
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1982

Software engineering basics: a primer for the project manager

Artzer, Steven Patrick

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/20338

. KNOX LIBRARY
VAL POSTGRADUATE SCHOOL

. iEREY, CALIF. 93940

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
SOFTWARE ENGINEERING BASICS:

A PRIMER FOR THE PROJECT MANAGER

by

Steven Patrick Artzer
and

Richard Alvin Neidrauer

June 19 82

Thesis Co-Advisors: R. W. Modes
N. F. Schneidewind

Approved for public release; distribution unlimited

T204545

UCUWITY CLASSIFICATION Of TMI> >AOt f»t» Dm* g«iw<)

REPORT DOCUMENTATION PAGE
I REPORT SSSIII 2. OOVT ACCESSION NO

4. TITLE (•** luAin/tj

Software Engineering Basics: A Primary
for the Project Manager

7. AuTMORi'aj

Steven Patrick Artzer
Richard Alvin Neidrauer

» PERFORMING ORGANIZATION NAMC ANO AOORCSS

Naval Postgraduate School
Monterey, California 93940

II CONTROLLING OFFICE NAME ANO AOORCSS

Naval Postgraduate School
Monterey, California 93940

14 MONITORING AOENCY NAME i AOORCSSfff dlllmrmtl tram Controlling Otllemt

READ INSTRUCTTONS
BEFORE COMPLETING FORM

> RECIPIENTS CAT ALOG NUU8F »

§. TYPE OF MPO»T t PtniOO COVERCD
Master's Thesis
June 1982

«. PERFORMING ORG. REPORT nuMBER

S. CONTRACT OR GRANTNT NOMSE^i;

10. PROGRAM ELEMENT. PROJECT TASKAREA 4 WORK UNIT NUMBERS

12. REPORT OATE

June 1982
IS. NUMBER OF PAGES

279
IS. SECURITY CLASS, (ol ihi.

IS*. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

l«. DISTRIBUTION STATEMENT . o(rn*« <«par<)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT o(tfia •*a«r«el «n»r*tf In Black 20. II dfffaranr from K»»ort)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Contlmim an -»r»r»« tin* it n*c*««arr •"* IwawilrV *r klee* ntaB»«r>

Software Engineering
Software Quality
Software Metrics
Software Management

Software Design
Software Maintenance
Software Documentation

20. ABSTRACT fCanllnua an f*m— •<«• II n«e««aa»r «*Ml laanilry ay Mae* mjp)»*rj

A key to any software development project is the presence
of technically proficient management. The discipline of
software Engineering offers many different tools and techniques
to aid the project manager in the development of quality
software. This thesis provides an overview of this discipline,
including its goals and underlying theoretical concepts. A
discussion of specific tools and techniques that are applicable

do ,;'ST,, 1473 EOlTION OF t MOV SB IS OBSOLETE
S/N 0102-014- *60 1 |

SECURITY CLASSIFICATION OF THIS PAOE (9hmi> Dmtm Sitlarad)

g»eum*» ci*»«»'C« tiom o* twit »mw»w n»»m >«—#

Block 20 Continued:

throughout the life cycle is included. Recognizing that
the maintainability of the software is a primary consideration
of any development project, two methods of measuring software
for this important attribute are examined. Among the conclu-
sions is that there exists a need for further research
necessary in order to validate the utility of the tools and
techniques of Software Engineering in large scale applications

DD Form 1473
1 Jan .3 2 __.__.«_.«-__----_—-»----—----------—---

S/ N 0102-014-6601 sieuaiw ckAUincATio* o' tni$ natfm— o«« «»»•'•*>

Approved for public release; distribution unlimited

Software Engineering Basics:
A Primer for the Project Manager

by

Steven Patrick Artzer
Lieutenant, United States Navy

B.S., United States Naval Academy, 1977

and

Richard Alvin Neidrauer
Lieutenant, United States Navy

B.S. (Ed.), State College at Buffalo, 1971

Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
June, 1982

S^fX ™°* LIBRARYNAVA 'ADUATESCHnni
' EV. CALIF. 93940

L

ABSTRACT

A key to any software development project is the presence

of technically proficient management. The discipline of

Software Engineering offers many different tools and techni-

ques to aid the project manager in the development of quality

software. This thesis provides an overview of this discipline,

including its goals and underlying theoretical concepts. A

discussion of specific tools and techniques that are applica-

ble throughout the life cycle is included. Recognizing that

the maintainability of the software is a primary consideration

of any development project, two methods of measuring software

for this important attribute are examined. Among the conclu-

sions is that there exists a need for further research

necessary in order to validate the utility of the tools and

techniques of Software Engineering in large scale applications.

TABLE OF CONTENTS

I. INTRODUCTION 9

A. BACKGROUND 9

B. PURPOSE AND APPROACH 13

II. SOFTWARE ENGINEERING 16

A. DEFINITION 16

B. THE SCOPE OF SOFTWARE ENGINEERING 20

III. GOALS AND PRINCIPLES OF SOFTWARE ENGINEERING 25

A. CHARACTERISTICS OF QUALITY SOFTWARE 25

1. Reliability 2 8

a. Correctness 31

b. Robustness 33

2. Simplicity 35

3. Efficiency 38

4. Evolvability 46

a. Maintainability 47

b. Portability and Reusability 50

B. UNDERLYING PRINCIPLES OF SOFTWARE
ENGINEERING 58

1. Modularity 58

2. Abstraction 65

3. Hierarchical Design Approaches 67

4. Uniformity 71

5. Completeness 73

6. Confirmability 74

5

IV. SOFTWARE ENGINEERING TOOLS AND TECHNIQUES 78

A. THE SOFTWARE LIFE CYCLE 7 8

B. REQUIREMENT ANALYSIS AND SPECIFICATION
TOOLS 88

1. Automated Tools 88

2. Structured Analysis and Systems
Specification 92

a. Data Flow Diagrams 9 3

b. Data Dictionaries 96

c. Structured English 97

d. Decision Tables 100

e. Evaluation and Alternatives 103

C. DESIGN METHODOLOGIES 105

1. Structured Design 105

2. The Jackson Design Method 110

3. Summary 112

D. DOCUMENTING DESIGN DECISIONS 113

1. Hierarchy Plus Input-Process-Output
(HIPO) 113

2. Flowcharts 116

3. Structured Flowcharts 119

4. Program Listings 122

5. Summary 123

E. MANAGEMENT TECHNIQUES 124

1. Chief Programmer Teams 125

2. Software Configuration Management 12 8

F. SUMMARY 132

V. DOCUMENTATION/MAINTAINABILITY 134

A. INTRODUCTION 134

B. DOCUMENTATION 135

1. Designing Documentation 136

2. Documentation Requirements 139

3. Docuraentation/Maintainabiity
Instructions 142

a. Tactical Maintenance Documentation
Standards 142

(1) SECNAVINST 3560.1 142

(2) MIL-STD-52779 142

C3) MIL-STD-483 143

(4) DODD 5000.29 143

(5) MIL-STD-1521 143

(6) MIL-STD-1679 144

b. ADP Maintenance Documentation
Standards < 144

(1) DOD Standard 7935. IS 144

(2) SECNAVINST 5233. IB 145

(3) NMPC-16 Instruction 5231.1 145

(4) Federal Information Processing
Publication 38 145

4. General Comments 147

C. AIR FORCE'S EVALUATION HANDBOOK 156

1. Software Categories 156

a. Software Documentation 156

b. Software Source Listings 157

c. Computer Support Resources 157

7

2. Software Maintainability Test
Factors 157

a. Modularity 158

b. Descriptiveness 158

c. Consistency 159

d. Simplicity 159

e. Expandability 160

f. Instrumentation 160

3. The Air Force Measurement Technique 161

4. Critique of the Air Force's
Methodology 163

D. BEBUGGING 166

E. PROPOSAL 168

1. System Requirements Review 16 9

2. Software Design Review 172

3. Program Design Review '— 174

4. Critical Design Review 176

5. Additional Questions 177

6. Conclusions 179

VI. CONCLUSIONS AND RECOMMENDATIONS 180

APPENDIX A 185

LIST OF REFERENCES 269

INITIAL DISTRIBUTION LIST 279

I . INTRODUCTION

"You software guys are too much like the weavers in the
story about the Emperor and his new clothes. When I go
out to check on a software development the answers I get
sound like 'We're fantastically busy weaving this new
cloth. Just wait awhile and it'll look terrific. 1 But
there's nothing I can see or touch, no numbers I can
relate to, no way to pick up signals that things aren't
really all that great. And there are too many people I

know who have come out at the end wearing nothing but
expensive rags or nothing at all.

"

An Air Force Decision Maker [1]

.

A. BACKGROUND

The federal government is recognized as the world's

largest consumer of computer processing resources with expend-

itures estimated at between $10 and $20 billion dollars

annually [2]. The majority of these expenditures are for the

development and maintenance of software. The largest single

individual consuming agency within the federal government

is the Department of Defense. In Fiscal Year (FY) 1965, DoD

accounted for 60% of the annual federal ADP costs. By FY

1975, DoD's percentage of the total had decreased to 50.5%,

but the total federal spending had increased from $1,132

billion to $3.1 billion [3]. These figures do not reflect

expenditures for software designed for use in embedded

tactical computer systems. Thus, DoD's percentages of total

federal computer expenditures may actually be significantly

higher.

Literature on the subject of computer software develop-

ment is replete with examples of projects that were delivered

late, cost too much, or failed altogether. A recent GAO

study [2] examined nine cases of software development

projects. Of the nine cases reviewed, only one yielded soft-

ware that was usable as delivered. The combined total costs

and developmental times increased from estimates of $3.7

million and 10.8 years to an actual cost of $6.8 million and

an actual duration of 20.5 years. For its $6.8 million, the

federal government received $3.2 million worth of software

that was delivered but never successfully used (47%), $1.95

million worth of software that was paid for but never

delivered (29%), $1.3 million of software that was used but

either required extensive rework or was later abandoned

(19.1%), and only $119,000 worth of software that could be

used as delivered (1.75%). While the relatively small size

of the project may have been a factor, in discussing the

single project that was adjudged to be successful, the GAO

pointed to the presence of a highly capable, technically

proficient project manager as one of the primary reasons for

the project's success.

Boehm [1, 4] estimates that by 1985, 80% of the total

costs of computer systems will be in software. This is in

marked contrast to the situation 30 years ago where software

represented only approximately 20% of the total investment.

With respect to the lifecycle cost of software, evidence

10

indicates that up to 75% of the total is in the maintenance

of existing software.

A 1981 GAO study [5] on the management of software

maintenance activities within the federal government estimated

that approximately 6 7% of the total dollars expended in the

federal government for non-tactical software is for

maintenance. The situation in the tactical environment does

not appear any more reassuring. A study issued in 1979 by the

Rome Air Development Center [6] give an estimated figure of

up to 75%. In another study that examined the cost of

maintaining tactical software, De Roze reports that Air Force

Avionics software costs about $75 per instruction to develop

but over $4000 per instruction to maintain. This study serves

to further highlight the rising costs of software maintenance

as well as underscore the need to design software with main-

tainability in mind.

This "software crisis" as many authors have labeled it is

not merely limited to the federal government. Mills [8]

states that in the last 25 years, 75% of the total data

processing personnel are used in maintenance vice development

activities. Elshoff [9] indicates that a similar figure at

General Motors and believes that the situation at GM is

indicative of industry in general. Daly [10] has stated that

60% of General Telephone and Electric 1 s 10-year lifecycle cost

for real-time software is devoted to maintenance.

11

Although the production techniques for error-free complex

software systems is and probably will remain beyond the state

of the art in the foreseeable future, indications are that

improvement in specification, design, implementation, and

management techniques can reduce the amount of effort needed

in the corrective maintenance of software as well as aid in

the productivity of designers and programmers. In an analysis

of the relative cost of correcting errors in software as a

function of the phase in which they are corrected, Boehm [4]

has demonstrated that it clearly pays off to invest effort

in the early planning and design phases rather than waiting

to discover the error during operations.

Software Engineering, a term introduced about 14 years

ago [11] , has come to encompass many diverse activities such

as program tools and standards, design philosophies, and

management techniques. The proponents of these techniques

have their own, usually unique impression of what they mean

by such terms as modules, structured programming, structured

design and a veritable host of other "buzzwords" that have

come to be associated with software development activities.

Since these activities are highly individualistic and the

practitioners often considering themselves as craftsmen

practicing a highly developed form of black magic, it is not

surprising that such a diversity of opinion regarding the

terminology, conceptual underpinings and relative merits of

the proposed tools and techniques exists.

12

B. PURPOSE AND APPROACH

A major goal of this thesis is, then, to present a

concise overview of the discipline of Software Engineering.

It will attempt to clarify the lexical ambiguities that have

arisen by examining protions of the literature and provide

definitions for many of the common terms that have been used

by various authors in describing the tools and techniques

that have been offered as possible solutions to the

"software crisis". In doing so, it will provide potential

software development project managers with a modicum of

understanding of the various tools and techniques available

to him in aiding the management of the project to a success-

ful conclusions.

Chapter II provides definitions of software and software

engineering. It examines proposed software engineering

curriculums as a means of determining the scope of control

of a software engineer. Chapter III examines and defines

some characteristics of "quality" software as a means of

describing the goals of the discipline. It also looks at

some of the conceptual underpinings of software engineering

and offers definitions of the principles presented. Although

there exists some definitional controversy among various

authors regarding some of the terminology, an attempt will

be made to provide a consensus definition as well as point

out differences where they exist.

13

Chapter IV examines various models of what has been called

the software lifecycle and looks at some of the tools and

methodologies available for use in the phases of software

development. Particular emphasis is given to those techniques

and practices in the requirement analysis, specification and

design phases that appear to lead to more reliable and main-

tainable software. The preponderance of the literature

suggests that attention to these issues must be given early

in the development rather than waiting for the implementation

phase.

Documentation is recognized as the important product of

design, not merely as a by-product of coding [12], Chapter

V addresses this important issue and identifies various DoD

requirements for software documentation both within the

tactical environment and in the ADP community.

The evidence indicates that of the multitude of goals

of software engineering, maintainability must be a primary

consideration. The literature abounds with articles by authors

describing various techniques to achieve maintainability.

Chapter V also examines two methods to measure software and

its associated documentation in order to provide a project

manager with a means of determining whether or not the deliver-

ed products will be easily maintained. One of these methods

was developed and is currently used by the Headquarters, Air

Force Test and Evaluation Center, Kirtland Air Force Base,

New Mexico evaluation teams during the operational test and

14

evaluation phase (OT&E) of weapons system software acquisition

The other method is one proposed by Tom Gilb in his book,

Software Metrics [13] . Emphasis will be focused on the eval-

uation of these methods as they are currently used as well as

possible means of extending them for use earlier in the

development cycle.

Finally, Chapter VI contains conclusions and

recommendations

.

15

II. SOFTWARE ENGINEERING

A. DEFINITION

Before attempting to define what is meant by the phrase

"software engineering" it is necessary to provide a defini-

tion of the term software. Originally used in the United

States around 1959 or 1960 [14] , software has been used

synonymously with the term computer program. A computer

program is a series of instructions or statements written

in an acceptable form of code that causes computer equipment

to perform some operation or statement. To some authors,

software is used to describe what is more commonly referred

to as systems software such as operating systems, compilers,

or assemblers. This usage is used to distinguish between

systems programs and applications programs. To make this

distinction, however, is to imply that the problems associ-

ated with the development of systems software are uniquely

different from those associated with applications programs.

In fact, the problems associated with the development of

any large, complex piece of software are such the same

regardless of its intended use.

Within the Department of Defense, there has developed a

distinction between software designed to operate in an

embedded weapons system and software of a more traditionally

business-oriented nature. This difference is primarily the

16

result of the enactment of Public Law 89-306, or as it is

more commonly referred to, the Brooks Act. Sponsored by

Representative Jack Brooks of Texas, this act places the

procurement of automatic data processing equipment and

components (ADPE) , not including those hardware and software

components embedded in weapons systems, under the administra-

tive aegis of the Office of Management and Budget and the

General Services Administration. Within DOD, ADPE falls

under the cognizance of the Assistant Secretary of Defense

(Controller) while weapons systems software is under the

purview of the Office of the Undersecretary of Defense for

Research and Engineering. A result of this branching of

control is that two distinct organizational structures, each

replete with its own set of instructions, directives,

policies and standards have emerged. This separation has

led to the view that somehow there are unique differences

between tactical and non-tactical software development.

While recognizing that the rules and regulations regarding

the acquisition of these products are indeed different, a

major thrust of this thesis is that the developmental and

managerial issues are largely the same. Although the

requirements for reliability and maintainability of a major

defense system may be more critical than that of a payroll

system, it appears clear that many of the problems associated

with the designing of either are similar. The degree of

criticality of either type of software will vary as to its

17

purpose and is largely a function of how vital the software

is to the user in aiding him in the performance of his mission

and the importance of that mission to the achievement of the

organizational goals and objectives. The tools, techniques

and methodologies provided by software engineering are

equally applicable to either type of software. The decision

by a project manager to select a particular tool or method

is one that must be resolved on a case-by-case basis by

analyzing the trade-offs involved between the costs incurred

by the usage of the tool versus the lifecycle benefits from

their usage.

Software, as used in this thesis, is defined as a computer

program or programs, including code and internal, data, as

well as the associated documentation required to develop,

operate and maintain the programs (adapted from [4] and [15]).

Although documentation is not traditionally considered as an

integral component of software, it is included to emphasize

the importance of the timely generation of documentation as

a vital ingredient in the software development process

.

Software Engineering has been defined by F. L. Baur as

"The establishment and use of sound engineering principles

(methods) in order to obtain economical software that is

reliable and works on real machines [16]." Various authors

[4, 16, 17] have made the analogy between the design and

production of software and the other, more classical

engineering disciplines. These disciplines have two

18

major commonalities. First they are based on and draw their

power from the use of natural laws. Secondly, they used a

design methodology that allows them to detail the design

process through sucessive levels of structure through the use

of documentation such as blue prints or schematic drawings.

The introduction of the phrase "software engineering" as

the title of a conference sponsored by the NATO Science

Committee in 1968 generated a great deal of controversy.

Critics have contended that unlike the other engineering

fields, software engineering is not based on any natural

laws. The other disciplines all deal with visible and

tangible objects. Electrical engineering is the most abstract

of the classical engineering disciplines since electricity

is not a material. Yet even electricity, through the use of

the appropriate tools, exhibits characteristics that are both

visible and tangible. Furthermore, they contend that the

development and design of software is more of an intuitative

art than science. They claimed success for various method-

ologies and techniques, more noteable for the lack of stand-

ardization makes the development process more of a craft

than a science.

Even some of the proponents of the phrase have recognized

that to one degree or another, the analogy is not exact.

Hoare [18] contends that it may be "grossly inadequate, not

to say presumptious" to compare software developers with

present-day engineers. Given the recent emergence of

19

computing vis-a-vis the other, more well-established engineer-

ing fields, software engineers and computer scientists are

just beginning to formulate a set of "laws" concerning the

properties of software. The fact that there has been an

accumulating body of literature and attempts by both the

developers and users to impose a degree of standardization

to the process of software development is indicative of the

appropriateness of the phrase, "Software Engineering".

B. THE SCOPE OF SOFTWARE ENGINEERING

Engineers have been characterized as problem solvers.

Unlike scientists who attempt to discover new insights about

the laws of the universe, engineers attempt to apply the

theoretical knowledge of the scientist in the solving of

real problems. Like the civil engineer who uses the theories

of the sciences of physics and chemistry to design a bridge

in such a manner as so it can be constructed in an economical

and efficient manner, so does the software engineer attempt

to design software utilizing the theoretical body of knowledge

that has come to be known as computer science. This is not

an attempt to denigrate the contributions of those authors

who have significantly added new insight into the theory of

software development and who consider themselves software

engineers. In the traditional engineering fields there exists

a gray area between the "pure" engineer and the "pure"

research scientist. Rather it is an attempt to establish

20

the scope of software engineering. One way of delinating

that scope is through the examination of proposals for the

establishment of a curriculum for the education of prospective

software engineers.

Table II-l is a model of the curriculum for software

engineering proposed by Freeman and Wasserman [19, 20].

Detailed descriptions of the individual course syllabus are

contained in the first reference and will not be detailed

here. The authors offer seven major instructional objectives.

Upon the successful completion of this curriculum, a student

should be able to:

1. Do software development by accurately using at least
one state of the art method in each of the four major areas
of analysis, design, implementation, and testing.

2. Test and measure software by devising experiments that
will validate a software system's quality; e.g. reliability,
efficiency.

3. Create specialized software systems by incorporating
the state of the art in at least one significant area;
e.g. compilers, operating systems, data base systems, and
various applications systems.

4. Manage effectively a moderate size project (3-7 people
for 1-2 years)

.

5. Communicate effectively with users, other managers, and
technical people.

6. Learn new software engineering methods rapidly and be
able to keep up with relevant advances in computer science.

7. Evaluate, choose and implement new methods in a
development organization.

21

TABLE II-l. PROPOSED SOFTWARE ENGINEERING
CURRICULUM [19].

General

Gl. Introduction to
Software Engineering

G2. Creative Problem
Solving

Applied Computer Science

CS1. Computer Systems
Architecture

CS2. Language
Implementation

CS3. Operating System
Design

CS4. File and Database
Design

CS5. Communication-based
Systems

Management Techniques

Ml. Management of Software
Development

M2. Technical Writing and
Software Documentation

M3. Economics of Software
Engineering

M4. Principles of Management
Science

Analytical Tool

Al. Software Reliability

A2. Applied Formal Analytical
Techniques

A3. System Performance
Measurement/Evaluation

Software Development

SD1. Software Requirements
and Specifications

SD2. Software Design Techniques

SD3. Programming Methodology

SD4. Software Validation and
Verification

SD5. Software Engineering
Laboratory

22

Some of the critical assumptions of this proposal are

that it is designed for a Master's level of student and that

the prospective student has recently completed undergraduate

work in computer science. It also assumes that the student

has had some practical experience in the data processing

field. Some particular advantages of this proposed curricu-

lum is the inclusion of the managerial aspects of software

development as an integral component of the skills that must

be developed by software engineers. One of the most important

aspects of engineering is the ability to effectively manage

and communicate with personnel both within the data process-

ing community and with the users and other managers who may

not be familiar with many of the terms and techniques of

software development. Implicit in Bauer's definition of

software engineering is that the engineer must be able to

effectively analyze the economic implications of the various

design decisions facing him in order to ensure that the

software developed is both economically and technically

feasible and meets the needs of the sponsoring organization.

Jensen and Tonies have critized this proposed curriculum,

stating in Chapter 8 of their book, Software Engineering [17]

,

that the result of this curriculum is to produce "a better

trained computer scientist but not a software engineer".

They conclude that a software engineer is part generalist in

the computer science field and part manager. Their counter-

proposal emphasizes the need to develop the managerial and

23

communication skills of the potential software engineer as

well as exposure to engineering fundamentals and physical

sciences which are the fundamental elements of the more

classical engineering disciplines.

The purpose of the inclusion of these proposed curriculums

in this thesis is not, however, to debate the relative merits

but, rather, to aid in defining the scope of software

engineering. In addition to being intimately familiar with

the various methods of software development, the practitioner

of this discipline must have a firm knowledge of computer

hardware and firmware design and operation. Further, the

software engineer must possess the ability to effectively

manage the development process through the entire life of

the software and be able to communicate effectively with both

technical and non-technical personnel in order to ensure that

the software being developed meets the needs of the end user.

He or she must be familiar with the various alternatives

available to translate the requirements into a working system

that is economically feasible and efficient.

24

III. GOALS AND PRINCIPLES OF SOFTWARE ENGINEERING

From the definition of Bauer's in the last chapter, it is

clear that the overall goal of software engineering is to

produce economical and efficient "quality" software. However,

it is necessary to examine what are the characteristics of

quality within the context of software development; how they

interrelate; and in some cases, how achievement of one

aspect of quality can only be achieved at the expense of

another. The purpose of this chapter is, then, to examine

the concept of quality in order to provide insight into the

goals of software engineering. It will also present an over-

view of a number of principles developed by various authors

that appear to lead to the achievement of that goal; the

development of quality software.

A. CHARACTERISTICS OF QUALITY SOFTWARE

Yourdon [21] delineates seven desirable qualities of a

good program. They are, in decreasing order of importance:

1. The program works and is readily observable.

2. It minimizes testing costs.

3. It minimizes maintenance costs.

4. Flexibility - Ease of changing, expanding or upgrading
the program.

5. It minimizes development costs.

6. It possesses a simplicity of design.

7. It is efficient.
25

Wulf [22] has identified and provided concise definitions

of seven important and reasonably non-overlapping attributes

of software: maintainability/modifiability , robustness,

clarity, performance, cost, protability and human factors.

Ross et. al. [2 3] have identified four goals: modifi-

ability, efficiency, reliability, and understandability;

seven principles: modularity, abstraction, localization,

information hiding, uniformity, completeness, and confirm-

ability; and five aspects of what they call the fundamental

process: purpose, concept, mechanism, and usage, to define

the discipline of software engineering.

Boehm et. al. [24] have developed a Software Quality

Characteristics Tree in terms of the utility of the software

to the user. As Figure 3-1 shows, they have divided general

utility into two catagories, as-is utility, which is a

measure of the usefulness of the software as it currently

exists and maintainability which, within the context of

their study, is a measure of the degree to which the software

can be changed as the user's objectives and requirements

evolve. They identify seven high level characteristics and

refine the definition of each in terms of twelve primitives

for which they, in turn provide definitions and candidate

metrics to measure the software to determine to what degree

it possesses each of the characteristics. The reason that

Figure 3-1 has been presented is to emphasize the inter-

relationships between various characteristics of

26

AS- IS

UTILITY

MAINTAIN-
ABILITY

PORTABILITY

RELIABILITY

EFFICIENCY

HUMAN
ENGINEERING

TESTABILITY

UNDERSTANO-
AB I L I TY

MOOIFIABILITY

DEVICE-INDEPENDENCE

COMPLETENESS

ACCURACY

CONSISTENCY

DEVICE EFFICIENCY

ACCESSIBILITY

COMMUNICATIVENESS

STRUCTUREDNESS

SELF-DESCRIPTIVE-
NESS

CONCISENESS

LEGIBILITY

AUGMENTA8ILITY

Figure 3-1. Software Quality Tree [24]

27

quality software. For example, maintainability requires that

the user be able to understand, modify and test the program

and is aided by good human engineering but is not dependent

upon the efficiency or portability, except to the extent that

the user's system is undergoing evolution. Furthermore, the

modifiability of a program is related to the degree of

structuredness and augmentability it possesses.

From the above discussion, it is clear that there exists

no single universally agreed upon set of quality attributes

among the advocates of software engineering. For the purpose

of clarification and discussion, the goals will be presented

under four major headings: Reliability, Simplicity,

Evolvability, and Efficiency.

1. Reliability

Reliability is a specific measure of software quality.

It is the probability of the software operating without error

for a specified period of time and under specified operating

conditions. The operating conditions include the hardware

suite, operating system, inputs and environment (e.g. tactical

operations) . It is important to note that this definition

distinguishes the concept of reliability from correctness,

which is the degree to which the requirements of the software,

as outlined in the formal specifications, are met.

Many authors object to the use of the term reliabil-

ity in conjunction with software. This is primarily a result

of the practice of using hardware related measurements, such

28

as mean time between failures or mean time to repair, to

indicate the reliability of software. Littlewood [25] has

pointed out, for example, that those researchers who attempt

to use such measures fail to account for the differences

between hardware and software. As an example, he states

that if a program is bug-free, its mean time to failure

approaches infinity. Yet that same program may fail to meet

its specifications, and is, therefore, unreliable. His

contention is that because of the significant differences

between hardware and software, the adaptation of hardware

measures is unjustified.

Schneidewind and Kline [2 6] also provide a detailed

comparisions of the differences between hardware and software

reliability concepts as delinated in Table III-l.

Two other software quality attributes are often

discussed in the literature in conjunction with reliability:

correctness and robustness. While all three are discussed

as though they are partially synonomous , there is one

significant difference between them. Reliability is the

"concept of successful operation over a specific period of

time and the ascription of a probability to that success

[17]." There are several models, based on error depreciation

profiles, that allow reliability to be measured. It is a

concept that is probabilitistically based. Correctness and

robustness are, on the other hand, more subjective in nature.

Hence, they are less amenable to quantification.

29

cn

Z
o
c/l

H

o
u

En
M

3H

Eh

O
CO

a

1
OS

<

j-j

43
3

3
OS

3
J-J

ctj

5

o
CO

4-1

43
CO

3
as

<u

CO

3
-o
1-4

CO

•u
3
O T3

0) 1-4

M CO O
e CO O u T3
CO CU 3 a. u >% 3
i-i 3 *3 O o CU 4-1 3
00 CU •H '-4 A •H
o CO 1-1 X 4-1 fa CD >> •> rH 3
u a 00 1-1 o CO CJ l-l fa 4-1 3 •H O
fa 00 3 o •H 3 co /-~v o

3
•H o 43 •H

•H •H M rH rH 3 rH CO u X •H 3 4-1

o CO T3 J-i •H -3 •4-4 CU 4-1 u 00 H 0) 4-1 •H CJ
-> CU O CU CO CO X) CO -J cu 3 rH 3 H 01

"3 CJ <4-l 3 4-1 CU O 0) 09 •H M fa H 01 4-1

CU s CO E 2 4-1 H '4-4 3 3 E 3 J4 cu

3 g E CO 4-1 •H cu /"s H M o •H O o 01 9 3 33
TJ CO CO '-J o rH J-J 4-1 4J CO m 01 CO •H CJ CJ •H 3 CU

u u 00 3 iH u rH 3 CO • e 4-1 3 CO •H > (4

CO 00 00 o •H 3 rH * 3 o -j CD o CU CJ A 3 CD o OH o o 1-1 CO JjS CO 3 CU CO O •H CO —4 3 14 •H CO (J 4^. 0) 14 u
•H J-I u a. CU CO 4-1 '4-1 3 1-4 fa '-4 T3 1) T3 •H fa 00 >> fa u
CO fa fa o CO o 3 CO ~^^ -3 •> 1-4 01 CO CU 3 3 E 3 H
IM T3 T3 1-1 a Ofl 4-1 1-4 > <4—l cu O S-4 >. 3 O H CQ •H 3 3

4J u cu cu 3 O J-I •3 s (J fa H O CJ 4J CJ Z CJ

CU CJ u j-i cu g -a •H 3 CU 0) 1 CO T3 CO •H 3 y: ». 4-1 •H •H •H
J-J CU cu CJ M g 3 CO NW* 0) • rH 1-1 0) «

4
4-1 CU 00 O 4-1 44 J-J

CO u }4 cu CO CO CO CO >, I-i CO CO CO 4-1 3 CO 3 4-1 3 3 3 CJ CJ

3 k u }-l u 3 l-i cu V4 <4-4 00 rH U J-I 1-1 CJ 00 H 00 •H a a) 3
4-1 o o o CU 4-1 00 01 M o CO 0) o 0) o CU •H j3 3 •H 43 "3 CU CO O 14 U
'4-4 14 a cj T3 '4-1 O s 'J CU II T3 '-4 > 44 4-1 CD 4-1 S CD —

i

cu 3 03 — r4 fa
1-4 3 3 3 o u •H 0) -3 O O J-I u M 0) cu CO •H CU 3 CU o 3 E

CO

tH

CU i—

i

M 33 w fa H Q H os z 6 M en w T3 P fa CO Q

CU

CJ

3

fa CO

H

25 a < y H

CO 3 3 T3
O 4-1 H 3
•H 4J CD fa 4-1 3
CO 3 CU 01 ^~- 3
>. 3 O CU CJ iH 1) 3
XI 00 CO ,»""\ fa J-i CJ 3 3
fa •H S CU CO -o r<

3
H 3 •H O >i -r

co cu 1-1 1-1 CU •-s 4-1 fa 4J J->

o CU i—

i

3 CO .3 4J r< H 4-1 3 3 X H CJ

4-1 T3 .3
O

rH
•H

CU

3
CO

•H
3
CO 00

4-1

J) #|

rH
3 •H 3

01

1

rH
•H

cu

4-1

CU rH J-i CO CU rH 4-1 3 •H 3 3 4-1 Q 43 3
3 • CO Q, U 1-1 U ,3 CO •H X fa U fa 3 T3
"3 CJ o 3 CO 3 CO /«->. 1) •H 3 X 3 •H

•H rH T3 rH 4-1 CO 4-1 4-1 *• T3 cu s—

/

rH 4-1

CD CO O 3 CO H co a 0) 3 CO O CO O s^ 3 -4
«H >, M CO rH CO 0) 0) v_

/

l-i O •H ri. •H s J-i CO J4 3
•H J= 4J •H '4-1 > CJ -i 0) H -3 c9 fa o T3 O 3
CO a, 3 3 CO U rH rH 3 CO "3 IH CU i-i rH o H 3 <H
M-l O O '4-1 <4-4 3 H /—

\

CO •H 0) 00 s l-i 00 -a oo T 00 > 3
u CJ •H 01 4-1 •H \s 3 3 s a- 3 3 r>i 4-1 r*. CJ 00

CU o 4J cu 3 A 4-J s_/ •H M •H 3 I
-0) 1 u •H a <4-t

J-i CO cu >. CO i-i CO P << 3 rH 3 r-l fa a Q Q E a Cu u •H
CO 4J M 4J T3 CO CJ 3 ?n N^ 01 -H rH CO CO CQ 3 3 H fH E 3 J^
3 a u •H cO 3 •H U)-i <H 3 3 cO CU '-4 H 00 ^ 00 C/D 14 CO H S u 4-1

-o 01 o H - •a co 01 P O O J3 5 a CU a •H O •H I 01 1
-J 3

M M-t u CO 00 i-i >s e 4-» 0» II a. h 1-4 > CO CO J 43 r-l 3 4J •H 3
CO •4-1 3 3 cu CO J3 •H CO o3 X 0) O o CU A CU rH CU ,-4 U 1—

I

3 3 3X cu i-i O* P X fa H cq H os w 3 2 z on r< Q CQ a s o s CJ < CO E

M
H
H
rJ
CQ

<
Eh

3

CO

3
3
a*

C4-I O •H
O •H 3

4-1 CO 4J 43 3
fa 3 rH CO 3 CJ O CJ

3 CO O fa 3 3 CO O 3 •H >. •H
CJ 3 •H •H -3 rH •H 4-1 4-1 'J 00
3 CO 4-1 43 O 3 •H 3 3 rH 3 3 O
O 3 C 3 CD s •H 4J •H -3 fa 3 3 3 3 rH
CJ 3 o 3 3 3 G 3 O fa O H O T3

CJ •H 3 O rH E 3 E Z 3 H 3 •H 3 r-t >i
rH 4-1 CO 4-4 •H 3 3 4-J > 4-1 3 0) >h 4-1

3 3 3 3 4-1 4-1 CJ p fa p 43 3 x: o W 3 CJ T3 ^4 43 •H
4-1 H 00 3 CJ CD 3 •H —

1

•H j-i •H 00 3 3 H -3 S4

3 O H T3 3 •H H 4-1 3 3 3 S-t 3 T3 T3 H •3 OS 3 3 O
3 >•» CO O 3 U4 CO 3 3 E 4J O 4-J o 3 3 3 J4 3 t-)

E CJ 01 14 CD M-4 3 3 OS E H 3 14 3 J4)-i 3 3 14 14-1 3 4-1 3
3
-3 3

P fa 3 fa 00
•H

•H
3 3

3
43

H P u z a fa
4-1

P fa o fa C/j S
3 M-t 3 CD S s 4-i CD 01

3 •H CO 3 •H 3 3 CQ

fa J 33 P p H s H P

30

a. Correctness

Correctness means that the software is correct if

it performs properly the functions it was intended to perform

and has no unwanted side effects [28]. Implicit in correct-

ness is a term known as a proof-of-correctness. Dijkstra has

stated that testing can be used only to show the presence of

bugs but not their absence [29] . Since testing is inadequate

to ensure correctness, then, it is necessary to "prove" the

correctness of a piece of software. In using proofs of

correctness, the designers and programmers make use of formal

specifications of the program's intent that are written in

a formal assertion language and mathematically proven using

a formal logic method such as predicate calculus. An input

assertion defines the input domain of the program. An output

assertion defines the domain of possible outputs in terms of

the computation the program is intended to perform. Starting

with the input assertions, the individual responsible for the

proof utilizes various mathematical theorems to prove that

the output assertions are satisfied whenever the input data

meets the conditions imposed by the input assertions

.

Various authors, such as Parnas [30] and Liskov

[31] have descrived possible notation for formal specification

lanaugages. Several benefits can be derived by the use of

these formal languages in proving the correctness of a

program. Foremost is that by using this technique a designer

can verify the correctness of intermediate design decisions

31

when they are made rather than wait until the design is

complete, thereby reducing the cost of making the corrections.

The proof of correctness process also forces the designer to

analyze sections of his software that otherwise might only

receive cursory attention. It aids in clarifying the

dependencies of the program on other programs by creating

an awareness of what assumptions about the input data are

implicitly made in the other sections of the system. Finally,

by formally specifying the input and output parameters in a

mathematical notation, the ambiquity inherent in the use of

natural languages, such as English, is removed.

However, as a matter of practicality for the

project manager, there are also several disadvantages to

using formal proofs of correctness. The process is a labor-

intensive, time consuming process. Even for small relatively

simple programs, the symbolic manipulations can be extremely

complex. This complexity, in turn, can lead to errors in

the proof, thus making the process self-defeating. Glass [32]

points out that there has been little success in using this

technique on programs of any significant size. Furthermore,

it often requires several times the amount of work to prove

a program correct than was required to write it, adding 100

to 500 percent to the cost of the software being proven. It

also requires a level of mathematical sophistication than

even the proponents of its usage recognize is not possessed

by many of the designers and programmers currently practicing

32

in the field. The ultimate goal of the advocates of this

technique is to develop a formal assertion language that

can be used in a computer program that will automate the

proving process. Although some of the advantages of this

technique, such as removing the ambiquity from specifications

and forcing the designers to rigorously analyze and explicitly

express the assumptions regarding the input and output para-

meters of the program can aid in the development of more

reliable and maintainable software, there is little practi-

cality in attempting to prove the correctness of a program

until the process can be automated,

b. Robustness

Robustness is the degree to which a program can

continue to perform its intended function in the face of

hardware failures, bad inputs by the user, unexpected

demands, and the incorrect operation of parts of itself [28]

.

It is important to stress that correctness alone is not

sufficient for high quality software. A perfectly correct

program that does not check inputs to ensure that they are

within range may proceed to overwrite a valuable file,

producing a highly unreliable behavior. As Freeman [2 8]

states "certainly a program must be largely correct before

we call it reliable but this is only a necessary condition

not a sufficient one." Robustness is clearly an essential

ingredient of high quality software.

33

One approach to increase the robustness of a

program is to include in the design of the software what

Parnas and Wurges [33] have called "unexpected event

handlers." They use the phrase unexpected event as opposed

to error because the term error implies that it should be

corrected as opposed to handled. They contend that regard-

less of how well the original software was designed, unexpect-

ed events can still result from device failure, incorrect or

inconsistent data supplied by the user, errors resulting from

changes in the program that occur from inadequate testing or

even designer error. They advocate the use of software

"traps" to inspect and compare data as it arrives at a

program or subprogram to ensure that it meets the specifica-

tions that were formally developed. If an undesired event

occurs, control of the program is turned over to a separate

program called an unexpected event handler. The reason for

having the unexpected event handler as a separate program

rather than embedding it within the application program is

to allow for easier changing of the error handling mechanism

should the user later decide to change the way he desires

the system to handle a particular class of errors. There

should exist at least one such handler for each class of

unexpected event. They provide several catagories of

possible classes. The handler then takes some predetermined

action such as return control to a higher level module for

resolution, provide an error message, in a format designated

34

by the user to ensure understandability, or possibly even

ignores the error depending on the severity and the design

of the handler. The details, of this approach to ensuring

robustness are contained in [12, and 33]. The point of

including this approach is that Paranas and others, such as

Ross [23] agree that robustness, in particular, and relia-

bility, in general, must be considered early in the design

of software, not added on by a programmer during implementa-

tion as an afterthought.

2. Simplicity

The essense of simplicity is that the nature of the

software should be such that the nature of the user's inter-

action, whether he is the end user or maintenance programmer,

should be simple and easy to use. Various terminology has

been offered to describe simplicity.

Wasserman [34] defines user-friendliness as the

characteristic of a system such that the system should provide

meaningful error messages, should not terminate abruptly, and

should enable the user to work with familiar terminology and

concepts. Another phrase that has a similar definition is

human factors, as defined by Boehm [24].

Invisibility is the degree to which the software

masks the underlying characteristics of the computer, its

operating system and the programming language used for writing

the software from the user.

35

Another aspect of simplicity is understandability

.

The user is able to understand the system to the degree to

which the software is well-documented, the variables contained

therein are self-descriptive, and the program itself is free

of complex control structures and uncontrolled branching.

Perhaps the most intuitive way to comprehend the

concept of simplicity is by examining its opposite,

complexity. Various measures of complexity have been offered.

These measures of complexity are then used to predict the

number of errors that can be expected in order to aid the

individuals responsible for the testing of the software to

determine where to concentrate the testing effort.

A model has been developed at the Naval Postgraduate

School, supported by the Naval Air Development Center [35,

36]. Working under the hupothesis that* the ease of debugging

and testing is related to structural complexity, the research-

ers developed simulation and analytical models to measure the

relationship between error detection capabilities and program

structure.

In the model, a program flow is represented as a

directed graph consisting of various nodes and arcs. The

nodes represent merge and/or branching points within the

program and the arcs represent sets of sequentially executed

instructions between the nodes. Each test input defines a

unique path from the start node to the exit node. The pro-

gram is executed and the input proceeds along its

36

predetermined path until an error is detected. The error is

then corrected and the program is restarted along the same

path. Various statistics are collected on the number of

errors detected over a fixed time, the percentage of arcs

traversed by one or more input, the number of errors detected

and the percent of errors remaining. Complexity is measured

in terms of the number of nodes, paths, arcs and source

statements as well as in terms of the correctability and

accessibility. The authors suggest several uses for the

model. Comparing the error detection characteristics of

several design alternatives can enable the project manager

or his representative to select the design that will be the

least costly to test. Also the model may be used to indicate

where additional testing is required by increased program

complexity. In order to use this model, it is necessary to

perform a preliminary design of module structure.

In a related work, McCabe [37] identified the "cyclo-

matic" number (i.e., the number of independent circuits in

a directed graph) as a software complexity metric. From

this measure he derives the number of independent paths in

a program. His claim is that program complexity can be

reduced by limiting the cyclomatic number to a maximum of ten

per module.

Underlying both of these approaches is the concept

of structural complexity. Bohm and Jacobini [38] have

mathematically proven that three basic control structures

37

are sufficient for expressing any program logic: sequence,

selection (IF THEN ELSE) and iteration (DO WHILE) . This

development is the basis for much of the philosophy developed

by Dijkstra and others to control the complexity of programs.

These control structures are often expended to include "DO

UNTIL" and "CASE" type constructs and are illustrated in

Figures 3-2 and 3-3. DoD has limited software developers to

the use of these control structures in software developed for

tactical weapons systems in MIL-STD-1679 . A more comprehen-

sive examination of Dijkstra' s concepts of program and design

structuring will be presented in the next chapter. The

elimination of uncontrolled brachning by reduction of the

use of "GO TO" statements greatly aid in the reduction of

complexity, thereby reducing the probability of errors and

adding to the understandability of software.

3. Efficiency

As Ross [2 3] points out, efficiency is a much abused

goal, usually because in an excess of zeal, it is prematurely

permitted a high priority in software engineering trade-offs.

One of the reasons that it is often abused is that efficiency

is normally considered within the context of the efficient

utilization of hardware resources.

Boehm [24] defines efficiency as the extent that a

software product fulfills its purpose without a waste of

resources. Within the context of his definition, resources

are considered in a narrow sense, hardware related; i.e.,

38

\

SEQUENCE

PROCESS A

PROCESS B

IFTMENELSE

"ELSE-
PROCESS

"THEN"
PROCESS

?

SEQUENCE II THEN ELSE

OOWHILE

\ CO WHILE

Figure 3-2. Basic Control Structures.

39

DOUNTIL

o-

"UNTIt"
PROCESS

DO UNTIL

CASE

PROCESS a

CASE

Figure 3-3. Additional Control Structures

40

memory, the total number of instructions executed per itera-

tion or per case, or mass storage utilization. He points out

that efficiency is often achieved in opposition to some of

the other goals and characteristics described previously.

He contends, for example, that efficiency is "generally at

the opposite end of the spectrum from portability." [24]

Efficiency is often highly machine and language dependent.

Measurement of efficiency is usually done in terms

of memory utilization and executive speed. Memory utilization

involves performing the least amount of memory space to house

both the instructions and data base [10]. Executive speed

involves performing the required functions using minimum

time during execution. [10]

Much of the concern for efficiency stems from the

period when hardware cost factors in computer system develop-

ment predominated. Since hardware represented the major

portion of the total cost, the concern of designers was

naturally focused on means of developing software that

utilized the available hardware to minimize the total cost

of operating the system. However, as stated previously, the

relative costs of hardware and software have been reversed

due primarily to advances in hardware development and

production technology. Maintenance costs have been identified

as the largest single cost factor in the entire development

process. Given this reversal, efforts to minimize the usage

of hardware resources that are done at the expense of main-

tainability appear to be misguided.

41

The use of low level languages such as assembly

language is the most common technique used to ensure

efficient use of hardware resources. Assembly language is a

programming language in which there is a one-to-one corres-

pondence between each assembly language statement and a

machine language statement. Machine language is the binary

representation of instructions that a computer actually

executes. Assembly language statements use a more readable

alphanumeric symbology which suggest the statement's function

Since there is a direct correspondence between assembly

language and machine language instructions, the programmer

can control the use of memory registers and other parts of

the computer hardware directly, thereby having control over

the amount of each component the program uses. High level

languages, in comparison, use a compiler or translator

to translate the high level instructions into machine

language instructions. Each high level instruction requires

several machine level instructions to perform its task. Thus

the compiler vice the programmer has control over what re-

sources are used to execute the program. In addition, the

machine language instruction sets vary widely, both in format

and numbers, and thus, assembly languages vary widely among

different manufacturers. This means that program written

in assembly language for a particular manufacturer's equip-

ment must be completely reprogrammed before it can be run

42

on a new manufacturer's machine. Thus, the use of assembly

language directly restricts the portability of the software.

At the NATO Science Committee conference on Software

Engineering techniques, which was the successor to the original

196 8 NATO conference, Lang [51] listed two other "grave

disadvantages of assembly language:

- Apart from the few who delight in such intricacies, most
people find assembly language programs harder to write,
read, understand, debug, and maintain than high level
lanaguages.

- It provides the poorest conceptual framework for the
programmer to express the computing operations he wants
performed." [51]

Yourdon [21] asserts that in addition to the fact that

assembly languages often prevent the usage of good structured

programming techniques by the allowing of unconditional "jump"

statements, whcih are the equivalent to GOTO statements in

high level languages, "...high level languages, e.g., ALGOL,

PL/I and COBOL have the potential for being more efficient

with the structured programming approach. " All of the pre-

vious discussion is not intended to negate the need for the

efficient use of the resources. Blatant inefficiency cannot,

of course, be tolerated. In some cases, particularily in the

development of software for embedded computer systems,

efficiency issues can be critical. Response time, which is

a function of the execution speed of the program amoung other

things, for a missile defense system may well be the single

most critical factor in determining the success or failure

43

of the entire system. Similarly, computers embedded on air-

craft platforms are often very limited as to the amount of

memory that is available.

However, efficiency may be more properly treated within

the context of a broader definition of resources. Efficiency

should also address the efficient use of the individuals who

design, implement, maintain, and utilize the software. Ross

[23], for example, contends that efficiency questions are

"best treated within the context of other issues. For example,

achieving a high degree of modifiability can provide the basis

for meeting efficiency goals during the tuning phase of

software development."

Brooks [52] points out that programming productivity,

a measure of the efficiency of the personnel who are responsi-

ble for the implementation of software designs, may be

increased as much as five times when a suitable high level

language is used.

Glass [32] describes the benefits from programming in

high order languages in terms of both productivity and

reliability. He points out that high level language code

requires fewer statements than assembly language. Therefore,

there are fewer chances of error. Furthermore, the HOL

programmer is screened from an entire class of possible

errors related to hardware intricacy since the compiler

accomplishes the task of making hardware dependent choices.

44

Thus, the programmer can concentrate on the application

problem he is solving rather than the hardware on which the

solution will run.

With respect to maintainability, often the programmer

responsible for program maintenance is not the individual who

originally designed and implemented it. There is a signifi-

cant difference in the readability of programs written in

higher level languages as opposed to assembly languages.

The high level language statements are more English-like and

therefore more understandable. Assembly language statments

are generally more abbreviated and require greater effort to

comprehend. Also, the increased complexity and the resulting

potential for errors resulting from the greater degree of

detail associated with the hardware-software interfaces may

significantly increase the effort devoted to corrective

maintenance. Lientz and Swanson [41] , in reporting the

results of a survey of commercial organizations that have

data processing facilities, found that approximately 70% of

all maintenance activity at these organizations is in the

area of enhancement vice corrective maintenance. Clearly

the use of high level languages can increase the maintain-

ability of software as well as allow maintenance programmers

to concentrate on making adaptive and perfective changes and

not devote much of time and effort in correcting implementa-

tion errors.

45

Perhaps the most eloquent argument against the

emphasis on efficiency as it is most commonly thought of

is that offered by W. A. Wulf and cited in Reference [21]

:

"More computing sins are committed in the name of efficiency
(without measurably achieving it) than for any other reason.
One of these sins is the construction of a 'rat's nest* of
control flow which exploits a few common constructive
sequences. This is precisely the form of programming that
must be eliminated if we are ever to build correct, under-
standable and modifiable systems." [53]

In conclusion, it is not the purpose of this thesis

to advocate inefficient practices in the development of soft-

ware systems. Rather, it is the contention that efficiency

must be looked upon in a more global context. Each project

or case must be decided individually based on the constraints

involved. The question of efficiency must, however, be

examined within the context of the efficient utilization of

all of the resources required to develop, operate and main-

tain the software, not merely just one aspect.

4. Evolvability

Recognition that the majority of the effort and cost

of software development is devoted to the changing of soft-

ware after its initial acceptance and operation has led to

the inclusion of evolvability as one of the key goals of

software engineering. Evolution implies change over time.

Just as an organization's missions and requirements change,

the software designed to aid the organization in fulfilling

its requirements must also be amenable to change. Many of

46

the tools and techniques that have been proposed have

emphasized the need to design software in such a manner as

to facilitate changes to it. The literature that has been

presented to advocate these methodologies has offered various

phrases to describe the characteristic of software quality

that allows it to be changed easily. They can be summarized

under three major headings: maintainability, portability

and reusability.

a. Maintainability

There exists no universally accepted definition

of maintainability. Some authors, such as Lientz and Swanson

[39, 40] take a broad, inclusive view of maintainability.

In an attempt to provide a basis for the understanding of

the "dimensionality" of the maintenance problem, Swanson [40]

differentiates between three types of maintainability:

corrective maintenance, adaptive maintenance and perfective

maintenance. Corrective maintenance is performed in response

to failures such as failures to meet performance criteria or

abnormal stopping of a program. Adaptive maintenance is

performed in response to changes in the environment. Perfec-

tive maintenance is the activity performed to make the soft-

ware a better implementation of the design, such as improving

processing efficiency or to add new features.

Other authors such as Myers [41] and Tausworthe

[42] take a more restrictive view towards what constitutes

maintenance activities. Myers [41] defines maintainability

47

as "a measure of the cost and time required to fix software

errors in an operational system. " He differentiates between

maintainability and adaptability, which is defined as "a

measure for the ease of extending the product, such as adding

new user functions to the product." [41]

Tausworthe [42] concurs with Myers* view of

maintainability and contrasts it with both adaptability and

modifiability. He defines these terms as:

"Maintenance: Alterations to software during the post-
delivery period in the form of sustaining engineering
or modification not requiring a reinitiation of the soft-
ware development cycle.

Sustaining Engineering: Software related activities in the
post-delivery period, principally supportive in form, which
keeps the software within its functional specifications.

Adaptation: Modification of existing software in order
that it may be used in a program development, as opposed
to developing another module for that same purpose.

Modification: The process of alterning a program and its
specifications so as to perform either a new task or a
different or similar task." [42]

Thus, while Swanson takes a more expansive view

of what constitutes software maintenance, Tausworthe, with

his narrower scope, would exclude the two latter catagories

as outside the scope of what constitutes maintenance activity,

placing them into the catagory of modification. The General

Accounting Office [5] has cited the lack of a uniform defini-

tion as to what constitutes maintenance activities as one of

the primary reasons for the absence of software maintenance

management within the federal government.

48

Underlying this lack of uniformity is that, in

Kline's view [21], much of the terminology used in describing

software maintenance has been inappropriately adapted from

hardware maintainability concepts. As was the case with

reliability/ many authors have tried to apply concepts of

hardware maintainability to the maintenance of software.

In hardware maintenance, there exists two broad catagories;

preventive and corrective maintenance. Preventive maintenance

is that maintenance performed, on a scheduled or on-condition

basis, for the purpose of retaining an item in a satisfactory

operating condition [26], Implicit in this concept is the

notion that hardware physically degrades over time. By

routine inspection and servicing, its failure can be prevented

and the life of the equipment prolonged. Software, on the

other hand, does not physically wear out with usage. Thus

the concept of replacing software with a "spare" module is

inapplicable. Authors, such as Glass [32], who use the term

preventive maintenance in association with software are

actually describing various design techniques such as modular-

ization, program structuring, parameterization and documenta-

tion that make corrective maintenance of software easier. In

order to minimize the confusion with hardware maintainability,

Kline suggests substituting the phrase "software configura-

tion management" to emphasize the difference between the two

concepts as well as to emphasize the importance of configura-

tion management as a tool for controlling change to existing

software. [27]

49

Rather than present further definitions of main-

tainability, it will simply be stated that software maintain-

ability as used in this thesis will refer to the characteristic

that a software product possesses to the extent that it

facilitates updating to satisfy new requirements or can be

modified to correct mistakes (adapted from [24]). The point

to be made is that maintainability, like reliability, is an

issue that must be addressed early in the development cycle

and not postponed until after the design has been completed.

Since maintenance is both a process for the correction of

errors and also of adapting to new organizational requirements,

the tools and techniques adopted during the development of

software must facilitate the economical and efficient adapta-

tion of the software to meet the new requirements as the

organization's needs evolve.

b. Portability and Reusability

Poole and Waite [4 3] define portability as the

"measure of the ease with which a program can be transferred

from one environment to another." Closely allied with this

concept is the concept of reusability. Reuseable software

is "existing software, including specification, design, code

and/or documentation, which can be employed, in part or total,

into a new end use." [44] This definition of reusability

emphasizes one specific approach, which is to reuse the

specification and design as well as the code itself and

highlights the importance of documentation as a means of

50

identifying software that has potential for reuse. It also

emphasizes the need to techniques of specifying and designing

software that can be readily modified for reuse in the new

applications.

The most common approach to portability is the

use of high level languages, such as COBOL or FORTRAN for

which compilers exist in most computers. The software that

has been used in the present equipment configuration is

recompiled using the compiler of the new ocmputer to create

machine interpretable object code that can be executed on

the new machine. An outgrowth of this approach is the

limitation on the programming languages that may be utilized

by developers of software for the Department of Defense.

DoDINST. 5000.31, "Interim List of DoD Approved Higher Order

Programming Languages (HOL) ,
" limits, with certain exceptions,

developers to the use of six approved languages, CMS-2, SPL-1,

TACPOL, JOVIAL, COBOL and FORTRAN. SECNAVINST. 5236. 1A,

"Specification, Selection, and Acquisition of Automated Data

Processing Equipment," limits developers of non-tactical

software to the use of Federal Standard COBOL for business

and logistics applications and American National Standards

Institute (ANSI) FORTRAN for scientific or engineering

applications. By attempting to reduce the proliferation and

use of other HOL languages, these instructions are aiding in

efforts to increase the portability of DoD software.

51

In an effort to further limit and standardize

the number of approved HOL programming languages, DoD has

adopted a common programming language based on the language

PASCAL to use as its future HOL for embedded computer

software [45, 46]. It is named after Ada Augusta who is

generally credited as having been the first programmer as

an assistant to Charles Babbage, and is called, appropriately

enough, ADA. The development of one common programming

language for tactical software clearly has the potential for

improving the portability, reusability and maintainability

through standardization of the language. Furthermore, by

utilizing a single standard language, maintenance programmer

productivity could conceivably increase since they would only

have to be familiar with one language instead of several.

ADA is not, despite these apparent advantages,

universally accepted in its present form. Dijkstra [47] has

criticized ADA as being neither "complete nor concise" and

has expressed concern over its size by pointing out that

ADA's list of reserved words amounts to "more than ten

percent of Basic English." Also Reference [46] indicates

that the Department of the Navy has not been an enthusiastic

support of this proposed standard, largely due to the large

number of programs and programmers that have utilized CMS-2,

which is the Navy's primary tactical software language.

Despite the lack of universal support, the ADA project is

continuing. The Army is the lead service in this project

52

and is currently attempting to develop a prototype compiler

for ADA. The original due date for testing of this compiler

was April, 1981. However, due to problems in development,

this target has not been met.

As is implied by the definition of reusability,

another approach besides the use of standardized languages

is to consider requirements for portability and reusability

during the development of the software. Among the major

conclusions contained in Reference [44] is that

"Reusability must be addressed as an objective of the
development process. One can not build software and then
decide (after the fact) they intend to reuse it. At the
time the development is started, specific guidelines for
methods and standards must be established to support the
intended reuse."

In the area of design this group has recommended

that standards for interface specification and functional

design techniques that focus on the identification, structure

and partitioning for reuse are required to achieve a greater

degree of reusability. [44]

One approach to a design philosophy to develop

reusable software has been put forth by Parnas in References

[48, 49]. He contends that a software designer must be aware

that he is not designing a single program but rather a "family"

of programs. A set of programs is considered a program family

as they have "so much in common that it pays to study their

common aspects before looking at the aspects that differen-

tiate them." [49] Some of the ways that the members of a

program family may differ are:

53

1. They may run on different equipment configurations.

2. They may perform the same function but differ in
the format of input and output data.

3. They may differ in certain data structures or
algorithms because of differences in the size of the
input sets.

4. They may differ in certain data structures or
algorithms because of differences in the available
resources.

5. Some users may require only a subset of the services
or features required by other users.

He offers a four part methodology to build soft-

ware systems that are more readily reused. The first part

is to identify the "subsets" of a system that are candidates

for later reuse during the requirement definition. Criteria

such as differing equipment configurations within an organi-

zation or functions of a general utility, such as sorting

programs, are two possible evaluation considerations that

might be used in identifying candidates for reuse. In

identifying various subsets, the designer must first identify

the minimal subset of a system that might conceivably perform

a useful service. While recognizing that this minimal subset

is not likely to be worthwhile to develop by itself, it should

be useful to include this subset as a part of a larger system.

The designer then identifies minimal increments to that

subset. The emphasis on minimality is to ensure that each

component performs a single function.

The second part of his methodology involves the

precise definition of the modules and the interfaces

54

between them. The modules are designed to localize the effects

of the parts of the system that are likely to change. The

interfaces should be designed to be "insensitive to the

anticipated changes." [49]

The third part of the Parnas methodology is

utilization of the virtual machine concept, also referred to

as an abstract machine [43, 50]. This concept is to design

interfaces and modules that do not distinguish between those

functions that are implemented in software and those imple-

mented by the hardware or operating system. The goal of

this concept is to produce a design that is truly machine

independent. The virtual machine serves as a model of several

potential real hardware/software implementations. Thus, it

must be emphasized that at the time of implementation, there

must be a decision as to whether the functions will be pro-

vided by the hardware chosen or that it would be necessary

to provide for them via software. By postponing this decision

until implementation, however, the development process is able

to proceed without having the final hardware configuration

identified.

Another advantage of designing abstract machine

systems is that it allows the program to be implemented on a

wide variety of equipment configurations with the implementa-

tion process determining which set of instructions or func-

tions are available from the equipment/operating system and

those which must be included in the software.

55

The fourth and most crucial step is in identifying

what Parnas calls the "uses" hierarchy, or structure. A

program "A" is said to use program "B" if A requires the

correct execution of B in order to complete its task as

described in the specifications. "Uses" can also be formu-

lated as "requires the presense of." [49] A key feature of

the uses hierarchy is that its structure is restricted to

prevent looping from a lower level in the hierarchy to a

higher one. Level of the hierarchy is the set of all pro-

grams that uses no other program. Level i (where i is greater

than or equal to 0) is the set of all programs that uses at

least one program on level (i-1) . By identifying this

hierarchy, which is an execution as opposed to a design

hierarchy, Parnas contends that the identification of useful

subsets is readily apparent.

The concept of reusability has sparked a great

deal of interest within the federal government. In addition

to the conference referenced earlier, there has been estab-

lished a Federal Software Exchange Center (FSEC) under the

aegis of the General Services Administration to promote the

sharing of common-use software and related documentation

among users of non-tactical software. The procedures and

requirements are detailed in the Federal Procurement Manage-

ment Regulation (FPMR) subpart 101-36.16. Agencies acquiring

software are required to deliver copies of the source code

listings and other documentation to the FSEC, which develops

56

abstracts that are made available to potential users who are,

in turn, required to certify that there is no available re-

usable software that can meet its requirements prior to

contracting for new software development. The use of this

repository has been limited due to the poor documentation

practices of some contractors that make it difficult for

potential users to determine exactly what functions the soft-

ware is designed to perform and under what operating

environments. Additionally, neither the FSEC nor the original

acquiring agency is required to certify the quality of the

product. Thus, potential reusers are leery of stating that

they do not need to develop new software when they can not

be sure of the quality of the reusable variety. Another

factor limiting the use of this organization is the absence

of any requirement to update any versions of the source code

or documentation as changes are made, either to correct

original deficiencies or modification of existing functions.

Clearly the issues of portability and reusability

have implications for the project manager. In addition to

being a consideration in the development of new software,

the reuse of existing software of known quality can reduce

the risk of new development as well as reduce the time and

cost of the development process providing a means for the

certification of the quality can be found. Although

Reference [44], the Joint Logistics Commanders report on

reusability, contains numerous conclusions and recommendations

57

that are too lengthy to repeat in their entirety in this

thesis, several are particularly worthy of mention.

1. The need for development of standards for requirement
analysis and formal specification languages should be
pursued.

2. Functional design techniques must be defined to focus
on identification, structure and partition for reuse.
The design must be catalogued and be accessible independent
of the code.

3. Research and development of new support tools specifi-
cally to promote reusability are needed. Such new areas
include specification generation and dissemination, veri-
fication and certification of reuse components, library
methods and tools for cataloging and access of software
and management tools for project control.

4. Incentives should be provided for DoD project managers
and contractors for compliance with reusability concepts.

B. UNDERLYING PRINCIPLES OF SOFTWARE ENGINEERING

Having examined the goals of software engineering within

the context of the characteristics of quality software, it

is now appropriate to examine some of the underlying princi-

ples that have been found to aid in the achievement of that

quality. As is the case of the goals, there is a high degree

of interrelationship among the principles that assist in

achieving quality software: Modularity, Abstraction,

Hierarchical Design Approaches, Uniformity, Completeness and

Confirmability.

1. Modularity

The division of a program or system into smaller units,

or modules, is one of the oldest concepts in computing. Yet

it is also one of the current trends in software engineering.

58

Modularity is the idea of reducing large, complex systems

into smaller, more intellectually manageable parts. Various

definitions of modularity have been presented in the

literature. Myers [54], for example, offers the following

definition:

"Modularity is not simply the arbitrary division of a
large program into smaller parts or modules. The primary
goal should be to decompose the program in such a way that
the modules are highly independent of each other."

D. T. Ross and others [23] define modularity as deal-

ing with "...how the structure of an object can make the

attainment of some purpose easier. Modularity is purposeful

structuring.

"

Liskov [31] describes modularity in terms of the

structural properties possessed by modular systems in the

following definition:

"Modularity consists of dividing a program into subpro-
grams (modules) which can be compiled separately but will
have connections with each other. A definition of 'good'
modularity must emphasize the requirement that modules
be as disjoint as possible."

While all of the above definitions have much in common,

there exists a diversity among software engineers as to the

criteria that should be utilized to decompose complex

systems into simpler, more understandable units.

The classic approach, as typified by Myers, Yourdon

and other authors associated with the concept of Structured

or Composite design, is that each module should represent a

single, well-defined function. Myers [55] contends that the

59

first step in defining a module should be to describe its

external characteristics. This description consists of the

module name, purpose or function, parameter list, inputs,

outputs and external effects on other modules within the

system.

Yourdon has described two measures of modularity

(originally proposed by Myers in Reference [55]), cohesion

and coupling. Cohesion is "the degree of functional related-

ness of processing elements within a single module" [57]

.

Coupling is a "measure of the strength of the interconnection

between one module and another" [57] . He also describes

various levels of each measure. The most desirable level of

cohesion is "functional" cohesion which he defines as:

"The strongest form of relationship between processing
elements in a module; occurs when every element of pro-
cessing is an integral part of, and essential to, the
performance of a single function." [57]

The goal of their techniques of modularization is to

strive for systems whose modules display a high level of

cohesion and a low degree of coupling, or interdependence.

Myers even provides a means for scoring a design that

measures for coupling and cohesion in Reference [56].

An alternative set of criteria for modular decomposi-

tion are those offered by D. L. Parnas [58, 59]. Based upon

the notion of reducing dependencies between modules created

by shared assumptions, he has proposed a criteria that

attempts to have each module encapsulate one changeable item

60

within the system and "hiding" how each module deals with that

item from other modules. This concept is called "information

hiding" and the modules are known as information hiding

modules.

The first step in his decomposition methodology is to

identify those design decisions that are likely to change.

While over time, all design decisions are liable to be

altered, some are more likely than others. These decisions

that are likely to change become the "secret" of the module.

Heninger and Shore [12] have identified some of the more

common "secrets" in a data processing system to be:

Logical data base structure.

Algorithms used in performing the various tasks of
the module.

Data storage device physical representation.

Input mediums (cards, tape), record fields, sequence.

Output devices (printers, tape, cards) .

Operating System interfaces.

Software functions as seen by the user.

Hardware configuration characteristics.

Parnas argues that there should be a single "module"

that possesses all of the portions of the software system

that might be affected by one of these changes. A key

distinction between what Parnas describes as a module and

the more classic concept is that he distinguishes between

design modules and implementation modules. A subroutine or

61

program (at execution) may well be "an assembled collection

of code from various (design) modules." [58]

Each module is defined in terms of the interface

between itself and the other modules. These interfaces are,

in effect, the only assumption that the other module and

their implementators are allowed to make. Thus, the inter-

faces must be extremely specific in describing the acceptable

range of inputs and outputs that the module will require.

On the other hand, the interfaces should contain no informa-

tion that describes how the module transforms the inputs

into the output format required. This is what is meant by

"information hiding".

This concept of information hiding modules is that

each module is to hide an assumption about the solution that

is likely to change. By hiding how the module performs its

required transformation, three major benefits are derived.

First, the personnel who are responsible for implementing

the various modules are prevented from creating unnecessary

interdependencies between the modules. When the changes then

occur, the effect of the change is limited to a single module.

Secondly, by not specifying how the module is to be imple-

mented, it gives the programmer the freedom to be creative

and to determine the best way to accomplish the module's task.

Lastly, this method requires an explicit and precise state-

ment of the interfaces between the modules and forces the

designer to analyze and state those secrets that are most

likely to change.
62

While the concept of information hiding is often

discussed and endorsed as a theoretically sound idea by

authors in the field of software engineering, not all are

convinced of its practicality.

Yourdon [57] for example, while recognizing the use-

fulness of the concept of isolating the shared assumptions

between modules as a means of reducing the level of coupling

between them, offers two criticisms of this approach. First,

he believes that there is no procedure offered with respect

to how to apply the criteria. Secondly, the critical problem

of translating the design modules and interfaces into pro-

grammable, interconnected modules is not addressed by Parnas

in his description of this technique of modularization.

F. L. Brooks [52], while commending the Parnas

approach for the idea of interfaces that are completely and

precisely defined, has labeled the dependence on its perfect

accomplishment a "receipe for disaster."

In an attempt to determine the feasibility of this

approach as well as to provide a useful model for future

developers, Parnas, Heninger and others are currently

involved in a project sponsored by the Naval Research Labora-

tory and the Naval Weapons Center to redesign and build the

operational flight program for the A-7E aircraft. Described

in detail in References [60, 61, 62], the redesigned program

will be functionally identical to the existing A-7E OFP so

that direct comparison between the two can be made in terms

63

of development time and cost, resource utilization, and for

ease of change.

Just as there is no agreement as to the correct

criteria for decomposition of large systems into modules,

there is also no consensus as to what constitutes the optimal

size of a module. Baker gives a commonly used limit of 50-60

statements; equivalent to the number of printed lines that

will fit on a single page of computer printout [63].

Constantine suggests a range of between 100-200 statements

[57]. Yourdon, in Reference 21 reports of an Air Force

Project whose project manager, concerned about the number of

modules due to the estimated size of the project, imposed a

standard of no more than 500 COBOL statements per module.

While the last number appears to be somewhat high, the point

is that each module should be easy to understand and

remember. It should be noted, however, that a large number

of small modules in a program can result in an increase in

the overall complexity of the system.

The key of both the functional approach and Parnas

'

information hiding modules is to create software that is

more readily designed, understood, and changed by reducing

large, complex systems into smaller, independent and more

manageable components. An additional benefit of modularity

is that by dividing the problem into smaller pieces, the

assignment of personnel to design and implement the system

can be made on the basis of the division. This may well

64

have a positive effect on the time and cost of development

by allowing independent groups or individuals to work

simultaneously on the individual parts rather than attempting

to manage a large, monolithic project.

2. Abstraction

Like modularity, abstraction is a very pervasive

principle in software engineering. The essence of abstrac-

tion is to extract the essential properties of a system

while omitting or postponing the consideration of non-essen-

tial details. It is vital to the development of software that

is machine and implementation independent. The purpose of

abstraction is similar to information hiding in that it

requires making visible only those properties that needed to

describe a module in terms of its function and interfaces

with other modules within the system. Abstraction, however,

differs from information hiding in that abstraction omits

unnecessary details whereas information hiding first must

identify and then hide details that constitute the secret

of the module.

The design of computer system that identify the

functions required of the system without regard to whether

they are to be implemented in the hardware of software, i.e.

the "virtual" machine concept, is one example of the use of

abstraction. There is also an abstraction involved in using

a tool or device to accomplish a goal while disregarding the

reason it functions as it does. For example, an individual

65

may use a mathematical theorem to prove a program's correct-

ness without considering how the theorem was originally

proved.

Parnas in describing how to specify the interfaces,

or assumptions, between modules of a program uses the phrase

abstract specification. His contention is that while the

specification must be precise, it is abstract if it states

the requirements to be met without referring to a theoretical

or real implementation [30]. This abstract interface serves

as a model of the real interface while omitting unnecessary

details regarding its implementation. Thus, if the specfica-

tion is not precise, the problem solved may not be exactly

that whose solution was needed. Finally, the interpretation

of the specification used in verifying the correctness of the

design decisions may vary from the interpretation made by the

implementor in building the module. In fact, as stated

earlier, Parnas and others are attempting to provide mathe-

matical notation schemes to describe the specification due

to the very imprecision of natural languages, such as

English.

Abstraction is, then, a means of modeling several

possible solutions to a problem. It is a tool for removing

unnecessary detail. In describing the interfaces between

the modules of the A-7E program, Parnas defines what he

terms an "abstract interface" [30, 62]. An abstract inter-

face is a precise, formally specified set of assumptions

66

regarding the information passed between modules. It is a

model of all the actual interfaces in that program. The

implementation of this model will be independent of the

particular hardware configuration. The crucial idea is that

the abstract interface precisely describes the effects of

the module on the rest of the system without restricting the

programmer in how to effect the implementation. What is

true of the actual interfaces must also be true of the model.

Otherwise, the specification is not a valid representation

of the design. However, by omitting the details regarding

the particular device the software is to be operated on, the

use of this concept creates designs that are machine

independent. By insisting on abstraction, it allows multiple

versions of the same interface to be implemented from the

same design thereby contributing to the portability and

reusability of the design.

3. Hierarchical Design Approaches

There is a great deal of disagreement about the

relative benefits and disadvantages of various hierarchical

structures within the field of software engineering. Non-

trivial hierarchical structures, by their very nature, imply

restrictions that are placed on the designer. A hierarchical

structure is a structure with no loops in its relationships

and consists of two components, its parts and the relation-

ship between the parts. The two most common design approaches

for developing hierarchial structured software systems are

top-down and the bottom-up.
67

The phrase top-down is probably one of the most

commonly used terms in computing. Top-down design or, as it

is referred to by Dijkstra and Wirth [29, 64], "stepwise

refinement," involves in a very general sense first specify-

ing the system in its broadest terms and in a stepwise,

iterative method, refining the structure by filling in the

details. This refinement entails filling in the details of

the highest level of the structure until it is completely

defined before progressing to the next lower level. At each

stem, major functions or tasks to be accomplished, along with

the inputs, outputs, interfaces and constraints are identi-

fied and incorporated into a design decision. This decision

is described in terms of a functional specification formulated

in some suitable notation. At each level all of the details

are filled in and possible candidates for further refinement

are identified.

Although the order in which to make the decisions vary

from author to author, Wirth [64] has suggested the following

guidelines. Decompose decisions as much as possible to

separate aspects which may initially appear related. Defer

those decisions which concern details of data representation

as long as possible. Base the design decisions upon such

criteria as efficiency, storage economy, clarity, and consist-

ency of structure. When considering a particular design

decision, alternative approaches should be considered.

68

Dijkstra [29] offers two additional guidelines. The

designer should attempt to make the "easiest decisions first"

and compose the program incrementally, deciding as little as

possible with each step. As both authors point out, this

process is not a single pass approach but rather where each

set of decisions are considered in terms of the layer above.

A problem with the use of the phrase "top-down" in

conjunction with design is that many authors tend to inter-

twine top-down design with top-down coding and top-down

testing. Design is a method of attacking a problem looking

for a general solution. Coding, or programming, is the means

of turning the design into a machine executable form. Testing

is the means by which the code can be compared to the speci-

fications to ensure that it meets the criteria set forth in

the user requirements. It is perfectly possible, and, in

some cases, desirable to use top-down design in conjunction

with bottom-up coding and/or testing.

In a general sense, all design is to a large extent

top-down in that the human mind generally first recognizes

a problem in the large sense and then attacks that problem

by breaking it down into smaller, more manageable parts.

However once an overall solution has been determined, a

bottom-up approach can be utilized to fill in the details.

McClure [65] characterizes the bottom-up approach as a

well-formed conceptual level (bottom level) that is a set of

well-defined interrelated concepts that may be combined to

69

make up more elaborate concepts. The bottom-up approach

starts at the level where the software interfaces with the

machine or operating system and tries to take advantage of

particularly desirable attributes of the machine in making

design decisions. One problem with this approach is that it

tends to lead to software that is machine dependent and, thus

lacks portability and reusability except on machines of a

similar architecture. Another potential problem is that if

the higher levels are not clearly defined, the bottom-up

approach may well lead to highly complex systems that do not

ever reach the top or do so only with great difficulty.

However, this approach can be used as a means of solving

design problems. McClure [65] reports that even Dijkstra,

considered by many to be the "father" of the top-down approach,

utilized a design approach that was primarily bottom-up in

nature in designing the "THE" operating system [66] because

he was chiefly influenced by the existing hardware on which

the system was to run.

Yourdon [21] also considers that there are a number

of situations where it is reasonable to combine the bottom-

up with top-down design. Two examples of these situations

that he provides are

:

1. The designer is aware that a number of utility routines
already exist and he tries (either consciously or uncon-
sciously) to adapt his design to make use of them.

2. At a relatively early stage in the design of his
program the designer anticipates that certain common or
general-purpose routines will be required by several dif-
ferent portions of the program, such as error routines,
editing routines, input-output routines and table look-up
routines

.

70

He contends that if done properly, a small amount of

bottom-up design can be practical although he cautions

against getting in a situation where the top portions have

to be "bent" in order to make it compatible with the bottom

half. This bending can result in software that fails to

meet the initial user requirements.

Although recognizing some of the advantages of using

a bottom-up approach, this thesis endorses the use of a top-

down design approach as the preferred method for designing

software systems that are less complex, more understandable,

and more likely to meet the requirements of the user.

4. Uniformity

The concept of uniformity, which Ross et. al. [23]

define as the "lack of inconsistencies and unnecessary dif-

ferences" is also an important principle of software

engineering. Uniformity implies a consistency in the means

of identifying and recording the decisions made during the

design, implementation, and operation and maintenance phases

of software development. An example of an inconsistency

would be to use two different data variable names, one in

the design documentation and another within the program

itself.

The notion of uniformity also implies the concept of

traceability, a characteristic of software that is vital to

maintainability. Schneidewind defines traceability as "the

ability to identify the technical information that pertains

71

to a software error which has been detected during the main-

tenance phase and thereby trace the error to the applicable

design specifications and user requirement statements." [67]

The notion of traceability is integral to the maintenance of

software in that it is a necessary attribute of software that

assists the maintenance programmer in discovering the cause

of errors as well as allows him to make corrections that are

consistent with the original design decisions and user

requirements

.

Various schemes have been developed to help achieve

traceability and uniformity. They include adoption of vari-

able and module naming conventions; the use of numbering

schemes in both the source code listings and the associated

documentation that permit an individual module to be traced

back through the entire design process; the use of data

dictionaries to define all of the variable names in a precise

notation; and the use of graphics to show the overall struc-

ture and detailed data flows of a software system. All of

these concepts will be developed further in the next chapter.

The concepts of uniformity and traceability, just as

the other principles discussed previously, must be considered

during the design phase. Documentation as well as the actual

code must be designed to ensure that these principles are

followed. As Ross asserts [23] , a notation scheme that does

not allow for uniformity should not be used.

72

5. Completeness

The notion of completeness is that the user require-

ments and design specifications must be exhaustively detailed

and documented prior to attempting to build the system. The

GAO study on maintenance practices [5] found that modifica-

tions accounted for about half of total maintenance workload.

This estimation concurs with the findings of Lientz and

Swanson reported earlier. While recognizing that some

modifications occur as a result of adaptation of the software

to changing user requirements, others occur because the user

needs were not properly identified in the first place. A

large number of respondents to the GAO study (171 of 409)

indicated that better definition of the user requirements

would be the "single most beneficial type of effort to reduce

software maintenance [5]."

The user requirement definition forms the basis of all

software development. Particularly in those cases where the

software is to be developed by a group other than the acquir-

ing agency, it is vital to ensure that the requirements are

detailed as completely as possible. In addition to being

complete, there are two other considerations in the develop-

ment of user requirement specifications. First, they should

be functionally oriented; i.e., they should describe the

system in terms of what it should do, not how it should be

implemented. Secondly, they should be precise. They should

contain measurable and quantifiable attributes of the system.

73

The reason for this should be self-evident. If the testing

of the software is to be done on the basis of the specifica-

tions, then they must contain criteria for the measurement of

how well the software met the requirements. By insisting on

specifications that are complete, functional and precise, it

will help ensure that the system, that is built fully meets

the needs of the user. It should be noted that some authors,

particularly those that have had dealings with the federal

government, caution against overspecification. Overspecif ica-

tion occurs primarily when the specifications begin to tell

the developer how to design and implement the system rather

than what the system is to do. Historically, however, the

problem has been more of underspecification rather than the

reverse. Reference [61] , which details the software require-

ments for the A-7E Operational Flight Program project is one

model of precise, testable specifications that are both

complete and concise.

6 . Confirmability

As was implied in the last section, one of the most

important principles of software engineering is that of

confirmability. One aspect of confirmability is testability.

There exists numerous books and articles describing various

approaches to testing. One such source is Reference [21]

which details and compares the top-down and bottom-up

philosophies of approaches to testing. An excellent overview

74

of various automated tools for test is contained in Glass'

Software Reliability Guidebook [32] and in Ramamoothy and

Ho's "Testing Large Software with Automated Software Evalua-

tion Systems" [68]

.

One type of testing not often addressed which has a

direct impact on maintenance practices is regression testing.

Regression testing is a method of detecting errors in changes

or spawned by changes made during software maintenance [32]

.

The purpose of regression testing is two-fold. One purpose

is to ensure that the problem to be corrected is, in fact,

resolved. Secondly, regression testing is to ensure that no

new errors are created with respect to the other modules that

interface with the changed module. If acceptance testing

has been done properly, the test data used for that test can

form the nucleus for the regression testing. This implies

that the original test data, including the test plan, must be

retained. As new modules are inserted into a program, new

test cases may be required to be developed to cover possible

cases that did not exist during the intial testing phase.

Just as software systems are designed, so must test cases

be designed to ensure the critical areas of the system is

checked. It is important to note that complete testing of

all possible combinations of paths through a system is,

except for the most trival cases, impracticable given current

technology. Boehm [5] has described a reasonably simple

control structure that would, at current processor speeds,

75

require over 2000 years to exhaustively test each possible

flow path.

As Schneidewind [67] points out, there is no current

requirement for regression testing in either Military Standard

1679 (Navy) Weapons System Software Development , or Weapons

Specification, WS 8506. Another issue is that neither of

these documents address any requirement for directly testing

software to determine its maintainability. Chapter VI exam-

ines two possible approaches to testing for this vital

characteristic

.

Another issue in confirmability is the verification

and validation of intermediate design decisions. Validation

is the determination of the "correctness of the software

produced, including documentation, with respect to the users

needs or requirements. Validation is usually accomplished

by verifying each stage of the software lifecycle." [69]

Verification is the "demonstration of consistency,

completeness and correctness of the software at each

state and between stages of the development

lifecycle." [69]

Both of these concepts differ from testing in the

usual sense in that testing implies the examination of a

program by executing it using sample data sets, validation

and verification consists of determining that each stage or

iteration of the development process is consistent with both

the decisions made at the preceeding phase as well as the

76

fulfilling the user's requirements and program specifications

Techniques for validation and verfication are largely manual

in nature and consist of such techniques as structured walk-

throughs [21, 57], formal design reviews, and peer code

reviews [70]

.

Military Standard 1521 (USAF), "Technical Reviews and

Audits for System, Equipment and Computer Programs," 1 June

1976, levies the requirements for design reviews to be con-

ducted during software development. Under this standard the

following technical reviews and audits are required:

System Requirements Review (SRR)

Systems Design Review (SDR)

Preliminary Design Review (PDR)

Critical Design Review (CDR)

Functional Configuration Audit (FCA)

Physical Configuration Audit (PCA)

Formal Qualification Review (FQR)

Detailed definitions and specific requirements for

each of the reviews and audits are contained in the standard.

While it should be noted that this standard fails to list

requirements specifically considering the optimization of

the maintainability of the software product, a companion

guidebook [71] provides checklists of maintenance considera-

tions for use in conjunction with the reviews and audits.

77

IV. SOFTWARE ENGINEERING TOOLS AND TECHNIQUES

A. THE SOFTWARE LIFE CYCLE

A major thrust of this thesis so far has been that bhe

consideration of quality must be done from the beginning of

the development process rather than left until after the

design of the system is complete. Prior to discussing some

of the tools and techniques that have been championed in the

literature as helpful in the development of quality software,

it is necessary to examine all of the phases of the software

life cycle through the phase where maintenance occurs.

Unlike the hardware life cycle, which is well-established in

the literature, there exists no universally accepted model of

the software life cycle, with well-defined boundaries and

interrelationships. Therefore, several models will be

presented in order to provide a broader understanding.

Glass [32] divides the life cycle of software into five

distinct phases:

Requirements/Specifications

Design

Implementation

Checkout

Maintenance

The requirements/specifications phase is the phase where

the problem is being understood and initially defined. He

78

set forth in the specifications. Checkout is the process of

seeking programming errors, conceptual errors in the design,

questioning requirements and "putting the final polish" on

the software. He identifies the greatest hazard of this

phase to be impatience and cautions against inadequate test-

ing and examining before delivering the program to the user.

The final phase is maintenance which he defines as "the

process of being responsive to the user's needs, fixing

errors, making user-specified modifications and honing the

program to be more useful." [32] He oontends that maintenance,

while being "unglamourous" and the "Siberia" of programming,

where new, inexperienced programmers are trained before

moving up to design, may be the most important activity in

terms of user satisfaction. The greatest hazard to mainten-

ance is "ineptitude" which can undo all of the good of the

previous phases while "turning a finely tuned Stradivarius

into high-quality fireplace wood by a ham-handed maintainer."

[32]

While one advantage of this model of the software life

cycle is that it recognizes the effect of good maintenance

practices on software quality as well as the need to consider

early the characteristics of quality to be emphasized, it

does little to illustrate the iterative nature of the soft-

ware life cycle.

Boehm [4] offers a more detailed definition of the life

cycle of software, as illustrated in Figure 4-1. The article

79

0»t«AriONf
AND

ReVAllOATlON.

Figure 4-1. Boehm's Software Life Cycle Model [4]

80

emphasizes that during this phase, the concern should be to

clearly define the problem rather than attempt to devise a

solution. He states that the greatest hazard during this

phase "...is the temptation to define a solution to part of

the problem, ignoring the hard parts or those that are ill-

defined. " [32]. He continues that

"Succumbing to this temptation leads to inadequate design
and implementation, which in turn, leads to revised require-
ments and modification. Thus well-thought through require-
ments and specifications, which are the primary output of
the requirements/specification phase... are vital to both
the quality and reliability of the software they define." [32]

The second phase is the design phase which translates the

problem into a conceptual solution. While recognizing a

growing concern that traditional design approches often stop

too soon, leading to inadequate solutions and a high number

of design errors, Glass also cautions against "grinding a

design deeply into the nitty-gritty implementation details."

[32] He contends that this effort not only wastes time and

money but also is, at best, a replication of the implementa-

tion process.

Implementation, the third phase in his model, translates

the conceptual solution of the design phase into computer-

processable form. The greatest risk of this phase is care-

lessness which, in his words, "...can turn a Stradivarius

into a K-Mart toy." [32]

The fourth phase, checkout, is the process of examining

and testing the software to see if it meets the standards

81

in which this model was presented has become to be considered

a classic in the field of software engineering. It is a

summary of the field with a description of many of the tools

and techniques and is particularly noteworthy for its exten-

sive bibliography. Yourdon, in an introduction to the article

which is reproduced in Reference [72], has stated:

"If someone said to me, 'I have time to read only one of
the papers in your collection, ' I would recommend this
paper by Barry Boehm - not because it is brilliant
(although I think some of Boehm* s insights border on
brilliance) or because it revolutionized the field (the
way that some of Kijkstra's papers did), but simply
because it is probably the best overall summary of the
software field that I have yet seen published."

This model has several advantages. It focuses attention

on the highly iterative nature of software design, indicated

by the feed back arrows from each phase to its predecessor.

It also highlights the need to validate each phase, including

maintenance in terms of the previous decisions made.

There are, however, two disadvantages to this model. It

does little to illustrate the desirability of user involve-

ment in defining the requirements for the system. It makes

the assumption that the problem has been correctly identified

prior to the specification of the overall system requirements.

It also fails to emphasize that maintenance activities can

require respecification, redesign, reprogramming as well as

retesting.

The final model that will be presented is that developed

by the Rome Aid Development Center, which is shown in

Figure 4-2 [6]. It appears to accurately model the software

82

woui«o**n

fIS
mis

•i ma' . i I

lammm
auim

ii vces'JL

c»»gs to soman pmt-i s«$'

coom a

oncawi

wr^rt

cmmgcs ro urrwK mwt.ii jmcs*

rtsr <m
INTtfMTtQl

mantMO sarrunt

TO i«T*uAn»
(nooucnni)

i
jtmmu* wb—»i

r«u.r

acrtcTim

STITCH '«LT

nai sorrwac
uooiiocim

r*u.T

tsourtoa

TO

mwt.i vccs

CMMOtS TO SOFTMMt
nurr.ii vies

ommcs ro somw
MTT-I SffCS

J som*u«
MftltttS

JOTTUMf
war
MM |
-i 5«qJL__i

sorruMt
OUIW

•it snesi

-.301* t
CMCCOMT

CMUSD OUT <WJU.I

CMMSn TO SOmMt
•MT-II SWS

NMOUMV

TUT MO

CWMCtS TO MOOUlf
oaivnro
SOFTWWC

ontutffWT - -4- -*-

A A
SO* *)•'

IMTAUATIW

A AAA
cot' rQt

r fa" »c*
r

>CrtMT!OI MO SUWOW-

A
CM

A
IT

• *l«K 'OMttUT HCIO

» ua cki nm « umuuti »t or vcciFtunan mo hmmtc rcvim

Figure 4-2. RADC Software Life Cycle [6]

83

life cycle. It shows the process of software development to

be highly interactive and iterative in nature as is indicated

by the arrows that accomodate new requirements and changes to

the specifications. More importantly, it emphasizes the

importance of the operation and support phase which divides

maintenance into a series of subphases. This division high-

lights the concept that maintenance activities include the

same analysis, design, coding, checkout, test, and integration

phases as the initial development process. An additional

advantage of this model is that it illustrates the temporal

relationship between the software life cycle and the technical

reviews and audits described earlier as well as denoting the

various baselines established as part of the configuration

management process.

Figures 4-3, 4-4 and 4-5 further reenforce the concept

that it is both necessary and desirable to consider quality

characteristic requirements early in the process of software

development. Combining the results of several different

studies by various authors, Glass [32] provides a convincing

visual argument that serves to further highlight this notion.

Figure 4-3 shows the relative percentage costs of each

phase of the software life cycle. There are two major reasons

that possibly explain why the earlier phases represent such

a relatively small portion of the overall life cycle cost of

software. First, it is plausible that too little attention

and time have traditionally been spent on ensuring that these

84

User

Requirements

Figure 4-3. Software Life Cycle: Costs per Phase [32].

phases are adequately performed and validated. Furthermore,

because of this lack of attention to proper validation, the

maintenance costs are increased due to the need to correct

errors that were missed previously. A second possible

explanation is that the latter phases are where traditionally

more manpower is added, due to both the labor-intensive nature

of the activities as well as a means of making up time for

previous schedule slippages. This latter practice has led

to Brooks postulating his now famous law which states that

"Adding manpower to a late software project makes it later."

[52] His contention, which has been partially validated in

Reference [73] , is that, due to the added time needed for

communication between personnel familiar with the project

and those newly-hired personnel added to increase productivity

85

in order to meet the project deadline, the average productivity

is redeced further until the new personnel have been trained.

Figure 4-4 shows the percentage of errors as a function

of the phase in which they occur. It further emphasizes that

there is a need for careful design validation and verification

techniques as a means of reducing corrective maintenance

costs.

Figure 4-4. Software Life Cycle: Error Sources per Phase [32]

Figure 4-5 graphically illustrates the relative cost to

correct an error as a function of the phase in which it was

discovered. The reason it would appear less expensive to

correct errors in the earlier phases of development is that

fewer binding and interrelated decisions have been made.

Therefore, making a change in one area of the program or

project has a lesser effect on the rest of the systemic

decisions that have been made.

86

Figure 4-5. Software Life Cycle: Per Error Fix Per Phase.

Clearly, it is in the best interest of the project

manager to consider early the requirements for quality and

maintainability. As illustrated above, maintenance is

affected by decisions made throughout the life cycle.

Furthermore, it has been shown that the total life cycle

costs may be reduced by this early consideration. It must

be emphasized that although maintenance is chronologically

last in the software life cycle, it must be properly consid-

ered and planned for early in the development process. The

next sections of this chapter examine various design and

management techniques that have been offered in the literature

as a means of achieving quality. Although it has been shown

that the software life cycle consists of many interrelated

87

phases, for the purpose of illustration the tools and techni-

ques will be presented under the following headings: require-

ment analysis and specification, design and management tools

and techniques. Also, a section will be devoted to examining

means of graphically representing the design decisions that

are made. The emphasis will be on presenting an overview of

the various methodologies and no claim of completeness regard-

ing the discussion of any of the individual topics is made.

However, references of each of the tools or techniques are

provided for the interested reader.

B. REQUIREMENT ANALYSIS AND SPECIFICATION TOOLS

The process of analyzing the needs of an organization to

determine the requirements of and constraints on a software

system has traditionally been called systems analysis.

Although much of the work done during this phase is done by

personnel other than software engineers and is thus beyond

the scope of this thesis, Jensen and Tonies highlight the

need for the involvement of the software engineer in the

analysis of the requirements. Although, in their words,

"They (software engineers) do not play a lead role in
systems design, the software engineers are instrumental
in bringing all of the elements of the system together
in the final systsms product and making them operate
together. Therefore, the software engineers play a major
synthesis role in the design process." [17]

1. Automated Tools

Although the process of requirements analysis is

primarily a mental activity that requires the analyst to

88

combine the needs of the users with various technological

and economic constraints to produce a clear and precise

definition of the system, there have been attempts to auto-

mate the process in order to provide a means of specifying

the requirements in such a manner as to ensure their complete-

ness and consistency as well as facilitating ease of change.

A problem statement language (PSL) and problem state-

ment analyzer (PSA) are two tools developed by Teichroew and

others at the University of Michigan to aid in the systems

design process. [74] The PSL is based on the definition of

objects and their relationships, providing for more than

twenty types of objects and over fifty relationships. The

PSA, a supporting software system, accepts PSL as input and

is used to maintain a data base of current specifications.

It produces a number of reports and graphics that describe

internal and external data flows, management information and

other systems data. One feature of the PSA is that it checks

for inconsistencies in naming of variables and data flows and

is useful in identifying areas that require further analysis.

Another management feature is that it tracks changes to

specifications by date, the person making the change, and

the person who authorized it. This information allows the

manager to keep track of the status of the analysis as well

as providing a history of the design decisions that were made

or changed.

89

SREM or Software Requirements Engineering Methodology

is a system that was developed for the U.S. Army Ballistic

Missile Defense Advanced Technology Center by TRW for use in

the analysis and specification of requirements for large,

real-time weapons systems [75, 76]. It utilizes a PSL-like

language called RSL, or Requirements Statement Language,

along with a number of computer programs to support the

creation and checking of requirement specification

documentation

.

The primary goal of both of these efforts is to

develop complete, precise and consistent specifications that

are easily understood by both the user and the developer. It

also facilitates the modification of the specifications by

storing them in a data base with programs designed to auto-

matically generate specifications as well as provide a means

of tracking progress and changes made in the system.

Reference [77] has examined the use of these systems

in the Department of the Navy. PSL/PSA, while promoted in

the literature as primarily a business oriented system, has

been, along with SREM, utilized primarily for tactical soft-

ware development. The author has identified several problems

associated with their use in DoN projects. Both require

large supporting computers to hold both the data bases and

support software. SREM, in particular, is a highly machine

dependent system due to its memory mapping technique. It

operates with approximately 60,000 lines of PASCAL code and

90

can be operated on a limited number of computers; namely the

Texas Instruments Advanced Scientific (ASC) computer and

certain models of the CDC 6600. Petrie [77] reports that

work is underway to also make SREM compatible with Digital

Equipment Corporation's VAX-11. PSL/PSA, which is written

in FORTRAN, is somewhat more portable but also requires a

large memory capacity. Another weakness is that users have

found that due to the syntactical characteristics, there is

considerable training required before they can use these

tools effectively.

A third major problem with these systems, and one that

has a significant impact on potential DoD users, is that the

outputs produced by these systems do not meet current stand-

ards for software specification documentation for either

tactical or non-tactical software as delineated in References

[78, 79], and [80]. Research efforts have been undertaken

to develop programs that will translate the current outputs

into an acceptable format. Glass [32] cautions against the

use of these systems except where the users have had prior

experience. Furthermore, due to the cost of the support

equipment and software, he feels that they should be used

only on projects of a large scale. Yet, clearly, the poten-

tial impact of automated tools such as these on the production

of software that is complete and reliable as well as more

easily modified is great. Further research and development

to make them more portable and user-friendly is both needed

and justified.
91

2. Structured Analysis and System Specification

This technique, described in detail in Reference [81],

is intended for use with Structured Design [21, 57] as a

means of tying together the requirement analysis and specifi-

cation and design phases of software development. Its pro-

ponents claim that it is a top-down, partitioned, graphic way

of analyzing the user's requirements that result in the

production of a structured specification.

DeMarco [81, 82] notes the following five advantages

of this approach:

1. It is graphic, made up mostly of diagrams.

2. It is partitioned, not a single specification but a
network of interconnected mini-specifications that make
the reading and understanding of each part as well as the
system as a whole, easier.

3. It is top-down, presented in a hierarchial fashion
with a smooth progression from the most abstract upper
progression from the most abstract upper level to the
most detailed bottom level.

4. It is maintainable; a specification that can be
updated to reflect change in the requirements.

5. It is a logical model of the system-to-be. The
user can work with the model to perfect his vision
of business operations as they will be with the new
system.

The purpose of this methodology is to identify and

track the flow of data through a system noting the process-

ing required to transform the input data into an output

format that is acceptable to the user. The goal of this

approach is to produce "structured specifications" that

consist of the following elements: Data Flow Diagrams for

92

each level of modules in the system, a Data Dictionary, and

a "structured" English or decision table representation of

the processing logic at the primitive level in what is termed

a "mini-spec".

a. Data Flow Diagrams

A Data Flow Diagram or DFD is a network represen-

tation of the system. It portrays the system in term of its

components with all of the interfaces among the various

components identified. There are four symbols used in the

notational scheme to represent the components of the system.

A circle or "bubble" represent the process being performed

on the data to transform it into the format required for

output. Data flows are represented by arrows with a unique

identifying name for the data flow above the arrow. Data

sources and sinks, i.e., the beginning and end destination

of the newtwork, are denoted by a box with the name contained

therein. Files that are required by the system to hold the

data either temporarily or permanently, are represented by

straight lines with the file name next to it.

The concept of a leveled DFD, as protrayed in

Figure 4-6, is a result of top-down analysis. The top level

or "context diagram" is a departitioned version of the entire

system that shows only the net inputs and outputs of the

system. Its only purpose is to delineate the scope of the

study. Each process identified is numbered with the processes

identified as the highest level assigned the number zero.

93

"JXA^fiAA O

OLD—MA£fQ>_

XXAGrRAtfVAI-

"i>iA<S,^ftAA 1_

"Essecr

T>A£^2Ak* 3.

3.1. Y UOTCA*^1 ^)

[MteCW —r /

pescrr

UfTiO.T€: N

Figure 4-6. Example Data Flow Diagram [81]

94

All components associated with a particular level are identi-

fied prior to beginning work on the next lower level. Each

process is examined and a decision is made as to whether it

represents a single function. If it does not, subsequent

middle level diagrams are constructed with the numbers

representing the subdivisions of the upper level process

becoming an extension of the upper level process number.

Thus, diagram 1 of Figure 4-6 is a further refinement of the

process 1 from diagram 0. If, for example, bubble 1.1 was

determined to need furhter expansion and found to consist of

3 subparts, the resulting diagram would be numbered 1.1 and

each subpart 1.1.1, 1.1.2, and 1.1.3 respectively. Each

diagram is designed to fit on and 8 x 11 inch sheet of paper,

The entire package of diagrams would consist of all of the

ones necessary to trace the system from its highest level of

abstraction to the lowest level primitives. If an error or

change was required to any single process, the effect of the

change would be isolated to only that diagram and those of

its lower level derivatives. The numbering convention also

aids in tracing the effect of a change on the lower levels.

DeMarco gives the following summary of leveling conventions:

"1. To see the detail of a given bubble, look at the
diagram with the same number.

2. Inputs are balanced between parent and child - data
flows into and out of the parent bubble are equivalent
to the data flows into and out of the child diagram.

95

3. At any given level, only files and data flows that
are interfaces among the DFD elements are shown. Files
and data flows that are only relevant to the inside of
some process are concealed.

4. At the first level where a file is shown, all
references to it must be shown." [81]

b. Data Dictionaries

The second component of the structured specifica-

tion is the Data Dictionary. It is the "set of definitions

of data flows, data elements, files, data bases, and processes

referred to in a leveled DFD set." [81] There is a limited

set of symbolic relational operators used in defining each of

the elements in the set of DFDs : equivalency, and either-or,

iterations of, and optional. Each unique element is identi-

fied as to its composition, values and meanings, or process

description. Each entry in the dictionary is also identified

by the diagram number on which it first appears. Depending

on the size of the project, this dictionary can be maintained

either manually or with the use of a text editor processor.

DeMarco recommends using the PSL/PSA automatic system of

Teichroew's [74] described earlier as a means of automating

the process of building and maintaining the data dictionary.

Additionally, this automated tool can be used to generate

the DFD diagrams themselves. Thus, the diagrams, as well as

the dictionary itself, can be changed and regenerated as new

requirements are identified.

The final component of the structured specifica-

tion is the "mini-spec", which is a statement of the

96

processing required of each functional module of the system.

There exists one mini-spec for each of the lowest level

primitive and can take one of two forms, "structured English"

descriptions or decision tables. It should be noted that

while each of the lowest level primitive functions consist

of the various subdivisions of the upper level task, they do

not necessarily reside at the same numbered level due to the

fact that some tasks will require more subdivision than others

in order to ensure that the bottom level bubbles represent a

single function.

c. Structured English

Structured English, or as it is referred to in

other literature, program design language (PDL) [83], pseudo-

code [32] or metalanguage [5], is a version of natural English

that makes use of a limited vocabulary and syntax. The

vocabulary consists of imperative verbs, terms defined in the

data dictionary and certain reserved words for logic

formulation. The syntax is limited in DeMarco ' s version to

the three basic control structures, sequences, iteration

(DOWHILE) , and condition (IFTHENELSE) . Other versions

include the additional structures of DOUNTIL and CASE [83].

Figure 4-7, an excerpt from Reference [81], shows the

processing logic for a stock reordering, algorithm.

Glass [32] notes while program design languages

such as Structured English are a non-graphic representation,

the use of indentiation to grpup common actions dependent on

97

Policy for Ordering New Stock

FOR EACH New-Stock Request:

1. Find Authorization-Form SUCH THAT

Reference-Number EQUAL TO Request-Number

OF New-Stock-Request.

2. If NO MATCH discard New-Stock-Request

OTHERWISE:

Write Purchase-Order For Ordered-Item.

Select Supplier FOR WHICH Ordered-Item

appears IN Supplier-Catalogue-Entry.

Copy Supplier-Name and Address

ONTO Purchase-Order.

Copy Purchase-Order-Number

ONTO New-Stock-Request.

File New-Stock-Request WITH

Authorization-Form.

Figure 4-7. Structured English Example [81]

98

a higher level of control and the limited syntax make it more

readable and graphic-like. Furthermore, by restricting these

languages to the same control structure as is used in struc-

tured programming, it makes it easier to translate the design

at implementation.

Some controversy has risen around the degree of

formality that should be used in specifying a PDL. DeMarco,

for example, claims that his form of Structured English is

not a rigorous specification language that allows the analyst

to effectively code the requirement. He cautions against

introducing such rigor into the analysis phase since to do so

would direct attention away from specifying the system in

terms of what it should do to supplying the implementor with

detail instructions on how to do it. Advocates of more

rigorous formality cite mathematical-like rigor and the

ability to use automatic consistency checking programs as

advantages of the formality. Caine and Gordon [83], for

example, have developed the Program Design Language System.

It accepts a PDL which uses the constructs of hierarchical

structured programs. The system, which has a number of

supporting software programs, provides a number of useful

summaries which give designers updated versions of the design

as well as perform consistency checks to ensure that all of

the variables have been defined. This is similar to the

other automated tools described earlier. Boehm [5] notes

that while the structure and limited syntax make it easy for

99

people familiar with programming techniques to use PDL, it

is less easy for non-programmers to understand. Ultimately

the advocates of these languages envision it as a means of

automatically generating code from the design specifications.

This capability would reduce the possibility of introducing

errors in translating the design into a computer readable

format as well as reduce or eliminate the need for program-

mers altogether.

d. Decision Tables

The other method of representing process logic in

the mini-spec is through the use of decision tables, a tech-

nique that has long been recognized as a valuable tool in

representing design logic [84, 85], Decision tables have

their greatest applicability in "logic oriented programs that

must process a large number of decisions, such as problems

where numerous alternatives must be exhaustively considered."

[32] Figure 4-8 illustrates the basic form of a decision

table.

Condition Stub Condition Entry

Action Stub Action Entry

Figure 4-8. Decision Table Structure

100

As is shown above, the decision table is divided

into four quadrants. The upper left quadrant, called the

condition stub, contains all of the possible conditions being

considered for a particular decision logic. The condition

entry frames the condition stub as so to constitute a Boolean

with only two possible states, True or False, or Yes or No.

The action stub, in the lower left quadrant, contains the

actions that result from the condition tested above. The

action entries indicate the desired response to the combina-

tion of conditions. A dash, "-" in a box indicates a situa-

tion where a particular condition is either irrelevant or is

mutually excluded by virtue of two contradicting conditions.

An example of the latter would be in an algorithm for deter-

mining whether or not to assign an officer to sea duty based

on his previous assignment. If one rule was predicated upon

the fact that the officer had been at sea for the last four

years and another was predicated upon the fact that he had

been assigned ashore for the last four years, there could

not be a case where the officer would meet both criteria.

Finally, a "X" indicates the action to be taken given a

particular set of conditions. Figure 4-9 is an example

decision table representing a process for approving or

disapproving of a loan request.

As reported by Pooch [85], one advantage of

decision tables is that it is possible to convert them into

compilable source via a preprocessor. Another advantage is

101

Loan Table Rl R2 R3 R4

Satisfactory

Credit Limit Y N N N

Favorable

Payment History Y N N

Special Clearance

Obtained - Y N

Approved Loan X X X

Disapproved Loan

, i

X

Figure 4-9. Example Loan Decision Table [85]

102

that their structure is such that it aids in identifying

overlooked situations and logical inconsistencies. There

are two potential disadvantages to the use of decision tables

First, possible ambiguity may arise as a result of the "don't

care" conditions. Secondly, they are not readily usable in

cases where the program logic is not decision-making oriented

e. Evaluation and Alternatives

The Data Flow Diagrams, Data Dictionary and mini-

specs all form the structured specification. Among the

advantages claimed by proponents of this methodology, such

as DeMarco [81] and Yourdon [21] , is that it is a well-known

method with a history of successful applications across a

wide variety of business organizations. Also, there are

courses, texts and even video tape presentations offered as

training aids in familiarizing personnel with its use. As

DeMarco points out "Most of the ideas have been used piece-

meal for years. The advantages of this discipline are

substantial. They include a methodological approach to

specification, a more usable and maintainable product, and

fewer surprises when the system is installed." [81]

Critics of this approach, however, note several

weaknesses. It requires four different notations, e.g.,

Data Flow Diagrams, Structured English, Decision Tables, and

Data Dictionary formats, that the analyst and user must

become familiar with. Secondly, as Wasserman [34] points

out, the number of diagrams can become "unwieldy" if the

103

system in question is very large or requires duplicated

bubbles. He also objects that Structured Analysis "...dwells

upon the technical aspects without providing management

procedures that are essential to the effective use of such

a tool. [34]

There exists another such tool called SADT or

Structured Analysis and Design Techniques, a process developed

by Ross [86, 87] and copyrighted by Softech, Inc. of Waltham,

Ma. It is very similar to Structured Analysis; so similar

in fact that DeMarco claims that the major difference is that

SADT uses boxes instead of circles to denote processes on its

graphics. One other difference is the emphasis of management

procedures to be used in conjunction with the modeling aspects

of the system. All diagrams go through what Ross describes

as an "author-reader cycle." [86] As each level is completed,

the analyst/designer reviews the model of the system to-date

with the user to ensure that it accurately reflects the

user's requirements. It, of course, requires that the user

be familiar with the notation used in the diagrams and

dictionary. More importantly, it emphasizes both the need

for the user to adequately determine his requirements

beforehand. It also allows the user to track the progress

of the project and allows him to become actively involved in

the validation process. The other major management procedure

requires that all comments must be received in written form,

thereby establishing a effective means of communication

104

between all parties during the analysis phase that is

traceable. This communication can be either handwritten

or done via a text editor.

Jones [88] objects to the requiring of all

communications to be in a written format. He contends that

it is not possible to conduct a project of any magnitude on

the basis of written communications only. A consequence of

this is, in his view, that word processing costs have become

the second largest expense of the development phases, exceed-

ed only by debugging costs. However, one of the major por-

tions of the cost to word processing is in the development

and maintenance of documentation. As Schneidewind and Kline

correctly point out the documentation problem has historically

been one of a "lack rather than an abundance of documentation",

This would suggest that there is a need for more rather than

less documentation. Many of the problems of software main-

tenance appear to be from inadequate documentation, both in

terms of quantity and quality. However, there is still a

need for oral communication such as design reviews and

walkthroughs

.

C. DESIGN METHODOLOGIES

1. Structured Design

There are many touted methodologies for designing

software that all claim to be the most "intuitive" method of

producing quality software. They can be classified into two

105

major groups: data flow oriented and data structure oriented

design.

Under the first catagory, the most publicized method

is that known as Structured Design. Several books by Yourdon

[21, 57] as well as an article by Constantine, Stevens and

Myers [89] all describe this approach in detail. It has been

developed to be used as the transitioning tool between Struc-

tured Analysis and actual implementation. In fact, articles

predating the publication of Reference [81] often combine

the two methods.

Structured Design consists of various concepts,

measures, analysis techniques, rules of thumb and terminology

that aims at transforming the Data Flow Diagram into what is

known as a Structure Chart. A structure chart is "a docu-

mentation technique for illustrating the modules in a system,

and the interconnections between the modules." [57] It

represents the actual program modules and identifies the

boundaries between modules by identifying the "afferent"

(inputs) and "efferent (output) data flows for each module.

Figure 4-10 is example data flow diagram and result-

ing structure chart for an upper level module that computes

net pay as part of a financial accounting or payroll system.

Module A represents a control module that requests and

receives various information from two I/O devices pulse an

internal system table. It passes that information to two

transform modules which calculate the gross and net pay.

106

(GP - PD = NP)

Net Pay

I OUTPUT i '

I

MP
|

[^ Output element

boundary line

Get nnui

Device / / Device

(Payroll .'/ (Reqular

Deductions)// Hours)

?0 RH

Module
A

Figure 4-10. Net Pay DFD and Structure Chart [90]

107

The rightmost branch then outputs the net pay to some peri-

phial device such as a printer. Note that devices are

represented in this diagram by parallelograms, internal

tables by hexagons, and processes by boxes. The arrows

represent the afferent and efferent data flows and are

labeled as to the information required by each module or

submodule. Detailed descriptions of the data flows would be

contained in an accompanying Data Dictionary. The process-

ing logic for each module would also be availabe there.

Structured Design uses a strategy called "transform analysis"

that translates the Data Flow Diagram into a Structure Chart

and determines the shape of the chart. Yourdon defines

transform analysis as:

"A design strategy in which the structure of a system is
derived from an analysis of the flow of the data through
a system, and of the transformations of the data. [57]

One claimed advantage of this design approach is that

by adjusting the boundaries between the inputs, outputs and

processes, several alternative structures can be rapidly

produced and evaluated. Figure 4-11 shows the same net pay

DFD with the boundaries adjusted so that Transforms 1 and 2

are outside the process boundary line. Notice the radically

changed appearance of the resulting Structure Chart. All of

the calculations other than the actual determination of the

net pay are not performed by a new module called "Get trans-

formed data" which is an additional control module in the

system. There are now eight vice six processing modules in

108

INPUT (RH - RR - RP)

Regular Pay

RH(Regular Hours| /Transform

1

RR (Regular Rate) table

ORfOuertime natel table

QHIOvuftime Hoursl / Translorm

2

(OH x OR = OPI
Overtime Pay

POIPjyroll Deductions)

PROCESS OUTPUT

(GP - PD = NP)

Net Pay

Compute \——W Compute '

RP + OP = GP)
Grosi Pay

Get input

Device / / Device

(Payroll // (Regular

Deductions)// Hours)

PD // RH

Module

A

Get
transformed

data

(Regular Pay

Overtime Pay)

Compute
result

(Net Pay

Gross Pay)

Transform

Regular Pav

RP- RHx RR

Translorm 2

Overtime Pay

OP- OH x OR

Put

output

(Net Pay)

Device

(Overtime

Hours)

OH

Compute
Grow Pay

GP RP + OP

Compute
Net Pay

NP - GP - PO
NP

Device

'(Net Pay)/

NP

Figure 4-11. Net Pay With Altered Boundaries. [90]

109

the previous figure. Peters and Tripp [91] point out that

one of the weaknesses of this ability to move the boundaries

at will is that there are no formal guidelines provided in

the literature for criteria for moving them. Another weak-

ness is that there are few guidelines as how to verify the

accuracy of the data flows. This is due to the lack of

review guidelines in the literature describing this technique

However, it is certainly possible to conduct design reviews

with this approach as well as any other. Yourdon discusses

design walkthroughs in Reference [57] . They are, however,

between design teams assigned to portions of a large project.

No mention is made of any designer-user interaction.

2. The Jackson Design Method

The most advertised example of a data structure

oriented design method is that proposed by Michael Jackson

[92, 93]. His method takes the view that the identification

of the data structure, i.e., by file, record, field, and

element, is the key issue in developing quality software.

The Jackson Design Method relies upon three fundamental

observations

:

1. The program structure should be closely related to
the problem structure.

2. For many systems, the problem can be reduced to the
creation of a mapping from input structure to the output
structure.

3. A design method, in order to gain wide acceptance,
should be easily teachable and useable by a large number
of average designers.

110

Jackson determines the structure of the input data and creates

a chart that illustrates that structure as a tree-like

hierarchy. The top of the tree may be a file, or series of

files with records, fields of records and elements of fields

cascading from the top to indicate the relationships between

the various data parts. He then creates a similar chart for

the desired output structure. When they match, the system

is essentially designed. In practice, of course, the situa-

tion is rarely that simple. Input structures and output

structures often do not map together. When this lack of

symmetry occurs, it is called a "structure clash". A struc-

ture clash can be defined as the existence of multiple sets

of data which do not possess a one-to-one correspondence at

all levels of the data structures. The normal means of

handling such clashes is to define an intermediate structure

that through a process transforms the input structure to

match the output.

There are several implicit assumptions that this

method makes. It assumes that only serial files will be

involved. It also assumes that the users know how to struc-

ture data so that the specifications supplied clearly define

the structure. Since it is designed to be teachable and

usable by an average designer, it does not look for optimal

designs. Rather, as Wasserman [34] points out, it searches

for an acceptable design. Unfortunately, there are few

guidelines as what constitutes an acceptable design other

111

than it works. Although relatively new to the United States,

this approach has been widely accepted in Europe and the

rights to this method have been purchased by INFOTECH Ltd. [34]

3. Summary

While there are numerous other methodologies offered

in the literature such as DREAM [94] or Higher Order Software

(HOS) [95], there are a few points to be made. While recog-

nizing Glass' contention that "design techniques are probably

the least amenable to tools and methodologies and the most

desperately in need of them" [32] , it is difficult to deter-

mine which if any are best.

An experiment conducted by Peters and Tripp [91]

examined five different methodologies: Structured Design,

HOS, the Jackson Method, Warnier's Logical Construction of

Programs and Meta Stepwise Refinement (MSR) . While the

results were affected by their own past experiences they con-

cluded that none of the methods examined would be an asset in

every situation. Assumptions made by each method are just

that: things that are taken for granted. Each of the articles

cited in this section describe various applications where they

were used successfully. The applications, due to their illus-

trative nature, were generally small in scale as well as

chosen to make the author's point. Further research in

determining the applicablility of these approaches in large

scale projects that assess them in terms of how maintainable

and reliable their outputs are, is needed. However no method

112

or tool is designer-proof. The presence of dedicated,

technically proficient managers to ensure that the design

is meeting its requirements will always be necessary. In

the final analysis, Peters' and Tripp's conclusion that

"Designers produce designs, methods do not" [91] serves to

further emphasize this need.

D. DOCUMENTING DESIGN DECISIONS

In addition to the use of the documentation techniques

described previously, there are many other alternatives

available. This section will examine four commonly used

techniques: HIPO, Flowcharts, Structured Flowcharts and

Program Listings. Unlike the first three techniques, the

program listings are not actually available until after the

design has been implemented. Regardless of this difference,

they all are valuable tools in providing the maintenance

programmer with a clear understanding of the system and its

components.

1. Hierarchy Plus Input-Process-Qutput (HIPO)

HIPO diagrams were developed by IBM as a design aid

and documentation technique. As a result of the stature and

size of its originator, it has been widely promoted as an

alternative means for documenting design decisions. Described

in detail in References [96] and [97], HIPO diagram packages

consist of three types of diagrams: a visual table of con-

tents, overview diagrams and detailed diagrams. The visual

113

table of contents gives a graphic display of the major func-

tions to be performed by the system and the relationship

between each functional module. The top box identifies the

overall purpose of the system. The subsequent levels break

that purpose into logical functions and subfunctions. It

also contains a legend to define the symbology used in the

overview and detailed diagrams. The objective of the over-

view diagram is to provide general information about the

system. It describes the major functions of the system and

references the detail diagrams necessary to reduce each major

function into a series of smaller, single-function modules.

The detail diagrams contain the basic elements of the system,

describe the specific functions, show the inputs and outputs

to each module. In addition to showing data flows, these

diagrams also show the flow of control between levels in the

hierarchy. Figure 4-12 presents the structure of a typical

HIPO package.

Primarily developed as a documentation tool, it is

also a useful design aid. It emphasizes the hierarchical and

functional aspects of a program and its data flows. It uses

a numbering scheme similar to that used in Structured Analysis

that can assist maintenance programmers to trace a function

from the documentation to the actual code. It also graph-

ically illustrates the interconnection between modules of

different levels which is helpful in determining the effect

of a change to a given module will have on the rest of

114

I » v „.j rtft.tCmn

JOES
I 3m« i»H

-^•1 >,,„, X'M

|
.

:>

l '

1 -J I

i /) 4

r n
L -j

1

«.

1

to /

Figure 4-12. A Typical HIPO Package [98]

115

the system. Another advantage of HIPO diagrams is that the

same package can be used repetitively with "... gradual

refinements made to the diagrams as additional steps are

taken." [34]

2. Flowcharts

Flowcharts are a graphic representation of program

logic. Their purpose is to make it easier to see the rela-

tionships and flow of control among the various design

elements. It is a technique that has been widely used since

they were first used by von Neumann for computer applications.

The notational symbology has been codified into a set of

standards that have been adopted by the federal government

and published in FIPS 24 Flowcharting Symbols and Their Usage

in Information Processing [98]. Figure 4-13 is an example of

a flowchart that describes the process of reading a book and

includes loops to show what happens when you are interrupted.

Many authors are opposed to the use of flowcharts.

Brooks [52] refers to the practice of using flowcharts as a

documentation tool a "curse" and "a most thoroughly oversold

piece of documentation." He also labels the practice of

requiring designers to deliver flowcharts as an "absolute

nuisance." He points out that flowcharts show only one

aspect of the structure of a program, the decision structure

and that they tend to be difficult to read due to the multiple

pages required to document a large program. With regard to

the use of flowcharts by maintenance programmers, Weinberg [70]

116

states that "we find no evidence that the original coding

plus flow diagrams is any easier to understand than the orig-

inal coding itself — except to the original programmer."

Glass [32] contends that while flowcharting is not particu-

larly useful as a documentation tool, it is a useful visual

aid for the designer in representing his thought process.

Brooks contends, however, that in actual practice, he has

"never seen an experienced programmer who routinely made

detailed flowcharts before writing a program. . .where organi-

zational standards require flowcharts they are almost

invariably done after the fact." [52]

DoD guidelines on the use of flowcharts are

inconsistent. The Software Acquisition Management Guidebook

[71] recommends that DoD not procure flowcharts with software

MIL-STD 1679 states that there is no requirement that flow-

charts be deliverable items when contracting for software.

In contradiction to these two guidelines, SECNAVINST 3560.1

[78] requires that "a flowchart shall be included for each

major procedure or subroutine that depicts operations per-

formed by the subprogram" be included in the Program Descrip-

tion Document. This requirement may be a result of the fact

that SECNAVINST 3560.1 was published in 1974, when flowcharts

were more in vogue as a documentation tool.

117

Open book to page 1

;

set reading pace to "thorough'

disable interrupts

Stan reading page —

Daydream;

set reading

pace to "rapid",

enable interrupts

Figure 4-13. Sample Flowchart [32]

118

3. Structured Flowcharts

With the advent of structure programming technology

and the recognition of the inadequacy of traditional flow-

charting techniques, a new form of flowcharts, called struc-

tured flowcharts, have been proposed. Alternatively called

Nassi-Shneiderman [99], or N-S, flowcharts after their

originators, they provide a graphic representation of a

program's logic design utilizing the control structures first

proposed by Bohm and Jacopini [38]. They can provide a main-

tenance programmer with a quick reference for finding the

code performing a logical function. Yoder and Schrag [100]

provide a thorough description of how to utilize this alterna-

tive means of documenting design decisions. Figure 4-14

illustrates the basic format of N-S charts which utilize the

three basic and two additional program logic control struc-

tures mentioned earlier. An example showing how these basic

structures can be nested and combined to illustrate a program's

processing procedures is provided in Figure 4-15. This figure

illustrates how a module that computed FICA deductions in a

payroll program would be presented utilizing the N-S format.

One great advantage of this tool is that because it uses the

same control structures as structured programming, there is

a one-to-one correspondence between the N-S flowcharts and

the program logic providing structured programming was

utilized. This is relevant to DoD since structured programming

is required in all federal government software development pro-

jects both tactical and non-tactical. It would be of limited

119

PROCESS
STATEMENT

Process Symbol Decision Symbol

00 .VHILSCONOITION

WHILE
PROCESS

UNTIL
PROCESS

00 UNTIL CONDITION

DO WHILS Symbol DO UNTIL Syrrool

i-t
PROCESS

00 CASE I

1-2
PROCESS

l-n
PROCESS

CAS?! Symbol

Figure 4-14. Basic N-S Flowchart Format [100]

120

HEAD THE FIRST PAYROLL RECORD

00 WHILE THERE IS MORE DATA TO PROCESS

^^^"^.^.^^ YEAR- TO -OATEFICA LESS THAN ^ "

^""^--^^^ MAXIMUM ? ^^ ^~*~'

NO ^*****-»^«^
i<^ ^ YES

SET PICA
DEDUCTION
TO ZERO

CALCULATE PICA
OEDUCTION

"

—

.YEAR . 70 - DATE PICA PLUS ^^
^vQEDUCTlON > ^^
NO ^v^AXlMUM'^ yis

SET OEOUCTION
SO YEAR • TO • OATS
WILL NOT EXCEED
MAXIMUM

AOO OEOUCTION TO
YEAR -TO -OATEFICA

SET NET PAY TO GROSS PAY MINUS PICA OEDUCTION

PRINT NAME. GROSS PAY, PICA OEDUCTION. YEAR • TO - DATE
FICA.NET PAY

READ NEXT PAYROLL RECORO

Figure 4-15. Example N-S Flowchart [100]

121

utility in those cases where the program did not use the

control structures required such as in programs developed

prior to the standard being promulgated. Also since each

module is to be contained on a single 8 by 11 form, it serves

as added inducement to make the modules small and single-

functioned. There is, however, little information in the

technical literature to shed light on how well this concept

has been accepted or if they required more time to develop

or maintain.

4. Program Listings

While program listings are not actually a means of

documenting design decisions as they are made, they are

included as a means of documentation in that it would be

highly desirable if programs could be made self-documenting.

This would eliminate the necessity of maintaining multiple

forms of documentation that represent the same program logic.

Many authors advocate such an approach through the use of

structured programming listings, which are computer generated

copies of the compiled source code. These listings often

include cross-reference listings since they can be auto-

matically generated by the compiler. They are a valuable

tool to both the designer and maintenance programmer in that

they identify every place an item, such as a variable or

subroutine, appears in the programs. These listings can be

used to check for extraneous variables that are never called,

as well as serve as a reference tool for the maintenance

122

program to determine the interrelationships between parts

of the program.

Myers [39], for example, argues that all other forms

of documentation are simple redundancies when he states:

"Since we already have the code, why not let it serve as
the logic documentation? Additional documentation such
as a flowchart would be undesirable because it would be
redundant. Redundancy in any type of documentation should
be avoided because it increases the chance of conflicts.
Furthermore, unless care is taken to update the documenta-
tion (which is more difficult if the logic and physically
separate from the code) , redundant documentation becomes
totally useless after the code is modified a few times." [39]

Both MIL-STD 1679 and SECNAVINST 3560.1 contain specific

guidelines as to what constitutes a self-documenting program.

These documents should be examined in detail to ensure that

software delivered meets the requirements set forth in each.

5. Summary

This section has illustrated a variety of documenta-

tion tools and techniques that can be used in representing

program design. In a survey of documentation techniques

conducted in 19 79 by Anderson and Shumate [101] to determine

which type was found most useful by maintenance programmers,

the preferred ranking was, in descending order:

1. Program listings.

2. English language narratives.

3. Flowcharts.

4. Hierarchy diagrams.

5. Data base design documents.

6. HIPO

123

The trend toward increased emphasis on the use of

program listings should continue. Since, however, design

decisions must be documented prior to the code ever being

generated, it seems unlikely that the need for some graphic

means of recording those decisions will be eliminated. If

it is true that a picture is worth a thousand words, the use

of graphic representations is a way of conveying the design-

er's intent to the programmer in a concise, yet physchologi-

cally reasurring way. Clearly, a wide variety of documentation

tools will always be necessary.

E. MANAGEMENT TECHNIQUES

In addition to the tools and techniques available to

designers, consideration must be given to the proper mange-

ment of the development process. In the introduction,

reference was made to a 1980 GAO study on federal software

acquisition projects where nine cases were studied. The

single successful project was in no small part due to the

presence of a highly capable manager. The software engineer-

ing curriculum examined in Chapter II also emphasized that it

takes more than knowledge about computer related activities

to make a truly capable software engineer. In this section,

two management techniques will be examined: the chief

programmer team concept developed and promoted by IBM and

software configuration management, a means of controlling

change to the software throughout its life cycle.

124

1. Chief Programmer Teams

The software development management technique , known

as the "chief programmer team" concept, was developed by

Harlan Mills, Terry Baker and their associates at IBM. [102]

In an article describing an experiment utilizing this concept

[63] , two major motivations for trying this approach were

cited. One is the realization that because of the rapidly

expanding nature of computing, many projects are staffed

primarily by inexperienced people. At the same time, those

with technical expertise and experience are pushed into

higher levels of management where they are able to make only

limited contributions to the technical aspect of a project.

The second motivation was the observation that little func-

tional specialization is used on a project. In the more

traditional approach, a single individual is responsible for

designing, programming and testing a single module. The

primary feature of the chief programmer team concept is a

functional organization centered around a competent, experi-

enced person who has total responsibility for the technical

development of the system. The chief programmer, or as

Brooks [52] calls him, the "surgeon," personally develops

the overall system and programs the most difficult parts.

Other members of the team are chosen and assigned

tasks primarily on the basis of whether or not they can

extend the capabilities of the chief. A back-up individual

is assigned to assist the chief programmer and is experienced

125

enough to take control of the project should, for some reason,

the chief programmer become unavailable. Routine jobs such as

coding simple programs, removing syntax errors, and running

simple tests are carried out by the junior members of the

team who have less experience than the chief or his assistant.

Clerical duties such as key-punching, running jobs, and

maintaining listings are given to a secretary or librarian.

In Brook's extended model of the chief programmer team there

is one individual assigned to write all of the user documenta-

tion in order to retain a consistency throughout the

documentation

.

In the experiment described by Baker, the size of the

group was not large, never exceeding more than 11 people at

any time. The experimental group designed and implemented

an archival cataloging system for the New York Times that

consisted of over 80,000 lines of source code. For larger

projects, the division of the total task into separable parts

permits the utilization of the functional technique in each

of the resultant subtask areas.

As described by Baker, there are three additional

components of the chief programmer team: the use of auto-

mated program support libraries, top-down programming and

structured programming. The use of a programming support

library is intended to isolate purely clerical work from the

technical aspects of system development. The programming

support library consists of four major parts. There is an

126

"internal" library of source code, load modules, and test

cases in machine-processable form. An "external" library

contains listings of the internal library and records of

superceded versions of the system. These expired versions

provide a record of past decisions and can be a very valuable

tool in avoiding making the same mistakes over again. A set

of "machine procedures" for updating libraries, retrieving

modules, testing and so on is the third major piece of the

programming support library. Finally, there is a set of

"office procedures" that are followed by the clerical person-

nel to aid in maintaining and adding to both the internal

and external libraries.

The top-down design and structured programming refer

to the manner in which the software was designed and

implemented. The major functions of the system were identi-

fied and expressed in terms of lower level primitives. This

process continues until all of the functions are identified

in terms of such a sufficiently low level that their imple-

mentation can be expressed in a minimal number of programming

statements. The structured design aspect of this project

refers to Dijkstra's concept of writing programs as a nested

set of single-entry, single-exit modules using logical

constructs limited to those discussed earlier. Within each

of the modules, the nested constructs use a style of indenta-

tion like that of Structured English to enhance the readability

127

and understandability of the program for both the other

designers and maintenance programmers.

As noted by Baker, the chief programmer team basic-

ally contains nothing new. Its contribution , in his view,

is that it has integrated, for the first time, four existing

techniques: functional specification, program support

libraries, top-down design and structured progamming [10 3]

.

Advocates of this technique, such as Brooks, claim

that it is an effective technique that ensures the conceptual

integrity of the design by having one individual responsible

for designing the entire system. Furthermore, by reducing

the size of the teams, communication cost, in terms of time

and interoffice volume, are reduced. The use of structured

programming technique and high level languages also increase

the efficiency of the programmers and maintenance personnel.

One possible disadvantage to this approach lies in the fact

that the chief programmer must be a technically superior

individual. If he becomes disenchanted with the project or

is lured away by higher salary, it could leave his team in

a bind, depending on how capable the assistant really was.

2. Software Configuration Management

"Configuration management is," according to Glass

[32], "an established recognized engineering discipline in

industry, having been applied to the whole range of hardware

projects for years." It is a discipline that identifies,

baselines, controls and reports changes to what are termed

128

Configuration items. The need for a managerial tool for

controlling the changes to software has, unlike hardware,

only been recently recognized, as maintenance costs have

risen to their current level.

Bersoff and others [103] have identified four basic

elements of software configuration management: configuration

identification, configuration control, configuration status

accounting, and configuration auditing.

Configuration identification consists of recognizing

and labeling the configuration items at selected times, or

baseline, during the software lifecycle. While recognizing

that change is inevitable, baselining means to "freeze" the

software requirements and documentation at predetermined

times and using those as standards by which changes can be

measured. This need to freeze the solution at certain points

have led many to recognize that software development actually

leads to a prototype or trial system. The key to having a

prototype that requires minimal rework is to fully analyze

the user's requirements to make them as complete as possible.

However, as Lientz and Swanson [41] point out, regardless of

how complete the analysis and specifications are, there is

still a great deal of change that evolves from changes in

the user's long-term goals and needs, as well as increasing

user familiarity with the system leading to enhancement

requests. They contend that rather than concern themselves

with finding ways to perfect methods of specifying

129

requirements, software designers should concern themselves

more with building systems that can be changed readily since

the change is inevitable anyway. While agreeing with the

idea that the maintainability is a crucial issue, it is the

contention of this thesis that the better the specification

and analysis, the less corrective maintenance will be

required to overcome shortcomings in the system. This

reduction allows the maintenance programmer to concentrate

on enhancing the software that results from users' requests.

Configuration control provides the means to manage

changes to the configuration items and consists of three

basic ingredients:

"1. Documentation such as administrative forms and sup-
porting technical and administrative material for formally
precipitating and defining a proposed change to a software
system.

2. An organization for formally evaluating and approving
or disapproving a proposed change to a software system.

3. Procedures for controlling changes to a software
system." [103]

Configuration status accounting provides the mechanism

for maintaining a record of how the software has evolved as

well as giving the status of the system at any stage of

implementation. Configuration auditing provides a means to

determine how accurately the software product matches its

associated documentation. It is a management tool for

determining where further documentation maintenance is

required.

130

DoD has recognized the value of software configura-

tion management as a means of controlling changes to the

software as well as assuring the quality of the product.

DoD Directive 5000.29 Management of Computer Resources in

Major Defense Systems , states in part:

"Defense system computer resources, including both computer
hardware and software will be specified and treated as
configuration items." [104]

Additionally, MIL-STD 1679, even more explicitly,

requires contractors to:

"...establish and implement the disciplines of configura-
tion management; namely configuration identification,
configuration control, and configuration status accounting.
The contractor shall be cognizant of the requirement for
long-term life-cycle support of the weapon system
software." [105]

MIL-STD 52779 (AD) [106] further requires that the

contractor provide for independent audits to ensure that the

objectives of the configuration control program are attained.

As Bersoff notes, the problem with software configu-

ration management is that it has generally fallen under the

"umbrella" of the configuration management of the entire

system. Hardware, being more visible and tangible, has been

treated in great detail. Software, on the other hand, being

less visible and tangible, has been largely neglected.

Fortunately, software configuration management has been

accepted as a vital tool in managing change. In fact, as

stated earlier, Kline [27] has recommended replacing the

phrase "software maintenance" with "software configuration

131

management" to emphasize the crucial role it plays in the

maintenance of software. With regard to controlling change,

Lindhorst [107] has proposed "scheduling" maintenance of

software systems. Scheduled maintenance is a policy where

instead of judging each request for change as it is received,

all requests for changes to a particular application is held

until a predetermined time. At this predetermined time, all

of the proposals are evaluated both on their individual merit

and with respect to each other. Lindhorst has installed this

concept as part of the configuration management program at a

midwestern bank. Among the benefits he perceives from this

scheduling technique are:

1. The consolidation of requests so that all source code
and documentation for a particular application can be
updated at one time.

2. It forces the user departments to think more about the
changes they are requesting.

3. It provides the controlling organization with the
opportunity to evaluate all proposed changes at one time,
giving them more control over the system.

While giving more control and consolidating the

evaluation process, there may be a disadvantage in that if

the schedule is enforced too rigidly, problems that require

immediate attention may be postponed too long, thus increas-

ing user frustration with the system.

F. SUMMARY

As has been illustrated throughout this section, there

exists a wide variety of technical and managerial tools and

132

techniques that are available to the project manager. Some,

such as configuration management are frequently accepted as

a valuable tool in any software project. Others, such as

the use of structured flowcharts or design methodologies

that are predicated on the structure of program logic and

data, are less accepted and require further research in order

to validate their ability to produce software that is both

reliable and maintainable. Since some of these tools are

more appropriate for projects of considerable scale, e.g.

the automated specification and design methods such as SREM

or PSL/PSA, the project manager must weight the benefits

from using any of these tools against the risks involved and

perhaps tailor them to better meet the needs of the

sponsoring organization.

133

V. DOCUMENTATION/MAINTAINABILITY

A. INTRODUCTION

The purpose of this chapter is to examine the effect of

documentation on the maintainability of a software product.

Documentation, properly designed, can be used by a project

manager as a means of determining whether or not the product

will be easily adapted or modified and if the user's original

requirements are being met.

Another purpose of this chapter is to examine two proposed

methods to measure maintainability. This chapter will examine

the possibility of extending these approaches to that they

can be used as a means of determining the maintainability of

a software product earlier in the life cycle. The reason for

this extension is that, as stated earlier, this quality charac-

teristic must be considered from the beginning of a software

development project. Thus, by having a means of measuring the

maintainability as early as possible, it both emphasizes the

need for early consideration and as such can provide a means

for the project manager to ensure that the delivered product

possesses this vital characteristic.

Applicable instructions and standards that exist within

the Department of Defense which affect the documentation

requirements will be presented. Federal Information Process-

ing Standards (FIPS) Publication 38 and Military Standard-1679

will be discussed, with concern to what changes should be made

134

to them, so that they may better ensure that the documentation

developed throughout the software life cycle aids in achieving

maintainability.

B. DOCUMENTATION

The importance of documentation has not always been acknowl-

edged. This has resulted in programs where requirements docu-

mentation, or specifications did not exist, or were out of date

The three main reasons why this inadequacy has occurred are

attitude, time and method.

As Vaughn [13] points out there has been a widespread

belief that documentation for a complex system could be put

together quickly after the system was tested. It was found out

that this is not the case. It was pointed out that time was

the reason why most documentation efforts foundered, and that

20 percent of total development time should be allowed for

documentation.

Brooks [52] on the other hand felt that the lack of

documentation occurred because of the methods used to docu-

ment software were inadequate, resulting in programmers not

knowing how to develop good documentation.

The attitude towards documentation has changed, as its

importance in program devleopment became recognized. One

reason for this change was the realization that documentation

contained information which was necessary to be provided to

maintenance programmers in order for them to make changes to

the existing software in a more efficient manner. As the

135

Defense Logistic Agency, technical report, Software Acquisi-

tion Management Guidebook; Software Maintenance , points out,

documentation "provides the necessary technical and status

information." [71]

Good documentation, however, can be used for much more

than providing maintenance programmers with the necessary

technical information needed to effect changes. During the

development phase documentation can also be used as a

communication tool, among designers, users and programmers.

It is a means for preventing duplication of effort and it can

be used as a basis for design reviews.

During the maintenance phase it can be used to evaluate

the feasibility of changes, as a guide to find and correct

errors, as a repository of design information and as a means

of preserving the program's conceptual integrity.

Good documentation possesses the characteristics of being

easy to use, understandable, [71] modifiable and traceable,

[108] as was discussed in earlier chapters. In order to

obtain these characteristics the documentation must be prop-

erly designed to ensure that it adequately addresses the

audience for which it is intended.

1. Designing Documentation

There is a broad range of opinions on how documenta-

tion should be designed. They very from the statement that

one should "document unto others as you would have them

document unto you" [118] to proposals by Peters [110] for a

software design documentation standard. Others such as

136

Glass [32] believes that documentation should meet the guide-

lines and standards imposed by the United States Government.

His contention is that since the federal government has been

most thorough on what software documentation should contain

and that military projects normally "include documentation

requirements on the same level of importance as the require-

ments for the software product itself" , these standards

represent the best approach to providing the needed

documentation. Even so, Peters [110] states that many of

the schemes for design documentation in use today fail to

address the nature of the problem. "They put forward

approaches which will solve the software design documentation

problems without relating what the characteristics are which

caused this standard to take this form.

"

In an attempt to specify information requirements

that must be met by a software documentation design, it was

proposed, in Reference [60] , that software design documenta-

tion should be developed from a consistent set of design

principles. For this reason Heninger [60] suggests that the

first step in designing documentation to be useful "explicit

decisions must be made about the purposes it should serve.

Decisions about the following questions affect its scope,

organization and style: a) What kinds of questions should it

answer? b) Who are the readers? c) How will it be used?

Heninger has proposed the following three design

principles in the development of documentation.

137

1. "State questions before trying to answer them. " This
should be done at every stage of writing the requirements.
She states that "if this is not done, the available material
predjudices the requirements investigation so that only the
easily answered questions are asked.

"

2. "Separate concerns." This principle serves "the objec-
tive of making the document easy to change, since it causes
changes to be well-confined. For example, hardware inter-
faces are described without making any assumptions about
the purpose of the program; the hardware section would
remain unchanged if the behavior of the program changed.

"

3. "Be as formal as possible." This was in order to
present information as precise, concise, consistent and
complete as possible. Also, by using a formal notational
scheme^, the document will serve as a basis for formal
proofs of correctness.

Using these design principles and the answers to the

above questions the objectives of a document can be adequately

developed. By developing the objectives, the design of the

documentation can be evaluated based on how well they meet

those objectives. As a demonstration, she specifically

derived six objectives for the requirements document to be

used on the A-7 flight program:

1. Specify external behaviour only.

2. Specify constraints in the implementation.

3. Be easy to change.

4. Serve as a reference tool.

5. Record forethought about the lifecycle of the system.

6. Characterize acceptable responses to undersired events.

While the objectives of the requirement documentation

have, thus, been stated, Schneidewind points out that another

problem is that the requirements objectives should include

138

precise performance goals. As he states in Reference [67]

"What is needed is a clear statement of performance goals

in the user requirements statement, consistency in the use

of these goals in subsequent stages of development and the

ability to trace these goals forward from user requirements

phase to maintenance phase; and backward, from maintenance

to user requirements.

"

2 . Documentation Requirements

Brooks [52] states that "different levels of documen-

tation are required for the casual user of a program, for the

user who must depend upon a program, and for the user who must

adapt a program from changes in circumstances or purpose." It

is then necessary to design each individual document in order

ensure its understandability by the intended reader. For

example, while the program design documentation could be writ-

ten given the assumption that it would be used by individuals

familiar with computer programming, the user's manual would

have to be written for an assumed less skilled audience.

Glass [32] states that software documents required for the

government falls into four broad categories: planning docu-

ments, administrative procedures, software test procedure/

reports and support documentation. Young [109] further sub-

divides these levels of documentation into the types which

are listed below:

1. Functional Requirements Document.

2

.

Data Requirements Document

3. System and Sub-System Specifications.

4. Program Specification.

139

5. Data Base Specification.

6. Test Plan.

7. User Manual.

8. Operations Manual.

9. Program Maintenance Manual.

10. Test Analysis Report.

Young's subdivision concides with the FIPS Pub 38

documentation. The following definitions and statement of

purpose for each document type, as described in Reference [111],

is given below:

Functional Requirements Document . "The purpose of the
functional requirements document is to provide a basis
for the mutual understanding between users and designers
of the initial definition of the software, including the
requirements, operating environment, and development plan."

Data Requirements Document . "The purpose of the data
requirements document is to provide, during the definition
state of software development, a data description and
technical information about data collection requirements."

System/Sub-System Specification . "The purpose of the
system/sub-system specification is to specify for analysts
and programmers the requirements, operating environment,
design characteristics, and program specifications for a
system or sub-system.

"

Program Specification . "The purpose of the program
specification is to specify for programmers the require-
ments, operating environment, and design characteristics
of a computer program.

"

Data Base Specification . "The purpose of the data base
specification is to specify the identification, logical
characteristics, and physical characteristics of a parti-
cular data base."

User Manual . "The purpose of the user manual is to suffi-
ciently describe the functions performed by the software
in non-ADP terminology, such that the user organization can

140

determine its applicability and when and how to use it.
It should serve as a reference document for preparation
of input data and parameters and for interpretation of
results.

"

Operations Manual . "The purpose of the operations manual
is to provide computer operation personnel with a descrip-
tion of the software and of the operational environment
so that the software can be run."

Program Maintenance Manual . "The purpose of the program
maintenance manual is to provide the maintenance programmer
with information necessary to understand the programs, their
operating environment and their maintenance procedures."

Test Plan . "The purpose of the test plan is to provide a
plan for the testing of software; detailed specifications,
descriptions, and procedures for all tests and test data
reduction and evaluation criteria."

Test Analysis Report . "The purpose of the test analysis
report is to document the test analysis results and find-
ings, present the demonstrated capabilities and deficien-
cies for review, and: provide a basis for preparing a
statement of software readiness for implementation."

This list although well conceived is not all encompas-

sing as advancements in software engineering are made. For

this reason Schneidewind [67] proposes that an "Interfaces

Specification" document should be added to the list.

In support of the life cycle models that have been

constructed for design reviews, additional documentation

requirements have been suggested. A brief discussion of a

few type of documents that might be included are given below

as defined by Glass [32].

Computer Program Development Plan . It provides a top-level
overview of the organizational responsibilities, project
phasing, and major tasks to be accomplished during the
software development process.

141

Facilities Management Plan . It will include specifications
for computers, peripheral equipment, office and laboratory
space.

Configuration Management Plan . It specifies three planning
activities associated with reliability.

(1) Software release levels defined by degrees of
testedness.

(2) Problem reporting and retesting required after a
change is made to a software test article.

(3) Responsibilities for test reporting, and test
monitoring.

3. Documentation/Maintainability Instructions

Within DoD a number of formal standards, and instruc-

tions have been developed concerning the production of docu-

mentation for use in the maintenance of software. These

various DoD requirements vary in applicability between soft-

ware developed for tactical systems and software developed

for ADP systems. A number of the more predominate documents

from each community will be presented.

a. Tactical Maintenance Documentation Standards

(1) SECNAVINST 3560.1 Combat System Program

Description Document . This instruction on documentation,

written in 1974, is specifically designed for weapon system

software. It consists of three documents which support the

maintenance of tactical software. These documents are called

the (PP) Program Package, (DBD) Data Base Design and the

(PDD) Program Description Document.

(2) MIL-STD-52779 (A.D.) Software Quality

Assurance Program Requirement. This standard, developed in

142

1974, requires a quality assurance plan to be implemented

specifically for the development of programs and related

documentation. Although concerned primarily with the develop-

ment phase, it is also important to software maintenance in

that it directly affects the quality of the initially

delivered product.

(3) MIL-STD-4 83 (USAF) Configuration Management

Practice for System and Equipment . This standard defines the

activities associated with controlling changes to computer

programs.

(4) DODD 5000.29 Management of Computer Resources

in Major Defense Systems . This directive, issued in 1976,

establishes policy for the management of computer resources

during system acquisition. Consideration of the maintain-

ability of software is singled out as a primary consideration

during the initial design. It also requires that maintenance

support items be specified as deliverables in an acquisition

project.

(5) MIL-STD-1521 (USAF) Technical Review and Audit

for System Equipment and Computer Programs . This standard

concerns reviews and audits and how they can be used as a

basis for checking compliance with maintainability

requirements. It delineates the requirements for the conduct

of technical reviews and audits in conjunction with the

documents defined in MIL-STD-483.

143

(6) MIL-STD-1679 Weapon System Software Development .

In contrast with other standards issued by various DoD

agencies, the issuance of MIL-STD-1679, in 1978, has been

widely acclaimed as one of the few, such documents that

reflect state-of-the-art concepts. Providing uniform stand-

ards for developing weapons system software within DoD, it

requires such items as the use of structured programming

techniques, configuration management and limits the use of

patching in tactical software.

However, because it is aimed primarily at the

initial specification design and testing phases, it does not

specifically address the consideration of maintainability.

Rather, it emphasizes tools and techniques that will optimize

the initial development. As Schneidewind [67] points out,

this optimization of development is often done to the detri-

ment of maintainability. It should be revised to specifically

ensure that maintainability is considered as a primary goal

throughout the development.

b. ADP Maintenance Documentation Standards

(1) DoD STANDARD 79 35. 1-S Automated Data Systems

Documentation Standard . This instruction is the basis for

systems level documentation of an automated information

system. It provides guidelines for the development of a

program maintenance manual and is to provide the maintenance

programmer with the information necessary to effectively

maintain a system. The orientation of this document is mostly

towards data base systems.

144

(2) SECNAVINST 52 33. IB Department of the Navy

Automated Data Systems Documentation Standard . This instruc-

tion promulgates a documentation preparation standard to the

Navy based upon DoD INSTRUCTION 79 35. 1-S previously mentioned.

(3) NMPC-16 INSTRUCTION 52 31.1 NMPC-16 Life Cycle

Management for Automated Information System Development and

Enhancement . Life Cycle Management is the process of admin-

istering and an Automated Information System over its entire

life with emphasis on strengthening the early decisions that

shape automated information systems costs and utility.

The LCM process involves five phases separa-

ted by decision milestones and specifies the planning and

management functions that must be satisfied and documented

to reach each milestone.

Proposed automated information systems are

divided into levels according to estimated costs. The guide-

lines and documentation requirements become more extensive at

each higher lever (i.e., as the estimated costs increase).

(4) Federal Information Processing Publication

38 . FIPS PUB 38, issued in 1976, by the National Bureau of

Standards, is the primary documentation standard for all non-

tactical software within the federal government. FIPS PUB 38

was originally published as a guideline implying considerable

flexibility in its use. It is not intended as a tutorial or

as a guide for clear and concise technical writing. The

content of the document types described is sufficiently

145

general to be applicable to a wide audience in the federal

government and for use in a variety of projects. One diffi-

culty that has evolved from this attempt at generality is

that as a result, it does not provide sufficient guidance to

a specific project. Recognizing this difficulty, a workshop

was organized in the summer of 1980 to review the experience

in the use of FIPS PUB 38 as part of a more general, five-

year review cycle of all the various FIPS publications.

Sponsored by the Federal ADP User Group and special interest

group on ADP Standards and Quality Assurance, this conference

was intended to identify specific criticisms and suggestions

in order to provide data for future revisions of this

standard. Some of the revisions suggested by participants

in this workshop are:

1. Include example of graphic methods to describe func-
tional requirements.

2. Include user acceptance criteria in the test report.

3. Include the expectation of changes to requirements.

4. Relate documents to system life cycle management
activities.

5. Reorganize the content guidelines to provide for trace-
able and consistent presentation of requirements.

6. Begin preparing the user manual during the design state

Additionally a recommended general approach

was developed to solve the problems reported with FIPS PUB 38,

The approach consists of three main thrusts: (1) considering

documentation althogether and in its wider context versus

146

as individual documents, (2) facilitating a variety of

approaches to the development, and (3) modernizing the

content.

4. General Comments

These software standards have improved the develop-

ment and design of software, but generally fail to emphasis

the need to achieve maintainability. While each standard or

instruction will not be systematically dissected for its

faults, the defects of the group as a whole will be discussed,

Many of today's standards and instructions were

promulgated when their purpose was for emphasizing critical

aspects within program development and not maintainability.

Since the pitfalls of not designing for maintainability were

not known at the time, these standards and instructions have

not ensured maintainability is designed into documentation.

Although attempts have been made through quality

assurance plans for improved documentation by stating that

the (SDD) Software Design Description shall describe the

major components of the software design, it does not include

such important aspects as the design decisions themselves or

formal specifications of which was expressed in earlier

chapters as a must if a project manager wants to be assured

of a verifiable end product.

Other engineering fields have made it mandatory for

numerous reviews of projects for technical feasibility, such

as the (PDR) Preliminary Design Review which is held to

147

evaluate the technical adequacy of the preliminary design of

the software, but there is not a (PDROD) Preliminary Design

Review of Documentation to evaluate it for traceability,

modifiability , understandability or conciseness.

Although FIPS PUB 38, as an example, includes Young's

list of documentation applicable to computer software it fails

to require the idea of specifically documenting interface

specifications, the importantance of which was discussed

earlier.

Although attempts have been made to determine docu-

mentation requirements prior to or concurrent with designing

of the entire system as in the Functional Requirements Docu-

ment and the Data Requirements Document there is no congruency

between the two. The Data Requirements Document does not

physically map into the Functional Requirements Document.

A result of this lack of physical mapping is that it may be

difficult to trace back from the actual source code listing

to the appropriate section of the accompanying documentation.

Figures 5-1 and 5-2.

In conclusion, it was found that documentation can

be used as a means for measuring maintainability. However,

to achieve this goal the documentation must be designed to

include certain characteristics, and must adhere to the soft-

ware objectives over its life cycle. The documentation that

is required varies, but there are generally acceptable norms

that are practiced.

148

Page
SECTION 1. GENERAL INFORMATION 2

1.1. Summary 2

1.2. Environment 2

1.3. References 2

1.4. Modification of Data Requirements 2

SECTION 2. DATA DESCRIPTION 2

2.1. Static Data 2

2.2. Dynamic Input Data 2

2.3. Dynamic Output Data 2

2.4. Internally Generated Data 2

2.5. Data Constraints 2

SECTION 3. DATA COLLECTION 3

3.1. Requirements and Scope 3

3.2. Input Responsibilities 3

3.3. Procedures 3

3.4. Impacts 3

Figure 5-1. Data Requirements Document [111]

149

Page
SECTION 1. GENERAL INFORMATION 2

1.1. Summary 2

1.2. Environment 2

1.3. References 2

SECTION 2. OVERVIEW 2

2.1. Background 2

2.2. Objectives 2

2.3. Existing Methods and Procedures 2

2.4. Proposed Methods and Procedures 2

2.5. Summary of Improvements 3

2.6. Summary of Impacts 3

2.6.1. Equipment Impacts 3

2.6.2. Software Impacts 3

2.6.3. Organizational Impacts 3

2.6.4. Operational Impacts 3

2.6.5. Development Impacts — 3

2.7. Cost Considerations 3

2.8. Alternative Proposals 3

SECTION 3. REQUIREMENTS 4

3.1. Functions 4

3.2. Performance 4

3.2.1. Accuracy 4

3.2.2. Validation 4

3.2.3. Timing 4

3.2.4. Flexibility 4

Figure 5-2. Functional Requirements Document [111]

.

150

Page
3.3. Inputs-Outputs 4

3.4. Data Characteristics 4

3.5. Failure Contingencies 4

SECTION 4. OPERATING ENVIRONMENT 5

4.1. Equipment 5

4.2. Support Software 5

4.3. Interfaces 5

4.4. Security and Privacy 5

4.5. Controls 5

SECTION 5. DEVELOPMENT PLAN 5

Figure 5-2. Functional Requirements Document [111] (Cont'd)

151

C. AIR FORCE'S EVALUATIONS HANDBOOK

The United States Air Force has developed a methodology

for studying software and rating it as to its maintainability.

The method is described in the Software Maintainability

Evaluator's Handbook which was prepared by the Computer/

Support Systems Division at the U.S. Air Force Test and

Evaluation Center, Kirtland Air Force Base, New Mexico.

The purpose of the handbook as stated in Reference [112]

"is to provide to the software evaluator the information

needed to participate in the Air Force Test and Evaluation

Center's (AFTEC's) software maintainability evaluation

process." The handbook states that "software maintainability

is determined by those characteristics of software and computer

support resources which affect the ability of software program-

mer/analyst to change software." It states that such changes

are made to:

a. Correct errors.

b. Add system capabilities.

c. Delete features from programs.

d. Modify software to be compatible with hardware changes.

The handbook is divided into three parts. The first part

provides the evaluator with: (1) a background of the AFTEC

software maintainability evaluation concept, (2) a basic

understanding of the evaluation procedures, and (3) detailed

instructions for using AFTEC's standard software maintain-

ability questionnaires and answer sheets. The second part

152

contains the questionnaires and explanatory information on

each question. This information is provided in an attempt

to ensure the evaluator fully understands the intent of each

question. Included are definitions of terms, examples,

explanations, and special case resonse instructions, as

necessary. The third part of the handbook is a cross

reference index.

The Air Force states that "the methodology for evaluating

software maintainability is based on the use of closed form

questionnaires with optional written comments. These

questionnaires are designed to determine the presence or

absence of certain desirable attributes in a given software

product. " [112] The elements of software maintainability

and their relationships as used by the Air Force are shown

in Figure 5-3 and are described %in the following paragraphs.

Figure 5-4 is a sample questionnaire used in evaluating

documentation for modularity. A complete listing of all of

the questions used in this method is contained in Appendix A.

The Air Force contends that the hierarchical evaluation

structure allows them to identify potential maintainability

problems at various levels. These levels include three

software categories (documentation, source listings, support

resources) as well as six quality attributes that they claim

directly affect maintainability.

153

co
cc LU
LU t— o
1— cc as3 O =>
o. a. os a_ coo 3 uuo CO Q£

>- CO CO z
h— o CO o
nx z LU > NX
-J 1—1 z (— t—

LU N-

>

H- LU >• NX <c
a± as CO >- > <_> >- _i h-< <C NX h- NX z \— NX Z
3: z —1 i—

t

OS a.
LU NXo 00 LU

•z.

u_ <C LU < >—

»

CO NX o. 3O 1— u -J cc NX —J z cc
co Z CC 3 CJ CO a. < i—

nx 3 a CO z X a. CO< O

1

LU o 3< z
s CO a

| 1

CO

1

LU

|

NX

|

co 2
CO oz LU >- NX

o z 1— 1—
NX LU >- NX <
H- >- > o >- —J t—< K— NX z H- NX z
t— NX H- LU NX CO LUZ ac a. 1— O < s:
LU < NX CO NX a 3X _i CC NX _J z CC3 3 CJ CO a. < H-
CJ a CO z z a. COo i LU O NX x za a c_> CO LU NX

,1 1 1 1 | I
1

CN

•P
•H
r-\

•H
-Q

c
•H

-u

•H
id

2
cu

lx

(d

-u

o
en

CO

4J

c
<u

6
0)

rH
W

I

in

>v*

a)

u
3

•H
fa

cc >-

§£
u- <O 3
co o*

I— CO
nx LU

LU —I nx
CC nx CC<oo
3t < C3
I— Z CC
LL. nx LUO < I—
CO H- <Z c_>

NX

z

LU CO
CC NX
<C CC
3: uj

U_ C_3

o <
CO CC<

154

QUESTION DATA SHEET

Question Number D-12

QUESTION : The documentation indicates that program error
processing is done by one set of modules designed exclusively
for that purpose.

CHARACTERISTIC : Modularity (processing modularity)

.

EXPLANATIONS :

The documentation describing the program functions and
control flow should also describe how the program processes
any error condition (e.g., via execution of one error process-
ing module or not) . Checks of module processing may indicate
whether any error processing functions are mixed with other
application functions.

It is best if each function, module, submodule, etc. does
not handle its own error processing unless adequate corrective
measures are appropriate. There should be one part (e.g., a
few modules) of the program which is for error processing.

EXAMPLES : Editing of input data should be documented.

GLOSSARY : Error processing : The steps required to set pro-
gram data and control states following the detection of an
error condition.

SPECIAL RESPONSE INSTRUCTIONS : If the partitioning is such
that each function is performed by a set of modules and there
is one module in each set expressly for error processing, then
appropriate agreement with the question should be so indicated.
If in addition, these error processing modules are systemati-
cally organized as an error processing function, then there
should be essentially complete agreement with this question
statement.

Figure 5-4. Question Data Sheet [112]

155

1. Software Categories

The Air Force defines software as consisting "of a

set of computer instructions and data structured into programs,

and the associated documentation on the design, implementa-

tion, test, support, and operation of those programs." Each

program is separately evaluated. For each program there are

related categories which are evaluated for the characteristics

which affect its maintainability. The categories are the

software documentation, the software source listings, and the

computer support resources. The Air Force emphasizes that

only "products that will be available to the maintenance

programmer are to be considered in an evaluation."

a. Software Documentation

The Air Force defines software program documenta-

tion as "the set of requirements, design specifications,

guidelines, operational procedures, test information, problem

reports, etc. which in total form is the written description

of a computer program. " The primary documentation which the

Air Force uses in this evaluation consists of the documents

containing program design specifications, program testing

information and procedures, and program maintenance

information. The documents are evaluated both for content

and for general physical structure. The content evaluation

is primarily concerned with how well the overall program

has been designed for maintainability. The format evaluation

is primarily aimed at how the physical structure of the

156

documentation aids in understanding or locating program

information.

b. Software Source Listings

The Air Force defines software source listings

as "the computer generated form of the program code in its

source language (e.g., Fortran, Cobol, Jovial, Ada, assembly

language, etc.)." Since the source listing represents the

program as implemented, in contrast to the documentation

which for the most part represents the program design or

implementation plan.

c. Computer Support Resources

The Air Force defines computer support resources

to "include all the relevant resources such as software,

computer equipment, facilities etc., which will be used to

support the maintenance of the software being evaluated."

The characteristics of and procedures for the evaluation of

computer support resources, however, are contained in a

separate document.

2 . Software Maintainability Test Factors

The Air Force determines the maintainability of

software documentation by examining six characteristics or

test factors: modularity, descriptiveness , consistency,

simplicity, expandability, and instrumentation. The following

definitions, used by the Air Force to provide guidance to the

evaluation teams, are as follows. A discussion of these

applications in evaluating their documentation as well as

157

differences between the Air Force definitions and those

provided earlier is also provided.

a. Modularity

"Software possesses the characteristic of modular-

ity to the extent that a logical partitioning of software into

parts, components/ and/or modules has occurred."

The Air Force uses this characteristic because it

states "software that is the easiest to understand and change

is composed of independent modules." Using this reasoning,

each software product is therefore evaluated in relation to

the extent to which its logical parts, components, and

modules are independent. It states that "the fewer and

simpler the connections between parts, the earier it is to

understand each module without reference to other parts.

Minimizing connections between parts also minimizes the paths

along which changes and errors can propagate into other parts

of the system.

"

b. Descriptiveness

"Software possesses the characteristic of

descriptiveness to the extent that it contains information

regarding its objectives, assumptions, inputs, processing

outputs, components revision status, etc."

The Air Force believes this characteristic is

important in understanding software. It states that

"documentation should have a descriptive format and contain

useful explanations of the software program design.

"

158

c. Consistency

"Software possesses the characteristic of con-

sistency to the extent the software products correlate and

contain uniform notation, terminology and symbology." This

emphasis on uniform notation is consistent with the definition

of uniformity provided by Ross [2 3] in Chapter III.

The Air Force states that "attention to consist-

ency characteristics can greatly aid in understanding the

program." As an example, the Air Force states "programs

using consistent conventions require that the format of

modules be similar. Thus by learning the format of one

module (preface block, declaration format, error checks,

ect.) the format of all modules is learned."

d. Simplicity

"Software possesses the characteristic of

simplicity to the extent that it lacks complexity in organ-

ization, language, and implementation techniques and reflects

the use of singularity concepts and fundamental structures."

The Air Force states "the aspects of software

complexity (or lack of simplicity) that are emphasized in

the evaluation relate primarily to the concepts of size and

primitives. The less there is to discriminate and the more

use there is of basic or primitive techniques, structures,

etc. the simpler the software will tend to be."

159

e. Expandability

"Software possesses the characteristic of expanda-

bility to the extent that a physical change to information

computational functions, data storage or execution time can

be easily accomplished once the nature of what is to be

changed is understood. " This is consistent with the defini-

tion of evolvability that was provided in Chapter III.

The Air Force uses this characteristic because it

states "software may be perfectly understandable but not

easily expandable. If the design of the program has not

allowed for a flexible timing scheme or a reasonable storage

margin, then even minor changes may be extremely difficult

to implement.

"

f. Instrumentation

"Software possesses the characteristic of instru-

mentation to the extent it contains aids which enhance

testing.

"

This characteristic is used because from the Air

Force viewpoint "this part of the evaluation reflects the

concern that the software be designed and implemented so that

instrumentation is either imbedded within the program, can

be easily inserted into the program, or is available through

a support software system, or is available through a combina-

tion of these capabilities."

160

3. The Air Force Measurement Technique

The Air Force's measurement technique rates the

various maintainability considerations of software on a

multipoint scale. This procedure was developed because in

the past the approach the Air Force used to evaluate software

documentation had not been qualified statistically. The

previous method consisted of a single knowledgeable person

who examined the documentation and provided an interviewer

with a subjective appraisal. This interviewer in turn, would

make his own subjective interpretation of the evaluator's

remarks.

The present approach rates the questions presented

earlier on a six-point response scale where six is the high-

est possible score and one is the lowest. The questions have

been grouped into several test factors, and the scores for

all questions applicable to a given test factor were averaged

to obtain the score for that factor. Each factor is assigned

a relative weight, based on its importance, to arrive at an

overall score. Thus, the measures of effectiveness scores

are straight averages for test factors and the weighted

averages of these test factor scores for documentation. The

thresholds were determined to be 3.3 and the goal 5.0 on the

six-point scale. Figure 5-5 is an example of the results

of a software maintainability assessment.

161

Software Maintainability Assessment

Item Rated

Maintainability

Documentation

Modularity
Descriptiveness
Consistency
Simplicity
Expandability
Instrumentation

Source Listings

Modularity
Descriptiveness
Consistency
Simplicity
Expandability
Instrumentation

Computer Support Resources

Support Software
Support Equipment
Building

Score

Evaluation Criteria

Threshold Goal

3.84 3.30 5.00

3.27*

2.64*
3.25
3.88
4.48
3.64
1.93*

4.15

5.04
3.83
4.06
4.47
4.41
2.59*

3.60 2.80 4.50

3.40 3.30 4.70
3.30 3.00 3.70
4.20 2.00 5.00

*Below Threshold

Figure 5-5. A Software Maintainability Assessment [113]

162

4. Critique of the Air Force's Methodology

One problem with the Air Force evaluation methodology

is that it is not used until the latter portion of the accept-

and testing phase of the acquisition process.

The Air Force's methodology of waiting until the

design has been coded will cause the cost of making any

changes to rise.

The procedure by which the Air Force measures main-

tainability remains very subjective in nature in that each

evaluator assigns the points of the grading criteria on his

or her own judgement. Since in the early phases of software

development there is no visible output except documentation,

major emphasis must be made in evaluating each document as

it is developed. The best way of determining if documentation

is of sufficient quality to reduce design errors is to deter-

mine if it was designed, by the means presented earlier and

by answering the questions developed by Heninger.

Another fault with the Air Force's approach is that

it fails to determine if the performance goals have been

stated in the user requirement document. It therefore cannot

be determined if this goal is consistent throughout the sub-

sequent stages of the software's development. Without look-

ing at documentation early it cannot be determined if

decisions affecting the scope, organization and style of the

documentation have been made that meets the objectives of the

163

requirements document. This is not possible however, since

the objectives of the user requirements have not been

determined.

The Air Force makes no attempt to determine if design

decisions have been recorded. Parnas [30] however, emphasizes

that since the order in which design decisions are made

effects the structure and maintainability of the software,

because information resulting from early design decisions is

used in making later decisions. A precise record of the

intermediate design decisions is essential. The reason it

is essential can be explained by Daly [10] who states that

"the development cost required to detect and resolve a sotf-

ware bug after it has been placed into service is thirty times

larger than the cost required to detect and resolve a bug..."

in the design phase.

He states the following reasons by bugs cost more

to correct after a program has been released to the customer,

as in the case of the Air Force, than during the early phases.

1. After commercial release- problems are usually more
complex.

2. After commercial release- problems are reported as
system malfunction; an effort must be spent to translate
problems into a software bug.

3. After commercial release- many problems are resolved
by design maintenance programmers rather than the original
designer. Design maintenance programmers must spend effort
reviewing detailed code.

4. After Commercial release- problems require more defini-
tion and more formal documentation. Formal test plans and
multilevel testing must be performed to ensure that accurate
corrections reach the field.

164

5. After commercial release- problems resolution must
share the heavy overhead cost for configuration management.

The Air Force has attempted to ensure that modern

software engineering principles are used.

Although the Air Force's definition of these charac-

teristics are generally accepted, there are other aspects that

should be considered. For example, the Air Force limits its

concept of modularity, to the classical approach of functional

modularity, while completely ignoring the concept of informa-

tion hiding during the design of modules. This concept of

information hiding, should be included so the benefits from

its approach of anticipating changes to the software can be

derived, and therefore increasing maintainability.

Although the Air Force has developed a method to

provide creditable evaluation results, changes need to be

made. Their goal is to achieve a statistical confidence

level for the test data to provide a measure of software

maintainability. By using multiple evaluators, it provides

a broader sample size. However, the scoring technique used

is still subjective in nature.

The grading criteria of the six-point system,

especially the threshold and goal limits need to be statisti-

cally validated. An informal interview with a member of the

staff at the Computer/Support Systems Division located at

Kirtland Air Force Base, revealed that the point system

originated from an attempt to achieve scores that would take

165

the shape of a bell curve with the threshold being one standard

deviation below the mean and the goal one standard deviation

above the mean. A research project using the Air Force's

methodology to evaluate software that possesses varying degrees

of maintainability as measured by the cost and effort required

by maintenance programmers to make changes is needed.

D. 3EBUGGING

In an attempt to measure maintainability, rather than

specifying techniques contractors were to use, the idea of

"bebugging" was originated. It is a concept first proposed

by Mills as an attempt for establishing confidence levels

for the number of errors in a program, how long it would take

to find them and what impact they would have on software

reliability. The method is based on the intentional and

random emplacement of errors within a program and subsequent

debugging. The method also goes by such names as "inspection

statistics" and "artificial bug insertation"

.

Gilb [13] has used the bebugging concept to measure if

design specifications have been met by contractors. An example

he uses to explain this concept is to consider an original

design specification that called for 95 percent of all program

bugs, to be successfully repaired within one hour. One hundred

bugs would than be randomly inserted into the program by an

independent party. A qualified maintenance programmer would

then try to detect and correct the errors. If the results

166

showed that the maximum time for repair of the 95 most quickly

repaired bugs was 50 minutes, the average repair time was 30

minutes and the worst single repair time was 10 hours, then

he would consider the program maintainable and meeting

specifications

.

To make the artificial bug insertion representative for

his project a manager could choose between two approaches.

The first approach as described by Fagan [114] is to take

representative samples based on a proportional representation

of errors. The second approach is to make the assumption that

bugs can be caused by any type of programming statement. One

would then insert artificial bugs according to the frequency

of the types of statement.

Software contractors originally objected to this concept

because they did not know if their programmers were making

maintainable programs. However, they discovered that knowing

that this form of testing would be used as part of the accept-

ance process, the programmers began to write extensive com-

ments something that had not occurred before.

Although the literature contains few examples where this

concept was applied, it has been used successfully on a

Scandinavian Bank on line system and a remote job entry and

multiterminal software for a micro computer system. The

contractor of the system would perform the test on the first

module completed and, it it passed, the contractor was on

the right track. If not, he had an opportunity to change

167

the programming and documentation methods prior to completion

of the program.

Although the "Debugging" method has been used prior to

completion of the project/ it still requires that some coding

be completed first. Thus, it is not readily extendable to be

utilized during reviews conducted prior to coding. It assumes

that if the errors can be found and corrected, good documenta-

tion exists. The weaknesses of this approach are:

1. It does not determine if the logic of the program is
correct.

2. It does not determine if the user's requirements are
met.

3. It does not address issues of adaptive or preventive
maintenance. It addresses only corrective maintenance.

Even though "bebugging" has showed that it is capable

of motivating a contractor or a programmer to document more,

its use is limited because it does not consider if the

documentation had been designed.

E . PROPOSAL

To alleviate the weaknesses of the Air Force Evaluator's

Handbook and the Bebugging method, this thesis proposes a

new evaluation approach. The approach consists of combining

the format of the Air Force over the life cycle of the pro-

ject with the means of measuring results, by inserting the

use of "bebugging" within the contract.

Realizing various life cycle models exist, this thesis

will follow the model prepared by the Rome Air Development

168

Center to provide a framework for the questions. The reason

for this is because of the relationship that already exist

within this model between the life cycle and the technical

reviews.

The questions will cover that portion of the life cycle

that explicityly pertains to the design aspect of a program.

These are the Systems Requirement Review, Systems Design

Review, Preliminary Design Review and the Critical Design

Review.

The questions will be presented in the following manner:

1. Review.

2. Purpose of the Review.

3. List of questions to be asked at the review.

4. Explanation (for applicable questions).

1. System Requirements Review

The purpose of reviewing documentation during the

System Requirements Review is to determine if the Requirements

Document had been developed in a formalized manner. The

reason for this formalization, as explained by Quade [115] is

that in the past, the Requirements Document was normally

produced in a adhoc manner blending some principles of system

analysis and common sense. According to Bell and Thayer [116]

this first review of the Requirement Specifications "will find

from one to four non trivial errors per page." This exempli-

fies why the aspects of documentation should be examined at

this time.

169

The following set of questions will try to determine

if the requirements and performance goals have been adequately

documented. It will attempt to do this by asking questions

that are related to the principles presented earlier by

Heninger

.

QUESTION: Was the Requirements Document designed by stating

questions before trying to answer them?

EXPLANATION: If the formulation of questions is not consid-

ered first, it has been found that the available material

prejudices the requirement specification so that only the

easily answered questions are formulated. [60] The following

table illustrates a number of topics and questions that should

be asked at this time.

QUESTION: Was the Requirements Document designed by separat-

ing concerns?

EXPLANATION: This principle serves the objectives of making

the document easy to change, since it causes changes to be

well confined. An example considering hardware interfaces

is used to explain this point. Hardware interfaces would be

described without making any assumptions about the purpose

of the program; meaning that the hardware section would

remain unchanged if the behaviour of the program changed.

The software behaviour is also described without any refer-

ences to the details of the hardware devices; thus the soft-

ware section would not change if the hardware changed [60]

.

170

TABLE V-I. A-7E REQUIREMENTS TABLE OF CONTENTS [60]

Table of Concents

Chaoter Contents

Introduction Organization principles; abstracts for other

sections; notation guide

1 Computer Characteristics If the computer is predetermined, a general
description with particular attention to its

idiosyncrasies; othervise a summary of its
required characteristics

2 Hardware Interfaces Concise description of information received
or transmitted by the computer

3 Software Functions Vlhat the software must do to taeet its

requirements, in various situations and in
response to various events

4 Timing Constraints Row often and how fast each function must be

performed: This section is separate from
section 3 since "what" and "when" can change
independently.

5 Accuracy Constraints How close output values must be to ideal
values to be acceptable

• Response to Undesired
Events

What the software must do if sensors go down,

the pilot keys in invalid data, etc.

7 Subsets
i

What the program should do if it cannot do
everything

3 Fundamental Assumptions The characteristics of Che program that will

stay the same, no matcer what changes are made

9 Changes The types of changes that have been made or
are expected

10 Glossary Most documentation is fraught with acronyms

and technical terms. At first we prepared
this guide for ourselves; as we learned che

language, we retained it for newcomers.

11 Sources Annotated list of documentation and

personnel, indicating the types of questions
each can answer

171

QUESTION: Was the Requirements Document designed to be as

formal as possible?

EXPLANATION: Try to avoid prose at this time so that infor-

mation can be presented in as a concise and consistent manner

as possible.

The following set of questions will try to determine

if the documentation had been designed with the idea of

stating the performance goals.

QUESTION: Is there a clear statement of performance goals

in the User Requirements Statement?

EXPLANATION: This question will attempt to solve the problem

of past software projects concerning the lack of adherence to

stated software performance objectives over the software's

life cylce.

QUESTION: Does the Requirements Document appear that it will

support traceability?

2. Software Design Review

Before proceeding to the phase of software design a

project manager would like to have a complete, validated and

machine-independent specification of software requirements.

This is what the systems requirements questions attempted to

perform. However, the requirements are not really validated

according to Boehm [4] "until it is determined that the

resulting system can be built for a reasonable cost — and to

do so requires developing one or more software designs."

172

Therefore the purpose of reviewing documentation at this time

occurs because the development of the designs is a manual

operation and most software errors are made during this phase.

The following set of questions are to determine if the

proposed design has considered specific topics that are impor-

tant to this particular phase of the project.

QUESTION: Does the documentation state that there has been

early attention applied to the critical issues of integra-

tion and interfacing?

EXPLANATION: This is normally accomplished through a top-

level expression of a hierarchial control structure routine

calling an "input" and an "output" and proceeds to iteratively

refine each successive lower-level component until the entire

system is specified.

QUESTION: Are there graphical representations of the system

embodied in the documentation at this time?

EXPLANATION: The design should be represented by an accept-

able convention such as flow charts, Hipo diagrams, decision-

matrix tables or a combination thereof.

QUESTION: Have each function been identified and isolated

into a separate module?

EXPLANATION: The purpose of this question is to try and

capture the guidelines of modularization. There are many

ways to modularize and the view of Parnas [30] as presented

earlier is one means which would be acceptable.

173

QUESTION: Does a set of simple automated consistency checks

exist to validate this documentation against itself and

preceeding documentation?

EXPLANATION: When manually designing a system it is difficult

to keep the design consistent. Therefore it is advantageous

to have a means to perform simple consistency checking. Boehm,

McLean and Urfig [117] state that the use of simple consist-

ency checking can catch dozens of potential problems in a

large design specification.

The following set of questions will be used to insure

that there is consistency and traceability between the Require-

ments Specification and Design Specification. For this reason

an explanation is assumed not to be needed.

QUESTION: Can each design specification be traced to one or

more of the user requirements specifications?

QUESTION: Are the performance goals the same now as they

were during the requirements statement? If not why not?

QUESTION: Can the performance goals be traced to the user

requiremen ts ?

3. Program Design Review

The purpose of reviewing documentation at this time

is to analyze the design to determine if the proposed imple-

mentation is capable of meeting specified performance, design

and verification requirements [32].

An important piece of documentation in this phase is

the Computer Program Development Plan. This plan is to

174

provide a top-level overview of the organizational responsi-

bilities, project phasing, and major tasks to be accomplished

during the software development process. A summary of the

reliability technical approach, the organizational relation-

ship, and the top level schedules for test and integration

activities should be included.

The following set of questions are used to determine

if a Computer Program Development Plan exists and if so, does

it provide the proper items. No explanation is given as each

question relates to the purpose of the development plan

presented above.

QUESTION: Is there a Computer Program Development Plan?

QUESTION: Does the Computer Program Development Plan outline

a schedule of tasks in chronological order?

QUESTION: Does the Computer Program Development Plan outline

the functions of the program?

QUESTION: Does the Computer Program Development Plan precisely

delineate the interface (s) between the program module (s)

?

QUESTION: Does the Computer Program Development Plan show

the structure of the data flows through the program?

The following set of questions will be used to insure

that there is consistency and traceability between the require-

ments specification, design specification and program design.

For this reason an explanation of each question is not given.

QUESTION: Can the documentation be traced from its present

state to the design specification and then to the require-

ments specification?

175

QUESTION: Are the performance goals the same now as they

were during the design specification and requirement specifi-

cation stages?

QUESTION: Can the performance goals be traced to the User

Requirement Document?

4. Critical Design Review

The purpose of reviewing documentation at this time

is because it is the last chance to correct design flaws

before coding begins.

An important piece of documentation in this phase is

the Computer Program Test Plan. It covers planning and

scheduling of formal software verification through qualifica-

tion testing. If the development effort output consists of

more than one identifiable computer program, the span of the

test plan should include formal qualification testing of the

entire software system.

The following set of questions are used to determine

if a Computer Program Test Plan exists and if so does it

entail all of the proper topics. No explanation is given as

each question relates to the purpose of the Program Test Plan

presented above.

QUESTION

QUESTION

QUESTION

QUESTION

Does a proposed user manual exist?

Does a first draft of the maintenance manual exist?

Does a proposed acceptance test plan exist?

Does there exist a detailed breakdown of the major

functions?

176

QUESTION: Does there exist detailed algorithms for each

module?

QUESTION: Does there exist a detailed description of the

interfaces?

QUESTION: Does there exist a detailed description of the

data structure?

The following set of questions will be used to insure

that there is consistency and traceability between the require-

ments specification, design specification, program design and

critical design. For this reason an explanation of each

question is not given.

QUESTION: Can the documentation be traced from its present

state to the requirement specification?

QUESTION: Are the performance goals the same now as they

were during the requirement specification?
*

QUESTION: Can the performance goals be traced to the user

requirement document?

5. Additional Questions

The following set of questions and explanations are

included to show the type of question that can be asked to

bring the Air Force questionnaires up-to-date with concern

to the latest concepts in software engineering.

QUESTION: Does the documentation include formal specifications?

EXPLANATION: Formal specifications are needed:

1. To describe the problem to be solved.

2. For communication between software engineers.

177

3. To free the programmer from needing to know how the
rest of the system works.

4. To support the development of multi-version software.

5. To complete the description of the design decisions.

6. To permit verification of intermediate design decisions.

QUESTION: Does the documentation present the specification

as precise?

EXPLANATION: If the specification is not precise then the

following will occur:

1. The problem solved may not be exactly that whose
solution is needed.

2. Cooperating software engineers may develop programs
that are not compatible.

3. The programmer may have to study other people's programs
in order to determine exactly what is required of his
program.

4. Later refinement of a program may not be consistent
with the design decisions that were the intention of those
who wrote the program.

5. The interpretation of the specification that was used
in verifying the correctness of a design may not be the
same as the interpretation made by the implementator.

QUESTION: Does the documentation include a separate section

for the description of the abstract interface module (s)?

EXPLANATION: The abstract interface (s) should be defined by

writing down all assumptions about the interface and note

which will change and which will not.

QUESTION: Does the documentation explicitly state that the

interface module does not include programs that are device

dependent?

178

EXPLANATION: If programs are included in the device inter-

face module that are device dependent, the device interface

module may need to be changed if the device is changed.

QUESTION: Does the documentation include a separate section

for the description of an interface?

EXPLANATION: An interface between two programs is defined by

the set of explicit and implicit assumptions they name about

each other.

6 . Conclusions

Although these questions are not all encompassing they

have been designed to take the place of requirements-design-

code consistency checking and automatic programming, which

have not been developed yet. They will undoubtedly also help

ensure that the latest software engineering techniques are

used, along with improving software productivity and quality

in the area of management. The largest software management

areas that will be improved are:

PLANNING: Large amounts of effort and time will not be
wasted because of tasks that are no longer unnecessarily
performed, or poorly synchronized.

CONTROL: Plans will be forced to be kept up-to-date and
used to manage.

SUCCESS CRITERIA: Emphasis will now be placed on the
activities of requirement and design validation, test
planning and drafting of user documentation [10]

.

179

VI. CONCLUSIONS AND RECOMMENDATIONS

The software engineering literature is replete with

proposals of various tools that claim to offer solutions to

many of the problems associated with software development.

Successful small projects are frequently cited by the authors

of these books and articles to support their claim that the

success of these projects can be directly attributed to the

use of the particular tool or method being advocated. Similar

glowing reports on successful large scale projects are notice-

ably scarce. It may well be that the success of these small

projects are due more to their size than to the tools or

methods being promoted. While this may give further credence

to the "divide and conquer" approach to software development,

further research is required in order to determine the use-

fulness of some of the tools in projects of greater magnitude.

Organizations such as the Office of Naval Research (ONR) and

the Naval Postgraduate School possess the necessary facilities

and technical expertise to perform research, similar to the

A-7 Operational Flight Program project mentioned previously,

to validate the utility of the proposed tools and techniques

in large scale development projects as well as provide useful

models that may be utilized by project managers in software

acquisition projects. The emphasis of this research should

be directed towards developing the means to automate the

180

validation and verification of the specification and design

phases of software development. The reason for this emphasis

is two-fold. First, as was graphically illustrated in Chapter

IV, these are the phases where the majority of errors can be

traced. Furthermore, since during these phases there are

fewer ramifications that result from changes than occur in

the latter phases of development, the cost of correcting these

errors early is, similarly, less costly. The second reason

for emphasizing this area of research is that, since DoD

organizations often issue contracts for software development

rather than utilize inhouse resources, the tools that apply

to the earlier phases of the life cycle hold promise for the

greatest return on the research investment.

Recognizing, however, that the automation of this process

will require years of research before the automated tools and

techniques will be available for wide scale use, non-automated

means of assuring software quality must also be explored. The

inevitability of changing user's requirements as well as the

realization that the development of error-free software is

beyond the current state-of-the-art, ensure that the maintain-

ability of the software must be a primary consideration in any

development project. The approach offered by the U.S. Air

Force is one that is currently available to aid the project

manager in measuring the maintainability of the delivered

product. One advantage of this approach is that it may be

used as part of the technical review and audit process to

181

identify potential problems affecting the maintainability

early in the development phases by examining the documenta-

tion used at these reviews as well as a measurement technique

for the acceptance testing and evaluation processes. Unfortu-

nately, there has been no empirical evidence offered that

statistically validates the current rejection criteria used

in this evaluation method. Further research is required to

empirically validate this approach. One stumbling block to

this research is the lack of revelant maintenance data on

existing software systems that could provide a data base for

this research. The GAO study [5] on software maintenance

management practices cited a lack of a uniform definition of

what legitimately constitutes software maintainance activities

as a primary cause for not having appropriate data available.

It is, therefore, recommended that a directive be issued that

contains a DoD definition of maintenance, along with the lines

of Swanson's recommendation as discussed in Chapter III. It

should also require that a record of the time and effort

devoted to the maintenance of existing software be kept by

the user organizations. This will serve to both focus manage-

ment attention on this vital area as well as provide a

statistical data base to support research.

Due in large measure to the dual communities that have

evolved as a result of the Brook's Act separating the develop-

ment and acquisition practices associated with non-tactical

(ADP) software from those applicable to tactical or embedded

182

computer software, there exists several duplicated and even

conflicting directives and instructions. While recognizing

that the acquisition process is, by law, different, the issues

surrounding the development of high quality software are not.

One step in reducing this multiplicity of guidance would be

to adopt a single software development standard that would be

applicable to both communities. MIL-STD-1679 represents a

good starting point for this unified standard. More emphasis

on ensuring the maintainabiity of the delivered product is

necessary. Specific requirements for the evaluation of

maintainability as part of the design review and acceptance

testing processes should be included in this unified standard.

Both the Air Force and "bebugging" techniques may be valid

means of accomplishing this requirement, although not neces-

sarily the only ones. The issue of requiring regression

testing should also be addressed in this new, unified

instruction.

Finally, the development of quality software requires

more than just tools and methods. Another vital ingredient

is the presence of highly motivated, technically proficient

managers who are familiar with these tools and can integrate

them into projects where their use is justified. The Computer

Systems Management curriculum at the Naval Postgraduate School

is one DoD effort to provide the necessary personnel to staff

various software development projects. Further research is

also required to determine the feasibility of creating either

183

a separate staff corps or a subspeciality within the Engineer-

ing Duty Officer community, such as is done in the other

services. The creation of a separate career path for software

engineer and management specialists would provide the Navy

with a cadre of professionals who would be able to stay

current with this rapidly expanding field as well as provide

the technical expertise required to ensure the success of

software acquisition and development projects.

184

APPENDIX A

This appendix contains the 83 questions utilized by

evaluator teams at the U.S. Air Force Test and Evaluation

Center, Computer Support Division, Kirkland Air Force Base,

New Mexico. Used to evaluate software documentation for six

aspects of maintainability, these questions are reproduced

from Reference [112].

185

QUESTION DATA SHEET

Question Number D-l

QUESTION ; The documentation includes a separate part for the
description of external interfaces.

CHARACTERISTIC : Modularity (format modularity)

.

EXPLANATIONS : Personnel working in functional areas need to
have information available in one place.

EXAMPLES : An Interface Control Document (ICD). An operator's
Manual

.

GLOSSARY :

Part : Section, volume, document, subsection, etc. as
appropriate.

External interfaces : Program input and output data,
interrupts.

SPECIAL RESPONSE INSTRUCTIONS :

Answer A if one separate part exists.
Answer B-E if the external interfaces are described in

several separate parts depending upon the effectiveness of
that distribution.

Answer F if no description of external interfaces is
available.

186

QUESTION DATA SHEET

Question Number D-2

QUESTION ; The documentation includes a separate part for the
description of each major function.

CHARACTERISTIC : Modularity (format modularity)

.

EXPLANATIONS : Personnel working on a specific function should
have all relevant information available in one piece.

EXAMPLES : Personnel working only on the navigation function
of an aircraft operational flight program should have naviga-
tion functional descriptions in one place.

GLOSSARY :

Part : Section, volume, document, subsection, etc. as
appropriate.

Major function : As defined by the overview or other
equivalent information: may be a component, module, etc.

SPECIAL RESPONSE INSTRUCTIONS :

Answer A if a separate part exists for each major function.
Answer B - E if each major function is described in several

separate parts depending upon the effectiveness of that
distribution.

Answer F if there is no description of each major function.

187

QUESTION DATA SHEET

Question Number D-3

QUESTION : The documentation includes a separate part for the
description of the program global data base.

CHARACTERISTIC : Modularity (formal modularity)

.

EXPLANATIONS : Personnel working with the data base should
have a description of all global data items in one place.

EXAMPLES : There should be a separate part of documentation
containing descriptions, types, ranges, sizes, formats, etc.
of the global data items. Where lists are not complete, plans
for completion should be evident.

GLOSSARY :

Part: Section, volume, document, subsection, etc. as
appropriate.

Global data base : Set of all variables, constants, etc.
which can be accessed by more than one program module: e.g.,
FORTRAN'S COMMON, JOVIAL ' s COMPOOL, assembly's DATA MODULE,
etc.

SPECIAL RESPONSE INSTRUCTIONS :

Answer A if a separate part exists or there is clearly
no global data.

Answer B - E if the global data base is described in
several separate parts depending upon the effectiveness of
that distribution.

Answer F if no description of the global data base exists.

188

QUESTION DATA SHEET

Question Number D-4

QUESTION : Major parts of the documentation are essentially
self-contained.

CHARACTERISTIC : Modularity (format modularity)

.

EXPLANATIONS : Sampling major parts of the documentation for
the amount of cross referencing and the essential nature of
the cross referencing should give the evaluator a general
impression as to level of agreement/disagreement with the
question statement. However, cross referencing for the
purpose of eliminating bulky redundancies is accepatable.

EXAMPLES :

GLOSSARY :

Major parts : as essentially defined by documentation
table of contents and physical structure (volumes, sections,
units, etc.): might include major functions, data base
description, external interfaces, test plan, conventions
and standards, etc.

Self-contained : Independent, stand-alone document.
Makes no cross references to other major parts of the
documentation

.

SPECIAL RESPONSE INSTRUCTIONS:

189

QUESTION DATA SHEET

Question Number D-5

QUESTION : The documentation has been physically separated
into (sets of) volumes each with a distinct purpose.

CHARACTERISTIC : Modularity (format modularity)

.

EXPLANATIONS : Each (set of) volume's introduction should
include an indication of what the (set of) volume's purpose
is. A brief scan of the document should give the evaluator
a general impression of whether that purpose is relatively
distinct, mixed, matches the stated purpose, etc. Each
physically separate volume should be checked and an accumula-
tive impression formed of the level of agreement/disagreement
with the question statement.

EXAMPLES: Maintenance information should not be physically
included in an operator's handbook.

GLOSSARY : Distinct purpose : These might include functional
specification, detailed specification, maintenance manual,
user's guide, data base description, problem reports,
installation instructions, documentation plan, test plan, etc

SPECIAL RESPONSE INSTRUCTIONS:

190

QUESTION DATA SHEET

Question Number D-6

QUESTION : The documentation indicates that each global data
structure is partitioned into functionally related sets of
variables.

CHARACTERISTIC : Modularity (data modularity)

.

EXPLANATIONS : Documentation describing the program global
data base should include the set of all global data and how
it has been partitioned into global data structures.

EXAMPLES: Geodetic site data should be grouped in one global
data structure.

GLOSSARY :

Global data : Any variable or constant which can be
accessed by more than one module of a program.

Global data structure : A particular grouping of global
data variables and/ or constants; e.g., FORTRAN'S COMMON,
JOVIAL' S COMPOOL.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if there is no global
data (hence no global data structures); the implication is
that data coupling is decreased if there is no global data.

191

QUESTION DATA SHEET

Question Number D-7

QUESTION : The documentation indicates that data storage loca-
tions are not used for more than one type of data structure.

CHARACTERISTIC : Modularity (data modularity)

.

EXPLANATIONS : Typical multiple use of data storage locations
would be dynamic memory management schemes, equivalence and
overlays. Program documentation (perhaps at the module level)
should describe any use of storage locations for these types
of uses.

EXAMPLES : Any use of the EQUIVALENCE statement in FORTRAN,
or SAME SORT, SAME AREA, or REDEFINE in COBOL shold be
documented.

GLOSSARY : Type : Examples of types of data structures would
be integer, real, character, array of integer, array of real,
array of characters, records, files, etc.

SPECIAL RESPONSE INSTRUCTIONS : If not indicated in the
documentation either way, answer D.

192

QUESTION DATA SHEET

Question Number D-8

QUESTION : The program control flow is organized in a top
down hierarchical tree pattern.

CHARACTERISTIC ; Modularity (processing modularity)

.

EXPLANATIONS :

The documentation should include a program overview
section which will likely describe the overall program
control flow among modules in narrative or chart form.

Control paths which are not strictly down or up in the
sense of level tend to detract from modularity because of
the associated lack of independence which is introduced.

EXAMPLES ;

GLOSSARY : Top down hierarchical tree pattern : One imagines
a root system of a tree with each junction (node) representing
a major program function or module and each branch a control
path between the nodes.

SPECIAL RESPONSE INSTRUCTIONS : Answer F if there is no
description (narrative or chart) of overall program control
flows.

193

QUESTION DATA SHEET

Question Number D-9

QUESTION : The documentation indicates that program initial-
ization processing is done by one (set of) module (s) designed
exclusively for that purpose.

CHARACTERISTIC : Modularity (processing modularity)

.

EXPLANATIONS :

The documentation describing the program functions and
control flow should also describe how the initial program
state is determined (e.g., via execution of one initializa-
tion module or not) . Checks of module processing may indicate
whether any initialization processing is mixed with other
application functions.

It is usually better if each function, module, submodule,
etc. does not handle its own global initialization. There
should be one part (e.g., a few modules) of the program
which is for initialization.

EXAMPLES:

GLOSSARY : Initialization : The preparatory steps required to
set the initial program data and control states.

SPECIAL RESPONSE INSTRUCTIONS : If the partitioning is such
that each function is performed by a set of modules and there
is one module in each set expressly for initialization, then
strong agreement with the question should be so indicated.
If in addition, these initialization modules are all executed
in preparation to any other functional activity as the first
program action, then there should be essentially complete
agreement with this question's statement.

194

QUESTION DATA SHEET

Question Number D-10

QUESTION : The documentation indicates that program termina-
tion processing is done by one (set of) module (s) designed
exclusively for that purpose.

CHARACTERISTIC : Modularity (processing modularity)

.

EXPLANATIONS :

The documentation describing the program functions and
control flow should also describe how the final program state
is determined (e.g., via execution of one termination module
or not) . Checks of module processing may indicate whether
any termination processing is mixed with other application
functions.

It is best if each function, module, submodule, etc. does
not handle its own termination. There should be one part
(e.g., a few modules) of the program which is for termination
processing.

EXAMPLES : FORTRAN'S STOP statement and COBOL' s STOP RUN
statement could be within the processing area.

GLOSSARY : Termination : The terminal steps required to set
the final program data and control states (might be due to
normal/abnormal termination)

.

SPECIAL RESPONSE INSTRUCTIONS : If the partitioning is such
that each function is performed by a set of modules and there
is one module in each set expressly for termination process-
ing, then strong agreement with the question should be so
indicated. If in addition, these termination modules are
executed only as a systematic program termination procedure,
then there should be essentially complete agreement with
this question's statement. Variations on the program
termination processing should result in appropriate variations
in the evaluator response depending on how much termination
processing is mixed with other application functions.

195

QUESTION DATA SHEET

Question Number D-ll

QUESTION ; The documentation indicates that program I/O is
done by one (set of) module (s) designed exclusively for that
purpose.

CHARACTERISTIC : Modularity (processing modularity)

.

EXPLANATIONS :

The documentation describing the program functions and
control flow should also describe how the program I/O is done
(e.g., via execution of one module or more). Checks of
module processing may indicate whether any I/O functions are
mixed with other application functions.

It is best if each function, module, submodule, etc. does
not handle its own I/O. There should be one part (e.g., a
few modules) of the program which is for I/O processing.

EXAMPLES:

GLOSSARY : I/O: Input or output of program data.

SPECIAL RESPONSE INSTRUCTIONS : If the partitioning is such
that each function is performed by a set of modules and there
is one module in each set expressly for I/O, then appropriate
agreement with the question should be so indicated. Varia-
tions on the program I/O processing should result in appropri-
ate variations in the evaluator response depending on how
much I/O is mixed with other application functions.

196

QUESTION DATA SHEET

Question Number D-12

QUESTION : The documentation indicates that program error
processing is done by one set of modules designed exclusively
for that purpose.

CHARACTERISTIC : Modularity (processing modularity)

.

EXPLANATIONS :

The documentation describing the program functions and
control flow should also describe how the program processes
any error condition (e.g., via execution of one error process-
ing module or not) . Checks of module processing may indicate
whether any error processing functions are mixed with other
application functions.

It is best if each function, module, submodule, etc. does
not handle its own error processing unless adequate corrective
measures are appropriate. There should be one part (e.g., a
few modules) of the program which is for error processing.

EXAMPLES : Editing of input data should be documented.

GLOSSARY : Error processing : The steps required to set pro-
gram data and control states following the detection of an
error condition.

SPECIAL RESPONSE INSTRUCTIONS : If the partitioning is such
that each function is performed by a set of modules and there
is one module in each set expressly for error processing, then
appropriate agreement with the question should be so indicated,
If in addition, these error processing modules are systemati-
cally organized as an error processing function, then there
should be essentially complete agreement with this question
statement.

197

QUESTION DATA SHEET

Question Number D-13

QUESTION ; Each physically separate part of the documentation
includes a useful table of contents.

CHARACTERISTIC ; Descriptiveness (format descriptiveness)

.

EXPLANATIONS : Each separately bound part of the set of
documentation for this program has its own table of contents
to assist in locating program information.

EXAMPLES :

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS : Answer A to F depending upon
the percentage of documents which have a useful table of
contents: e.g., 100% - answer A, 0% - answer F.

198

QUESTION DATA SHEET

Question Number D-14

QUESTION : Each physically separate part of the documentation
includes a useful glossary of major terms and acronyms unique
to that document.

CHARACTERISTIC : Descriptiveness (format descriptiveness)

.

EXPLANATIONS ; Each separately bound part of the set of
documentation has its own glossary of major terms and
acronyms to assist in clarifying other documentation.

EXAMPLES:

GLOSSARY :

Acronym : A term formed by the initial letter (s) of a
series of one or more words.

Example: FORTRAN = FORmula TRANslation

SPECIAL RESPONSE INSTRUCTIONS : Answer A to F depending
upon the percentage of documents which have a useful
glossary: e.g., 100% - answer A, 0% - answer F.

199

QUESTION DATA SHEET

Question Number D-15

QUESTION : Each physically separate part of the documentation
includes a useful index.

CHARACTERISTIC : Descriptiveness (format descriptiveness)

.

EXPLANATIONS : Each separately bound part of the set of
documentation has its own index to assist in locating
information.

EXAMPLES:

GLOSSARY:

SPECIAL RESPONSE INSTRUCTIONS : Answer A to F depending
upon the percentage of documents which have a useful index:
e.g., 100% - answer A, 0% - answer F.

200

QUESTION DATA SHEET

Question Number D-16

QUESTION : It is easy to locate specific information within
the documentation.

CHARACTERISTIC : Descriptiveness (format descriptiveness)

.

EXPLANATIONS ; The evaluator should repeatedly conceptualize
the need for locating a specific piece of information that
might be needed for maintenance, and then check the documenta-
tion for the effort required to locate the information.

EXAMPLES : One piece of frequently needed information might
be the contents of the parameter list. Another might be a
list of what modules call another module. The evaluator
should consider some specific piece of information and
assess the ease of locating that information.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS:

201

QUESTION DATA SHEET

Question Number D-17

QUESTION : The documentation includes a useful version
description document.

CHARACTERISTIC : Descriptiveness (format descriptiveness)

.

EXPLANATIONS : Some document should be readily available
which describes the current operational version of each
configuration controlled program. In hierarchical library
systems, documents should be available describing each level
of the library.

EXAMPLES:

GLOSSARY: Version description document : A document which
describes the version of each computer program.

SPECIAL RESPONSE INSTRUCTIONS: If the documentation is a
baseline (original version or an all-encompassing rewrite)

,

the evaluator should answer A.

202

QUESTION DATA SHEET

Question Number D-18

QUESTION : A useful master list is available which identifies
all software documentation.

CHARACTERISTIC ; Descriptiveness (format descriptiveness)

.

EXPLANATIONS: A reference list should be available in one
overview document or in a separate document which lists at
least all delivered program-related documentation by name and
description; if several programs are part of the software
developement effort, then the list should contain information
on all programs.

EXAMPLES:

GLOSSARY : Master list : This may be a reference list in one
overview document, or a spearate document itself.

SPECIAL RESPONSE INSTRUCTIONS:

203

QUESTION DATA SHEET

Question Number D-19

QUESTION : Any dynamic allocation of resources (storage,
timing, priority, hardware services, etc.) is explained in
the documentation.

CHARACTERISTIC : Descriptiveness (constraints descriptiveness)

EXPLANATIONS : The documentation describing the functional/
detailed program specifications should include a section which
explains what dynamic allocation features are used by the
program. These features may be considered necessary depending
upon the application, but all are considered to increase the
effort required to maintain a program.

EXAMPLES: The most common dynamic allocation feature is
probably storage allocation. There may be allocation routines
which must be called to get or release memory. Also, the
priority scheme or timing allocation for particular "rate"
groups may depend upon certain phases of a mission and dynam-
ically change on that basis. Likewise assignment of control
of tape drives, discs, communication lines or other hardware
may be done in some dynamic manner.

GLOSSARY : Dynamic allocation : Any assignment of a resource
which is (or can be) done during the execution of a program;
contrasts with "static allocation" which implies the resource
assignment remains fixed throughout program execution.

SPECIAL RESPONSE ^ INSTRUCTIONS :

Answer A if it is clear there is no dynamic allocation of
resources for this program.

Answer B - F otherwise.

204

QUESTION DATA SHEET

Question Number D-20

QUESTION : Timing requirements for each major function of the
program are explained in the documentation.

CHARACTERISTIC ; Descriptiveness (constraints descriptiveness)

EXPLANATIONS : The allocated time for each major function
operating in a real-time environment should be described in
the documentation. In addition, the timing relationships
among major functions, or the framing scheme, should also be
described and readily available.

EXAMPLES:

GLOSSARY : Ilajor function : The program overview, hierarchical
chart, etc. will ordinarily define what major function (and
its components) means; it usually will correspond to a module
or group of modules as defined for a given program evaluation.

SPECIAL RESPONSE INSTRUCTIONS :

Answer A if it is clear that this program has no timing
requirements (e.g., is non-real time).

Answer B - F otherwise.

205

QUESTOIN DATA SHEET

Question Number D-21

QUESTION ; Storage requirements for each major function of
the program are explained in the documentation.

CHARACTERISTIC ; Descriptiveness (constraints descriptiveness)

EXPLANATIONS ; Allocated storage requirements for each major
function should be described in the documentation. Even if
a program does not have any "critical" storage requirements,
there should be an explanation in the documentation covering
the program's environment.

EXAMPLES ;

In a program operating in a paged storage environment,
the page limitations (number of pages, boundary requirements,
etc.) should be described.

For programs operating in a resident/non-resident environ-
ment, relationships to the roll-in area requirements should
be described.

GLOSSARY : Major function : The program overview, hierarchical
chart , etc. will ordinarily define what major function (and
its components) means; it usually will correspond to a module
or group of modules as defined for a given program evaluation.

SPECIAL RESPONSE INSTRUCTIONS : Answer F if there is no
explanation of the storage requirement (s)

.

206

QUESTION DATA SHEET

Question Number D-22

QUESTION : The inputs to each module are explained in the
documentation.

CHARACTERISTIC: Descriptiveness (module descriptiveness)

.

EXPLANATIONS : Input parameters passed via parameter packages
or argument lists and global data used by each module as input
should be described.

EXAMPLES: The documentatin for a trigonometric subroutine
describes what data is input (an angle) , the form (in radians)

,

limitations (0 1 angle < 7r/2) , and how it is input passed as a
single precision real number in the first parameter)

.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS:

207

QUESTION DATA SHEET

Question Number D-23

QUESTION : The processing done by each module is explained in
the documentation.

CHARACTERISTIC : Descriptiveness (module descriptiveness)

.

EXPLANATIONS : The algorithm (s) which generate the outputs
from the inputs should be described in the documentation.

EXAMPLES : A trigonometric function should have a description
of the function itself, the algorithm used, and any limitations

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS:

208

QUESTION DATA SHEET

Question Number D-24

QUESTION : The outputs from each module are explained in the
documentation.

CHARACTERISTIC : Descriptiveness (module descriptiveness)

.

EXPLANATIONS : Output parameters passed via parameter or
argument lists and global data altered by each module should
be described.

EXAMPLES : The documentation for an inverse trigonometric
subroutine describes what data is output (an angle) , the
form (in radians) , and how it is output (passed as a double
precision real number in the second parameter)

.

GLOSSARY ;

SPECIAL RESPONSE INSTRUCTIONS:

209

QUESTION DATA SHEET

Question Number D-25

QUESTION : Special processing considerations (error, inter-
rupt, etc.) of each module are explained in the documentation,

CHARACTERISTIC : Descriptiveness (module descriptiveness)

.

EXPLANATIONS : Any special considerations, such as the dif-
ferent types of errors possible and their effects, the
effects of interrupts and the effects of other asynchronous
events should be described.

EXAMPLES : In a message processing program, processing limita-
tions may cause loss of an incoming character. The documenta-
tion for the input handler should describe this condition and
its response to it.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS:

210

QUESTION DATA SHEET

Question Number D-26

QUESTION : There is a flow chart (or equivalent) for each
module which adequately illustrates the inputs, general
processing, and outputs for the module.

CHARACTERISTIC : Descriptiveness (module descriptiveness)

.

EXPLANATIONS : Some form of functionally-oriented presentation
of each of the program components should be available in the
documentation. This could take the form of flowcharts,
Process Design Language (PDL) with functional commentary,
Hierarchical Input-Processing-Output (HIPO) charts, etc.

EXAMPLES:

GLOSSARY : Flowchart (or equivalent) : A logic flow diagram
in which symbols are used to represent operations, data, flow,
equipment, etc. Examples are: FORTRAN flowchart, Process
Design Language (PDL) , Hierarchical Input-Processing-Output
(HIPO) chart, etc.

SPECIAL RESPONSE INSTRUCTIONS : Answer F if module flowcharts
(or equivalent) do not exist.

211

QUESTION DATA SHEET

Question Number D-27

QUESTION : Program initialization and termination processing
is explained.

CHARACTERISTIC : Descriptiveness (external interface
descriptiveness)

.

EXPLANATIONS : The documentation should cover both the data
and the steps required to initialize the operation of this
program within the system and to effect both normal and
abnormal termination of the program.

EXAMPLES : An Operational Flight Program may have no termina-
tion procedures short of power off; however, most such pro-
grams determine the source of the power outage, and whether
any memory locations need be protected, etc. Such considera-
tions should be documented.

GLOSSARY :

Initialization : The preparation steps required to set
the initial program data and control states.

Termination : The terminal steps required to set the
final program data and control states (might be due to normal/
abnormal termination)

.

SPECIAL RESPONSE INSTRUCTIONS : The evaluator should study
both initialization and termination processing explanations.
The response A-F should reflect overall how well both have
been explained.

212

QUESTION DATA SHEET

Question Number D-28

QUESTION : Recovery from externally generated error conditions
which could affect the program is explained.

CHARACTERISTIC : Descriptiveness (external interface
descriptiveness)

.

EXPLANATIONS : The documentation should include an explanation
of overall error processing. This description should include
a description of the recovery of the program from error condi-
tions generated external to the program, but affecting its
capability to function. In most cases, this explanation will
concern the recovery from lack of or bad input data or para-
meters to the program.

EXAMPLES:

GLOSSARY : Recovery : The procedures taken to report/correct
some program failure (resulting from an external error condi-
tion in this case and probably recognized as bad input data)

.

SPECIAL RESPONSE INSTRUCTIONS:

213

QUESTION DATA SHEET

Question Number D-29

QUESTION ; The process of recovering from internally generated
error conditions is explained.

CHARACTERISTIC : Descriptiveness (external interface
descriptiveness)

.

EXPLANATIONS : The documentation should include an explana-
tion of overall error processing. This description should
include a description of the recovery of the program from
error conditions encountered within the program and not
directly caused by the environment external to the program.

EXAMPLES: The documentation explains that, in cases where a
divide by zero is possible, a check is made of the divisor
and alternate processing is instituted to recover from the
error.

GLOSSARY ; Internal error condition : Any algorithm failure
due to processing of internally defined data.

SPECIAL RESPONSE INSTRUCTIONS:

214

QUESTION DATA SHEET

Question Number D-30

QUESTION : Input of program data is explained.

CHARACTERISTIC : Descriptiveness (external interface
descriptiveness)

.

EXPLANATIONS : The documentation should describe what data is
input, the form of the data, any limitations on the data, and
how it is input.

EXAMPLES:
1. Card deck or card deck image input: Line-by-line

description of input, giving format, range or limitations of
each data field, type (numeric or alphanumeric, integer or
floating point) , etc.

2. Multiplex Bus: Description of all data structures to
be received from the bus, giving source and timing of data
blocks (such as a block received from the inertial navigation
system once per second), the sequence, definition, and scale
factors of the parameters in a block, etc.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS:

215

QUESTION DATA SHEET

Question Number D-31

QUESTION : Output of program data is explained.

CHARACTERISTIC : Descriptiveness (external interface
descriptiveness)

.

EXPLANATIONS : The documentation should describe what data
is output, the form of that output, and how it is output.

EXAMPLES : Complete description of the program output, be it
1. Listing (printout)

,

2. CRT display (data displayed on a Heads Up Display
[HUD]) , or

3. Mux Bus, etc.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS:

216

QUESTION DATA SHEET

Question Number D-32

QUESTION : There is a useful set of charts which show the
general program control and data flow hierarchy among all
modules

.

CHARACTERISTIC : Descriptiveness (internal interface
descriptiveness)

.

EXPLANATIONS : Whatever method is used to present the flow,
the presentation should be understandable and complete.

EXAMPLES: The documentation should include a set of system
flowcharts, Process Design Language (PDL) , Hierarchical
Input-Processing-Output (HIPO) , etc. which show the program
control and data flow either together or separately.

GLOSSARY : Chart : Flowchart, Process Design Language (PDL)

,

Hierarchical Input-Processing-Output (HIPO) chart, etc.

SPECIAL RESPONSE INSTRUCTIONS : Answer F if no set of charts
exists.

217

QUESTION DATA SHEET

Question Number D-33

QUESTION : There is a master list (chart, table, section,
etc.) identifying where each global variable is used.

CHARACTERISTIC : Descriptiveness (internal interface
descriptiveness)

.

EXPLANATIONS : A part of the documentation should be a master
list identifying where each global variable is used. This
list contains information used by maintainers of all modules
and it is important they use the same list.

EXAMPLES : In many programming systems, an automated global
data cross-reference report may be generated.

GLOSSARY ; Global viariable : Any variable which can be
accessed by more than one module of a program; global con-
stants should also be identified.

SPECIAL RESPONSE INSTRUCTIONS : Answer F if no master list or
its equivalent exists. Answer A if it is clear that no global
variables exist in the program.

218

QUESTION DATA SHEET

Question Number D-34

QUESTION : The global variable master list includes informa-
tion about each global variable such as type, range, scaling,
units, etc.

CHARACTERISTIC : Descriptiveness (internal interface
descriptiveness)

.

EXPLANAT IONS : The documentation should contain a separate
data base description in which all global data is described
to include information on type, range, etc. This list is
important in that it contains information used by maintainers
of all modules.

EXAMPLES:

GLOSSARY : Global variable : Any variable which can be
accessed by more than one module or a program; global con-
stants should also be identified.

SPECIAL RESPONSE INSTRUCTIONS : Answer F if no master list
or its equivalent exists. Answer A it it is clear that no
global variables exist in the program.

219

QUESTION DATA SHEET

Question Number D-35

QUESTION : The use of any complex mathematical model (tech-
nique

-
) algorithm) is explained in the documentation.

CHARACTERISTIC : Descriptiveness (math model descriptiveness)

EXPLANATIONS : The documentation should contain details on
the use of any complex algorithm to include input require-
ments and limitations.

EXAMPLES : The documentation for a numerical integration
algorithm might specify that a minimum number of intervals
be selected for a specified result accuracy.

GLOSSARY : Complex mathematical model : e.g., Fourier trans-
form, Laplace transform, numerical integration/differentia-
tion scheme, control theory algorithm, statistical technique,
etc.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if it is clear that
there are no complex mathematical models (techniques,
algorithms) used in the program.

220

QUESTION DATA SHEET

Question Number D-36

QUESTION : The documentation on each complex mathematical
model includes information such as a derivation, accuracy
requirements, stability considerations and references.

CHARACTERISTIC : Descriptiveness (math model descriptiveness)

EXPLANATIONS : The documentation should contain enough
detailed explanation or cross-references to allow the main-
tainer to modify the algorithm or its implementation and be
aware of the implications or be able to locate references
which make the implications clear.

EXAMPLES: A numerical algorithm that depends on double
precision processing should have a description of the
implications to accuracy if single precision were to be
substituted.

GLOSSARY : Complex mathematical model : e.g., Fourier trans-
form, Laplace transform, numerical integration/differentia-
tion scheme, control theory algorithm, statistical technique,
etc.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if it is clear that
there are no complex mathematical models (techniques,
algorithms) used in the program.

221

QUESTION DATA SHEET

Question Number D-37

QUESTION ; It appears that a useful set of standards has been
followed for the development of the documentation.

CHARACTERISTIC : Consistency (format consistency)

.

EXPLANATIONS : Consistent documentation means that the main-
tainer can spend less time learning the organization of the
documentation and more time learning the content. The docu-
mentation should be scanned for adherence to standards.

The evaluator may know in advance that documentation
standards were generated and he can see that they were
followed .

The evaluator may not know in advance but may be able to
tell from the organization of diverse parts of the documenta-
tion that standards were available and followed.

Confusing documentation organization indicates misuse or
no use of documentation standards.

EXAMPLES : Following either contractor standards developed
locally or universal standards (e.g., ANSI FORTRAN) which
help understandability. Usually the format consistency of
the documentation indicates how much a standard/convention,
etc. has been followed.

GLOSSARY : Standards : Procedures, rules, and conventions
used for prescribing disciplined program design and
implementation.

SPECIAL RESPONSE INSTRUCTIONS:

222

QUESTION DATA SHEET

Question Number D-38

QUESTION : It appears that a set of standards has been
followed for the construction of all (program and module)
flowcharts (or equivalent)

.

CHARACTERISTIC : Consistency (format consistency)

.

EXPLANATIONS ; The flowcharts of the program and its modules
should be scanned for conventional use of symbols, labeling
consistency, etc. There may be a stated standard (e.g.,
ANSI FORTRAN) against which the flowcharts may be compared.

EXAMPLES : The documentation contains a section describing
the flowcharting methodology and it is clear from the flow-
charts that the methodology has been followed.

GLOSSARY :

Standards : Procedures, rules and conventions used for
prescribing program design and implementation.

Flowchart (or equivalent) : A logic flow diagram in which
symbols are used to represent operations, data, flow, equip-
ment, etc. In the broad sense, would include FORTRAN flow-
chart, Process Design Language (PDL) , Hierarchical Input

-

processing-Output (HIPO) , etc.

SPECIAL RESPONSE INSTRUCTIONS : Answer F if there are no
flowcharts (or equivalents)

.

223

QUESTION DATA SHEET

Question Number D-39

QUESTION : Documentation of each major functional part of the
program follows the same format.

CHARACTERISTIC : Consistency (format consistency)

.

EXPLANATIONS : Each major functional area of a program should
have the same documentation format as far as is practicable
in order to aid understandability

.

EXAMPLES : An airborne computer may contain major modules
dedicated, for instance, to navigation, bombing, and air-
to-air. Each of these modules would need input, output, and
processing sections. All input sections should be similar;
all output sections should be similar, etc.

GLOSSARY : Major functional part : The program overview,
hierarchical chart, etc. will ordinarily define what major
function (and its components) means; it usually will corre-
spond to a module or group of modules as defined for a given
program evaluation.

SPECIAL RESPONSE INSTRUCTIONS:

224

QUESTION DATA SHEET

Question Number D-40

QUESTION : The format of the documentation reflects the
organization of the program.

CHARACTERISTIC : Consistency (format consistency)

.

EXPLANATIONS :

Program parts are easier to maintain if the documentation
has separate sections to describe each of those parts. This
simplifies looking for details concerning those program parts

There can be other considerations which may influence the
evaluator in responding to this question. What is desired is
basically the evaluator' s general impression as to the use-
fulness of the documentation format in understanding the
overall program organization.

EXAMPLES : Major program functions, the program data base,
etc. might have separate sections. The descriptions of how
the program is designed to be tested should be reflected in
the format of the documentation such as providing sections
for unit test procedures and sample test data if applicable.

GLOSSARY : Organization of the program : Design of the pro-
gram as components, modules, global data base, units,
segments, etc.

SPECIAL RESPONSE INSTRUCTIONS:

225

QUESTION DATA SHEET

Question Number D-41

QUESTION : It appears that programming conventions have been
established for the interfacing of modules.

CHARACTERISTIC : Consistency (design consistency)

.

EXPLANATIONS : Module interface design is extremely important,
improper interfacing can lead to many hidden errors. Program
design conventions hsould be documented. In addition, the
module descriptions can be scanned to determine whether such
conventions have been established and/or followed. The estab-
lishment of linkage conventions is especially import for
assembly language modules.

EXAMPLES : Inputs and outputs, both argument type and global
data type, require coordination between the sender (s) and the
receiver (s). Such coordination requires explicit description
of all attributes of each such variable and should be listed
in an interface control document.

GLOSSARY :

Interfacing of modules : The passing of control, data, or
services between two or more modules.

Convention : Agreed method or form of presentation to
provide consistency and understanding.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if it is clear that
there is no interfacing between any of the modules.

226

QUESTION DATA SHEET

Question Number D-42

QUESTION : It appears that programming conventions have been
established for I/O processing.

CHARACTERISTIC : Consistency (design consistency)

.

EXPLANATIONS :

Program I/O processing is the interface of the program
to the rest of its environment.

The module descriptions should be scanned to determine if
any particular design consistency/conventions have been fol-
lowed for program I/O processing.

EXAMPLES : One module or set of modules should be clearly
identified as interfacing the computational system to the
real world. All attributes of all inputs and all outputs
should be clearly identified. This data is essential to all
personnel interfacing with any I/O data, whether externally
(to/from real world) or internally (to/from processing
routines)

.

GLOSSARY : I/O processing : The physical input or output of
program data.

SPECIAL RESPONSE INSTRUCTIONS:

227

QUESTION DATA SHEET

Question Number D-4 3

QUESTION : It appears that design conventions have been
established for error processing.

CHARACTERISTIC : Consistency (design consistency)

.

EXPLANATIONS : Centralized processing of error conditions
generally improves the maintainability of a program. Under
such centralized error processing, any module which communi-
cates an error condition to an error processing routine must
do so properly. Therefore, error processing procedures must
be documented and followed.

EXAMPLES : An error type is generated and passed to the error
processing routine (s). The routine generating the error type
"knows" that the error processing routine will handle it prop-
erly when both parties have followed the documented procedures

GLOSSARY : Error processing : The procedure followed after a
program failure due to some recognized error condition.

SPECIAL RESPONSE INSTRUCTIONS:

228

QUESTION DATA SHEET

Question Number D-44

QUESTION : A naming convention for modules appears to have
been used.

CHARACTERISTIC : Consistency (design consistency)

.

EXPLANATIONS : Naming conventions help to describe processing
and input/output. The maintenance programmer should be able
to easily recognize calls to processes external to the module
being changed. Although the listing may not be available to
confirm conventions, the documentation should contain stand-
ards or conventions for naming yet-to-be-designed modules.

EXAMPLES : All routine names begin with "SUB" (for subroutine)
or "XR" (for external-routine)

.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS:

229

QUESTION DATA SHEET

Question Number D-45

QUESTION : A naming convention for global variables appears
to have been used.

CHARACTERISTIC : Consistency (design consistency)

.

EXPLANATIONS : Naming conventions help to describe processing
and input/output. The maintenance programmer should be able
to recognize global variables easily, since extra caution must
be used when making changes which deal with data which is
either generated or used outside the module being changed.
Although the listings may not be available to confirm conven-
tions, the documentation should contain standards or conven-
tions to be followed during programming.

EXAMPLES : All variables which are global variables have names
beginning with "XG" (external-global) ; no other type of vari-
able name begins with that letter combination.

GLOSSARY : Global variable : Any variable or constant which
can be accessed by more than one module of a program.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if there are no global
variables

.

2j0

QUESTION DATA SHEET

Question Number D-46

QUESTION : The terminology used in the documentation to de-
scribe the program is easily understood.

CHARACTERISTIC : Simplicity (format simplicity)

.

EXPLANATIONS : The general use of English and program terms
should be simple, straightforward, easily understood; any
terms or acronyms needing to be clarified should be defined
prior to use and included in a glossary for reference.

EXAMPLES : A program that calculates MTBF should define Mean
Time Between Failures - what the acronym means plus how the
figure is calculated.

GLOSSARY : Terminology : Technical or special terms relevant
to this particular computer system.

SPECIAL RESPONSE INSTRUCTIONS:

231

QUESTION DATA SHEET

Question Number D-47

QUESTION : The documentation is physically organized as a
systematic description of the program from levels of less de-
tail to levels of more detail.

CHARACTERISTIC : Simplicity (format simplicity)

.

EXPLANATIONS : Generally, the documentation produced during a
software development effort should successively describe re-
quirements, preliminary design, detailed design, operation/
maintenance manual, test plan, etc. This will reflect a
natural progression of program description from levels of less
detail to levels of more detail.

EXAMPLES : Within any given documentation product, e.g., the
detailed design specification, there should be a sequential
progression from descriptions of less detail (e.g. overview)
to descriptions of more detail (e.g., module design).

GLOSSARY : Physically organized : The documents, volumes,
chapters, sections, etc.

SPECIAL RESPONSE INSTRUCTIONS:

232

QUESTION DATA SHEET

Question Number D-4 8

QUESTION : Each part (sentence, paragraph, subsection, section,
chapter, volume, etc.) of the documentation tends to express
one central idea.

CHARACTERISTIC : Simplicity (format simplicity)

.

EXPLANATIONS : All documentation should be scanned, If the
documentation has been written in a simple understandable
manner, then more than likely each part will address one pri-
mary topic (and subparts, one primary subtopic, etc.). The
descriptions will be simple and to the point.

EXAMPLES :

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS:

233

QUESTION DATA SHEET

Question Number D-49

QUESTION : The amount of cross referencing among parts of the
documentation contributes to the understandability of the pro-
gram description.

CHARACTERISTIC : Simplicity (format simplicity)

.

EXPLANATIONS : Some parts of the documentation may use cross
referencing well while other parts may not. The evaluator
should study the documentation until a reasonably well-founded
overall impression is formed.

EXAMPLES : A narrative description of a file layout cross re-
ferenced to a figure graphically displaying the file is good.
A simple reference to the figure with no narrative is not.

GLOSSARY : Cross reference : A note, statement, section number,
etc. which directs a reader from one part of the documentation
to another part.

SPECIAL RESPONSE INSTRUCTIONS:

234

QUESTION DATA SHEET

Question Number D-50

QUESTION : The documentation indicates that the program source
language is a high order language (HOL)

.

CHARACTERISTIC : Simplicity (format simplicity)

.

EXPLANATIONS : Even though the system design dictates a non-
HOL, a HOL is desirable from a maintainability standpoint.
Less knowledge of internal machine operating characteristics
is required to maintain a HOL program.

EXAMPLES : A particular communication processor program is
better designed in assembly language due to the nature of bit
manipulation requirements; however, assembly language programs
are harder to maintain due to the machine dependency of assem-
bly languages and the specialized knowledge required to main-
tain them.

GLOSSARY : High order language : A programming language that
does not reflect the structure of any one given computer or
that of any given class of computers: Non-assembly, non-micro
code, non-machine; e.g., FORTRAN, JOVIAL, PL/I, PASCAL, etc.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if the program source
language is completely HOL. Answer F if the program source
language is completely non-HOL. Answer in the range B to E
if the source language is a mix of HOL and non-HOL by approxi-
mate percentage:

B - > 80%

C - > 60%

D - > 40%

E - > 20%

235

QUESTION DATA SHEET

Question Number D-51

QUESTION ; The documentation indicates that the use of recur-
sive/reentrant programming techniques is not excessive.

CHARACTERISTIC : Simplicity (format simplicity)

.

EXPLANATIONS :

The documentation should identify within a general "pro-
gram design considerations" section or the individual module
description sections whether recursion or reentrancy is to be
utilized. Many languages (or at least a particular imple-
mentation of a compiler) do not allow recursive and/or re-
entrant code. Some languages (e.g., stack-oriented languages
like Pascal) allow recursion as a natural language capability.

The evaluator should get an overall impression of how
much recursion/reentrant programming is a part of the overall
program design . If done with care, some use of recursion or
reentrancy can simplify the overall program design even though
the particular modules which are recursive/reentrant will prob-
ably be harder to maintain because of those concerns.

EXAMPLES : Utility modules generally use these techniques.

GLOSSARY ;

Recursive programming techniques : The use of operations
which are defined in terms of themselves: a recursive module
is one which uses a call to itself within the body of the
code.

Reentrant programming technique : The technique of inter-
rupting a program module at any point by another user and then
resuming execution at the point of interruption. A reentrant
module is one which can be concurrently used by more than one
user.

Excessive : Detracts from simplicity.

SPECIAL RESPONSE INSTRUCTIONS :

If the documentation does not indicate, then:
Answer A if the language does not allow such techniques

(example: COBOL)

.

Answer F if the language does allow such techniques
(example: ALGOL or assembly language)

.

236

QUESTION DATA SHEET

Question Number D-52

QUESTION : The documentation indicates that each program
module is designed to perform only one major function.

CHARACTERISTIC : Simplicity (design simplicity)

.

EXPLANATIONS : From the standpoint of simplicity, it would be
easy to maintain a program in which each module performs only
one function. Even if each module (or nearly each) performs
only one major function and possibly one or two related func-
tions, the program should still be simple and easy to main-
tain.

EXAMPLES : A print module may make a decision as to where to
return in a program based upon the data printed. This may de-
tract little from the simplicity; however, it would preclude
an A answer.

GLOSSARY :

Function : A sub-division of a process.

SPECIAL RESPONSE INSTRUCTIONS : Answer A only if each module
performs just one function. Answer B-F based on the propor-
tion of modules which perform more than one function, e.g.,
B if 10% or less to F if 90% or more.

237

QUESTION DATA SHEET

Question Number D-53

QUESTION : The documentation indicates that resource (storage,
timing, tape drives, disks, consoles, etc.) allocation is
fixed throughout program execution.

CHARACTERISTIC : Simplicity (design simplicity)

.

EXPLANATIONS : Dynamic allocation tends to increase the level
of complexity of a module, thereby making maintenance more
difficult and time-consuming. The sharing or dynamic reassign-
ment of resources should be a highlight of a section describing
special processing (control) considerations, memory allocation,
timing requirements by mission phase, etc. As another re-
course, the evaluator can check the individual module des-
criptions for possible mention of any dynamic resource allo-
cation.

EXAMPLES :

GLOSSARY :

Resource allocation : The assignment of a particular re-
source to a particular program task, function, module, etc.

Fixed : Is not reassigned from initialization to termin-
ation or reinitialization of the program.

SPECIAL RESPONSE INSTRUCTIONS : Answer A only if resource
allocation is fixed throughout the entire program or is con-
trolled by the operating system (i.e., transparent to the pro-
grammer) .

238

QUESTION DATA SHEET

Question Number D-54

QUESTION ; The documentation indicates that the control flow
among modules is easy to follow.

CHARACTERISTIC : Simplicity (design simplicity)

.

EXPLANATIONS : The documentation should include narrative or
a hierarchical flowchart which gives a clear, concise, easily
understood general overview of the sequence in which modules
(and perhaps submodules) are invoked and what controls that
sequence

.

EXAMPLES ;

GLOSSARY : Control flow among modules : Which modules call
and are called by other modules.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if all modules
are entirely independent.

239

QUESTION DATA SHEET

Question Number D-55

QUESTION : The timing scheme designed for the program is
easily understood from the documentation.

CHARACTERISTIC ; Simplicity (design simplicity)

.

EXPLANATIONS : The program documentation should include a
separate section which describes overall timing requirements
and the timing scheme designed to satisfy those requirements.
This description should be clear, concise, and easily
followed.

EXAMPLES:

GLOSSARY : Timing scheme : Time slicing, time sharing, prior-
ity levels, rate groups, etc. as applied to the overall
sequencing and execution of program functions

.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if there are clearly
no special timing considerations.

240

QUESTION DATA SHEET

Question Number D-56

QUESTION : The program is designed so that modules are not
interrupted during execution.

CHARACTERISTIC : Simplicity (design simplicity)

.

EXPLANATIONS : Whenever special processing is required to
handle the possibility of being interrupted, a higher level
of complexity will exist in a module.

EXAMPLES ;

GLOSSARY : Interrupted : Execution is suspended without the
knowledge of the module being suspended.

SPECIAL RESPONSE INSTRUCTIONS:

241

QUESTION DATA SHEET

Question Number D-57

QUESTION ; It is evident from the documentation that a knowl-
edge of mathematics beyond basic algebra is not required to
understand the mathematical functions performed by the program.

CHARACTERISTIC : Simplicity (design simplicity)

.

EXPLANATIONS : There may be a few complex functions , but on
the average most of the functions require no mathematics
beyond basic algebra. In this case, the evaluator might
generally or strongly agree with the question statement. If
there appears to be many complex functions, the evaluator may
want to generally or strongly disagree with the question
statement.

EXAMPLES :

GLOSSARY : Basic algebra : Functions (including trigonometric
and geometric functions) , equations, polynomials (including
series), graphing of functions, basic manipulations, etc.;
excludes calculus, differential equations, Fourier transforms,
statistical algorithms, etc.

SPECIAL RESPONSE INSTRUCTIONS : The evaluator should respond
on the basis of overall program considerations.

242

QUESTION DATA SHEET

Question Number D-58

QUESTION : A numbering scheme has been adopted which allows
for easy addition or deletion of narrative parts of the
documentation

.

CHARACTERISTIC: Expandability (format expandability)

.

EXPLANATIONS : Computer program documentation can be volumi-
nous and subject to frequent changes due to program modifica-
tions and format requirement alterations. This question
seeks to determine if:

a) A numbering convention has been established for
formating the documentation; and,

b) the format enhances:
1 identifying volumes, sections, and paragraphs;

and pages.
2_ adding and deleting information without generating

attendant rippling effects throughout the rest of the docu-
ment. Determine if a numbering scheme has been established.
Assess the ease with which a volume/section/paragraph/page
can be located and the extent to which a change in document
content will affect the numerical identifiers of other parts
of the document.

EXAMPLES : Consecutive numbering of pages makes it difficult
to and/delete pages. Use of a hierarchical numbering system
to number pages by section reduces the number of succeeding
pages affected by changing the contents of a section.

GLOSSARY : Number scheme : A formatting convention used to
facilitate identifying some part of a document.

SPECIAL RESPONSE INSTRUCTIONS:

243

QUESTION DATA SHEET

Question Number D-59

QUESTION : Graphic materials (figures, charts, lists, etc.)
are physically separate (e.g., on separate pages) from
narrative description.

CHARACTERISTIC : Expandability (format expandability)

.

EXPLANATIONS : Graphic materials should always be on separate
pages. Changes in narrative are more easily typed when narra-
tive and graphic materials are not co-located on the same page

EXAMPLES ;

GLOSSARY : Graphic materials : Tables, figures, equations.

SPECIAL RESPONSE INSTRUCTIONS:

244

QUESTION DATA SHEET

Question Number D-60

QUESTION : A numbering scheme has been adopted which allows
for easy addition or deletion of graphic materials.

CHARACTERISTIC : Expandability (format expandability)

.

EXPLANATIONS ; Graphic materials in computer program docu-
mentation can be subject to frequent changes due to program
or requirement modifications. A suitable numbering scheme
should have been established such that graphic materials can
easily be identified and added/removed without having a
rippling effect on other numbered items in the document. It
should be determined if a numbering scheme has been established,
The ease with which graphic materials can be located and the
extent to which adding or deleting an item affects the assigned
identifiers of other items should be assessed.

EXAMPLES : Consecutive numbering of figures across major
sections requires more changes when adding or deleting figures
than numbering consecutively within a major section.

GLOSSARY :

Numbering scheme : A formatting convention used to facili-
tate"Td^nTITyTng~~some part of a document.

Graphic materials : Items such as tables, figures, and
equations.

SPECIAL RESPONSE INSTRUCTIONS:

245

QUESTION DATA SHEET

Question Number D-61

QUESTION : The program timing scheme appears to be flexible
enough to allow for modifications (e.g., reorganization,
addition, deletion of functional parts)

.

CHARACTERISTIC : Expandability (design expandability)

.

EXPLANATIONS : In many applications, specific program functions
must be performed at periodic intervals , within predetermined
time intervals, or at a definite point in time. The question
seeks to determine the extent to which the program's timing
scheme restricts desired changes to a program's design.

EXAMPLES : A function that must be performed every 10 micro-
seconds will conflict with the design of a different function
requiring 10 or more microseconds of uninterrupted processing.

GLOSSARY ;

Timing scheme : A convention based on wall clock time or
processor clock time that controls execution of a program's
functions.

Flexible : Modifiable.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if there are no
required program timing considerations

.

246

QUESTION DATA SHEET

Question Number D-62

QUESTION : There is a reasonable time margin for each major
program function (rate group, time slice, priority level,
etc.)

.

CHARACTERISTIC : Expandability (design expandability)

.

EXPLANATIONS : Program functions should be designed such that
required timing constraints are met with "room to spare."
Too little reserves limit the ability to add processes to a
function. Too much reserve, on the other hand, may indicate
processing inefficiency due to resource underutilization.

EXAMPLES ; A program function requiring a periodic 5 milli-
second time slice is allocated a dedicated 20 millisecond
time slice. The timing margin for this function is 75%.

GLOSSARY ;

Timing margin : A percentage of the time allocated to a
process that is still available for use; calculated by the
ratio of spare time to the total time frame.

Program function : A generic term used to reference one
or more program processes.

Time slice : A predetermined period of processer time.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if the program has
no timing requirements because timing margins will not be of
any concern (e.g., program in non-real time). Also answer
A if each timing margin is at least 25%.

247

QUESTION DATA SHEET

Question Number D-63

QUESTION : Documentation narrative explains the procedures for
altering basic data storage sizes.

CHARACTERISTIC ; Expandability (design expandability)

.

EXPLANATIONS : How to alter the capacity of data storage is
not always obvious. Very often, storage has been judiciously
allocated to interface with various portions of the program.
Documentation narrative should not only describe how to alter
basic data storage sizes, but should also identify those
interfaces which might be impacted by such changes.

EXAMPLES : Creating a new variable in the middle of a labeled
common region can affect all program processes that use that
storage area.

GLOSSARY : Basic data storage sizes : The size of program data
structures upon which program processing depends; the struc-
ture may be an array, a table, space allocated by an assembly
directive, etc.

SPECIAL RESPONSE INSTRUCTIONS:

248

QUESTION DATA SHEET

Question Number D-64

QUESTION : The program has been designed to allow for an
increase in storage utilized before storage capacity is
exceeded.

CHARACTERISTIC : Expandability (design expandability)

.

EXPLANATIONS : Over time, the amount of data storage space
required for program applications almost always increases.
A program should be designed so that additional storage
allocations can be made without the need for program design
or hardware modification.

EXAMPLES:

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS : Answer A if at least 25% of
the storage capacity is available for future use.

249

QUESTION DATA SHEET

Question Number D-65

QUESTION ; Those modules dependent upon data structure sizes
are identified.

CHARACTERISTIC ; Expandability (design expandability)

.

EXPLANATIONS ; Changing the definition of a data structure
will invariably impact the modules that use it. Therefore,
the documentation should contain a list of "affected modules"
for each data structure so that changes to the structure can
be accompanied by appropriate changes to the modules.

EXAMPLES;

GLOSSARY ;

Data Structure ; Grouping of data elements (variables
and constants) into arrays, records, files, etc.

SPECIAL RESPONSE INSTRUCTIONS ; Answer A if it is clear that
no modules are dependent upon data structure definitions.
This will be unlikely in large software programs.

250

QUESTION DATA SHEET

Question Number D-66

QUESTION : The program has been designed so that functional
parts may be easily added or deleted.

CHARACTERISTIC : Expandability (design expandability)

.

EXPLANATIONS : Programs designed using a top-down, structured
methodology often consist of functional parts which are inter-
related, yet independent, of one another. That is, each part
can be viewed as a "black box" externally. Such parts are
usually easily added, deleted, or replaced. However, func-
tional parts designed with complicated, delicate interfaces
are more difficult to deal with. An impression should be
formed from the module descriptions and program overview
information whether the functional parts could be easily
added or deleted.

EXAMPLES ; Functions executed as a result of a table-driven
executive can be easily added and removed by modifying the
contents of the table.

GLOSSARY : Functioal parts : Primarily modules, but also
includes groups of modules that perform major functions.

SPECIAL RESPONSE INSTRUCTIONS:

251

QUESTION DATA SHEET

Question Number D-67

QUESTION : There is a separate part of the documentation for
the description of a program test plan.

CHARACTERISTIC : Instrumentation (format instrumentation)

.

EXPLANATIONS : Testing is generally regarded as a separate
organizational function. It is helpful to those individuals
invloved in testing to have test information gathered into
one part of the documentation.

EXAMPLES : The documentation may include volumes of test
information sheets. It may include test plans; acceptance
test procedures (ATP) , formal or preliminary qualification
test (FQT, PQT) procedures. It may include sets of sample
input data with expected output data.

GLOSSARY : Program test plan : Set of descriptions and pro-
cedures for how the program is to be (or can be, or has been)
tested.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if a separate part
exists. Answer F if the description does not exist. If for
some reason the program test plan description is distributed
over several separate parts (e.g., one part per unit/module
description) , then answer in the range B to E as to the
effectiveness of that "separation" from the point of view
of program test/retest.

252

QUESTION DATA SHEET

Question Number D-68

QUESTION : There is a separate part of the documentation for
the description of sample test data.

CHARACTERISTIC : Instrumentation (format instrumentation)

.

EXPLANATIONS : Comparison of input/output data before and
after program changes have been made is one of the best ways
to assure that changes have been made properly and that no
extraneous errors have been introduced.

EXAMPLES ;

GLOSSARY : Sample test data : The input and output data used
for the program tests.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if a separate part
exists. Answer F if the description does not exist. If for
some reason the sample test data description is distributed
over several separate parts (e.g., one part per unit/module
description) , then answer in the range B to E as to the
effectiveness of that "separation" from the point of view of
program test/retest.

253

QUESTION DATA SHEET

Question Number D-6 9

QUESTION : There is a separate part of the documentation for
the description of program support tools which would aid in
testing the program.

CHARACTERISTIC : Instrumentation (format instrumentation)

.

EXPLANATIONS : Program support tools are not generally a part
of the operational software. Descriptions of program support
tools are often voluminous and would merely lead to confusion
if they were included with descriptions of the operational
software. However, the descriptions of program support tools
are absolutely necessary and should therefore constitute a
separate part of the documentation.

EXAMPLES : A FORTRAN reference manual is an absolute necessity
to a scientific programmer, but is definitely not considered
to be an integral part of applications software documentation.

GLOSSARY : Program support tools : General debug aids, test/
retest software, trace software/hardware features, use of
compiler/link editor/library management/configuration manage-
ment/text editor/display software tools.

SPECIAL RESPONSE INSTRUCTIONS : Answer A if a separate part
exists. Answer F if the description does not exist. If for
some reason the description of program support tools for
testing is distributed over several separate parts then
answer in the range B to E as to the effectiveness of that
"separation" from the point of view of program test/retest.

254

QUESTION DATA SHEET

Question Number D-70

QUESTION : A set of test procedures to be used for program
check-out are explained.

CHARACTERISTIC : Instrumentation (design instrumentation)

.

EXPLANATIONS ; Program test procedures, in order to be useful,
must provide adequate information to completely describe test
inputs, outputs, and environment.

EXAMPLES: One good test of the adequacy of the explanation
of the program test procedures is for the evaluator to visual-
ize how easy it would be to execute step-by-step one or more
of the particular test procedures. If the information is not
presented in a step-by-step fashion with a complete discussion
of the test environment, test inputs and expected test outputs,
then the test will probably be difficult to perform.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS : If no test procedures exist,
then answer "F."

255

QUESTION DATA SHEET

Question Number D-71

QUESTION : The set of test procedures provides useful unit
testing information

.

CHARACTERISTIC : Instrumentation (design instrumentation)

.

EXPLANATIONS: The test procedures will ordinarily be des-
cribed in terms of unit testing information and integration
testing information. The test procedures should describe
test procedures for sub-units of the program as well as for
overall program testing. It is often infeasible to test the
entire program during modification/testing of only one
sub-unit.

EXAMPLES :

GLOSSARY : Unit : Units may be modules, submodules, groups of
modules or some other organization depending upon the contrac-
tor and the application area.

SPECIAL RESPONSE INSTRUCTIONS : If no test procedures exist,
then answer "F."

256

QUESTION DATA SHEET

Question Number D-72

QUESTION : The set of test procedures provides useful informa-
tion on limitations/incompleteness.

CHARACTERISTIC ; Instrumentation (design instrumentation)

.

EXPLANATIONS : The testing agency, in order to know what was
actually tested and to what extent it was tested, must know
the limitations of test procedures.

EXAMPLES : The documentation should contain the ranges of
variables tested and not tested as well as modules tested
and not tested.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS : If no test procedures exist
or there is no information on the limitations/incompleteness
of the test procedures, then answer F.

257

QUESTION DATA SHEET

Question Number D-73

QUESTION : The program has been designed with the capability
to display test inputs and outputs in summary form.

CHARACTERISTIC ; Instrumentation (design instrumentation).

EXPLANATIONS : Many programs process tremendous quantities
of data and the test inputs/outputs likewise consist of
tremendous quantities of data. In such cases, it is desir-
able to have a program automatically compare the test data
and display only the differences/errors to the maintainer.

EXAMPLES :

GLOSSARY ;

SPECIAL RESPONSE INSTRUCTIONS : If the module does not process
a great deal of data, so that there is no need to summarize
the test inputs/outputs, your answer should lie in the B-E
range.

258

QUESTION DATA SHEET

Question Number D-74

QUESTION : The documentation describes a standardized set to
program test data (input and output) that has been designed
to exercise the program.

CHARACTERISTIC : Instrumentation (design instrumentation)

.

EXPLANATIONS ; This question relates to both quality and
existence of test data. In order to assure that test data
properly exercises or tests the program, it must be carefully
designed to do so. Randomly assembled data will not usually
exercise all parts of the program, whereas carefully designed
test data will.

EXAMPLES :

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS:

259

QUESTION DATA SHEET

Question Number D-75

QUESTION : The documentation indicates that the program has
been designed to include software test probes to aid in
identifying processing performance.

CHARACTERISTIC : Instrumentation (design instrumentation)

.

EXPLANATIONS : Test data alone is usually not sufficient to
adequately test a program. Certain parts of the program can
only be tested by insertion (or activation) of special
executable code which is used strictly for testing purposes.

EXAMPLES : If the language provides debug capabilities or
such options as conditional compilation, then the designer
is much more likely to consider the use of test probes as a
normal part of the program. However, it is still possible
under more adverse conditions for the design to include
separate functions which can be individually invoked for the
purpose of collecting appropriate processing performance
information.

GLOSSARY :

Include : Presently in-line or can be inserted in-line
through activation.

Software test probe : Section of code or special module
which collects certain process parameters; generally the
activation of the probe can be controlled through user
options.

Processing performance : Accuracy, timing, etc.

SPECIAL RESPONSE INSTRUCTIONS:

260

QUESTION DATA SHEET

Question Number D-76

QUESTION : Error checking within the program has been
designed to include such features as diagnostic reporting,
I/O parameter checking, runtime index range checking, etc.

CHARACTERISTIC ; Instrumentation (design instrumentation)

.

EXPLANATIONS : These particular test tools, as well as many
others, are of particular importance to program instrumenta-
tion and test.

EXAMPLES : The documentation describing error processing/error
codes/error messages, or perhaps report generation could be
checked to determine what type of error checking appears to
be done. In addition, the general design conventions/
standards might indicate what error checking conventions have
ben adopted. The source language compiler may have options
which allow for the generation of run-time parameter checking
(e.g., index range).

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS : The evaluator must judge
which particular types of instrumentation he feels should be
included, and answer A - F according to his estimation of the
adequacy of what actually exists.

261

QUESTION DATA SHEET

Question Number D-77

QUESTION ; Modularity as reflected in the program documenta-
tion contributes to the maintainability of the program.

CHARACTERISTIC : General questions.

EXPLANATIONS : Software possesses the characteristics of
modularity to the extent a logical partitioning of software
into parts, components, modules has occurred.

EXAMPLES : The software has been partitioned into easily
comprehendable "sections." Each "section" is independent
from every other "section" as much as is reasonable; i.e.,
to understand any given "section," requisite knowledge of
other "sections" has been kept to a minimum.

GLOSSARY ;

SPECIAL RESPONSE INSTRUCTIONS ; Please give your general
feeling about the modularity of the documentation.

262

QUESTION DATA SHEET

Question Number D-78

QUESTION : Descriptiveness as reflected in the program docu-
mentation contributes to the maintainability of the program.

CHARACTERISTIC : General questions.

EXPLANATIONS ; Software possesses the characteristics of
descriptiveness to the extent that it contains information
regarding its objectives , assumptions, inputs, processing,
outouts, components, revision status, etc.

EXAMPLES : Program objectives are explained, subprogram
objectives are explained, communication links are either
specifically explained or there is a detailed plan for set-
ting up the communication links. Revision status of the
documentation is clear. Source listing revision status is
either clear or a detailed plan for revision status tracking
is explained, etc.

GLOSSARY ;

SPECIAL RESPONSE INSTRUCTIONS : Please give your general
feeling about the descriptiveness of the documentation.

263

QUESTION DATA SHEET

Question Number D-79

QUESTION : Consistency as reflected in the program documenta-
tion contributes to the maintainability of the program.

CHARACTERISTIC ; General questions.

EXPLANATIONS : Software possesses the characteristics of
consistency to the extent the software products correlate and
contain uniform notation, terminology and symbology.

EXAMPLES: Things are done similarly in different parts of the
documentation. Once an individual learns how the documentation
is set up, he can turn to any part of the documentation and see
exactly what he expects to see. A set of documentation stand-
ards appears to have been set up and followed .

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS : Please give your general
feelings about the consistency of the documentation.

264

QUESTION DATA SHEET

Question Number D-80

QUESTION : Simplicity as reflected in the program documenta-
tion contributes to the maintainability of the program.

CHARACTERISTIC : General question.

EXPLANATIONS : Software possesses the characteristics of
simplicity to the extent that it lacks complexity in organiza-
tion, language, and implementation techniques and reflects the
use of singularity concepts and fundamental structures.

EXAMPLES: The organization of the documentation is logical.
Uncomplicated , descriptive terminology is used throughout.
Each section or part of the documentation addresses a single
subject and is minimally dependent upon other parts for a
full understanding.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS : Please give your general
impression about the simplicity of the documentation.

265

QUESTION DATA SHEET

Question Number D-81

QUESTION : Expandability as reflected in the program docu-
mentation contributes to the maintainability of the program.

CHARACTERISTIC : General question.

EXPLANATIONS : Software possesses the characteristics of
expandability to the extent that a physical change to informa-
tion, computational functions, data storage or execution time
can be easily accomplished.

EXAMPLES : The documentation contains standards for program-
ming which enhance expandability of the code.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS : Please give your general
impression of the overall expandability of the documentation
and the program design as reflected in the documentation.

266

QUESTION DATA SHEET

Question Number D-82

QUESTION: Instrumentation as reflected in the program docu-
mentation contributes to the maintainability of the program.

CHARACTERISTIC : General questions.

EXPLANAT I ON

S

: Software possesses the characteristics of
instrumentation to the extent it contains aids which enhance
testing.

EXAMPLES : The documentation contains test cases which slow
known input and expected output. The documentation also
contains a plan or standards for program instrumentation.
Some sort of DEBUG mode execution is specifically addressed.

GLOSSARY ;

Debug ; Removal of bugs.
Bug (s

)

: Latent error (s).

SPECIAL RESPONSE INSTRUCTIONS : Please give your feelings
about the instrumentation of the software as reflected in
the documentation.

267

QUESTION DATA SHEET

Question Number D-83

QUESTION ; Overall it appears that the characteristics of the
program documentation contribute to the maintainability of the
program.

CHARACTERISTIC ; General questions.

EXPLANATIONS : Software maintainability is a quality of soft-
ware which is defined as those characteristics which affect
the ability of the software engineers to:

1) Correct errors.
2) Add system capabilities through software changes.
3) Delete features.
4) Modify software to be compatible with hardware changes

EXAMPLES : The program documentation is designed to aid you
in maintenance of the subject software. It is not after-the-
fact documentation except in those cases where it should be.

GLOSSARY :

SPECIAL RESPONSE INSTRUCTIONS : Please give your general
impression as to how well the documentation would aid you in
maintenance of the software under study.

268

LIST OF REFERENCES

1. Boehm, B. W. , "Software and Its Impact: A Quantitative
Assessment", Datamation , Vol 19, No. 5, May, 1973.

2. U. S. General Accounting Office, Report to the Congress,
Contracting For Computer Software Development — Serious
Problems Require Management Attention to Avoid Wasting

-
Additional Millions , Report Number FGSMD-80-4,
November 9, 1979.

3. U. S. Department of Commerce, NBS Special Publication
500-7 , "Computers in the Federal Government: A Compila-
tion of Statistics", June, 1977, pp. viii, 24-28.

4. Boehm, B. W. , "Software Engineering", IEEE Transactions
on Computers , Vol C-25, No. 12, IEEE, December, 1976.

5. U. S. General Accounting Office, Report to the Congress,
Federal Agencies Maintenance of Computer Programs:
Expensive and Undermanaged~ Report Number AFMD-81-25

,

February 26, 1981.

6. Coppola, A. W. and Sukert, A. N. , Reliability and
Maintenance Management Manual , Rome Air Development
Center Report RADC-TR-79-200 , July, 1979.

7. De Roze, B. C. , Special Presentation , Proceedings of
the "Managing the Development of Weapons System Soft-
ware Conference", May, 1976.

8. Mills, H. D. , "Software Development", IEEE Transactions
on Software Engineering , Vol SE-2, No. 4, IEEE,
December, 1976.

9. Elshoff, J. L. , "An Analysis of Some Commercial PL/1
Programs", IEEE Transactions on Software Engineering ,

Vol SE-2, No. 2, IEEE, June, 1976.

10. Daly, E. B., "Management of Software Development",
IEEE Transactions on Software Engineering , Vol. SE-3,
No. 2, IEEE, May, 1977.

11. Naur, Peter and Randall, Brian, Software Engineering ,

Report on a Conference Sponsored by the NATO Science
Committee, Garmish, Germany, 7-11 October 196 8.

269

12. Naval Research Laboratory, Software Engineering
Principles , Notes from a Course Offered at the Naval
Postgraduate School, Monterey, Ca. , 3-14 August 1981.

13. Gilb, Tom, Software Metrics , Winthrop Publishing,
Inc., 1977.

14. Gill, S., "The Origins and Meaning of Software Engineer-
ing" , Software Engineering, Software Engineering Inter-
national State of the Art Report , Infotech, 1972.

15. Manley, J. H. , "Embedded Computer Systems", Findings
and Recommendations of the Joint Logistics Commanders
Software Reliability Work Group , Vol. 2, 1975.

16. Bauer, F. L. , "Software Engineering", Information
Processing 71 , North-Holland, 1972.

17. Jensen, R. W. and Tonies , C. C, Software Engineering ,

Prentice-Hall, 1979.

18. Hoare, C. A. R. , "Software Engineering: A Keynote
Address", Proceedings of the 3rd International Confer-
ence on Software Engineering , IEEE, 10-12 May 1978.

19. Wasserman, A. I. and Freeman, P., "Software Engineering
Education: Status and Prospects", Proceedings of the
IEEE , Vol. 66, No. 8, IEEE, August, 1978.

20. Wasserman, A. I. and others, "Essential Elements of
Software Engineering Education", Proceedings of the 2nd
International Conference on Software Engineering , IEEE,
13-15 October 1976.

21. Yourdon, E. , Techniques of Program Structure and Design ,

Prentice-Hall, 19 75.

22. Wulf, W. A., "Programming Methodology", Proceedings of
a Symposium on the High Cost of Software , J. Goldberg
(ed.) , Stanford Research Insitutue, September, 1973.

23. Ross, D. T. and others, "Software Engineering: Process
Principles, and Goals", Tutorial on Software Design
Techniques , Freeman, P. and Wasserman, A. I. (eds.),
IEEE, 1980.

24. Boehm, B. W. and others, Characteristics of Software
Quality, North-Holland, 1978.

270

25. Littiewood, B. , "How to Measure Software Reliability and
how not to" , Proceedings of the 3rd International Conf-
erence on Software Engineering , IEEE, 10-12 May 1978.

26. Kline, M. B. and Schneidewind, N. F., "Life Cycle
Comparisons of Hardware and Software Maintainability",
Proceedings of the Third National Reliability Conference-
Reliability 81 , 1981.

27. Kline, M. B. , "Hardware and Software Reliability and
Maintainability: What are the Differences", Proceedings ,

1980 Annual Reliability and Maintainability Symposium ,

IEEE, January, 19 80.

28. Freeman, P., "Software Reliability and Design: A Survey",
Proceedings, 13th Design Automation Conference , IEEE,
June, 1976.

29. Dijkstra, E. W. , "Notes on Structured Programming",
Structured Programming , Academic Press, 1972.

30. Parnas, D. L. , "The Use of Precise Specifications in the
Development of Software", Proceedings of the IFIP 1977 ,

1977.

31. Liskov, B. H., "A Design Methodology for Reliable
Software", Proceedings, Fall Joint Computer Conference ,

AFIPS Press, 1972.

32. Glass, R. L. , Software Reliability Guidebook , Prentice-
Hall, 1979.

33. Parnas, D. L. and Wurges, H., "Responses to Undesired
Events in Software Systems", Proceedings, 2nd Inter-
national Conference on Software Engineering , IEEE,
13-15 October 1976.

34. Wasserman, A. I., "Information System Design Method-
ology", Journal of the American Society for Information
Science , Vol. 31, No. 1, January, 1980.

35. Bradley, G. H. and others, Structure and Error Detection
in Computer Software , NPS55ss75021 , Naval Postgraduate
School, February, 197 5.

36. Schneidewind, N. F. and others, System Test Methodology ,

Vols I, III, NPS55ss75072, Naval Postgratuate School,
July, 1975.

271

37. McCabe, T. , "A Complexity Measure", IEEE Transactions
on Software Engineering , SE-2 , No. 4, IEEE, December,
1976.

38. Bohm, C. and Jacopini, G. , "Flow Diagrams, Turing
Machines and Languages with Only Two Formation Rules",
Communications of the ACM , Vol. 9, No. 5, Association
for Computing Machinery, May, 1966.

39. Lientz , B. P. and Swanson, E. B. , Software Maintenance
Management , Addison-Wesley , 1980.

40. Swanson, E. B., "The Dimensions of Maintenance",
Proceedings of the 2nd International Conference on
Software Engineering, IEEE, 13-15 October 1976.

41. Myers, G. J., Software Reliability Principles and
Practices, John Wiley & Sons, 1976.

42. Tausworthe, R. C. , Standardized Development of Computer
Software , (Part I, Methods, Part II, Standards), Jet
Propulsion Laboratory, California Institute of Technology

,

Part I, 1976, Part II, 1978.

43. Poole, P. C. and Waite, W. M. , "Portability and Adapt-
ability" , Advanced Course on Software Engineering ,

Springer-Verlag, 1973.

44. Joint Logistics Commanders Joint Policy Coordinating
Group on Computer Resources Management, Final Report:
Joint Logistics Commanders Software Workshop Panel E:
Software Reusability , Monterey, Ca. , 22 June 1981.

45. Glass, R. L. , "From Pascal to Pebbleman and Beyond",
Datamation , Vol. 25, No. 7, July, 1979.

46. Fisher, D. A., "DOD's Common Programming Language
Effort", Computer , Vol. 11, No. 3, March, 1978.

47. Kijkstra, E. W. , "On the Green Language Submitted to
the DoD", STGPLAN Notices , October, 1978.

48. Parnas, D. L. , "Designing Software for Ease of Extension
and Contraction" , IEEE Transactions on Software Engineer-
ing, Vol. SE-5, No. 2, IEEE, March, 1979.

49. Parnas, D. L. , "On the Design and Development of Program
Families", IEEE Transactions on Software Engineering ,

Vol. SE-2, No. 1, IEEE, March, 1976.

272

50. Thalmann, D., "Evolution in the Design of Abstract
Machines for Software Portability" , Proceedings of
the 3rd International Conference on Software
Engineering , IEEE, 10-12 May 1978.

51. Buxton, J. N. and Randell, B., (eds.), Software
Engineering Techniques , Report on a Conference
Sponsored by the NATO Science Committee, Rome,
Italy, 27-31 October 1969.

52. Brooks, F. P., The Mythical Man-Month , Addison-Wesley

,

1975.

53. Wulf, W. A., "The Case Against the GOTO", Proceedings
of the 25th ACM National Conference , Vol. 2, 1972.

54. Myers, G. J., "Characteristics of Composite Design",
Datamation , Vol. 19, No. 9, September, 1973.

55. Myers, G. J., "Composite Design: The Design of Modular
Programs", Technical Report TR00.2406, IBM, January 29,
1973.

56. Myers, G. J., Reliable Software Through Composite Design ,

Petrocelli/Charter, 1975.

57. Yourdon, E. and Constantine, L. L. , Structured Design ,

Yourdon Press, 1978.

58. Parnas, D. L. , "Information Distribution Aspects of
Design Methodology", Proceedings of the IFIP Congress 71 ,

North-Holland, 1971.

59. Parnas, D. L. , "On the Criteria to be Used in Decomposing
Systems into Modules", Communications of the ACM , Vol. 15,
No. 12, Association for Computing Machinery, December,
1972.

60. Heninger, K. L. , "Specifying Software Requirements for
Complex Systems: New Techniques and Their Application",
Proceedings, Conference on Specification of Reliable
Software, IEEE, 1979.

61. Heninger, K. L. , Parnas, D. L. , and others, Software
Requirements for the A-7 Aircraft , Naval Research
Laboratory Memorandum Report 3876, November 27, 19 78.

62. Parnas, D. L. , Use of Abstract Interfaces in the
Development of Software for Embedded Computer Systems ,

Naval Research Laboratory Report 8047, 1977.

273

63. Baker, F. T., "Chief Programmer Team Management of
Production Programming", IBM Systems Journal , Vol. 11,
No. 2, January, 1972.

64. Wirth, N. , "Program Development by Stepwise Refinement",
Communications of the ACM , Vol. 14, No. 4, Association
for Computing Machinery, April, 1971.

65. McClure, C. L. , "Top-Down , Bottom-Up and Structured
Programming", Proceedings of the 1st International
Conference on Software Engineering , IEEE, 11-12 September
1975.

66. Dijkstra, E. W. , "The Structure of 'THE' -Multiprogramming
System", Communications of the ACM , Vol. 11, No. 5,
Association for Computing Machinery, May, 1968.

67. Schneidewind, N. F., Software Maintenance: Improvement
Through Better Development Standards and Documentation ,

NPS-54-82-002, Naval Postgraduate School, Monterey, Ca.

,

22 February 1982.

68. Ramamoorthy, C. V. and Ho, S. B. F., "Testing Large
Software with Automated Software Evaluation Systems",
IEEE Transactions on Software Engineering , SE-1, No. 1,
IEEE, March, 1975.

69. Branstad, M. A. and others, NBS Special Publication
500-56 , "Validation, Verification and Testing for the
Individual Programmer", U. S. Department of Commerce,
February, 1980.

70. Weinberg, G. M. , The Psychology of Computer Programming ,

Van Nostrand Reinhold, 1971.

71. Stanfield, J. R. and Skrukrud, A. M. , Software Acquisi-
tion Management Guidebook, Software Maintenance Volume ,

System Development Corporation, TM-5772-004-02

,

October, 1977.

72. Yourdon , E. N. , (ed.), Classics in Software Engineering ,

Yourdon Press, 1979.

73. Gordon, R. L. and Lamb, J. C, "A Close Look at Brook's
Law", Datamation , Vol. 23, No. 6, June, 1977.

74. Teichroew, D. , and Hershey, E. A., "PSL/PSA: A Computer
Aided Technique for Structured Documentation and Analysis
of Information", IEEE Transactions on Software Engineering ,

SE-3, No. 1, IEEE, January, 1977.

274

75. Alford, M. W. , "A Requirements Engineering Methodology
for Real-Time Processing Systems", IEEE Transactions on
Software Engineering , SE-3, No. 1, IEEE, January, 1977.

76. Bell, T. M. and others, "An Extended Approach to
Computer-Aided Software Engineering Requirements",
IEEE Transactions on Software Engineering , SE-3, No. 1,
IEEE, January, 1977.

77. Petrie, F. A., The Utilization of Requirement Statement
Methodologies in the United States Navy and Their Impact
oh Systems Acquisition , Master's Thesis, Naval Post-
graduate School, Monterey, Ca. , March, 1980.

78. Secretary of the Navy Instruction 3560.1, Navy Tactical
Digital Systems Documentation Standards , 8 August 1974.

79. Department of Defense Military Standard 490,
Specification Practices , 30 October 1968.

80. U. S. Department of Commerce, (National Bureau of
Standards) , Federal Information Processing Standard 38 ,

"Guidelines for Documentation of Computer Programs and
Automated Data Systems", 15 February 1976.

81. DeMarco, T. , Structured Analysis and Systems Specifica-
tion , Yourdon Press, 1979.

82. DeMarco, T., "Structured Analysis and Systems Specifi-
cation", Classics in Software Engineering , Yourdon, E. N
(ed.), Yourdon Press, 1978.

83. Caine, S. H. and Gordon, E. K. , "PDL — a Tool for
Software Design", Proceedings of the 1975 National
Computer Conference , Vol. 44, AFIPS, 1975.

84. Kirk, H. W. , "Use of Decision Tables in Computer
Programming", Communications of the ACM , Vol. 8, No. 1,
Association for Computing Machinery, January, 1965.

85. Pooch, U. W. , "Translation of Decision Tables",
Computing Surveys , Association for Computing Machinery,
June, 1974.

86. Ross, D. T., "Structured Analysis (SA) : A Language
for Communicating Ideas", IEEE Transactions on Software
Engineering , SE-3, No. 1, IEEE, January, 1977.

87. Ross, D. T., and Shoman, K. E., "Structured Analysis
for Requirements Definition", IEEE Transactions on Soft-
ware Engineering , SE-3, No. 1, IEEE, January, 1977.

275

88. Jones, C, "A Survey of Programming Design and
Specification Techniques", Proceedings, Conference
on Specifications of Reliable Software , IEEE, 1974.

89. Stevens, W. P. and others, "Structured Design",
IBM Systems Journal , Vol. 13, No. 2, IBM, 1974.

90. Fitzgerald, J. F. , and others, Fundamentals of Systems
Analysis , John Wiley & Sons, 1981.

91. Peters, L. J., and Tripp, L. L. , "Comparing Software
Design Methodologies", Datamation , Vol. 23, No. 11,
November, 1977.

92. Jackson, M. A., Principles of Program Design , Academic
Press, 1975.

93. Jackson, M. A., "Constructive Methods of Design",
Tutorial on Software Design Techniques , Wasserman, A. I.

and Freeman, P. (eds.) , IEEE, 1980.

94. Riddle, W. E., "An Event-Based Design Methodology
Supported by Dream" , Formal Models , and Practical Tools
for Information Systems Design , Schneider, H. J., (ed.),
North-Holland, 1979.

95. Hamilton, M. , and Zeldin, S., "Higher Order Software —
A Methodology for Designing Software", IEEE Transactions
on Software Engineering , SE-2 , No. 1, IEEE, March, 1976.

96. International Business Machines Corporation, HIPP — A
Design Aid and Documentation Technique , GC20-1851-1,
1974.

97. Stay, J. F., "HIPO and Integrated Program Design",
IBM Systems Journal , Vol. 15, No. 2, IBM, 1976.

98. U. S. Department of Commerce, (National Bureau of
Standards) , Federal Information Processing Standard 24 ,

"Flowcharting Symbols and Their Usage in Information
Processing", 30 June 1973.

99. Nassi, I., and Schneiderman, B. , "Flowchart Techniques
for Structured Programming", SIGPLAN Notices , Vol. 8,
Association for Computing Machinery, August, 1973.

100. Yoder, C. M. , and Schrag, M. L. , "Nassi-Shneiderman
Charts — An Alternative for Design", Proceedings of the
Software Quality and Assurance Workshop , Association
for Computing Machinery, November, 197 8.

276

101. Anderson, G. E., and Shumate, K. C. , "Documentation
Study Proves Utility of Program Listings",
Computerwor Id , May 21, 1979.

102. "Chief Programmer Teams: Principles and Procedures",
Report No. FSC 71-5108, IBM, Federal Systems Division,
Gaithersburg, Md. , June, 1971.

103. Bersoff, E. H., and others, "Software Configuration
Management: A Tutorial", Computer , Vol. 12, No. 1,
IEEE, January, 1979.

104. Department of Defense Directive 5000.29, Management
of Computer Resources in Major Defense Systems ,

26 April 1976.

105. Department of Defense Military Standard 1679, Weapons
System Software Development , 1 December 1978.

106. Department of Defense Military Standard 52779 (AD) ,

Software Quality Assurance Program Requirements ,

5 April 1974.

107. Lindhorst, W. M. , "Scheduled Maintenance of Applica-
tions Software", Datamation , Vol. 19, No. 5, May, 197 3.

108. Pilcher, R. D., "Techniques Available for Improving
the Maintainability of DOD Weapon System Software",
Master's Thesis, Naval Postgraduate School, June 1980.

109. Young, R. A., "Life Cycle Concepts and Documentation
Types", Documentation of Computer Programs and Auto-
mated Data Systems , National Bureau of Standards
Special Publication 500-15, July, 1977.

110. Peters, L. , "A Conceptional Basis for Software Design
Standards", IEEE Software Engineering Standards
Application Workshop , IEEE No. 81chl633-7, August, 1981.

111. Federal Information Processing Standards Publication 38,
Guidelines for Documentation of Computer Programs and
Automated Data Systems , February, 1976.

112. Software OT&E Guidelines, Software Maintainability
Evaluator ' s Handbook , Vol. Ill, Air Force Test and
Evaluation Center, Kirtland AFB, New Mexico, April, 19 80

113. Software OT&E Guidelines, Guide for the Deputy for
Software Evaluation , Vol. II, Air Force Test and
Evaluation Center, Kirtland AFB, New Mexico, December,
1981.

277

114. Fagan, M. E., "Design and Code Inspection and Process
Control in the Development of Programs", IBM Technical
Report, TR 21.572 , December, 1974.

115. Quade, E. S., Analysis for Military Decisions , 1964.

116. Bell, T. E., and Thayer, T. A., "Software Requirements
Are They a Problem?", Proceedings IEEE/ACM 2nd Inter-
national Conference on Software Engineering , October,
1976.

117. Boehm, B. W. , McLean, R. L. , and Urfig, D. B., "Some
Experience With Automated Aids to the Design of Large-
Scale Reliable Software", IEEE Transactions Software
Engineering , March, 1975.

118. Kreitzberg and Schneiderman, The Element of Fortran
Style, 1971.

278

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 54 2

Administrative Sciences Department
Naval Postgraduate School
Monterey, California 93940

4. Professor Norman F. Schneidewind, Code 54Ss 1

Administrative Sciences Department
Naval Postgraduate School
Monterey, California 9 3940

5. LCDR Ronald M. Modes, USN, Code 52Mf 5

Computer Science Department
Naval Postgraduate School
Monterey, California 93940

6. Lieutenant Steven P. Artzer, USN 3

631 Freeman St.
Topeka, Kansas 66616

7. Lieutenant Richard A. Neidrauer, USN 3

Surface Warfare Officer School Command
Department Head Class 76
Naval Education and Training Center
Newport, Rhode Island 02840

8. 1st Lieutenant Joseph N. Reinhart III, USMC 1

Marine Corps Development and Education Command
Quantico, Virginia 22134

9. Lieutenant Richardo Arana C. , Peruvian Navy 1

Ministerio de Marina
Central Procesamiento de Datos de la Marina de Guerra
AV. Salaverry S/N
Lima, Peru
South America

279

Thesis
A787 Artzer
c.l Software engineering

basics: a primer for
the project manager.

21 NOV 83 3 8 8 95

Thesis 197991
A787 Artzer
c.l Software engineering

basics: a primer for
the project manager.

