implementation (0CW1) is

shown in Figure 33.

7
D, D, D. D- D

M7 M6 M5 M4 M3 M2 Ml MO
INTERRUPT MASK

1 = MASK SET

= MASK RESET

FIGURE 33. OPERATION COMMAND WORD #1, (OCW 1)
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f. Addressing

The master PIC uses Port 00C0 or 00C2 to write

initialization and operation command words and Port 00C4 or

00C6 to read status, poll and mask bytes. Addresses for the

specific functions are provided in Reference [2]

.

g. Initialization

To initialize the PIC the following steps must

be followed:

1. Disable system interrupts by executing a CLI
(Clear Interrupt Flag) instruction.

2. Initialize master PIC by writing ICW's in
the following sequence:

Write ICW1 to Port 00C0 and ICW2 to
Port 00C2.

Write ICW4 to Port 0C2.

3. Enable system interrupts by executing an
STI (Set Interrupt Flag) instruction.

h. Operation

After initialization, the master PIC and slave

PIC's can independently be programmed at any time by an

Operation Command Word (OCW) for the following operations:

(1) Auto-rotating priority.

(2) Specific rotating priority.

(3) Status read of Interrupt Request Register
(IRR)

.

(4) Status read of In-Service Register (ISR)

.

(5) Interrupt mask bits are set, reset, or read,

(6) Special mask mode set or reset.
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The details of these Operation Command Words are

described in Reference [2]. In this implementation, only the

0CW1 is used which has already been described.

4 . 8255A PPI (Programmable Peripheral Interface)

The three parallel I/O ports interfaced to connector

Jl of the 8 6/12A microcomputer are controlled by an INTEL

8255 Programmable Peripheral Interface chip. Port A includes

bidirectional data buffers and Ports B and C include IC

sockets for installation of either input terminators or out-

put drivers depending on the user's application.

Default jumpers set the Port A bidirectional data

buffers to the output mode. Optional jumpers allow the

bidirectional data buffers to be set to the input mode or

allow any one of the eight Port C bits to selectively set

the Port A bidirectional data buffers to the input or output

mode.

Reference [2] lists the various operating modes for the

three PPI parallel I/O ports. Note that Port A (00C8) can

be operated in Modes 0, 1, or 2; Port B (00CA) can be

operated in Mode or 1; Port C (00CC) can be operated in

Mode 0.

a. Control Word Format

The control word format shown in Figure 34 is

used to initialize the PPI in order to define the operating

mode of the three ports. Note that the ports are separated

into two groups. Group A (control word bits 3 through 6)
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defines the operating mode for Port A (00C8) and the upper

four bits of Port C (OOCC) . Group B (control word bits

through 2) defines the operating mode for Port B (OOCA) and

the lower four bits of Port C (OOCC). Bit 7 of the control

word controls the mode set flag.

b. Addressing

The PPI uses four consecutive even addresses

(00C8 through OOCE) for data transfer, obtaining the status

and control of the PPI at Port C (OOCC).

c. Initialization

To initialize the PPI, a control word is written

to the port address OOCE. In Figure 34, an example is given

for the PPI initialization. In this example, the control

word is 92H. This initializes the PPI as follows:

(1) Mode Set Flag active

(2) Port A (00C8) set to Mode Input

(3) Port C (OOCC) upper set to Mode Output

(4) Port B (OOCA) set to Mode Input

(5) Port C (OOCC) lower set to Mode Output

d. Operation

After the PPI has been initialized, the operation

is completed by simply performing a read or a write to the

appropriate port.

5 . The Actual Configuration

a. Hardware Connections

The hardware connections to implement this hardware

adaptation are marked with special comments in the following

139





CONTROL WORD

D D. D. D.

GROUP B

PORT C (LOWER)
1 = INPUT

= OUTPUT

PORT B
1 = INPUT

= OUTPUT
MODE SELECTION

= MODE
1 = MODE 1

GROUP A

PORT C (UPPER)
1 = INPUT

= OUTPUT
PORT A
1 = INPUT

= OUTPUT
MODE SELECTION
00 = MODE
01 = MODE 1

IX = MODE 2

MODE SET FLAG
1 = ACTIVE

FIGURE 3 4. PPI CONTROL WORD FORMAT
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Figures 36 and 37. In Figure 36 (This is the Figure 5-2, sheet

9 of 11, of Reference [2]) pin E9 is connected with pin E14.

This connection will connect PC7 (bit 7, e.g., the MSB of Port

"C") to the BUS INTR OUT. Port "C" and BUS INTR OUT line are

shown on Figure 35.

In Figure 37, (This is the Figure 5-2, sheet 8 of

11 of Reference [2]) pin E137 is connected with pin E142. This

connection will connect INTR 4 (interrupt 4 line) to the BUS

INTR OUT. Then pin E69 is connected with pin E77. This

connection will connect BUS INTR OUT to the IR4 (interrupt 4)

input of the 8259A PIC (Programmable Interrupt Controller) , via

the Interrupt Matrix. INTR4 , IR4 and Interrupt Matrix are

shown in Figure 35.

With the above three jumpers, we connected the MSB

(bit 7) of Port "C" (of 8255A Programmable Peripheral Interface)

with IR4 (interrupt 4 input of the 8259A PIC) . These connec-

tions have to be made on every 86/12A microcomputer in the

system.

We have to note here that interrupt line 4 is

selected arbitrarily. It is possible to connect a different

line or to connect parallel Port "A" or "B". We selected

"C" in order not to interfere with the operations of the

data ports "A" and "B".

b. Software Control

In order to receive an interrupt the 8259A PIC has

to detect a "Low to High" transition in the corresponding input
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(IR 4 in our case). Since we already have connected PC7 (MSB

of Port "C") with the interrupt line 4, we only need to "Reset-

Set" that MSB by writing a byte into the Parallel

Port "C" (specifically to port address "OOCC" )

.

Since the Port "C" is an eight bit port, to reset

the MSB (PC7) we can write to Port "OOCC" any number from to

79H (MSB equal 0) . To set the MSB we can write any number

from 8 OH to OFFH (MSB equal 1)

.

We also use a "global" array of flags, called in

the implementation HDW$INT$FLAG (Hardware Interrupt Flag)

.

HDW$INT$FLAG (n) corresponds to the processor whose identifica-

tion number (CPU$NUMBER) equals n. Since this flag array is

global, each physical processor can access the flag of any

other processor in the system.

This way we establish an effective and simple

design and implementation of the "inter-physical processor

communication" using just "one" hardware interrupt line. The

algorithm is shown in Figure 38. When a processor #n needs

to preempt another processor #m, then it first set its

corresponding flag, e.g., HDW$INT$FLAG (m) = TRUE and after-

wards sends a hardware interrupt by writing to Port address

"OOCC" first a zero, then an 80H and finally a zero. This

way processor #n generates the "Low to High" transition at

the interrupt 4 input (IR 4) of the 8259A PIC of "every"

86/12A microcomputer (including itself) in the system. Then

every processor jumps to the interrupt handler that first
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WHEN PROCESSOR #n NEEDS TO PREEMPT PROCESSOR #m

SETS HDW$INT$FLAG(m) = TRUE

SENDS ACTUALLY A HARDWARE INTERRUPT AS FOLLOWS:

OUTPUT (PORT$OOCC) = RESET

OUTPUT (PORT$OOCC) = SET

OUTPUT (PORT$OOCC) = RESET

A "LOW TO HIGH"
TRANSITION FOR IR4

(TRIGGERED MODE IS USED)

EACH ONE PROCESSOR JUMPS TO THE INTERRUPT HANDLER AND
ASKS ITSELF THE QUESTION:

IF "YES" IF "NO 1

1. SAVES EXECUTION POINT
OF PREVIOUS TASK.

2. RESETS ITS OWN FLAG.
3. CONTINUES ON THE

INTERRUPT SERVICE
ROUTINE.

CONTINUES ON
PREVIOUS TASK

FIGURE 38. PREEMPTIVE HARDWARE INTERRUPT ALGORITHM

146





checks its own HDW$INT$FLAG. If the flag is not set, the

processor continues on the previous task by using the IRET

instruction. Otherwise, if the interrupt was destined for

it, this processor saves the execution point of the previous

task, resets its HDW$INT$FLAG and then continues on the

interrupt service routine.

H. SYSTEM-WIDE DATABASES

The operating system is "database" or "control table"

driven. There are several shared databases (shared segments)

that reside in the global memory where any processor can

access them to maintain and update the shared control data

used by the operating system.

1. Virtual Processor Map (VPM)

The Inner Traffic Controller is the physical resource

manager. The VPM is the principal global data base that

maintains and updates the data used by the ITC to multiplex

virtual processors among real processors and to create the

extended instruction set that controls the virtual processor

operation. The VPM is a system wide database and is kept in

global memory (as a shared segment) to facilitate inter-

virtual processor communication and synchronization.

Each physical processor has its own fixed set of

virtual processors (four in the current implementation) used

in multiplexing. See Figure 39. The first and fourth VP

(VP$START and VP$END) are invisible to the TC level (invisible

to the user processes) and are permanently bound to the memory
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USER
PROCESS

USER
PROCESS

_MEMORY
MANAGEMENT"

PROCESS

VIRTUAL
PROCESSOR

#1
(I=VP$ START)

TC
LEVEL

1TC
LEVEL

VIRTUAL
PROCESSOR

#1+1

IDLE
PROCESS-

VIRTUAL
PROCESSOR

#1+2

VIRTUAL
PROCESSOR
#K=I+3

(K=VP$ EN1)

REAL
PROCESSOR

#n

BARE
MACHINE

n = CPU$NUMBER = LOG$CPU$NUMBER

FIGURE 39. EACH REAL PROCESSOR POSSESSES FOUR VIRTUAL PROCESSORS
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management process and idle process respectively. The VP$START

has the highest priority (0 in this implementation) and the

VP$END the lowest (255 or FFH) . The remaining two have

priority equal to the priority of the user processes bound

to them. In this way the ITC recognizes that each real

processor possesses four VP while the TC recognizes only

two VP per real processor. A virtual processor mapping

among the TC and ITC is needed to support this different VP

view.

It is important to understand that this VP multi-

plexing among physical processors is an economic way for using

the physical processor and physical resources in general. For

example, by binding permanently the MMGT (Memory Management

process) to a VP and assigning to this VP (VP$START) the

highest priority, the MMGT process will occupy (run on)

the physical processor each time there is reason (e.g., when

some system event happens that requires a response by the

MMGT) . Otherwise another VP runs on this physical processor

either the idle process or a user process. On the other

hand if a real processor was permanently bound to the MMGT

process, this physical resource would be idle whenever the

MMGT process has nothing to do.

It is also important to note that the ITC

executing on a physical processor is primarily concerned

only with its set of the four VP. However, the performance

of system-wide synchronization requires access to the remaining
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virtual processors as well, so that signals may be used to

alert other physical processors (we have discussed already

the case of preemptive scheduling) . This is accomplished by

maintaining the Virtual Processor Map as a shared data base

containing entries for all of the virtual processors in the

system. Making it globally available facilitates communica-

tion between virtual processors on a system-wide scale. The

Virtual Processor Map fields are shown in Figure 40.

The VPM INDEX starts from to the value NR$RPS

* VPS$PER$CPU-1, viz. , number of real processors in the

system multiplied by the number of virtual processors per real

processor (four in current implementation) minus 1. This VPM

INDEX represents a whole entry into VPM (a horizontal line in

Figure 40). For example, VPM(O) represents the first entry

(horizontal line) , VPM(l) the second and so on.

The VP$ID field is used to support the VP mapping

between the TC and ITC. Details will be discussed in para-

graph 18 of this chapter..

The VP$STATE (virtual processor state) field

reflects the present state of the virtual processor and can

be any of "ready", "running", "waiting", or "idle". A ready

virtual processor is bound to a process and is in "contention"

for the physical processor. The running virtual processor is

that virtual processor which is actually executing a process

on this physical processor. The waiting state reflects

physical resource management. The idle state is assumed by
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a virtual processor which has no process bound to it. The

idle state prevents the assignment of useless (idle) work to

a physical processor. Figure 8 illustrates the state transi-

tions made by the virtual processors. In paragraph C7b of

Chapter II the possible transitions of state for a VP are

described.

The VP$PRIORITY (virtual processor priority) field

of the virtual processor is used in scheduling. The highest

priority runnable virtual processor is selected to run. This

priority is determined by the priority of the process bound to

the virtual processor. The VP$START, which is permanently

bound to the MMGT process has the highest priority (zero) and

the VP$SEND the lowest priority (255 or FFH)

.

The EVC$AW$ID (Awaited Eventcount Identifier) and

EVC$AW$VALUE (Eventcount ' s waited value) fields are used in

Inter-virtual processor communication and synchronization.

Details will be discussed in the ITC$AWAIT and ITC$ADVANCE

modules of the ITC later on in this chapter.

The SS$REG (Stack Segment Register Value) field

defines the address space of the process bound to this VP

.

It holds the "process address space descriptor" (analogous to

DBR in MULTICS) . The execution point of the process is stored

on the stack when the process is not actually running. This

SS$REG is the only value which is required to access the

address space of the process, viz., it is changed to swap

processes.
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The PE$PEND (Preempt Pending Flag) field is used

for preemptive scheduling. It serves to transform a hardware

interrupt sent to the physical process into a virtual preempt

interrupt.

2. Active Process Table (APT)

The Traffic Controller multiplexes user (or applica-

tion) processes among virtual processors. In this way the TC

is responsible to manage the execution of user processes

("processes management"). It is noted, one more time, that

since the processes are assigned to virtual processors (and

not real processors) , there is no effect on the user when

real processors are added or deleted in the system, except,

of course, for the change in performance. Most of the

design and implementation, presented to the user, are inde-

pendent of the physical configuration of the system.

The Traffic Controller's principal global data base

is the Active Process Table (APT) , shown in Figure 41. The

entry for each process in the Active Process Table contains

sufficient information about the process to enable a virtual

processor to be bound to and execute it.

The APT INDEX starts from zero and grows as far as

processes are loaded in the system. For example, the APT(O)

represents the first entry (horizontal line) in the APT, APT(l)

the second and so on.

The STATE field represents the state of a process and

it can be either "ready", "running", or "blocked". A ready
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process is one which is not yet bound to a virtual processor

but is ready to do so (it is in "contention" for VP) . A

running process is one which is bound to a virtual processor

and, as far as the process is concerned, executing. The

blocked state reflects inter-process synchronization. A pro-

cess enters the blocked state when it realizes that it can no

longer proceed and wishes to "give up" its virtual processor

to wait until another process awakens it. This is important

for the economic advantage of virtual processor multiplexing

algorithm, viz., a process which can no longer run, waiting

for the occurrence of an event frees the virtual processor

which was bound to this process. The possible states of a

process and the transitions among them are shown in Figure 7

and explained in paragraph C7a of Chapter II.

The AFFINITY field specifies the physical processor

on which the process is currently loaded. It is possible to

change this field during system "reconfiguration", Anderson

[19].

The VP$ID (Identity Of Bound Virtual Processor) field

serves to identify the virtual processor, if any, that the

process is currently bound to. It is noted that the user

processes are multiplexed among the two central virtual pro-

cessors of each real processor as shown in Figure 39. The VP

with identification number VP$START and VP$END are invisible

to the TC and the user. The necessary mapping among VP$ID of

the ITC and TC will be discussed in the ITC$RET$VPTC module

in paragraph 18 in this Chapter.
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The PRIORITY field specifies the priority of the process.

In this system, priorities range in value from to 255, with a

priority of being the highest. When a process is bound to a

VP, the VP$PRIORITY field of the VPM corresponding to this

specific VP, becomes equal to the PRIORITY field of the process.

The LOAD$THREAD (Loaded List Thread) field serves to

implement the "Loaded List" of the ready, running and blocked

processes. It contains a pointer to the next process in the

Active Process Table which is loaded on the same microcomputer

as this process. The meaning of this statement is that the

"loaded list", which is a "linked list", is kept updated "per

physical processor". A loaded process has its address

space in primary storage; therefore it may be scheduled

to run on a VP. In general, a process can be loaded on

only a single physical processor at a time, due to the

use of processor-local memory. The loaded list is ordered

(sorted) by the priorities of the processes. Thus this

field contains either a pointer to a process whose priority

is less than or equal to that of this process or a nil

pointer (viz., the last process on this Loaded List).

The EVC$VALUE$AW (Value of Eventcount Awaited) field

reflects the event for which the process has blocked itself.

It contains the value that the process is waiting for the

eventcount to reach. When this specific eventcount reaches

this value the process will awaken and its state will change

from "blocked" to "ready". The usefulness of this field will
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be better understood when describing the TC$AWAIT and TC$ADVANCE

modules.

The THREAD (Block List Thread) field is used to imple-

ment the Blocked List. This is a "per eventcount" linked list

of processes which are waiting on the same eventcount.

The DBR (Address Space Descriptor) field contains the

process' address space descriptor. This is the identity of the

process' stack which contains execution point information. The

value used here is the base location in memory of the stack

segment, viz., the Stack Segment (SS) Register value. This

field is implemented exactly the same way as the SS$REG field

of the VPM.

Above we described that the LOAD$THREAD field is used

to implement a "per physical processor" linked list (the "load

list") of the ready, running, and blocked processes and also

that the THREAD field is used to implement a "per eventcount"

linked list of the blocked processes waiting this eventcount.

For better understanding of these statements we shall use an

example later on, in paragraph H6

.

3. Eventcount Table (EVC$TABLE)

The Eventcount Table is also a global data base for

the TC level, as shown in Figure 4 2 and is used by the

inter-process synchronization mechanism.

The EVC$TABLE INDEX starts from zero and grows as

new events are added in the system by calls from the
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application processes. For example, the EVC$TABLE (0)

represents the first entry (horizontal line) in the EVC$TABLE,

EVC$TABLE(1) the second and so on.

EVC $TABLE (0)

EVC$TABLE (1)

EVC$TABLE (2)

EVC
TABLE
INDEX

EVC
NAME

EVC
VALUE

APT
PTR

1

2

•

•

•

'

FIGURE 42. EVC$TABLE (EVENTCOUNT TABLE)

The EVC$NAME (eventcount name) field is a character

array of six letters. The first five letters is the name given

to the specific event by the user and the last letter is a

delimiter (% is used). This name is used as the input argument

of the TC$AWAIT and TC$ADVANCE operations.

The EVC$VALUE (Eventcount value) field holds the

current value of the eventcount. Each time a TC$ADVANCE oper-

ation is executed, this value is incremented by one. Each time

the TC$AWAIT or TC$ADVANCE is invoked, a comparison is made

between this Eventcount current value and the awaited value to
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decide if the state of the process will remain blocked or

will be changed to ready.

The APT$PTR (Active Process Table Pointer) field is

a pointer which points to the first member of the blocked

list (the "per eventcount" link list discussed in previous

paragraph) corresponding to this specific eventcount. The

usefulness of this pointer will be better understood in the

example promised in previous paragraph.

This structure also uses the variable EVENTS with

initial value zero. The value of EVENTS is incremented by

one each time the TC$CREATE$EVC (Traffic Controller Create

Eventcount) is invoked by an application process. In this

way the operating system keeps track how many events are

currently in use for inter-process synchronization and

communication

.

4. Inner Traffic Controller Eventcount Table (ITC$EVC$TBL)

This is a global data base for the ITC level shown

in Figure 43 and is used by the inter-virtual processor

synchronization mechanism.

This table is a parallel structure with the previously

described EVC$TABLE. The differences are: the EVC$NAME

in this table is not a character array but just a number (0

to FFH) . The reason is that this structure is invisible for

the user and therefore it is not necessary to spend execution

time to improve the "user interface" (viz., takes more time

when we search the EVC$TABLE to find an eventcount name

consisted of six characters)

.
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ITC$EVC$TBL (0)

ITC$EVC$TBL (1)

ITC$EVC$TBL (2)

ITC EVC
TBL
INDEX

EVC
NAME

EVC
VALUE

1
i

1

i

2

•

•

•

TABLE 43. ITC$EVC$TBL (INNER TRAFFIC CONTROLLER EVENTCOUNT
TABLE)

This structure also uses the variable ITC$EVENTS

(Inner Traffic Controller Events) to keep track of how many

events are currently in use in the ITC level, for inter-

virtual processor communication and synchronization.

5 . System Configuration Data Segment (SCDS)

This is also a shared (global) segment containing

the following information:

NR$RPS (Number of Real Processors) provides the

information how many physical processors are currently used

in the system.

NR$VPS (Number of Virtual Processors) provides the

number of virtual processors used in the system. It is
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noted that NR$VPS = NR$RPS * VPS$PER$CPU, e.g., the number

of virtual processors always equals to the number of real

processors multiplied by the number of virtual processors

per real processor, that is 4 in the current implementation.

The array HDW$ INT $FLAG (n) (Hardware Interrupt Flag),

is used by the hardware interrupt mechanism for directing an

interrupt to a specific physical processor. Initially all

the members of this array are set to zero. The number of

these members is equal to NR$RPS (n = NR$RPS - 1) . There is

one-to-one mapping among HDW$INT$FLAG and CPU$NUMBER (or

LOG$CPU$NUMBER) , e.g., HDW$INT$FLAG (m) corresponds to

CPU$NUMBER = m. The usefulness of these flags has already

been discussed in paragraph G of this chapter.

The array LOAD$LIST(n) (Load List), is used in the

implementation of the linked list of the processes loaded to

each physical processor (The "Load List" discussed in the

previous paragraph 2, above APT). Initially all the members

of this array are set to zero. The number of these members

is again equal to NR$RPS (n = NR$RPS -1). There is also one-

to-one mapping among LOAD$LIST and CPU$NUMBER. LOAD$LIST(m)

points to the currently highest priority process (independent

of whether this process is ready, running, or blocked)

loaded on the physical processor with CPU$NUMBER (or

LOG$CPU$NUMBER) = m.
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6 . An Example for Loaded Lists and Blocked Lists

It is now feasible to present an example to illustrate

the interactions among LOAD$THREAD, THREAD, APT$PTR, and

LOAD$LIST.

It is noted that it is important for the reader to

understand the following example before proceeding into the

details of the following paragraphs I (about the Inner

Traffic Controller) and especially K (about the Traffic

Controller)

.

Figure 44 illustrates the interactions for this

example. The APT, SCDS , and EVC$TABLE tables of Figure 44

do not show all their members but only the ones needed to

demonstrate the ideas. It is supposed that 11 processes

corresponding to APT(O) through APT (10) entries of the APT

have been loaded on three different physical processors with

AFFINITY (CPU$NUMBER or LOG$CPU$NUMBER) 0, 1 and 2.

Three linked "Loaded lists" are generated by the

operating system, one "per physical processor". These three

linked lists are sorted (ordered) by the priorities of the

loaded processes. For example, the L0AD$LIST(1) of the

SCDS, corresponding to the physical processor with AFFINITY

= 1 (LOG$CPU$NUMBER = 1) points to the highest priority

process loaded on physical processor #1. It is shown in the

Figure 44, that LOAD$LIST(l) = 2. The meaning is that the

L0AD$LIST(1) (the header of this linked list) points to the

entry 2 of the APT (APT (2)). In entry 2 of the APT, there
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is loaded a process on physical processor #1 (AFFINITY = 1)

and its priority is 30. On the same processor are loaded

two more processes corresponding to the entries 5 and 9 of

the APT but their priorities are lower (66 and 40

respectively)

.

The LOAD$THREAD corresponding to APT (2) is equal

to 9. The meaning is that the next process loaded on this

physical processor #1 is in the entry 9 of the APT. Indeed

the AFFINITY of APT (9) is also equal 1, and its LOAD$THREAD

field is equal to 5. The meaning is that the next loaded

process on this physical processor is in entry 5 of the APT.

The LOAD$THREAD of APT(5) is equal to FF (the NIL pointer).

This means this is the last process (the lowest priority

process) loaded on physical processor #1. To summarize, we

have LOAD$LIST(l) = 2 pointing to APT (2) which is the highest

priority process (with priority 30) loaded on this physical

processor. This process points to the entry 9 (it has

priority 40) and this second process in turn points to the

entry 5 which contains the third process (with priority 66)

and its LOAD$THREAD = FF meaning it is the last one in this

linked list.

Similarly, it is possible now to easily follow the

path of the remaining two loaded lists (the linked lists of

the processes loaded on physical processors #0 and #2)

.

It is also supposed that several of these processes

are in the blocked state waiting the occurrence of some
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event. There exist three events in the EVC$TABLE with names

WMEGA, GAMMA, and DELTA. The processes corresponding to the

APT entries 5 and 10 are waiting for the occurrence of the

event WMEGA, the processes corresponding to the APT entries

2, 4, and 8 are waiting for the occurrence of the event

GAMMA and finally the processes corresponding to the APT

entries 1 and 7 are waiting for the occurrence of the event

DELTA.

Three linked "Blocked lists" are generated by the

operating system one "per eventcount" . For example, the

APT$PTR corresponding to the EVC$NAME WMEGA is equal to 10.

The meaning is that the EVC $TABLE (0) .APT$PTR points to the

entry 10 of the APT and indeed this process is waiting the

occurrence of the event WMEGA. The THREAD field of the

APT (10) is equal to 5. The meaning is that the process in

APT (5) is also waiting the occurrence of the same event, and

finally the THREAD field of APT (5) is equal FF meaning that

there is no other process waiting the occurrence of the

event WMEGA. It is noted that these linked lists are per

eventcount and they link processes waiting the specific

event independent of the processor on which they are loaded.

Similarly it is possible now to follow easily the

path of the remaining two blocked lists corresponding to the

events GAMMA and DELTA.
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7. Locks Table (LOCKS)

This small global table consists only of the two

following bytes: APT$LOCK and VPM$LOCK (Active Process

Table Lock and Virtual Processor Map Lock) . These two locks

are used to prevent race conditions when accessing the

shared data bases APT and VPM. The meaning and usefulness

of these locks have already been discussed.

8

.

Processor Data Segments (PRDS)

This segment doesn't contain system-wide (global)

data but "local" data, viz., data used for the specific

microcomputer on which this segment is loaded. There exist

a PRDS "per physical processor". This segment contains only

the structure shown in Figure 45.

DECLARE PRDS STRUCTURE

( CPU$NUMBER BYTE

,

VP$START BYTE,

VP$END BYTE,

VPS$PER$CPU BYTE,

IDLE$DBR WORD,

COUNTER WORD

,

VIRT$INT$VECTOR POINTER,

HDW$INT$VECTOR POINTER)

FIGURE 45. PROCESSOR DATA SEGMENT STRUCTURE (PRDS STRUCTURE)
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The CPU$NUMBER (A "unique" identification number for

the specific physical processor) field, is assigned to each

physical processor during system initialization and is equal

to the LOG$CPU$NUMBER (Logical CPU number) passed as input

argument to the module ITC$INIT (Inner Traffic Controller

Initialization) which will be discussed in paragraph lb of

this chapter. Anderson [19] describes in his thesis the

details about system initialization.

The VP$START and VP$END fields define the identifica-

tion number of the first and last virtual processor assigned

to the specific physical processor. For example, in this

implementation, the physical processor with identification

number CPU$NUMBER = corresponds to VP$START = and

VP$END = 3, the physical processor with CPU$NUMBER = 1

corresponds to VP$START = 4 and VP$END = 7, and so on.

The VPS$PER$CPU (Virtual processors per CPU) field,

determines the number of virtual processors assigned to each

physical processor. In the current implementation this number

is fixed and equal to 4

.

The IDLE$DBR (Address space descriptor for the idle

process) field determines the address of the base of the Idle

Stack (IDLE$STACK) which is used by the Idle Process. Details

about this stack will be discussed in the ITC$INIT module in

paragraph lb of this chapter.

The COUNTER field is a software counter. By contain-

ing this member in the PRDS structure, which is local to each
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microcomputer an array of software counters is automatically

generated with one-to-one correspondance to the physical

processors. These counters are initialized to zero, and

will be used to monitor the system's performance and the

effectiveness of the partitioning of the application programs

Details will be discussed in paragraph Jb of this chapter.

VIRT$INT$VECTOR and HDW$INT$VECTOR (Virtual interrupt vector

and hardware interrupt vector) fields determine the address

where the CPU of the specific microcomputer has to transfer

the program control when it receives a virtual or a hardware

interrupt. When a CPU receives a virtual interrupt, it

transfers program control to the Traffic Controller Preemp-

tion Handler (TC$PE$HANDLER) . This module will be described

in the paragraph K, later on in this chapter. When a CPU

receives a hardware interrupt, it transfers the program

control to the hardware interrupt handler of the Inner

Traffic Controller Scheduler (VPSCHEDULER) . This module

will be discussed in the paragraph la, later on, in this

chapter.

9. Sequencer Table (SEQ$TABLE)

This is a global data base for the TC level shown in

Figure 46 and is used by the inter-process synchronization

mechanism.

The SEQ$TABLE INDEX starts from zero and grows as

new sequencers are added to the system by the application

processes. For example, SEQ$TABLE(0) represents the first
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entry (horizontal line) in the SEQ$TABLE, SEQ$TABLE(1) the

second and so on.

SEQ$TABLE (0)

SEQ$TABLE (1)

SEQ$TABLE (2)

SEQ
TABLE
INDEX

SEQ
NAME

SEQ
VALUE

1

2

•

•

•

'

FIGURE 46. SEQ$TABLE (SEQUENCER TABLE)

The SEQ$NAME (Sequencer name) field is a character

array of six letters. The first five letters is the name

given to the specific sequencer by the user and the last

letter is a delimiter (% is used) . This name is used as the

input argument of the TC$TICKET (Traffic Controller TICKET)

operation.

The SEQ$VALUE (Sequencer value) field holds the

current value of the sequencer. Each time a TC$TICKET opera-

tion is executed on the specific sequencer this value is incre-

mented by one.
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This structure also uses the variable SEQUENCERS with

an initial value of zero. The value of SEQUENCERS is incre-

mented by one each time the TC$CREATE$SEQ (Traffic Controller

Create Sequencer) is invoked by an application process. In

this way the operating system keeps track of how many sequencers

are currently in use for inter-process communication and

synchronization

.

I. THE INNER TRAFFIC CONTROLLER

The Inner Traffic Controller comprises the lower level of

processor multiplexing (Level 1 of this virtual machine) . It

multiplexes physical processors among a fixed set (four in the

current implementation) of virtual processors. It provides

inter-virtual processor communication and synchronization,

supports the management of physical resources and manages the

system's interrupt structure.

The Inner Traffic Controller creates a set of four virtual

processors with the following extended instruction set:

ITC$AWAIT, ITC$ADVANCE, ITC$LOAD$VP, IDLE$VP, ITC$SEND$PREEMPT,

and ITC$RET$VP. It also contains the internal routines

HARDWARE$INT, LOCKVPM, UNLOCKVPM, CHECK$PREEMPT, RDYTHISVP and

SWAPDBR.

ITC$AWAIT and ITC$ADVANCE (Inner Traffic Controller AWAIT

and ADVANCE) provide an inter-virtual processor synchronization

mechanism used within the kernel to provide multiprogramming.

This multiprogramming is realized by invoking the scheduling

procedure GETWORK, of the ITC, which multiplexes these four
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virtual processors on a physical processor. Which VP will

finally run on the physical processor is decided by the

VPSCHEDULER (Inner Traffic Controller Scheduler)

.

ITC$LOAD$VP (Inner Traffic Controller Load Virtual Pro-

cessor) performs the "binding" of a new process to a virtual

processor. It is called by the TC$SCHEDULER (Traffic Control-

ler Scheduler) when a process has been selected for the VP

.

IDLE$VP (Idle this VP) is the ITC$LOAD$VP ' s counterpart.

It is called by the TC$SCHEDULER in case that there exist no

runnable process for the VP. The virtual processor will be

idled (enter the "idle state").

CHECK$PREEMPT and ITC$SEND$PREEMPT (Check for Pending

Preempt Interrupt and ITC Send Preempt Interrupt) create a

virtual processor interrupt mechanism. CHECK$PREEMPT / when

it is invoked within the ITC, checks the PE$PEND (Preemption

Pending Flag) field of the VPM to determine if it is set or

reset for the specific VP. ITC$SEND$PREEMPT is invoked from

level 2 (TC$ADVANCE) when the Traffic Controller desires to

load a new process on a virtual processor that is not

scheduled.

ITC$RET$VP (Inner Traffic Controller Return Virtual Pro-

cessor's identification number), when it is invoked, provides

the information which VP is currently scheduled (running) on

the physical processor. This identity is only valid so long

as the APT is locked. The identity of a particular VP must

be known in the virtual environment, just as the identity of
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a physical processor is required to be known in the multi-

processor system.

HARDWARE$INT (hardware interrupt) is used within the ITC

to send a hardware interrupt from one physical processor

to another. The purpose is to support preemptive scheduling

needed in the real-time processing.

LOCKVPM and UNLOCKVPM (Lock and Unlock the Virtual pro-

cessor map) are used to set or reset a software lock on the

shared (global) VPM data base to assure there are no race

conditions

.

RDYTHISVP (Ready this VP) is used to change the state of

the currently "running" VP to "ready".

SWAPDBR (Swap DBR) is a function within the Inner

Traffic Controller Scheduler and is used to change the

address space when a new process is scheduled to run when

the previous process has been completed or blocked.

The details of the Inner Traffic Controller modules will

be discussed below:

1. Virtual Processor Scheduler (VPSCHEDULER)

This module is responsible for making the scheduling

decisions for virtual processors. It selects the highest

priority virtual processor from the set of four virtual

processors assigned to the physical processor and schedules

it. There are two distinct entry points to the VPSCHEDULER,

the normal entry and the interrupt entry.
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The normal entry point is used by other Inner

Traffic Controller modules to activate VPSCHEDULER when a

virtual processor gives up the physical processor on its

own. The preempt interrupt entry point is used in response

to a hardware preempt interrupt from another physical

processor.

VPSCHEDULER next searches through the fixed set of

virtual processors for the highest priority "eligible"

virtual processor. In this implementation the definition of

eligible includes not only a ready VP but also the combina-

tion of an idle state and a pending virtual preempt interrupt

This allows an idle virtual processor to run so that it may

field the interrupt and bind itself to a new process. The

idle process that was bound to the virtual processor was

essentially useless up to this point. It now provides an

address space in which the virtual processor can execute

when binding to a new process.

Having selected some eligible virtual processor, the

VPSCHEDULER proceeds to bind the selected virtual processor

to the physical processor. It begins by unbinding the

currently running virtual processor. In doing so, the Stack

Pointer Register (SP) value, and the Base Pointer Register

(BP) value are saved in known locations on the process 1

stack. The process' execution state (point) had already

been saved.
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Binding the selected virtual processor is begun by-

changing the Stack Segment (SS) Register value to that of

the selected virtual processor. Once this change has been

made, execution has actually swapped to the new process

address space. Binding is completed by retrieving the

previously saved stack Pointer Register value and the Base

Pointer Register value from the newly acquired stack.

The last step is to actually return to the proper

place in the VPSCHEDULER. If a preempt interrupt invoked

VPSCHEDULER, an interrupt return will be executed and

CHECKPREEMPT will see if a virtual preempt interrupt is

pending. If a preempt interrupt is found to be pending, the

program control will be transferred to the location specified

by PRDS.VIRT$INT$VECTOR (viz., to the Traffic Controller's

preempt handler)

.

There is one other internal module for the Virtual

Processor Scheduler, the hardware interrupt handler. It is

used to handle hardware preempt interrupts. The program

control is transferred in this module each time the HARD-

WARE$INT module of the ITC is invoked. Details about the

hardware preempt interrupt mechanism have already been

discussed in the paragraph G of this Chapter. (For the

algorithm see Figure 38)

.

2. ITC$INIT (Inner Traffic Controller Initialization)

This module together with the following KERNEL$INIT

perform part of the system initialization by initializing the
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stack of the Idle Process and also the stack of the Memory

Management Process. These two system processes run concept-

ually between the TC and ITC levels as shown in Figures 5 and

9. These two processes are scheduled by the VPSCHEDULER

(the ITC scheduler) , and are "invisible" to the TC$SCHEDULER

(generally to the TC level) . That means there is no entry

into the APT (Active Process Table) for these two processes.

Also the stack initialization for these processes is differ-

ent from the corresponding initialization of an application

process stack. Details about these two system processes

will be discussed after the completion of the ITC level.

This module just calls the KERNEL$INIT module and

then calls the VPSCHEDULER that schedules the highest priority

virtual processor (VP #0) to run. VP #0 is permanently bound

to the Memory Management Process.

ITC$INIT accepts two input arguments, CPU$NUMBER (that

is equal to the LOG$CPU$NUMBER / logical CPU number) and

PHYS$CPU$NUMBER (physical CPU number) . These two arguments

LOG$CPU$NUMBER and PHYS$CPU$NUMBER are given values during

the system initialization [19]

.

ITC$INIT is the entry point for the distributed oper-

ating system.

3. KERNEL$INIT (Kernel Initialization)

This module is called only by the ITC$INIT and is

executed by each processor once during the system

initialization. It declares the IDLE$STACK and MGMT$STACK
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(Idle Process Stack and Memory Management Stack respectively)

as based structures. It then initializes these two stacks by

initializing the header of the stack and the register's

array and then initializing the maximum stack length, and

the process 1 initial code segment (CS) register, instruction

pointer (IP) register and the flags. (See Figure 22).

Then the program control returns into ITC$INIT

module.

4. GET$COUNTER (Get Current Value of COUNTER)

This is just a "utility function" called only by the

Idle Process. It gets the current value of the counter

(which is a member of the PRDS , (see Figure 45)) and returns

that value to the Idle Process.

5. UPDATE$COUNTER (Update the Value of COUNTER)

This is also a "utility function" called only by the

Idle Process and has the purpose to update (increment by

one) the current value of the COUNTER. The usefulness of

these two utility functions will be discussed when describ-

ing the Idle Process.

6. GET$CURRENT$DBR (Get Current DBR)

This is also a "utility function" and is called only

by the VPSCHEDULER. When making an implicit call to the

ITC$RET$VP (discussed below) , it finds the identity (VP

number) of the currently running virtual processor and then

finds and returns the content of the Stack Segment (SS)

register, corresponding to the specific running VP. Recall
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that the SS register is used in this design in a manner

analogous to the DBR in the MULTICS system. This D3R

value is used by the VPSCHEDULER to identify the right

address space and continue execution after receiving a

hardware interrupt.

We note here that each time a module returns a func-

tion value, this value in PL/M-86 always goes into the

accumulator (AX) register.

7. ITC$RET$VP (Inner Traffic Controller Return VP Number)

This is also a "utility function" used by the Inner

Traffic Controller and Traffic Controller modules. ITC$RET$VP

searches the Virtual Processor Map and determines the identity

of the virtual processor that is currently running on the

physical processor. It simply checks for the virtual

processor among the virtual processors assigned to the

physical processor which is in the running state. ITC$RET$VP

then returns its result as a function value into the AX

(accumulator) register. It will return either the identity

of the virtual processor (the virtual processor's index in

the Virtual Processor Map) or a "not found" error code.

8. ITC$RET$VPTC (ITC Return VP number for TC)

It is a "utility function" which is used to perform

the VP mapping between the TC and ITC levels as already

mentioned in paragraphs HI and H2 (about VP$ID Field) of

this Chapter.
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All the four VP ' s in the Figure 39 are visible to

the ITC. The two central VP s are visible to the TC while

VP$START and VP$END are invisible. The user processes are

multiplexed among these two central VP ' s of each physical

processor.

The ITC$RET$VPTC when called by the TC, it calls in

turn the ITC$RET$VP to obtain the currently running VP (its

index in VPM) . It then performs the mapping shown in Figure

47, and finally returns the corresponding VP identification

number for the TC (VP$ID in Figure 47)

.

9. ITC$LOAD$VP (Inner Traffic Controller Load Virtual
Processor)

This module performs the "binding" of a new process

to a virtual processor. It is called by the Traffic Controller

Scheduler (TC$SCHEDULER) when a process has been selected for

the virtual processor. LOAD$VP requires two input parameters,

the priority of the new process and the address space descriptor

(the Stack Segment Register value) . It then swaps in the new

process onto the virtual processor which is currently running.

ITC$LOAD$VP only operates on the virtual processor which is

running on the physical processor.

Binding is accomplished by updating the Virtual Pro-

cessor Map. The Inner Traffic Controller utility function

ITC$RET$VP is used to obtain the identity of the running

virtual processor. When complete, the virtual processor will

have a new priority and process address space descriptor
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VPM INDEX
VPM (n)

AFFINITY
OR

PRDS.
CPU$NUMBEE

VP$ID

(VP$START FOR RP #0) FF

1

2 1

3 (VP$END FOR RP #0) FF

4 (VP$START FOR RP #1)

1

FF

5 2

6 3

7 (VP$END FOR RP #1) FF

8 (VP$START FOR RP #2)

2

FF

9 4

10 5

11 (VP$END FOR RP #2) FF

•

•

•

•

•

•

•

•

•

FF = INVISIBLE FOR TC

RP = REAL PROCESSOR

MAPPING:

VP$ID = (VPM INDEX) - (PRDS.CPU$NUMBER * 2 + 1)

FIGURE 47. VIRTUAL PROCESSOR MAPPING BETWEEN ITC AND TC

179





(corresponding to the priority and address space of the pro-

cess just bound to it) . ITC$LOAD$VP completes by calling

VPSCHEDULER to reschedule the virtual processor.

10. IDLE$VP (Idle this Virtual Processor )

This function is ITC$LOAD$VP ' s counterpart. It is

called by the TC$SCHEDULER (Traffic Controller Scheduler) in

the event that a runnable process is not found for the virtual

processor. In this case the virtual processor will be idled

(enter the idle state) and the Idle Process will be bound to

it. In the Virtual Processor Map, the virtual processor's

state will be marked as idle, the address space descriptor

for the Idle Process will be entered in the Address Space of

Bound Process field. The idle state ensures that the idle

process is not actually run by taking the virtual processor

entirely out of contention for the physical processor, with

which this virtual processor is associated.

At some later point, the virtual processor may be

placed back in "contention" for resources. This will occur

when the virtual processor is "preempted". With the combina-

tion of an "idle state" and a "pending preempt", the virtual

processor is treated the same way as a "ready" virtual proces-

sor (We shall clarify that statement when describing the

GETWORK module) . This allows the virtual processor to keep

busy by expediting its binding to a process.

Lastly IDLE$VP calls VP$SCHEDULER in order to "give

up" the physical processor.
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11. CHECK$PREEMPT (Check for Pending Preempt Interrupt)

This module is called by the VPSCHEDULER during the

execution of a "virtual interrupt return". It checks for a

pending preempt interrupt meant for the virtual processor,

which has been selected to run (the running VP) by the

VPSCHEDULER. To accomplish this it checks the virtual

processor's "preempt pending flag" (PE$PEND) in the VPM

(Virtual Processor Map) . If the preempt pending flag is set,

the CHECK$PREEMPT will reset it and return the found value

(flag "on" or "down") to the VPSCHEDULER. In this way the

VPSCHEDULER is informed about the state of PE$PEND flag and

it will use this information to decide which VP will run

(see GETWORK module below)

.

12. GETWORK

It is a function call. Initially it sets its local

variable PRI (Priority) equal to the lowest possible priority.

(In this implementation, the lowest priority is 255 and the

highest is 0) and SELECTED$DBR (selected address space)

equal to IDLE$DBR (the address space for the idle process)

.

It then searches the VPM (Virtual Processor Map) to

find the highest priority, "eligible" to run, virtual processor

In this implementation eligible to run for a virtual processor

means it is either in the "ready" state, or the "idle" state

with a "virtual preempt pending" (PE$PEND is set)

.

Using the above criterion, GETWORK selects an eligible

processor, sets the SELECTED$DBR and PRI equal to the
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corresponding VPM values SS$REG and VP$PRIORITY respectively

for the selected VP , and then sets its state to "running"

and finally returns the SELECTED$DBR into the Accumulator.

If after the above search no eligible VP is found,

it defaults SELECTED$DBR = IDLE$DBR and the idle process

will run.

13. ITC$SEND$PREEMPT (Inner Traffic Controller Send
Preempt Interrupt)

This module is responsible for actually sending pre-

empt interrupts. It is called by the Traffic Controller

Advance module. ITC$SEND$PREEMPT requires two arguments, the

identity of the virtual processor which is to be preempted

and the identity of the physical processor to which that

virtual processor is associated.

It first locks the VPM (Virtual Processor Map) and

then sets the virtual processor's PE$PEND (Preempt Pending

Flag) . This is all that is done when the virtual processor

to be preempted is associated to the physical processor, which

is the transmitter (executing the ITC$SEND$PREEMPT module)

.

In other words, when the TGT$CPU (the input argument showing

the identity of the physical processor possessing the

virtual processor for which the virtual preempt interrupt is

destined) is equal to the CPU$NUMBER (the identity of the

physical processor executing ITC$SEND$PREEMPT)

.

Otherwise, after setting the PE$PEND the ITC$SEND$-

PREEMPT calls the HARDWARE$INT procedure (see next paragraph)
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to generate a hardware interrupt for the physical processor

possessing the virtual processor to be preempted.

Finally the ITC$SEND$PREEMPT unlocks the VPM and

returns to the TC$ADVANCE (the module responsible for pre-

emptive scheduling)

.

14. HARDWARE$INT (Hardware Interrupt)

This procedure requires as its input argument the CPU$-

NUMBER, viz., the identity of the physical processor for which

the hardware interrupt is destined. HARDWARE$INT procedure

first sets the "global" hardware interrupt flag corresponding

to this physical processor (HDW$INT$FLAG (CPU) ) . It then

sends a hardware interrupt by outputting in the parallel

PORT "C", first a "0" then an "80H" and again a "0".

Finally the program control returns to the calling procedure.

The details about this hardware preempt interrupt already

have been discussed in paragraph G of this chapter. HARD-

WARE$INT is called only by the ITC$SEND $PREEMPT and

ITC$ADVANCE modules.

15. LOCKVPM (Lock Virtual Processor Map)

This small module uses a built-in PL/M-86 procedure

called LOCKSET which is an "indivisible test-and-set semap-

hore" to implement a software lock called LOCK$VPM in the

VPM which is the central shared data base in the Inner

Traffic Controller Level (see Figure 9) . Because this

global data base can be accessed (read and write capability)
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by all the virtual processors, this lock is used to prevent

"race conditions".

16. UNLOCKVPM (Unlock Virtual Processor Map)

This module is the counterpart of the above LOCKVPM.

Each time we have to access the VPM, we first lock the

VPM$LOCK. When the access task is finished, we have to

unlock this VPM$LOCK, so that another virtual processor can

access it.

17. RDYTHISVP (Ready this Virtual Processor)

This module first finds which Virtual Processor is

currently running by calling implicitly ITC$RET$VP and then

changes the state of this VP from "running" to "ready".

18. ITC$LOCATE$EVC (Inner Traffic Controller Locate
Eventcount)

This is a utility function. It returns the index of an

ITC Eventcount in the ITC Eventcount Table (ITC$EVC$TBL) . It

is called only by ITC$AWAIT and ITC$ADVANCE described below.

The input argument is the name of this ITC Eventcount. ITC$-

LOCATE$EVC attempts to match the name given to it with one in

the ITC$EVC$TBL. If a match is found, it returns the index

to the calling procedure in the AX (Accumulator) Register as

a function value. Otherwise, it returns an error code.

19. ITC$AWAIT (Inner Traffic Controller AWAIT)

ITC$AWAIT is an inter-virtual processor synchroniza-

tion primitive. It is "invisible" (not accessible) to the

user processes and is used only by the operating system in
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the management of physical resources. It allows a virtual

processor to wait for the occurrence of an ITC Eventcount.

ITC$AWAIT expects two input arguments, the name of

the Eventcount and the value of the event to be awaited.

Upon invokation ITC$AWAIT locks the VPM. It then

finds first which Virtual Processor is running by making an

implicit call to the ITC$RET$VP and then finds the index of

the Eventcount in the ITC$EVC$TBL by making an implicit call

to the ITC$LOCATE$EVC. It then compares the current value

of the Eventcount, obtained from the ITC$EVC$TBL with the

value passed in the call. If the current value of the

Eventcount is found to be less than the value of the input

argument, then the virtual processor will enter the "waiting"

state and "gives up" the physical processor.

This change of the virtual processor's state from

"running" to "waiting" will be reflected in the VPM. The

input arguments will also be entered in the VPM in the

EVC$AW$ID (Identity of the Awaited Eventcount) and the

EVC$AW$VALUE (Eventcount Awaited Value) fields.

Otherwise, if the current value of the Eventcount is

found to be equal or greater than the value of the input

argument, then the state of this virtual processor will be

changed from "running" to "ready"

.

Finally, in both cases the virtual processor will

give up the physical processor by calling the VPSCHEDULER,
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which will bind another (or possibly the same ) virtual

processor to this physical processor. Upon the return from

the VPSCHEDULER, the VPM will be unlocked.

20. ITC$ADVANCE (Inner Traffic Controller ADVANCE)

ITC$ADVANCE is an inter-virtual processor synchroniza-

tion primitive. It also is "invisible" to the user processes

and is used only by the operating system in the management of

the physical resources. It expects one input argument, the

name of the ITC Eventcount to be advanced.

Upon invocation, the VPM is locked. ITC$ADVANCE then

finds which VP is running by making an implicit call to the

ITC$RET$VP to change the state of this VP from "running" to

"ready". It then finds the index of the Eventcount in the

ITC$EVC$TBL by making an implicit call to the ITC$LOCATE$EVC,

and the eventcount' s value in this table is incremented by

one.

ITC$ADVANCE then compares this incremented value with

the events waited for by the other virtual processors which

are synchronizing on the same eventcount. All those virtual

processors whose Eventcount Awaited Value field (EVC$AW$VALUE)

in the VPM is less than or equal to the current value of the

eventcount are set to the "ready" state. This is the "broad-

cast effect" discussed in paragraph F5e3 of this chapter.

Will be the same only in case the state of the
VP changed from "running" to "ready" and if this is
the highest priority ready VP.
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Finally, the ITC$ADVANCE calls VPSCHEDULER to schedule

the next VP . Upon return from VPSCHEDULER, it will unlock

the VPM.

J. KERNEL PROCESSES

The kernel processes make up the non-distributed kernel.

Non-distributed here has the meaning that these processes are

not distributed as part of each process's address space.

Instead they represent system services and are used in the

management of physical resources and execute asychronously

with respect to user processes.

In this implementation all system processes are permanent-

ly bound to dedicated virtual processors, because it is very

expensive to use a dedicated real processor.

Currently, two kernel processes are used, the Memory

Management Process and the Idle Process (MMGT and IDLE Process

respectively) . The MMGT process controls both primary and

secondary memory and the IDLE process defines the "no work"

state of the system.

The currently implemented MMGT and IDLE processes do not

have their final form. Instead they are "stubs" for these

processes. The current implementation does provide the

interface of these processes with the operating system and the

inter-virtual processor synchronization mechanism, which is

the most difficult task when implementing such processes.

(This inter-virtual processor synchronization mechnism will
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also be used in the future when Input/Output management will

be added to the system.

)

1 . The Memory Management Process (MMGT Process)

The currently implemented MMGT process is permanently

bound to the VP$START (see Figure 39) and the IDLE process

is permanently bound to the VP$END. In this way these two

virtual processors are in contention for physical processors

but not for application (user) process scheduling.

Anderson [19] in his thesis describes the system-

wide initialization. Below is described what is going on

in each physical processor.

Each physical processor starts executing in the code

of the ITC$INIT module (see paragraph 12 of this chapter)

.

This module ends with a call to VPSCHEDULER. The VPSCHEDULER

schedules the highest priority (i.e., VP$START) virtual

processor to run on each physical processor. In this way

each physical processor executes the MMGT process as its

first process.

The MMGT process calls the loader module which

repeatedly calls the CREATE$PROCESS module. When the loader

is finished, the number of APT entries (processes) is equal

to the number of application processes to be loaded. The

module CREATE$PROCESS (see paragraph K10 in this chapter)

initializes the address space (stacks) for each process and

finally calls the module AWAIT$FOR$START (see paragraph K8)

.

The result is that each newly created process becomes blocked
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waiting for the special eventcount "START", with initial

value zero, to reach the value 1.

When no other process remains to be loaded the MMGT

process invokes ADVANCE $FOR$ START. The result is that the

value of this special eventcount START reaches the value 1 and

all the created processes on its blocked list (see Figure 44)

are now awakened.

Then the MMGT process calls the module ITC$AWAIT

(see paragraph 119 of this chapter) . The result is that the

VP$START enters the waiting state and finally the VPSCHEDULER

is invoked. The VPSCHEDULER will schedule the VP which is

loaded with the highest priority application process (one of

the two central VP of Figure 39) since the VP$END is bound

to the IDLE process. If no application processes are loaded

on the specific physical processor, the VPSCHEDULER will

schedule the lowest priority VP$END to run the IDLE process,

since the highest priority MMGT process is currently blocked.

2. The Idle Process (IDLE Process)

The IDLE process defines the "no work" state of the

system. The operating system attempts to schedule useful

work on system processors whenever feasible. If there is no

work then the IDLE process assures that the physical processor

always has some valid process address space to execute in.

The idle virtual processors act as "default" processors that

will only be run when no other eligible VP is found.
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Currently the IDLE process constitutes just an "idle

loop". When the IDLE process is running, the this loop is

first entered the current value of the PRDS software COUNTER

(see paragraph H8 of this chapter) is obtained. Afterwards

each time this idle loop is executed this COUNTER is updated

(see also paragraphs 14 and 15)

.

By being able to read the value of these COUNTERS

(one per physical processor) the performance of the operating

system, the hardware communication links between different

"clusters" and finally the effectiveness of the

application processes "partitioning" can be actually tested.

The reason is, this COUNTER value records how much

time each real processor executed in the IDLE process. These

values can be interpreted and used as relative time or as

actual time by multiplying the COUNTER'S value by the time

needed this idle loop to be executed once.

When in the future the preventive fault diagnosis

and recovery routines are developed, part of these routines

will be incorporated into the IDLE process, so that when a

physical processor has no work it will execute this preventive

fault diagnosis routine instead of idling.

K. THE TRAFFIC CONTROLLER

The Traffic Controller resides at level 2, multiplexes

the user processes among virtual processor and manages the

execution of these processes (process management) by invoking
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the extended instructions of the virtual processors in level

1 (ITC-level) . In addition to implementing the level 2

scheduling algorithm, the Traffic Controller creates the ex-

tended instruction set: TC$AWAIT and TC$ADVANCE.

TC$AWAIT and TC$ADVANCE (Traffic Controller AWAIT and

ADVANCE) are used to implement an inter-process communica-

tion and synchronization mechanism invoked by the Supervisor,

by using the eventcounts and sequencers.

The Traffic Controller's principal global data base (APT)

has already been discussed in paragraph H2 of this chapter.

Each entry of the APT corresponds to an application process

and contains sufficient information to enable a virtual pro-

cessor to be bound to and execute it.

1. Process Scheduler (TC$SCHEDULER)

The TC$SCHEDULER works in essentially the same way

that the Inner Traffic Controller's Scheduler (VPSCHEDULER)

does. However, the TC$SCHEDULER schedules processes, while

the VPSCHEDULER schedules virtual processors. The

TC$SCHEDULER can be called by the TC$AWAIT, TC$ADVANCE, and

TC$PE$HANDLER (Traffic Controller Preemption Handler)

.

It selects the highest priority ready process from

the specific microcomputer's Loaded List (see Figure 44) to

be bound to an available virtual processor. The TC$SCHEDULER

works only with the processes which are runnable on its own

physical processor using the fixed set of the four virtual

processors assigned to this physical processor.
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When the TC$SCHEDULER finds a runnable process, the

Inner Traffic Controller module ITC$LOAD$VP is called to bind

the selected process to the running virtual processor. Alter-

natively, if there is no runnable process, the virtual pro-

cessor will be idled (bound to the Idle Process and placed

in the idle state) by a call to the Inner Traffic Controller

module IDLE$VP.

2. Traffic Controller Locate Eventcount (TC$LOCATE $EVC)

This is a "utility" function called only by the

Traffic Controller modules TC$AWAIT and TC$ADVANCE. Together

with the following module TC$LOCATE$SEQ it is used to simplify

the handling of eventcounts and sequencers respectively.

Its input argument is a pointer to the name of the

eventcount. When invoked, TC$LOCATE$EVC makes a linear

search in the Eventcount table (EVC$TABLE) to locate the

desired eventcount by matching the names. If a match is

found it returns the index of the specific eventcount in the

EVC$TABLE in the Accumulator (AX) register, otherwise (if

not found) , it returns an error code.

3. Traffic Controller Locate Sequencer (TC$LOCATE$SEQ)

This is the second "utility" function used in the

handling of sequencers and is called only by the TC$TICKET

(Traffic Controller TICKET) module.

TC$LOCATE$SEQ works in exactly the same way as the

LOCATE$EVC does except that it searches for sequencers in

the Sequencer Table (SEQ$TABLE) instead of eventcounts in

the EVC$TABLE.
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4. Traffic Controller AWAIT (TC$AWAIT)

The TC$AWAIT is an inter-process synchronization

primitive visible to the user, via the "GATE. It allows a

process to suspend its own execution pending the occurrence

of a specified event. TC$AWAIT is called with two input

arguments, (a pointer to) the name of the eventcount and the

value (of the event) to be awaited.

Upon invokation, Await locks the Active Process Table

and then calls the Inner Traffic Controller utility function

ITC$RET$VPTC to obtain the identity of the running virtual

processor. This is used in a search of the Active Process

Table to identify the process which invoked the TC$AWAIT.

Once the calling process has been identified, an

implicit call is made to the TC$LOCATE$EVC to locate the

index in the EVC$TABLE of the input argument (eventcount

name) . Then the current value of the eventcount kept in the

EVC$TABLE is compared to the awaited value specified in the

call. If the event has not yet occurred (viz., the current

value in the EVC$TABLE is less than the awaited input

argument value) , then the process will enter the blocked

state. The Value of Eventcount Awaited field in the Active

Process Table is updated with the awaited argument value and

the process is placed on the eventcount' s Blocked List (see

Figure 44) . Otherwise, if the event has already occurred

(viz., the current value is greater than or equal to the

awaited input argument value) , then the process is not

blocked but is made ready.
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Finally, in both cases, TC$AWAIT calls the TC$SCHEDULER

to schedule the highest priority ready process. Upon the

return from TC$SCHEDULER it unlocks the Active Process

Table.

5. Traffic Controller ADVANCE (TC$ADVANCE)

The TC$ADVANCE is an inter-process synchronization

primitive visible to the user, via the "GATE". It allows a

process to signal the occurrence of an event. It updates

the eventcount and signals those processes which had blocked

themselves for this event. Thus TC$ADVANCE is also responsi-

ble for invoking the preemption mechanism.

TC$ADVANCE is called with one input argument, (a

pointer to) the name of the eventcount being advanced.

It first locks the Active Process Table, then makes

an implicit call to the TC$LOCATE$EVC to locate the index in

the EVC$TABLE of the input argument (eventcount name) . Then

the current value of the eventcount in the EVC$TABLE is

incremented by one. The eventcount' s Blocked List (see

Figure 44) is searched for processes which had previously

blocked themselves waiting for the same eventcount to reach

this value. As processes are found that should be awakened,

viz., if the current value of the eventcount in the EVC$TABLE

is greater or equal to the EVC$VALUE$AW (awaited eventcount

value) field of the APT corresponding to the specific process,

then these processes are made ready.
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An entry in a temporary array of physical processors

is now made to record the physical processor in whose local

memory the newly awakened process is loaded for preemption.

The awakened process is then removed from the eventcount's

Blocked List.

Once all of the processes to be awakened have been

found, TC$ADVANCE determines which virtual processors must

be preempted. This is done for each of the previously

flagged physical processors by first assuming that all of

the physical processor's TC-visible virtual processors (two

in this implementation) should be preempted. Then the

decision is made as to which ones will not be preempted.

This method greatly simplifies the algorithm. First a

temporary list (array) of virtual processors is initialized

to indicate a virtual preempt for each of the virtual

processors. The Loaded List is then searched to find those

processes which should be running. The processes which

should be running are those with the highest priorities that

are either in the "ready" or the "running" states. Assuming

that there are 2 virtual processors per physical processor

used for multiplexing, then the 2 highest priority "ready"

or "running" processes in the Loaded List should be running.

Any lower priority processes that actually are running

should be preempted. TC$ADVANCE determines which of the

processes that should be running already are running and

deletes their virtual processors from the preemption list
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(resets the preempt flag in this array) . What will remain

at the end are those virtual processors that are to be

preempted.

The next step is to actually issue the preempt

interrupts. The temporary preempt list is checked and if a

preempt is indicated for a virtual processor, the Inner

Traffic Controller module ITC $SEND $PREEMPT is called to

actually issue the preempt.

TC$ADVANCE next readies the process which invoked it

and calls the TC$SCHEDULER. Upon the return from the TC$-

SCHEDULER the Active Process Table is unlocked.

6. Traffic Controller Ticket (TC$TICKET)

The routine TC$TICKET is also used in the inter-

process synchronization and communication mechanism. It is

the only operation performed on sequencers. It expects one

input argument, (a pointer to) the sequencer name and it is

visible to the user via the "GATE".

When invoked, TC$TICKET locks the Active Process

Table, and calls implicitly the TC$LOCATE$SEQ to find the

index in the global sequencer table (SEQ$TABLE) of the

sequencer name given to it as the input argument. It then

obtains from the SEQ$TABLE the current sequencer value

(SEQ$VALUE) corresponding to the specific index and returns

this sequencer's value to the process which called the

TC$TICKER. The value according to the PL/M 8 6 language

conventions is returned to the accumulator (AX) register.
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Before returning, TC$TICKET increments by one the

value of the sequencer and finally unlocks the Active Process

Table.

In this way, TC$TICKET returns an unique sequencer

value with every invokation, which will always be one more

than the last value returned in the same way that TC$ADVANCE

increments the eventcount value (EVC$VALUE) . This is the

reason why eventcounts and sequencers were defined as "positive

non-decreasing integers".

7 . Traffic Controller Preemption Handler (TC$PE$HANDLER)

The TC$PE$HANDLER is not a separate procedure but is

just a label in the main program of the TC.

It serves as the virtual preempt interrupt entry

point into TC$SCHEDULER and is invoked only by the Inner

Traffic Controller Scheduler (VPSCHEDULER) in the course of

virtualizing preempt interrupts. Actually the VPSCHEDULER

transfers the program control, via the virtual interrupt

vector, to the global label TC$PE$HANDLER. Recall that the

virtual interrupt vector residing in the PRDS (VIRT$INT$-

VECTOR) is initialized to point to the TC$PE$HANDLER label.

The TC$PE$HANDLER first locks the Active Process

Table, then calls the TC$SCHEDULER which will find the highest

priority ready process and bind it to the preempted virtual

processor. Upon return from the TC$SCHEDULER the program

control is transferred back to the VRSCHEDULER, effecting a

"virtual interrupt return"

.
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8. Await For Start (AWAIT$FOR$ START)

This module is a part of TC$AWAIT and is called only

once, during system initialization, by the MMGT process. It

is invisible to the user.

It accepts three input arguments, the index of the

process in the Active Process Table assigned by the CREATE$-

PROCESS (Create Process) module discussed in paragraph 9

below, the eventcount name and the eventcount value to be

awaited. There is in the system a special eventcount named

"START" with initial value zero. The second input argument

is the name of this special eventcount and the third, the

awaited value, which is always one.

Each time the CREATE$PROCESS is called to create a

process, the last statement is a call to AWAIT$FOR$START

(Process, Start, 1). In this way each newly created process

after creation is set to the blocked state awaiting for the

special event START to reach the value 1. Each new process

is added to the blocked list (see Figure 44) for the event-

count START.

9. Advance For Start (ADVANCE$FOR$STAR$)

This module is a part of TC$ADVANCE and is also

called only once during the system initialization by the MMGT

process. It is invisible to the user.

It accepts one input argument (a pointer to) the name

of the eventcount START. Where invoked it advances (incre-

ments by one) the value of the special event START. The
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result is that the value of START, initially zero, reaches

for every new process the awaited value of 1. Then using

the existing signalling mechanism, (the same as in the

TC$ADVANCE module) , ADVANCE$FOR$START awakes each process on

the START eventcount ' s blocked list and sets its state to

ready.

The created processes are now in contention for

processor resources. The same sequence of actions will be

followed as in the case of TC$ADVANCE except that ADVANCE$-

FOR$START doesn't ready the calling process (which is the

MMGT process) and also doesn't call the TC$SCHEDULER but

merely returns program control to the caller, the MMGT

process.

10. Create Process ( CREATE $PROCESS)

The CREATE$PROCESS module provides the capability

to dynamically create processes. It is called with one input

argument, a pointer to a process parameter block (PPB) struc-

ture containing all the information necessary to initilize

the process's stacks and enter the newly created process into

the Active Process Table. All of the process 1 segments had

previously been loaded into memory by the system loader, as

described by Anderson [19]

.

CREATE$PROCESS first locks the Active Process Table.

The next step is to enter the process in the Active Process

Table. To create this entry the traffic controller uses the

parameters passed by the PPB structure (see MMGT Process in
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previous paragraph Jl of this chapter) . The process is also

inserted into the Load list based on its priority, viz.,

CREATE$PROCESS searches down the LOAD$LIST corresponding to

the physical processor on which this process is loaded and

sets the LOAD$THREAD field (see Figure 44) in such a way

that the currently created process is entered immediately

ahead of the first process found to have lower or equal

priority.

Then CREATE$PROCESS initializes two stack frames for

this process: the KERNEL$STACK and USER$STACK corresponding

to the kernel and user domain respectively. In this way the

process 1 address space is divided into these two separate

domains of execution. The kernel stack has already been

discussed in Paragraph E of this chapter (see also Figure 26)

.

The user stack is shown in Figure 48 and the relation between

these two stacks in Figure 49. Since in the PL/M-86 language

the stack grows downwards (see Figure 22) by keeping the

kernel stack above the user stack the KERNEL$STACK is protect-

ed from accidental user tampering (viz., overwriting KERNELS-

STACK is avoided)

.

The location of these stacks and the initial register

values (viz., initial values for all of the 8086 's registers)

for the specific process are passed by the PPB structure and

used in the initialization of the stack frames.

Finally, CREATE$PROCESS unlocks the Active Process

Table and calls AWAIT $FOR$START (Await for Start) to block
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the newly created process and sets it in the blocked list of

the special eventcount START.

11. Traffic Controller Create Eventcount (TC$CREATE $EVC)

This module is visible to the user via the "GATE"

.

When invoked by an application process it creates the event-

count specified by this process. TC$CREATE$EVC is called with

two input arguments, (a pointer to) the name of the eventcount

to be created and the desired initial value, by the definition

of eventcount [10] this value should always be zero.

Upon invokation, TC$CREATE$EVC locks the APT. It then

calls TC$LOCATE$EVC to determine whether or not the eventcount

had already been created. This is to avoid making duplicate

entries (since each process which will use the eventcount must

declare at least the name) . If the eventcount had not previous-

ly been created (viz., no entry is found in the Eventcount Table

with the same name as given in the input argument) then an entry

is made in the Eventcount Table. The name is copied into the

Eventcount Table EVC$NAME field and the eventcount' s current

value (EVC$VALUE field) is initialized to the second input

argument. Otherwise no entry is made. When the entry is made

in the Eventcount Table the APT$PTR field is initialized to

FFH (the nil pointer) , meaning that there is no process in the

blocked list corresponding to this eventcount (empty blocked

list)

.

The value of the variable EVENTS (see paragraph H3 of

this chapter) is incremented by one each time an eventcount
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is created. In this way the operating system keeps track of

how many eventcounts are currently used.

Finally, TC$CREATE$EVC unlocks the APT and returns

the program control to the calling procedure.

12. Traffic Controller Create Sequencer (TC$CREATE$SEQ)

This module is also visible to the user, via the

"GATE". When invoked by an application process it creates

a sequencer in exactly the same way that TC$CREATE$EVC

creates an eventcount. The only difference is that it accepts

one input argument, (a pointer to) the name of the sequencer

as defined by the user. The initial sequencer value is

always zero.

The operating system keeps track how many sequencers

are currently used in the system by using the variable

SEQUENCERS (see paragraph H9 of this chapter)

.

13. Traffic Controller Read (TC$READ)

The TC$READ module is also visible to the user, via

the "GATE". It returns the current value of an eventcount to

the calling process. It is called by one input argument, (a

pointer to) the name of the specific eventcount.

When invoked, TC$READ locks the APT and then calls

the TC$LOCATE$EVC to obtain the index of this eventcount in

the eventcount table (EVC$TABLE) . Using this index, TC$READ

obtins the current value of the eventcount from the EVC$VALUE

field of the EVC$TABLE and returns this value in the accumula-

tor (AX) register.
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Prior to returning to the calling procedure it unlocks

the APT.

14 . An Overall View Figure

After finishing the detailed description of the ITC,

system processes and TC, an overall view of the two-level

scheduling and multiplexing technique is illustrated in

Figure 50. This view is similar for each of the physical

processors in the system.

At the ITC level (LEVEL 1) the left most and right

most virtual processor, e.g., VP$START and VP$END are

permanently bound to the MMGT and IDLE process respectively.

They are in contention for physical resources (in the figure

for the physical processors) , but they are not in contention

for user process scheduling. The remaining two central VP '

s

are temporarily bound to supervisor processes (user or

application processes) as determined each time by the

TC$SCHEDULER. The criteron is that the highest priority

process will be scheduled first. In the case when no super-

visor process is ready, the TC invokes ITC IDLE$VP (see

paragraph 110) which loads an idle process on the VP . The

idle process will actually run only when the VP to which it

is permanently bound (VP$END) is scheduled. This will happen

only when all other VP ' s are waiting the occurrence of events

or temporarily bound to idle processes (i.e., when there is

"no work" for the specific physical processor)

.
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BLOCKED

RUNNING

s

SUPERVISOR PROCESSES ^READY

KERNEL
ROCESSES

RUNNING

VP #1
I=VP$START

O U>
LEVEL

IDLE WITH
E$END FLAG

SET

CPU

4
a

VP IS WANTED jj: RP IS WANTED

PERMANENTLY BOUND /^: PROCESS TEMPORARILY BOUND TO VP

VP TEMPORARILY BOUND TO RP

FIGURE 50. AN OVERALL VIEW FOR EACH PHYSICAL PROCESSOR
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The ITC VPSCHEDULER schedules VP ' s on the physical

processors. The criteron is that each time it schedules on

the physical processor the highest priority "eligible" VP.

Eligible in this design means ready or in the idle state,

but with the preempt pending flag set.

In this way the operating system supports multipro-

gramming on each physical processor and also multiprocessing

(concurrent processing) since there are several processors.

The transitions of the processer among the

"ready-blocked-run" states is controlled by the inter-process

communication and synchronization mechanism and also the

TC$SCHEDULER.

The transitions of the VP ' s among the "idle-waiting-

ready and run" states are controlled by the inter-virtual

processor communication and synchronization mechanism and

the VPSCHEDULER.

Finally, the hardware interrupt structure is used for

preemptive scheduling to support real-time processing.

L. THE SUPERVISOR

1. General Description

In a general-purpose computer utility the "supervisor"

provides the interface between application programs and the

kernel of the operating system by supporting common services

such as development tools (e.g., editors, compilers, assemblers,

linkers, locaters, loaders), library functions, file system etc.
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In the current implementation only one module is

needed at the supervisor level, since all the above develop-

ment tools are supported by the INTEL'S MDS system (Micro-

computer Development System) . This module is written in

assembly language and is called "Gate" or "Gatekeeper".

There must exist a way to link each user (application)

program with the operating system in order to have as a result

the user (application) process shown in Figure 25. The Gate

is this "actual linkage" and is constructed such that it is

the only operating system module that the user has to link

to his program in order to access kernel functions visible

to him.

2 . The Gate or Gatekeeper

The Gate exists on the boundary between the kernel

and supervisor levels of abstraction (see Figures 4, 5 and 9)

and therefore is called a "software ring crossing mechanism".

It is utilized to ensure that the kernel is "isolated" and

"tamperproof " . This module will be also important in the

future if the system's internal security is considered. This

structure is specifically designed to be compatible with the

future version of the 8086 processor.

The system services visible to the user are: TC$AWAIT,

TC$ADVANCE, TC$TICKET, TC $CREATE $EVC , TC$CREATE$SEQ and TC$READ,

All these modules are related to the synchronization and

communication mechanism. It is noted that the operating system

never calls (execute the code of) these procedures. They are
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called only by the user when the application programs need

synchronization support (viz., when an application program

is partitioned into asynchronous interactive parts)

.

The corresponding names for these procedures in the

GATE are AWAIT, ADVANCE, TICKET, CREAT$EVC, CREATE$SEQ, and

READ respectively.

The GATE contains the "public" declarations for these

procedures and in this way allows the user to call these

operating system procedures in exactly the same way that any

other "external" procedure would be called.

The advantage is that only the GATE (a very small

module) is required to be linked and loaded with each user

process and not the entire operating system. Furthermore,

during system generation [19] , the GATE can be located in

exactly the same absolute address in memory for all of the

processes loaded on a single microcomputer. The result is

that the GATE segment loaded in with each process will be

overlayed and the same copy will be shared. This minimizes

the amount of physical memory used by the GATE.

The GATE is a set of global procedures which the

user programs can call directly. Each of the user accessible

(visible) kernel functions is represented by one of these

procedures. Actually they only set up the required para-

meters and use a "trap" feature (INT instruction) to effect

the call to the real procedure of the kernel. For example,

when a user program calls AWAIT then the GATE using the

same parameters calls TC$AWAIT, and son on.
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The GATE is written in assembly langauge because of

the stack manipulation that must be done for parameters

passing between PL/M 86 and ASM 86 (PL/M high level language

and assembly language) and to invoke the "trap handler" in

such a way to: 1) determine the correct kernel entry point

(the proper procedure) to call, and 2) properly pass para-

meters to the kernel procedures.

The GATE consists of three small modules called GATE,

trap handler and trap processes. When a GATE procedure is

called by a user program the parameters are moved on the

stack and the GATE reaches the trap handler by an interrupt

(e.g., an internal interrupt, or trap) using the INT

instruction. The trap handler transfer program control to

the corresponding trap process which in turn invokes the

real kernel procedure with the same parameters passed on the

stack by the user program.

This has the effect of de-coupling the user from all

the operating system modules below the Supervisor level.

The software provided by the Gatekeeper has to perform

additional functions upon the kernel entry and kernel exit,

as shown in Figure 51.

Figure 52 tabulates the required format for all of the

external procedure declarations that must be included in the

user programs when invoking kernel functions. Of course, only

the kernel functions actually invoked need to be externally

declared by the user program.
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Kernel Entry

1

.

Mask hardware preempt interrupts in the
kernel.

2. Save user domain registers in the user
stack (user domain)

.

3. Switch from user to kernel domain (stack).

4. Save user domain stack segment (SS) register
and user stack pointer (SP) register in the
kernel stack.

5

.

Check arguments and invoke appropriate
kernel entry point.

Kernel Exit

1. Check for virtual preempt interrupts (call
CHECK $PREEMPT) when leaving the kernel
(unmask virtual interrupt)

.

2. Save kernel domain SS and SP registers in
the kernel stack.

3. Restore user domain SS and SP registers.

4. Restore user domain registers.

5

.

Unmask hardware interrupts

.

6. Return to the user process, execution point
in the user domain.

FIGURE 51. KERNEL ENTRY - KERNEL EXIT
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Creating an Eventcount

:

CREATE$EVC: PROCEDURE (EVENTCOUNT , VALUE) EXTERNAL;
DELARE EVENTCOUNT POINTER, VALUE WORD;

END;

Creating a Sequencer:

CREATE$SEQ: PROCEDURE (SEQUENCER) EXTERNAL;
DECLARE SEQUENCER POINTER;

END;

The Advance Operation

:

ADVANCE: PROCEDURE (EVENTCOUNT) EXTERNAL;
DECLARE EVENTCOUNT POINTER;

END;

The Await Operation:

AWAIT: PROCEDURE (EVENTCOUNT, VALUE) EXTERNAL;
DECLARE EVENTCOUNT POINTER,

VALUE WORD;
END;

The Ticket Operation:

TICKET: PROCEDURE (SEQUENCER) BYTE EXTERNAL;
DECLARE SEQUENCER POINTER;

END;

The Read Operation:

READ: PROCEDURE (EVENTCOUNT) BYTE EXTERNAL;
DECLARE EVENTCOUNT POINTER;

END;

FIGURE 52. KERNEL CALL EXTERNAL PROCEDURE DECLARATIONS
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In J. Wasson thesis [8] , there is a whole appendix

(Appendix A) of 33 pages with programming instructions and

examples how to use the synchronization mechanism and the

operating system. It is considered redundant to repeat these

instructions. Instead, in Appendix A of this thesis will be

incorporated several actual operating system test programs

and their output.
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V. CONCLUSIONS

A. RESULTS

The principal goal of this thesis, the development of the

kernel of a real-time, distributed operating system for a

microcomputer based multiprocessor system was met.

This operating system is hierarchically structured,

layered in three loop free levels of abstraction, viz., the

Inner Traffic Controller, the Traffic Controller and the

Supervisor, and fundamentally configuration independent.

This verifiable loop free structure was demonstrated with

EXAMPLE #6 in the Appendix A.

Furthermore, at each level of this hierarchical structure

the corresponding part of the operating system consists of a

set of understandable modules whose interactions are clearly

specified and strictly enforced.

The result is a relatively small and easy to analyze

operating system and this also was a principal goal.

Since the kernel is small: (1) less memory is spent for

its storage and (2) less processor time is spent in its

execution. This advantage of less memory allows physical

distribution of the kernel's code and data among the micro-

computers and this distribution in turn helps to minimize

system bus contention.
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On the other hand the layered modular structure provides

the advantage of making it easy to debug, test and analyze,

ensuring correct operation and permitting an opportunity to

increase performance by tuning.

B. FOLLOW ON RESEARCH

Although the kernel executes correctly, as shown in the

examples of appendix A, before higher levels of abstraction

are added to the system, a more formal test and evaluation

plan should be developed. Once the kernel has been proven

highly reliable then the follow on research is feasible for

the reasons explained below.

The existing stub for memory management process solves

the two hardest problems of the memory management functions:

(1) the interface with the kernel and (2) the needed inter-

virtual processor communication and synchronization. Both

capabilities have been implemented and tested.

The hard problem for adding I/O management is also the

inter-virtual synchronization mechanism which exists and

works correctly. For I/O management one more VP will be

added on each physical processor permanently bound to the

I/O process, in the same way as is done for MMGT and IDLE

process.

It is also possible to add file management (by dividing

its functions among kernel and Supervisor) . Finally, the

process oriented structure of the operating system, the
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separation of the address space of each process into user and

kernel domain of execution and also the existence of the Gate

lead automatically to the required structure for internal

security. Additional segmentation hardware is needed to

control the access (read, write) of the system's and user's

subjects (viz., processes), to the system objects (viz.,

segments). The needed hardware will be available in the

anticipated 8086 successor.
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APPENDIX A

SYSTEM 1 S TESTING

This appendix incorporated six examples to demonstrate

the use of the operating system and also to test the inter-

process communication and synchronization mechanism, the

inter-virtual processor communication and synchronization

mechanism and the inter-real processor communication

mechanism (used for preemptive scheduling and supported by

the hardware interrupt structure)

.

For each example, the input source code and the actual

output to the printer are incorporated.

Four of these test programs designed and implemented by

the author and the remaining two by students working in the

"Electro-Optics and Signal Processing Laboratory" of the

Naval Postgraduate School.
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EXAMPLE #1

In this example there are two interactive processes

running on a uniprocessor system under the operating system.

This example demonstrates the multiprogramming capability

and also the use of the inter-process communication and

synchronization mechanism.

In the input source code under the header EXAMPLE #1

INPUT, there are enough comments for easy understanding of

this example. Figures 5 3 and 5 4 are provided to illustrate

the interleaved execution of these two processes and how

they interact using the synchronization mechanism. The

output on the printer is also provided under the header

EXAMPLE #1 OUTPUT.

The variables A, B and C have been incorporated and

are changed before and after entering the operating system

kernel (e.g., when the process calls ADVANCE or AWAIT)

to demonstrate that these values are correctly saved and

restored from the per process stack.
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EXAMPLE #1 INPUT

/* FILE PR1.SRC JANUARY 2S 1991 */

P^UIODJLE: DO!

DECLARE (A. ,E, C.I) *ORD,
DISPLAY BYTE;

DECLARE iSCl(*j 3YTS INITIAL ('ENTERING ?R0C*1. IT HAS HIGHER PPICPITT
*SG2(*> BYTE INITIAL l'?POC*l. ENTERING DELAY '),

*3C-3(*) BYTE INITIAL I 'EXECUTING IN ?R0C*1 '),

*SS4(*1 BTTS INITIAL ('2ND OF DWOMSTSAIICN '),

*SG5(*^ BYTE INITIAL ( 'CCPRENT 7ALJE OF C '),

2R LITERALLY '2DH',
LP LITERALLY '3AH';

DECLARE DELTA(S) BYTE DATA ('DELTAS ')

.

.v'«EGA(5) BYTE DAH('VnECAZ')f

Aa'AIT: PROCEDURE (E7CS IDSPARM, 37C S7AL$P ARM) EXTERNAL?
DECLARE EVCSIDSPAP.* POINTER,

27C$7AL$?AR^ tfORDJ

e,\d;

advance: pp.oced'jre ( i7c$ id$par* ) external?
dsclape e7c$id$pap v

1 pointer?
END:

OJTSCKAR: PROCEDJRE( CHAR ) J

D2CLAPS CHAR 3YTS;
DO #fHILE (INP0T(3DAH) AND 01H) = di
end;
0'jt?ut(3d3h) - char?

END:

OJT$hEX: PROCEnjRE(B);
DECLARE 3 BYTE;
DECLARE ASCIK*) BYTE DATA ( 'SS12Z4567S9ABCDEF' ) J

CALL 0JT$CHAR(A3CII(5H?.(B,4) AN! 2FH) ) J

CALL 0l'TSCHAR(A3CII(3 AND <3FH));
I- •.!» .tiw |

/**$***<::» =-- === > main P R G R A M <»»« ********/

/* ?ROC*l IS THE RICHER PRIORITY PROCESS */

CALL OL
TT$CRAR(CP);

CALL 3Hr?CfiAR(LE)»
CALL OjTSCHAR(LE) ;

DC I = 3 TO 39;
call do"tsceap.(ksgl(i) )',

end;
call outs c hap. (cr);
CALL OUTSCHAR(ir);

3=5!
A = 3*5+25;
c = a*iz;

CALL OUTSCHAR(CP. )?

CALL CUTSCEAP(LF)

;

CALL O'JTSCHAP.(LJ);
DO I = 2 TO 22:

call 0utscha?.c'sg2(i) )5

end;
call ojtschar(cr);
call cl

t tscha?.(lf);
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DO I = 3 TO 232;
call timeu52) ;

end;

/* the initial value of events delta. and imega are 2 */

CALL a.WftITOBELTA.,2) ;

/•-• because the value in the call statement is 2, greater than the «/
/* initial value = 3, arf&it *?ill suspend the execution of that »/
/* (calling) process and tee schedule?. will schedule the higher */
/* prioritt from the regaining processes. proc#i «ill go to the */

/• blocked state */

call outsckar(cr) ;

call dot$chae(lf);
call outscha? (lf)j
DO I = 3 TO 13?

CALL 0&T$CEAR(«S53(I) )!

END;
CALL OJTSCHAR(CR);
CALL OUT$CHAR(L?)?

CALL ,JT$CKA?(CR);
CALL OJTSCHAR(LJ);
CALL OUT$CHAR(LF);
DO I = 3 TO 22;

call out$c£ar(psc2(i) )j

end;
call out$char(cp.);
call ojtschar(lf)

j

DO I = 3 TO 233J
CALL TI*E(253);

end;

a = c;

C = »*2J
A = C*5i

CALL ArfAlTO'V-EGA.l);

/* SINCE 1 IS GREATER THAN PRESENT VALUE OF VMEGA = Z, ?ROC#l */

/* rfILL GO AGAIN TO THE BLOCKED STATE AND SCHEDULER tfILL SCH2-*/
/• DULE PR0C*2 */

CALL OUrSCHAR(CR);
CALL 0UT$CHA?(LF);
CALL OUTSCHAR(LF);
DO I = Z TO i?;

CALL aDT$CHAR(^S33(I))f
end;
CALL OUTSCHARfCR);
CALL OUT^CHAP.(LF);

CALL OUTSCHAP.(CR);
CALL OUTSCHAR(LF) J

CALL OUT$CHAR(LF);
DG I = 3 TO 22?

CALL 0JT$CF.A?.(rSG2(I) )',

end;
CALL OUTSCHARfC?) J

CALL OUTSCHAR(LF);

DC I = 3 TO 233?
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CALL TIME (25 Z) :

:m;

CALL 30TsCEAR(LF);
ec : = i to 22;

call c'JT$c=a s (*sco(i; )

;

em:
:i3PLAI = 51-53(0);
CALL CL*rsH2X(DIS 3 LArj ;

DISPLAY = lov(c) ;

call oarsHEXdispLAr)

;

CALL DLT3!
c *. Li. j t s >

T T T"

"J5TB1HA!

:all a*iaitodelta,3) ;

/* once w3re this process odes to the 2l0csel state, since the present */
/* 7ald5 of delta is 2, ( 2 < 3 ). */

CALL OuTSCHAR(CP);
CALL OJr?CHAa(LF);
C.»LL 0[jrsCH.»Pf LE) ;

LO I = 2 TO IS?
CALL 0(JTSC-AP.( VS53(I} )J

END:
CALL OilPSCHAR(CS);
CALL OUT$CKA?(LF);

CALL 307$CHAR(CR);
CALL OJTSCHAR'L?);
CALL 3UT?CHAE(LF);
DC I = 2 TO 22',

call 0jtscfa?.( vs54(d);
end;
call 3dtscha?(c?.) ',

CALL CLTSCHARtLE):

INC? /* OF 30 1S-!CDJLE */
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/* nil pp?.sf.c J .IN7ART •SI */

?P2$M0DULE: 53.

DECLARE (A.3.C) INTEGER,
I vop.r;

DECLARE V5G1(*^ 3TTZ INITIAL I 'ENTER I rj 0- PROC#2. IT 3AS LOVER PRIORITY
MSG2(*) BYTE INITIAL ( 'PP3C*2. ENTER INS DELAY '),

fSS3(*) BYTE INITIAL ('EXECUTING IN ?R0Cfr2 '),
IP LITERALLY '0DH' t

LJ LITERALLY 'gAE'J
DECLARE D2LTA(S5 BYTE EAPA( TILTA*')

,

tf^EGAtf) SriE DATA( 'y vIESA%') J

Aa'AIT: PROCEDURE (lTC$IE$PARf ,3!TC$?AL$PAP.fO EXTERNAL?
DECLARE EVC$ID$?ARM POINTER,

ETC$TAL$PARM rfORDJ
E N D

;

ADVANCE: PROCEDURE (EVC$ID$PARM) EXTERNAL;
declare z?c$iu$PAaM pointer;

end;

outs char : pro cee tjre( char ) ;

ieclare char bits;
CO rfHILE (INPUT(aDAff) AND 31H) = 3?

END;
OUTPUT (eDBH) » char;

end;

/#«**#«,** ======> MAIN PROGRAM
/* PRCC*2 IS THE ECtfE? ?°IOPITT PROCESS */

=**##***/

CALL OJrSCEARfCR)
CALL CUT$CEAR(LF)
CALL OUTSCHAR(LJ)
EO I = 2 TO 35

J

CALL 0UT$CHAR( V,SC1(I) )i

en:;
call outschar(cr) ',

call outschap(lf);

a = 12;
5 = A*iz;

CALL ADVANCE (3EELTA) ;

/* EVENT EELTA HAS NOV THE VALUE 1, PUT PR3C#1 CONTINUES SLEEPING »/
/* UNTIL THE EVENT DELTA rfILL REACH THE VALUE Z */

CALL OUTSCHAR(CR)
CALL OUTSCHAP(LE)
CALL QUTSCKAR(LJ)
EO I = 3 TO 22;

CALL CUTSCHAP( VISC2(I}};
E.M;
CALL 0L*r$C5AR(CR);
CALL OUTSCKAP. (LJ);

:o I = 1 - £4*U 1
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:.iLL :i*e(
EM

/* THE INITIAL VALUE 3F EVENTS TZLTA ANT WZC-A ARE 2 */

C = c-is:

CALL ADVANCE (3EELTA) ;

/* EVENT DELTA REACHES VALUE 2, S3 ADVANCE WILL AW AIS PPCC-*!.
/* ALSO tflLI SET ??.OC#2 FROM RC7N TO THE REAIY STATE. THEN THE
/* SCHEDULE" WILL SCHEDULE THE 5IGH2B PRIORITY" REMAINING PROC-
/* (IN 3JR CASE ?ROC*l) .

CALL 3Ur$CHAB(CS);
CALL u'JTSCHAR(LJ);
•CALL OJT$CHAR(LF);
DC I = 3 TO 13?

CALL 3UT$CEAR(MSG3(I) )}

END?
CALL 3UT$C5AR(CR);
CALL 3o

T T?CKAR(LJ);

CALL OUISCHAR(CR) i

CALL 3UT$CHA?.(LF);
CALL QtJTSCEARd.?)}
co i * a to 22;

CALL OUT$CEAR(MSGE(I));
ENE

;

CALL DtirSCHARfCR).
CALL OUP5C5AR(LF);

AND */

ss «/
*/

DO I = 3 TO 222;
CALL riME(250)J

end;

c = c+53;
5 = c*2;
A = 3*5;

CALL ADVANCE(3tf!1E3A) ;

/* THE EVENT tfMEGA REACHES NOW THE VALUE 1, SO ADVANCE WILL */
/* AWAKE ?R0C*1 AND SET PR0C*2 IN READY STATE. THEN THE SCHE-*/
/* EJLIR WILL SCHEEJLI PR0C*1 (SINCE EOTH PROCESSES ARE NOW IN*/
/* THE READT STATS AND ?RCC#1 HAS SIGHEF PRICRITT. */

CALL OJTSCHAR(CR)
CALL OUT$CHAR(LF)
CALL SUTSCKARU?)
DO I = 2 TO i?;

CALL 0JT$CRAR(MS33(D) J

END;
CALL O'JTSCHAR(CR);
CALL 3Ur$CHAE(LF)i

CALL OUTSCKAR(CR);
CALL O'JTSCfiAR(LF);
CALL OUT$CHAR(LF)5
DO I = 3 TO 22;

CALL 3
rJTSCHAR(fSC2(I) )i

end;
call 3'jtsckap. icf);
call ouiscear(lf)

j

DO - 3 TO 233;
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CALL riMEU50) ;

3 = &*2i

CALL ALTANCEOCELTA) ;

/* E7SNI ESLTA P.IAC3IS MOrf 7ALJE 3, 30 PSOSfrl AiMSES AND IS SC^SDULSD »/
/* TO RJN. AND SO ON. */

ZNE; /* OF PRZSMOEJLE */
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EXAMPLE #1 OUTPUT

ENTERING PROC#l. IT HAS HIGHER PRIORITY

PROC#l. ENTERING DELAY

ENTERING AWAIT

ENTERING PROC#2. IT HAS LOWER PRIORITY

ENTERING ADVANCE

PROC#2. ENTERING DELAY

ENTERING ADVANCE

EXECUTING IN PROC#l

PROC#l. ENTERING DELAY

ENTERING AWAIT

EXECUTING IN PROC#2

PROC#2. ENTERING DELAY

ENTERING ADVANCE

EXECUTING IN PROC#l

PROC#l. ENTERING DELAY

CURRENT VALUE OF C = 03 E8

ENTERING AWAIT

EXECUTING IN PROC#2

PROC#2. ENTERING DELAY

ENTERING ADVANCE
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EXECUTING IN PROC#l

END OF DEMONSTRATION
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PROC #1 PROC #2 OUTPUT

START

OUTPUT MSG 1

B = 5

A = B * 5 + 25
C = A * 10
OUTPUT MSG 2

DELAY

ALL AWAIT (DELTA, 2)1

{ENTERING PROC #1. IT
[HAS HIGHER PRI

IN READY
STATE

SLEEPING
(BLOCK STATE)

DELTA = 1

DELTA = 2

V

OUTPUT MSG 3

OUTPUT MSG 2

DELAY

A = C

OUTPUT MSG 1

A = 10
B = A * 10
C = B + A

CALL ADVANCE (DELTA)

OUTPUT MSG 2

DELAY
C = C - 10

, k,J?ALLADVANCE (DELTA)

JPROC #1. ENTERING DELAY

ENTERING AWAIT

ENTERING PROC #2. IT
HAS LOWER PRI

IN READY
STATE

C = A * 2

A = C * 5

ALL AWAIT (WMEGA, 1):

ENTERING ADVANCE
PROC #2. ENTERING
DELAY

ENTERING ADVANCE

r EXECUTING IN PROC #1

I PROC #1. ENTERING
DELAY

.

ENTERING AWAIT

FIGURE 53. INTERLEAVED EXECUTION OF TWO PROCESSES
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©

BLOCK STATE

i WMEGA = 1

V

OUTPUT MSG 3

DELAY
C = C + 50
B = C * 2

A = B * 5

l

EXECUTING IN PROC #2
PROC #2. ENTERING
DELAY

I

OUTPUT MSG 3

OUTPUT MSG 2

DELAY

C = A/5

mjTawait (DELTA, 3):

BLOCK STATE

DELTA = 3

OUTPUT MSG 3

OUTPUT MSG 4

END OF PROC #1

CALL ADVANCE (WMEGA)$ ENTERING ADVANCE

EXECUTING IN PROC #1
PROC #1. ENTERING

I
DELAY.

CURRENT VALUE OF
C = 03E8

ENTERING AWAIT

OUTPUT MSG 3

OUTPUT MSG 2

DELAY

B = A * 2

IcalT^advance (del:

end of proc #2

EXECUTING IN PROC #2
1 PROC #2. ENTERING
DELAY.

ENTERING ADVANCE

EXECUTING IN PROC #1

i END OF DEMONSTRATION

FIGURE 54. INTERLEAVED EXECUTION OF TWO PROCESSES
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EXAMPLE #2

In this example there are two interactive processes

running on a uniprocessor under the operating system. These

two processes simulate the image processing processes CLUTTER

SUPPRESION AND FILTER DESIGN. The data comes into the micro-

computer as frames of images and an extensive use of the

synchronization mechanism is required.

Following the comments in the input source code under

the header EXAMPLE #2 INPUT and the output messages under

the header EXAMPLE #2 OUTPUT, it is possible to follow the

interleaving execution and interaction of these two processes.
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EXAMPLE #2 INPUT

/* file pp.ocai.sac is - ai */

csuppsmodule: dc;

declare i byte;
declare cp literally '3de',

l? literally '3ae'?

declare i byte;

dzcla°z csu??(s) byts data( 'csuppv) ;

re:lare flt£s(5) byte data( 'plbesx')

!

DECLARE
M.SC-K*) EYTE INITIAL l'?R0C#l. INITIAL ENTRY INTO CLUTTER SUPPRESSION '\
P5S2(*) BYTE INITIAL ('PROC#l. BAIT FOR LATA REAEY '),

MSC^C*) 3YTE INITIAL ('?ROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: ')

V:S34(*) EYTE INITIAL l'PR3C*l. ADVANCE FILTER LESION E7ENTC3UNT ');

AWAIT: ?R0CSDURE(E7CSID$PAP. VI,S7C$VALSPA? 1

,

1) EXTERNAL?
DECLARE EVC$ID$PAR^ POINTER,

2VC$7AL$PAR v
t rfORD;

end;

AE7ANCE: PR0CEr'JRE(E7C$ IESPARM) EXTERNAL;
DECLARE 2VC$ID$?ARM POINTER?

END;

0UT$CHAR: PROCErURE(CHAR )

;

DECLARE CHAR BYTE?
DO VEILE (INPUT(0DAH) AND 01H) = Z\ END;
3UTPUT(ZD3E) = CHAR?

2ND?

3utseet: procee0re{b)

;

declare 3 3tte;
declare ascik*) byte data ( '31234=5?39a3cdsf '

) \

call 0ut$char(ascii(ser(b,4) and 0fh));
call dut$char(ascii(3 and bee))!

end;

i = a;

CALL DUT5CHAR(LF);

DO Z = 3 TO 46;
call 0ut$char(«s31(z));

end;
CALL 3UT$CRAR(CR)i
CALL CUT$CHAP(LF)

J

CALL 3UT$CHAR(LF);

DO I/HIL3 (I <= 54);

CALL OUTSCHAR(LF);
DO Z = •£ TO 45?

CALL OBT$CHAR(1S32(Z))t
END;
CALL 33T?CHAR(CR);
CALL CUT$CRAP(LF);
CALL 3

rJTSCEAP(L?1; ...
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end;

CALL MAI?(3CSJPP,n;

r - r * i;

CALL D
rJT$CEA?.(LD;

:o Z = 2 TO 48;
CALL 0UT$C t

TAP.( v'Sa3(Z));
END;
2ALL :jt$e£^(i).;
:all :lttscrap(c?. )

call 0ut$char(l?)
call ojt$cha?.(l?)

DC Z = d TC 230?
call time(250);

end;

CALL CUT5CHAR(LF);
jD Z = ?. TO 4:5?

CALL 3DT$CHAR(«SS4(Zy);
end;
call 0'jt$char(cr);
CALL 0JT$C8AR(LF);
CALL CUT$CHAR(LP);

CALL AETANCE(9?LDES);

END? /* rfHILE •/

/* MODULE */
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/* file pr0c3e.src 15 mat »/

jlle3sm3i3le: 13;

declapz i ettz;
ieclap.z ch literally 'seh',

lf ht3ralli '3ah';

declare z byte!

declare csupp( =
) btte data( 'csupp*') ;

eeslap.i fldes(s) 3ite daia( 'flde5s')

j

DECLARE
1S31(*) 3TTE INITIAL ( '?R0C#2. INITIAL ENTRT INTO FILTER DESIGN '),

KSSZ(*) BYTE INITIAL ('PRCC*2. AVAIT FOR DATA READT '),

h»SG3(*j 3TTE INITIAL C?R3C#2. PERFORMING FILTER EESIGN ON FRAME: '),

1SS4(*5 3TTE INITIAL ('PR0C#2. ADVANCE CL3TTSR SUPPRESSION E7ENTC0UNT ']

AWAIT: PR3C£HJRE(E7C$ID$?ARM ,E7C$7AL$PARM) EXTERNAL;
DECLARE E7C$ID$?ARM POINTER,

E7C$7ALSPARM tfORD;
end;

advance: procedure(etc$ld?pirn) external?
dzclape e7csidsparm pointer?

end;

3utschar: procedot.e( crar ) j

declare gear btte;
10 rfHILE (INPJT(ZEAR) AND aiH) = Z\ END?
3CJT?UT(ad3R) = CHAR!

END;

3'JT$2EX: PROCEEJRE(B);
DECLARE B 3rTE,

ASCII(») BTTE DATA ( '212345575SABCDEF '
)

J

CALL 3JT$CHAP.(ASCII(5HR(B,4) AND BFH))J
CALL 3UT?CSAR(ASCII(3 AND 3FH))i

END;

I = 0?

DO z = a TO 40;
CALL 3UT$CHAR(MSGKZ))f

END;
CALL CUT$CHAP.(CR);
CALL C3TSC3AR(LF);
CALL 3&T$CHAR(LF)i

DC WHILE (I <- 54);

CALL 3(JT$CHAP.(LF);
DO Z » Z TO 29;

CALL 0u"T$CRAP(M332(Z));
END;
CALL OJT$CHJ?.(CR) ;

CALL 3'JT$CRA?.(LF);
CALL 3L'TSCHA?.(LJ);

CALL A^AITOFLDES.I);
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ZD Z = 2 TO 2005
call timk25b);

snd;

call 3ctt$ch*r(l?) ;

ID Z = Z TO 4=2;

CALL C<JT$CHAP( M533(Z));
en z;
CALL DiJTSEZXd);
CALL CUT?CHA?.(CP);
CALL 0(JTSCHAF.(L?) J

CALL CJT5CRA?.(LF);

CALL 3DT?CHAE(LP);
LO 2 = TO 45;

call 0ut$char(ms34(z));
end;
call cltt$chah(c?.);
call cjt5cha?.(lj);
call c(jt$char(lf);

call *d7ance(@cs7pp);

emd? /* vhxli */

;nd; /-module */
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EXAMPLE #2 OUTPUT

PROC#l. INITIAL ENTRY INTO CLUTTER SUPPRESSION

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 01

PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT
PROC#2. INITIAL ENTRY INTO FILTER DESIGN

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 01

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADVANCE

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 2

PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT
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PROC#2. PERFORMING FILTER DESIGN ON FRAME: 2

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADVANCE

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 03

PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 03

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADVANCE

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 04

PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 04

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT
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ENTERING ADVANCE

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 5

PRCC#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 05

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADVANCE

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 06

PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 6

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADVANCE

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 07
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PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 07

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADVANCE

PRCC#1. PERFORMING CLUTTER SUPPRESSION ON FRAME: 08

PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 8

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADVANCE

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 09

PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE
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EXAMPLE #3

The input source code for this example is exactly the

same as for the previous example. The difference is the output.

The output under the header EXAMPLE #3 OUTPUT has more output

messages. In fact in every module of the operating system

has been incorporated at least one output message as shown

in Figure 55.

In this way the debugging and checking becomes easier.

Also it is possible to follow the flow of program control

between several modules of the operating system.

The higher priority process is PROC01 (CLUTTER SUPPRESSION)

with priority 40 and the lower priority is PROC02 (FILTER

DESIGN) with priority 41.

The address space descriptor for the first process (the

base of its "per process stack") is equal to 6000H(this

appears as 600 because of INTEL'S monitor convention), for the

second it is 7000H and for the idle process it is 5000.
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LEVEL MODULE OUTPUT MESSAGE

CHECKVIRTINT ENTERING CHECKVIRTINT

ITC$RET$VP ENTERING ITC$RET$INT
RUNNING$VP$ID =

ITC $LOAD$VP ENTERING ITC$LOAD$VP
LOADING VP NUMBER:
PRIORITY FOR THIS VP IS:
NEW DBR FOR THIS VP IS:

ITC CHECK$PREEMPT ENTERING CHECKPREEMPT

GETWORK ENTERING GETWORK
SELECTED$DBR =

RUN$THIS$VP ENTERING RUNTHISVP
SET VP TO RUNNING: VP =

ITC$SEND$PREEMPT ENTERING ITC $SEND $PREEMPT

LOCKVPM ENTERING LOCKVPM

UNLOCKVPM ENTERING UNLOCKVPM

RDYTHISVP ENTERING RDYTHISVP
SET UP TO READY: VP =

TC$SCHEDULER ENTERING TC$SCHEDULER

TC$LOCATE$EVC ENTERING TC$LOCATE$EVC

TC TC$AWAIT ENTERING AWAIT

TC$ADVANCE ENTERING ADVANCE

TC$PE$HANDLER ENTERING TC$PE$HANDLER

FIGURE 55. OUTPUT MESSAGES OF THE OPERATING SYSTEM'S MODULES
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EXAMPLE #3 OUTPUT

ENTERING CHECKVIRTINT
ENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITC$RET$VP

RUNNINGSVPSID
SET VP TO READY: VP

ENTERING GETWORK
SELECTED $DBR

ENTERING RUNTHISVP
SET VP TO RUNNING: VP

ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPS ID
ENTERING TCSPESHANDLER
ENTERING TCS SCHEDULER

ITCSRETSVP
RUNNINGSVPS ID
ITCSLOADSVP
ITCSRETSVP
RUNNINGSVPSID =

LOADING VP NUMBER:
PRIORITY FOR THIS VP IS:
NEW DBR FOR THIS VP IS:

ENTERING GETWORK
SELECTEDSDBR =

ENTERING RUNTHISVP
SET VP TO RUNNING: VP =

ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID =

ENTERING

ENTERING
ENTERING

00
00

0500

01

= 01

= 01

01
01

40
0600

0600

01

01

PRCC*1. INITIAL ENTRY INTO CLUTTER SUPPRESSION

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT
ENTERING ITCSRETSVP

RUNNINGSVPSID =

ENTERING TCSLOCATESEVC
ENTERING TCSSCHEDULER
ENTERING ITCSRETSVP

RUNNINGSVPSID =

ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP

RUNNINGSVPSID =

LOADING VP NUMBER:
PRIORITY FOR THIS VP IS:
NEW DBR FOR THIS VP IS:

ENTERING GETWDRK
SELECTEDSDBR =

ENTERING RUNTHISVP
SET VP TO RUNNING: VP =

01

01

01
01
40
0600

0600

01

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 01
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PR0C#1. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE
ENTERING TC$LOCATE$EVC
ENTERING ITC$RET$VP

RUNNINGSVPS ID = 01
ENTERING TCS SCHEDULER
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
LOADING VP NUMBER: 01

PRIORITY FOR THIS VP IS: 40
NEW DBR FOR THIS VP IS: 0600

ENTERING GETWORK
SELECTEDSDBR = 0600

ENTERING RUNTHISVP
SET VP TO RUNNING: VP = 01

PROC#l. WAIT FOR DATA READY

ENTERING

ENTERING

AWAIT
ITCSRETSVP
RUNNINGSVPSID =

ENTERING TCSLOCATESEVC
ENTERING TCS SCHEDULER
ENTERING ITCSRETSVP

RUNNINGSVPSID =

ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP

RUNNINGSVPSID =

LOADING VP NUMBER:
PRIORITY FOR THIS VP IS:
NEW DBR FOR THIS VP IS:

ENTERING GETWORK
SELECTEDSDBR =

ENTERING RUNTHISVP
SET VP TO RUNNING: VP =

ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID =

01

01

01

01
41
0700

0700

01

01
PROC#2. INITIAL ENTRY INTO FILTER DESIGN

PROC#2. AWAIT FOR DATA READY

ENTERING AWAIT
ENTERING ITCSRETSVP

RUNNINGSVPSID
ENTERING TCSLOCATESEVC
ENTERING TCS SCHEDULER
ENTERING ITCSRETSVP

RUNNINGSVPSID
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP

RUNNINGSVPSID
LOADING VP NUMBER:

PRIORITY FOR THIS VP IS

= 01

01

01
01
41
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NEW DBR FOR THIS VP IS: 0700

ENTERING GETWDRK
SELECTEDSDBR = 07

ENTERING RUNTHISVP
SET VP TO RUNNING: VP = 01

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 01

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADVANCE
ENTERING TCSLOCATESEVC
ENTERING I TC$ SENDSPREEMPT
ENTERING I TC$ SENDSPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING TCS SCHEDULER
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
LOADING VP NUMBER: 01

PRIORITY FOR THIS VP IS: 40
NEW DBR FOR THIS VP IS: 0600

ENTERING GETVTORK
SELECTEDSDBR = 0600

ENTERING RUNTHISVP
SET VP TO RUNNING: VP = 01

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 2

PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ADVANCE
ENTERING TCSLOCATESEVC
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING TCS SCHEDULER
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
LOADING VP NUMBER: 01

PRIORITY FOR THIS VP IS: 40
NEW DBR FOR THIS VP IS: 0600

ENTERING GETWORK
SELECTEDSDBR = 06 00

ENTERING RUNTHISVP
SET VP TO RUNNING: VP = 01

PROC#l. WAIT FOR DATA READY

ENTERING AWAIT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01

ENTERING TCSLOCATESEVC
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ENTERING ITC$SCHEDUIER

ENTERING ITCSRETSVP
RUNNINGSVPS ID = 01

ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
LOADING VP NUMBER: 01

PRIORITY FOR THIS VP IS: 41
NEW DBR FOR THIS VP I S : 07 00

ENTERING GETWORK
SELECTEDSDBR = 07 00

ENTERING RUNTHISVP
SET VP TO RUNNING: VP = 01

PROC#2. AWAIT FOR DATA READY

ENTERING . AWAIT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING TCSLOCATESEVC
ENTERING TCS SCHEDULER
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
LOADING VP NUMBER: 01

PRIORITY FOR THIS VP IS: 41
NEW DBR FOR THIS VP IS: 0700

ENTERING GETWORK
SELECTEDSDBR = 07 00

ENTERING RUNTHISVP
SET VP TO RUNNING: VP = 01

PROC#2. PERFORMING FILTER DESIGN ON FRAME: 2

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ADVANCE
ENTERING TCSLOCATESEVC
ENTERING I TCS SENDSPREEMPT
ENTERING ITCSSENDSPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01

ENTERING TCSSCHEDULER
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING ITCSLOADSVP
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
LOADING VP NUMBER: 01

PRIORITY FOR THIS VP I S : 40
NEW DBR FOR THIS VP IS: 0600

ENTERING GETWORK
SELECTEDSDBR = 0600

ENTERING RUNTHISVP
SET VP TO RUNNING: VP = 01

PROC#l. PERFORMING CLUTTER SUPPRESSION ON FRAME: 3

243





EXAMPLE #4

This example was designed and implemented by Kurt

Holmquist for testing purposes of the operating system,

and consist of five processes running on a uniprocessor

system under the operating system.

In the following pages are included the input source

code under the header EXAMPLE #4 INPUT and the output of

the microcomputer directly to the printer under the header

EXAMPLE #4 OUTPUT.
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EXAMPLE #4 INPUT

/* T'ais loiuls ?catair.s a prosraTi fron wnica
rultipls r-ocesses can oe reneratel by
ta? J/3 syacaroai zation aa^ sshedulias!
functions. Tae au-tcer of orocesses
to oe :reatel is tie value "aux_^rcc".
Tae orocesses snouli all as la tae "real/"
state initially. #/

v'.Jiri_P?.3C : co;

/***#** External proceiure ieclaratioas #*##**/

Dituut aex: PROCEDURE (value) EXTERNAL!
DECLARE value tfORE;

end;

Heal char: PROCEDURE EfTE EXTERNAL;
zni;

*essa?e: 'ROCEDUPE (rress? ail) EXTERNAL;
DECLARE riesg ail POINTER;

end;

Await: PROCEDURE ( event_name , count ) EXTERNAL;
DECLARE eveat_aaite POINTER,

count
-

rfORC;
end;

Aivancp: PROCEDURE (event nane) EXTERNAL;
DECLARE event aane POINTER;

end;

/****#* Event count ieclaration **#***/

DECLARE aivacce_aett (5) 3TT2 DATA ('ADNm')i

/***##* ^?55?« ani variable ieclarations *##***/

DECLARE

tr OTUH (*^ BITE INITIAL ( 0DH,3AE,3AH, 'RUNNING PROCESS *
'

)

caun (*) 3TTS INITIAL ('3 DBR = ' ,Q)

,

m aiva (*1 BTTE INITIAL (0DE.3AH,'
HIT A KET TO CALL "ADVANCE" .'

,'i

)

- a*ai («) 3TTE INITIAL (3DH.3AH,'
HIT A EET TO CALL Arf AIT" .

' ,0 ) ,

(avraitei count, ss r=e, orocess) VORD,
i /CRD INITIAL (0)7 cnar BTTEJ

DECLARE au-fi_proc LITERALLT '5'j

DECLARE ENTRT LABEL PUBLIC;

/* Fro?ran for any auiber of processes to execute */

E;JT = I: DO WHILE lj

/* Eaca pro-ess iientifies itself by reading tie
value of the stacic ses^ent register (D3R). */

ss re? = 5TACOASEJ
crocess = 3H?.(ss re?, 4) AND 3FHJ
pnuii (0) = LOW (process) - O20E;
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/*

/'•

I I + li

?riit out tie r.uToer of taa process curreatly
r u a a i a e ail lis L"3R

.

*/

CALL w.essaee Orr prur. );

CALL Output lax Tss res);

CALL ""essaee (3T_alva)

;

:nar = Real 3iar» /* Jse '<ayboari input to step
tbrou^a tna oroerarr. */

Besaasa tia last process oa tie load list las lower
priority tbaa all ths otaars, it aas a slieatly iiffersat
pro?ra"n sequence. For tie last process only, tne process
switoa will taks place waea tie call to advance is naie. */

II process = iu-n_proc THEN DO?

CALL Aivaace (3aivaaoe_aext }

;

END;

All processes except tie last oae oa tie loai list
erecute tie following.

else ro;

/* Aivaace tie avent count */

CALL Aivanca (3aivanca_aext )

;

CALL ^essaee (3ir_awai);

caar = Reai_caar;

awaitei_couat = ( (i-1 )/5 + l)*5J

CALL Await ( 3aivaaca_aaxt ,awai tei_couat ) ;

/* The currently runain? procass will become bloclcsi
at tais poiat aai aaotaar proces will baeia running,
rf'aea a process wiica aas previously blociai itself
begins running again, toe antry point will be here
aai tie following call will ietemine tae' procass
switch tire. */

end;

ENE:

*/

snd;
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EXAMPLE ff4 OUTPUT

RUNNING PROCESS #1 DBR =0710

RUNNING PROCESS #2 DBR = 0720

RUNNING PROCESS #3 DBR = 0730

RUNNING PROCESS #4 DBR = 0740

RUNNING PROCESS #5 DBR = 0750

RUNNING PROCESS #1 DBR =0710

RUNNING PROCESS #2 DBR = 07 20

RUNNING PROCESS #3 DBR = 07 3

RUNNING PROCESS #4 DBR = 0740

RUNNING PROCESS #5 DBR = 07 50

RUNNING PROCESS #1 DBR =0710

RUNNING PROCESS #2 DBR = 07 20

RUNNING PROCESS #3 DBR = 07 3

RUNNING PROCESS #4 DBR = 0740

HIT A KEY TO CALL "ADVANCE'
HIT A KEY TO CALL "AWAIT".

HIT A KEY TO CALL "ADVANCE'
HIT A KEY TO CALL "AWAIT".

HIT A KEY TO CALL "ADVANCE"
HIT A KEY TO CALL "AWAIT".

HIT A KEY TO CALL "ADVANCE"
HIT A KEY TO CALL "AWAIT"

.

HIT A KEY TO CALL "ADVANCE"

HIT A KEY TO CALL "ADVANCE"
HIT A KEY TO CALL "AWAIT".

HIT A KEY TO CALL "ADVANCE'
HIT A KEY TO CALL "AWAIT".

HIT A KEY TO CALL "ADVANCE"
HIT A KEY TO CALL "AWAIT"

.

HIT A KEY TO CALL "ADVANCE'
HIT A KEY TO CALL "AWAIT".

HIT A KEY TO CALL "ADVANCE"

HIT A KEY TO CALL "ADVANCE'
HIT A KEY TO CALL "AWAIT"

.

HIT A KEY TO CALL "ADVANCE"
HIT A KEY TO CALL "AWAIT".

HIT A KEY TO CALL "ADVANCE'
HIT A KEY TO CALL "AWAIT".

HIT A KEY TO CALL "ADVANCE"
HIT A KEY TO CALL "AWAIT".

RUNNING PROCESS #5 DBR = 07 5

HIT A KEY TO CALL "ADVANCE"
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EXAMPLE #5

This example was designed and implemented by the following

students of Naval Postgraduate School:

LT Kenneth Webb
LCDR Leo Schnieder
LT Antony Christian

in partial fullfillment (as a project) of the requirements of

the course CS 35 50. It can be used to test the synchronization

and communication mechanisms of the operating system.

In Figure 56 is shown the interactions of five processes:

I/O CONTROLLER, ID-POSIT, CORRELATION, TRACK and DISPLAY. Also

shown are five shared buffers: SENSBF, SENSDR, ACTIVE-BUFFER,

OUTPUT TABLE and TRACK TABLE residing in the system's global

memory while the processes code and data are located into the

microcomputer's local (on board) memory. For example, the

shared buffer SENSBF is used by the I/O CONTROLLER and ID-POSIT

processes and so on.

Flow of information into and out of the various processes

and buffers is indicated in Figure 56 by the direction of the

arrows. Eventcounts are shown between the processes.

The details about this project will not be incorporated

here since these can be extracted from the following input

source code, under the header EXAMPLE #5 INPUT. The output

to the printer follows the input source code, under the

header EXAMPLE #5 OUTPUT.
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FIGURE 56. AN EXAMPLE OF FIVE INTERACTIVE PROCESSES
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EXAMPLE #5 INPUT

IIP0.SIT:1UW - —
/*MODOLS BE3INNING*/

/* declarations*/

oeclape « word i:jitial(3);
declare iefji (c) byte data (

' hvh% ') ?

declare iipos (6) sfti data ('ieposs');
declare idp"z (6) byte DArA ('idpre%'>;

DECLARE TGTSD*TA(P) BYTE DATA( 'TGT5DATAX' ) ?

DECLARE ID$?03ITSSTART(l5) BITE DAIA( 'ID$PDSIT$3TART% ' )

;

DECLARE I INTEGER INITIAL (0);
DECLARE 3ENSBJ? (22) STRJCTJRE (INF0(15) BYTE, TYKE WORD,

FLAGS? BTTE) EXTERNAL?
DECLARE RESIT LITERALLY '30H'?
DECLARE ZZ *"ORE ialtlal (1);
DECLAPE (J.L.f .BEARING) INTEGER;
DECLARE (XSSENS, r$S£NS. RANGE) INTEGER;
DECLARE B[JFFER(15) INTEGER;
DECLAPE (BNG^ULTSPTR, ?05IT$PTP) POINTER?
DECLARE 3ENS$N(TU INTEGER EXTERNAL;
DECLARE (X$TGT, !f?TGT) INTEGER EXTERNAL;
DECLARE TY^El «ORD EXTERNAL?
DECLARE (PNG$ v:aLT BASED BNG$MO"Lr$PTR ) (2) INTEGER?
DECLARE (POSIT BASED POSIT$PTR ) (2 ) INTEGER;

AWAIT: PF.OCSDCPE (E7C< ID$PARM , 3VC$VAL$PAR>1) EXTERNAL;
DECLARE E1TC$IE$PARM POINTER;
DECLAPE EVC$TAL$PAR!1 rfORD?

END await;

ae7ance: procedure ( e7c$id$par.^) external?
declare e7c$ids?ar- pointer;

end advance;

bnganalyzzf: procedure (beaping) pointer external.
declare bearing integer?

end 3nganaltzer?

tgt$pcsit: procedure (xs3a3e, y?3ase„ x$co*ip, t$comp, png) pointer
external;

declare (x$base,r$ba3e, x$comp, r$comp, rng) integer?
END tgtsposit;

*rlt2: procedure (ptr) external?
ieclareptr pointer?
?ni ;

INITV2: PROCEDURE EXTERNAL?
END

;

/*IND OF TRE DECLARATIONS*/

CALL INIT72?
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DO viile 01

J

call await oitpre.zz);
zz = zz ii-

ir SINSBff?(I) .PLAS$7 = 01H TIEN

/*INCRZ.W ZNT THE 3UFFER COUNT AND OBTAIN THE DATA. CCN7EPT
FROM ASCII TO NUMERICAL REPRESENTATION.-/

IE I < 20 THEN
DC-

DO J = TO 14=;

BtJEFER(J) = ZMZ(SiNSBU7(I) .INEO(J) - 30H);
end;

end;
ELSE EOi

I = a;
CO J = TO 14;

buffer* j) = int( ssnsbuf( i ) . info( j) - 30h);
end;

END;
ro;
SENSBCF(I) .FLAG?7 = RESET;
I = I i;

end;

/* the mext step is to consolidate the input information
into the appropriate variables*/

do;
T$SENS = ((1000 * EUEFER(l)) -

(100 * BDFFER(2)) +
(10 * 3UFFER(3)) *

(eutter(4)));
tssens = ((1000 * 30t7er(5)) +

(100 * BUFFER (c) ) +

(10 * BUJ?ER(71) +

(BUFFER(6)))J
BEARING = ((100 * BUFFSR(S)) +

(10 * BU?TER(10)) *

(BUFFER(ll)));
RANGE = ((100 * BUFFSB(12)) +•

(10 * BUFFER (13)) *

(BJFFER(14)));
end;

/* call the subroutines rfhich analtze the data to prodtlce
the target's position on an x-t grid*/

do;
3all writ? (?( 'CallLn? bearing analizer .%')

)

;

call write (3('Calllng target posit. %') )
',

end;

/* LOAI THE ME^ORT SHARED rflTH THE CORRELATION PROCESS*/

CALL MAITOlM0T.il) i

i = * + li
dc;

SENSSNfJMl = BUTTER (0U
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"!" V I1 = 5ENSBJ?(I-1
XSIST = ?0SIT(2};
TSTC-T = POSIT(l);

sni;

/* 32T THZ ADVANCE TC SISNAL THE END OF THIS PROCESSOR RUN
TO THE SCHEEULIR*/

CALL AETANCEOIDPOS);
2ND?
END IDSPOSITT
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CORRELATION: DO? /* BEGINNING 0? vODJLZ */

THIS NODULE DETERMINES tfHETKER ANf INCOMING TARGETS C S M EE
CORRELATED rflTH ANT TRACKS ALREAT? BEIN3 TRACKED IN THE
TRAGESTAELE. I? THERE 13 A CORRELATION .THEN THE r.ODtT LZ
JPDATZS THE TARGET'S X POSITION, Y POSITION, AND TIME-
IP TEEPE 13 NO CORRELATION, THEN THE -CDl'LE ASSIGNS ? 3 S
NEW TARGET A NEW TRACK NJ M BER AND ENTERS IT'S TRACE
NJM5ER, X POSITION, I POSITION, AND TIME IN TEE TRACKS
TABLE. */

/* EXTERNAL DECLARATIONS */

DECLARE TRACKSTAELE(E5)STRUCTURE(TRACK$NR WORE.XSPOSIT INTEGER,
TSPOSIT INTEGER, TT^E WORD, CSS INTEGSP.SPD INTEGER,
XSjgPOS INTEGER, TSFOPOS .INTEGER) EXTERNAL;

DECLARE ACTIVE$BJFF STRaCTGREURACKSNE *ORD,X$POSIT INTEGER,
r$POSIT INTEGER, IYME WORD) EXTERNAL;

DECLARE SENS$NUM1 INTEGER EXTERNAL,-
DECLARE (XSTGT,r$TGT)INTEGER EXTERNAL?
DECLARE TTME1 WORD EXTERNAL;

/* INTERNAL DECLARATIONS */

DECLARE (N,J,rFOGND) rfORE?
DECLARE Z WORD;
DECLARE W #'ORD INITIALS);
DECLARE H *ORE INITIALS);
DECLARE (TPUS,FAL3S)WCRD INITIAL (0FFH ,20H )

;

DECLARE irP0S(6)BTTE DATA( 'IDPOS%* )

J

DECLARE AC3<JJ(5)ETTE DAT A( 'ACBOF%')

;

DZCLAPE ID3UF(5)BTTE DAT A( 'IDBUF% '

)

r

DECLARE TABAC (S) SITE DATA( TABAC%')

;

DECLARE ( 3 ENSOR, XT AR.r TAR) INTEGER;
DECLARE T^S rfORDJ
DECLARE MSGl(*)ErTE INITIAL ( 'ENTERING CORRELATION? ')

;

DECLARE fSG2(*)BrTE INITIAL( 'LEAVING CORRELATION?');

/* EXTERNAL PROCEDURES */

/* THE ADVANCE MODJLE ADVANCES THE VAL'JE OF ZVCS ID$PA?.M . */

ADVANCE: PROCEDURE(EVC$IDSPARM) EXTERNAL;
DECLARE EVC$ID$PARM POINTER;
END advance;

/* THE AWAIT MOE3LE WILL BLOCK THE CALLING PROGRAM FROM
EXECUTION JNTIL EVCS ID$PARM=E7CSVAL$PARM . */

AWAIT: PR0CEDORE(EVC$ID$P ARM, SVC $VAL$PARM) EXTERNAL?
DECLARE EVCSIDSPAR1 POINTER?
DECLARE EVC$VAL$PARM rfORD;

END await;

/* TEE XMATCH MODULE DETERMINES WHETHER THE INCOMING TARGET'S
X POSITION CORRELATES rflTH ANT FUTURE X POSITIONi OF TRACKS
THAT ARE ALREADY IN THE TRACKSTABLE. */

XMATCH: PROCETUREf TABLESPTR . XTAR ,N ) WORD EXTERNAL;
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DECLARE 7A3LESPTP. POINTER;
declare hap. integer;
declare n w0fd5
z^jc jcmaich;

/* THE MATCH MOWLE COMPARFS THE I FUTURE POSITION OF THE TRACK
FOUND IN r MATCH MOIULE TO IKE INCOMING TAROET'5 Y POSITION
AND DETERMINES IF THERE IS A CORRELATION. */

fMATCH: ?BOCSDURE(FOrUPEr,rrAR)rfOPD external;
DECLARE FJT'JREr INTEGER;
DECLARE TTAP. INTEGER?
END T.MATCE;

/<• v.'dl TA3LZ "ODULE FILLS THE TRACKS7ARLE VITH TRACK NUMBER,
X POSITION, r POSITION, AND TIME OF ALL NEW TRACES. */

TABLE: PROCEDURE (

M

,XTAR ,11 AR ,T ) EXTERNAL?
DECLARE M rfORD;
DECLARE (XTAR,rm)INTEGER;
DECLARE T rfORDJ

END table;

/* THE BUFF -ODULS UPDATES THE ACTIVESBUFF WITH TRACK NUMBER,
X POSITION, I POSITION, AND TI W E OF ALL OLD TRACKS. */

BUFF: PROCEDURE* TN, XTAR,mR,T) EXTERNAL J

DECLARE (TN.T)rfORD;
DECLARE (XTAR,rTAR)INTECER;
END buff;

/* THE *'RITE MODULE IS USED TO PRINT OUT MESSAGES. */

tfRIIE: P?OCEDURE(PTR)EXTERNAL;
DECLARE PTR POINTER;
END white;

/* MAIN PROGRAM */

DO Z=l TO 1Z000J

CALL »HITE(3MS31);
CALL AWAITOIDPOS.Z);

SENSOR=SENS$NUfi;
xtap=xstgt;
rTAR=T5TCT;
TME=TTMEi;

CALL AD7ANCE((?IDEU7);

CALL AiAIT(3TA3AC,i);

tfound=false;
j=i2;

N=aj

DO a'HILE .K25 AND Y70UND=FALSE;

; = XMATCHOTRACK$TA3L2,XTAR,.N);
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end;

:r j< 25 fhsn

Tmrw^.r^Ciuc'tsrABLK J) .'fsFjpos .tta 3
!

;

II rT3?N'D=TP.LT I PESN
i5;

call buffdp.ac'^tableu) . i?.ac2$nr , u ap. , ttar , tie) '

end;

n=j+i;
end;

end;

I? J=23 ISSN
eo;

call tabled,ma,ma, tme);

in:;

call advamcsoacbuf);
w=w-t-i;

CALL *'RITE(?MSC2);

END CORRELATION; /» END OF MODULE •/
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TEST: DO:

laoa; [o ; ay^s laia ^

< rfori Initial (<?),

i war! initial (8),
?r.try_a label public,
2 rfori Uitlal (1);

declare buff (4) structure (trac^snr tford, x$?03it integer,
rs?osit integer, time integer, cse integer,
3pd integer, flag ette)?

declare out?ut$taele structure (tracxsnr word, xsposit
integer, tsposit integer, time integer,
css integer, 3pd integer, flag 3tte)
external;

rfrite: procedure (ptr) external;
declare ptr pointer?
ene;

advance: procedure ( e7c$id$parm ) external?
declare e7csidspahm pointer?
end advance?

a*'ait: procedure (etc$id$?arm, svc$val$?ar >

1) external?
declare e7csid5parm pointer,
27C$7AL5?A?M rfORD?
END*

entry a:
CALL ?PITS OC3SGIN TEST OF DISPLAY. % '))',

/* INITIALIZE */

3UFF(1).TRAC£SNR = 1?

eu?f(i).xsposit = 53i;
3UFF(l).T$POSII = 10S4?
BUFF (1). TIME = 134?
8DFF(1).CSE = 242?
EUFF(1).5PI = 24=i;

3UFF(1).FLAG = SET?

BU?F(3).TRACE$NR = 13?
BUFF ( 3 ).I$ POSIT = 212?
3UFF(3).T$POSIT = 2413?
B!IFF(3).IIMI = 245?
SUFF(3).CSE = 198?
3UFF(3).3?D = 10005
3UJJ(?).JLAG = SET?
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eo 4Qii= 21;
sail await Oa~buf, w);
v = rf + 15
call write (

3( 'Extractive lata frou a buffar siarsi with CORRELATE. %')) .call
ai vanes ( 3ta bac ) 5

3ALL kVkll COTP.DT, I);

CQTPUT$rA.3LE.rP.AC :C$NP = 3UFF( J ) . rPAC'iCSNR?

DjrparsrA3LZ."($posir = 3UF?(j).r$posiT;
cjrpcTsPiBLs.rsposir = buffuk^posit;

0JTPJT$rA2LE.CSS = BJFF( J) .CSE J

0aTPUT$m3LE.5?D = BCJFF' J ) .3 PD J

0JTP fJT?rA3LE.JLAG = BUFF( J) .FLAG-?

i = i + i;

CALL mrEOi'3UFFER FILLED. ADVANCING OISPLAr.J'));

CALL AD7ANCZ OffPDAI);
end;

end test;
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DISPLAY: TO;

»_D7ANCS: PROCEDURE ( E7CS IDS?*?.- ) EXTERNAL;
DECLARE E7C$IE$PARff POINTERS
snd;

ma.it : pp.ocedl'pe (e7csiesparm, i7cs7alspar* ) externals
declare z7csidspar.m pointer,
E7C$7AL5PARM a'ORD;

rfpite: procedure (ptp.) external;
declare ptp. pointer!
snt;

:0N7E?T$:A3LE: PROCEDURE (TABLESPTR) POINTER EXTERNAL;
declare ta3lzsptr pointer;
end;

DECLARE I WORD INITIAL (1),
PTR POINTER,
OJTsTABLESPTR POINTER,
SET LITERALLY '011%
RESET LITERALLI '00H',
DELIMITER LITERALLY '25H'J
i33larsJPt»r (5) 3TTE DATA ('UPDATE'),
OIPDT (=) 3T7E DATA I'OT'Dr*'),
(J, I) BfTEJ

DECLARE 30TPOr$TABLE STRICTURE (TRACISNR WORE, X$?05IT INTEGER,
r$P03IT INTEGER, TIME INTEGER, CSE INTEGER,
SPT INTEGER, FLAG 3TTE) EXTERNAL;

DECLA D S L0C$3UE? STRUCTURE (TRACKSNR WORD, T$POSIT INTEGER,
rsPOSIT INTEGER, TIME INTEGER, CSS INTEGER,
3PD INTEGER, FLAG 3TTE);

DFCLAPE (0CT57A3LE EASED OUT$T» BLESPTR) (25) STRUCTURE (TBKSNi
(13) 5TTS, X$? (12) 3TTE,
?$? (12) 3TTE. T (10) 3TTE, CSE (12) 3TTE. SPD
ili) 3TTE, CELIM 3TTE);

lALL »PITE (3( 'ENTERING DISPLAY .% ')
)

',

DO walla ai;
CALL Uktl (3LT?DAT, I);
CALL *RITE(3( 'ENTERING DISPLA? LOOP.S'))!
i =1 * IS
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LC:$3Cr?r.TRACJ$NH = OuTPilTSlABLE.TRAClSM?.;
LCCSEJFJ.^POSIT = 03TPtrr$r4BLE.X$POSIT;
LCC$BUFF.T$PC3IT = OUTP(JT$TABLE . ?POS IT;
LOCSPUJF.TIME = OUTPST$r»BLE.TlME;
L0C$3iJFF.CS2 = 0JTPJT$T»BLE.C3E;
LOCSSQFF.SPD = JTPUT$IABLZ. 3 ?D

;

LOC?BETT?.ILA.G = OOTPOTSTABLE.rLi&J

/* CONVERT TATA TO ASCII FOR DJTPJT. */

outstablssptr = coavsrtstabla Oloc$tmff);

/* tfRIXE DATA CM CONSOLE. */

C»LL tfRITE UM'TRACIJIR I POSIT I POSIT TIME COURSE SPEEE%'))J
io j = 3 to 25!
if 3i»t$tabl9(J).i9ll-n iallmltsr
tlsa sail writs ( ?out$tabla( j) )

;

ani»

:all a:7»nce ootret);

zhz;
end display;

259





EXAMPLE #5 OUTPUT

Entering IDPOSIT LOOP.

ENTERING AWAIT
ENTERING CORRELATION

ENTERING AWAIT
BEGIN TEST OF DISPLAY.

ENTERING AWAIT
ENTERING DISPLAY.

ENTERING AWAIT
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
CALL ADVANCE (IDSPOS IT)

.

ENTERING ADVANCE
Calling bear i ng_anal i zer

.

Calling target_pos i t

.

ENTERING AWAIT

ENTERING ADVANCE
Entering IDPOSIT LOOP.

ENTERING AWAIT

ENTERING ADVANCE

ENTERING AWAIT

ENTERING ADVANCE
LEAVING CORRELATION
ENTERING CORRELATION

ENTERING AWAIT
Extracting data from a buffer shared with CORRELA TE.

ENTERING ADVANCE

ENTERING AWAIT
BUFFER FILLED. ADVANCING DISPLAY.

ENTERING ADVANCE
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TIME COURSE SPEED
0067 240 0345
0175 240 0345

ENTERING AWAIT
ENTERING DISPLAY LOOP.
TRACK_NR X_POSIT Y POSIT
00 231.8 678.9
01 443.1 444.4

ENTERING ADVANCE

ENTERING AWAIT
Entering IDLE PROCESS.
Entering IDLE PROCESS.
CALL ADVANCE (IDSPOS IT)

.

ENTERING ADVANCE
Calling bear ing_anal i zer
Calling t arget_pos i t

.

ENTERING AWAIT

ENTERING ADVANCE
Entering IDPOSIT LOOP.

ENTERING AWAIT

ENTERING ADVANCE

ENTERING AWAIT

ENTERING ADVANCE
LEAVING CORRELATION
ENTERING CORRELATION

ENTERING AWAIT
Extracting data from a buffer shared with CORRELA TE.

ENTERING ADVANCE

ENTERING AWAIT
BUFFER FILLED. ADVANCING DISPLAY.

ENTERING ADVANCE

ENTERING AWAIT
ENTERING DISPLAY LOOP.
TRACK_NR X_POSIT Y_POSIT TIME COURSE SPEED
00 231.8 678.9 0067 240 0345
01 443.1 444.4 0107 240 0345

ENTERING ADVANCE
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ENTERING AWAIT
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Enter inCALL ADVANCE ( IDSPOS IT)

ENTERING ADVANCE
Calling bear i ng_ana 1 i zer

.

Calling t ar ge t_pos i t

.

ENTERING AWAIT

ENTERING ADVANCE
Entering IDPOSIT LOOP.

ENTERING AWAIT

ENTERING ADVANCE

ENTERING AWAIT

ENTERING ADVANCE
LEAVING CORRELATION
ENTERING CORRELATION

ENTERING AWAIT
Extracting data from a buffer shared with CORRELA TE.

ENTERING ADVANCE

ENTERING AWAIT
BUFFER FILLED. ADVANCING DISPLAY.

ENTERING ADVANCE

ENTERING AWAIT
ENTERING DISPLAY LOOP.
TRACK_NR X_POSIT Y_POSIT TIME
00 231.8 678.9 0067
01 443.1 444.4 0107
02 443.1 444.4 0006

ENTERING ADVANCE

ENTERING AWAIT

COURSE SPEED
240 0345
240 0345
240 0345

Entering IDLE PROCESS.
Entering IDLE PROCESS.
CALL ADVANCE ( IDSPOS IT)

.
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ENTERING ADVANCE
Calling bear i ng_ana 1 i zer
Calling t ar ge t_pos i t

.

ENTERING AWAIT

ENTERING ADVANCE
Entering IDPOSIT LOOP.

ENTERING AWAIT

ENTERING ADVANCE

ENTERING AWAIT

ENTERING ADVANCE
LEAVING CORRELATION
ENTERING CORRELATION

ENTERING AWAIT
Extracting data from a buffer shared with CORRELA TE.

ENTERING ADVANCE

ENTERING AWAIT
BUFFER FILLED. ADVANCING DISPLAY.

ENTERING ADVANCE

ENTERING AWAIT
ENTERING DISPLAY LOOP.
TRACK_NR X_POSIT Y_POSIT TIME
00 231.8 678.9 0067
01 443.1 444.4 0107
02 443.1 444.4 0006
03 333.9 335.2 0175

ENTERING ADVANCE

ENTERING AWAIT
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
CALL ADVANCE (IDSPOS IT)

.

ENTERING ADVANCE
Calling bearing analizer.

COURSE SPEED
240 0345
240 0345
240 0345
240 0345
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Calling target_posit.

ENTERING AWAIT

ENTERING ADVANCE
Entering IDPOSIT LOOP.

ENTERING AWAIT

ENTERING ADVANCE

ENTERING AWAIT

ENTERING ADVANCE
LEAVING CORRELATION
ENTERING CORRELATION

ENTERING AWAIT
Extracting data from a buffer shared with CORRELA TE.

ENTERING ADVANCE

ENTERING AWAIT
BUFFER FILLED. ADVANCING DISPLAY.

ENTERING ADVANCE

ENTERING A W A I T

ENTERING DISPLAY LOOP.
TRACK NR X POSIT Y POSIT TIME COURSE SPEED
00 231.8 678.9 0067 240 0345
01 443. 1 444.4 0107 240 0345
02 443. 1 444.4 0006 240 0345
03 333.9 335.2 0175 240 0345
04 443. 1 444.4 0242 240 0345

ENTERING ADVANCE

ENTERING AWAIT
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
Entering IDLE PROCESS.
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EXAMPLE #6

This is the last and more power full example. Last

because no time is left for more testing of the operating

system. Powerfull because PR0C01 is loaded to one physical

processor and PR0C02 is another physical processor. These

two interactive processes use the synchronization and

communication mechanism and also the hardware interrupt

structure as it was configured to provide inter-real

processor communication (to support the preemptive scheduling)

Furthermore in this example only the ITC level is used to

demonstrate the verifiable "loop free" structure of the

operating system (the TC level is not linked with the

operating ystem in this specific example)

.

These two processes are initialized as ITC processes, in

the same way as they initialized the MMGT and IDLE process.

For their interactions, the inter-virtual processor

synchronization mechanism is used.

The address space descriptor (the base of the stack) for

the IDLE process is 5000, for the MMGT process is 5500, for

the first process is 6000 and finally for the second process

is 7000. Four VP's are used per real processor.

The input source code for these two processes is under

the header EXAMPLE #6 INPUT.
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Figure 57 illustrates some more output messages incorporated

in new modules used for this current demonstration of the

operating system (which were not included in Figure 55).

The output to the printer is included under the header

EXAMPLE #6 OUTPUT #1 for the first mocrocomputer and

EXAMPLE #6 0UTPUT#2 for the second one.

It can be seen from OUTPUT #2 that when the PR0C#2 is

waiting the occurrence of the event FLDES (to reach a

specified value) because no other process is located on the

physical processor, it starts executing the IDLE process

(it outputs repeatedly the message ENTERING UPDATECOUNTER)

.

When this specific event reaches the necessary value PR0C#1

signals to PR0C#2 (using the ADVANCE operation) the

occurrence of this event. Since PR0C#2 is loaded on another

physical processor, the hardware interrupt structure is used

to awaken this process (in OUTPUT #1 after the message

ITC$ADVANCE there is the message ENTERING HARDWARE$INT)

.

After receiving this signal, the physical processor exits

the IDLE process and continues on the previous task (PR0C#2)

and so on.

To ensure in this example that the hardware interrupt

mechanism will be invoked, a different delay is used in these

two processes.
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LEVEL MODULE OUTPUT MESSAGE

ITC$INIT

KERNEL$INIT

ITC$AWAIT

ITC$LOCATE$EVC

ITC$ADVANCE

GET$COUNTER

UPDATE$COUNTER

HARDWARE $ INT

ENTERING ITC$INIT

ENTERING KERNEL$INIT

ENTERING ITC$AWAIT

ENTERING ITC$LOCATE$EVC

ENTERING ITC$ADVANCE

ENTERING GETCOUNTER

ENTERING UPDATECOUNTER

ENTERING HARDWARE $ INT

FIGURE 57. MORE OUTPUT MESSAGES
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EXAMPLE #6 INPUT

/* file paoczi.sac is *ay */

CS JPPS.MOOULS: do;

DECLARE (1,1) BYTE;
:e:LA?.E CF LITERALLY '3DH',

L? LITERALLY '3AE';

declare i vo?.r;

DECLARE :S'J?? 3YTS DATA(33);
LECLAFE FLEES BYTE DATA(44);

DECLA°E
k531(*) byte initial c?r0c»1. initial entry into clutter suppression"!,
v 3c2(*) byte initial l'pr3c*l. wait for data ready '),

m533(*) bits initial l'pr0c*l. performing clutter suppression: frame # '),

*sc4(*) byte initial c?r0c»1. advance filter eesidn eventcount ');

it:sa*aiti: ??ocsdure(evcsid,avaitedsvalue) external;
declare evc$ie byte,

AtfAITED$VALUE dORDJ
END;

itc$aevance: procedjre( evcsie ) external?
dsclape s7csid 3ytej

end;

outsckar: ?roceeure(char )

?

declare crap byte?
DO WHILE (INPUT(2DAH) AND dlE) = 05 END;
output ud5h) char;

end;

OUrsHET: PROCEDURES);
TECLARE 3 byte;
declare ascik*) byte data ( '31e3455739abcdef '

) i

call 0ut5chaf( ascii ( s hr (b ,4) and 0fh))»
call 0ut$char(ascii(3 and 0fh))j

end;

I = 21

EO Z = 2 TO 45J
CALL 0UT$CHAR(M53-l(Z))l

end;
call out$crar(cr);
call out$char(lf);

DO sHIIE (I <= 0FJK);

tO Z = TO 45;
CALL 0UT$CHAR( vISa2(Z));

end;
call out$chap(cr);
call out?chap(lf)

5

CALL ITC^AtfAITKCSTP?,!)?

I » I + II /• <======== */
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:o T = 'i TO 47 5

CALL DtJT?CHAR(KS33(Z) ) ;

2ND!
CALL 0:TT5tEX(I);
call 3JT$csa.p.(cr);
call :ut$c<up(lf:;

D3 £ = a to 1000;
call nfE(252)

;

end;

:o ! = 2 :o 45;
CALL DJ?$CHAP.(r5C-4(Z))>

snd;
call dutschap(cr);
call 33t$char(lf)f

call itc?ad7ancs(fldes )j

INC,' /* rfKILZ */

MD5 /* ""CDULE */
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/* FILE PP.0C2i2.SRC 16 MAT */

FLDE5$M0DULE: DO;

DECLARE I HI!!
DECLARE C?. LITERALLI 'ZDH',

L? LITERALLT '<JAh
T ';

d-clarz csupp byte data(33);
:e:la?e fldes ptte data(44);

DECLARE
MS3l(*) BTTE INITIAL ('PROC*E. INITIAL ENIRT INTO FILTER DESICN .

'),

>.5C2(*) BTTE IMITIAL l'?R0C*2. WAIT FOR DATA REACT '),
M5S3(*j 3TT2 INITIAL ( '?R3C#2. PERFORMING FILIiR DESI5N ON FRAME * '),
V 3C4(*) BYTE INITIAL ^'PR0C«2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT"> J

Ii:$A'*'AITl: PR0CEDURE(ZVC$ID,ArfAITED$7ALUE) EXTERNAL;
DECLARE E7CSID BTTE,

ArfAITEE$\fALJE rfOREJ

end;

itcsa.dvance: procedure( e7c$ id ) etternalj
declare zvc$ie byte;

snd;

jdtschae: procedure (char)

j

declare char btte;
do 4hil2 (input(0dar) and 31h) = 2', end;
output (2deh) = char;

END?

Ol'T?HEX: PROCSDUP.E(B);
declare b pttej
declare ascik*) 3tte data ( '2123455799a3cdef ' )

;

call cut?char(ascii(5hr(b t 4) and 0fh))j
call out$char(ascii(b and 3fh) )

5

end;

i = a;

DO Z = TO 45;
CALL 0'JT$CRAR(MSC1(2));

2ND;
CALL 0QT$CHAR(CR);
CALL D(JT$CHAR(LF);

DO tfHILS (I <= 2FFR)

;

DO Z = Z TO 45;
call 0ut$crar(ms32(z));

end;
call out$crar(cr)

;

call out$char(lf);

call itcsava.itkeldes.i);

I I lj
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zo z a ro 43;
CALL 0JT$CBA3( MSC-3(Z));

r«n

CALL Dt7T$EIX(I] ;

CALL 3aT$CEAE(CR);
CALL C'JT$CHAF.(LF);

do z = ? ro 100;
CALL Tlr£f250);

2-jd;

do Z = 2 TO 4:5?

CALL 0tIT$CHAR(f«S34(Z));
smd;
call 3{jt?ceap(ce);
call djt?char(lf);

call itc$ad7ance(c5(jpp);

INC; /* iTEILE */

:ne; /"models */
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EXAMPLE #6 OUTPUT

ENTERING ITCSINIT
ENTERING KERNELS INIT
ENTERING GETWORK
SET VP TO RUNNING: VP = 00

SELECTEDSDBR = 5 50
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITC$RET$VP

RUNNING$VP$ID =

ENTERING I T C $ A W A I T

ENTERING ITC$RET$VP
RUNNING$VP$ID =

ENTERING I TCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 01

SELECTEDSDBR = 0600
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITC$RET$VP

RUNNING$VP$ID = 01
PROC#l. INITIAL ENTRY INTO CLUTTER SUPPRESSION
PROC#l. WAIT FOR DATA READY

ENTERING I T C $ A W A I T

ENTERING ITC$RET$VP
RUNNINGSVPSID = 01

ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 01

SELECTEDSDBR = 0600
PROC#l. PERFORMING CLUTTER SUPPRESSION: FRAME # 01
PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ITCSADVANCE
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING ITC$LOCATESEVC

ENTERING HARDWARES INT
ENTERING GETWORK
SET VP TO RUNNING: VP = 01

SELECTEDSDBR = 0600
PROC#l. WAIT FOR DATA READY

ENTERING I T C $ A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01

ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 01

SELECTEDSDBR = 06 00
PROC#l. PERFORMING CLUTTER SUPPRESSION: FRAME # 02

PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ITCSADVANCE
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ENTERING ITC$RET$VP

RUNNINGSVPSID = 01
ENTERING ITCSLOCATESEVC

ENTERING HARDWARES INT
ENTERING GETWORK
SET VP TO RUNNING: VP = 01

SELECTEDSDBR = 600
PRCC#1. WAIT FOR DATA READY

ENTERING I T C $ A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01

ENTERING I TCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 01

SELECTEDSDBR = 600
PROC#l. PERFORMING CLUTTER SUPPRESSION: FRAME #_03
PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ITCSADVANCE
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING ITCSLOCATESEVC

ENTERING HARDWARES INT
ENTERING GETWORK
SET VP TO RUNNING: VP = 01

SELECTEDSDBR = 600
PROC#l. WAIT FOR DATA READY

ENTERING I T C $ A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01

ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 01

SELECTEDSDBR = 06 00
PROC#l. PERFORMING CLUTTER SUPPRESSION: FRAME # 04
PROC*l. ADVANCE FILTER DESIGN EVENTCOUNT

ENTERING ITCSADVANCE
ENTERING ITCSRETSVP

RUNNINGSVPSID = 01
ENTERING I TCSLOCATESEVC

ENTERING HARDWARES INT
ENTERING GETWORK
SET VP TO RUNNING: VP = 01

SELECTEDSDBR = 0600
PRCC#1. WAIT FOR DATA READY

ENTERING I T C $ A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 01

ENTERING ITCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 01

SELECTEDSDBR = 06 00
PROC#l. PERFORMING CLUTTER SUPPRESSION: FRAME # 05
PROC#l. ADVANCE FILTER DESIGN EVENTCOUNT
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EXAMPLE #6 OUTPUT #2

ENTERING ITCSINIT
ENTERING KERNELS IN IT
ENTERING GETWORK
SET VP TO RUNNING: VP = 04

SELECTEDSDBR = 5 50

ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 04

ENTERING I T C S A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 04

ENTERING I TCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 5

SELECTEDSDBR = 07 00
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 05
PRCC#2. INITIAL ENTRY INTO FILTER DESIGN
PROC*2. WAIT FOR DATA READY

ENTERING I T C S A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 5

SELECTEDSDBR = 07 00
PROC#2. PERFORMING FILTER DESIGN ON FRAME * 01

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ITCSADVANCE
ENTERING ITCSRETSVP

RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 5

SELECTEDSDBR = 07 00
PROC#2. WAIT FOR DATA READY

ENTERING I T C $ A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK

SELECTEDSDBR = 500
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 07
ENTERING GETCOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
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ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER ENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITCSRETSVP

RUNNINGSVPSID = 07
SET VP TO READY: VP = 07

ENTERING GETWORK
SET VP TO RUNNING: VP = 05

S ELECTEDSDBR = 07 00
PROC#2. PERFORMING FILTER DESIGN ON FRAME #02
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ITCSADVANCE
ENTERING ITCSRETSVP

RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 05

SELECTEDSDBR = 07 00
PROC#2. WAIT FOR DATA READY

ENTERING I T C $ A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK

SELECTEDSDBR = 5 00
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 07

ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITCSRETSVP

RUNNINGSVPSID = 07
SET VP TO READY: VP = 07

ENTERING GETWORK
SET VP TO RUNNING: VP = 05

SELECTEDSDBR = 07 00
PROC#2. PERFORMING FILTER DESIGN ON FRAME # 03
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ITCSADVANCE
ENTERING ITCSRETSVP

RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 05

SELECTEDSDBR = 07 00
PROC#2. WAIT FOR DATA READY

ENTERING I T C S A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 5

ENTERING ITC$LDCATE$EVC
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ENTERING GETWORK
SELECTED $DBR = 5 00

ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 07
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDAENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITC$RET$VP

RUNNINGSVPSID = 07
SET VP TO READY: VP = 07

ENTERING GETWORK
SET VP TO RUNNING: VP = 5

SELECTEDSDBR = 07 00
PROC#2. PERFORMING FILTER DESIGN ON FRAME * 04

PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ITCSADVANCE
ENTERING ITCSRETSVP

RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 5

SELECTEDSDBR = 07 00
PROC#2. WAIT FOR DATA READY

ENTERING I T C S A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK

SELECTEDSDBR = 0500
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 07
T
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITCSRETSVP

RUNNINGSVPSID = 07
SET VP TO READY: VP = 07

ENTERING GETWORK
SET VP TO RUNNING: VP = 05

SELECTEDSDBR = 07 00
PROC#2. PERFORMING FILTER DESIGN ON FRAME #05
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ITC$ADVANCE
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ENTERING ITCSRETSVP
RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 5

SELECTEDSDBR = 07 00
PROC#2. WAIT FOR DATA READY

ENTERING I T C S A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK

SELECTEDSDBR = 500
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 07
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTERENTERING LOCKVPM
ENTERING RDYTHISVP
ENTERING ITCSRETSVP

RUNNINGSVPSID = 07
SET VP TO READY: VP = 07

ENTERING GETWORK
SET VP TO RUNNING: VP = 05

SELECTEDSDBR = 07 00
PROC#2. PERFORMING FILTER DESIGN ON FRAME * 06
PROC#2. ADVANCE CLUTTER SUPPRESSION EVENTCOUNT

ENTERING ITCSADVANCE
ENTERING ITCSRETSVP

RUNNINGSVPSID = 05
ENTERING I TCSLOCATESEVC
ENTERING GETWORK
SET VP TO RUNNING: VP = 5

SELECTEDSDBR = 07 00
PRCC#2. WAIT FOR DATA READY

ENTERING I T C S A W A I T

ENTERING ITCSRETSVP
RUNNINGSVPSID = 5

ENTERING I TCSLOCATESEVC
ENTERING GETWORK

SELECTEDSDBR = 5 00
ENTERING UNLOCKVPM
ENTERING CHECKPREEMPT
ENTERING ITCSRETSVP

RUNNINGSVPSID = 07

ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER

ENTERING UPDKEECCUMEER
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ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
ENTERING UPDATECOUNTER
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