
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1983-09

VLSI design of a very fast pipelined carry look ahead adder

Conradi, Joseph Robert

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/20032

.1.IF0RHIA 9i ;
.

NAVAL POSTGRADUATE SGHOO

Monterey, California

THESIS
VLSI DESIGN OF A VERY FAST PIPELINED

CARRY LOOK AHEAD ADDER

by

Joseph P.. Conradi

and

Bruce R. Hauenstein

September 1983

The sis Acb/isor

:

D. E. Kirk

Approved for public release, distribution unlimited

T21 .4

SECURITY CLASSIFICATION OF THIS PACE (Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

t. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE ana Subtitle)

VLSI Design of a Very Fast Pipelined
Carry Look Ahead Adder

5. TYPE OF REPORT & PERIOO COVERED
Master's Thesis;
September 19 83
6. PERFORMING ORG. REPORT NUMBER

7. authors;
Joseph R. Conradi and
Bruce R. Hauenstein

8. CONTRACT OR GRANT NUMBERC«J

• PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93943

10. PROGRAM ELEMENT, PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADORESS
Naval Postgraduate School
Monterey, California 93943

12. REPORT DATE

September 1983
13. NUMBER OF PAGES

212
14. MONITORING AGENCY NAME » AOORESSfi/ dlltatant from Controlling Office) IS. SECURITY CLASS, (of thla report)

UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

It. DISTRIBUTION STATEMENT (of thl, Report)

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of <Se abatraet entered In Block 20, II dlltatant Irotn Report)

IB. SUPPLEMENTARY NOTES

19. KEY WORDS ;
Continue on revetae aid* It naceaaery and identity by block number)

CAD Tools, VLSI Design, 16-Bit Pipelined Adder

20. ABSTRACT f Continue on reverao aldo It nocoaamry and Identity by block numbat)

This thesis is an introduction to the use of computer-aided
design (CAD) tools for the design of very large scale
integrated circuits (VLSI). The techniques are described
and a tutorial is given which illustrates their use in the

S

DO 1 jam 7J 1473 EDITION OF t NOV 85 IS OBSOLETE]_

S/N 0)02- LF- 01 4- 6601 SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Bntere,

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Bnffd)

computing environment at the Naval Postgraduate
School. The CAD tools were applied to design a
16-bit fast pipelined adder.

S<N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS RAGEfWhan Datm Enftmd)

Approved for public release, distribution unlimited.

VLSI Design of A
16 Bit Very Fast Pipelined Carry Look Ahead Adder

by

Joseph Robert Conradi
Lieutenant, United States Navy

B.S.. University of Louisville, 1977

and
Bruce Robert Hauenstein

Lieutenant, United States Navy
B.S., University of Louisville, 1976

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1983

/ r) es /s
*» T-,i$2

7

i

ABSTRACT

This thesis is an introduction to the use of computer-aided design (CAD)

tools for the design of very large scale integrated circuits (VLSI). The techniques

are described and a tutorial is given which illustrates their use in the computing

environment at the Naval Postgraduate School. The CAD tools were applied to

design a 16-bit fast pipelined adder.

TABLE OF CONTENTS

I. INTRODUCTION 11

II. OVERVIEW OF VLSI DESIGN 13

A. INTRODUCTION 13

B. VLSI CIRCUITRY 15

1. Basic Transistors 15

2. Basic Gates 17

3. Basic Circuitry 17

C. METHODOLOGY 22

1. Layout 23

2. ILOGS 24

3. Design Rules 24

4. Building Block Approach To VLSI Design 25

5. CAD Tools 25

a. PLAGenerator 26

b. CLL-Chip Layout Language 26

c. DRC Design Rule Checker ' 26

d. Circuit Extractor 26

e. Simulator 26

D. FABRICATION 27

1. File Generation 27

2. MOS1S 27

3. Pattern Generator and Maskmaking 27

4. Patterning 28

5. Packaging 28

E. TESTING 28

F. SUMMARY 29

HI. VLSI CAD TOOLS 30

A. LOGIN PROFILE 30

B. FUNCTION OF SOURCE PROGRAMS 32

1. Chip Layout Language (CLL) 32

a. Cif 34

b. Cifload 34

c. Merge 34

d. Rplot 34

e. Rsort 35

f. Tplot 35

g. Window 35

2. Supporting Programs 35

a. Cifar 35

b. Convert 36

c. Plagen 36

d. Plague 36

e. Unconvert 36

3. Design Rule Checker (DRC) 36

4. Circuit Extractor 37

a. Extract 38

b. Node-plot 38

6

c. Sim 38

5. Static Checker 38

6. Event Level Simulator 39

IV. GENERATING CIF USING CLL 40

A. TUTORIAL 40

1. Header 41

a. Comments 41

b. External Symbols 41

c. Defines 42

d. Includes 42

e. Conditionals 42

2. Symbol Definition 43

3. Body 43

a. Comments 44

b. Rectangles 44

c. Layers 44

d. Wires 45

e. Vias 46

f. Calls 46

g. Iteration 47

h. Expressions 47

i. Print 48

B. CELL LIBRARY 48

C. USING CLL 48

1. Making Files 49

7

2. Plotting 49

3. Creating CIF 50

D. EXAMPLE 51

V. DESIGN VALIDATION 58

A. DESIGN RULE CHECKER 58

1. Evaluation Of Outputs 59

2. Example 59

B. CIRCUIT EXTRACTOR 64

1. Plotting 64

2. Defining Nodes 65

3. Creating A Simulation File 65

4. Example 65

C. STATIC CHECKER 68

1. Evaluation Of Outputs 68

2. Example 69

D. EVENT SIMULATOR 70

1. Using Esim 71

2. Example 71

VI. PROJECT: 16 BIT VERY FAST PIPELINED

CARRY LOOK AHEAD ADDER 74

A. INTRODUCTION 74

B. LOGIC DESIGN 74

1. Pipelining 74

2. Carry-Look-Ahead Addition 76

3. Design Considerations 83

B

C. DESIGN VERIFICATION 86

D. LAYOUT 97

E. DRC 103

F. SIMULATION 103

VII TESTING 105

A. EXPECTATIONS 105

B. PROCEDURES 110

C. RESULTS 112

VIII. CONCLUSION 116

A. SUMMARY 116

B. RECOMMENDATIONS 116

APPENDIX A -INTRODUCTION TO THE VAX-1 1/780 AND UNDC 118

APPENDIX B - MANUAL PAGES FOR VLSI CAD TOOLS 141

APPENDTX C - SUMMARY OF CLL COMMANDS 176

APPENDDC D - DESIGN FABRICATION 180

APPENDIX E - FILES AND PROGRAMS FOR THESIS PROJECT 188

LIST OF REFERENCES 210

INITIAL DISTRIBUTION LIST 211

9

ACKNOWLEDGEMENTS

We would like to thank the following individuals for their assistance in the

completion of this thesis:

Naval Postgraduate School

Dr. Donald Kirk

Prof. Robert Strum

Dr. Herschel Loomis

Mr. AlWong

Stanford University

Dr. Robert Mathews

Ms. Susan Taylor

Ms. Irene Watson

Mr. Ernest Wood

Air Force Institute of Technology

Lt.Col. Harold Carter

10

i. introduction

Advances in computer-aided design (CAD) and fabrication techniques, along

with the text Introduction To VLSI Systems by Mead and Conway [REF.l], have

created the ability for systems engineers to custom design digital integrated

circuits. Until recently, the design of integrated circuits has been traditionally

carried out by a select group of logic designers working in semiconductor

laboratories. Systems engineers had to "make do" or "fit in" the products of

these labs to realize their designs. The systems engineers had little participation

in the actual design of the chip. The MEAD and CONWAY design methodology and

computer aided design tools (CAD) have bridged the gap between the systems

engineer and the circuit designer. Now.systems engineers can create a custom

design to support specific needs. Armed only with a knowledge of circuit and

logic design, the present-day chip designer utilizes powerful CAD tools to mani-

pulate basic digital circuits (cells) from a pre-established library in order to

realize a custom design. Additional CAD tools can be used to check, evaluate and

simulate the design. This thesis, along with minimal references to outside

sources, provides a reader who has a basic knowledge of logic design with

enough information to design a custom digital integrated circuit of moderate

complexity

Before entering the realm of Very Large Scale Integration (VLSI), a few prel-

iminaries must be covered. "VLSI" as used in this thesis should not be confused

with the Very High Speed Integrated Circuit(VHSlC) program in the Department

of Defense. This program with a S400 million budget is charged with advancing

the state of the art for the number of devices on a single piece of

silicon, operating speed, submicrometer line width, and other attributes. Present

day commercial VLSI chips are capable of about 130,000 transistors with a

11

typical number of about 20,000. VHS1C on the other hand has set a goal to pro-

duce a circuit containing approximately one million transistors per integrated

circuit by the end of the decade. This thesis deals with devices of moderate com-

plexity, that is, from a few gates up to the size of small commercial products. A

typical number would be on the order of 2,000 to 10,000 transistors. Thus, the

complexity of the devices considered here is much less than that of commercial

and research programs.

This thesis provides an introduction to "VLSI circuitry and procedures, CAD

software resources and their uses, the "VAX 11-780 computer (UNIX operating sys-

tem) and other hardware resources available at the Naval Postgraduate School.

In addition, the creation of a 16 BIT VERY FAST PIPELINED CARRY LOOK AHEAD

ADDER is traced from conception through the design methodology to fabrication

and testing. This provides a concrete example so that the interaction between

the user.the software and the hardware may be more fully understood.

12

II. QWWTKW nv vt.st QEiSIGM

A. INTRODUCTION

The design methodology in this thesis applies to "digital" systems-- "analog"

systems are not considered. Digital systems inherently use highly regular and

repetitive structures. Many digital devices have data paths sixteen bits wide.and

path widths of thirty-two to sixty bits are not uncommon. Memory units, arith-

metic logic units(ALU's), shift registers.crossbar switches, etc. all possess uni-

form repetitive structures. Combinatorial control logic in many cases can be

realized using programmable logic arrays (PLA's) which are also "highly struc-

tured". In addition, digital systems operate using a high or low voltage to

represent one or the other of two binary states. The two preceding attributes of

digital systems are not prominent in most analog circuitry and therefore analog

devices do "not" readily lend themselves to the design methodology described

here.

Because digital systems are highly repetitive, highly structured and operate in

either the "on" or "off" fashion, they can be realized by using the simplest of

logic gates. When these simple logic gates are fabricated in silicon, they form a

very regular array of rectangles strategically scaled and properly placed. Even

the interconnecting "wire" runs are rectangles with one dimension (length)

much larger than the other dimension(width). Resistors are realized by the

predictable resistance of a "depletion mode" metallic oxide semiconductor field

effect transistor (MOSFET) whose gate region is connected to its source. Micros-

copic inspection of a high density integrated digital circuit would reveal only

squares or rectangles of varying dimensions and heights. The variation in height

of these elementary figures results from the placement of layers of conducting

materials onto the surface of the chip.

13

Integrated systems in nMOS technology contain three levels of conducting

material separated by intervening layers of silicon dioxide (insulating material).

They are from top to bottom: metal, polysilicon, and diffusion. All three paths

conduct electricity well enough to be considered wires. Unless the layers are

specifically intended to be electrically connected by using contact cuts,paths on

the metal layer have no significant effect on the "poly" or the diffusion layer.

But, when a path on a poly layer crosses over a path on the diffusion layer an

"enhancement" mode MOSFET is formed. This transistor is effectively an elec-

tronic switch. Various forms and interconnections of this electronic switch pro-

vide the basic building blocks from which large scale systems are designed.

The n-channel MOS process is by far the most mature process in the field of

VLSI. Most devices now produced use nMOS processes, but there are also other

processes. For example,pMOS stands for p-channel MOS (the "p" denotes positive

type earners in the channel beneath the gate area as "n" signifies negative type

carriers). CMOS denotes complementary MOS which utilizes a combination of the

two for individual devices. And "mixed" MOS utilizes "n" and "p" MOS at different

locations on the device. CMOS-SOS is CMOS but is formed on a sapphire surface

to increase the operating speed (SOS signifies silicon on sapphire). Bipolar

transistor architecture also has a place in VLSI. Since the nMOS process is the

most established, and because the project created in this the?;i^ is of the nMOS

type, we shall concentrate on it. This should not imply that nMOS is the best

method. Other processes may be better in terms of power

consumption.speed, device density etc. However, complexity in the actual fabri-

cation and design may outweigh some of these more desirable traits.

14

B. VLSI CIRCUITRY

Mead and Conway [REF. l] provides an excellent discussion in chapter one

concerning the basic devices and circuits needed to understand and solve typi-

cally encountered systems problems. A full and complete understanding of this

chapter, however, is not a necessity to be able to design a custom chip. Most of

the devices and circuits discussed in chapter one of [REF. 1] will be presented in

the following discussion which should provide the depth necessary to continue

and successfully complete a custom design.

1. Basin Transistors

The nMOS transistor is the most basic device used in VLSI circuitry.

Shown in Figure(2. 1) are three different representations of the same device.

A positive voltage on the gate of an nMOS transistor is used to control the

movement of negative charges between the source and drain. When the voltage

on the gate enhances the quantity of negative charge carriers(electrons) under

the gate in order that current may flow between source and drain, the device is

labeled an enhancement mode transistor. The enhancement mode transistor by

itself is effectively a switch and is referred to as a "pass" transistor. When a posi-

tive voltage is applied to the gate, the switch is closed. When a voltage below a

certain threshold is applied, the switch is open. When the area under the gate

region of a transistor already has enough negative charge carriers to support

current flow between the source and drain with no voltage applied to the

gate,the device is called a depletion mode transistor. The excess supply of

charge carriers is supplied by a doping process during fabrication. The area of

excess carriers is called the ion implant region. The depletion mode transistor is

always on unless a voltage of proper polarity(negative for nMOS) is applied to the

gate to deplete the number of charge carriers, thereby turning off the switch. In

the enhancement mode device the region under the gate area must be enhanced

15

DRAIN
GATE

GATE

VGD
+ +

VDS SOURCE DRAIN

+
VGS'

SOURCE

£

SOURCE

POLY
/

GAT

j*z.

^ CHANNEL

SiO;

DRAIN

y

T^

N-TYPE
(DIFFUSION)

Figure (2.1) The Basic nMOS Transistor

16

to turn the switch on while in the depletion mode device the region under the

gate area must be depleted to turn the device off. In a pMOS device, the opera-

tion is identical except that the charge carriers are "holes" and voltage polari-

ties are just the opposite of that required for proper nMOS operation.

2. BaQin Gates

The basic inverter will now be discussed. Using an enhancement mode

switch (pass transistor) in series with a resistor, an inverter gate can be real-

ized. In VLSI design, however, resistors are not used. Instead, resistance is gen-

erated by a depletion mode transistor. To ensure that the depletion mode

transistor remains in the "on" mode, thereby effectively introducing a predict-

able amount of resistance as the load, the gate is connected to the source. A

resistance made of polysilicon or carbon would take up far too much area on the

surface of the chip to allow reasonable densities. The amount of resistance intro-

duced by this continually switched on transistor is largely determined by the

size of the gate and ion implant region. More important is the ratio of the gate

geometries of the depletion mode ("pull-up") transistor to the enhancement

mode ("pull-down") transistor. By obtaining proper ratios for the

depletion/enhancement mode transistors, an inverter circuit can be produced.

The output will be the complement of the input. Shown in Figure(2.2) is the basic

inverter in several forms along with extensions that realize the NAND and NOR

functions.

3. FJa^ir Hircnit-ry

Many applications require that the output of a basic inverter drive more

than one following circuit(fanout). In this case, because of the much larger com-

bined input capacitance, more drive current capability is required. Again, mani-

pulation of the basic inverter produces both inverting and non-inverting "super

buffers". These are high performance circuits used to reduce the delay time

17

{>

NOT

H
fVDD . DEPLETION

_J ^^ MODE \ r-1—1

YDD

HE ENHANCEMENT^
i . MODE

1GND X

GND

NAND

XY

NOR

t
d

VDD

X

x+r

GND

Figure(2.2) The Basic Inverter with NAND and NOR extensions.

IB

that is induced by the increased RC time constant when fanout and parasitic

capacitances cause the equivalent capacitance to increase. The extra drive

current capability is obtained from proper interconnection of two standard

inverter gates. See [REF 1], Figure 1.21 and 1.22, for a schematic representation

of inverting and non-inverting super buffers. To emphasize that nearly all cir-

cuits can be constructed through the proper connection and adaptation of the

basic inverter gate, a few additional examples will be discussed. Shown in Fig-

ure(2.3) is the cross-coupled inverter circuit. This circuit has many applications

in control sequencing,memory cells, and register arrays. A programmable logic

array (PLA) is shown in Figure(2.4). Normally, PLA's are thought of as having an

AND plane and an OR plane. Careful analysis shows that the PLA is made up of

nothing more than pass transistors and inverter gates. Actually, this PLA imple-

ments the NOR-NOR canonical form of Boolean functions of the inputs. By prop-

erly feeding selected outputs back into selected inputs, a synchronous finite

state machine results. PLA's prove to be very important in system control

sequences. One of the CAD tools which is discussed in a following chapter is

called PLAGUE, which stands for PLA. Generator Using Equations. By inserting

the Boolean equations in the proper format, the software tool determines the

proper placement of the elementary figures(rectangles) to realize the desired

logic in silicon. PLAGUE can realize combinatorial logic on the order of 40

inputs,40 outputs and 150 product terms. [REF.l] provides excellent information

on PLA's and their uses. The design project which is the subject of this thesis (a

sixteen-bit adder) relies heavily on the use of PLA's.

Referring to Figure(2.4), an implication arises when observing the input

and output "registers". Clearly, if the input and the output registers are made

up of nothing more than pass transistors and inverter gates.then to truly be a

register, some type of storage mechanism must be involved. This is indeed true.

19

Figure(2.3) Cross-coupled Inverter Circuit

VOD

AND
PLANE

j£Lt

jO.

^n

=n

01

? f-

J h

A A A A
tc fe

TTK

OR
PLANE

Mil VDD

—rr

B C Z, Z2 Z3 Z<

iTTl^ 02

Figure(2.4) Inverter Realization of PLA

20

When a positive voltage is applied through an "on" pass transistor to the gate of

the inverter circuits, the capacitance between the gate and the substrate is

charged and maintains the charged condition for a finite amount of time after

the pass transistor is turned off. The "turned off" pass transistor represents a

large amount of resistance. This charge will decrease in an RC time constant

fashion The amount of time for the gate voltage to decrease to below threshold

is on the order of milliseconds. Threshold voltage is that value of voltage neces-

sary to be considered a "high" voltage thereby causing the output of the inverter

to appear as a "low" voltage. Thus, for proper operation, the dynamic registers

must have their inputs updated and outputs utilized at a clock period less than

this "bleed-off" time of the charge stored on the gates. For this type of PLA

input/output register scheme.the clock period cannot be too low, or erroneous

results may be obtained. The upper clock frequency is limited by the amount of

time it takes for the basic inverters in the NOR planes to switch to the proper

output voltages once the input voltages and clock pulse are applied. There is a

detrimental effect when several inverters are cascaded in series as well as in

parallel (fanout) - the voltage must be given time to ripple through all levels of

logic. The time it takes to charge up the additional parasitic capacitances and

logic gates to realize the proper output is the limiting factor for the maximum

clock rate.

To overcome this effect of charge bleed off, an inventive "refresh" scheme

is utilized in the selectively loadable dynamic register cell shown in Figure(2.5).

Using the control signals LOAD and phase 1 of the system clock, this scheme

allows the register cell to be selectively loaded and "refreshed". This alleviates

the problem of the voltage dropping to below threshold. This circuit may be used

to solve many of the storage applications needed in VLSI systems.

21

Thus, nearly all functions needed to realize a digital system can be

obtained by manipulation of the basic inverter circuit and pass transistor. The

next step is to become familiar with the design methodology.

01

-o

LOAD

IN

Figure(2.5) Loadable Register Cell

C. METHODOLOGY

There are several reasons for developing VLSI digital systems. A new need

may force the creation of a custom designed system. It may be required, or

desired, to condense the size of existing designs, usually in the form of printed

circuit board systems, for other applications. Also, improvements in VLSI tech-

nology may allow already functional chips to be made smaller, thereby allowing

more functional units to be placed on a single chip. For whatever reason a sys-

tem is developed, the design usually begins in the mind of an engineer. Existing

functional units such as shift registers, memories, ALU's,PLA's, flip-

flops, etc. normally provide the building blocks for the design. New functional

units, along with unique methods of interconnection, usually appear in a more

"skeletal" form to clearly define the unit's purpose. The CAD resources available

22

to the engineer determine where the pencil and paper approach to the design

can be replaced by ever improving CAD tools.

1. T.ayrmt

Since VLSI designs deal almost uniquely with inverters and pass transis-

tors, it is not necessary to initiate the design at the schematic level. Rather, the

skeletal form that is mostly used is called the "stick" layout or design method.

The stick method involves the color coding of the different conducting materials

used on the chip. Green is used for diffusion. Red is used for polysilicon. Yellow is

for the ion implant region. Blue stands for the metal layer. Black represents a

contact cut. In some cases logic symbols are also used in the stick diagram. This

skeletal form is known as mixed notation. For good color examples of the stick

and mixed notation and the corresponding geometric layout refer to [REF. l]

color plates 4 through 8. It should be evident from these color plates that wher-

ever a red poly path crosses a green diffusion path an MOS transistor is formed.

Similarly, where red crosses over green which in turn crosses over yellow, a

depletion mode transistor is formed when the gate region is connected to the

source. The stick methods was mainly developed for hand layout.

However.recent advances in CAD tools and color graphics terminals, allow the

stick method to be readily adapted to computer design thereby alleviating the

pencil and paper approach. Using these sophisticated design tools, stick

diagrams can be drawn and manipulated directly on the color terminal to real-

ize the design. Y/hen the designer is satisfied with his creation, the stick diagram

can be automatically compacted (observing critical design rules) and mapped

into the geometric rectangular layout necessary for fabrication. Designers not

having access to this level of sophistication must rely on a balance between the

pencil and paper approach and CAD at this stage of the design.

23

2. unns.

CAD tools exist that provide a valuable link between the pencil and paper

approach and the CAD portion of the design. These tools are not necessarily

related to VLSI design. 1L0GS is an Interactive LOGic Simulator. Before "charg-

ing" into the realm of VLSI layout, circuit extraction, stipple plots, refinement of

the layout and simulation, it is wise to emulate the design using ILOGS, or a simi-

lar tool, to verify functional correctness. For smaller designs, or when the

software resources are highly sophisticated, this design verification step may not

be absolutely necessary. Nevertheless, successful emulation of the design

invokes a sense of confidence in the designer. It is highly recommended that the

first attempt at custom VLSI be initiated with a verification of the design using

ILOGS. The project (16 BIT'ADDER) was initially verified using this method. A

description on how to use the ILOGS program is discussed in chapter six.

3. Dpgjgn Rules

A key point in VLSI design methodology will now be discussed. Design

rules are layout rules that result from analysis of semiconductor physics and

fabrication processes. It is not necessary for the systems engineer to be

thoroughly cognizant of how the rules were developed. It is necessary,however,

for the designer to know what the rules are and to abide by them. Design rules

are geometric constraints placed on the basic rectangles concerning minimum

allowable separations, extensions,widths.and overlaps in the various levels of the

chip. Since various processes in creating VLSI chips are improving and ever

decreasing in feature sizes.it has become convenient to develop these rule in

terms of a "length unit" denoted as (X) lambda. Present day nMOS processes are

typically 2.5 microns(/xm). Another way to look at this length unit in this case is

A=2.5/im. When using a 2.5 micron process, for example, the minimum distance

allowed between two "wire"runs of poly is 2 times lambda or 5.0 microns.

24

However.when the process is improved/decreased to lambda = 1.25 microns, the

rule of 2 times lambda separation still applies but now the actual distance is 2.5

microns. This results from the fact that every dimension on the chip has also

been scaled down accordingly. See [REF.l] color plates 2 and 3 for an excellent

description of the basic design rules.

4. Building Rlnrk Apprnarh Tn VLSI r>P «;ian

A VLSI system can be visualized as a large complex puzzle with the pieces

located in a box called the cell library. The cell library consists of pre-designed,

pre-tested cells in geometric forms that have been created by VLSI design

engineers. Some of the cells may be very basic while others may be quite com-

plex. For an excellent description of several cells contained in most libraries,

refer to color plates 9 through 15 of [REF.l], Plate 9 shows the correlation

between the stick diagram and actual hand layout of a basic shift register cell.

The task for the systems engineer in order to realize the custom design is to

select, adapt, replicate, manipulate, and orient the proper cells to form functional

units. These functional units are then properly positioned and interconnected to

each other and to the outside world (through the use of bonding pads) to com-

plete the puzzle. It is this building block approach to VLSI design that provides

the strongest connection between the chip designer and the systems engineer.

It is assumed that the reader has access to a cell library as well as the neces-

sary CAD tools before attempting a VLSI custom design. The exploration of the

design and construction of the cell library is beyond the scope of this thesis.

Here we are oriented towards the use of a cell library with assorted CAD tools.

5. HAD Tools

Chapters three, four and five are devoted to VLSI-CAD tools. However, for

continuity, a basic explanation of several of the basic tools is provided in the fol-

lowing sections.

25

a. PLA Generator

The purpose of the PLA generator when used in conjunction with the

PLAGUE software is to create a PLA cell that can be added to the existing cell

library. This PLA cell can then be manipulated.adapted.oriented etc. as any

other of the library cells.

b. CLL-Chip Layout Language

CLL is the software tool that provides the capability for the manipu-

lation, replication, adaptation, orientation, and placement of the various cells.

It also provides a means of interconnecting the functional units with each other

and to the outside world through the use of the "wire-list" commands.

c. DRC Design Rule Checker

The final design is scrutinized by the design rule checker. It will

make known to the designer if and where any of the design rules are violated.

Even at mini-computer speeds, this program's execution time is rather lengthy.

d. Circuit Extractor

The circuit extractor is used to define nodes in the design in order

to perform a functional test or simulation.

e. Simulator

The simulator uses node definitions obtained in the circuit extractor

portion and processes information received from the designer. The designer

inputs information and looks for expected results. In the case of the thesis pro-

ject, two 16-bit vectors consisting of l's or O's are used as an input and the sum

of the two input vectors is expected at the output nodes(provided there are no

errors in the circuit).

The above tools may carry different names and exist at different lev-

els of sophistication, but they represent a reasonable cress section of the avail-

able VLSI design tools. CAD tools will be discussed in detail in later sections.

26

D. FABRICATION

Upon completion of a successful design rule check and a correct simulation of

the design.it is reasonably safe to assume that the design is ready to be fabri-

cated. To this point, nothing has been mentioned about how the design arrives at

the implementation service, the form in which it is sent, or what events take

place after the design is delivered.

1. Filp Hpn eratinn

One of the products of the chip layout language tool is the Caltech Inter-

mediate Form file (CIF file). The C1F file is a standard machine readable form for

representing integrated system layouts. Its purpose is to unambiguously

describe the dimensions and layer of each geometric figure (rectangle) to a pat-

tern generator.

2. mdsts

MOSIS is an acronym for Metal Oxide Semiconductor Implementation Ser-

vice. This is the institution that receives the design in the Caltech Intermediate

Form. The standard means for communication between MOSIS and the designer

is the ARPANET (Advanced Research Projects Agency Network). The CIF file is

transmitted directly from one computer to the other over standard telephone

lines. The implementation service,after several preliminary checks.forwards the

CIF file to a maskmaking company.

3. Pattern Hpnpratnr anri Mask-making

The pattern generator is a very sophisticated computer driven photolitho-

graphic device that accepts the CIF file as an input. The pattern generator con-

verts the CIF file to a Pattern Generator file (PG file). The PG files are then

used to create the masks through a very delicate "flashing" operation. This flash-

ing operation causes the positions and the dimensions of each layer of rectan-

gles to be imprinted on photo-sensitive material. This material is developed and

27

then reduced in size. The reduced "negative" is replicated many times in a step-

and-repeat fashion in order to produce a template of many identical designs of

individual layers of rectangles. The individual designs lie abutted to each other

in a side-by-side and top-to-bottom configuration. This template is used to

develop the "working" masks, which are then utilized in the fabrication process

to pattern the design into the silicon wafer.

4. Patterning

The working masks selectively allow an intense source of radiation, in the

form of ultraviolet light, electron beam (E-beam), or low energy X-rays to

impinge upon the appropriate layer of the chip surface. This selective exposure

to radiation causes a chemical reaction in an organic material, called "resist",

previously coated onto the chip surface. The exposed resist can easily be

removed while the unexposed resist cannot. After removal, acid etching is per-

formed to pattern the design into the silicon. The nMOS process requires

approximately forty-four steps to complete the finished chips.

5. Parlr^tging

The final step before mailing the completed chips back to the designer is

packaging. The wafer is diced into individual chips. Each chip is cemented into a

package. The bonding pads are connected to very fine wires which in turn are

connected to the package leads. A top cover is then bonded over the chip. The

completed design is returned to the customer. The time period from CIF file

submission to chip receipt is normally three to six weeks.

E. TESTING

There are basically two types of testing that can be done and they depend

largely on the resources available to the designer and the complexity of the

design. Commercial testers are available. They are very thorough, but

28

expensive. A company in the business of VLSI design may very well benefit from

such a tester. They not only can test various chips for proper operation.but can

also aid in the location of a design/fabrication error if one should be present. A

custom made testbed is sufficient for many applications, provided that the

design is not too complex. The design of a custom testbed, however, could easily

become more expensive and time consuming then the actual VLSI design.

F. SUMMARY

This chapter has provided a brief, but rather complete, overview of all aspects

of VLSI design. The remaining chapters and appendices provide detailed infor-

mation on specific software tools .hardware resources ,and custom VLSI design

methodology. The step-by-step approach utilized to a great extent in the

remainder of this thesis should provide the reader with enough information to

embark on a custom design.

29

HI. vt.st pah mors

Prior to attempting a VLSI design using the NPS CAD tools, the designer

must have a "working" understanding of the UNIX operating system and cshell

commands. If this is not the case, he should read Appendix A and complete the

included tutorials.

Various source programs comprise the CAD tools which are used to complete

a VLSI design. These programs ensure that the output file is in the proper for-

mat and that the chip will be successfully manufactured. In general, these pro-

grams work most effectively when used in the prescribed order. (See Figure 3.1

for a flow diagram of the design process.) The project is first conceived using a

"top-down" approach (i.e., the overall project is conceived and then broken into

lower levels for individual design). Then, if the project is designed using a

"bottom-up" approach (i.e., if the lowest level cells and functional units are

designed and checked prior to forming the total design), the task will proceed

more easily and with less time involved.

In order to aid the designer in utilizing the CAD tools effectively, a functional

description of the source programs is provided in this chapter. Careful atten-

tion to the following paragraphs will allow the designer to understand and use

the VLSI CAD tools.

A LOGIN PROFILE

Each user of the VAX computer has a standard login profile (executive) pro-

gram which is established by the CS Department. This program is executed

each time the user logs into the system and it controls the functions of the ter-

minal. Although this profile is sufficient for using the system commands, the

30

CREATION OF LAYOUT

GENERATION OF CIF
(CLL)

DESIGN RULE VERIFICATION
(DRC AND VISUAL WITH PLOT)

REDESIGN
(IF NECESSARY)

STATIC ANALYSIS
(STAT)

REDESIGN
(IF NECESSARY)

SIMULATION
(ESIM)

REDESIGN
(IF NECESSARY)

FABRICATION

Figure 3.1. VLSI DESIGN PROCESS

31

designer should obtain, by the steps described below, the standard VLSI profile

in order to use the CAD tools.

The login profile is stored in the user's "login" directory under the name of

.login and is not listed with a normal Is command. (It can be listed with a Is -a

command which lists all files in a directory.) The VLSI profile can be obtained by

performing the following steps:

1) Change directory to /vlsi/lib/local/work
cd /vlsi/lib/local/work

2) Copy .login to the "login" directory
cp .login /work/(user-name)

3) Change directory to "login" directory
cd

4) Log off then log back on.

Now, each time the designer logs onto the UNIX system, he will be able to use

the VLSI CAD tools. Additionally, the DEL key will delete previously typed char-

acters (similar to <CTRL>H) and a "period" (.) followed by RETURN can be used

to logoff.

B. FUNCTION OF SOURCE PROGRAMS

The source programs used for VLSI design allow the user to generate a Cal-

tech Intermediate Format (CIF) file, check the file for design rule errors, stati-

cally check the circuit, and simulate the design to ensure correct implementa-

tion. The time involved to complete each of these steps depends both on the

complexity of the design file and on the actual tool being used.

1. Chip T.ayoni- Language (CI.I.)

The heart of the VLSI CAD tools is a set of source programs obtained from

Stanford University which combine to generate the necessary CIF file for design

fabrication (using the nMOS process) from an input in the form of a Chip Layout

Language (CLL). "CLL is a simple chip layout language, intended as an alternate

to Caltech Intermediate Format for direct coding of layouts. "[Ref. 5, p. l] CLL is

32

a high level language which makes the task of designing a VLSI circuit easier

than direct coding in C1F. It is written in the "C" language.

CLL has the following advantages:

1) It encourages bottom-up design by allowing small circuits to be
developed and tested prior to being called by the "central" program.

2) It simplifies the design process by using defined commands which
are easily memorized and used.

3) It allows calls to stored library cells which have been validated
and tested.

4) It takes advantage of redundancy by allowing iteration of successive
calls.

5) It is intended for lambda-grid design which eliminates the
problem of changing scales.

The disadvantages of CLL are that it is capable of right-angle designs only and

that it depends heavily on the designer's ability to develop a layout which is logi-

cally correct and geometrically compact.

The processor for CLL is the program ell. As can be seen in the manual

page for ell (Appendix B), its basic function is to process the cell library exter-

nals and user written ell files to create a cif file in CIF. The library externals

are a set of designed cells in CIF which have been combined into one library file.

The objective recommended for the designer is to construct various files in CLL

format using this library (if needed), along with custom designed cells, and then

use the CLL processor (ell) to obtain check plots and a complete CIF file in out-

put format. The specifics of this task and the use of the defined options for all of

the source programs will be explained later in this thesis.

The CLL processor uses several programs to complete its tasks. Gen-

erally, these programs operate automatically through control of the CLL proces-

sor, which consists of a command program (ell) and a CLL compiler (cll2). Fol-

lowing is a list of these programs and their general functions. The manual pages

33

for these programs, which are given in Appendix B, can be called with the man

command.

a. Cif

The cif command will cause the input .cif file to be converted to a

cifout format so that it can be plotted at the GIGI terminal or the Versatec

plotter. That is, it converts a file from CIF to binary form. This program can be

run independent of ell. The cifout file format (JUe.ca) is documented as CIFOUT

in Appendix B.

b. Cifload

Cxfioad is called by ell (or can be used independently) to concaten-

ate all of the .cif files that are given as input along with any library CIF files that

are needed to produce the total CIF file.

c. Merge

For cases requiring the merge (or concatenation) of cifout files

(sorted or unsorted), the merge program is used. The sorted cifout file is

labeled file. sco while the unsorted cifout file is given the label of file. co. Cll uses

merge to combine the sorted cifout file of a design with the unsorted cifout file

generated by the Design Rule Checker (DRC). The program can also be used

independently to merge several sco files for a combined plot,

d Rplot

Rplot is the program that allows the designer to plot the design (or

part of it) on the Versatec plotter. When used by cll, the sorted cifout file is gen-

erally scaled to a size that can be plotted by window.

If used independently, rplot option -i will scale the plot. This pro-

gram can be used to plot any sorted cifout file for geometric and design rule

visual verification.

34

e. Rsort

In order to sort a cifout file so that it can be plotted, ell calls rsort.

Any cifout file that is to be plotted must be sorted by x-coordinate due to the

requirements of rplot and the Versatec.

f. Tplot

The tplot program generates a terminal plot (in color) on the GIG1

terminal. The input must be labeled as a sorted cifout file (file.sco) even though

the terminal does not require a sorted input. Tplot can be called independently

or through ell. It should be used for quick checks of modifications to a design

(since the Versatec plot is time consuming). Window is also called to scale the

plot if tplot is used through ell.

g. Window

Both rplot and tplot receive scaled data from window when they are

called by ell. (This occurs only if the -i option is used.) Additionally, window is

capable of picking a selected portion of the total cifout file for plotting. This is

particularly handy for a detailed plot of a small section of a large chip design.

2. Supporting Enogxams

In addition to ell and its associated programs, there are a few programs

that can be used to aid in the completion of a VLSI design. These programs run

independently of ell. They are documented in Appendix B and can be called with

the man command.

a. Cifar

The cifar program allows the designer to develop an archive of CIF

cells (files). This is very helpful in creating a library of "custom" cells which can

be called in the main design file. This library can then be made a permanent

record for future designers.

35

b. Convert

In order to make any sense out of a cifout file (sorted or unsorted),

the file must be converted from its binary form into ASCII form using convert.

This program can be used to find a problem in a cifout file that will not plot. The

output should be directed (>) into another file name. To get this file back into

cifout format, it must be converted back into binary form using unconvert.

c. Plagen

Plagen is a program that allows generation of a Programmed Logic

Array (PLA) from a set of input and output specifications. Since a PLA is a very

"regular" circuit, it can be used effectively in VLSI design. The PLA can be gen-

erated directly with plagen or indirectly using plague. The output is a CIF file

which can be used as an external file to be called by the main design file.

d. Plague

To generate a PLA using output equations, use plague. This function

converts the output equations of a PLA to the required inputs for plagen. There-

fore, its output is usually pipelined directly into the plagen program.

e. Unconvert

Unconvert is used in conjunction with the convert program. It con-

verts an ASCII file into binary cifout format. Its only use is a conversion after

convert has been used to read a binary file.

3. Design Bute ranker rnT?r)

As the feature sizes of integrated circuits diminish, greater importance

must be placed on design rules. Separation and width errors could easily prove

disastrous in an otherwise functional circuit. For this reason, the Design Rule

Checker (DRC) should be used to indicate any design rule errors.

After a circuit has been designed and a sorted cifout file has been pro-

duced (using ell), the designer can determine the presence of most design rule

36

errors using the DRC. The DRC specifically checks for minimum separation and

width errors within each layer. To do this, it must first determine any connec-

tivity within the circuit. (Two poly rectangles side by side are a larger rectangle,

not a minimum separation error.) However, it does have its limitations. For

example, if two rectangles on the same layer cross, a short will exist which is not

detected by the DRC. Additionally, if a contact is not fully connected, spurious

errors may result.

The DRC processor is drc. It is documented in its manual page (Appendix

B). Again, this tool is composed of several source programs which perform vari-

ous tasks of this extensive design tool. Since the source programs run automat-

ically and are not used independently, they will not be covered in this thesis.

As described in the manual page, the output of drc is stored in file. drc.

Additionally, a cifout file is generated (JUe.co) which can be merged with the

sorted cifout file and plotted on the Versatec or terminal so that the designer

can locate the source of any design errors. The normal procedure is to deter-

mine the source of any design rule errors, correct them, and then run the drc

program again. Once all errors have been eliminated, the circuit can be

simulated.

4. CiECUUUt Fvtrart-nr

Prior to simulating a generated CIF file, it is necessary for the designer to

convert the file into a representative circuit with defined node numbers (or

names). This is required of most simulators. To do this, there are three pro-

grams that are used. Each of these programs is a c-sheLL file (Appendix A) which

calls one or more source programs to complete its task. Since these source

programs run automatically and are generally not used independently, they will

not be covered in this thesis. The three c-shell programs are documented in

Appendix B and are further explained in the following paragraphs.

37

a. Extract

The first step in circuit extraction is to convert the CIF file into a

circuit with associated node numbers as reference points. These node numbers

are assigned by extract with each different logic level having a separate node

number. Extract also generates the necessary output files for plotting. A plot

can then be made using node-plot.

b. Node-plot

The plotting function for an extracted circuit is node-plot. The out-

put is a Versatec plot (the terminal cannot be used) of the designed circuit with

nodes labeled. The dot (stipple) pattern for the different layers is not the same

as that of the ell output, but this should not cause much confusion.

The purpose of obtaining this plot is to allow the designer to define

node names to be used in circuit simulation. Once the numbers for the desired

nodes have been obtained, they can be combined with appropriate names in the

sym file. As a minimum, the power node (vdd) and ground node (gnd) must be

defined.

c. Sim

The last step in the circuit extraction is to generate the simulation

file (.sim). Sim is a c-shell program (Appendix A) which converts the sym,

.node, and .cap files into the format required by simulators. The output file sim

file can then be checked using the Static Checker (stat) or simulated using the

Event Level Simulator (esim).

5. Static r-h^irm-

Prior to trying an actual simulation, it is generally advantageous to put

the design through a Static Checker. Stat will perform "two major tasks, check-

ing gate ratios and looking for switch logic driving switch logic, as well as other

tasks of less importance. "[Ref. 6, p. 7] This step in the design process gives the

38

designer more confidence in the design of new cells but is of little use if only

library cells were used. Stat is documented in Appendix B.

6. T^vpnt t.pvp! Simulalor

After a designed circuit has been "extracted," it can be simulated using

the processor for the Event Driven Switch Level Simulator (esim). This is an

important step in the design process since it assures the designer that the cir-

cuit will perform to logic specifications. Although this simulator does not test

for timing problems (such as rise and fall times, or race conditions), it does pro-

vide a good test of the logical accuracy of the designed circuit.

Esim ls an interactive program which expects inputs from the user. The

allowed inputs are described in detail in the manual page in Appendix B. After

the design has "passed" its simulation, it is ready for manufacture.

39

IV. GEMEBAUHG CIOISLMG ri t

Once an integrated circuit (chip) has been designed, simulated using a logic

simulator (eg, ILOGS), and hand drawn as a geometric layout on lambda grid

using the methods established by Mead and Conway [Ref. l], the designer con-

verts the chip into the Caltech Intermediate Format (C1F). This format is

required by most fabrication facilities. For anyone who has attempted a direct

conversion from layout geometry to CIF, the task is tedious, time consuming,

and very susceptible to mistakes. An alternative route is to use the Stanford

Chip Layout Language (CLL).

The CLL processor (ell) produces an output CIF file that can be sent directly

to a fabrication facility. However, since it does not automatically check for

design errors, additional checking is required. If the designer adheres to the

following guidelines, the task of converting a geometric layout into a CIF file is

much easier and less time consuming.

A. TUTORIAL

"CLL is a symbol-oriented language"[Ref. 5, p. 4] This means that the

designer should divide his chip into a hierarchical structure and build each level

as separate units with the "higher level" units combining the "lower level" units.

The "top level" unit then creates the entire chip For example, consider the fol-

lowing structure:

A
I

I I

B C

I

I

I P
'"

D E F G

40

The units (symbols) D.E.F.G are converted to CIF first. D and E are then com-

bined (possibly with additional geometry) by symbol B while F and G are com-

bined by symbol C. The total chip is created with a "call" of B and C by the

"main" file, A.

To allow this hierarchical "bottom-up" approach. CLL uses a high level

language format which is an extension of the programming language "C." Each

symbol, as well as the "main" chip file, will be a "C" file (Appendix A gives this

format.) written by the designer using CLL and given a label of file. ell. The CLL

processor can then be used to convert the symbols into CIF.

The following tutorial lists the allowed CLL statements (commands) and indi-

cates their usage. (See Appendix C for a summary of these commands.)

1. Hfiftrlpir

The top portion of a .ell file consists of statements which define the con-

stants to be used in the file or link other symbols to the file. The allowed state-

ments are:

a. Comments

Comments are used to make the file more readable. The format is

/* [cOTTMieTlts] */

There is no restriction on the location of comments; however, comments cannot

be nested.

b. External Symbols

CLL allows the definition of external symbols. This is useful in

defining the symbols of the cell library or any .cif files generated by plagen. The

format is

external name (cif§ bounds llx.lly xlen.yLen)

41

This statement defines any reference to name as being a CIF symbol with

number, cif§. The smallest box which can be drawn around this symbol (bound-

ing box) has its lower left corner at (llx.lly) on a lambda grid. The length in the

x direction is xlen and the length in the y direction is ylen.

c. Defines

To define global constants which will be used in the body of the file,

use the format

§ define name value

where # must be in column one of the file. Any reference to name causes

replacement by value. This value can also be an expression enclosed in

parenthesis. For example,

§ define Lrx (Ux+xlen)

gives the value of llx+xlen every time lrx is stated.

d. Includes

§ include file-name

includes the stated file along with the present file. This acts in the same manner

as "linking" two files together or actually combining both files into one.

e. Conditionals

With complex designs, using many levels of hierarchy, there will be

much linking of files together. This complexity can lead to coding errors due to

statements involving undefined symbols. Additionally, because individual files

may share the use of simple cells (e.g., drivers), there must be a way to prevent

re-defining a cell within a linked file. The following formats can be used to

42

eliminate these problems:

ifdef name
statement

(included only if name
has been denned)

fendif

or

§ ifndef name
statement

(included only if name
has not been defined)

§ endif

2. F^ymhnl PpfiniHnn

The symbol definition includes a symbol name (25 or fewer characters),

an optional C1F number, and an optional bounding box. The format is

name [(cifff bounds Ux,lhj xlen.ylen)]

Normally, the C1F number and bounding box information are omitted since ell

computes this information. If a CIF number is specified, subsequently encoun-

tered symbols are given CIF numbers sequentially from that number.

3. Rnrly

The bulk of the ell file is contained in the body. The opening brace [\)

indicates that CLL statements are to follow and the closing brace (j) indicates

that the file is ended. Positioning of these braces and of the statements is not

critical to ell. However, indentation is recommended for ease of debugging. All

statements must end with a semi-colon (;).

43

The following statements are allowed in the body:

a. Comments

Comments can be used in the body to make the file more readable.

They follow the same format as described in the paragraph under Header.

b. Rectangles

The CLL statement for defining a rectangle is

rect Ux.Uy zlen,yle7i [layer];

This statement produces a box whose lower left corner is at (llx,lly) on a lambda

grid and whose upper right corner is at (llx+xlen,lly+ylen). The layer of the

rectangle is layer if it is specified. The default layer is the last layer defined in a

layer statement.

c. Layers

A default layer can be defined with the statement

layer;

This statement is especially useful if the file is to have several rectangles on the

same layer. This default layer is used any time that an optional layer is not

specified and remains the default layer until changed with another layer state-

ment. Layer can be any one of :

diffusion, diff,green
poiy.red
metal.blue
contact.cut, black
implant, yellow
glass

metal2
poly2

44

d. Wires

Wires are used to connect distant points within a symbol. The basic

CLL statement is

wire [layer] x,y xuirelist;

Again, layer is optional with omission implying use of the default layer. The

starting point of the wire is indicated with x,y. Wirelist controls the path and

size of the wire and can be one or more of:

x,y move to (x.y)

layer change layer
u # up § lambdas
d # down § lambdas
r # right § lambdas
1 # left § lambdas
x § move to (given x.same y)

y § move to (same x, given y)
w # set width to § lambdas

CLL requires a space between each entry of the list. A change in

wire layer from metal to diffusion (or vice versa) or from metal to poly (or vice

versa) causes automatic generation of a "via". Changes in wire layer from poly

to diffusion cause generation of a "butting contact" which is not recommended.

If the width is not specified, the default width for that layer will be used. The

default width for any layer is the minimum allowed width for that layer.

An example of a wire statement is

wire 100.70 u 10 r 50 diff r 10;

This wire would start at (100,70) in the default layer, then it would move up 10

lambdas and right 50 lambdas before changing layers to diffusion and moving

right 10 lambdas.

45

e. Vias

A via is a connection between metal and diffusion or metal and poly.

This feature is useful in interconnecting input/output pads with their associated

circuit points and for running wires that must cross paths within the chip. The

format is:

via Ux.Uy layer;

The result is a 4 lambda square of metal, a 2 lambda square cut, and a 4 lambda

square of layer whose lower left corner will be at (llx,Uy).

f. Calls

In order to invoke a defined symbol, a symbol call is used. It has the

form

name (Ux, Uy [transfarrrtatixms]);

Since CLL always places the lower left corner of the symbol's bounding box at

(0,0), placement of the symbol requires a shift in location (and possibly a rota-

tion). The call first performs any transformations on name and then locates its

lower left corner at (llx
x
lly). All transformations leave the lower left corner of

the bounding box at (0,0). Allowed transformations are:

flip ud flip up-down
flip lr flip left-right

flip rl flip right-left

rotate rotate degrees
rotate 3 rotate 90 degrees clockwise

rotate 6 rotate 180 degrees clockwise
rotate 9 rotate 270 degrees clockwise

rotate 12 rotate 360 degrees clockwise

For example,

46

cell(100,500 flip lr rotate 9);

flips cell left to right, rotates it 270 degrees clockwise, and then places the lower

left corner of the resulting bounding box at (100,500).

g. Iteration

When a symbol or cell must be repeated several times in a con-

sistent fashion (as with adding drivers to a PLA), the symbol can be iterated

using

iterate nx.ny [xpitcfi,ypitch] symJbol-ruane (Ux,lly [transformations]);

In this statement, nx indicates the number of times to replicate symbol-name in

the x direction and ny indicates the number of duplicates in the y direction. X-

pitch and y^pitch. indicate the x and y spacing respectively. Either, or both, can

be replaced with defaxdt to indicate that the bounding box dimension should be

used for the spacing. If neither pitch specifications are stated, the default will

be the bounding box dimension in both directions,

h. Expressions

As in the "C" programming language, numbers in CLL can be

replaced by constant expressions. The allowed operators for these expressions

are:

— unary minus
- subtraction
+ addition
* multiplication
/ division

% modulo

47

In addition, there are 4 special operations:

dxfsymbol-name^ return width of a symbol
dy(symbol-name) return height of a symbol
pwidth(expr) return width of metal

(where "expr" is in milli-Amps)
!expr return cursor location plus "expr"

See Reference 5 for examples,

i. Print

For debugging a problem file, the statement

print(expr)

can be used. This will cause the value of expr to print out on the terminal.

B. CELL LIBRARY

Reference 7 provides a description of the basic library cells developed at

Stanford University. These cells can be "called" using a symbol call if the follow-

ing statement is placed in the header of the ell file.

§ include "/vlsi /lib/local/ s_ext. ell"

The s^Bxt.cll file is a CLL file which "defines" the individual cells in the library.

(The actual C1F file for the library is stored in "/vlsi/lib/libs.cif.")

C. USING CLL

There are several methods by which the designer can prepare a geometric

layout prior to coding in CLL. This thesis will not discuss any of these; however,

it is imperative that the design be logically correct and that it consist of only

nMOS rectangular shapes assembled at right angles on a lambda grid.

If the design contains any PLA's, the CIF files for these can be generated

directly using plagen or plague. These CIF files should be labeled in the form of

48

file.cif. Since the plagen function does not produce input or output drivers for

the PLA, a CLL file {file. ell) has to be created for this addition. This CLL file must

"call" the PLA CIF file and then attach the drivers.

Jn order to use the CLL processor (ell), a .ell file must be created for all of the

symbols of the design and for the "main" program. Although it is possible to

include more than one symbol in a single ell file, this is not recommended. For

simplicity and ease of construction, the designer should build separate files for

each symbol. The following paragraphs describe the procedures for creating

these files and producing the desired CIF files.

1. Making Fiipg

The first step in using CLL is to create a ell file for each symbol. This file

can be created using the vi editor and must be labeled in the form of file. ell.

The basic form of this file is given in Appendix C, along with a summary of the

CLL commands.

If the design was originally drawn on a lambda grid, the CLL file can be

coded directly using CLL commands and the desired coordinates from the lay-

out. The best approach is to place the major components of the symbol and

then add the interconnecting wires. When the file is complete, ell can be used

for plotting (for visual error checking) and for creation of the CIF files.

2. Plotting

Throughout the coding process, it is desirable to produce check plots so

that the designer can verify correct positioning of wires and transistors in a

symbol. This can be accomplished on the GIG1 terminal or on the Versatec

plotter using ell. In either case, the best procedure is for the designer to gen-

erate a sorted cifout file (file.sco) before doing the plot. (It is possible to plot

directly without storing the sorted cifout data; however, duplicate plots are not

as easy to produce.) To generate the sco file, use the command

49

c\l[options] file, ell file l.ciffile2. cif ...

The options are listed in the manual page of Appendix B. The particular options

for this operation are 4. and -D. Pile. ell is the symbol file and the cif files are

any CIF files that were generated by the designer and "called" by the CLL file. If

library cells were used, the 4s option must be used. The output is placed in

file. sco.

The fastest way to get a visual plot of a .sco file is with a terminal plot.

The command

ell -T [options] file.sco

generates a color plot of the sorted cifout file if a GIGI terminal is used. The

options of interest in this case are one or more of: 4, -n, -x. -y, and -D (Appendix

B).

The other way to get a plot produces a hard copy on the Versatec plotter.

This approach uses much computer time and should be avoided during heavy

usage times. The command is

ell -P [options] file.sco

where the options can be one or more of: -b, -g. 4, -n, -x, -y, -s. -S, and -D (Appen-

dix B). The stipple patterns are defined in Figure 1 of Appendix B.

3. Qpatins CTF

In general, a CIF file must be created only for: (l)node extraction of sym-

bols; (2)the total design; or (3)fabrication of the design. In the first two cases,

the command

ell 4: [options] file. cU file l.ciffde2. cif ...

50

creates a file labeled file.cif which is the CIF file combining all "calls" and

"includes" of the file. ell file. The two options that can be used are -D and -1

(Appendix B). If library cells were used, the -4s option must be used.

To generate the final CIF file (which can be fabricated), use

ell -¥ [options] fUe.cll filel.ciffileZ cif ...

The output is a CIF file labeled final. cif. The options are the same as listed

above.

D. EXAMPLE

As a simple example of the use of ell, consider a gray-code-to-binary-code

converter with reset, using a PLA. If the inputs to the PLA are defined as reset,

gray, and xO and the outputs are defined as binary and XO, then it can easily be

shown that the output equations are

binary = xO' Preset &gray + xO&reset'&gray'
XO = xO' Preset' &gray -1- xO&reset'&gray'

(' for complement, & for AND, - for OR)

Note that the combination of xO and XO is the feedback requirement for deter-

mining the "state" of the PLA and that the input gray code is serial with the

most significant bit (MSB) entered first. Since XO and binary are identical, it

would have been feasible to use only one of them as both output and feedback;

however, since the PLA generator produces an "even" number of outputs, they

are both used.

In order to generate a PLA CIF file using the above equations, an input file

must be created for plague and the resulting output "pipelined" into plagen.

Figure 4.1 gives the input file pla.

To generate the PLA CIF file, the command

51

plague < pla
j
plagen > pla.cii

is issued. The result is a CIF file, pla.cif and a schematic file, pla.schem.

CIF# 901;

in: reset gray xO;

out: XO binary;
binary = xO' Preset' &gray+xO&reset ,

&gray';
XO = xO'&reset'&gray+xO&reset'&gray';

Figure 4.1. PLAGUE INPUT FILE (PLA)

Additionally, the terminal responds with information about the PLA:

(3 input 2 output 2 term PLA);
(external pla (cif 901 bounds --15,0 100,31);

The first of these lines can be added to the pla.cif file for documentation pur-

poses. The second line can be used as an "external" statement in a ell file.

Note that the bounding box of this ?\A has its lower left corner at (-15.9) and the

upper right corner is at (85,31). Figure 4.2 is the pla.cif file with the added

documentation.

Since the PLA is computer generated and was not drawn on a lambda grid, it

is necessary to plot it so that the drivers and interconnecting wires can be

added. However, the file must be modified with

C 901 T0,0;
E

at the end of the file. (CLL requires this modification.) A command of

ell -Is pla.cif

52

(ext 12);

ext 13);

(ext 14);

(ext 15);

(ext 16);

(ext 17);

(ext 18);

ext 21);

(ext 22);

(ext 23);

ext 24);

(ext 25);

DS 901 250, 1;

(3 input 2 output 2 term PLA);

C 14T-15 16;

12 TO 16;

13 T 24;

23 T -4 7;

23 T -4 15;

12 T 16 16;

13 T 16 24;

24 T 23 7;

23 T 12 15;

12T32 16;

13 T 32 24;

23 T 28 7;

24T39 15,

15T48 16;

16 T 48 24;

12 R 0-1 T 77 16;

22 T 64 9;

21 T 64 20;

22 T 72 9;

21 T 72 20;

14 R 0-1 T77 31;

13 R 0-1 T 85 16;

LNM;
W 4 -13,16 -13,29 61,29;

DF;

Figure 4.2. PLA.CIF

53

generates the pla.sco file. To plot this sorted file, use

ell -P -g5.5 415 pla.sco

Figure 4.3 gives the result of this command.

From Figure 4.3 and the documentation of the input and output drivers in

Reference 7, a CLL file can be created to form the converter symbol. Figure 4.4

is a possible solution for this CLL file (converter, ell). A sorted c ifout file can now

be created. However, first the pla.cif file must be modified by removal of the

two lines that were added previously. Then a command of

ell -Is converter, ell pla.cif

will generate the file converter. sco. This file can be plotted on the GIGI terminal

for a quick check using

ell -T converter, sco

or on the plotter with

ell -P 415 -g5.5 converter.sco

(Note that the resolution of the terminal may not be sufficient for the designer

to detect errors with the whole converter plotted To get better resolution on a

specific area he should window the area using the -x and -y options.) Figure 4.5

gives the result of the Versatec plot.

Once the symbol has been visually inspected and all errors have been

corrected, a C1F file can be created with

ell -C -Is converter, ell pla.cif

54

~i
—

¥

-ft

PI

m

T—ZZ

mmM

m
n~r
-FT"

.L.

UjJ

! Im
I' 93

H

^O"^

i i
'

~

I fc'ri

— ___

!

i

—

—

r

i

h •

J

bounds - 1j .

CIF bounds -15.0
grid 5 5
scale 15

0.0
0.0

100.0
100.0

31.0
31.0

Figure 4.3. PLOT OF PLA.SCO

55

/* include external definitions for library cells */

§ include "/vlsi/lib/local/s_ext.cir

/* define external reference to pla */

external pla(cif 901 bounds -15,0 100,31)

gray_to_binary()

\

/place pla*/

pla(O.O);

/attach input and output drivers*/

iterate 3,1 PlaClockIn(15,-58);
PlaClock0ut(76,~53);

/•connect gnd, vdd, and clock lines*/

wire metal 2,1 w 4 d 23 r 14;

wire metal 73, 1 w 4 d 16 r 4;

wire metal 62, --22 w 4 r 6 d 21 r 9;

wire diff 57,-58 w 2 d 2 metal r 22 u 5 poly u 2;

wire diff 25,-58 w 2 d 2;

wire diff 41,-58 w 2 d 2;

wire poly 87,-53 w 2 d 2;

Figure 4.4. CONVERTER. CLL

56

sai

1—

r

.a

55"
fH^ 3-E81 T^r- TTr^T

s -H-

— !;;';,v*-y

:ES
•*——r-f
f -i- M 1

:-'
-i

4

.\:.i

HT^+
n.it» .ttfcflir:

n*F

s 7TT

53.IS 31

n: ?S»5

,—,,—^^.^

sgn
ill

:t
:

"i

^—
1 I U-)a

>^ci

n rtn
=E'

IB
-t—

S

H sex

i§mm
•—y

mmm e r-tn

m
J LL

{ '

I HJI
CUT

i rri

.1 J

ST

S3

J_ rrrm n- --: m
qiil m
.i

_ j
-

Bouaus
CIF bounds
gi'id 5 5
scale 15

0.0

^1C£

4U-J
i

ill! i_n

l i L

0.0
0.0 100.0

0.0 100.0
93.0

93.0

Figure 4.5. PLOT OF CONVERTER. SCO

57

V. rrasTn>JVAT.TnATinN

Throughout the design process, the designer will wish to improve the

confidence in his design using various CAD tools. These tools have been designed

to overcome the most common weakness in creating a VLSI chip - human error.

Although the perfect designer will have no need to validate a design against pos-

sible errors, most of us want to ensure that our finished product performs its

desired function.

Use of the validation tools has no definite prescription. Each designer will

have to decide as to what stage of the design process (what level of symbols)

should be validated at a particular time. However, to keep the validation and

debugging times to a minimum, we recommend that each "major" symbol oe

validated separately. The actual tools that can be used are the Design Rule

Checker, the Static Checker, and the Event Simulator.

A. DESIGN RULE CHECKER

The Design Rule Checker inspects the sorted cifout file for design rule viola-

tions. In order to use the DRC processor (drc), the symbol must have a sorted

cifout file (Jlle.sco). The generation of this file is described in Chapter 4 of this

thesis. A command of

drc /tie. sco

initiates the design rule check of the stated file. (See the manual page for DRC in

Appendix B for details.) As with all of the validation tools, the DRC is time con-

suming and should be planned for times of low computer usage. The outputs of

the DRC are file, drc and file. co.

58

1. Ebcakiatioc Of QutpuJta

FUe.drc provides a list of the lambda coordinates for any errors detected

by the DRC processor. Each error is classified by type; however, one error may

cause several coordinates to be listed. A comparison of the error coordinates

with a plot of the symbol layout provides the designer with the source of the

problem(s).

If the designer wishes to plot the output of the DRC combined with the

actual layout, the command

ell -P [options] file .sco file.ca

can be used. The result will be a plot of the symbol with "black" areas indicating

the areas of design errors. Additionally, a terminal plot can be made using

ell -T [options] file.sco jUe.ca

with "white" areas indicating the areas of design errors.

2. Example

As an example of the use of the DRC, consider the CLL file wrong. ell (Fig-

ure 5.1). This is the same as converter. ell (Figure 4.4) with the exception that

the starting coordinate for PlaClockln has been changed to (16,-58) vice (15,--

58). This one lambda shift of the input drivers gives design errors for evaluation.

The first step in the validation process requires the generation of a sorted

cifout file. The command

ell -Is wrong. ell pla.cif

will give the file wrong. sco. Now, to use the DRC, a command of

59

drc wrong.sco

is issued. (Prepare to wait, the DRC is extensive and slow.) Figure 5.2 gives the

output file wrong. drc with a list of the design errors.

/* include external definitions for library cells */

§ include "/vlsi/lib/local/s_ext.cll"

/* define external reference to pla */

external pia(cif 901 bounds --15,0 100,31)

gray_to_binary()

I

/place pla*/

pla(O.O);

/attach input and output drivers*/

iterate 3,1 PlaClockln(16,-58);

PlaClockOut(76,--53),

/connect gnd, vdd, and clock lines*/

wire metal 2, 1 w 4 d 23 r 14;

wire metal 73, 1 w 4 d 16 r 4,

wire metal 62,-22 w 4 r 6 d 21 r 9;

wire diff 57,-58 w 2 d 2 metal r 22 u 5 poly u 2;

wire diff 25,-58 w 2 d 2;

wire difT 41,-58 w 2 d 2;

wire poly 87,-53 w 2 d 2;

I

Figure 5.1. WRONG. CLL

A merge of the sorted cifout file with the file wrong. co can be produced

with the command

ell wrong, sco wrong, co

The output is stored in merge. sco and can be plotted on the Versatec or the

60

Poly min width errors:

16, 60
16

17

18

24
24
25
26
32
32
33
34
40
40
41
42
48
48
49
50
56
56
57
58

60
63
62
60
60
63
62
60
60
63
62
60
60
63
62
60
60
63
62
60
60
63
62

Diff min width errors:

24, 4

25, 2

25, 3

24, 5

26, 2

26, 2

26, 3

26, 5

40, 4

41, 2

41, 3

40, 5

42, 2

42, 2

42, 3

42, 5

Metal min width errors:

Contact metal cover missing:

Contact poly or diff cover missing:

Poly to diff-contact separation error:

There are 35 transistors

Poly separation errors:

Diff separation errors:

Metal separation errors
(continued on next page)

61

Poly to Diff separation errors:

18, 62
19, 61

23, 62
24, 61

34, 62
35, 61

39. 62
40, 61

50, 62
51, 61

55, 62
56, 61

Implant surround error:

Poiy-Diff-transistor surround errors:

26, 3

42, 3

Figure 5.2. WRONG.DRC

terminal. Or, a plot can be obtained directly with the command

ell -P -g5.5 -il5 wrong. sco wrong. co

Figure 5.3 is the result of issuing this command and can be used to evaluate the

errors detected by drc. The error points are indicated by "dark" blocks.

From Figures 5 2 and 5.3, the following errors can be seen:

Poly min width and Poly to Diff separation errors
in the areas of:

17,60
25,62
33,62
41,62
49,62
57,62

Diff min width & Poly-Diff transistor surround
errors in the areas of:

25.3

41,3

A closer look at the plot indicates that all errors are caused by the shift in

placement of the input drivers and can be easily corrected by changing the "cal-

ling" coordinate of the input driver.

62

r »o \c 20 tr 10 ir so sr ro st co «,r io 7r ?e «* so -»*i
1 1

1 1 I'll —
-r
—

—

1 1 1
1 1 1

J

\ bounds -CO -3.0 103.0 96.0
XCIF bounds 0.0
CIT bounds 0.0
gy id 3 5
scale 15

0.0
0.0

100.0
100.

03.0
93.0

Figure 5.3 PLOT OF WRONG. SCO AND WRONG. CO

63

As an alternate method for determining the source of DRC errors, a ter-

minal plot of the "window" around an error coordinate can be used. For

example,

ell -T -x0.25 -y50.70 merge, sco

indicates one of the problem areas.

B. CIRCUIT EXTRACTOR

The Circuit Extractor extracts a circuit from a C1F file so that it can be simu-

lated. The manual page for the Circuit Extractor (EXTRACT in Appendix B) gives

the commands necessary to perform an extraction. If it is desired to extract a

symbol for which there is a CIF file labeled file.cif, then the proper command is

extract file

The result of issuing this command will be generation of file.def, file. cap,

file. gate, file node, filexec, and file. sym.

1. Plotting

A plot of the node numbers which have been assigned to the symbol can

be obtained with the command

node-plot file

This produces a Versatec plot of the layout with stipple patterns as defined by

Figure 2 of Appendix B and node numbers at various points throughout the plot.

64

2. Dpfining Nnripg

In order to- evaluate a circuit under simulation, it is necessary to assign

names (labels) to selected nodes in the circuit. As a minimum, the power bus

(vdd) and the ground bus (gnd) must be identified. To do this, the file.sym file

has to be modified. (It is empty.) Referring to the node-plot output, the designer

can use vi to modify the file.sym file by making a list of node numbers with their

associated names. For example, the most commonly labeled nodes are power,

ground, inputs, outputs, and clocks. Once a node has been given a name, it can

no longer be referred to by number.

3. Creatin g A Simul ation File

A simulation file {.sim) is required by both the Static Checker and the

Event Simulator. If an extraction has been performed on a symbol file. cif and

the file.sym file has been modified, then the function sim can be used to

generate the simulation file. It is invoked with

sim file

The output is file.sim and can be used for static checking and simulation.

4. Flvamplp

The example of Chapter 4 can be extracted by issuing the command

extract converter

The extracted circuit can now be plotted with the command

node-plot converter

The terminal responds with

65

type-stipout /vlsi/tmp/converter.stip[A-A]--when ready

This statement indicates that the sorted data for the plot fits into a 240 lambda

strip (A) and can be plotted with

stipout /vlsi/tanp/converter.stipA

Figure 5.4 is the result of issuing this command.

Using the node numbers as shown In Figure 5.4, a sym. file can be created

to label the power, ground, input, output, and clock nodes. Figure 5.5 gives this

converter.sym file.

The simulation file can now be created with

sim converter

66

Hill!:!";',":

1 :77,11;

l!|||g5^lliW!|

I!

"TijTT..

Figure 5.4. PLOT OF CONVERTER. ST1PA

67

13
3

gnd
vdd

105
42
10B

phil
phi2
reset

109 gray
72 binary

Figure 5.5. CONVERTER.SYM

C. STATIC CHECKER

The command

stat file,sim

initiates a static (dc) analysis of the symbol file. Stat accomplishes this by using

a data base consisting of a set of transistors, each with a gate, source, drain,

length, width, and type (currently enhancement, depletion, and intrinsic), and a

set of nodes. The program tries to determine the threshold drops on the nodes

and the use of the transistors by adding to this data base. Finally, having under-

stood as much of the circuit as possible, the program makes a pass over the

transistors that are still not understood and indicates any that are obviously

incorrect.

As stated in the manual page (STAT in Appendix B), the two outputs of stat are

standard output containing an entry for each potential error and standard error

output containing the number of nodes, inverters, etc.

1. Eaaluation Of Outputs

The manual page for stat (Appendix B) gives a list and explanation of the

outputs. However, a few comments are necessary to prevent an incorrect

analysis. Prior to beginning a static check, it is necessary to identify the power

(vdd) and ground (gnd) nodes of the circuit. The Static Checker identifies input

68

nodes by locating any enhancement transistors whose gate is ground, source is

the node, drain is ground, length is 2 lambda, and width is greater than 39

lambda. If no input nodes are found, the "Propagate" output will not be valid.

Some of the errors are repeated in both the outputs. For example, a chip con-

taining 5 ratio errors (all with a ratio of 3.45) would have one line in the standard

error output, indicating that the ratio 3.45 occurred 5 times, and 5 entries in

the standard output, one for each ratio error, detailing the specific nodes and

transistors involved.

2. Fxamplp

Continuing with the converter example of Chapter 4, a command of

stat converter,sim > converter, stat

initiates the static analysis and stores the standard output in converter. stat.

Figure 5.6 is this file.

Evaluation of Figure 5.6 results in the following:

1) The unknown threshold drops are the input, clock, and
output nodes. This is expected since there are no input
or output pads.

2) The ratio messages indicating a pu/pd ratio of 0.00 are
associated with the input and output nodes and are also

expected due to the fact that no pads are present.

3) Since no pads are present, the Static Checker did not
identify any input or output nodes, so that all other nodes
are not affected by the input nor do they affect the output.
(Indicated by the Propagate print out.)

4) The only nodes not affected by either ground or power
are the input, clock and output nodes. This is desirable.

5) There is no indication of transistor (or other) errors, so

we assume that the circuit is statically correct.

69

2136 bytes of 'free' storage used
Unknown threshold drop on node: 44 (BO, 58)
Unknown threshold drop on node: 45 (88,58)
Unknown threshold drop on node: 86 (24,32)
Unknown threshold drop on node: 88 (40,32)
Unknown threshold drop on node: 90 (56,32)
Unknown threshold drop on node: phil (15,6)
Unknown threshold drop on node: phi2 (76,60)
0.00 18 (50,36) <2x2>
0.00 31 34,36) <2x2>
0.00 51 (18,36) <2x2>
0.00 64 (83,26) <4x2>

<90?2xl6> gnd
<B8?2xl6> gnd
<86?2xl6> gnd
<44?2x8> gnd

0.00 binary (84,16) <4x2>: <45?2x8> gnd
Propagate (10): 2 (78,85)
Propagate (10): 5 (86.85)
Propagate (10): 9 (7,77)
Propagate (10): 12 (16,85)
Propagate (10): 15 (32.85)
Propagate f 10): 18 (56,85)
Propagate (10): 27 (7,69)
Propagate (OHO): gray (40,4)

10): 31 (40,85)

10): 34 (48,85)

10): 44 (80,58)

10): 45 (88,58)

10): 51 (24.85)

10): 64 (79.46)
Propagate (0110): B6 (24,32)
Propagate (0110): 88 (40,32)

Propagate (10): 90 (56,32)
Propagate (10): binary (83,40)

Propagate
Propagate
Propagate

(

Propagate
(

Propagate
(

Propagate

Propagate (0110)
Propagate (0110)
Propagate (0110)

reset (24,4)

phil (15,6)

phi2 (76,60)

Figure 5.6. CONVERTER. STAT

D. EVENT SIMULATOR

The Event Driven Switch Level Simulator (esim) can be invoked with

esim file.sim

Once invoked, esim performs as an interactive simulator with a prompt of

sirn>

70

The manual page (ESIM in Appendix B) gives the allowed commands for complet-

ing a simulation

1. Using E.sim

Although it is possible to complete an entire simulation in the interactive

mode, the designer will find that the most effective procedure is to plan a

desired test sequence (a set of inputs and clock cycles to generate a known set

of outputs) and use vi to create a "macro" file to be read by esim. This macro

file should contain the initiating commands (as described in the manual page)

for the input nodes and the desired clock sequences. Additionally, it should

identify the nodes to be "watched." The file can be initiated either with

@ file.macro

after esim has been invoked or can be included at the start of the simulation

with

esim file .sum file .macro

Two-phase clocks can be defined with the K command. For example,

Kphil 110000 phi2 000110

defines one cycle of a two-phase, non-overlapping clock. The input nodes can be

set to a "high" or "low" state using the h and I commands respectively or with

the V command. The outputs can be "watched" with the w or If commands.

2. Fvamplp

To simulate the converter example, the macro file esim.rn.acro must first

be generated. (See Figure 5.7.) The command

71

esim -€sini.out converter.sim esim.macro

invokes the desired simulation and stores the output in esim.out (Figure 5.8).

w gray binary
Kphil 1 10000 phi2 0001 10

h reset
c

V reset 00001 gray 1110
R
V reset 00001 gray 1001

R
V reset 000001 gray 11100
R
V reset 000001 gray 01011
R
V reset 000001 gray 11111

R
q

Figure 5.7. ESIM.MACRO

23 transistors, 23 nodes (12 pulled up)
binary=0 gray=X
cycle took 32 events

>11101:gray
>0 1011: binary
>10011:gray
>01110:binary
>111001:gray
>010lll:binary
>010110:gray
>00110l:binary
>llllll:gray
>010101:binary
23 transistors, 23 nodes (12 pulled up)

Figure 5.8. ESIM.OUT

Evaluating Figure 5.8, we see that the last (right) bit given for gray and

the first (left) bit given for binary are invalid and are only typed because of the

nature of the R command. There are five input gray codes used for the

72

simulation with the respective equivalent binary code outputs. The MSB is to the

left of the printout. Comparison of each output with its input reveals that the

converter works as designed. For example, an input gray code of 1110 should

(and does) produce a binary output of 1011.

The last step in the design process is the combining of all valid symbols to

form, the total chip. The CIF file for the chip is formed with the ell -F command

to generate final. cif as described in Chapter 4. This file should be validated with

drc, stat, and esim. Once the total chip has completed all of the validation tests

to the satisfaction of the designer, it can be manufactured with a good chance of

success. Appendix D gives the procedures for DARPA supported chip

manufacture.

73

VI. PROTECT IfiRTT VERY FAST PTPFTT^Fn HAPPY LOOK AHFAD ADPFP

A. INTRODUCTION

This chapter discusses the development of an LSI design from conception

through simulation. The creation of a sixteen-bit adder is a two part research

project. First, the CAD tools and hardware resources available at the Naval Post-

graduate School needed to be exercised and documented. Secondly, recent

interest in the design of recursive (I1R) digital filters indicates a need for fast

adders that possess a predictable amount of delay. The adder designed and

fabricated in this thesis project has both of these attributes. Moderate

complexity, testability, and the possible utilization in a larger complex system

entered into the decision to create the 16 BIT'ADDER.

B. LOGIC DESIGN

1. Pipelining

Nearly any digital circuit which accepts incoming data, processes the

information and produces an output may be suited to pipelining techniques. As

the title suggests, "pipelining" is incorporated into the design. Pipelining is a

technique whereby a larger more complex functional unit is serially decomposed

into several smaller less complex functional units. Each sub-functional unit

accepts a digital input, performs a "sub-process" and outputs the "sub- result"

to the following stage. The output of the final unit is the overall result. The term

"pipeline" suggests data entering a pipe at one end and the result spilling out at

the other end with processing taking place between the input and output. This

type of visualization omits a very important parameter - timing. A better way to

comprehend the pipeline operation is to visualize an assemblyline. The produc-

tion of a automobile is a good example. Inputs are all the necessary components

74

and the output is the finished automobile. Along the assemblyline, certain func-

tions are performed at each work station and a finite amount of time is required

for each function to be completed. The system clock provides the control sig-

nals to the assemblyline, At each tick of the clock, the yet unfinished auto moves

one additional station towards final completion. The fastest speed at which the

assemblyline may progress is determined by the work station that requires the

longest period of time to complete its task. If the line advances before a station

completes its function, the output product is rendered unuseable.

The basic advantage of pipelining is increased speed of operation. Two

disadvantages are complexity (additional hardware) and "fill" time. Continuing

with the above example, fill time (delay) is the amount of time it takes for the

first car to reach completion. The fill time is as large as, or larger than, the

amount of time that is required by one group of workers to complete the entire

automobile. Increased speed of operation is realized when the assemblyline is

broken down into numerous easy tasks. This is the key point in pipelining. While

it may take many ticks of the clock to obtain the first car, an additional auto is

completed for every subsequent tick of the clock. And, the period of the clock is

the time required to complete the short easy tasks. The complexity of such a

line is obvious when compared to the "one group-all tasks" approach.

V/hen referring to a digital circuit, the increased complexity arises from

the necessity to store intermediate results between sub-units until the next

clock signal is received. Normally, the additional number of storage devices is

great and can quickly become as complex as the functional logic. The fill time is

usually considered to be a disadvantage. However, this project originated as a

sub-functional unit of an infinite impulse response digital filter A precise

amount of delay is required for this type of circuit. In this case, the fill time is

considered to be an advantage. The highest clock rate can be realized when

75

there is only one gate delay per sub-unit. This maximum clock frequency

depends upon the amount of time needed for the data to progress from the

input storage device through a single level of functional gating and then stabilize

the output storage device.

Carry-look-ahead addition, which is discussed in the next section, readily

lends itself to pipelining techniques. The adder is divided into "N" sub-functional

stages . Two sixteen-bit vectors are applied to the inputs. "N" clock cycles later

the sum of the two vectors is obtained. If two new vectors are applied to the

input of the pipe at each clock pulse, then after the initial fill time of "N" clock

cycles, a resultant sum is output for each subsequent cycle. Many pipelined cir-

cuits use a two-phase non-overlapping clock. This allows for data to be clocked

into a sub-functional stage on one phase and the result to be clocked out of that

stage on the other phase. The limiting high clock rate is determined by the sub-

unit with the largest delay. The limiting low clock rate is determined by the

length of time the charge stored on any input/output dynamic register remains

above threshold. Recall from chapter two that this charge decreases exponen-

tially and is on the order of milliseconds.lt is possible to utilize flip-flops as the

input/output register to alleviate concern for the limiting low clock rate, how-

ever, this adds to the overall complexity of the design.

2. Carry-T.nnk-Ahp^H Addition

The standard one-bit full adder utilizes three inputs and produces two

outputs. It accepts the two binary bits to be added, denoted as A+ and Bit and a

carry input Q_j from the previous stage. The outputs are the sum bit 5
i
and

the carry output Q. One set of boolean expressions that realizes a one-bit

adder is shewn in equations (6.1 and 6.2). An n-bit full adder is constructed by

connecting (n) one-bit stages in parallel. Clearly, the amount or time for an n-bit

full adder to produce the output depends on (n). For the worst case analysis,

76

5i=(^) XOR (Bt) XOR rQ-i) (6.1)

XOR implies the eXclusive-OR logical operation.

Q^^Q.i + A^tQ-i + 4AQ-1 + 4#iQ-i (6.2)

input vectors A and 5 could be such that if a carry were generated by the least

significant bits (Aq and i?o),the carry would "ripple" through the remaining

stages. The output would not be valid until this carry propagated through and

affected all of the stages. As the size of the adder gets larger, this "ripple" effect

induces a larger time delay. In order to increase the operating speed of n-bit

adders whose length exceeds four bits, [REF.9:pg88] a technique known as

carry-look-ahead addition is incorporated. Additional circuitry is added to pro-

duce two functions called "carry generate" and "carry propagate". The carry

generate function (Q) is true when a carry is generated in the ith stage

regardless of the value of the carry into the ith stage. The carry propagate

function (Pi) is true when the ith stage would propagate (pass) an incoming

carry to the next most significant stage. The logic equations for the two func-

tions are denned as:

Gi =jii
Bi (6 3)

Pi
= (A

i) XOR (BO = A^ + AiBi (6.4)

When equation (6.4) is substituted into equation (6.1) the following is obtained:

Si=((Ai) XOR (BO) XOR fQ-i) = (Pi) XOR fQ-i) (6.5)

Equation (6.2) can be simplified to:

77

Ci^JkBi + ^Q-i) ((A) XOR (Bi)) (6.6a)

Substituting equation(6.3) and equation(6.4)into equation (6.6a), Q becomes:

Q =Q + PiQ^ (6.6b)

Note that all Pi and Q can be simultaneously determined from the input vec-

tors A and B And,equation(6.5)implies that 5
t can be produced in parallel pro-

vided all the carry inputs can be obtained simultaneously. This can be accom-

plished by solving equation(6.6b). Equation (6.6b) is a recursive equation and

with the carry input to the first stage being defined as C_
l%

a set of carry equa-

tions for all Q can be developed. The general solution is:

q = Q + ch-iPi + (h-zPi-xPi - ...GqP.Pz Pi + C-iPGp x
p2 Pi (6.7)

To illustrate this formula.let 1=4. Then, C4 the carry bit needed to realize 5 5

has the following logic equation:

C4=G4 - GbP4 + G>P*P* +GlP2P3P4 + GqP
}
P2P3P4 + C.

X
P^P

X
P2P2P4 (6.8)

S 5 is obtained by combining P5 and C4 in an XOR gate. Equation (6.7) is one

method of realizing a carry-look-ahead (CLA) "unit" An n-bit adder requires

equation(6.7) to be expanded to (i=?l~l). Two other units are necessary to

produce a carry-look-ahead "adder". The carry generate /propagate unit pro-

duces the G^'s and P^s from the input vectors A and S. Both the Gi 's and Pi's

are then delivered to the input of the (CLA) unit which forms the carry bits.

These carry bits are combined with the P
i 's in a third unit called the

78

summation unit to produce the S^'s. This type of carry-look-ahead adder (even

though it has three main units) is called a one- level CLA adder. The distinguish-

ing difference between a one-level CLA adder and a two-level CLA adder is the

number of CLA units located between the carry generate /propagate unit and

summation unit.

"When (n)-the number of bits to be added-grows large, the problem of

fanout becomes critical. Note that in equation(6.8) for i=4,P4 appears in five

product terms. For a sixteen-bit adder, the most significant bit is 1 = 15. To pro-

duce 5*15, Pjg and C14 are required at the input of an XOR gate. It is seen from

equation(6.7) that P 14 would occur in fifteen product terms to develop C 14 . This

implies that the Pj4 output of the carry gen/prop unit experiences a fanout of

fifteen upon entering the CLA unit. A fanout of fifteen causes current limitations

to. be approached or exceeded in some large scale integration

technologies [REF.9:pg.88], To circumvent this problem, a two-level carry- look-

ahead adder is utilized. An additional CLA unit is inserted between the gen/prop

unit and the summation unit. The addition of this extra CLA. logic alleviates the

fanout problem but introduces extra gate delays and increases the overall com-

plexity of the adder. Modifications are made to this additional CLA unit to

develop what is called a "block" carry-look-ahead unit or (BCLA.). The BCLA unit

is very similar to the CLA described by equation(6.7). "Block" denotes a definite

bit length. Normally, (n) is equal to four or eight. Instead of producing (for

71=4) four carry bits, the BCLA unit develops the three least significant carry

bits along with two other signals denoted as "block carry propagate" and "block

carry generate". An example delineates the differences between the two types. A

standard four-bit CLA unit produces Q4.3, Q+2> Q + i> Q ! 1=0,4,8, 12,... while

a four-bit BCLA unit develops BPj ,BGj ,Q+2»Q+1»Q ; j =0,1,2,.. .,i=4j . BP

and BG signify block carry propagate and block carry generate The BPjbit is

79

valid if a carry into the block results in a carry out of the block. For n=4, BPj

is determined by the following:

BP
j
=Pi+3Pi +2Pi+lPi ;;=0,1,2,3,... ;i=4j (6.9)

The BGj variable is true if the carry out of a block was produced within that

block. BGj can be written as:

BGj = Gi+3 + Gi+2Pi+ 3 + Gi+1Pi+2Pi+3 + GiPi+\Pi+2Pi+3 (61°)

i =0,1,2,3,... ;i=4j

Using equation(6.6b) and the recursive solution method, the block carry bits can

be formed from the following equations.

BC3=BG + C^BP (6.11)

BCy^BGy + BGGBP X
+ C-

l
BPGBP l

BCn -BG2 + BG
l
BP2 + BG BP l

BP2 + C-
X
BPGBP X

BP2

BC 15=BG3 + BG2BP3
- BG

X
BP2BP3 + BGQBP l

BPzBP3 + C^BPGBP X
BP 2BP 3

Note that equatLon(6. 1 1) is a recursive formula on a block level where

equation(6.6b)is a recursive formula on a stage level. For a sixteen-bit

adder.i^C^ is the carry out or overflow bit.

A sixteen-bit two-level carry-look-ahead adder constructed from commer-

cially available four-bit CLA/BCLA units is shown in Figure (6.1). Inspection of

Figure 6.1 and the equations presented in this section yield the following gate

delay analysis. The propagate /generate unit requires three Levels of gating due

80

o

Figure 6. 1 Two level 16 bit CLA adder

81

to the XOR operation needed to realize the P^'s and the Q's. Three levels of gat-

ing are also needed by the summation unit for the same reason. It produces 5^

from the logical XOR of P± and Q_i- The block carry-look-ahead unit performs

two functions, each of which requires two gate delays. First, the BPj's and the

BGj's are developed in accordance with equations (6.9) and (6.10). "After" the

BPj's and the BGj's are formed the BC's are realized by eq(6.1l). This forma-

tion of the BC's takes place in the standard CLA unit and therefore introduces

two gate delays. The BC's are then passed on to the next most significant BCLA

where another two gate delays are required to develop the remaining carry

terms. The two-level adder requires a total of twelve gate delays whereas the

one-level adder (due to the absence of the BCLA level) requires only eight gate

delays. The equation for the remaining carry terms is developed by using equa-

tion^.?) with slight modifications and limiting the subscripts to certain allowed

values. Each BCLA produces only three carry bits. Redefining CLj as BC_±, the

carry bits for a sixteen -bit two-level CLA. adder are determined by:

£0,4,0. 12-^0,4,0, 12 + ^£--1,3,7,11^0,4,8,12 (6.12)

^1, 5,9, 13
=

^1,5,9,13 + Q),4.8,12^1, 5,9, 13,
+ °^-l,3,7, 11^0.4.8. 12-^1,5,9, 13

£2.6, 10, 14
=

^2,6, 10, 14 + ^1,5,9,13^2,6,10,14 + ^0,4,8, 12-^1,5,9, 13-^2,6, 10, 14 +

BC-\, 3,7, 11-^0,4,8, 12^1,5,9, 13-^2, 6, 10, 14

The carry bits formed by equations (6.11) and (6.12) are combined in the sum-

mation unit in accordance with equation(6.5) to produce the resultant vector o

For a one-level adder, a fanout of fifteen was experienced by the P \± out-

put in developing C^.. Equation(6.12) shows that this fanout is reduced to three

82

for the two-level adder. The compromise is an increase in hardware complexity

and four additional- gate delays inherent in the two-level type.

Table(6.l) itemizes the order in which the intermediate results are

formed. the unit in which they are formed, the amount of gate delay, and the per-

tinent equation numbers.

This section developed the theory of carry-look-ahead addition. The infor-

mation and equations listed in Table(6. l) and Figure(6.1) provide the starting

point for the VLSI project described in this thesis. Pipelining, carry-look-ahead

addition, and PLA structures are combined in the next section to develop an ini-

tial "paper and pencil" functional unit design of the thesis project.

Intermediate
Results

Unit gate
delay

Equation

#

Pi's

Gi's
CP/G 3 (6.3)&(6.4)

BPj's
BGj's

BCLA 2 (6.9)&(6.10

BCl's CIA 2 (6.11)

Ci's BCLA 2 (6.12)

Si's SUM 3 (6.5)

Table(6.1)

3. Ppqign CnnqiHpratinns

This section develops the initial block diagram of the VLSI project. Recall

that CAD tools called "PLA.GUE" and "PLAGEN" exist in the NFS VLSI design

83

inventory. They accept boolean equations as inputs and produce a CIF file as an

output. Restrictions applicable to these two software tools are:forty inputs, forty

outputs, and one hundred and fifty product terms. Capitalizing on the power and

convenience of these two CAD tools, all of the combinatorial logic needed to real-

ize a sixteen-bit adder is replaced by PLA structures. Since PLA structures are

used exclusively to develop the equations whose numbers are given in Table(6.i),

CLA. addition is re-evaluated at a PLA level rather than a gate delay level. It is

conceivable that on one extreme an adder can be made from one "large" PLA

structure. The output £ could be tediously determined in terms of A and B

.

This produces a "single" stage adder. An adder of this type would have an enor-

mous number of product terms. The huge fanout would probably render the

design physically unrealizable using present technology. On the other extreme,

the adder can be made from many smaller less complex PLA structures. Both

extremes appear to have only two levels of gating when using the NOR-NOR form

of PLA. This two levels of gating does not consider the fact that the complement

of the input variable as well as the variable itself must be delivered to the input

NOR plane. In order to supply the complement of the variable, an additional

inverter must be placed between the input variable and the input plane Also, for

the NOR-NOR structure, an additional inverter must be utilized to invert each

output term. This translates to a minimum gate delay of four for the NOR-NOR

PLA structure. Four gate delays are experienced in a "complex" PLA as well as in

a "simple" PLA. This might first suggest that the fastest adder is the extreme

"single" stage model since both the complex and the simple versions have the

same number of gate delays. This is not correct. The "number" of gate delays is

equal but the "delay" in each level is a strong function of fanout. An input line

(variable) is capable of charging one inverter gate above threshold in much less

time than it takes to charge,for example, ten inverter gates above threshold.

84

This analogy applies to the one and two - level carry-look-ahead adders. Recall

that a one-level adder has a total gate delay of eight while the two-level adder

has a total of twelve. The maximum fanout for the one-level sixteen-bit adder

was shown to be fifteen while the maximum fanout for the two-level adder (using

four-bit BCLA units) was three. Therefore, it is possible for the two-level adder

with the higher multiplicative gate delay factor to have a shorter overall add

time. Clearly, the successful CLA - pipelined design requires a balance between

the number of stages, the fanout in each stage, and the overall complexity of the

design.

The first "attempt" at the design originated as a transformation of

Table(6. l) into a pipelined adder. The table suggests five distinct stages. The

first stage realized equations (6. 3) and(6.4) in PLA form. The second PLA realized

equations (6. 9) and (6.10). PLA three implemented equation(6.11). Stage four

developed equation(6.12). Finally, the last stage produced the final result by

realizing equation(6.5). D type flip-flop circuits provided the interstage storage

devices and were controlled by a two-phase non-overlapping clock. The "unused"

variables were simply passed from input latch to output latch in synchronization

with the data flow. [REF. l:chap.7] provides an excellent discussion on system

timing in LSI circuits. Since no particular constraints were placed on the project

other than those induced by the PLA CAD tools, an artificial one was created The

five-stage design was obvious from Table(6.1). The "requirement" for a four-stage

adder was introduced to investigate the interaction between the number of

stages, fanout, delay, and complexity. A re-design reduced the number of stages

from five to four. This reduction was accomplished by recognizing that the

block propagate and the block generate functions(equations 6 9 and 6.10) could

be determined in terms of /\ and B^ and be included in Ihe first PLA without

exceeding the input, output, product term constraints. Complexity decreased but

B5

the fanout in PLA §1 increased. An increase in fanout results in a decrease in

operating speed. The tradeoff between complexity, speed, and fill time was con-

sidered acceptable for an initial VLSI design project. The exact equations and

the input /output variables for each PLA are given in Appendix(E). This appendix

contains the input files to the "PLAGUE" software tool. A (') symbol signifies a

logical NOT, the (&) symbol signifies the logical AND and the (+) symbol is used

for the logical OR. Two final simplifications were made to the design. First,not all

of the variables are utilized in each PLA. The initial design passed these vari-

ables from input latch to output latch in synchronization with the data flow. It

was determined through a comparison between allowable chip size and

estimated PLA. structure size that surface area on the chip was not a critical fac-

tor. As a result the "un-needed" variables in a particular stage were incor-

porated directly into the PLA structure. This was accomplished by defining the

output variable as the input variable in the "PLAGUE" input file. This alleviated

the need for "stray" latches and interconnecting wiring. PLA. CAD tools automati-

cally provided the extra circuitry. The second simplification was the replace-

ment of the D type flip-flop latches by dynamic registers as described in

[REF. I:p8l]. This allowed the variables and their complements to be delivered

to the input plane and the output from the output plane to undergo the neces-

sary inversion. Figure (6.2) shows a block diagram of the VLSI design project.

As described in the following section, the next step in the design process is

to verify that the logic of the design is functionally correct. This is done by emu-

lating the design using the 1L0GS software tool.

C. DESIGN VERIFICATION

ILOGS is an acronym for I nteractive LOG ic S imulator. This program utilizes

models of the operating characteristics of metallic oxide semiconductor large

66

A oa
1 CO

o o o
cot CM

i ODh <
4U o o o j j j o o o 4 j i

<
_i
Q_

CM 5
rO |

CD o- C\J 1— tr rO u

H i o o o f If o o offl
— ~ZL <i TSl

fH » o o { ^ o o o H f C\J

OZ)H < tSl

fff o o o 4 4 \ o o o m
<
_J
CL

»-

SI CM a. (£) oc

rO £ iO £
o

•

Tl f
° o o | jj o o o | | f

— :z < ^
444 o o o ^ f 4 o oo fff r\\ODh <

\ VI

IS*

4^ f
- o f f f o o o H 4

CM

<
Q.

CO =

fit o o o f f i o o o f H
l — 2: < s>

<H« o o < f f o o o fff 1

rvl03H < . <s*

fff o oo Iff o oo fff

<
_1
Q_

rO
|

fcr o»

rO d " "J

o " >-

•

fffo o o f f j o fff
— Z. <

1— 5>

of
o o

o o o

Figure(6.2) Block diagram

87

scale integrated circuits. Random access memories, read only

memories,programmable logic arrays as well as conventional gates including

inverters.AND.NAND.OR, NOR.XOR.etc. can be simulated using the ILOGS pro-

gram. Clock specifications, input/output methods, power, and ground connec-

tions are also provided. The turn-on and turn-off delay times of the individual

gates as well as the access time for the memory devices can also be assigned in

order to more closely realize the real world design. Indigenous to most digital

logic circuits is a large number of identical logic structures. ILOGS contains a

macro "definition" feature so that these identical structures need only be

defined once on a primitive level. Subsequent usage of the structure can be

accomplished by "expanding" the macro definition. New node names are

assigned in the expansion statement. The result is a replication of the initial

definition. From the above discussion, it should be obvious that ILOGS is a very

complex and powerful software tool.

It is conceivable that a small computer could be emulated by the ILOGS pro-

gram. Because of the complexity of ILOGS, it is beyond the scope of this thesis to

provide an m-depth discussion on all of the data structures and terminal com-

mands found in ILOGS. Rather, only the necessary information concerning the

verification of the VLSI project is provided. The ILOGS USER'S MANUAL version

2H [REF.10] should be referred to by first time users of ILOGS.

All of the software tools discussed up to this point are processed on the VAX

11-780 computer under the UNIX operating system. ILOGS is run under the VMS

operating system. NPS possesses two VAX 11-760 computers. One uses the UNIX

operating system and one uses VMS. Fortunately, the VAX computer which util-

izes the VMS operating system is also capable of emulating the UNIX operating

system and the "vi" editor. Therefore, it is not necessary to learn an additional

operating system and editor to use the ILOGS program. Although it is culturally

BB

enriching to become familiar with two different editors and operating systems, it

is recommended for a person who is familiar with neither VAX system to learn

and use the UNIX/"vi"editor on both computers. Appendtx(A) describes the

VAX/UNIX system. By learning one system well,the overall proficiency of the

designer is increased. The necessary information to use UNIX on the VMS VAX

computer is given in the login sequence.

There are two types of information which ILOGS processes. They are data

information and terminal commands. Data information can be subdivided into

three main categories. They are: 1. clock/table data, 2.network data, and 3. out-

put specifications. The clock data is used to define highly repetitive timing infor-

mation as well as constants such as VDD and GRD. The table data provides a

means to generate inputs to the design if needed. Network data is the "heart" of

the digital circuit. This data describes the topology and characteristics of the

circuit to be simulated. Included are basic gates.ROM's RAM's, PLA's, macro

definitions, macro expansions and connections through the use of identical node

names. Two nodes at different points in a circuit arc considered to be connected

if they have the same names. Output specifications designate the nodes that the

user desires to analyze. Simulation of a circuit begins with the creation of a file.

This file contains all the necessary data information to simulate the design. Once

this file is completed, terminal commands are used to perform the desired

operations on the data file. Several of the more frequently used terminal com-

mands are explained later in this chapter.

The translation of Figure (6.2) into a data file is described in the following

discussion. The actual data file for the sixteen-bit adder required 953 lines of

code. Only parts of this data file are included in this thesis since the structure of

the design is highly repetitive. The only difference between stages is the size and

function of the PLA's.The input/output registers are identical in structure but

89

differ in length. A good understanding of the operation of ILOGS can be obtained

by analyzing the three main groups of data information as they appear in the

adder file. Figure(6.3) lists lines (7-25) of the data information file for the

sixteen-bit adder. This section of the file describes the clock operations and

input vectors utilized by the circuit. Comment statements are denoted by a "S"

sign. On any line, all characters to the right of a "S" are considered to be com-

ments and are disregarded by ILOGS. Lines(9 and 10) describe VDD and GROUND.

A clock statement begins with a "name" and is followed by ".CLK
1

' to denote that

the node "name" is a clock and that "time-state" pairs follow. Line(9) is inter-

preted as : a node named VDD is a clock and at time zero VDD is "driven" to a

logic "1" (Dl) and remains high indefinitely. This is simply a method of providing

7 $ define clocks
8 $

9 VDD .CLK Dl
10 GRD .CLK DO
11 PHI1 .CLK Dl 20 DO 50 Dl 70 DO 100 Dl 120 DO 150 Dl 170 DO 200 Dl 220

12 + DO 250 Dl 270 DO 300 Dl 320 DO

13 PHI2 .CLK DO 25 Dl 45 DO 75 Dl 95 DO 125 Dl 145 DO 175 Dl 195 DO 225

14 + Dl 24 5 DO 275 Dl 295 DO 325 Dl 34 5 DO

15 $

16 $ define inputs
17 $

18 .TABLE IA15 IA14 IA13 IA12 IA11 IA10 IA9 IA8 IA7 IA6 IA5 IA4 IA3 IA2 IA1 IA0

19 + IB15 IS14 IB13 1312 IBll 1310 IB9 138 IB7 IB6 IB5 IB4 IB3 132 IB1 IB0 IOl
20 0110101010011100 1110010101100011 1

21 35 1111111000111000 0101110100000100
22 85 1000101000000100 0110101111100000
23 135 0100111111010100 0010101010101010
24 .EOT
25 $

Figure (6.3) Clock and vector information

the necessary power connection to the circuit. Lines(11-14) describe the two-

phase non-overlapping clock. The node named PHI1 is driven to "1" at time zero

and remains at "1" until time 20. At time 20 PHI1 is driven to "0" (DO) and

90

remains there until time 50 etc. etc. PHI2 is described in a similar manner. When

longer repetitive clock sequences are needed, a "repeat" feature is utilized. This

allows the clock to run indefinitely. Input data is shown in lines (18-24). The

".TABLE" on line (IB) and ".EOT" (end of table) on line (24) delineate the extent

of the table. The input variables starting with "IA15" and ending with "KM" (a

"+" indicates a continuation of the previous line) assume the values of the

binary digits listed on line(20) from time to time 35"
, on line(2l) from time

35 to time 85~ etc. For example, at time 135, IA15=0. 1A14=1, IA13=0,...IB1=1,

IB0=0andIC-l = 0,

Figure (6.4) lists lines (27-37). A macro definition is described by lines (28-

33). A macro whose name is PLAT begins on line (28) and has four external nodes

called (IN.PHIl.OUT.OUT-). Lines (29-32) define the circuitry of PLAT. This cir-

cuit uses three NMOS inverter gates denoted by the gate type designator

(.INV/N). The name of the output node of any conventional gate is the name of

27 $

28 .MACRO PLAT IN PHI1 OUT OUT-
29 OUT . INV/N A2
30 A2 .INV/N Al
31 OUT- .INV/N Al
32 Al IN .SWOR PHI1

33 ,E0M PLAT
34 *LAT0 PLAT IAO PHI1 A0 AO-
35 *LAT1 PLAT IA1 PHI1 Al Al-
36 *LAT2 PLAT IA2 PHI1 A2 A2-
37 *LAT3 PLAT IA3 PHI1 A3 A3-

Figure (6.4) Macro definition and expansion

that gate and is always listed first. In this case, (OUT,A2,OUT-) are the three

inverter gates. Inputs to conventional gates are listed after the gate type desig-

nator and are (A2.Al.and Al). Line (32) describes a "switchable-wired-

91

OR"(.SWOR) circuit. ILOGS version 2H does not support MOS "pass" transistors.

Therefore, the NMOS pass transistors in the input /output registers had to be

modeled as a switchable-wired-OR. Both possess nearly the same characteris-

tics. For the NMOS pass transistor a positive voltage above threshold on the gate

effectively shorts the source and drain terminals. Yfhen the voltage on the gate

is below threshold, the short is replaced by a very high impedance. The (.SWOR)

circuit operates in the same manner. In line(32), the node names listed before

(.SWOR) become connected when the enable signal-the node name following

(.SWOR)-becomes "high" and disconnected when the enable signal becomes

"low". In this case, nodes (Al) and (IN) are connected when PHI! is "high" and

disconnected when PH11 is "low". The function of PLAT is to deliver a single vari-

able and it's complement to the input of the PLA. The (.SWOR) allows the charge

to be "trapped" by disconnecting (Al) and (IN). Figure (6.5) shows a schematic

diagram of this macro definition. Lines(34-37) of Figure(6.4) show four macro

,PHI1

IN

Al

•SWOR

OUT

-c

OUT-

—

o

Figure (6.5) Circuit diagram of macro PLAT

expansions of the macro definition named PLAT. Thirty-three macro expansions

of PLAT are needed to realize the dynamic input register that provides inputs to

the first stage PLA. For example. in line (36). *LAT2 assigns a new name to the

92

macro PLAT. It is now known to ILOGS as LAT2 with external

connections(IA2,PHIl,A2,A2-). These newly denned external connections must be

in the same order as (IN.PHIl.OUT.OUT-). The replacement name (IN) now

becomes (IA2). PHI1 remains unchanged, (A2) becomes (OUT), and (A2-) replaces

(OUT-). The replacement names must match the order of specification for the

macro definition. Line (36) of Figure (6. 4) realizes the following circuit shown in

Figure (6.6). A comparison between Figures (6.6) and (6.5) shows the relation

between a macro definition and a macro expansion. This is a valid expansion

even though (A2) appears on both the input and output of the same inverter cir-

cuit in Figure (6.6). ILOGS separates node names used inside a macro definition

from those referenced outside of a macro definition. To realize this single input

circuit, only one line of code was needed instead of four. There are one-hundred

IA1

PHtt

Al

,SWOR

A2

A2-

—

o

Figure (6.6) An expansion of the macro PLAT

thirty-five PLA input circuits needed to realize the four-stage adder. Four-

hundred and five lines of code were saved by using the macro expansion feature

of ILOGS. A similar procedure was used for the PLA output circuitry. A single

macro named "STAGEOUT" was defined. An additional one hundred twenty one

93

expansions of STAGEOUT were utilized. The power of the macro feature in ILOGS

network data is obvious.

Lines (855-872) are shown in Figure (6.7). Line (855) determines the begin-

ning of stage four PLA and ".EOP"(not shown)signifies the end. The input plane

and the output plane both implement the NOR function. This is shown by

(.NOR/N .NOR/N) on line (855). The input variables are listed starting with

"CARRY-1" in line (856). The complement of a variable is denoted by a trailing(-)

variable string from the output variable string. Output variables begin on

line (863) with "SUMO" and end with "SUM 15" followed by a slash.A one-to-one

855 .PLA .NOR/N .NOR/N
856 + CARRY-1 CARRY-1- CARRYO CARRY0-* CARRYl CARRYl- CARRY2 CARRY2-
857 + CARRY 3 CARRY3- CARRY4 CARRY4- CARRY 5 CARRY5- CARRY6 CARRY5-
858 + CARRY7 CARRY7- CARRY8 CARRY8- CARRY9 CARRY9- CARRYl CARRY! 0-

859 + CARRY11 CARRY11- C^RRY12 CARRY12- CARRY13 CARRY13- CARRY14 CARRY14-
860 + PF00 PFOO- PF10 PF10- PF20 PF20- PF30 PF30- PF40 PF40- PF50 PF50-
861 + PF60 PF60- PF70 PF70- PF80 PF80- PF90 PF90- PF100 PF100- PF110 PFllO^

862 + PF120 PF120- PF130 PF130- PF140 PF140- PF15C PF150-/
863 + SUMO SUMl SUM2 SLM3 SIM4 SIM5 SUM6 SLM7 SLM8 SUM9 SLM10 SUMll SUM12
864 + SUM13 SUM14 SUM1S/
865 -KJ1 X X
866 + X
867 -HJ2 .X X
868 + X

869 -KJ3 ..X X
870 + .X

871 -HJ4 ...X X
872 + .X

Figure (6.7) Partial description of stage four PLA

positional linear relationship holds between the location of the input/output

variables in the list and the following array connection terms. An (X) represents

a connection and a (.) represents no connection. Consider lines(865 and 866).

Line(866) is a continuation of line (865). The sixty-four input variables

correspond (one-to-one) with the sixty-four possible connections on line(865).

94

Similarly, the sixteen output variables correspond to the sixteen possible con-

nections on line(856). For example, the first (X) in line(865) corresponds to the

first input variable CARRY— I. The second (X) in the same line(position thirty-

four) corresponds to PFOO .Both of these input variable are related to SUMO

since the (X) connection appears in position one of line(866). In the same

manner, lines(867 and 868) relate the variables CARRY-1 and PFOO to

SUMO. The 1L0GS NOR-NOR PLA realization translates lines(865 through 868) to

the following

:

SUM0=U1 + UZ

SUMO=(CARRY-l) + (PFW) + (CARRY-I) + {PFOO)

The application of DeMorgan's theorem allows SUMO to be written as:

SUM0=(CARRY-1)(PF00) + (CARRY-1){PF 00)

The SUMO variable is inverted by the expansion of the macro STAGEOUT. This

operation produces the NOT of SUMO and is denoted FSO. FSO (final sum 0) then

has the following equation.

FS0=(CARRY-1)(PF00) + (CARRY-1) (PFOO)

This is the required XOR logical function needed to produce the final sum bit

(see equation 6.5). PLA structures and the associated input/output circuitry

provide all of the network data to realize the sixteen-bit adder in 1L0GS readable

code.

95

The (.OUTPUT) specification is a means to observe the operation of the cir-

cuit. Lines (948-953) shown in Figure (6.8) provide a concrete example. Node

names following (.OUT) are the nodes of interest to the designer. States of each

node listed are included in the output table. In this case, the two-phase non-

overlapping clock and the sixteen sum bits are the nodes of interest. Terminal

commands can display or store the output table in various forms.

Although only portions of the sixteen-bit adder file in ILOGS readable code

are shown, enough information has been supplied to understand the transforma-

tion of the adder from block diagram form (Figure 6.2) to design verification

form.

948 $ output the sums

949 $

950 $

951 .OUT PHI1;;PHI2;;FS15;FS14;FS13;FS12;FS11;FS10;FS9;FS8;FS7;FS6;FS5;

952 + FS4;FS3;FS2;FS1;FS0
953 END

Figure (6.8) Output specifications

Many terminal commands exist in ILOGS. Only those necessary to verify the

proper operation of the adder are discussed in this thesis. Once the design file

has been created and is residing on bulk storage(disk), a command to invoke

ILOGS is issued. Under the VMS operating system "RUN ILOGS" accomplishes this

task. The cue "ENTER COMMAND" is returned. Retrieval of the design file from

disk is the next step. "INPUT [FILENAME]" reads the file from the disk. "SIMU-

LATE FROM tl TO t2" invokes ILOGS to simulate the design from time (l) to time

(2). The starting and stopping times should be consistent with the clock

specifications. Simulation time frames can be less than but not greater than the

clock duration. When simulation is completed.the command "(PRINT, TYPE, or

96

STORE) OUTPUT FROM tl TO t2 ON CHANGE" causes ILOGS to print on the

lineprinter, type on the terminal screen, or store on disk the states in tabular

form of all the nodes listed in the (.OUTPUT) specifications each time any node

listed in the output specifications changes state. Many more commands exist

and there are many options, however, the above commands provide the basic

repertoire needed to verify the design. When the simulation is completed and

results recorded, "EXIT' will return control to the VMS operating system.

Figure (6.9) is the ILOGS output that verified the adder design . Note that an

output is not obtained until the fourth time PHI2 is asserted "high". Also, a

different correct sum is displayed for each subsequent assertion of PHI2. The

four resultant sums are derived from the input vectors listed in the TABLE

specifications (lines 18-24).

With the design verified for proper operation, the next step in the VLSI design

procedure is to begin a "bottom-up" layout of the project utilizing the chip lay-

out language (CLL).

D. LAYOUT

Chapter four gives an in-depth description of the CLL CAD tool. The building

block approach.PLA generation.and the chip layout language are utilized in this

section to produce the VLSI design. Each step of the layout is discussed with

reference to the file or program that was written to realize the final chip. For

clarity, all of the files or programs are listed in order of reference in

Appendix(E).

The Stanford University cell library is used exclusively in this design. Four

major "cells" were required that were not in the cell library. As a result, the

missing cells were created and added to the list of useable "puzzle" pieces. The

first step in this design was the creation of the four PLA structures. PLA's one

97

VLSI I

P p F F F F F F F F F F F F F F F F

H H s s S s S S s s S s S S s S S S

I I 1 1 1 1 1 1 9 8 7 6 5 4 3 2 10
1 2 5 4 3

n
C 1

TIME
1 * * * * * * * * * * * * * * • *

20 * * * * * * * * * • * * * * * *

25 1 * * * * * * * * • * * * * * * *

45 * * * * * * * * * * * * * * * *

50 1 * * * * * * * * • * * * * * * *

70 * * * * * * * * * * * * * * * *

75 1 * * * * * * * * * * * * * * * *

95 * * * * * * * • * * * * * * * *

100 1 * * * * * * * * * * * * * * * *

120 * * * * * * * * * * • * * * * *

125 1 * • * * * • • * * * * * * * * *

145 * * * * * * • * * * * * * * * *

150 1 * * * * * * * * * * * * • * * *

170 * * * * • * * * * * * * * * * *

175 1 1 1

195 1 1

200 1 1 1

220 1 1

225 1 1 1 1 1 1 1 1 1 10
245 1 1 1 1 1 1 1 1 10
250 1 1 1 1 1 1 1 1 1 10
270 1 1 1 1 1

1

1 1 1 10
275 1 1 1 1 1 1 1 1 1 1 10
295 1 1 1 1 1 1 1 1 1 10
300 1 1 1 1 1 1 1 1 1 1 10
320 1 1 1 1 1 1 1 1 1 10
325 1 0111101001111110
345 0111101001111110

Figure (6.9) ILOGS design verification

98

through four listed in Appendix(E) describe the input files that were submitted

to the CAD tool "PLAGUE". File "plal"(C!F#950) lists the boolean equations that

realize the P^'s, Q's, BPj's.and BGj's in terms of the ^'s and B^'s. File

"pla2"(CIF#951) forms the BC
t
's. File "pla3" (CIF# 952) develops the Q's and file

"pla4"(CIF#953) produces the 5^'s. There are several options available that can

effect the output of the PLAGEN program. The PLAGUE-PLAGEN tools were ini-

tially used without any options to obtain the size of the individual structures.

Using the sizes of the PLA's and of the selected input /output circuitry, a floor

plan was created
l Figure(6.10),that accommodated the chip size limitations of

6890 X 6300 jam. Standard cells for PLA input /output circuitry were selected

from the Stanford cell library. PlaClockln and Afterburner were used for the

input and PlaClockOut was used for the output. The input and output circuits

have the capability of either being attached to the bottom or top of the

appropriate plane. It is possible to erroneously transpose the input variables

and their complements. The PlaClockln /Afterburner combination accepts a vari-

able from the bottom (arbitrary reference) and, after inversion and buffering,

outputs the variable on the right top and the complement of the variable on the

left top for insertion into the PLA plane. If this cell combination is rotated

180°. (input from the top) then the variables are switched. Care must be exer-

cised when attaching the input circuitry to the PLA. plane. The "-c" option of

PLAGEN automatically complements the connections within the PLA plane. Since

the output plane only has one line per output variable, this does not apply to the

output circuitry. However,PLAGEN automatically provides PlaPullup pairs on

the top of the output PLA plane. If layout constraints require that the output of a

PLA must be taken from the top, then the "-o" option must be used. This option

prevents the occurrence of the PlaPullups on the output plane. PlaPullups

deleted by the "-o" option must be replaced at the opposite end of the output

99

o

o

o

o

o

o

o

o o c

o

o

o

o

p

PLA 1

! N OUT

OUT

P LA 4
1 M

1

OUT

PLA 3

1 N
1

1

!
i 1

|

1

1

ll

—

J I
1 N OUT
PLA 2

1 ~I

A C N B

o o c5 on

Figure (6.10) Floor plan

100

PLA plane for proper operation. The following four commands "were executed to

develop the PLA structure consistent with the floor plan. The results of these

four commands are the addition of four new cells that can be utilized as any

other cells in the cell library.

plague <plal
plague <pla2
plague <pla3
plague <pla4

plagen -c > plal.cif

plagen -o > pla2.cif

plagen -c -o > pla3.cif

plagen -o > pla4.cif

PLA GENERATION COMMANDS

The next step in the design process is to attach the necessary input/output

circuitry and replace any PlaPullups that may have been deleted by the "-o"

option. Program "stage i. ell" in Appendix(E) provides a concrete example of how

this task is accomplished. This program attaches the cells PlaClockln, After-

burner, and PlaClockOut to the PLA structure #1. Lines (2 and 4) of "stage 1. ell"

allow for the cell library and the newly created PLA#1 to be used by this pro-

gram. The portion of the program between the brackets can be translated as fol-

lows. Line(8) "gets" plal and places the lower left corner of its bounding box at

x=0,y=123. Lme(lO) "gets" Afterburner and places the lower left corner of its

bounding box at x=16,y=58. Then line(9) causes this cell to be repeated 33

times in the x direction with only one occurrence in the y direction. Remaining

lines are interpreted in the same manner with different cells and starting

points. If any transformations were listed.they would have been executed before

bounding box placement and repetition took place. Various starting points are

determined by measuring the center coordinates of the input /output lines of

the cells to be attached. The coordinate for the lower left corner of the bounding

101

box can then be determined. When PlaClockln has its lower left corner located at

x=15 y=0 as shown in line(l2) of "stage l.clT.the two output lines abut precisely

to the two input lines of Afterburner provided that Afterburner has its' lower left

corner at x=16,y=58. When the program is executed, another cell is formed. It

consists of the PLA structure with all of the input/output circuitry attached.The

lower left corner of the bounding box has its coordinates at x=0 y=0. Three addi-

tional PLA stages are created in the same manner.

With the four main stages completed, the next step is to layout the input/

output bonding pads.This is accomplished in program "stage5.cll".The number of

bonding pads was determined to be fifty-three. This included thirty-two inputs

for A and B , one input for BC_
X , sixteen outputs for S. two inputs for PHI1 and

PHI2, and two for VDD and GROUND.To alleviate excessive wire run length and

"cross-over" complexities, the input pads were distributed as close as possible

to the input area of stage one. Similarly, the output pads were placed as close as

possible to the output of stage four. The execution of tins program produced a

"cell" of dimension 2500 A by 2700 X. Fifty-three bonding pads are located

around the outer edge with a large void in the middle.

A final program is needed to complete the desLgn. It must combine the five

stages into one then provide the interconnecting wiring. This program is called

"tot. ell". Stage five has the lower left corner of its bounding box located at x=0

y=0. The remaining stages are strategically placed within stage five to allow

enough room for wire runs between stages and bonding pads. The x-y coordi-

nates for stages 1-4 can be seen in lines 11-14 of program "tot. ell". Interconnect-

ing wiring to complete the chip is provided by the "wire" statements in the

remaining lines of "tot. ell". The names of the designers were added in the polysil-

icon level by "including" the program "designer. ell" in "tot. ell". Execution of

"tot. ell" produced a CIF file that contained all of the necessary elementary

102

rectangles on the proper levels to realize the adder. This design was subjected

to two remaining tests before submitting it for fabrication.A design rule check

and a logic simulation are the next steps in the design process.

E. DRC

A "tot.sco" file was created from the "tot.cll" program. The DRC uses this file

to search for design rule violations. The check took several hours to complete. It

returned a file with seven errors. These were quickly found by using a plot of the

chip and the coordinates listed in the error file. Corrections were made to the

wire list and the chip was again submitted to the DRC. The second run was com-

pleted error free.

F. SIMULATION

The circuit extractor provides a means to identify various nodes in the design

by number. Nodes of interest (input pads, output pads.VDD.and GROUND) are

each assigned a label in order for the chip to be simulated. For example, locate

line(32) of file "final.sym" in Appendix'E). The output plot derived from the

extractor has numbers associated with many nodes. In this case,#11301 defines

the input bonding pad that the designer called A13. The "final.sym" file is

created to prescribe this labeling for all nodes of interest. The labels are then

used by the event driven simulator (esim). Chapter four, section D, describes

the mechanics of the event driven simulator.The file "sim.in" in Appendix(E)

prescribes the clock(K), the labeled nodes of interest to "watch" (W),and the

high(h) and low(l) input nodes. As a result of the circuit simulation, the file

"sim.out" was produced. The values for the inputs and outputs are listed for

each cycle. As expected,the first three cycles produced no outpul(OUT=XXX...X)

but on the fourth cycle the correct sum was obtained. Decimal output on

103

line (28) <35294> is the sum of line(l2) CIN=1, line (14) B=23270,and iine(15)

A=12023. These values occured as inputs three cycles earlier in the sequence.

Several simulations were completed using various values for the input vectors.

All cases produced the correct output. Since the design was made entirely from

the cell library or computer generated cells a static check was not needed.

The design passed 1L0GS verifications design rule check, and an event driven

simulation. It was then considered ready for fabrication.

104

VII TESTINn

A. EXPECTATIONS

The design was intended to add two sixteen-bit vectors and a carry-input bit

to produce the sixteen-bit sum of the inputs without a carry-output

bit(overflow). To produce the carry-out bit, it would be necessary to implement

additional block propagate and block generate functions. This cannot be accom-

plished by a minor modification of the existing design because the input and

product term limitations for PLA# 1 are exceeded. The absence of the overflow

bit is not considered to be a significant degradation. Since the adder obtains its

inputs from a analog-to-digital converter, the analog voltage input could be prop-

erly limited and scaled to prevent bit weights that would cause an overflow. The

lack of an overflow or carry- out bit would, however, prevent the combination of

two sixteen-bit adders into one thirty- two-bit adder.

The design was also intended to generate the sums at a very fast rate. It was

discussed in chapters two and six that the fastest clock rate at which the adder

will operate depends on the slowest stage. The slowest stage is that with the larg-

est fanout. PLA# 1 determines the clock rate for this design.Mead and Conway

[REF. l:sections. 1.3, 1.5, 1.13] provide some insight into the very complex topic of

system timing analysis. To perform more than a worst case timing

analysis, re quires an in-depth discussion of device physics and electrical parame-

ters which is beyond the scope of this thesis. An estimate of the operating speed

was obtained by using the guidelines cited in the aforementioned sections of

[REF.l]. Shown in Figure(7.1) is an abstract representation of the "worst" case

conditions for stage one of the adder. A maximum fanout of eighteen exists in

the input PLA plane and a maximum fanout of two exists in the output PLA

plane. When a series of inverters is cascaded as in Figure(7. 1), and a change of

105

input voltage occurs.the charge from "high" nodes is removed through

switched-on pull-down transistors. Additionally, the "low" nodes are charged

01

lr

/,
Nl

N2

3

PlaClockIn

N4

r

3

L_

N6

I

18

After- input
Buhner plane

STAGE 1

I

OUTPUT
PLANE

Figure(7. l) "Worst" case abstraction of Stage one

by the previous pull-up transistors. The amount of Lime for a pull-down transis-

tor to "sink" charge is less than that for a pull-up transistor to supply charge.

106

k-
Zpu

Lpu

W"pu
Zpd £pd

Let the time required for a pull-down transistor to remove charge from a node

equal (t). Then, the time for a pull-up transistor to supply charge to a single

follow-on gate is {kr) where (k) is equal to the ratio:

(7.1)
d

Wpd

Here (Z) is equal to the length(L) to width(W) ratio of the gate region and "pu"

denotes pull-up and "pd" denotes pull-down. When fanout occurs, the time to

sink charge from (/) nodes becomes (/ t) whereas, the time to supply charge

to (f) nodes becomes (kf r). Since it requires more time for a node to be

charged, the worst case occurs when the "Afterburner" cell is tasked with charg-

ing up the inputs to all eighteen inverters. This occurs when a logic "0"(0 volts)

input follows a logic "1"(5 volts) input. Assume a logic "1" has been clocked in on

<p\ and has stabilized all the nodes from node one(Nl) to node six(N6) in Fig-

ure(7.1). The graphical analysis shown in Figure(7.2) assumes that the After-

burner cell is a simple inverter with (k = 8). The total time for the logic "0"

input to stabilize N6 is:

*min = T+kT+T+f 1kr+f 2T (7.2a)

In this case

So

A;=8
; /i=l8 ; f 2=2

t miQ = t+8t+t+144t+2t (7.2b)

Since the Afterburner cell is a superbuffer and lias approximately four times the

current sourcing capability of a standard inverter, the fourth term In

107

II II II
An- ii ||
-\i i . ii

NODE 1 |

\

| |
i j

1

NODE 2 ' 1 / || ||
- 1 \-*S ii II

***- kT-*J I
1 1

NODE 3 | . \

1
1 -^i

T r~ i

NODE 4 1 1 1 s^
| |

1 1 \^1 r _J 1

1 i~m F,KT ! 1

1 II l\ 1

NODE 5 1 \

NODE 6 1
II

' /

I 11

1 II II
L^ TOTAL TIME = T+Kr+T+F,KT + F2r

1 .

Figure(7.2) Graphical timing analysis for the "worst" case.

108

equation(7.2b) can be reduced by a factor of four. This gives:

*min = 48T (7.3)

The value of (r) is approximately equal to six-tenths of a nanosecond. Tau is

obtained from the fabricator's specification sheet received with each set of

chips. The value of t min is equal to the total time for a single clock phase (<pl)

if stray capacitance is ignored. Normally, stray capacitance is at least as great

as the capacitance found in the gate circuitry. Therefore, a conservative

approach is to double {t min). Thus:

t min - 60 nanoseconds (7.4)

Since ^uun is the total time for one clock phase of a two-phase non-overlapping

symmetrical clock scheme, this value must again be doubled. Also, a finite

amount of time must be allotted for the non-overlapping portion of the clock.

This adds approximately another five nanoseconds. Finally:

t min « 125 nanoseconds (7.5a)

and

/re <?max ~ 8 megahertz (7.5b)

Equation(7.5) shows the expected values for the adder when a two-phase non-

overlapping symmetrical clock is used. By using a two-phase non overlapping

asymmetrical clock, freq max can be increased. Phase one (cpl) of the clock

must be long enough to allow PLA# 1 to function properly, but phase two ((f2)

may be shortened considerably since there is only one inverter stage between

the phase two pass transistor and the next phase one pass transistor. Symmetri-

cal clock schemes are much easier to implement then asymmetrical clock

109

schemes. Thus, a speed versus complexity tradeoff in terms of hardware and

synchronization is apparent.

B. PROCEDURES

MOSIS requires that all CIF files be transmitted over the ARPANET. Since the

VAX computer at the Naval Postgraduate School does not yet have this capabil-

ity, the design was taken to Stanford University on magnetic tape and was sub-

mitted for manufacture by the Stanford Electronics Labs(SEL). The completed

chip was returned to SEL approximately eight weeks later. SEL graciously per-

mitted our use of their IC testing equipment to test the chips. This alleviated the

need to design and build a custom made tester which saved an enormous

amount of time.

The tester(a custom made design soon to be available to the public) inter-

faces the chip under test to a computer. A test program must be written in the

"C" programming language for submission to the source program called "MINT".

This test program is very similar to the file used to simulate the chip under

"ES1M". The test program causes prescribed high and low voltages to appear at

program defined input pins at prescribed times. Output pins and the expected

values at the output pins are also prescribed in the test program. The computer

then provides appropriate cues to the user if the expected values do not agree

with the actual values. A plan for testing was created. First a short program was

written to perform a perfunctory test of the chip. This program can be seen in

Figure (7. 3).The "define" statements in lines(l-6) tell the computer which pin

numbers correspond to named nodes. For example, in line(18), the A vector is

equal to all zeros. Line (19) shows the B vector equal to (0111. ..1) and the carry

bit (C) set to one. "CLK" forces the computer to cycle through the steps defined

in line(7). The non-overlapping feature is automatically supplied by the

110

INITIAL TEST PROGRAM

1 #define A 53 51 49 47 45 43 39 37 35 33 31 29 27 23 21 19
2 #define B 54 52 50 48 46 44 42 38 36 34 32 30 28 26 22 20
3 #define C 55
4 #define PHI1 18

5 #define PHI2 17
6 #define S 61 62 63 64 2 3 4 5 6 10 11 12 13 14 15 16
7 #deflne CLKPHIl = i;PHIl = 0;PHI2 = 1;PHI2 = 0;

8 PHI1 = 0; PHI2 = 0;

9 A = 1 1 1 1 1 1 1 1 0;

10 B=1110010101100011;C=1;
1

1

CLK;
12 A = 0;

13 B = 0; C = 0;

14 CLK;
15 A= 1111111111111111;
16 B = 000000000000000 0;C = 0;

1

7

CLK'
18 A=0 00000000000000 0;

19 B = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; C = 1;

20 CLK
21 S ? 1 1 0;

22 A = 1 1 1 1 1 1 1 1 1 1 0;

23 B = 1 1 1 1 1 1 0; C = 0;

24 CLK;
25 S ? 0;

26 A = 1 1 1 1 0;

27 B = 1 1 1 1 1 1 1 1 0; C = 0;

28 CLK;
29 S711 1

I
1 11111111111'

30 A = 1 1 1 1 0;

31 B = 1 1 1 1 1 1 1 1 0; C = 0;

32 CLK
33 S ? 1 0;

34 A = 1 1 1 1 1 1 1 1 1 0;

35 B = 1 1 1 1 1 1 1 0; C = 0;

36 CLK;
37 S ? 1 1 i 1 1 1 1 1 1 0;

38 A=000000000000000 0;

39 B = 0; C = 0;

40 CLK;
41 S ? 1 1 1 1 1 1 1 1 1 1 0;

42 CLK;
43 S ? 1 1 1 1 1 1 1 1 1 1 1 0;

Figure(7.3) Initial Lest program

111

computer. line(21)-(S ? 0101000000000000)- indicates to the computer the

values expected on the output pins whose numbers are defined in line (6). If

these values differ from the actual values, a series of cues are printed out to the

user's terminal. A sample is shown in Figure(7.4). The second step in the test

plan was to write a more complex program that would supply all combinations of

test vectors to the inputs of the chip. The absence of any cues on the user's ter-

minal would indicate a thorough and successful test of the chip. Unfortunately,

the second step never had to be implemented.

ERROR CUES

1 "./chip. test

2 "./chip Lest

3 "./chip. test

4 "./chip. test

5 "./chip. test

6 "./chip. test

7 " /chip. test

8 "./chip. test

9 "./chip. test

', line 4c: pin 14 should be
', line 42: pin 15 shoald be
', line 57: pin 15 should be
', line 57: pin 16 shculd be
', line 62: pin 62 should be 1

'. line 62: pin 64 should be 1

', line 62: pin 2 shouid be 1

', line 62: pin 3 shculd be
', line 62: pin 6 should be

10 "./chip, test"

11 " /chip. test'

12 "./chip, test"

13 "./chip test"

14 "./chip, test"

line 62- pin 10 should be
line 62: pin 15 should be
line 62: pin] 6 should be
line 67: pin 61 shculd be 1

line 70: cm 16 should be

Figure(7.4) Error cues

C. RESULTS

During step one of the test plan, it was discovered that on all eight chips four

of the output pins remained in the "high" state and twelve remained in the "low"

state continuously regardless of the input vectors. This indication, along with the

fact that all eight chips drew approximately two-hundred milliamps over the

112

normal amount of current for a chip of this size, suggested serious problems.

Microscopic inspection of the chip proved this to be the case. A large amount of

the polysilicon "runs" were missing or shifted. The photographs shown in Fig-

ures^. 5 and 7.6) point out just a few of the many fabrication errors that ren-

dered these chips totally useless. Figure(7.5) shows two output pads. Located

between these two pads is a pattern formed of polysilicon. This "poly" pattern

should be directly on top of both of the pads. If it were, the two nearby metal

wire "runs" would connect properly to the pads and the output pads would

operate correctly. It appears that VDD is shorted to GND through this misplaced

"poly" pattern. Figure(7.6) also shows an output pad that is completely missing

the polysilicon layer.

With gross fabrication errors of this nature, these chips had no chance of pro-

ducing any viable results. Since the design has passed the DRC and the simula-

tion, there ls a very good chance that, if properly fabricated, a "good" chip will

result.

113

Figure(7.5) Fabrication errors

114

L**»
%'* i

'/#/9^Stysjy#iV4</s/J'#i'&/'

r*
^-ffiWW^ fefiWiP^P*!**^/*!*/^

,/Wt'4W/'4svw/%Pm$fWit

IIP

Figure(7.6) Fabrication errors

115

VIE. CQMCL1ISIQM

A. SUMMARY

The objective of this thesis was to describe the use of VLSI CAD tools avail-

able at NPS and to provide a non-trivial example of design and implementation

of a VLSI circuit using these tools. The tutorials in Chapters 3 through 5 have

provided the necessary background to familiarize the designer with the available

CAD tools. Suggestions were made to lessen the difficulties and examples were

provided to highlight the proper usage of the tools.

The design and implementation of the actual thesis project (16-Bit Adder)

was covered in Chapter 6. This Chapter provided a thorough example of VLSI

design techniques and CAD tool implementation. The results of testing the fabri-

cated chip was covered in Chapter 7. This Chapter indicated that the project

was unsuccessfully manufactured so that evaluation of the design was impossi-

ble. However, since the submitted design passed all of the NPS VLSI validation

tests (drc.and estm), there is a high probability that the design is sound.

B. RECOMMENDATIONS

The following recommendations should be taken into consideration:

1. Re-submit the CIF file for the adder for fabrication and test the returned

chip for design accuracy. (Note: This has been initiated with fabrication

beginning on October 6, 1983.)

2. Design a multiplier chip to be used in conjunction with the adder for

implementation in a digital filter circuit.

116

3. Initiate a VLSI design course based on the contents of this thesis and

Reference 1 in which students can combine efforts (or work individually) to

generate CIF files of validated design circuits for fabrication and testing.

4. Continue software development in the area of VLSI CAD. Although the

basis of the CAD tools has been established, several programs have not been

investigated. The MIT software provides many such programs with the tim-

ing simulator (ml) taking priority. Additionally the Berkeley software has

been totally ignored (with the exception of (esim) due to the unavailability of

the necessary graphics terminal.

117

APPENDIXA

INTRODUCTION TO THE VAX-1 1/780 AND UNIX

The Very Large Scale Integration (VLSI) Computer Aided Design (CAD) tools

at the Naval Postgraduate School (NPS) have been assembled from a collection

of software developed by various universities, including Stanford and Mas-

sachusetts Institute of Technology (MIT). Since this software was developed and

tested for use on the Digital Equipment Corporation (DEC) VAX-1 1/780 com-

puter, this computer was chosen for the NPS VLSI design implementation. This

system uses the Berkeley UNIX 4.1 operating system.

A THE COMPUTER

The VAX used for VLSI design is operated and maintained by the Computer

Science (CS) Department (located in Spanagel Hall (SP) room SP-500) but has

memory space and computer time allocated for the Electrical Engineering (EE)

Department. The present system contains 2 megabytes of physical memory with

plans to increase this in the near future. The VAX-1 1/780 is a general-purpose

computer lying between minis and maxis in performance. Its power lies in its

usage of an increased virtual memory with a 32-bit address over that of its

predecessor (the PDP-11), hence its name -Virtual Address Extension (VAX). It

has a virtual address space of about 4.3 gigabytes. VAX systems are highly reli-

able. Built-in protection mechanisms in both hardware and software ensure

data integrity and system availability.

In order to be able to use the computer to design a VLSI circuit or system, a

few basic concepts and procedures must be understood. The following sections

provide background for the VLSI designer to work effectively with the computer

system.

118

1. Ob ta.in.ing An Ac count

To obtain an account on this computer, inquire in the CS Office (SP-515).

Once a need has been established, an account and a password will be assigned.

Additionally, the combination for the cipher lock of the terminal room should be

obtained. You are now ready to locate a terminal and familiarize yourself with

the system.

2. Terminal Roam

The public access terminals of the VAX computers are located in room

SP-511. The terminals used for VLSI design face the windows in the north wall

(to the left when entering). There are five ADM36 terminals and one GIG1 termi-

nal available for public use. The G1GI terminal is capable of color graphic

displays as well as black and white coding. The printer for the computer is

located in room SP-500 (the computer room) and can be accessed through the

door in the south wall of SP-51 1.

Use of the terminal room is controlled by the CS Department. The room

is usually open from 0800 to 1630 on normal work days. At all other hours, the

door is locked with a cipher lock.

The following rules apply to the terminal and computer rooms:

* Ensure that the cipher locks are locked during non-working hours.
* Prior to leaving; logout, turn the terminal off and clean up the area.
* After working hours, secure the area by turning of! the printers and lights.

(Provided no other users are using the area.)
* NO SMOKING in the terminal or computer rooms.
* Place excess computer paper neatly in the available boxes for recycling.

3. Login/Logout Procedures

The master ON/OFF switch for the ADM36 terminal is located on the lower,

right, back of the video monitor. (If the GIGI terminal is being used, there are

two ON/OFF switches. The switch for the terminal /keyboard is located on the

back, left of the keyboard and the switch for the monitor is located on the

119

upper, right, front of that unit.)

To login, turn on a terminal. After a short warm-up time and a cursor has

appeared on the display, hit the RETURN key (<CR>). You should see

login:

If this prompt does not appear or if a strange display occurs try one or all of the

following:

* Type logout then hit RETURN.
* Turn the terminal OFF then back ON. Hit RETURN.
* Seek help from one of the technicians.

If the login prompt appears, type in your account code (usually your last name)

and hit RETURN. The screen should now display

login:

password:

Type in your account password (usually your last name) and hit RETURN. In

order to protect your access, this entry is not displayed on the screen. If you

make a mistake, the following will be returned

Login incorrect
login:

After a correct login has been completed, the system will display several lines

of information for the user. The next prompt for the user will be

TERM = (vtlOO)

This is a request for the terminal type that is being used. All terminals in the

terminal room have a vtlOO display format, so simply hit RETURN. (If you are

120

using a terminal from a remote location via the dial-up system, type in the type

of terminal or type in tty then hit RETURN.) At this point, the system displays a

list of the current users and then stops with the system prompt

The percent sign (%) is the UNIX prompt which indicates that the com-

puter is ready for a system command. Some of the more useful commands are

presented in the section Tutorial of UNIX commands.

When you have finished using the computer, sign off by typing

logout < CR>

and the system will display the login prompt again. To secure the terminal, sim-

ply turn off the power switch(es). Then clean up the immediate area.

4. Editing urith "vi"

The most popular text editor for the UNIX system is "vi." To familiarize

yourself with this editor, login then type

vi. tutorial <CR>

The display will give you prompts to complete the self-paced tutorial on the "vi"

editor. This tutorial will take a few hours, but will be worth the time in the long

run. Once you are familiar with this editor, you are ready to learn about the

other system commands.

5. Tutorial of UNIX Commands

After logging into the system, the UNIX prompt (%) indicates that the sys-

tem is ready for a command. In this section, a selection of valid commands will

be presented in order to familiarize you with the computer's responses. (This is

121

not intended to be a complete list of valid commands but is an introduction to

the more commonly used ones. For a more complete tutorial, see Reference 2.)

Prior to trying the commands, a few general comments are necessary. In

issuing any command, if the system "locks up" or if the display appears unusual

in any way, try one (or all) of the following:

* Press the BREAK key then hit RETURN.
* Simultaneously press the CTRL and C keys (<CTRL>C).
* Press the SET-UP key then the (zero) key then hit RETURN.

To correct an input error, press the CTRL and H keys simultaneously (<CTRL>H).

This will cause the cursor to back up over the previous character typed. (The

character may not be erased but has been eliminated from the computer

memory.) To eliminate a complete line from memory, press <CTRL>U. To stop

a job that is in progress, press BREAK or <CTRL>C. It may be necessary to press

RETURN to get the system prompt.

In the following tutorial, user inputs are in italics and must be followed by

a RETURN. System commands are in bold type.

Prior to starting this tutorial, use vi to create the following files:

tempi:
111111
This is the first of two temporary
files to be usedin this tutorial

111111

temp2:
222222
This is the second of tuio temporary
files to be usedin this tutorial

222222

a. Passwd

To change your login password from an old password to a new pass-

word (This is advisable, since your initial password is usually the same as your

login code word.), type

122

passxud

and the system will ask for the old password. If you type in the old password

correctly, the system will request a new password. Finally, since none of the

passwords are displayed on the screen, the system will verify that your entry is

the password that you wanted by prompting you to type it again. The display

should be

passuid
old password:
new password:
Retype new password:

and if the last two responses were identical, your new login password will be

effective.

b. Mail

You can send or receive messages through the computer using the

mail function. To send a letter to another user (or a reminder message to your-

self), type

mail zLSsr-name
(Your message)
<CTRL>D(ar .)

The CTRL and D keys when pressed simultaneously (or a period at the beginning

of a line) will return you to the system prompt and automatically send your

mail.

If mail is received, the computer indicates this fact with a message

of

You have mail.

123

when you login, or a message of

New mail for (your-name) has arrived:

if you are logged on when the mail arrives. To read the mail, type

mail

A list of letters saved will be displayed and can be read using

The p command will print the first message in your mail box. To delete a letter,

use the d command. To reply to a letter, use the r command. When you are

finished using the mail function, you can exit to the system by typing

c. Man

To see the documentation of a UNIX command (to determine its

correct usage), type

man (command)

and that command's description from section 1 of the UNIX Programmer's

Manual will appear on the screen. For example, try

man mail

The manual page for the mail command will appear on the screen Hitting the

SPACE bar (<SP>) advances the output to the next block of lines until the end of

124

the manual is reached. To exit from man prior to reaching the end of the

selected manual page, hit g.

d. More

The best method to display the contents of a file for the sole pur-

pose of reading it is to use the more command. This function produces a display

in the same format as man, but is used for files other than manual pages. Try

typing

more vi. tutorial

If the file "vi.tutorial" is in your directory (it should be if you attempted the vi

tutorial of the previous section), then the first block of lines for that file will

appear on the screen. You will also observe a white block in the lower, left

corner of the display. This indicates the percentage of the file that has been

examined. As with the man command, pressing <SP> will advance the display

and the function can be ended with q.

e. Who

Now try typing

who

You should see a list of the users who are currently logged on to the UNIX sys-

tem. This is a good time to look at one of the system's special functions, the

pipeline function (|). As an example of pipelining, type

who
|
sort

Tne system response is a sorted (alphabetically) version of the list of users. The

pipeline command sends the output of the left argument into the right

125

argument.

If you type

who ami

the system will respond with your login name, terminal and time of login.

f. Tty

To see your terminal designation, type

tty

The computer will respond with your terminal name.

g. Pwd

The pwd command requests the name of your present working direc-

tory. This is the directory in which you are working. Type

pwd

and the computer will respond with

/work/your-name

This is your login directory which is under the directory "work" which is in the

root directory "/." (There is more on directories and their hierarchy in the UNIX

section of this appendix.)

h Cd

To change your present working directory, you must use the cd

command. Try typing

cd /"work

126

You have now moved to the "work" directory which can be verified by typing

ptud

The response of the computer should be

/work

which tells you that you have moved into the "work" directory.

Now type

cd
pwd

The cd command, when used without an argument, sends you to the default

directory which is your login directory.

Another way to change directories is by typing

cd . . (tzuo periods after the cd)

which moves you up one directory in the hierarchy. If this command was typed

while in your login directory, it would move you to the "work" directory. Try it,

then do a cd to get back into your login directory,

i Date

If you wish to see the current time and date, type

date

and the current time and date will be displayed on the screen.

127

J 1*

The Is command causes a list of all files and directories in your

working directory to be displayed on the screen. The general form is

Is

When this command is typed, the files in your present working directory will

appear on the screen in alphabetical order.

Now try typing

Is -I

The -4 is an option that controls the output of the Is command. The general form

of an option is -x where x is the paticular option(s) that you wish to activate. In

this case the 1 option causes a long printout. Note that the display is now a long

version of your working directory's files. This output provides the total number

of 512-character blocks, the permission mode for each file or directory, the

number of links, owner, size in bytes (or characters), and the date and time of

the last modification for each file.

Another use of Is ls for listing files in another directory. Try typing

Is /work

The result is a display of the files and directories in the "work" directory. If you

examine this output, you will see your user name along with all of the other user

names for those who have accounts on the UNIX system.

k. Chmod

A command that may be of some use later is chmod. This allows you

to change the protection permission modes on any file or directory that you

12B

own. The permission modes (as displayed with the Is -4 command) indicate who

can access or modify a given file. These modes can normally only be changed by

the owner of the file. When a file is created (as with vi), the default permission

modes are

-rw~r—r—

which means that the file is a plain file (the first -) and the owner has the per-

mission to "read from" or "write to" the file (rw). Additionally, any users in your

group (as determined by the login type) have permission to "read from" the file

(the second r) and all other users also have the "read only" premission (the

third r).

For example, type

Is -I tempi

and observe the permission modes. Now type

chmod +x tempi

To see the effect, type

Is -I tempi

You will observe that the permission modes have been changed to

-rwxr-xr-x

which gives ail users of the system permission to execute (x) your file. Since

this is not an executable file, change the permission modes back again with

129

chmod -x tempi

To see the effect, type

is -i tempi

Now ensure that the modes have indeed been changed. A complete list of the

chmod options can be obtained from Reference 2 or the UNIX Programmer's

Manual [Ref. 3].

1. Cp

To copy a file from one directory into another or simply to make

another copy of a file in the same directory, use the cp command. As an exam-

ple, type

cp tempi temp
more temp

You will observe that "temp" is an exact replica of tempi.

Now try typing

cp tempi /-work /temp

The computer returns an error message of

cp: cannot create /work/temp

Since you don't own the directory "work" and don't have permission to "write to"

that directory, you can't create the file "temp." If you owned another directory,

this would be the method to copy a file into it. If the name of the file ("temp" in

this case) is omitted from the command, the default would be to keep the same

name in the copy.

130

m. Mv

The mv command is identical to the cp command "with the exception

that it moves (vice copies) the named file into the named destination. Try typ-

ing

mv temp nevj

To see the effects, type

Is

You now have a file labeled "new" and the "temp" file has been eliminated. You

can also move a file into another directory in the same manner as it can be

copied.

n. Rm

To remove a file from a directory, use the rm command. Type

777i new

To see the effect, type

Is

You have now removed the file "new" from your directory. You can only remove

files for which you have "write" permission.

o. Lpr

The lpr command sends a named file to the line printer queue. Try

typing

lpr temp2

131

If you now go into the computer room, the nearest printer should have printed

the file "temp2."

It will probably be necessary to advance the printer so that your

output can be torn off. To do this, put the printer in standby (off line) by press-

ing the ON/OFT1 LINE button. Then, advance the output by pressing the TOP OF

FORM button. Now, put the printer back on line by pressing the ON /OFF LINE

button.

If your file is not printed, make sure that the printer is on line then

type (at your terminal)

clearprinter

This procedure should enable your output. If this does not work, call for help,

p. Cat

The cat function (short for concatenate) successively displays the

contents of one or more files. The resultant output can be directed into another

file or displayed on the terminal. To display the file "tempi," type

cat tempi

and the contents of that file will be displayed on the screen. Note that for long

files, the NO SCROLL key can be used to stop the display from scrolling.

To use the same command to combine two files into a third file, type

cat tempi temp2> temp3

The result of the concatenation has now moved directly into a file "temp3." This

file can now be inspected using

132

cat temp3

The result -will be a screen display of the combination of "tempi" and "temp2."

Note that the directive (>) causes the result of the left argument to be placed

into the right argument,

q. Mkdir

If you have the need to make a directory under your login one, use

the mkdir command. Try typing

mkdir report

To see the effect, type

Is -I

You have now created a directory "report" under your login directory.

r At

To execute a file at a later time (even after you have logged off), use

the at command. As an example of the use of this command, first create an exe-

cutable file (using vi) called "delay."

delay:

echo "The file delay has been executed!"

;

If you now look at the permission modes for this file (using Is -I delay), you will

see that it is not authorized for execution. Therefore, do a mode change

ckmod +x delay

Now, type in the at command with a time 5 or 10 minutes from the present time

using

133

at (time-to-execute) delay

You can now continue with the tutorial and the specified message will print out

on the terminal at the designated time. (echo is a csheil command and will be

covered later.)

s. Pa

The process status command
(ps) is used to provide status infor-

mation for the processes that are currently active. In order to demonstrate this

function, we will start a process "in the background" using the "and" sign (&). A

good process to start is sort since it will last a long time. If you type

sort -r /usr/diet /words -o word.sort 8c

the computer will respond with a process number for this sort. Now type

ps

The display will indicate what processes are in progress and will give the

corresponding process number. To stop the sort routine, continue on to the kill

section. (Note that the sort function is explained further in the UNIX

Programmer's Manual ; however, an understanding of it is not necessary for this

tutorial.)

t. Kill

To stop a process that is in progress "in the background," use the

kill command. In order to stop the word sort initiated in the previous para-

graph, type

kill (process-number)

134

where "process-number" is the number obtained from the previous ps com-

mand. If you now type

ps

the computer output should not include the sort routine,

u. History

The history command is very useful if you wish to repeat a previ-

ously executed command. It is a c-shell command that provides a list of the

commands that were executed since login. Type

history

and note that a number is assigned to each command that was executed. To

execute any of these commands again, simply type

f(number)

where number is the number of the command you wish to execute.

Another way to re-execute a command is

fx

where x is the first letter(s) of the desired command. For example, type

cat temp2

and the "temp2" file will print out. Now type

,'c

135

and the computer will respond with the full command followed with the print out

of "temp2." A note on the method of issuing a command — The computer

searches your previous commands from latest issued to first; therefore, if you

specify a command with only one letter, the last command starting with that

letter is executed.

This concludes the tutorial. Although not all commands were

addressed, you should have enough experience to use the UNIX system for VLSI

design. Try experimenting with various commands to see the result. Experi-

ence and trial-and-error are the most effective ingredients to learning the UNIX

system.

B. THE UNIX OPERATING SYSTEM

The UNIX operating system is a very complex, but flexible, system which gives

the experienced user a powerful tool toward writing successful programs. Now

that you have enough experience to use the computer, a closer look into the

operating system will probably round out your knowledge and help to make your

use of the computer for VLSI design a little easier.

1 . Hierarchy

The UNIX system uses a hierarchical approach to file management. The

"root" directory (/) is the starting point for this arrangement with all other

directories and files stemming from it. Under the "root" directory is the "work"

directory which contains all of the "login" directories for the users of the sys-

tem. It is in this "login" directory that you will start your own hierarchy of files

and directories. Each file (or directory) that you form will stem from your

"login" directory. There is no set format for this hierarchy, so it is left up to the

user to form a structure that will best benefit him.

136

2. Manuals

The manuals for the Unix operating system are located on the tables in

the terminal room (SP-511). Although these manuals are quite extensive, they

are well written and provide all the information that you will need to operate the

system. The manuals are grouped together on one rack and are separated with

heavy dividers. They are labeled UNIX PROGRAMMER'S MANUAL and consist of

the main manual (Volume 1) and three volumes of supporting data (Volumes 2A,

2B, and 2C).

Volume 1 contains all of the valid UNIX commands and is the most com-

monly used. This volume is divided into eight sections:

1. Commands
2. System Calls
3. Subroutines
4. Devices & Special Files
5. File Formats & Conventions
6. Games
7. Macro Packages & Language Conventions
8. Maintenance

Of these eight sections, the first three will be of the most help to the average

user. In these sections are the correct usage of the general system commands

and routines. Although it appears that this volume is too extensive to be of

much use, the Permuted Index starting on page xxiii makes it easy to locate any

command that is of interest.

For example, try to locate the manual page for the mail command. Look-

ing in the Permuted Index under "mail" (note the alphabetical order) you will

see an entry

mail: send and receive mail m.ail(l)

This entry tells you that the mail command is located in Section 1 (i.e., it is a

137

command). Now, if you look in that section of Volume 1, you will find the manual

page for this command.

Volume 2A is the initial supplement to the Programmer's Manual. It pro-

vides information to help the beginner get started using the UNIX system and

the "C" language.

Volume 2B is an extension of 2A covering special features of the operating

system.

Volume 2C is the second extension of 2A. It covers the editing routines as

well as programming in the c-shell.

3. C-Shell

The c-shell is a command language interpreter used by the UNIX system.

It is described fully in Volume 2 (A and C) of the Programmer's Manual, so I

won't spend a lot of time on it. However, if you recall from the section Tutorial

of UNIX Commands under the tutorial on at, you initiated a c-shell command of

echo. This was actually programming using c-shell. Although it may not seem

apparent now, this type of programming can be an invaluable aid to you. For

example, if you have a series of commands that you wish to execute in order

(especially if you need to repeat the series often), you can write a program in c-

shell containing those commands and then you will need to execute that one

program only. As an example, thi? could be a file "combo"

inho > store

sort < store > out
cat out

If this file is executed, the result would be a sorted version of the system users

who are logged on. This is a trivial example but should serve as a introduction to

programming in c-shell.

138

4. Introduction To Programming In"

C

The UNIX operating system was designed to accept programs in a pro-

gramming language called "C". Because of this fact, the data files necessary to

complete a VLSI design use the "C" format. Although it is not necessary for the

designer to be an expert "C" programmer, a basic understanding of this

language "will be helpful.

The general format for a "C" program is:

file.c:

/* 77iis is a basic Cprogram */

marnQ
\

print/("This is test print outO);

I

In the above example, you can see that comments are set off by "/* */." The

declaration "mainQ" indicates that the main function of this program is labeled

"main" and has no arguments. The function definition begins with "[" and ends

with "I". Within the main function is another function "printf" which has as its

argument the sentence within the quotation marks. "Printf" is a system subrou-

tine (section 3 of the UNIX Programmer's Manual) which causes the argument

to be printed on the standard output (the terminal). Each program statement

must end with a semicolon (;).

"C" is a "free-form language that doesn't care what style or format you

use, as long as it is syntactically correct. "[Ref. 4, p. 11] However, indentation

can and should be used to make the program easier to read. Most of the state-

ments are written in lower-case letters with the exception of symbolic names

and constants.

139

To compile the example "C" program, type

cc file.c

The result is an executable file called "file." (cc is the "C" Compiler and is docu-

mented under section 1 of the Programmer's Manual.) To execute this file, type

file

and the specified statement will appear on the screen.

This has been a very brief introduction to "C" but should provide enough

basics for the user to continue with learning VLSI design. If more information is

desired, consult the UNIX Programmer's Manual [Ret. 3] or Reference 4.

140

APPENDIX B

MANUAL PAGES FOR VLSI CAD TOOLS

141

CIF(CADI

)

UNIX Programmer's Manual CIF (CADI

)

NAME
cif — convert a cif file to cifout format

SYNOPSIS
cif file. df[-o file, co] [-qbcdgimnpq] [-y] [-z] [-h]

DESCRIPTION
Cif converts a cif file to cifout format. Cif files, which are the Caltech Inter-

mediate Format, are described in the Mead and Conway text.

The -o option specifies the name of the output file. If not given, the output file

has the same name as the input file and the extension ".co".

The -q option says that the given layer names are not valid. For example, in the

standard nMOS you would use -qbnq since buried contacts and two level metal

and poly are not allowed.

The -y option says that the Y layer is valid and should be replaced by the Z layer.

This allows preprocessors to display the outline of a box with no internal stip-

ples.

The -z option suppresses the printing of warning messages about zero area rec-

tangles.

The -h option causes CIF to list node numbers and lower left corners of all rec-

tangles with nonzero node numbers to the error device.

FILES

SEE ALSO
ciiout(cad5)

BUGS

142

CIFAR(CADl) UNIX Programmer's Manual CIFAR (CADI)

NAHE
cifar — save cif files in archive format suitable for use by cifload

SYNOPSIS
cifar [options] file. lib file. cif

DESCRIPTION
Cifar prepares an archive file of CIF cells suitable for use with cifload. The stan-

dard use is to have the input CIF file split up into archive units each containing
one cell. This is useful for libraries which do not have the external and entry
point records present. Cifar can also be used to archive CLL produced files,

which already contain the information necessary for CIFLOAD.

—a[ar options]

Letters following are options used to control archive program ar. This

switch is required.

-u Specifies that the CIF file given is not to be split up into individual cells,

but that it is to be entered into archive file as a unit. The external and
entry records must already exist in the file if this option is used.

A file to be processed by cifar must have all calls, DS and DF commands as the

Lrst character of the line. The required linkage is specified in comments occur-

ring before the DS. Each comment starts in column 1 of the line. The command
(ext <number>); specifies that the following cell requires the cell named
<number>. There may be several of these before a cell. The command (ent

<number>); specifies that the next subfile contains the cell named <number>.
Since several cells can be contained in a single archive subfile, there may be
more than one.

FILES

atmpXXXXXX, ctmpXXXXXX temporary files

[0-9]«.ctmp temporary files containing CIF cells

/vlsi/lib/local/splitfile splits CIF file into separate files

/vlsi /lib/local /cifar
ar system archiver

SEE ALSO
cif(cadl), cll2(cadl). cifload(cadl), ar(l)

DIAGNOSTICS
Diagnostics may come from cifar, splitfile or ar.

AUTHOR
Wayne H. Wolf, Esq.

BUGS
Places temporary files on your directory. All files on your directory with names
rctmp are deleted.

143

CITLOAD (CADI

)

UNIX Programmer's Manual CIFLOAD (CADI

)

NAME
cifload — concatenates cii files and needed library cells from archive files

SYNOPSIS
cifload [options] ...file. lib file.cif...

DESCBIPnON
Cifload searches libraries for cells needed by CIF files. The input CIF files con-

tain records at their head declaring which library cells they need; each library,

maintained in archive format, contains a set of files with declarations of what
cells they contain Cifload does not guarantee that it will satisfy all externals.

This is done to alleviate the problem of deciding what externals are satisfied by
other CIF files rather than library files. The linked set of cells appear on the

standard output.

Options:

— States that the standard input also contains a CIF file. This file will be

made the last file to appear on the standard output; therefore it should

contain the final cell call and the end statement.

files
/vlsi /lib / loc al / cifload

SEE ALSO
cif(cadl), cll2(cadl). cifar(cadl), ar(l)

DIAGNOSTICS
Complains if there are no CIF files input. May also blow up if there are a large

number of external references in a single file.

ADTHOR
Wayne H. Wolf, Esq.

BUGS
Can handle only a limited number of external references or entry points from a

single file. The seeking of the next archive header is done in a slow manner
because the nature of the archive file is not well documented.

144

CIFOUT(CAD5) UNIX Programmer's Manual CIFOUT(CAD5)

NAME
file. co output of CIF translator

DESCRIPTION
A cifout file is produced by the CIF translation program. The file represents an
integrated circuit as a collection of rectangles with layer information for each
rectangle. The rectangle information is written in a binary format. There is also

some control information embedded within the file. This information is always
at the head of the file and is written in ASCII.

All control lines start with "#" as a key. and all control lines must be collected

at the beginning of the file. The last control line must be #end. The maximum
length of a control line is currently 80 characters. Immediately following the
"#" is a keyword. The keywords are program specific and consequently subject
to future improvements. Currently used keys are:

FILES

for comments
<space>

bounds
minimuirL_x minimum_y delta_x delta_y

file input file name

noprint
tells rplot to not print the comment lines

document
tells rplot to print on 8.5 x 11 inch paper

report
tells rplot to print on 8.5 x 11 inch paper with margin for hole

punch

scale scale to be used in plot, in lambda/ inch

noseale
data is not to be scaled before plotting

Following the control lines, if any, are data lines. There is one data line per rec-

tangle. The records are written in binary form, and are to be accessed only

through standard procedures. The access procedures return floating point

numbers, but the file is currently accurate only to within .5 lambda. The layer is

returned as a character. Current layers are:

C Contacts
D Diffusion

G Glass

I Implant
M Metal
P Poly
Z Unknown The node number is character. If the node number = 99

then the rectangle is at a 45 degree angle (rotated clockwise about the lower left

corner).

/vlsi/lib /local /cifout

/vlsi/stanford/src/cif/cifout-data.h definitions for cifout i/o

/vlsi/stanford/src/cif/cifout-io.h standard i/o routines

/vlsi/stanford/src/cifplot/scale.h scaling package for plotting programs
/vlsi/stanford/src/cifplot/scale-factor.h device-dependent parameters for

145

CIFOUT (CAD5

)

UNIX Programmer' s Manual C1FOUT (
CADS

)

scaling

SEE ALSO
cif(cadl), window(cadl), rrplot(cadl)

146

CLL(CADl) UNIX Programmer's Manual CLL(CADl)

NAME
ell - process ell, cif, and sco files, plotting the output

SYNOPSIS
ell [options] ... file ...

DESCRIPTION
CLl is the VLSI project's CLL language processor. It accepts several types of

arguments:

1) Arguments whose names end with ".ell" are taken to be source files in CLL.

2) Arguments whose names end with ",cif" are taken to be source files in CIF.

3) Arguments whose names end with ".co" are taken to be cifout(V) files.

4) Arguments whose names end with ".sco" are taken to be sorted cifout(V)

files.

5) Arguments that start with "-" are taken to be switches.

The basic operation of ell is to process the cell library externals and the "ell"

files in order, creating a CIF file. This file is then processed together with the

CIF for the cell library and the ".cif" files to create a cifout(V) file. It is possible

to start with a single ".co" file, instead of using ".ell" or ".cif" files. Finally, any

".sco" files are overlaid on top, and the final cifout file is then plotted.

The processing can be modified by the following switches:

—Lx Include cif library libx.cif.

-b Specified area is blocked out (not plotted).

—eft Produce a ".cif" file without a final call or end statement. If ft
is present,

use cif numbers ft, ft+1, etc. Such a file is suitable for reprocessing by

ell.

-C Process all ".ell" and ".cif" files into a single ",cLf" file with the specified

cell libraries and a final call and end. This file will be suitable for fabrica-

tion.

—

d

Plot is formatted to fit in document style (8.5 X 1 1 in.)

—P Plot the output on the Versatec plotter.

-r Plot is formatted in report style (room for binding).

—gxy Plot a grid whose x interval is x lambda and whoso y interval is y lambda
(Default interval is 5 lambda).

-ift Use a scale factor of ft lambdas per inch.

-rd Causes the named layer, I, to be omitted from the plot. The layer, I, can

be one of more of: c, d, g, i, m, p.

Set the minimum x to be plotted as ftl lambda and the maximum to #2
lambda. Either ftl of ftB can be omitted, in which case the actual

minimum or maximum will be used.

Set the minimum y to be plotted as ftl lambda and the maximum to --

lambda. EiUier ftl of ft? can be omitted, in which ca>e the aolu.J

minimum or rua dcnuin v. Hi be used.

sftl.ft*

147

CLL(CADl) UNIX Programmer's Manual CLL(CADl)

Divides your chip into #2 strips and plots the §1 'th strip.

—S# Divides your chip into # strips, and plots all of those strips.

-F Create final version of project. The -F switch sets the -C switch, which will

cause ell to create a complete cif file. A special feature of the -F switch

is that the output file name is "./final. cif" and all optimization is

switched off.

—T Plot the output on your terminal, using tplot. You have to be using a

GIGI terminal.

—X Just do the pre-processing pass creating a ".xcll" file.

—B Use backup cif expander. (This is for testing, don't try it yourself.)

—A Use alternate copy of cll2 language processor. (This is for testing, den't

try it yourself.)

—D Trace operation of ell.

—

Z

Use alternate CIF loader (that is, cat).

FILES

/vlsi/lib/local/libx.cif cif for the cell libraries

/vlsi/tmp/cll?????? temporary
/lib/epp preprocessor
/visi/ lib /local /ell CLL source program
/vlsi/lib/local/cll2 CLL language processor
/vlsi/lib/local/acll2 Alternate CLL language processor
/vlsi/lib/local/cifload CIF linkage editor

/vlsi/lib/local/cif CIF language processor
/vlsi/lib/local/acif Alternate CIF processor
/vlsi/lib/local/rsort sorts cifout files

/vlsi/lib/local/merge merges cifout files

/vlsi/lib/local/window windows cifout files

/vlsi/lib/local/rplot plots on the Versatec
/vlsi/lib/local /tplot plots on GIGI terminals
/vlsi/hb/include include files

/vlsi/stanford/src/cll/pathnames.h actual names of files used

ALSO
Tim Saxe, CLL - A Chip Layout Language.
cif(cadl), window(cadl), tplot(cadl), rplot(cadl), cll2(cadl)

DIAGNOSTICS
The diagnostics from CLL and CIF are supposed to be self-explanatory. However,

syntax error often occurs for odd reasons. The normal solution is to correct all

of the errors that you can easily locate and try again. Note that a plot will not

be generated until the CLL and CIF processors are completely happy.

BUGS
No geometrical or circuit error detection or correction. What you say is what

you get.

148

CONVERT(CADl) UNIX Programmer's Manual CONVERT(CADI

)

NAME
convert — converts a binary file to ASCII

SYNOPSIS
convert < file

DESCRIPTION
Convert takes a binary cifout file from standard input and converts it to a read-

able ASCII format sent to standard output.

FILES

/vlsi /lib /local /convert

SEE ALSO
cifout(cad5), unconvert(cadl)

BUGS

149

DRC(CADl) UNIX Programmer's Manual DRC (CADI)

NAME
drc — design-rule-check a circuit

SYNOPSIS
drc file [shift]

DESCRIPTION
Drc does a design rule check of the input file. The file must be a sorted cifout

file (with a sco extension). This is done with ell. The output goes to file. drc.

Drc will check for Mead & Conway design rule violations with one general excep-
tion. Electrically connected areas will not generate seperation errors, even if

they are on different layers. In other words, drc will not enforce the 1 lambda
separation between poly and diff if they are electrically connected. This means
that a 2 lambda wide diffusion wire can run along a polysilicon wire, which is

dangerous. A mis-alignment, during fabrication, of the polysilicon over the
diffusion will increase the diffusion resistance, which can be bad if the overlap is

very long.

The shift option will simulate a possible fabrication mis-alignment and do a more
conservative check. It does this by expanding the poly layer by 1 lambda and
then removing the expanded layer from the diffusion layer before doing diffusion

minimum width checks. The default check, no shift option, is consistent with
the rule that diffusion only has to extend beyond transistors by 2 lambda, but

the shift option allows a tighter check if you want it.

The output file format consists of a message followed by coordinates of design
rule violations. For example, part of an output file might look like:

poly min width errors:

diff minwidth errors.

10, 20
11. 20

indicating there were no polysilicon minimum width errors, bi.it there were
diffusion minimum width errors. Note that one error can cause several coordi-

nates to come out.

The messages are self explanatory, although there are several quirks. The shift

option causes the most commonly misunderstood error: a "diff minwidth error"

caused by a poly-diff spacing error. This typically occurs at butting contacts.

This happens when an arbitrary one lambda polysilicon shift reduces the

diffusion line width to less than two lambda.

Pullups with "wide" butting contacts can also cause confusing errors. This hap-

pens when the diffusion overlap at the butting contact is wider (more than four

lambda) than really needed for the butting contact. This can produce
transistor-poly surround errors, transistor-implant surround errors, and floating

transistor drain errors. The solution is to only use as much poly-diff overlap as

is necessary for the butting contact. Any extra overlap only adds unwanted
capacitance anyway.

SEE ALSO
cll(cadl),cifout(cad5)

DIAGNOSTICS
If some part of the design rule checker fails, error message? will appear in the

output (.drc) file.

150

DRC(CADl) UNIX Programmer's Manual DRC (CADI)

BUGS
While drc is running it will produce many files of the form file.^xz, where xx is

any two letters. These files are deleted at the completion of the drc, but
uncatchable signals (like kill -9) can stop the drc and leave the files around.

151

ES1M (CADI

)

UNIX Programmer's Manual ESIM (CADI)

NAME
esim — event driven switch level simulator

SYNOPSIS
esim [filel [file2 ...]]

DESCRIPTION
Esim is an event-driven switch level simulator for NMOS transistor circuits.

Esim accepts commands from the user, executing each command before read-

ing the next. Commands come in two flavors: those which manipulate the electr-

ical network, and those to direct the simulation. Commands have the following

simple syntax:

c argl arg2 ... argn <newline>
where 'c' is a single letter specifying the command to be performed and the argi

are arguments to that command. The arguments are separated by spaces (or

tabs) and the command is terminated by a <newline>.

To run esim type
esimfllel file2 ...

Esim will read and execute commands, first from filel, then file2, etc. If one of

the file names is preceded by a '—
', then that file becomes the new output file

(the default output is stdout). For example,
esim f.sim -f .out g.sim

This would cause esim to read commands from f.sim, sending output to the

default output. When f.sim was exhausted, f.out would become the new output

file, and the commands in g.sim executed.

After all the files have been processed, and if the "q" command has not ter-

minated the simulation run, esim will accept further commands from the user,

prompting for each one like so:

sim>
The user can type individual commands or direct esim to another file using the
"@" command:

sim> © patchfile.sim

This command would cause esim to read commands from "patchfile.sim",

returning to interactive input when the file was exhausted.

It is common to have an initial network file prepared by a node extractor with

perhaps a patch file or two prepared by hand. After reading these files into the

simulator, the user would then interactively direct esim. This could be accom-
plished as follows:

esim file. sim patch. 1 patch.2

After reading the files, esim would prompt for the first command. Or we could

have typed:
%esim file.sim
sim> © patch. 1

sim> © patch.2

Network Manipulation Commands

The electrical network to be simulated is made up of enhancement and deple-

tion mode transistors interconnected by nodes. Components can be added to

the network with the following commands:
e gate source drain

e gate source drain length width key xpos ypos area
Adds enhancement mode transistor to network with the specified

gate, source, and drain nodes. The longer form includes size and

152

ESIM (CAD 1

)

UNIX Programmer's Manual ESIM (CAD 1

)

location information as provided by the node extractor — when
making patches the short form is usually used,

dgate source drain
dgate source drain length width key xpos ypos area

Like "e" except for depletion mode devices.

Cnodel node2 cap
Increase the capictance between nodal and nodeS by cap. Esim
ignores this unless either nodel or node2 is GND.

= node namel name2 name3
Allows the user to specify synonyms for a given node. Used by the

node extractor to relate user-provided node names to the node's
internal name (usually just a number).

| comment...
Lines beginning with vertical bar are treated as comments and
ignored — useful for deleting pieces of network in node extractor

output files.

inode
Input record — output by node extractor and not used by esim.

Currently, there is no way to remove components from the network once they
have been added. You must go back the input files and modify them (using the

comment character) to exclude those components you wished removed. "N"

records need not be included for new nodes the user wishes to patch into the

network.

Simulator Commands

The user can specify which nodes»are to have there values displayed after each
simulation step:

w nodel -node2 node3 ...

Watch nodel and node3, stop watching node2. At the end of a

simulation step, each watched node will displayed like so:

node 1=0 node3=X ...

To remove a node from the watched list, preface its name with a
'—

' in a "w" command.
W label nodel node2 ... noden

Watch bit vector. The values of nodes nodel noden will

displayed as a bit vector:

Iabel = 0l0i00 20
where the first is the value of nodel, the first 1 the value of

node2, etc. The number displayed to right is the value of the bit

vector interpreted as a binary number; this is omitted if the vector

contains an X value. There is no way to unwatch a bit vector.

Before each simulation step the user can force nodes to be either high (1) or low

(0) inputs (an input's value cannot be changed by the simulator!):

h nodel node2 ..

Force each node on the argument list to be a high input, overrides

previous input commands if necessary.

1 nodel node2 ...

Like "h" except forces nodes to be a low input.

x nodel node2 ...

Removes nodes from whatever input list they happen to be on. The

next simulation step will determine their correct value in the cir-

cuit. This is the default state of most nodes. Note that this does

not force nodes to have an "X" value — it simply removes them

153

ESIM (CADI

)

UNIX Programmer's Manual ESIM (CADI

)

from the input lists.

The current value of a node can be determined in several ways:
v

View, prints the values of all watched nodes and nodes on the high
and low input lists.

? nodel node2 ...

Prints a synopsis of the named nodes including their current
values and the state of all transistors that affect the value of these
nodes. This is the most common way of wondering through the net-

work in search of what went wrong...

! nodel node2 ...

For each node in the argument list, prints a list of transistors con-
trolled by that node.

"?" and "!" allow the user to go both backwards and forwards through the net-
work in search of that piece causing all the problems.

The simulator is invoked with the following commands:
s

Simulation step. Propogates new values for the inputs through the
network, returns when the network has settled. If things don't set-

tle, command will never terminate — try the "w" and "D" com-
mands to narrow down the problem.

c
Cycle once through the clock, as define by the K command.

I

Initialize. Circuits with state are often hard to initialize because
the initial value of each node is X. To cure this problem, the I com-
mand finds each node whose value is charged-X and changes it to

charged-0, then runs a simulation step. If one iterates the I com-
mand a couple times, this often leads to a stable initialized condi-

tion (indicated when an I command takes events, i.e., the circuit

is stable).

Try it — if circuit does not become stable in 3 or 4 tries, this com-
mand is probably of no use.

Miscellaneous Commands

D
toggle debug switch, useful for debugging simulator and /or cir-

cuit. If debug switch is on, then during simulation step each time a

watched node is encounted in some event, that fact is indicated to

the user along with some event info. If a node keeps appearing in

this prinout, chances are that its value is oscillating. Vice versa, if

your circuit never settles (ie., it oscillates)
,
you can use the "D"

and "w" commands to find the node(s) that are causing the prob-

lem.

> filename
write current state of each node into specified file, useful for make
a break point in your simulation run. Only stores values so isn't

really useful to "dump" a run for later use - see "<" command.
< filename

read from specified file, reinitializing the value of each node as

directed. Note that network must already exist and be identical to

the network used to create the dump file with the ">" command.

154

ESIM (CADI

)

UNIX Programmer's Manual ESIM (CADI

)

These state saving commands are really provided so that compli-
cated initializing sequences need only be simulated once.

L
invokes network processor that finds all subnets corresponding to

simple logic gates and converts them into form that allows faster

simulation. Often it does the right thing, leading to a 25% to 50%
reduction is the time for a single step. [We know of one case where
the transformation was not transparent, so caveat simulee...]

X...

call extension command — provides for user extensions to simula-

tor.

q
exit to system.

Local Extensions

Vnode vector
Define a vector of inputs for the node. The first element is initially

set as the input for node. Set the next element of the vector as the

input after a cycle.

Rn

N

Run the simulator through n cycles. If n is not present make the

run as long as the longest vector. All watch nodes are reported
back as vectors.

Clear all previously defined input vectors.

Knodel vectorl node2 vectors ... nodeN vectorN
Define the clock. Each cycle, nodes 1 through N must run through
their resoective vectors.

SEE ALSO
extr(cadl),sim(cadl)

BUGS

155

EXTRACT(CADl) UNIX Programmer's Manual EXTRACT (CADI

)

NAME
extract - circuit extractor for a C1F file

SYNOPSIS
extract file

DESCRIPTION
Extract is the first of a sequence of programs for setting up your design for

functional simulation. The first step is to begin with a .cif file. This normally
means executing the following ell command:

cll-C file, ell

Then execute extract and wait up to 2 hours!

extract file

The next step is to plot the extracted circuit using node-plot. The last step is to

create a file which assigns names to important nodes; this will include vdd and
gnd, and probably phil and phi2. For example,

file .sym
178 vdd
84 gnd
17 phil

414 phi2
15 sO

13 si

11 s2

9 oO
7 ol

5 o2
end of sample

Then create the simulation file (.sim) using sim. The extracted circuit is now
ready for a static test with stat to determine ratio errors and power-ground
shorts and an actual simulation with esim.

FILES

/vlsi /lib/local /extr /extract
/vlsi /lib /local /extr/toced
/vlsi/lib /local /extr /expand
/vlsi/lib /local /extr /bsort
/vlsi/lib/iocal/extr/bbound

SEE ALSO
node-plot(cadl), sim(cadl)

BUGS
Generates several def files which are not normally needed by the user.

156

MERGE (CAD 1

)

UNIX Programmer' s Manual MERGE (CAD 1

)

NAME
merge — merge two or more cifout files

SYNOPSS
merge < file 1 file2file3 ... [-o outfile]

DESCRIPTION
Merge does a merge of sorted cifout files or sorted and unsorted cifout files. The
input must be binary data and the output is binary data to the standard output.
If the -o option is used, the output is sent to the stated file. This file cannot have
the same name as any of the input files.

JTLES

/vlsi/lib/local/merge

SEE ALSO
cifout(cad5), rsort(cadl)

BUGS

157

NODE-PLOT (CADI

)

UNTX Programmer's Manual NODE-PLOT (CADI

)

NAME
node-plot — generate plot of extracted circuit

SYNOPSIS
node-plot file

DESCRIPTION
Node-plot generates a plot of an extracted circuit. The plot is automatically bro-

ken into strips of 240 lambda width and has the node numbers that are associ-

ated with the various node locations. The first part of the file name is used for

the input. For example, to plot an extracted circuit which has a rec file labeled
test.rec, enter node-plot test and the terminal will indicate the necessary
response for the plot.

FILES

/vlsi/lib/local/extr /node-plot

/vlsi/lib/local/extr/bbound

SEE ALSO
extract(cadl)

BOGS
The scale factor cannot be adjusted by the user. The stipple pattern is different

from the one used by the ell plot routine.

158

PLAGEN (CADI

)

UNIX Programmer's Manual PLAGEN (CADI

)

NAME
plagen — layout a PLA in CIF from an input-output specification

SYNOPSS
plagen [options] input pla.cif

DESCRIPTION
Plagen is a program that converts an input-output specification for a PLA into a

CIF representation of the PLA. The CIF representation uses the XEROX cell

library, and thus has a high probability of working. Since many people require

different inputs and outputs, plagen only generates the AND-OR plane with asso-

ciated pullups.

The options for plagen are:

—o Do not include pullups on the OR plane. This allows you to take outputs
from the top of the OR plane.

—g§ Set frequency of grounds to §. The default is one ground per 32 product
terms.

-i The inputs are interleaved.

—c The inputs are complemented.

To use plagen you must first create an input file that specifies the inputs and
outputs of the PLA. The format of the input file is:

#_Df_inputs, #_Df_terms, #_of_outputs, symbol_#, lambda
xxxxx yyy
xxxxx yyy

xxxxx yyy
where #_of_inputs is the number of inputs to the PLA

#_of_±erms is the number of terms in the PLA

#_of_outputs is the number of outputs that the PLA has (If zero only the AND
plane will be generated)

symbol_# is the number that the CIF symbol will have. This is how different PLA
cells can be distinguished. You must be careful when you select the symbol
number. For instance, the XEROX library consumes CIF numbers 1 to 99 and
other special cells developed at Stanford use the numbers 100 to B99. Since CLL
generates CIF symbols with numbers 1000 and greater, I suggest that you use

CIF symbol numbers in the range 900 to 999.

lambda should be the current value of lambda in micrometers.

The actual programming information is encoded in #_of_terms lines of input.

Each term of the PLA has #_of_inputs characters that represent the input con-

nection information (the x's), a single space, and #_of_Dutputs characters that

represent the connections to the outputs. For the inputs connections, there are

three possibilities:

1) this term does not depend on this input: use a
"-"

2) this term is only true if the input is true: "1"

3) this term is only true if the input is false: "0"

159

PLAGEN (CADI

)

UNIX Programmer's Manual PLAGEN (CADI

)

For the outputs there are only two possibilities:

1) this output is affected by this term: "-"

2) this output is not affected by this term: "0"

For example, suppose we wish to create a 4 input, 3 output, 3 term PLA with
defining equations:

zl = A'BC + BC
z2 = A'BC + ABCD
z3 = ABCD + BC

If we choose symbol number 901 and lambda of 2.5, then the input file is:

4.3,3,901,2.5

010- -0
-11- -0-

1111 0-

The output of plagen is a CIF file, and a line of information about the PLA cell.

PLagen sends to the terminal a line that is an external definition of the PLA. for

use with CLL. Of course, you may need to alter the name of the CLL symbol that

corresponds to the PLA cell.

FILES
/vlsi/lib/local/plagen

SEE ALSO
cll(cadl),plague (cadi)

BUGS
Not much error checking on the input format.

160

PLAGUE (CADI

)

UNIX Programmer's Manual PLAGUE (CADI

)

NAME
plague - PLA g(enerator) u(sing) e(quations)

SYNOPSIS
plague <input

|

plagen >pla.cif

DESCRIPTION
This is a program for producing a file suitable for the program "plagen" from
logic equations. The file fed to it should first contain a C1F number for the whole
symbol written "CIF# x;" (defaults to 900 if left out), then a list of input pins of

the form "in<puts>: al a2 ...;" where "puts" is optional, a list of output pins
"out<puts>: oi o2. ..;", and a series of equations of the form "outpin =

inpinl&inpin2'&x + etc';". The pin names can be any combinations of letters,

digits, ., and _ but must start with a letter. Logical inversion is expressed by a
'

after the pin name. The logical AND operator is '&', and the logical OR ' + '. The
equations are assumed to be in sum of products form. The order of the names
in the input and output lists determines where they are on the PLA.
Spaces, tabs, and newlines are ignored in the equations, and they and the lists

are terminated by semicolons.

The program does no minimization, but does ignore duplicate product terms.
The output for the plagen program comes out on the standard output. A
schematic version showing the pin names is put into pla.schem.

Example
Here is what the original input looks like:

CIF# 950;

outputs: SI S2 S3 a4' inc;

in: random input signal RESET' s3 s2 si;

inc = random&input;
a4' = s3 + signal + random&input;
S3 = s2«sl + RESET; SI = signal + sl'&s2'&s3'; S2 = random&s3' + si;

Note that RESET' was used in true and inverted form.

This is what goes to plagen:

7,8.5,950,2.5

11 000-—1- 000-0
-1 00-0

11 00-00
—0— 00-00—000 -0000
1—0- 0-000

1 0-000

Here is pla.schem:

C1F number 950
AND plane
1 1- random
1 input
—

1

signal—0— RESET'

161

PLAGUE (CADI) UNIX Programmer's Manual PLAGUE (CADI

)

-1—00- s3
--1-0-- s2
—1-0-1 si '

OR plane
00-00-00 SI
000000- S2
000-000 S3
—00000 a4'

-0000000 inc

A "1" in the AND plane means that this term is true only if the input is true, a "0"

that this term is true only if the input is false, and a "-"
is a don't care. In the

OR plane, a "-" means the output is affected by this term, and a "0" that it is

unaffected.

FILES
/vlsi /lib /local/plague

SEE ALSO
plagen(cadl)

BUGS
Limited to 40 input, 40 output and 150 product terms. Pin names are limited tc

14 characters.

162

RPLOT (CADI

)

UNIX Programmer's Manual RPLOT (CADI

)

NAME
rplot — converts a scaled, sorted cifout file to raster format and plots it

SYNOPSIS
rplot [options]... file...

DESCRIPTION
Rplot takes rectangles as input and creates a raster file output. Input is on
standard input and output is to the Versatec plotter. The data must be sorted

by x-coordinate.

The processing can be modified by the following switches:

-b Produce a banner at the beginning of the plot.

—d Scale the output for 8.5 X 1 1 inch paper (document form).

—gx.y Plot a grid whose x interval is x lambda and whose y interval is y lambda.

-i# Use a scale factor of § lambdas per inch.

-nZ Cause the named layer, I, to be omitted from the plot. The layer can be

one or more of: c. d, g. i, m, p.

-r Produce a report document plot with room for binding.

—

s

Send output to standard output.

Set the minimum x to be plotted as §1 lambda and the maximum as §2
lambda.

Set the minimum y to be plotted as §1 lambda and the maximum as §2
lambda.

If no indications of the area to plot are given, rplot will scale the plot to best fit

the Versatec width (11 inches).

FILES
Ai si /lib /local /rplot

SEE ALSO
cifout(cad5), window(cadl), rsort(cadl)

BUGS
Rplot does not use the standard queue for the Versatec, therefore, the plotter

must be free prior to initiating a plot. "Plotter busy" messages are generally

received if the plotter is off-line or busy.

163

RSORT (CAD 1

)

UNIX Programmer' s Manual RSORT (CAD 1

)

NAME
rsort — sort cifout files

SYNOPSIS
rsort [inffle] [-ooutfile] [-x] [-y] [4]

DESCRIPTION
Rsort is a filter that sorts a cifout file. Stdin and stdout are the default input
and output files. If the infile file name is specified, then the input is obtained
from that file. The -o option indicates that the following argument is the name
to be used for the output file.

The -x, -y and -I options specify which field of the data to sort on: the X coordi-

nates, Y coordinates, or layer. The values are sorted into increasing order
(minimum value first). The default is to sort by X coordinate which is needed by
the rplot program. Only one option can be specified. Generally, the -y and -1

options are used to completely sort a file to compare it to another file. The sort

algorithm used is stable. Hence, two files that only differ because of line order-

ing will be identical after a full sort by layer, then Y, and then X coordinates. An
example would be:

rsort test. sco -1
|
rsort -y |

rsort -o test.sco.

FILES

/vlsi/lib/local/rsort

SEE ALSO
cifout(cad5), rplot(cadl), wmdow(cadl)

BUGS

164

SIM (CADI

)

UNIX Programmer's Manual SIM (CADI

)

NAME
sim - create a sim file for simulation with STAT, ESIM, or TSIM

SYNOPSIS
sim. file

DESCRIPTION
^itti produces a simulation file (.sim) to be used in circuit simulation with the
static checker (stat) or the event driven switch level simulator (esim). The
input file name must have sym, .-node, and cap files associated with it. The .sym
file must have vdd and gnd nodes defined as a minimum. For example, to gen-
erate a .sim. file for an extracted circuit with files of test.sym, test.node, and
test. cap, first define the vdd and gnd nodes (as a minimum) in test.sym and then
enter sim test. The result will be test.sim.

FILES

/visi/lib/local/extr/sim

/vlsi/lib/local/extr/gatel

SEE ALSO
extract(cadl), stat(cadl), esim(cadl)

BUGS

165

STAT (CADi

)

UNIX Programmer' s Manual STAT (CADI

)

NAME
stat - the static checker

SYNOPSIS
stat file. sim [number][>file.stat]

DESCRIPTION
Stat performs a static (dc) analysis of file.sim produced by extract followed by
sim. Number is the assumed number of threshold drops on the input pads. It is

an optional input parameter with a default of 0.

Stat attempts to understand how transistors and nodes are used in the circuit.

It summarizes this understanding in its output files. Two outputs are generated
by stat. The standard error output (normally to the terminal) contains mainly
counts of various items (node types, transistor types, etc.). The standard out-
put (also to the terminal unless re-directed with >file.stat) contains detailed
information about each potential error.

STDERR SUMMARY
(1) A report of the number of nodes and transistors in the circuit.

This takes the form:

#nodes, #enhancement, ^depletion, ^intrinsic, ^duplicates

Intrinsic transistors can be ignored since the current process does not
build them. A duplicate transistor is a single logical transistor laid out
physically as two or more transistors in parallel.

(2) Transistor classifications:

[de] gate source drain
(d=depletion, e- enhancement)

dAAvdd simple pullup

d A B vdd part of a superbufier
d A B C ion-implant transistor

eABC typical transistor

e gnd A gnd lightning arrestor

e A B gnd pulldown
e A B vdd unknown pullup

(3) Input node count.
Any node N which contains a transistor of the form:

e gnd N gnd where length=2, width>=40

is considered to be an input node.

(4) Bootstrap structure count.

The following is an example of a bootstrap structure:

dABB bootstrap capacitor

(5) Threshold drops on nodes.

Starting with the given input threshold drops (with vdd=0 and
gnd- unknown), the information is propagated through transistors whose
gate and source threshold drops are known, and drain unknown. Drain

166

STAT(CADI

)

UNIX Programmer's Manual STAT (CADI

)

node threshold drops are then calculated according to one of the follow-

ing formulas:

depletion: drain=max(gate-3, source)
enhancement: drain=max(gate+l, source)

(6) Pullup node count.

Pullup nodes are classified into simple pullups, unknown pullups, and
multiply pulled-up depending on the type of transistor(s) connected to

the particular node in question. In the following structures:

d A B vdd unknown depletion pullup transistor

e AB vdd unknown enhancement pullup transistor

node B is marked as an unknown pullup node until a function has been
found for it (such as part of a superbuffer). Unknown pullups are not
necessary errors.

(7) Output node count.

Any node N which contains a transistor of the forms:

e B N vdd where length=2 or 3, width>=280 large pullup

or

e AN gnd where length=2 or 3, width>=280 large pulldown

is considered to be an output up or down node.

(8) Pulldown transistor count.

A pulldown transistor is one that connects a strictly pulled-down node A
to another node B. If node B is not pulled-up, then it is also strictly

pulled-down, and can be used in finding other pulldown transistors.

(9) Pass transistor count.

(10) Logic gate count.

Where possible, logic gates are derived from transistor structures. Logic

gates are: inverters, nors, and complicated gates (nand, xor, etc.).

(11) Superbufier count.

(12) Ratio check and count.

All nodes that are simply pulled-up and connect to transistor gates are

checked for the proper pu/pd ratio. Pulldown transistors with non-zero

threshold drops on their gates are taken into account by making their

lengths longer. Ratios that are < 4 or >= 5 are reported. The program
cannot handle nodes with multiple simple pullups. When such a node is

encountered, the message: Program error in ratio is displayed.

(13) Transistor error count.

Unknown depletion pullup transistors whose function cannot be deter-

mined are reported as:

unknown pullup transistors.

Enhancement transistors whose gate is vdd or gnd, whose source is vdd
and drain gnd (or vice versa), whose source and drain are the same, or

167

STAT (CADI

)

UNIX Programmer's Manual STAT (CADI

)

whose gate is the same as its source or drain are reported as:

strange transistors.

Depletion pulldown transistors are reported as:

depletion mode pulldowns.

(14) Node propagation error count.

Four bits are associated with each node: 0, 1, I, 0.

Gnd has the bit set.

Vdd has the 1 bit set.

All inputs have the I bit set.

All outputs have the bit set.

The program propagates these bits through the circuit. In the end,

nodes that do not have one or more of these bits set are counted and
reported.

STDOUT MESSAGES
Most messages describe either a node or a transistor.

The standard format for a node message is:

message: node (xpos.ypos)

The standard format for a transistor message is:

message: [de] gate source drain (xpos,ypos)

In the case of a pu/pd ratio message, the format is slightly more complicated:

r n (x,y) <id x ww> : \<g [,
. ;.?] dl x dw> vn\ +

The message says: pu/pd ratio r is calculated for node n at position (x,y). Node
n is pulled up with a pullup transistor of length ul and width of utu. Node n is

pulled down to node 771 via a transistor whose gate is g, whose length is dl and
width is du>, and g has one of 5 possible threshold drops [,.;:?] on Lt - 0ne or

more, ${+, pulldown transistors can exist in the pulldown path, the last of which
must have m-gnd (obviously).

The various threshold drops are denoted by:

symbol drop effective pd resistance

1. .
0.0 xl.O

2. . 0.5 xl.5

3. ; 1.0 x2.0

4. : 1.5 x2.5

5. ? unknown x infinity

Threshold drop changes the effective resistance of a pulldown transistor used in

ratio calculation.

FILTC

/vlsi/lib/lccal/extr/slat

16B

STAT (CADI

)

UNIX Programmer's Manual STAT (CADI

)

SEE ALSO
extract(cadl),sim(cadl)

BOGS
Only if you don't believe what the program tells you.

It is recommended that vdd, grid, phil, and phi2be defined in the file. sim. before
subjecting it to abuse by stat.

169

TPLOT(CADl) UNIX Programmer's Manual TPLOT(CADl)

NAME
tplot — plots a cifout file on a GIGI terminal

SYNOPSIS
tplot [options]... file...

DESCRIPTION
Tplot is a program that can be run from a GIGI terminal. It will produce a color
plot of a cifout file. The layers plotted and their respective colors and dot pat-

terns are
metal blue
diffusion green
polysilicon red
implant yellow
contact magenta
glass/DRC error white _ _ _
unknown cyan ????????

The processing can be modified by the following switches:

-i# Use a scale factor of # lambdas per inch.

-nJ Causes the named layer, I, to be omitted from the plot. The layer can be
one or more of : c, d, g. i, m, p.

Divides the chip into §2 strips and plots the §1 'th strip.

Sets the minimum x to be plotted as §1 lambda and the maximum as §2
lambda.

Sets the minimum y to be plotted as §1 lambda and the maximum as §2
lambda.

If no indications of area to plot are given, tplot will scale the plot to best fit the

terminal screen.

After the plot is complete, the terminal will go into the "position mode." In this

mode, the terminal "arrow" keys can be used to move the graphics cursor to any
desired position on the screen. If the SHIFT key is held down in conjunction with
an "arrow" key, the cursor will move ten units at a time. Once the cursor has
been moved to the desired position, a 'p' will came the terminal to display the

cursor position in lambdas. A 'q' will erase the screen and terminate the pro-

gram.

FILES

/vlsi/lib/local/tplot

SEE ALSO
cifout(cad5)

BUGS

170

UNCONVERT (CADI

)

UNIX Programmer' s Manual UNCONVERT (CAD 1

)

NAME
unconvert — converts an ASCII cifout file to binary form

SYNOPSIS
unconvert < file

DESCRIPTION
Uncorwert takes an ASCII cifout file from standard input and converts it to a

binary format sent to standard output.

FILES

/vlsi/lib/local/unconvert

SEE ALSO
cifout(cad5). convert(cadl)

BUGS

171

WINDOW (CADI

)

UND(Programmer's Manual WINDOW (CADI

)

NAME
window window a cifout file

SYNOPSIS
window [-x#l.#2] [-y#l.#2] [-1#] [-sn.m] [-nl]

DESCRIPTION
Window is a filter that converts a cifout file to raster coordinates preparatory to

conversion to raster format. Window can convert any selected portion of the IC

and also scale the resulting plot. The processing can be modified by the follow-

ing switches:

set the minimum x to be plotted as § 1, max x as §2 (in lambdas, either

#1 or #2 can be omitted)

set minimum y as §1, maximum y as #2 (either §1 or #2 can be omitted)

4# sets scale factor to # lambdas per inch

-sn.m plots strip n of m strips. This allows convenient plotting of IC's that are

too large to fit onto a page. Note that n ranges from 1 to m. Strip 1 is

the first strip (lower left corner), strip 2 the second, etc.

-nZ causes the named layer, I, to be omitted from the plot. The layer, I, may
be one or more of c.dLg.i.m.p or z.

-b Blockout. Causes the min to max x (and y) to be blocked out rather than
plotted. Creates a box on the Z layer to show where the block was.

Automatically sets the -u option. Note, the output file may be unsorted
even if the input file was sorted.

-u Unsealed. Causes the output coordinates to be unsealed to raster coor-

dinates. This allows a file to be windowed more than once without the

coordinates getting scaled to fit the Varian every time.

-d Causes the object to be windowed to the size of a normal page for docu-
mentation (suppresses printing of comments). Will make the 10.5 inch

dimension in either the x direction or the y direction to get the biggest

possible plot.

-r Causes the object to be windowed to the size of a bound page so that it

may be bound (also suppresses printing of comments).

-gx.y Allows you to specify a grid to be displayed on the plot. This inserts

appropriate instructions into the cifout file to cause rplot to plot grid

lines at a spacing of x lambda in the x direction and y lambda in the y
direction. If x or y are omitted a default value of 5 lambda is used. If no
arguments are specified, window will use the bounding box for min/max
x/y and scale the plot to best fit the paper. The user can specify any
subset of parameters that he wishes, and window will use the given infor-

mation in conjunction with the information in the cilout file to determine
the desired operation. For example, the command
window -x.53

would use the bounding box information to determine xmin, ymin and

ymax, but xmax would be set to 53 lambda.

FILES

/vlsi /lib /local /window

172

WINDOW (CADI

)

UNIX Programmer's Manual WINDOW (CADI

)

SEE ALSO
cifout(cad5), rsort(cadl), rplot(cadl)

BUGS
Not too much error checking for ridiculous arguments or duplicate arguments.

173

contact

diffusion

glass

implant

metal

poly

1
o

FIGURE 1 - CLL/RPLOT STIPPLE PATTERN

174

Q

contact

diffusion

glass

implant

metal

poly

FIGURE 2 - NODE-PLOT STIPPLE PATTERN

175

APPENDIX C

SUMMARY OF CLL COMMANDS 1

COMMENTS

enclosed in /• */
; commands do NOT nest.

SYMBOL DEFINITION

name [(cif# bounds llx.lly xlenylen)]

EXTERNAL

external name (cif# bounds llx.lly xlenylen)

LAYER

layer;

(metal, blue, red, diffusion, diff, green,

contact, cut, black, implant, yellow, glass,

metal2, poly2)

RECTANGLE

rect llx.lly xlenylen [layer];

or

r llx.lly xlen.ylen [layer];

VIA

via llx.lly [layer]

(poly or diffusion)

WIRE

Excerpt from Reference 5.

176

wire [layer] x,y uxirelist;

or

w [layer] x,y ujirelist;

(wurelist consists of one or more of:

u #, d #, r #, 1 #, w #, x #, y #, #,#, toyer;

CALL

name(llx,lly transformations)

;

ITERATE

iterate nx.ny [xpitch,ypitch]

name (llx.lly transformations)

;

TRANSFORMATIONS

flip ud, flip lr, flip rl

rotate 0, rotate 3, rotate 6, rotate 9, rotate 12

FUNCTIONS

dxfname) ay(name) pvfidXh.(§rna.) prmt(expr)

177

DEFINES

INCLUDES

^define symbol-name real^value

^include "file-name
"

CONDITIONAL

#ifdef x

jjfendif

or

#ifndef x

#endif

CLL RESERVED WORDS

black blue bounds butt

cif contact cut d

default difl diffusion dx

dy external flip glass

green implant iterate 1

lr metal metal2 poly

poly2 print pwidth r

rect red rl rotate

u ud via w

wire X y yellow

STANDARD FILE STRUCTURE

17B

jfifndef MYNAME

tfdefine MYNAME

^include " /vlsi/lib /local /susxt. ell

"

^include "a"

^include "b
"

external narne(cif# bounds llx.lly xlen.ylen)

^define x 1

#define y (a-y+3)

tfdefine z 7.5

symb ol-nname ()

I

1

ftendif

179

APPENDIXD

DESIGN FABRICATION

The following sections provide an overview of the procedure for using the

DARPA Net to deliver a CIF file to MOSIS (Chapter 2 of this thesis) for fabrication.

A. INTRODUCTION TO THE DARPA NET

The DARPA Net is the computer link between the designer and MOSIS, where

the CIF file is verified and forwarded for fabrication Access to this net is con-

trolled and will not be covered by this Appendix; however, once access has been

obtained, the following material will be a guide to the user.

At present, the NPS VAX computer is not capable of linking to the DARPA Net.

Until this connection is available, the user must use a remote terminal with

modem capability. The phone numbers for the Net link are:

646-3150 (300 BAUD)
646-3158 (1200 BAUD)

Both are full duplex operation. After a link has been made, the DARPA Net can

be established by pressing the terminal's CONTROL and Q keys simultaneously

(<CTRL>Q). The terminal responds when the net has been opened and waits for

the user to open a host computer tie.

Although there are several host computers capable of accessing the DARPA

Net, the two most frequently used at NPS are ECLB and IS1E. To open the con-

nection with ECLB, the user should type

@o 23<CR>

where <CR> is RETURN. To open the connection with 1SIE, type

100

@o 1/52<CR>

In either case, the net responds to the open connection with information about

the net and then issues the system prompt

@

1. T.ngin n.ngr>iit

The command to log onto the net is

login itser^name password<CR>

The computer responds with information about the account and then issues the

system prompt again. The system now accepts valid commands.

Since the DARPA Net is a shared net, the response of the computer is gen-

erally slow. Be patient and don't attempt to confuse the computer with several

commands while it is attempting to execute one. If at any time it appears that

the link has been lost or the system is "locked-up," simply terminate the modem

connection. The net closes the connection after a set amount of "idle time."

To properly log off of the link, type

logout<CR>

The system responds with a message confirming that it is closing the connec-

tion.

2. HRl p

To obtain a list of valid commands, type

?<CR>

1B1

The net also has a HELP function which provides information and usage for par-

ticular commands. To find out what commands are supported by HELP, type

help ?<CR>

The command

help name

gives information about the system command, name. The two commands that

will be used most by the VLSI designer are MSG and SNDMSG.

3. MSG

The manual for MSG can be obtained with the command

help msg

(This is a long file and should be printed for user reference.) MSG will be used to

read and send mail (messages or letters) within the DAEPA Net and especially to

M0S1S.

To determine if there is any mail that has not been examined, type

msg

The computer responds by indicating if any mail is stored and will give the mes-

sage number and origin. It will terminate with the MSG prompt of

To read a message, type

t number

1B2

where number is the message number (or range of numbers). For example, t 52

causes message 52 to be displayed, while t 52-60 causes messages 52 through 60

to be displayed consecutively.

To send a message while in the MSG function, type

The computer responds with

To (? for help):

The address of the the user to receive the message should now be entered. For

example,

MOSIS@@USC-ISIF

Note that two "@" keys must be typed, while the terminal will type three of

them. After a RETURN, the system responds with

cc (?for help):

This is a request for the address of a user who is to get a copy of the message. It

is recommended that the designer put his address to get a copy of the transmit-

ted message. After entering this address, the computer responds with

Subject:

The user then enters the subject of the message. The next input requested by

the computer is

Message (? for help):

1B3

The text of the message can now be typed. While entering the message text,

various editor commands are available. The commands are listed in the SNDMSG

manual but the most commonly used ones are:

<CTRL>D Retype text
<CTRL>H Delete last character
<CTRL>U Delete present line

<CTRL>Z End of message text
<CTRL>N Abort this message

After the message has been entered and the user has indicated that the

end of the text has been reached (with <CTRL>Z), The computer will ask if the

message should be sent (S) or placed in memory (Q). If the user responds with

the message will be sent after the addresses have been confirmed.

Any additional information on the DARPA Net should be obtained from the

HELP function.

B. MOSIS

MOSIS is the link between the designer and the fabrication facilities. It pro-

vides information on the current schedule for the technologies that are being

fabricated and also information concerning updates to these technologies

(nM03, CMOS, etc.). Although the MOSIS USER'S MANUAL [Ret 8] provides a

complete list of procedures for the fabrication process, this Appendix highlights

the major points.

1. Dhtainin g Infnrmatinn

Since MOSIS has an automatic message processing system, all correspon-

dence to it must be in standard format and identified with valid subject and

184

request lines. The format of the text for messages to MOSIS is:

REQUEST: Type-of-Request
Parameter line

REQUEST: END

The allowed entries for the REQUEST and Parameter lines are given in the User's

Manual. To obtain this manual (along with other basic information), the follow-

ing message should be sent:

TO: M0S1S@@USC-ISIF
CC: User-Address
SUBJECT: INFORMATION REQUEST

REQUEST: INFORMATION
TOPIC
TOPIC
TOPIC

USER-MANUAL
GENERAL
TOPICS

REQUEST: END

The GENERAL topic provides information on how to obtain authorization to use

MOSIS and the TOPICS topic gives information on other topics relating to the

MOSIS service.

The turn-around time for a request to MOSIS is generally less than one

hour during working hours. Once these basic information sources have been

received, the user will be able to request information on other areas (library,

schedule, etc.).

2. RpqnirpH \Tp<g9aap<g

Once authorization has been obtained to use the MOSIS service, the

designer needs to initiate several messages in order to get a chip fabricated. All

of these messages are documented in the MOSIS USER'S MANUAL. However,

the messages that are absolutely required are requests for NEW PROJECT,

185

FABRICATE, and REPORT.

The NEW-PROJECT request has the form:

REQUEST: NEW-PROJECT
D-NAME:
AFFILIATION:
ACCOUNT:
D-PASSWORD:
NET-ADDRESS:
MAILING-ADDRESS:
P-NAME:
P-PASSWORD:
DESCRIPTION:
TECHNOLOGY:
LAMBDA:
MIN-LAMBDA:
MAX-LAMBDA:
PADS:

REQUEST: END

name of designer)
Navy)
MOSIS account number)*
designer's password)
designer's net address)
designer's mailing address)
project's name)
project's password)
short description of project)

elMOS, cMOS, etc.)

requested lambda)
min accepted)
max accepted)
number of pads)

* Assigned by MOSIS after authorization has been granted.

MOSIS replies to this message with an approval (or disapproval) message which

gives a project number.

The FABRICATE message can be used both to submit a CIF file and request

that it be fabricated. It has the form:

REQUEST: FABRICATE
ID:

P-PASSWORD:
SIZE:

CIF:

REQUEST: END

(project # assigned by MOSIS)
(project password)
(length X width of project in microns)

(insert final. cif here)

This is the minimum requirement for the message. Other information can be

added if the designer feels that it is necessary. For example, the lambda used

to calculate SIZE may be included. Additionally, if a check-sum was performed

on the CIF file (See the following section), it should be included in this message.

MOSIS responds to this message with a "valid CIF" (or "not valid CIF") message.

1B6

If the "not valid CIF" message is received, the designer must retransmit his

FABRICATE message.

The REPORT message should be sent after the chip has been received and

tested. This provides feedback to MOSIS for their analysis of the fabrication of

different technologies. It has the form:

REQUEST: REPORT
ID: (project number)
P-PASSWORD: (project password)
REPORT: (report of performance of

fabricated project)

REQUEST: END

3. Cksmn

MOSIS provides the software for performing a "check-sum" on a CIF file

which is used to validate that file. Check-sum gives an output which is a unique

count of the input CIF file that can be used to verify correct transmission of the

file over a data link. This software has been installed on the VAX and should be

used by the designer. If the command

cksNim final. cif

is issued, the computer responds with

CIF-CHECKSUM= numberl
BYTE-COUNT= number2

The check-sum can be included in the FABRICATE request, while the byte-count

is for the designer's information only. Upon receipt of the CIF file, MOSIS com-

putes a checksum and reports its value in the "valid CIF" message. The designer

should verify that this check-sum is identical to numberl.

1B7

APPENDIX E

FILES AND PROGRAMS FOR THESIS PROJECT

IBB

plal

CIF# 950;

in: A0 BO Al Bl A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8 B8 A9 B9 A10 BIO Al 1;

in: Bll A12 B12 A13 B13 A14 B14 A15 B15 CIN;
out: G140 G130 G120 G110 G100 G90 G80 G70 G60 G50 G40 G30 G20 G10 GOO P150;

out: P140 P130 P120 Pi 10 P100 P90 P80 P70 P60 P50 P40 P30 P20 P10 POO G21;

out: Gil G01 P21 Pll P01 COUT;
G140=A14&B14;
G130=A13&B13
G120=A12&B12
G110=A11&B11
G100=A10&B10
G90 =A9&B9
G80 =A8&B8
G70 =A7&B7
G60 =A6&B6
G50 =A5&B5
G40 =A4&B4
G30 =A3&B3
G20 =A2&B2
G10 =Al&Bl
GOO =AO&BO
P150=A15'&B15+A15&B15'
P140=A14'&B14+A14&B14'
P130=A13'*B13+A13&B13 ,

P120=A12 ,&B12^A12&B12•
PllOsAll'&Bll+All&Bll'
P100=A10'&B10+A10&B10'
P90 =A9'&B9+A9&B9'
P80 =A8'&B8+A8&B8 P

P70 =A7'&B7+A7&B7'
P60 =A6'&B8+A6&B6'
P50 =A5'&B5+A5&B5'
P40 =A4'&B4+A4&B4'
P30 =A3'&B3+A3&B3'
P20 =A2'&B2+A2&B2'
P10 =A1*&B1+A1&B1'
POO =AO'&BO-rAO&BO'

PLA1 EQUATIONS CONTINUED ON NEXT PAGE

1B9

GaisAll&Bll+AlO&BlO&All'&Bll+AlO&BlO^ll&Bll'Mg&Bg&AlO'&BlO&All&Bll'
+A9&B9&A10&B10'&A1 1&B1 l'+A9&B9&A10'&B10&Al l'&Bl 1+A9&B9&A10&B10'
&All'&Bll+A8«S£B8&A9'&B9&A10'&B10«kAll&Bll'+A8&B8&A9'&B9&:A10&B10'
&All&Bll'+A8&B8&A9 ,

&:B9&A10 ,&B10&Air&Bll+A8&BB&:A9'&B9&:A10&B10'
&A11 ,&B11+A8&B8&A9&:B9 , &A10'&B10&A11&B11 , +A8&B8&A9&:B9'&:A10&:B10

,

&All&Bll'+A8(kB8 lkA9&B9 ,&A10 ,&B10&All , &:Bll+A8&B8&:A9&B9'&A10&B10'
&A11'&B11;

Gll=A7&B7+A6&B6&A7'&B7+A6&B6a£A7&B7•+A5&B5&A6•&:B6&A7&:B7'+A5&B5&A6&B6•
&A7&B7'+A5&B5&A6 ,

&B6&A7'&B7+A5&B5&A6&B6'«ScA7 , &B7+A4&:B4&A5 , &B5&A6'
&B6&A7&B7'+A4&B4&A5•&B5&A6&B6 ,&A7&B7>A4&B4&A5'&B5&A6 ,&B6&A7 ,

&B7+A4&B4&A5 , &B5&A6&B6'&A7'&B7+A4&B4&A5&B5 ,&A6 , &B6&A7&:B7*+A4
&B4&A5&B5 ' &A6&B6' &A7&B7 ' +A4&B4&A5&B5 '&A6 '&B6&A7' &B7-rA4&B4&A5&B5

'

&A6&B6'&A7'&B7;
GO^AS&BS+AS&BS&Aa'&BS+AS&Ba&Aa&BS'+Al&Bl&AS'.SiBS&AS&BS'+Al&Bl&Ae&BS'
&A3&B3'+Al&Bl&A2 , &B2<S£A3'&B3+Al&Bl&A2&B2 , &A3 ,&B3+A0&B0&Ai•&Bl&A2•
&B2&A3&B3'+A0&:B0&A1'&B1&A2&B2'&A3&B3'+A0&B0&A1'&B1&A2'&B2&A3'&B3+
A0&B0&A1'&B1&A2&B2'&A3'&B3+A0&B0&A1&B1'&A2'&B2&A3&B3 , +A0&B0&A1
&Bl'&A2&B2'&A3&:B3 , +AO&BO&Al lScBl'&A2

,&B2&A3 , &B3+AO&:BO&Al&Bl'&A2
&B2'&A3 ,

&B3;
P21=A8• lkB8&A9•&:B9&Ai0&B10'8cAll&Bll'+A8&B8'&A9 , &B9&A10&B10'&All&Bll , +A8 ,

&B8&A9&B9'&A10&B10 ,&A11&B11'+A8&BB'&A9&B9 , &A10&B10'&A11&B11
, +

Aa'&BS&Ag'&Bg&AlO'&BlO&All&Bll'+AB&Be'&Ag'&Bg&AlO'&BlO&All&Bir
+A8•&B8&A9&B9 ,

IS£A10•&:B10&A11&B11*+A8&B8•&A9&B9&A10•&B10&A11&:B11•
+A8 ,&B8&A9 , &B9&A10&Bl0 ,

a£All'&Bll+A8&B8'&A9'&B9&A10&B10
, &All'&

Bll+AB'&Be&Ag&Bg'&AlO&BlO'&All'&Bll+AB&BB'&Ag&rBg'&AlO&BlO'&All'
&Bll+A8'&B8&A9'&B9&Al0

, &Bl0&Air&Bll+A8&B8 , &A9'&B9&A10 ,&Bl0&Ail'
&B11+A8 , &B8&A9&B9 ,&A10 , &B10&A11'&B11+A8&B8'&A9&B9'&A10'&B10&A11'
&B11;

P11=A4'&:B4&A5
,&:B5&A6&B6'&A7&B7'+A4&B4'&A5 , &B5&A6&B6'&A7&B7'+A4

, &B4&A5&
B5'&A6&B6'&A7&B7'+A4&:B4'&A5&:B5'&A6&B6 ,&A7&B7'+A4 , &B4&A5'&B5&A6'
&B6&A7&B7 , +A4&B4'&A5'&B5&A6 ,.kB6&A7&B7'+A4'^B4&A5&:B5'&A6

,&B6&A7
&B7 ,

-tA4&B4'&A5&B5'&A6 , &:B6&A7&B7'+A4'&B4&A5'&B5&:A6&B6'&A7
,

«ScB7 +

A4&B4 , &A5 , &B5&A6&B6 , &A7 , &B7+A4 , &B4&A5&B5'&A6&B6'&A7'&:B7^A4&B4'
&A5&B5'&A6&B6'&A7 , &B7+A4 , &B4&A5 ,&B5&A6'&B6&A7'&B7+A4&B4 , &A5 , &B5
&A6'&B6&A7'&B7+A4'&B4&A5&B5 ,&A6 ,&B6&A7 , &B7+A4&B4'&A5&B5'&A6'&
B6&A7'&B7;

P01=AO'&BO&A1'&B1&A2&:B2 , &A3&B3 , +AO&BO , &A1'&B1&A2&B2 , &A3&B3 , +AO'&BO&A1&
Bl'&A2&B2'&A3&B3'+A0&B0 ,

&:Al&Bl'&A2&:B2 , &A3&B3>A0•&B0a^Al'&Bl&A2•
<kB2&A3&B3'+A0&B0'&Al , &Bl&A2 ,«kB2&A3&B3'+A0 , &B0&Al&:Bl

, &A2 , &B2&A3
&B3'*A0&BO'ScAl&:Bl'&A2'&B2&A3&B3 , +AO , &B0&Al , &Bl&A2&B2 , &A3'&B3 +

A0&B0'&A1
, &B1&A23^B2'&A3 , &B3+A0 ,

&:B0&A1&B1 , &A2&:B2'&A3'&:B3+A0&:B0
,

&Al&Bl'&A2&B2 , &A3'&B3+AO'&B0&Ar&Bl&A2 , &B2&A3 , &B3+AO&B0 , &Al'&
Bl&A2'&B2&A3'&B3+A0 , &B0&Al&:Bl'&A2 , &B2&A3'&:B3+A0 1kB0

, &Al&Br&A2'
&B2&A3"&B3;

COUT=CIN;

190

pla2

CIF#951;
in: G140 G130 G120 GliO GlOO G90 G80 G70 G60 G50 G40 G30 G20 GlO GOO;
in: P150 P140 P130 P120 PI 10 P100 P90 PBO P70 P60 P50 P40 P30 P20 P10;
in: POO G21 Gil G01 P21 Pll P01 CIN;
out: 0P15 0P14 0P13 0P12 OPll OP10 0P9 OPB 0P7 0P6 0P5 0P4 0P3 0P2 0P1;
out: OPO 0G14 0G13 0G12 0G11 OG10 0G9 0G8 0G7 0G6 0G5 0G4 0G3 0G2 0G1;
out: OGO Cll C7 C3 COUT;
C3=G01+CIN&P01;
C7=Gll+G01&Pll+CIN&P01&Pll;
Cll=G21+Gll&P21+G01&Pll&P21+CIN&P01&Pll&P21;
OG0=G00;
OG1=G10
OG2=G20
OG3=G30
OG4=G40
OG5=G50
OG6=G60
OG7=G70
OG8=G80
OG9=G90
OG10=G100
OG11=G110
OG12=G120
OG13=G130
OG14=G140
OP0=P00
OP1=P10
OP2=P20
OP3=P30
OP4=P40
OP5=P50
OP6=P60
OP7=P70
OP8=P80
OP9=P90
OP10=P100
OP11=P110
OP12=P120
OP13=P130
OP14=P140
OP15=P150
COUT=CIN;

191

pla3

CIF# 952;

in: P15P14P13P12P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 PI PO;

in: G14 G13 G12 Gil GIO G9 G8 G7 G6 G5 G4 G3 G2 Gl GO Cll C7 C3 CIN;
out: COUT OCO OC1 OC2 OC3 0C4 OC5 OC6 0C7 OC8 OC9 OC10 OC1 1 OC12 OC13;
out: 0C14 OPO OP1 OP2 OP3 0P4 OP5 OP6 0P7 OPB 0P9 OP 10 OP 11 OP 12;

out: OP13 0P14 OP15;
COUT=CIN;
OC0=G0+CIN&P0;
OC1=G1+GO&P1+CIN&PO&P1;
OC2=G2+Gl&P2+G0&Pl&P2+CIN&P0&Pl&P2;
OC3=C3;
0C4=G4+C3&P4;
OC5=G5+G4&P5+C3&P4&P5;
OC6=G6+G5&P6+G4&P5&P6+C3&P4&P5&P6;
0C7=C7;
0C8=G8+C7&P8;
0C9=G9+G8&P9+C7&P8&P9;
OC10=G10+G9&P10+G8&P9&P10+C7&P8&P9&P10;
0C11=C11;
0C12=G12+C11&P12;
0C13=G13+G12&P13+C11&P12&P13;
0C14=G14+G13&P14+G12&P13&P14+C11&P12&P13&P14;
OP0=P0;
0P1=P1;
OP2=P2;
OP3=P3;
0P4=P4;
OP5=P5;
OP6=P6;
0P7=P7;
OP8=P8;
OP9=P9;
OP10=P10;
0P11=P11;
0P12=P12;
0P13=P13;
0P14=P14;
0P15=P15;

192

pla4

CIF# 953;

in: P15 P14 P13 P12 Pll P10 P09 P08 P07 P06 P05 P04 P03 P02 POl POO;
in: C14 C13 C12 Cll CIO C09 C08 C07 C06 C05 C04 C03 C02 COl COO CIN;
out: SO SI S2 S3 S4 S5 S6 S7 SB S9 SIO Sll S12 S13 S14 S15;

SOsCIN'&POO+CIN&POO';
Sl=COO'&P01+COO&P01';
S2=C01 '&P02+C01&P02 1

S3=C02•&:P03+C02&P03 ,

S4=C03'&P04+C03&P04'
S5=C04'&P05+C04&P05'
S6=C05'&P06+C05&P06"
S7=C06'&P07+C06&P07'
S8=C07'&P08+C07&P08'
S9=C08'&P09+C0B&P09'
S10=C09'&P10+C09&P10'
SllsClO'&Pll+ClO&Pll'
S12=C1 1'&P12+C1 1&P12'
S13=C12'&P13+C12&P13'
S14=C13 , &P14+C13&P14'
S15=C14'&P15+C14&P15'

193

stage 1. ell

1 /* include cell library V
2 # include "/vlsi/lib/local/s_ext.cll"

3 /* define plal cif file*/

4 external plal (cif 950 bounds -15,0 868,1151)
5 /'place plal V
6 stage 1()

7
I

8 plal(0,123);

9 iterate 33,1

10 Afterburner(l6,58);
11 iterate 33,1

12 PlaClockIn(15.0);
13 iterate 19,1

14 PlaClockOut (556,70);

15
I

194

stage2.cll

/•include cell library */

include "/vlsi/lib/local/s_ext.cU"
/• define pla2 cif file */

external pla2(cif 951 bounds -15,0 924,352)
/* place pla 2V
stage2()

I

pla2(0,15);

iterate 18,1

PlaPullup (638.4 rotate 9);

iterate 38,1

Afterburner (10,361 rotate 6);

iterate 38,1

PlaClockln (l 1,426 rotate 6);

iterate 1B.1

PlaClockOut (638,359 rotate 6);

I

195

stage3.cll

/* include cell library V
§ include "/vlsi/lib/local/s_ext.cll"
/ define pla3 cif file V
external pla3(cif 952 bounds -15,0 852,464)
/place pla3 */

stage3()

\

pla3(0.123);
iterate 35,1

Afterburner(16,58);
iterate 35,1

PlaClockln (15,0);

iterate 16,1

PlaClockOut (590,579 rotate 6);

iterate 16,1

PlaPullup (590.112 rotate 9);

I

196

stage4.cll

/* include cell library */

include "/vlsi/lib/local/s_£xt.cll"

/•define pla4 cif file */

external pla4(cif 953 bounds --15,0 676,264)
/* place pla4 */

stage4()

I

pla4(0, 117 rotate 6);

iterate 32,

1

Afterburner(l54,58);
iterate 32,1

PlaClockIn(153,0);

iterate 8,1

PlaClock0ut(8,377 rotate 6);

iterate 8,1

PlaPullup (8,110 rotate 9);

I

197

stage 5. ell

/* this stage will develope the input-output pads */

/* and will be combined with stages 1 thru 4 V
/• include cell library •/

include "/vlsi/lib/local/s_ext.cH"

/• place input/output pads /
stage5()

/* lower edge pads */

iterate 14.1 150,0

Nln8 (225,0);

/•left edge pads V
iterate 1,14 0,150

Nln8 (0,225 rotate 3);

/* top edge pads */

iterate 7.1 150,0

NIn8 (225,2568 rotate 6);

iterate 7,1 150.0

NOut8 (1275.2555 rotate 6);

/* right edge pads */

iterate 1.9 0.150

NOutS (2355.975 rotate 9);

NVdd (2420,825 rotate 9);

NGnd (2394,675 rotate 9);

I

190

tot. ell

1 /*include cell library*/
2 # include "/vlsi/lib/local/s_£xt.cll"
3 # include "stagel.cll"
4 # include "stage2.cll"

5 § include "stage3.clT
6 # include "stage4.cll"

7 # include "stage5.cll"

8 # include "designer. ell"

9 main()
10 |

11 stage 1(340,920);
12 stage2(882,240);
13 stage3(1270,1160);
14 stage4(1454,2000);
15 stage5(0,0);

16 /*plal out topla2 in •/

17 wire poly 899,990 y 985 metal w 3 y 730 diff y 720;

18 wire poly 907,990 y 985 metal w 3 y 730 din* y 724 x 915 y 720;
19 wire poly 915,990 y 985 metal w 3 y 730 x 931 diff y 720;

20 wire poly 923,990 y 985 metal w 3 y 737 x 947 y 730 diff y 720
21 wire poly 931,990 y 985 metal w 3 y 744 x 963 y 730 diff y 720
22 wire poly 939,990 y 985 metal w 3 y 751 x 979 y 730 diff y 720
23 wire poly 947,990 y 985 metal w 3 y 758 x 995 y 730 diff y 720
24 wire poly 955,990 y 985 metal w 3 y 765 x 101 1 y 730 diff y 720
25 wire poly 963,990 y 985 metal w 3 y 772 x 1027 y 730 diff y 720
26 wire poly 971,990 y 985 metal w 3 y 779 x 1043 y 730 diff y 720
27 wire poly 979,990 y 985 metal w 3 y 786 x 1059 y 730 diff y 720
28 wire poly 987,990 y 985 metal w 3 y 793 x 1075 y 730 diff y 720
29 wire poly 995,990 y 985 metal w 3 y 800 x 1091 y 730 diff y 720
30 wire poly 1003,990 y 985 metal w 3 y 807 x 1 107 v 730 diff y 720
31 wire poly 1011,990 y 985 metal w 3 y 814 x 1123 y 730 diff y 720
32 wire poly 1019,990 y 985 metal w 3 y 821 x 1139 y 730 diff y 720
33 wire poly 1027,990 y 985 metal w 3 y 828 x 1 155 y 730 diff y 720
34 wire poly 1035,990 y 985 metal w 3 y 835 x 1171 y 730 diff y 720
35 wire poly 1043,990 y 985 metal w 3 y 842 x 1 187 y 730 diff y 720
36 wire poly 1051,990 y 985 metal w 3 y 849 x 1203 y 730 diff y 720
37 wire poly 1059.990 y 985 metal w 3 y 356 x 1219 y 730 diff y 720
38 wire poly 1067,990 y 985 metal w 3 y 863 x 1235 y 730 diff y 720
39 wire poly 1075,990 y 985 metal w 3 y 870 x 1251 y 730 diff y 720
40 wire poly 1083,990 y 985 metal w 3 y 877 x 1267 y 730 diff y 720
41 wire poly 1091,990 y 985 metal w 3 y 884 x 1283 y 730 diff y 720
42 wire poly 1099,990 y 985 metal w 3 y 891 x 1299 y 730 diff y 720
43 wire poly 1107,990 y 985 metal w 3 y 898 x 1315 y 730 diff y 720
44 wire poly 1115,990 y 985 metal w 3 y 905 x 1331 y 730 diff y 720
45 wire poly 1123,990 y 985 metal w 3 y 912 x 1347 y 730 diff y 720
46 wire poly 1131,990 y 985 metal w 3 y 919 x 1363 y 730 diff y 720
47 wire poly 1139.990 y 985 metal w 3 y 926 x 1379 y 730 diff y 720
48 wire poly 1147.990 y 985 metal w 3 y 933 x 1395 y 730 diff v 720
4 9 wire poly 1155,990 y 985 metal w 3 y 940 x M y 730 diff y 720
50 wire poly 1163,990 y 985 metal w 3 y 947 x 1427 y 730 diff y 720
51 wire poly 1171,990 y 985 metal w 3 y 954 x 144G y 730 diff y 720
52 wire poly 1179,990 y 985 metal w 3 y 961 x 1459 y 730 diff y 720

109

53 wire poly 1187,990 y 985 metal w 3 y 968 x 1475 y 730 diff y 720;
54 wire poly 1195,990 y 985 metal w 3 y 975 x 1491 y 730 diff y 720;
55 /* pla2 out to pla3 in V
56 wire poly 1797,652 y 657 metal w 3 y 1120 x 1839 y 1155 diff y 1160
57 wire poly 1789.652 y 657 metal w 3 y 1126x 1823 y 1 155 diff y 1160
58 wire poly 1781,652 y 657 metal w 3 y 1132 x 1807 y 1 155 diff y 1160
59 wire poly 1773,652 y 657 metal w 3 y 1 138 x 1 79 1 y 1 155 diff y 1 160
60 wire poly 1765,652 y 657 metal w 3 y 1144x 1775 y 1 155 diff y 1160
61 wire poly 1757,652 y 657 metal w 3 y 1150 x 1759 y 1155 diff y 1160
62 wire poly 1749,652 y 657 metal w 3 y 1150x 1743 y 1 155 diff y 1160
63 wire poly 1741,652 y 657 metal w 3 y 1144 x 1727 y 1155 diff y 1160
64 wire poly 1733,652 y 657 metal w 3 y 1138x 1711 y 1155 diff y 1160
65 wire poly 1725,652 y 657 metal w 3 y 1132 x 1695 y 1155 diff y 1160
66 wire poly 1717,652 y 657 metal w 3 y 1126 x 1679 y 1 155 diff y 1160
67 wire poly 1709,652 y 657 metal w 3 y 1120 x 1663 y 1155 diff y 1160
68 wire poly 1701,652 y 657 metal w 3 y 1114 x 1647 y 1 155 diff y 1160
69 wire poly 1693.652 y 657 metal w 3 y 1108x 1631 y 1 155 diff y 1160
70 wire poly 1685,652 y 657 metal w 3 y 1102 x 1615 y 1155 diff y 1160
VI wire poly 1677,652 y 657 metal w 3 y 1096 x 1599 y 1155 diff y 1160
72 wire poly 1669,652 y 657 metal w 3 y 1090 x 1583 y 1155 diff y 1160
73 wire poly 1661,652 y 657 metal w 3 y 1084 x 1567 y 1155 diff y 1160
74 wire poly 1653,652 y 657 metal w 3 y 1078 x 1551 y 1 155 diff y 1160
75 wire poly 1645.652 y 657 metal w 3 y 1072 x 1535 y 1155 diff y 1160
76 wire poly 1637.652 y 657 metal w 3 y 1066 x 1519 y 1155 diff y 1160
77 wire poly 1629,652 y 657 metal w 3 y 1060 x 1503 y 1155 diff y 1160
78 wire poly 1621,652 y 657 metal w 3 y 1054 x 1487 y 1155 diff y 1160
79 wire poly 1613,652 y 657 metal w 3 y 1048 x 1471 y 1155 diff y 1160
80 wire poly 1605,652 y 657 metal w 3 y 1042 x 1455 y 1155 diff y 1160
81 wire poly 1597,652 y 657 metal w 3 y 1036 x 1439 y 1155 diff y 1160
82 wire poly 1589,652 v 657 metal w 3 y 1030 x 1423 y 1155 diff v 1160
B3 wire poly 1581,652 y 657 metal w 3 y 1024 x 1407 y 1 155 diff y 1160
84 wire poly 1573,652 y 657 metal w 3 y 1018 x 1391 y 1155 diff v 1160
Bo wire poly 1565,652 y 657 metal w 3 y 1012 x 1375 y 1 155 diff y 1160
B6 wire poly 1557,652 y 657 metal w 3 y 1006 x 1359 y 1155 diff y 1160
87 wire poly 1549,652 y 657 metal w 3 y 1000 x 1343 y 1155 diff y 1160
88 wire poly 1541,652 y 657 metal w 3 y 994 x 1327 y 1155 diff y 1160
89 wire poly 1533,652 y 657 metal w 3 y 988 x 1311 y 1155 diff y 1160
90 wire poly 1525,652 y 657 metal w 3 y 982 x 1295 y 1155 diff y 1160
91 /*pla3 out to pla4in */

92 wire poly 2113,1796 y 1800 metal w3y 1995 diff y 2000;
93 wire poly 2105,1796 y 1800 metal w 3 y 1990 x 2097 y 1995 diff y 2000
94 wire poly 2097,1796 y 1800 metal w 3 y 1984x2081 y 1995 diff y 2000
95 wire poly 2089.1796 y 1800 metal w 3 y 1978 x 2065 y 1995 diff y 2000
96 wire poly 2081,1796 y 1800 metal w 3 y 1972 x 2049 y 1995 diff y 2000
97 wire poly 2073, 1 796 y 1 800 metal w 3 y 1 966 x 2033 y 1 995 diff y 2000
98 wire poly 2065,1796 y 1800 metal w 3 y 1960 x 2017 y 1995 diff y 2000
99 wire poly 2057, 1 796 y 1 800 metal w 3 y 1 954 x 200 1 y 1 995 diff y 2000
100 wire poly 2049,1796 y 1800 metal w 3 y 1948 x 1985 y 1995 diff y 2000
101 wire poly 2041,1796 y 1800 metal w3y 1942 x 1969 y 1995 diff y 2000
102 wire poly 2033,1796 y 1800metalw3y 1936 x 1953 y 1995 diff y 2000
103 wire poly 2025,1796 y 1 800 metal w3 v 1930 x 1937 y 1995 diff y 2000
10-1 wire poly 2017,1796 y 1800 metal w 3 y 1924 x 1921 y 1995 diff y 2000
105 wire poly 2009,1796 y 1800 metal w 3 y 1918 >: 1905y 1995 diff y 2000
x06 wire poly 2001,1796 y 1800metalw3y 1912 x 1869 y 1995 diff y 2000
107 wirepolv 1993,1796 y 1800 metal w3y 1906 x 1873 y 1995 diff y 2000

200

108 wire
109 wire
110 wire
111 wire
112 wire
113 wire
114 wire
115 wire
116 wire
117 wire
118 wire
119 wire
120 wire
121 wire
122 wire
123 wire
124 /•plal vdi

125 wire
126 wire
127 wire

128 wire
129 wire
130 wire

131 wire
132 /*pla2vdd
133 wire
134 wire
135 wire
136 wire
137 wire
138 wire

139 /* pla3 vdd
140 wire
141 wire
142 wire

143 wire
144 wire

145 wire

146 wire
147 wire
148 / * pla4 vdd
149 wire
150 wire
151 wire

152 wire
153 wire

154 wire
155 wire
156 /• end vdd
157 /* bonding
158 wire
159 wire

160 wire

161 wire
162 wire

poly 1985, 1796 y 1800 metal w3y 1900 x 1857 y
poly 1977,1796 y 1800 metal w 3 y 1894 x 1841 y
poly 1969,1796 y 1800 metal w 3 y 1888 x 1825 y
poly 1961, 1796 y 1800 metal w3y 1882 x 1809 y
poly 1953, 1 796 y 1 800 metal w3yl876xl793y
poly 1945,1796 y 1800 metal w 3 y 1870 x 1777 y
poly 1937, 1796 y 1800 metal w 3 y 1864 x 1761 y
poly 1929.1796 y 1800 metal w 3 y 1858 x 1745 y
poly 1921, 1796 y 1800 metal w 3 y 1852 x 1729 y
poly 1913,1796 y 1800 metal w 3 y 1846 x 1713 y
poly 1905,1796 y 1800 metal w 3 y 1840 x 1697 y
poly 1897, 1796 y 1800 metal w 3 y 1834 x 1681 y
poly 1889, 1796 y 1800metalw3y 1828 x 1665 y
poly 1881,1796 y 1800 metal w 3 y 1822 x 1649 y
poly 1873, 1796 y 1600 metal w3y 1816 x 1633 y
poly 1865, 1796 y 1800 metal w 3 y 1810 x 1617 y
& gnd interconnects */

metal 1205,1043 w 4 y 1028 x 1200;

metal 1200,1000 w 4 x 1220 y 1196 x 1285;

metal 893, 1 043 w 4 y 1 040 x 884;

metal 896,1028 w 4 x 890 y 1040;

metal 890, 1028 w 4 y 975 x 883;

metal 342,1043 w 4 y 956 x 355;

metal 342,1001 w 4 x 356;

&c gnd interconnects */

metal 1811,595 w 4 y 614 x 1808;

metal 1520.614 w 4 x 1510 y 665 x 1501;

metal 1515,614 w 4 y 603;

metal 1520.242 w 4 x 884 y 251;

metal 884.595 w 4 y 639 x 892;

metal 884.639 w 4 y 684 x 893;

& gnd interconnects •/

metal 1860,1786 w 4 x 1272 y 1739;

metal 1272.1283 w 4 y 1240 x 1286;

metal 1272.1240 w4y 1196 x 1285
metal 21 19. 1739 w 4 y 1758 x 21 16;

metal 1860,1758 w 4 x 1855 y 1747;

metal 1855.1283 w 4 y 1280 x 1846;

metal 1855, 1280 w 4 y 1215 x 1845:

metal 1845,1196 w 4 x 2118 y 1276;

& gnd interconnects */

metal 1590.2424 w 4 x 2128 y 2381
metal 2128,2125 w 4 y 2081 x 2120
metal 2128,2081 w 4 y 2036 x 21 19;

metal 1607.2036 w 4 x 1457 y 2112 x 1462;
metal 1457,2381 w 4 y 2396 x 1462;

metal 1590.2396 w 4 x 1593 y 2381;

metal 1600,2118 w 4 y 2055 x 1607;

& gnd interconnects for the pla's •/

pads in to plal inputs */

metal 2270. 132 y 220 x 877 y 910 diff y 920
metal 2120.132 y 212 x 861 y 910 diff y 920
metal 1 970, 132 y 204 x 845 y 910 diff y 920;

metal 1820, 132 y 196 x 829 y 910 diff y 920;

metal 1670, 132 y 188 x 813 y 910 diff y 920

1995
1995
1995
1995
1995
1995
1995
1995
1995
1995
1995
1995
1995
1995
1995
1995

diff y
diff y
diff y
diff y
diff y
diff y
diff y
diff y
diff y
diff y
diff y
diff y
diff y
diff y
diff y
diff y

2000;

2000;
2000;
2000;

2000;
2000;
2000;
2000;

2000;
2000;

2000;
2000;
2000;
2000;

2000;
2000;

201

163 wire metal 1520, 132 y 180 x 797 y 910 diff y 920;
164 wire metal 1370,132 y 172x761 y 910 diff y 920;
165 wire metal 1220,132 y 164 x 765 y 910 diff y 920;
166 wire metal 1070, 132 y 156 x 749 y 910 diff y 920;

167 wire metal 920,132 y 148 x 733 y 910 diff y 920;

168 wire metal 770,132 y 140 x 717 y 910 diff y 920;
169 wire metal 620,132 y 140 x 701 y 910 diff y 920;

170 wire metal 470,132 y 148 x 685 y 910 diff y 920;

171 wire metal 320,132 y 156 x 669 y 910 diff y 920;

172 wire metal 132,230 x 653 y 910 diff y 920;

173 wire metal 132,380 x 637 y 910 diff y 920;

174 wire metal 132,530 x 621 y 910 diff y 920;
175 wire metal 132,680 x 605 y 910 diff y 920;

176 wire metal 132,830 x 180 y 688 x 589 y 910 diff y 920;

177 wire metal 132,980 x 188 y 696 x 573 y 910 diff y 920;

178 wire metal 132,1130 x 196 y 704 x 557 y 910 diff y 920;

179 wire metal 132,1280 x 204 y 712 x 541 y 910 diff y 920;

180 wire metal 132,1430 x 212 y 720 x 525 y 910 diff y 920;

181 wire metal 132,1580 x 220 y 728 x 509 y 910 diff y 920;

182 wire metal 132,1730 x 22B y 736 x 493 y 910 diff y 920;

183 wire metai 132,1880 x 236 y 744 x 477 y 910 diff y 920;

184 wire metal 132,2030 x 244 y 752 x 461 y 910 diff y 920;

185 wire metal 132,2180 x 252 y 760 x 445 y 910 diff y 920;

186 wire metal 230,2568 y 2500 x 260 y 768 x 429 y 910 diff y 920;

187 wire metal 380,2568 y 2492 x 268 y 776 x 413 y 910 diff y 920;

188 wire metal 530,2568 y 2484 x 276 y 784 x 397 y 910 diff y 920;

189 wire metal 680,2568 y 2476 x 284 y 792 x 381 y 910 diff y 920,

190 wire metal 830,2568 y 2468 x 292 y 800 x 365 y 910 diff y 920;

191 /• end pads in to plal inputs V
192 /*phi 1 to plal & pla2 V
193 wire metal 980,2568 y 2460 x 300 y 922 poly x 355;

194 wire poly 882,922 w 2 x 888 y 718 x 893;

195 /•phi 1 topla4 /
196 wire metal 980,2460 x 1220 y 2240 diff w 3 y 2190 metal x 1260 y 2002

197 poly x 1607;

198 /*phi 1 to pla3 from Dial & pla2 V
199 wire metal 1260,2002 y 1220 poly y 1162 x 1288;

200 /*phi 2 plal V
201 wire metal 1130,2568 y 2470 x 1240 y 2220 diff w 3 y 2180 metal y 1220 poly

202 y 1041 x 1200;

203 /*phi2pla4V
204 wire metal 1240,2383 x 1380 poly x 1462;

205 /*phi 2 pla2 &c pla3 */

206 wire metal 1240,2440 w 3 x 2140 y 1745 poly x 2116;

207 wire metal 2140,1745 w3y 1120 x 1900 y 601 poly x 1803;

208 /* end clock distribution */

209 /* pla4 outputs to output bonding pads V
210 wire poly 1467,2434 y 2520 x 1325 y 2555;

21

1

wire poly 1475,2434 y 2555;

212 wire poly 1483,2434 y 2550 x 1625 y 2555;

213 wire poly 1491,2434 y 2545 x 1775 y 2555;

214 wire poly 1499,2434 y 2540 x 1925 y 2555;

21 5 wire poly 1507,2434 y 2532 metal w 3 x 2075 poly y 2555;

216 wire poly 1515,2434 y 2524 metal w 3 x 2225 poly y 2555;

217 wire poly 1523,2434 y 2516 metal w 3 x 2300 y 2225 x 2340 poly x 2355;

202

218 wire poly 1531,2434 y 2508 metal w 3 x 2290 y 2075 x 2340 poly x 2355
219 wire poly 1539.2434 y 2500 metal w 3 x 2280 y 1925 x 2340 poly x 2355
220 wire poly 1547.2434 y 2492 metal w 3 x 2270 y 1775 x 2340 poly x 2355
221 wire poly 1555,2434 y 24B4 metal w 3 x 2260 y 1625 x 2340 poly x 2355
222 wire poly 1563.2434 y 2476 metal w3x 2250 y 1475 x 2340 poly x 2355
223 wire poly 1571.2434 y 2468 metal w 3 x 2240 y 1325 x 2340 poly x 2355
224 wire poly 1579.2434 y 2460 metal w 3 x 2230 y 1 175 x 2340 poly x 2355
225 wire poly 1587.2434 y 2452 metal w 3 x 2220 y 1025 x 2340 poly x 2355
226 /* end pla4 output wire runs to the output bonding pads V
227 /• connect pad gnd & vdd V
228 wire metal 4,0 w 8 y 2700;
229 wire metal 0,2696 w 8 x 2500;
230 wire metal 2496,2700 w 8y 0;

231 wire metal 0,4 w 8 x 2500;
232 wire metal 98,90 w 16 y 2610;
233 wire metal 90,2602 w 16 x 2410;
234 wire metal 2402,2610 w 16 y 90;

235 wire metal 90,98 w 16 x 2410;
236 /* vdd & gnd connects for pla's */

237 /* vdd forpla2 V
23B wire metal 2500.242 w 8 x 2450 diff w 8 x 2320 metal w 8 x 1860 w 4
239 x 1808;

240 wire metal 1860,242 w 4 y 642 x 1807;
241 /* gnd connect for pla3 */

242 wire metal 2402,1700 w 8 x 2270 diff w 8 x 2130 metal w 4 y 1758 x 2120
243 /* vdd & gnd connect for pla4 V
244 wire metal 1260,2700 w 8 y 2640 diff w 8 y 2424 metal w 4 x 1463;

245 wire metal 1400,2502 w 8 y 2460 diff w 6 y 2396 metal w 4 x 1458;

246 /* pla3 connect vdd from pla4 V
247 wire metal 1457,2036 w 4 y 17B6;
248 /* xtra vdd to pla3 */

249 wire metal 2500,1250 w 8 x 2430 diff w 8 x 2118;

250 /* pla2 gnd connect V
251 wire metal 24C2.614 w 8 x 1920 diff w 8 x 1840 metal w 4 x 1811;

252 /* plal vdd connect V
253 wire metal 940,2700 w B y 2640 diff w 8 y 2440 metal w B y 2240 x B20 y 2191;

254 /*plal gnd connect*/
255 wire metal 1400,2396 w 8 y 2202 x 1205 w 4 y 2175;

256 /*xtra vdd to plal */

257 wire metal 0, 1 100 w 8 x 70 diff w B x 320 metal w 8 x 342;

258 /*xtra gnd to plal V
259 wire metal 98,950 w 8 x 170 diff w 8 x 320 y 975 w 4 x 350
260 metal w 4 x 360;

261 /* put identification */

262 designer(1980,700);

263
J

203

designer, ell

/generate a signature for the project*/

designer()

I

poly;

/HAUENSTE1N V

wire 0.0 u 20;

wire 0,10 r 20;

wire 20,0 u20;
wire 30,0 u20 r 20 d 20;

wire 30,10 r 20;

wire 60,20 d 20 r 20 u 20;

wire 110,0 1 20 u 20 r 15;

wire 90,10 r 10;

wire 120,0 u 20;

wire 140,0 u 20;

wire 125,13 u 6;

wire 130,7 u 6;

wire 135,1 u 6;

wire 150,0 r 20 u 10 1 20 u 10 r 20;

wire 190,0 u 20;

wire 180,20 r 20;

wire 230,0 I 20 u 20 r 15;

wire 210,10 r 10;

wire 240.0 r 20;

wire 240,20 r 20;

wire 250,0 u. 20;

wire 270,0 a 20
wire 290,0 u 20
wire 275,13 a 6

wire 280,7 u 6;

wire 285,1 u 6;

/CONRADI •/

wire 20,40 I 20 u 20 r 15;

wire 30,40 a 20 r 20 d 20 I 21;

wire 60.40 u 20;

wire 80,40 u. 20;

wire 65,53 u 6;

wire 70,47 u 6;

wire 75,41 u. 6;

wire 90.40 u 20 r 20 d 10 1 21;

wire 105,50 d 5;

wire 110,40 u 5;

wire 120,40 u 20 r 20 d 20;

wire 120,50 r 20;

wire 150,40 u 20 r 20 d 20 I 21;

wire 152.40 u 20;

204

wire 180,40 r 20;

wire 180,60 r 20;

wire 190,40 u 20;

/NAVYPGS '83' */

wire 0,80 u 20;

wire 20,80 u 20;

wire 5,93 u 6;

wire 10,87 u 6;

wire 15,81 u 6;

wire 30,80 u 20 r 20 d 20;

wire 30,90 r 20;

wire 60,100 d 10;

wire 65,90 d 8;

wire 70,80 u 2;

wire 75,90 d 8;

wire 80,100 d 10;

wire 90,100 d 10 r 20 u 10;

wire 100,80 u 10;

wire 130,100 d 4;

wire 140,80 u 12 r 20 d 12 1 21

wire 142,92 u 8 r 16 d 8;

wire 170,80 r 20 u 20 1 15;

wire 190,90 1 10;

wire 200,100 d 4;

I

20b

final,sym

1 47 A2
2 51 Bl
3 55 Al
4 59 BO
5 63 A0
6 67PHI1
7 71 PH12
8 16 S15
9 17S14

10 1BS13
11 19 S12
12 20 Sll
13 21 S10
14 22 S9
15 842 S8
16 1468 S7
17 2955 S6
18 3403 S5
19 4262 S4
20 4875 S3
21 5443 S2
22 6507 SI
23 7349 SO
24 3vdd
25 37gnd
26 11331 CIN
27 11326 B15
28 11321 A15
29 11316 B14
30 11311 A14
31 11306 B13
32 11301 A13
33 11296 B12
34 11291 A12
35 11286 Bll
36 11281 All
37 11276 BIO
38 11271 A10
39 11266 B9
40 10863 A9
41 10658 B8
42 10279 A8
43 8897 B7
44 8869 A7
45 7352 B6
46 6511 A6
47 5446 B5
48 4878 A5
49 4265 B4
50 3'1 07 A4
51 2958 B3
52 1487 A3
53 845 B2

206

sim.in

KPHI1 011000 PHI2 000011
WAA15A14A13 A12A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 Al A0
W B B15 B14 B13 B12 Bll BIO B9 B8 B7 B6 B5 B4 B3 B2 Bl BO
W OUT S15 S14 S13 S12 Sll S10 S9 SB S7 S6 S5 S4 S3 S2 SI SO
W CIN CIN
h A13 A10 A9 A8 A6 A5 A4 AO B14 B13 B9 B7 B6 B5 Bl CIN
IA15A14A12A11 A7A3A2A1 B15B12B10B11 B8 B4 B3 B2 BO
c

1 A13 A8 A4 AO B13 B7 B5 CIN
hAl A2A7A11 B2B5B11 B12
c

h A13 A4 AO B7 B5 CIN
c

1 A9 A8 A4 AO B14 B9 B5 Bl
c

1 A15 A14 A13 A12 All A10 A9 A8 A7 A6 A5 A4 A3 A2 Al AO CIN
1 B15 B14 B13 B12 Bl 1 BIO B9 B8 B7 B6 B5 B4 B3 B2 Bl BO
c

h A15 A14 A13 A12 All A10 A9 A8 A7 A6 A5 A4 A3 A2 Al AO
c

1A15A14
h B14 B13 B12 Bl 1 BIO B9 B8 B7 B6 B5 B4 B3 B2 Bl BO CIN
c

c

c

c

c

207

sim. out

1

2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

2418 transistors, 1546 nodes (1233 pulled up)
CIN=1 1

OUT=XXXXXXXXXXXXXXXX
B=0110001011100010 25314
A=0010011101110001 10097
cycle took 1681 events
CIN=0
OUT=XXXXXXXXXXXXXXXX
B=010l 101001100110 23142
A=00001 1101 11001 10 3814
cycle took 1391 events
CIN=1 1

OUT=XXXXXXXXXXXXXXXX
B=0101 10101 1100110 23270
A=0010111011110111 12023
cycle took 1264 events
CIN=1 1

OUT=1000101001010100 35412
B=0001 10001 1000100 6340
A=00101 10011 1001 10 11494
cycle took 1440 events
CIN=0
OUT=0110100101001100 26956
B=0000000000000000
A=0000000000000000
cycle took 1380 events
C1N=0
OUT=1000100111011110 35294
B=0000000000000000
A=llllllllllllllll 65535
cycle took 1423 events

CIN=1 1

OUT=0100010110101011 17B35
B=0111 111111111111 32767
A=0011111 111111111 16383
cycle took 1583 events
CIN=1 1

OUT=0000000000000000
B=0111111 111111111 32767
A=00111 11111111111 16383
cycle took 1317 events
CIN=1 1

0UT= llllllllllllllil 65535
B=0111111111U1111 32767
A=0011111111111111 16383
cycle took 1261 events
CIN=1 1

0UT= 1 011111111111111 49151
B=0111111111111111 32767
A=001 1111111111111 16383
cycle took 989 events
CIN=1 1

200

53 OUT= 1011111111111111 49151
54 B=0111111111111111 32767
55 A=00 11111111111111 16383
56 cycle took 796 events

209

LIST OF REFERENCES

1. Mead.C. and Conway, L., Introduction To VLSI Systems, Addison-Wesley, 1980.

2. Thomas, R.T. and Yates, J.. A User Guide To The UNIX System., McGraw-Hill,
1982.

3. UNIX Programmer's Manual, Bell Laboratories, 7th ed., 1979.

4. Purdum.J., C Programming Guide, Que, 1983.

5. Saxe.T., CLL - A Chip Layout Language, version 3, paper obtained from
Stanford University.

6. Wolf.W., Design Validation Far EE271, paper obtained from Stanford
University.

7. Newkirk.J., Mathews.R., Redford.J., and Burns, C, Stanford nMOS Cell Library
,

1st ed.. 1981.

8. Cohen.D. and Richardson.L., MOSIS User's Manual, U3C/1SI, 1982.

9. Hwang, K. , Computer Arithmetic Principles, Architecture, And Design, V/iley,

1979.

10. Hogs User's Manual version 2H.

210

INITIAL DISTRIBUTION LIST

No. Copies

1. Superintendant 2

Attn: Library, Code 0142
Naval Postgraduate School
Monterey, California 93943

2. Dr. Robert Mathews 1

AEL205
Stanford, CA 94305

3. Lt.Col. Harold Carter 1

AFIT/ENG
Wright Patterson AFB, Ohio 45433

4. Lt. Joseph R. Conradi 2

1102 Spruance Rd.

Monterey, CA 93940

5. Lt. Bruce R. Hauenstein 1

4216Maintree Ct.

Fairfax, VA 22033

6. Capt. Mark Stotzer 1

1028 Spruance Rd.

Monterey, CA 93940

7. Mr. Albert Wong 1

Code 52
Naval Postgraduate School
Monterey, CA 93943

B. Ms. Susan Taylor 1

AEL205
Stanford, CA 94305

9. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

10. Chairman, EE Department !

Code 62
Naval Postgraduate School
Monterey, CA 93943

11. Dr. Donald Kirk I 5

Code 62KI
Naval Postgraduate School
Monterey, CA 93943

211

12. Prof. Robert Strum
Code 62ST
Naval Postgraduate School
Monterey, CA 93943

13. Dr. H.H.Loomis
Code 62LM
Naval Postgraduate School
Monterey, CA 93943

212

2CG0SG

Conradi

VLSI design of a very
fast pipelined carry
look ahead adder, by
Joseph Robert Conradi
and Bruce robert Hauen-
stein.

206966

Thesis

CT^32
c.l

Conradi
VLSI design of a very

fast pipelined carry

look ahead adder , by

Joseph Robert Conradi

and Bruce robert Hauen-

stein.

