

LIBRARY, NAVAL POSTGBADUATB SCHOOL
MONTEREY, CA 83940

www.

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
THE INTEL 432/670 and ADA

PERFORMANCE BENCHMARKS

by

David James Applegate

and

Robert Abbott Coates

December 19 82

Thesis Advisor: U.R. Kodres

Approved for public release; distribution unlimited

120778/

SECURITY CLASSIFICATION OP THIS »«CI i »»•« D«.

REPORT DOCUMENTATION PAGE
i report

1

numb!R a. GOVT ACCESSION NO.

4. TITLE •"<* Ju6«/n«)

THE INTEL 4 32/6 70 and ADA

PERFORMANCE BENCHMARKS

7. AuTMORi'iJ

David James Applegate

Robert Abbott Coates

t PERFORMING ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School

Monterey, California 9 3940

II. CONTROLLING Of'lCB NAME ANO AOORESS
Naval Postgraduate School
Monterey, California 93940

14 MONiTONlNC AGENCY NAME * AOMCMfff dlllotonl Irem Controlling Ollleo)

READ INSTRUCTIONS
BEFORE COMPLETING, FORM

1 RECIPIENT'S CAT ALOG nu»

5
\T

P€ lf "EPO " T * •»empo covereo
Master's Thesis
December 19 82

• • PERFORMING ORG. »E^0»T NUMBER

• • CONTRACT ON GRANT NbMlC^n

'0- ^»cs»»m element project taskANEA * DORK UNIT NUMBERS ' '

12 REPORT OATE

December 1982
II. NUMBER OF PAGES
' 151
IS. SECUNITY CLASS, (ol thlt report,

UNCLASSIFIED

»Sr. DECLASSIFICATION/ DOHNGRAOinG
SCHEDULE

16. OlSTRiauTlON STATEMENT ol thit Hoport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT tot (ft* mmotrmct ontorod In Block 30, II dlitotont from Mtport)

IS. SUPPLEMENTARY NOTES

I*. KEY WOROS (Continue on roworoo »ldm II nocooomwr »»« nonary my mlocM mattrj

iAPX-432, INTEL, ADA, ADA-432
432/670 Cross Development System,
CFA, Computer Family Architecture
MCF, Military Computer Family

20. ABSTRACT (Continue on rovoroo »ido II nocooomrr on* IdontHf *r »««c« nummor)

The INTEL 432/670 microcomputer system contains the iAPX-432
microprocessor which executes compiled ADA programs. The compiler
resides on a host VAX 11/730, and compiled programs are downloaded
to an INTEL MDS 300 system where they are transferred tothe 432/670

for execution. This thesis describes a preliminary performance
evaluation of the INTEL 4 32/6 70 through the use of selected bench-
mark algorithms from the Computer Family Architecture (CFA) study.

DD
FORM

I JAN 73 1473 EDITION OP
S/N 10 2-0;

NOV St IS OBSOLETE
*550 I |

..seuPtirv classification cv this pao' -...• '' • ; .'•<*)

A description of the hardware components of both the MDS 800

and 432/6 70 is provided, including the modifications made to

the operating system to allow compatibility with existing

hardware. Additionally, the benchmark program source code

and a user's manual are appended.

1 Jan '«

J

S/N 0102-014-6601 ucuaiTv euAMirtCATiOM O' twh »«aiim»< o««> *»«•»•*)

Approved for public release, distribution unlimited.

The INTEL 432/670 and ADA Performance Benchmarks

by

David Aoplegate
Lieutenant, United States Navy

B.A., St. Cloud State University, 1975

Robert Coates
Captain, United States Marine Corps

3.S., University of Idaho, 1976

Submitted in partial fulfillment of the
reauirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL O0STGRAD"A T E SCHOOL
December 1992

cJ

LIBRARY, NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93940

ABSTRACT

The INTEL 432/670 microcomputer system contains the

1APX-432 microprocessor which executes compiled ADA

programs. The compiler resides on a host VAX 11/780, and

compiled Droarams are downloaded to an INTEL MDS 800 system

where they are transferred to the 432/670 lor execution.

This thesis describes a preliminary performance evaluation

of the INTEL 432/670 through the use of selected benchmark

algorithms from the Comcuter Family Architecture (CFA)

study. A description of the hardware components of both the

MDS 800 and 432/670 is orovided, Including the modifications

made to the operating system to allow compatibility with

existing hardware. Additionally, the benchmark program

source code and a user's manual are appended.

TABLE OF CONTENTS

I. INTRODUCTION , 8

A. THESIS DESCRIPTION ., 8

B. EVALUATION OF COMPUTER ARCHITECTURES 9

C. THESIS ORGANIZATION 10

II. THE MILITARY COMPUTER FAMILY ARCHITECTURE 12

A. CFA/MCF PROJECT MOTIVATION 12

B. CFA/MCF PROJECT DESCRIPTION 12

C. CFA SELECTION CRITERIA 14

1. Qualitative Criteria 14

2. Quantitative Criteria , 15

D. MEASUREMENT PARAMETERS 15

E. BENCHMARK EVALUATION DESCRIPTION 17

III. THE INTEL iAPX-432 MICROPROCESSOR 20

A, ARCHITECTURE DESCRIPTION 20

1. Object-orientation 21

2. Transparent Multiprocessing 25

3. Capability Based Protection 28

4. Operating System Suoport , 32

B. ADA LANGUAGE SUPPORT 36

1. Object Typing ., ,,., 36

2. Domain Objects - Package Objects 38

3. Procedure Objects - Procedures 39

4. Activation Records 40

5. Tasking , 40

5

IV. BENCHMARK PROGRAM TIMING RESULTS 42

A. BENCHMARK PROGRAMS 42

1. Methods Used 42

2. Applicable Algorithms •• 44

a. Character Search 45

b. Quicksort 47

c. Hashtable 48

d. Digital Communications Processing 49

e. Memory Usage 50

3. CFA Coded but not Executed Programs 51

4. Non-CFA Related Programs 51

B. TIMING PROCEDURE AND RESULTS ., 52

1. CFA Benchmark Program Results 53

a. Character Search 53

b. Quicksort 54

c. Hashtable 55

d. Digital Communication Processing 55

2. Non CFA Program Results 56

C. SUMMARY OF RESULTS 59

V. CDS 432/670 USER EVALUATION 64

A. COMPILER 64

B. LINKER 67

C. DOWNLOADING 68

D. DEBUGGING AND EXECUTION 69

E. ADA IMPRESSIONS 70

VI. CONCLUSIONS 73

6

APPENDIX A (HARDWARE DESCRIPTION) 75

APPENDIX 8 (OPERATING SYSTEM MODIFICATIONS) 77

APPENDIX C (ADA SOURCE CODE) 78

APPENDIX D (CFA BENCHMARK ALGORITHMS) 114

APPENDIX E (CDS 432/670 USERS MANUAL) 134

LIST OF REFERENCES , 149

INITIAL DISTRIBUTION LIST 150

I, INTRODUCTION

A. THESIS DESCRIPTION

The development of new engineering tools is accompanied

by the perceived need to find applications for those tools.

Microprocessors are no exception. When a new computer is

introduced it is important to Know what, if any, significant

benefits can be realized through its use. Things to consider

in evaluating a microorocessor include several guantltative

items, such as, instruction execution speed, memory

capacity, and overall performance. Less tangible, but

egually important qualities of multiprocessor suDDort, user

protection, and ease of programming also need to be

measured. The introduction of the INTEL iAPX-432 in 1981

represented a radical change from traditional computer

architectures. Previous advances in integrated circuits

have primarily focused on larger memory, and faster

execution. The iAPX-432 has addressed these issues, but has

also tacKled manv of the problems found in software

engineering.

This thesis involved the setup and evaluation of a

modified INTEL 432/670 cross develoDment system to measure

the overall oerformance of the programming language ADA

executing on a comoanion vehicle, the INTEL iAPX-432

microprocessor. The motivation for this investigation was

straightforward. Since the Department of Defense has spent

considerable time and effort in developing the ADA language

it would be interesting to observe how the language performs

on a processor that was designed with identical goals. It is

not often that a language and processor are develooed in

parallel. More importantly, the INTEL iAPX«432's unique

architecture directly supports many of the important ADA

lanquage features. Such as:

1. Access protection for packages,

2. Automatic maintenance of activation record stacks,

3. Multiprocessor support for multitasking.

This support may Drovide for less expensive, easier to

maintain software, a common objective of both hardware and

software designers.

B. EVALUATION OF COMPUTER ARCHITECTURES

Evaluation of computer architectures and computer

languages has traditionally been an investigative orocess

directed toward a soecific apolication. This study involved

the general puroose aDolicability of the lanauage and the

processor. The choice of measurement methods used followed

an earlier effort performed by the Computer Family

Architecture committee in 1976 concerning general purpose

computer apDlication evaluations. In particular, some of the

benchmark programs used by the committee were coded in ADA

and then executed and timed on the lAPx-432. Although no

provisions have been made to eliminate the effects of

compiler efficiency, or inefficiency, the results should

give an indication of the execution speed available to the

end user. This method of testing was chosen since the

processor is designed to be programmed in a high level

lanouage (ADA). No assembler is under development or planned

for by the manufacturer. Therefore, if the language and

processor are to be used as designed, then the performance

needs to be evaluated in a *or*ing environment. That is,

programmers programming in ADA and compiled code executing

on the processor,

C, THESIS ORGANIZATION

This thesis is composed of six chapters and five

appendices. Chapter II is a brief discussion of the work

done by the Computer Family Architecture committee (CFA) and

it's aDplicability to this investigation. Chapter III is an

introduction to some of the uninue architectural aspects of

the iAPX-432 and how these new features suDport the lanouage

ADA. The benchmark program descriptions and timing results

are in Chapter IV, Included in that chapter is a description

of the oarameters passed and the calling conventions used,

An attempt has been made to aive an impartial evaluation of

the CDs 432/670 system in Chapter v. Finally, in Chapter vi

10

the reader will find what basic conclusions have been drawn

about the iAPX-432 and the CDS 432/670 system as a result of

this study. The appendices are filled with the material

necessary to reDeat any of the results obtained in Chapter

IV, They include a description of the hardware and operating

svstem modifications performed and a listing of all the ADA

source code. As a convenient reference the algorithms used

by the CFA are Drovided in Appendix D. A users manual is

included in Appendix E to allow a new user to quickly become

familiar with the system.

11

II. THE MTLTTARV COMPUTER FAMTLV ARCHTTFPTURF

The Military Computer Family Architecture (MCF) refers

to the architecture standard defined in a study done by the

Computer Family Architecture committee (CFA) between October

of 1975 and August of 1976, The initial study concluded that

the PDP-11 best met the criteria for a military computer

family standard. Since that time another CFA related study

by DietzCl] suggested several improvements in the algorithms

used to evaluate architectures. An overview of the CFA

project follows.

A. . CFA/MCF PROJECT MOTIVATION

The CFA/MCF oroject was a joint' ARMY/NAVY effort to

develop a method of comparing computer architectures for use

on a general class of applications. The enormous sums of

money that the Department of Defense was spending on data

processing promoted the investiaation into the possibility

of definino a standard computer architecture. Decreasing the

life cycle costs of computer systems plaved a major role in

the committees selection criteria,

B. CFA/MCF PROJECT DESCRIPTION

One of the first items the CFA examined was the reason

for skyrocketing data Drocessing costs. The answers they

12

obtained were not too surprising. That is, computer

selections often are based on local schedules, funding, and

profit considerations with little regard for the impact

these decisions harre on long term hardware/software

logistics costs. Consequently, incompatible military systems

are contributing to the problems of development and

maintenance of software. Although a formal movement in

standardizing a language was underway (ADA), there was no

method for standardizing an architecture. It was with this

mandate that the CFA committee pursued the evaluation of

several available computer architectures, with the goal of

selecting a standard.

A standard architecture does not mean specific numbers

of registers, accumulators etc., but rather the structure of

the machine that a programmer needs to Know to write his

programs. For example, if the architecture standard reauires

stacK relative addressing, then any machine having that

instruction (and the other reauired instructions!) can be

programmed by a given programmer without his having any

Knowledge of how the instruction is implemented. The

proarammer Knows there's a stack and a stack relative

address instruction; the hardware implementation is

transparent to him. In this fashion, any two computers

havino the standard architecture can run the same software.

The advantage realized is that new hardware with faster,

13

more efficient physical characteristics, can run the same

software with little or no modification.

C. CFA SELECTION CRITERIA

The CFA committee initiated the selection process by

specifying nine absolute qualitative criteria and several

quantitative criteria that they felt an architecture must

satisfy to meet t h e needs of a military computer system.

1 . Quali tative Criteria

The nine qualitative criteria were;

1. Virtual Memory : The architecture must support a

virtual address to physical address translation
mechanism.

2. Protection : The capability must exist to add new
experimental programs without endangering the
liable operation of existing Programs. Architec-
tures with orlvileged- modes of operation
generally meet this criteria.

3. Floating Point Ocerations : The explicit supoort
of floating point data types with more than 10
decimal digits of significance.

4. Interrupts and Trans : The caDability to write a

trap handler to respond to anv trap condition
with the program resuming operation of the pro-
gram. Additionally, the architecture needs to be
canable of resuming execution following any in-
terrupt.

5. Subsettabillty : Some of the components of the
architecture must be able to be factored out of
the full architecture,

6. Multiprocessing : Suoport of communication and
synchronization of multiple processors,

7. I/O Controllability : A processor must have the
ability to exercise absolute control over any I/O
processor.

14

8, Extensibility : Some method needs to exist to add
new instructions to the architecture consistent
with existing formats,

9. Read Only Code ! It must be possible to execute
programs from read only memory.

These nine criteria were definitely subjective in nature but

did provide a qood initial screening for any standard

architecture candidate. Although the study was done before

the introduction of the INTEL 1APX-432, most of the criteria

are met or exceeded by the 1APX-432 with the exception of

the interrupt capability. The iAPX-432 has no hardware

interrupt, however, it is designed to ooerate with an

attached processor which does have an interrupt capability.

2. Quantitative Criteria

The quantitative criteria judaed by the CFA

committee included the following items :

1. Virtual address space.

2. Physical address snace.

3. Fraction of address space unassigned,

4. Size of the central processor state (amount of
CPU information stored on interrupts).

5. Usaqe base (number of units in operation).

5. I/O initiation (efficiency of periDheral device
accessibility) .

7, Virtualizability (support of virtual machines).

8. Direct instruction addressability.

15

9. Maximum interrupt latency (time from receipt of
interrupt to processing).

D. MEASUREMENT PARAMETERS

The quantitative criteria were evaluated, in part, by

the use of twelve benchmark orograms. These programs were

hand assembled by several different programmers, and then

statistically analyzed for program use of computer soace and

time. The measurement parameters used were:

S: Measure of soace, the number of bytes used to
represent a test program,

m: Measure of execution time, the number of bytes
transferred between primary memory and the processor
durina execution of the test program,

R: The number of bytes transferred among internal
registers of the processor during execution of the
test program.

Although the S,M, and R measures are useful in

evaluating conventional architectures, they are not readily

applied to the INTEL iAPX-432, In fact, the microprocessor's

manufacturer has stated that there is no intention of

supplying an assembler, nor is one under development. This

would make the measurement of S and M difficult and the

measurement of R virtually impossible. For this reason, the

evaluation of the INTEL iAPX-432 was primarily based on the

execution timing of selected benchmark programs.

16

E, BENCHMARK EVALUATION DESCRIPTION

The original CFA committee developed twelve benchmark

programs to evaluate the selected criteria, A brief

description of the proqrams follows with a comdete

algorithmic description In Appendix D,

1. T/O Kernel, four priority level Interrupts.

2. I/O Kernel, FIFO Drocessinq.

3. I/O device handler.

4, Large fast Fourier transform of a large vector,

5. Character search.

6. Sit test? set, or reset,

7, Runge-Kutta Integration,

8, Linked list insertion.

9. Quicksort,

10, ASCII to floating point conversion,

11, Boolean matrix transpose,

12, Virtual memory space exchange.

These programs tested many of the items considered to be of

value by the CFA committee, however, a later study by Oietz

C13 determined that the number and tyoes of test proqrams

should be expanded. The proposed set of benchmark oroorams

consisted of sixteen programs oraenized into four groups as

follows:

17

A, Interrupts and traps,

1, Terminal Input driver.

2, Message buffering and transmission,

3, Multiple priority interrupt handler,

4, Virtual memory exchange.

B, Miscellaneous,

5, Scale vector display.

5, Array manipulation-LU decomposition.

7. Target tracKing.

3. Digital communications processing.

C, Address manipulation,

9. Hash table search.

10. Linked list insertion.

11. Presort.

12. Autocorrelate.

D, Character and bit manipulation.

13. Character search.

14. Soolean matrix transDose.

15. Record unpackina,

16. Vector to scan line conversion.

A complete algorithmic description of these benchmark

proorams can also be found in Appendix D,

These sixteen algorithms were thought to more rigorously

test specific features of the computer family architecture

standard. None of the above benchmark programs are

18

necessarily firm algorithms that must be adhered to.

However, they do provide some guidance in the type of tasfcs

that must be performed by a computer in order for it to

fulfill the minimum requirements of an architectural

standard. In the original evaluation the PDP-11 was

selected as the best candidate architecture for the military

computer family. Since that time several major advances in

both hardware and software have occurred. The unique

architecture of the INTEL iAPX-432 provides a different test

platform for the execution of the benchmark proqrams. Those

oroqrams which were supDorted by the current INTEL ADA-432

compiler were coded, executed, and timed. The results are

summarized in Charter IV of this thesis.

19

III. THE INTEL 1APX-432 MICROPROCESSOR

A. ARCHITECTURE DESCRIPTION

Computer architectures In the majority of commercial

systems available today can be viewed as refined descendants

of the often termed Von Neumann computer architecture. A

Von Neumann comouter architecture usually includes the

following properties C23 :

1. A single, sequentially addressed memory which
contains both proqram and data,

2. No explicit distinctions between instructions and
data. Rather, Instructions and data are dis-
tinouished by the operations directed towards
them.

In 1981, Intel announced a 32-bit VLSI microprocessor

incorporating several architectural innovations [33, This

announcement stated!

"The Intel IAPX 432 represents a dramatic advance in
comouter architecture: It is the first computer
whose architecture supports true software tran-
sparent, multiprocessor operation; it is the first
commercial svstem to supDort an object-oriented
programming methodology; it is desianed to be
programmed entirely in high-level languages; it
supports a virtual address space in excess of
a trillion bytes; and It supports on the chio itself
the proposed IEEE-standard for floatina point arith-
metic, H

20

The next few pages will be devoted to orovldlng a brief

overview of the following architectural aspects of the

iAPX-432:

1. Object-Orientation.

2. Transparent Multiprocessing,

3. Capability-Based Protection.

4. Operating System Support.

1. nbjggf-Ortgntfltinn

what does it mean to be an object-based computer?

Unlike the classical Von Neumann architecture described in

the introduction, memory is not accessed as a single,

contiguous block. Rather, the memory is considered as a

collection or set of smaller units called objects, each of

which occupies some contiguous amount of memory. Very

important and fundamental to this conceot is the object's

recognition. This can occur in software, or as in the

majority of cases for the 432, in hardware. This recognition

enables the object to be typed or classified as to the

operators which are allowed to act uoon the particular

object. Since the 432 architecture can determine the

classification of an object it can prevent incidents such as

instructions (e.g. instruction objects) being interpreted as

data, and conversely, data (e.g. data objects) being

executed as instructions.

21

At the machine level, objects can be thought of as

being segments, a segment being a set of contiguous memory

locations which in the 432 case can range from 1 to 65,536

bytes !n length. However, there can be some differences in

the 432 case. Specifically, an object can be any one of the

following!

1, A single segment.

2, A collection of segments.

3, A cart of a segment.

This latitude in object abstraction gives compiler designers

a powerful base on which to build object oriented compilers

(ADA).

Intel has moved the recognition of specific object

types into the 432 hardware, as alluded to above,

Additionally, certain ooerators on these objects are

incorporated directly into hardware, while other ©Derations

must be done via software. The net effect of this decision

is twofold:

1. Increased reliability of all operations.

2. Increased execution speed of certain functions.

Figure 1 illustrates some typical 1APX-432 hardware

recognized objects:

22

Physical
I — I

ltAPX-432 I--
Iprocessor I

I
.........

|

Memory

--> IProcessor
Object
-— I—

—

v

Process
Object!—

-

V

Context !--->
Object
,...}.-.

v

Domain
Object

Instruction !

Object I

...........

I

Operand
Stack
Object

Figure 1, Hardware Recoanized Objects

The incorporation of an object-based programming

methodology, in the manufacture's own words, H .. .raises the

level of the hardware/software interface". The justification

for this statement can be found in the followino examDle,

Early computers had very simple hardware operations.

These early machines were not capable of supoorting

floating-point manipulations directly. If you wanted

f loating-ooint operations you had to implement them in

23

software. With the passage of time and increased

technological progress, computer hardware gained

functionality. What were once software functions found

themselves migrated into hardware, a classic example being

floating point operations. This evolution of software into

hardware is generally regarded as raising the level of. the

hardware/software interface in a computer architecture. The

432 carries this progression one step further by placing

system management operations, such as process scheduling,

memory management, and interprocess communication into the

hardware also. Referring back to Figure 1, the importance of

such objects as processor object, process ooject, etc.

should now taKe on greater sianif icance. Naturally, more

than these basic system objects will be needed to implement

the operations listed above. The processor must be able to

manipulate these objects in an appropriate way so that what

is traditionally done in a series of proaram steos is now

accomplished with a single instruction. The net effect of

such hardware instructions is to increase Drocessing soeeds.

Recalling the example of floating point ooerations,

we find that their incorooration into hardware increased

their SDeed of operation. Furthermore, soeed and reliability

are sianif icantly enhanced when an operation is implemented

in hardware. However, the capability based architecture adds

a sianificant amount of execution time to each instruction

and conseguently the performance of a processor is reduced.

24

The choice of an object-based computer architecture,

besides raising the hardware/software interface, integrates

ideas that have developed over the last decade in software

engineering. These include data abstraction, domain based

protection, information hiding, and high-level system

functionality. The iAPX 432 is an attempt to bring these

notions coherently together in a single architecture.

Summarizing, an object can be regarded as possessing

the following prooerties:

1, A data structure that contains information in an
organized manner.

2. A set of basic operations may manipulate an ob-
ject. The 432 hardware ensures that these are the
only ooerations that can manipulate the data
structure,

3, An object can be addressed as a single entity.

4. An object has a label which specifies the
object's type (e.g. Drocessor vs. process).

Lastly, as regards the relationship between segments

and oblects, a seament refers to the physical structure of

data in memory, i.e. where the structure is located. An

object refers to the logical structure of data in memory,

i.e. how the memory is used,

2. Transparent Multiprocessing

One of the most highly promoted features of the

1APX-432 is its software transparent multiprocessing

caoabilities , also called "incremental comouting power".

25

What this means is that the number of physical processors

(GDP boards) in the 432/670 system can be changed without

any corresponding changes in application software. That is,

a user's application program never has to be concerned with

the number of physical processors present. The only visible

effect of havino more than one physical orocessor is the

increase in system throughput. This xind of flexible

performance is not usually associated with microcomputers.

As applications become more complex and more dynamic, it

becomes increasingly difficult to predict how much

processing power a system will need to meet its performance

goals. This uncertainty can be a serious source of risfc. An

application may have to commit itself to a processor some

time before any code has actually been written. This Droblem

is solved by the iAPX-432 through the use of processor

objects. Processor objects are abstractions of physical

processors and hence their behavior can be manipulated like

any other object.

Transparent multiprocessing is accomplished through

the use of the processor object. The existence of a

particular physical orocessor is Immaterial. System

throughput can be increased by adding physical processors

CGDP boards) and therefore creating more processor objects.

More processor objects means that more user processes can

execute. Similarly, the removal of a physical orocessor

results in the removal of a processor object and a

26

subsequent reduction in the total performance. Fault

tolerance can thus be said to be improved by the fact that

in a multiple processor environment, if a processor fails,

it is simply removed from the system. The only effect should

be some reduction in throughput. In order to describe how

this "software transparent" multiprocessing is achieved,

other 432 objects besides processor objects and process

objects, will be introduced. Process objects can be equated

with user programs in the discussion which follows.

The term dispatching refers to the assignment of a

432 processor to some Drocess which is waiting to execute.

In the 432 case, this is the pairing-up of a processor

object with a process object. The manner in which this is

done is throuoh tne aid of another Darticuiar type of object

called a dispatchinn port object. Since this Is an object,

it also has certain uniaue ooerators which aoplv to it. The

dispatching oort object can be thougnt of as a queue-like

data structure which can contain Drocess objects or

processor objects, but never both. Processors, and hence

their processor objects, are self dispatching on the 432.

Therefore, when a orocessor completes its current task or

process it examines the dispatching port object to determine

if there is a waiting process, represented py a process

object, enqueued at the disoatching port. If there is a

process object present, the process object is "bound" to the

orocessor object, that is, a link is formed between the

27

processor object and process object. The processor then

dequeues the process object from the dispatching port, and

then Droceeds to execute the process. Conversely, If there

are no processes (process objects) enqueued at the

dispatching port, the processor enqueues Its processor

object at the dispatching port, In effect waiting for the

next ready orocess. Processes are not dependent on

soecifically which Drocessor Is executing it, or how many

processors are present in the system. Processes ready for

execution are simDly engueued at the dispatching port. The

presence of more physical processors simply means that the

average time a process is queued up at a dispatching port

should be decreased,

3. Capability Based Protection

Sharing data among a comDuter system's users in a

carefully controlled way has been a subject for much

lnvestiaation in computer systems. Implementation techniaues

aimed at providing for this controlled information flow have

run from introducinq privileged and user instructions (e.g.

IBM 360/370) to hierarchical protection systems as

classically illustrated in the MULTICS rina structure.

Intel's approach to this oroblem in the 432 architecture has

been to imDlement what are termed capabilities.

Caoabillties can be thought of as tickets, the

possession of which conveys privileges, normally the

Drivileae to access a segment. In the 432 case, to think of

28

them as a pointer plus access rights pair would be an even

closer analogy, Possession of a capability means that access

to a segment is allowed under the access rights associated

with that caoability. Access rights are: read, write, both,

or neither. In order to ensure protection, certain processes

should not be permitted to possess capabilities which grant

non-discriminate access to certain oortions of memory. For

examole, user processes should not have access to the memory

where the operatina system is contained. Therefore, because

of their function and inherent potential to be used

maliciously, capabilities must be unforgeable. In the iAPX-

432, capabilities are recognized and ooerated on by hardware

to assure this needed protection. The set of capabilities

accessible to a process at any one time is called the domain

of protection. As a Drocess runs, the domain of protection

will change. The ideal to be realized is that the domain of

protection should always be exactly matched to the

reguirements of the process; that is, it should contain

capabilities for all the segments that the process needs to

access and nothing more. This satisfies the principle of

'minimum privileoe' in secure systems jargon.

The original reasons that led to the desire to

design a computer with a capability based architecture may

be summarized under ruggedness and security, Ruggedness in

this sense means the ability of the system to survive the

conseguences of hardware failures or software bugs [4]

,

29

Security, on the other hand, can be thought o£ as ensuring

that access to memory is determined exclusively by the

access rights of the particular process in question.

There are basically two distinct ways of

implementing capabilities in hardware. These can be termed

the tagged and partitioned approach C 5 3 • in the former, all

words in the system carry a "tag' bit which clays no part

other than to indicate whether the particular word is a

capability or not. In the partitioned approach, words carry

no tag, so it is not possible by examining a word in memory

to determine whether it is a capability or data word,

Instead, the type of segment is important, i.e. there must
9

be capability segments which contain caDabilities and

nothing more, and 'data* segments which contain anything but

capabilities. The iAPX 432 uses the partitioned approach.

Intel's decision to imolement the partitioned

approach causes us to sliohtly refine the concept of an

object as discussed earlier. As was previously stated,

objects in their physical form are eguated with segmentCs),

A combination of an object-based architecture with

capabilities imolemented in the partitioned aooroach means

that each object Is comoosed of two distinct parts, a data

part and a capability part. Indeed, in the 432 architecture

there are two fundamental segment base types. These base

types are called data segments and access segments, A data

segment can contain anvthing exceot capabilities, whereas an

30

access seqment can contain only capabilities. Therefore, an

object should now be correctly envisioned as being comprised

of these two segment types. An example of how this is

actually implemented for some of the system objects is

shown in Figure 2.

processor object

..-...-..--— ---

I

|

processor access
segment

(capabilities)

process object

I
i

processor data
segment

process access
segment

process data
segment

Figure 2. Object Representation

Summarizing, Intel has implemented capability based

support for memory protection in the 432. These capabilities

can be thought of as an address of, or pointer to, an object

with an attached type describino the classification of the

31

referenced object (e.g. process object, context object, etc.)

and an attached protection mode (e.g. read only or

read/write). In the 432, Intel has decided to call

capabilities access descriptors because of their similarity

in concept to pointer implementation in ADA which is termed

an 'access'. Furthermore, objects in the 432 system are seen

to be comprised of both data segment(s) and capability

(access descriptor) segmentCs). The data segment of an

object could be thought of as containing information

intrinsic to the particular type of object. The caoability

segment on the other hand, contains caDabilities for all the

other objects it may need to reference. Additionally,

capabilities are seen to enforce the principle of minimum

privilege. Perhaps providing an important insight into 432

performance, M.v, wii*es has said [63:

"Comoared with a conventional computer system, there
will inevitably be a cost to be met in providing a

system in which the domains of protection are small
and freauently changed. This cost win manifest it-
self in terms of additional hardware, decreased
run-time speed, and increased memory occupancy. It
is at present an ooen guestion whether, by the adop-
tion of the capability approach, the cost can be
reduced to reasonable proDortions .

"

4. Operating System Support

Like the 432 hardware, Intel has created an object-

oriented operating system for the 1APX 432 called 1MAX, It

has been designed as a multiprocessor operating system, and

conseauently it accommodates any number of running

32

processors. As a result, all synchronization within the

system must be explicit. Furthermore, as the manufacturer

has pointed out [7], the 432 and iMAX are products primarily

intended to be used bv original equipment manufacturers in

the construction of their products. Related to this is the

fact that iMAX does not provide a command language or a

human interface, rather it is designed to orovide executive

services to user-provided software which makes calls to

iMAX.

Many traditional operating system primitives are

implemented as hardware functions in the 432, In an effort

to elaborate on the relationshio between the iMAX ©Derating

system and the iAPX-432 functions, a digression is in order.

As pointed out earlier, the 1APX 432 architecture provides a

higher level of functionality in hardware than conventional

computers. Important system management functions are

realized through hardware-recognized representations, i.e.

objects. High level operations on these system objects (see

Fig, C13), such as sending a message between processes, are

provided as single machine instructions. These features of

the 432 are referred to as the Silicon Ooerating system.

These features are not In themselves an operating system,

but contribute oreatly to the building of one.

The relationship between iMAX and the hardware might

best be described as cooperation. iMAX doesn't simply run on

the hardware, rather the hardware acts autonomously to

33

provide Important services, such as processor self-

dispatching as pointed out earlier. A good example of the

division of labor which occurs between iMAX and the 432

hardware can be found in storage management. Hardware

defines system objects used for storage management, provides

single Instructions that allocate new objects, and sets flag

bits needed for storage reclamation and virtual storage

management, IMAX will then provide services which will

create and reclaim local storage pools and will provide

processes which compact storage and reclaim unreferenced

objects.

Probably the most notable point about iMAX is that

the user may view iMAX as a set of ADA package

specifications, each of which corresDonds to a particular

service provided by the system. Additionally, there Is no

distinction between IMAX packages and user-written packages.

iMAX operations and user operations are invoked in the same

way. There is no special calling convention, no 'Supervisor

Call' Instruction, as is the case in many current commercial

systems. The effect of this particular implementation is

twofold:

1, Users can create subsets of IMAX by omitting
unused packaaes,

2, Users can create supersets of iMAX by addina
th^ir own packages.

34

iMAX also benefits from the 432*s capability

protection mechanism described earlier. References for

system objects can be passed to user processes without fear

of damage or system compromise because the rights associated

with these user process capabilities have been modified by

iMAX approDriately Ce,g, read only). User Drocesses cannot

corrupt these references passed from iMAX,

Like the 432 hardware, iMAX is in a continual state

of change by Intel, Version 1,0, which this thesis worked

with, is a preliminary version intended to get potential

users quickly acquainted with it in order to acquire the

ability to execute ADA programs on the 432, As a result, the

number of ADA packaoes which the user can tailor to his or

her appliration are relatively few, as advertised, the

following services are provided by IMAX, V1.0:

It Configure and initialize a multiple-GDP system,

2, Read from and write to the debugger console ONLY,

3, Create and start multiple user processes defined
at comDile time,

4, Communicate between user processes by exchanginq
messages.

5, Inspect type, rights, and storage information
contained in access descriptors and object
descriptors.

6, Inspect context and process dependent information
in a running program's environment.

35

Later versions are supposed to support Attached

Processors which are essentially the means by which the 432

can communicate with tne outside world. When this support is

finally implemented, the current, severely limited I/O (i.e.

debugger console only) will be replaced by a variety of

conventional I/O devices.

8, ADA LANGUAGE SUPPORT

As was previously mentioned, there was a considerable

amount of parallel development between tne ADA language and

the INTEL iAPX-432. Both the ADA language and the 432

architecture address many of the problems associated with

large scale software development Drojects. This resulted in

several architectural constructs which directly support many

ADA language features.

1 . Object Typing

The object orientation of the architecture plays a

major role in language support. Every object is tyoed by

the compiler or by the hardware to indicate its intended

use. This allows a natural separation of orocedure objects

from data objects. In addition to 'intended use' typing, the

objects are also classified as to their internal structure.

This structure can be one of two types, access objects or

data objects. The access object is an array of access

descriptors Cto other objects) while data objects are

structured blocks of data information. Access objects

36

contain only access descriptors and data objects contain

only data. This is represented in Figure 3,

access object

!-....

data object

* *

..—
I

I

I I

v

I
........

I——I

.....>

i.-.-.i
I I

* *

xa«

V

,-> * *

Figure 3, AOA-432 Object Types

As shown in Figure 3, any set of iAPX-432 objects can be

represented by a directed graph containing access object

nodes and data object nodes. This notational convention

serves as a useful model for representing execution time

objects and their relationships to corresponding ADA

programs. It is important to realize that an object can

exist as the subpart of another object and yet be logically

different. Such an object that is ohysically contained

inside a parent object is termed a refinement of the parent

37

object. The refined objects are physically sub-parts of the

parent object, yet they can inherit the full privileges of

objects, as if they were physically distinct from the

parent, in the case of multiple refinements, they can behave

as if physically distinct from other refinements of the

parent. This is illustrated in Figure 4.

oarent

I——I
I !

I——I
->

I child

I child

Figure 4. Refinements

2. Domain Objects - Package Objects

Common data structures and procedures can be grouped

together using the ADA oackage construct. The INTEL iAPX-432

uses a domain object to reoresent an ADA package. The domain

object, like a package, is a collection of data objects and

procedure objects (hence it is of type access). This can

best be illustrated by the following example of an ADA

package definition and the corresponding iAPX-432 object

representation shown in Figure 5,

38

package SIMPLE is
i,j,K : Integer I

procedure ADDCi,j,iO; I

procedure SUBTRACTC1,

j

.<) ;

I

Domain Objec
SIMPLE

end SIMPLE

package body SIMPLE is
procedure ADD(i # j,k) is

begin
< := i*j;

end ADD;

1-1—
I

I

v

I I

I Data I

I codei

!

I

V

Proc.
ADD
code

I

I

V

Proc.
SUB
code

procedure SUBTRACTC i, j ,K) is
begin

fc := i-j;
end SUBTRACT;

end SIMPLE;

Figure 5. aha PaeJcaae and iAPX-432
Object Corresoondence

Since objects can be refined, it is possible to refine a

domain object to create domains of a Dackage with different

access riohts. This mechanism very nicely supports the

public and private access rights defined in ADA, A user is

given access to public information by creating a refined

object with access descriptors to a refined domain which

contains only public data,

3. Procedure Objects - Procedures

An iAPX-432 procedure object consists of executable

code corresponding to an ADA procedure. The procedure object

39

also contains Information required to form the activation

record or context object which Is created on procedure

Invocation. Procedures may be Invoked In either lnterdomaln

or intradomain contexts. The lnterdomaln context means that

a procedure in one package (domain) is calling a procedure

in another package (domain). Intradomain procedure calls are

simply calls within the same package.

4. Activation Records

A block structured languaae such as ADA can make

efficient use of activation records. The 1APX-432 supports

the use of activation records via context access objects and

context data objects. The context access object represents

local reference variables and the context data object

represents local data variables of the activation record.

The 1APX-432 instructions 'crocedure call' and 'orocedure

return' create and destroy context objects,

5. Tasking

One of the important multiprocessing features of the

ADA language is the concept of a task. Tasks are directly

supported In the iAPX-432 through the use of disDatching and

communication port objects. The communication oort object is

a message queue that acts as a buffer between Drocesses that

may be executing concurrently. It's function is to allow

inter-process communication, A dispatching port is a soecial

form of a message aueue in which a process object may spend

time waiting for the arrival of an available processor, or

4n

where a processor object awaits the arrival of a process.

These operations are performed in hardware which allows for

very efficient coding of the ADA tasking model.

It may be surmised from the previous discussion that the

language ADA and the INTEL iAPX-432 have several common

foundations. This was undoubtedly intentional. The

microprocessor is designed to be orogrammed using high level

languages such as ADA as the development language, Mo

assembler is planned or under development by the

manufacturer.

41

IV. RENCHMARK PROGRAM TIMTNG RESULTS

A, BENCHMARK PROGRAMS

The benchmark programs were obtained, for the most part,

from the CFA algorithms referenced In Chanter II, Section E

"Benchmark Evaluation Description". Some programs from a

non-CFA related study were also used so that an objective

timing comparison could be made with other processors.

1 . Methods Used

The programs were coded in ADA, compiled using the

INTEL ADA-432 compiler on a VAX - 11/780 host computer,

linked on the VAX - 11/780 using the INTEL 432 linker, and

downloaded to a floppy disk via the INTEL asynchronous

communications link. Execution of the downloaded object code

was performed using the INTEL Debugger and Execution

software package operating on a INTEL MDS System 800. The

INTEL mds system is reguired to load tne executable code

into the INTEL 432/670 system for execution on the iAPX-432

microprocessor. The system setup is shown Figure 6,

VAX 11/780 VAX 11/780

I I
—

>

I ! --> I

I I I II
compile link download

MDS-800 432/670

->

execute

Figure 6, CDS System Overview

42

In order to actively simulate large scale software

development (and to exercise some unique ADA features) all

the coded CFA programs were developed in such a way that the

program specifications were seoarate from the program body.

The effect of this decision was twofold:

1. Programs could be written and debugged indepen-
dently by both authors.

2. The concept and value of using a seoarate program
soecif ication construct could be demonstrated.

A careful inspection of each benchmark program will reveal

that it consists of three primary parts. These parts are:

1. Package specification.

2. Package body.

3. Main or driver procedure.

The driver routine is needed to initiate a user process in

the 432/670 system. The Droorams were desianed so that the

user could control the number of times the benchmark was

invoiced. This allowed for an effective averaging method.

For example, the benchmark could be executed 100,000 times,

accurately timed with a stoDwatch, and then the total

elapsed time could be divided by 100,000 to obtain the

average execution time for the procedure. Each program

writes a start and a stop message, including an audible

'bell' to indicate when to commence and end timing. In

order to effectively isolate the procedure invocation timing

43

overhead from the benchmark timing, there were usually two

different driver routines with each benchmark program. Each

program, when executed, would request the number of times to

perform the algorithm in guestion. This request could come

from the driver routine or from the benchmark procedure. If

it came from the former then the time measured included the

time required to invoke the procedure, A timing reguest from

the benchmark procedure included only the timing required to

perform the alqcrtthm. The difference in the two times was

then a measure of the procedure invocation overhead. Note

that this method would not work with a recursive procedure.

Further discussion of these methods and the mechanics

involved can be found in ChaDter V, "CDS 432/670 User

Evaluation. "

,

2. Applicable Algorithms

The ADA-432 compiler (Version 1.0) does not support

the full ADA lanouage. The manufacturer has added some

extensions to the compiler but it presently lacks manv

important ADA features. Some of the significant compiler

limitations are as follows:

1. Fixed point and floating point types are not im-
plemented,

2. Tasking, as defined in the Reference Manual for
the ADA Programming Language, is not implemented.

3. Array operations, such as concatenation, assign-
ment, and boolean operations are not implemented.

44

4. Dynamic arrays and dynamic strings are not imple-
mented,

5, Run time checks are not operational,

6, Exceptions are not implemented,

7. Record representations for records containing
fields of tyoe access are not implemented.

Although the above compiler limitations are rather severe it

was still Dossible to code several of the CFA algorithms In

ADA-432 and most of those coded could be executed on the

iAPX-432, The lack of a hardware interruDt orevented many of

the CFA benchmarks from being coded. Future releases of the

432/670 system are suDDosed to provide the facility of an

interrupt throuah the use of an attached processor. This

feature was not available in this release of the 432. A

short description of each of the executable programs

follows. The complete source code can be found in Appendix

C,

a. Character Search

This orogram searched a given string for the

occurrence of an argument string and returned the location

of the argument strino, if it was located. The program was

coded from the algorithm in the original CFA study. The

algorithm is listed in Appendix D, The strings were read

into a variable of tyoe STRING80, which is an ADA-432

predefined type reguired for text I/O. The strings were

then decomposed into individual characters and assigned to a

45

1 by 256 character array. This method. was necessary because

of the primitive state of the current ADA-432 text I/O

package. The program was made Interactive to allow for many

searches to be performed In any given debuagina/execution

session. The data structures, calling conventions, and a

samole expected result are shown In Figure 7,

Search string:

I I ! I I t ! I I I I I !! I I I I I I I

MIolnMlalyl , I IJIulnlel !7ltlhl,l 1 1 1 9 I 7 I 6

I I I I I I I I l I I I l I I I I I i I I

123456789

Argument string:

22

l-l-l-l
Idlalyl
I. I.I.I
1 2 3

Search length :a 22

Argument length := 3

SEARCH (Search.length, Arg.length,Search.str , Arg.len, loc)

expected result : loc = 3

Figure 7, Character Search

46

Two versions of the program were used. One

version Included the time required to invoice a procedure

while the other version did not include procedure invocation

overhead. As will be shown in the timing results section of

this chapter, procedure invocation is expensive,

b. Quicksort

This program performed a quicksort on a given

array of records. The program was coded using the CFA

quicksort algorithm in Appendix D. The records sorted

consisted of an integer key field Cto be sorted on) and a

character field associated with each key. A pictorial

representation of the data structure and the sorting process

and calling convention is shown in Figure 9.

Arrayl Array2

1
"•• •--

1

1 4 I

1
--- -•-

1

1 1 A 1

| m mm --«
1

1 5 E 1

| --« mmm
|

1 2 B 1

}•»«**• -••
i

1 3 C 1

1
•-- ---

1

SORT

B

C

D

E

Calling convention: SORTC Arrayl ,Array2)

expected result : arrayl is sorted on
the integer field
to make array2.

Figure 8. Quicksort

47

The program was written to act Interactively with the user

to allow for several different runs per debugging session.

Two versions of Quicksort were used, one was an iterative

sort, the other a recursive sort. The timing results show

that the procedure invocation overhead of the recursive sort

was significant.

c. Hashtable

This proaram located the oositlon a key would

occupy in a hash table. An example of the data structure

used and the calling conventions are shown in Figure 9. The

alaorithm for this program was obtained from the second CFA

study by DietzEl] and can be found in Appendix D.

TA9LE
HASHES(key)--

I

I

v

calling convention:

position. := HASHESC key)

Figure 9, Hashtable Data structure
and Calling Convention

Since this program used a function, there was only one

version written. The procedure invocation overhead is

included in the timing results.

48

d. Digital Communications Processing

This program sent a message to a given output

buffer. The algorithm was tafcen from the second CFA study by

Dietz CI] and is located in Appendix D. The data structures

used for the Drogram and a tyoical calling convention are

shown in Figure 10,

m»mii

msq.Dtr

messaoe:

A pointer to a messaae record.

I

I This is a message I

I I

I

destination connection message data

destination. tbl buf.tbl buffer.array

II

2IThis is a

I message
I

31

destination indexes
destination.tbl
which then points
to a specific
buf.tbl array.

connection
indexes
the buf.tbl.

contents of
the indexed
buf.tbl used
to locate the
aDprooriate
buffer.array
position to
Dut message
data.

calling convention:
FORWAPDCdestination, connection , msg.ptr)

Figure 10, Digital Communications

49

The program interactively queried for the message

destination, message connection and the message text. This

allowed for several sample runs to be performed during a

debugging session,

e. Memory Usage

A close inspection of the ADA source code in

Appendix C shows that many of the data structures are auite

small, This is intentional, and necessary. Early In the

course of this investigation it was discovered that proorams

would compile correctly but execute in an unpredictable

manner. The problem was found to be in the amount of heap

memory allotted to a user process in Version 1,0 of the

iMAX-432 operating system. The memory allocated was not

extremely lame, and could often be used uo without any

indication to the user what was wrong. The proaram Eat-

Memory was written to demonstrate how fast memory was used

up. The program was fairly simple in that all it did was to

create an array of 50 characters and a pointer to the array.

This program was also written in two versions, one that

created the arrays recursively, the other iteratively. The

expense of context creation in a recursive procedure was

shown to be very great. Only nine recursive calls could be

made before the program used all of the available memory and

the system crashed. The iterative version did much better

and 199 separate data structures were created before all

available memory was exhausted. Of particular interest to

50

the user is that there is no indication as to what is wrong

when the memory is used up. The display is "blank" and all

efforts to use the debug facility resulted in a system

response of "no current Drocess". In summary, the user must

laboriously inspect the program object code (the map file)

and arbitrarily set breakpoints in the code to determine

what the cause of the fatal error is. This problem is

elaborated in Chapter V of this thesis.

3. rFA rnd»d hut not Fxeen ted Programs

Two programs from the first CFA study were coded in

ADA and executed on an ADA-ED compiler to check for correct

program execution. These programs were:

1. Linked List Insertion.

2. Runge-Kutta Integration.

Unfortunately the present ADA-432 compiler does not support

the floating point data type necessary for the integration

program? nor does the ADA-432 compiler support records with

access types, which is necessary for the linked list

insertion program. The ADA source code for these programs Is

located In Appendix C for easy reference to allow for

possible conversion when a more comolete compiler is

released,

4, Non-CFA Related Programs

Since the CFA study never actually timed the

benchmark programs in terms of execution speed, it was

51

decided that a physical comparison of the iAPX-432 with

other processors would be useful. A previous evaluation of

the iAPX-432 by Hansen [33 in June 1982 provided three

convenient ADA programs to use. These programs were obtained

from the Computer Science DeDartment at U.C. Berkeley,

modified slightly to conform with the current ADA-432

compiler requirements, and then executed and timed on the

432/670 system. The three proarams used were:

1. Search: Search a 120 character string for a 15
character sub-string.

2. Sieve: Compute prime numbers.

3. Acker: Calculate Ackerman's function with argu-
ments 3 and 6, This is a recursive computation
reauiring more than 170,000 procedure calls.

The complete ADA source code for the programs can be found

in Appendix C. The timing results are summarized in Chapter

IV.

B. TIMING PROCEDURE AND RESULTS

All the CFA programs were written so that the user could

write the arguments from the keyboard and select the number

of times the program was to execute. Dividing the total

elapsed time by the number of times the Droaram executed

gave an average value of execution time for the particular

benchmark. Procedure invocation overhead was subtracted from

the non-recursive procedures and both timing values are

shown in the following discussion. in addition, the

52

parameters used and the number of executions are also

listed.

1, CFA Benchmark Program Results.

The following sections describe the parameters used

for each benchmark executed, the number of executions

performed, the total elapsed time (In seconds), and the

calculated execution time for a single run. Note that the

program name corresDonds to the ADA-432 source code for the

respective program in Appendix C.

a. Character Search

The parameters used in this benchmark timing

were:

SEARCH STRING : Monday, June 7th, 1976

ARGUMENT STRING J day

SEARCH LENGTH ! 22

ARGUMENT LENGTH : 3

Program
name

CHARS1

CHARS2

Number of
executions

100,000

100,000

Elapsed time
seconds

315.6

142.3

Time
msec

3.2

1.4

Fiaure 11, Character Search Results

53

The program CHARS1 Included the time required for 100,000

procedure invocations whereas CHARS2 did not. For this

benchmark, Figure 11 shows that the procedure overhead was

more than twice the time to perform the algorithm!

b. Quicksort

Two forms of the quicksort algorithm were used,

one recursive , the other iterative, A twenty element array

was sorted. The worst case array was chosen, that is, all

the elements were inversely ordered. Figure 12 represents

the parameters passed; unsorted arrayi was passed to the

procedure and the sorted array2 resulted,

arrayi :

20 19 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

array2 :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Proqram
name

Number of
executions

Elapsed time
seconds

Time
msec

QUTCKl
(recursive)

QUTCK2
Cnon recursive)

1000

1000

55,8

40.5

.56

.41

Figure 12, Quicksort Results

54

As expected, the recursive procedure tooK considerably

longer to execute. This is not too surprising since the

overhead of procedure invocation is included,

c. Hashtable

The hashtable algorithm was implemented as a

function. The timing results therefore include the function

call overhead. This function used the sample hash table from

the CFA study and a Key value of 41 was used as the aroument

of the function. The hashtable's initial values, calling

convention, and timing results are shown in Figure 13,

Key | 193 11 1035 1035 133 86 193 193 I

I
—— - -

I

index 1012-3 4 56789 1

position := HASHESC41)

Program
name

HASH1

Number of
executions

100,000

Elapsed time Time
seconds msec

252 2.5

Figure 13. Hashtable Results

d. Digital Communication Processing

This procedure sent a thirty character message

to the output buffer. Figure 14 represents the data values

passed to the procedure for processing.

55

msg.ptr i I

message
I -

1

I
-

I

I 10 I 10 I This is a thirty character msgl
I—— I— -I—————— —-

|

destination connection message data

Program Number of Elapsed time Time
name executions seconds msec

DC0M1 100,000 286.9 2.9

DC0M2 100,000 201,6 2.0

Figure 14. Digital Communication Results

In this case the procedure overhead was nearly one third

that of oerformina the algorithm.

2. Non CFA Program Results

An earlier study of the 432 was performed by

HansenC33 at U.C. Berkeley, Several benchmark orograms were

coded and executed on various machines and in several

different languages, A summary of those results is shown in

Figure 15.

56

machine 1 language I program
1 ! name

1 Search | Sieve 1 Acker

432 1 ADA 1 14.2 1 3200 I 260,000
4 MHZ * III
8086 1 PASCAL 1 7.3 1 764 1 11100

5 "HZ 1 III
A8000 1 PASCAL 1 1.3 1 196 1 2750
16 MHZ 1 1 1 1

V4X 1 PASCAL 1 1,4 1 259 1 9800
11/780 l (VMS) 1 1 1

1 1 All times are In ms-ec

These results are from a study by HANSENC3]
which were performed on a 432 version 2, The
processors manufacturers were : 8086 - INTEL,
68000 - MOTOROLA, VAX 11/780 - DEC,

Figure 15. Previous w on cfa Timing Results

An attemDt was made to duplicate the results from

the earlier study by executing the benchmark programs on the

CDS 432/670 system. The Drograms that were received from

U.C, Berkeley would not compile under version 1,0 of the

compiler supolied with the 432/670 system. No parameters

were passed in using these tests, they were included in the

code. An examination of the ADA source code in Apoendix C

will also reveal that no effort was made to separate program

body from program specification. The results from our

timing are shown in Figure 16,

57

machine 1 language I program
1 ! name

1 SEARCH j SIEVE 1 ACKER

432 1 ADA 1 21.7 1 58.4 1 2000
8 MHZ 1 V 1.0 1 i 1

Figure 16. Non CFA Timing Results
ADA Version 1.0

Extreme caution must be exercised when comparing these

values to the previous study, SDecificaily in the case of

the SIEVE and ACKER orograms. The limited stack t\Qap

available prevented implementina the code exactly as done by

'J.C. Berkeley. The results of the SEARCH benchmark are very

interesting. The three proarams received from U.C. Berkeley

reguired some modification before they would compile

successfully on the Intel ADA-432 compiler. More

importantly, our results generally include the time reguired

for procedure invocation. In some Instances, notably our

algorithm implementing the character search, we also have

results which do not include procedure invocation overhead.

Lastly, whereas we used the conceot of packages in arriving

at the coding of our benchmarks, the U.C.Berkeley programs

58

did not. These differences are easily seen by referring to

Appendix C.

It Is not clear whether the results by HansenC3]

Include procedure invocation overhead. However, since the

432 used in this thesis had a 5 MHZ clock rate (with an 8

MHZ system clock) as opposed to a 4 MHZ clock rate in the

Hansen study, one would suspect that running the same

orograni with the same data would give at the least,

comparable results. To our surprise, this was not the case.

Initially, we timed the SEARCH algorithm sent from Berkeley

"as is". This was timed at 23 milliseconds, guite a

difference from 14.2 in the previously cited study. We then

modified the Berkeley algorithm so as not to include string

initialization each time. Since our first timing was so

different from the Berkeley study we thought that string

initialization should not be included in the results. The

second test was made by just timing the Berkeley search

function alone. This included procedure invocation overhead.

The result is listed in Figure 16,

C, SUMMARY OF RESULTS

The data in the previous figures pertinent to the CFA

studies, is summarized in Figure 17, It is believed by the

authors that the following times represent realistic

execution speeds available to a user performing in the

working environment of the present 432/670 system.

59

Program
description

execution speed
msec

Character Search 1.4

Quicksort (recursive) 0.56

Quicksort (non-recursive) 0.41

Hashtable lookup 2.5

Digital Communication 2.0

Figure 17, Execution Speed Result Summary

The data reported above does not include the procedure

invocation overhead, with the exception of the recursive

Quicksort and the function Hashtable LookUD. It needs to be

emphasized that the numbers are only 'rules of thumb' that

should be used in describing the execution speed of the

iAPX-432. Compiler differences, and just as imoortantly the

argument used in the algorithm, can significantly affect the

60

execution speed. For example, If the character string

searched for In the Character Search Is near the beginning

of the search string vs. near the end of the search string,

the results can vary by as much as a factor of ten. (The

length of the string searched also plays a significant role

in determining execution time). The exact arouments passed

and the calling conventions used have been described in

detail (Chapter IV.A) for future reference and comparison.

The values in Figure 17 represent an approximation to

the time reguired to perform a given algorithm. In order to

cross check and verify the timing results, an effort was

made to time a single iAPX-432 instruction. This was

accomplished by writing two test oroorams, T100 and T101,

which differed by a sinale line of source code. That is,

Tioo executed "A := B C" one hundred times and T101

executed "A := B - C H one hundred and one times. An

examination of the MAP file (the compiler output) revealed

that the code differed by one statement. That statement was

"sub.i", an IAPX-432 mnemonic for subtract integer. The time

difference between the two programs could then give a figure

for the execution speed of the single sub.i instruction. The

measured speed could be directly compared with a previous

study [8] which timed individual instruction speeds on a

4MHZ iAPX-432/100 Versionl. The results are summarized in

Figure 19,

61

Program Number of time(sec) difference
name sub_i executions

Tioo I 40,000,000 I 777.8
I—-.— -,

I

6.90

T101 I 40,400,000 I 784.7 I

execution time
sub.i = 6.90 / 400,000 = 1.73 X 10-5 sec

sub-1
Version 1 5MHZ

estimated cycles

77

sub.i
Version 2 5MHZ
measured cycles

86

Estimated cycles are from an earlier study [8]

on a 432/100 system and represent a projection
based on measured results. Version 2 measured
cycles are the result of the product of execution
time and the clock rate.

Fioure 18. Individual Instruction Timing

As can be seen in Figure 18, the measured speed of the

sub.i instruction in this study is in good agreement with

the previous results. The differences can possibly be

accounted for in the fact that two different versions of the

microprocessor are being compared.

An attempt was also made to eliminate the effects of

"dead time", or "time out" in the execution of a orogram,

This time out is the oerlod during which a process is

suspended while the dispatching port is checked for another

process to be assigned to a processor. Normally a process is

62

given a default value of 0,2 seconds of dedicated processor

time between time outs. Since only one program was executing

at a time, it was not believed that the program timing

results would be significantly affected by the dispatching

port check overhead. To verify this, a modification was made

to the INTEL supplied ADA package PSERP.mbs, The

modification increased the time slice from 0,2 seconds to 2

seconds. Similar programs that differed only in the time

slice period (0,2 seconds vs 2 seconds) executed within 0,5

seconds of each other over a total execution time of 200

seconds. This confirmed that the time slice period between

dispatching port checks was not significantly interfering

with the benchmark results.

63

V, CDS 432/670 USER EVALUATION

In the process of working on this thesis both authors

felt that a section devoted to constructive criticism of the

INTEL Cross Development System would be appropriate. 3y

Cross Development System we mean the INTEL ADA compiler*

linker, downloading and execution software and corresponding

documentation. Additionally we conclude with some of our

thoughts on ADA. We understand that many of the problems

addressed here are not permanent, and very likely many of

the items we have found to be mysterious or irksome may have

already been corrected in a later release.

The INTEL 432/670 system can be conveniently divided

into four major comoonents:

1. Comoiier.

2. Linker.

3. Downloading and Asynchronous Communication.

4. Debugging and Execution.

The following discussion will treat each component in turn,

stating what positive and negative attributes we found.

A, COMPILER

The ADA-432 compiler does not support full ADA. The

language limitations are listed in Chapter IV, Of these, the

64

lack of floating point number support was felt to be

extremely burdensome to this thesis, A great many of the CFA

measures are focused on floating point manipulation, as are

many real world applications. At the machine level, the

iAPX-432 has outstanding floating point suooort, such as

multiply, divide, and square root machine instructions. The

lack of compiler suooort for floating point operations

prevented us from testing proarams in an area where the

iAPX-432 should provide outstanding performance.

The present text I/O package provided in the ADA-432

compiler can best be described as primitive. The user is

given a choice as to how messages can be input and output to

and from the screen, that is, the message can be 1, 10, 20,

30 or 80 characters long, and of no other length. Counting

the numoer of characters in one's input and output text

significantly detracts from the art of proarammlng.

Compilation of a user's ADA source code is performed on

the host VAX 11/780 and it proceeds at a respectable rate,

the turn around time was always less than a minute. The

number of compilation errors is displayed at the end of

compilation, however the reason for the errors is not. To

evaluate the compilation errors, INTEL has supplied a very

useful report facility which is an image of the original ADA

source code with errors identified by a diagnostic message

and code number. Unfortunately, many of the error code

65

numbers in the INTEL reference manual just reoeat the same

diagnostic error message, with no further elaboration.

There was one very frustratina asDect of the compiler

output to the screen. That is, after compilation is

complete, there is no message as to what unit was just

compiled. Since the compiler output often scrolls the

screen, this leaves it up to the user to remember what unit

has just been comoiled, ADA programs consist of roany units,

and in more than one instance we found ourselves reconciling

a unit that had just been compiled, A very simole solution

to this would be to output the compiled unit's name as the

last line of output along with the error messages.

As with most new comDilers, there are some errors. The

more significant of these are the type that allowed

compilation of code representing features that are not yet

implemented. For example, array assignments are not yet

operational, yet a source code program containing them

compiles with no error messages. Execution, as expected,

does not occur. Most of the ADA restrictions are well

documented in the error report file, however, it only takes

one or two which are not identified to cause significant

problems in debuoging a program. At least one type of error

crashes the comoiler. That is, a program which needs a

large data structure may never compile and furthermore the

user will never be informed as to the reason for the

failure. This problem occurred with the following program

unit:

66

type item Is
record

key : integer;
data : character?

end record;
type array-one is arrayC 1 , ,2000) of item;

begin

When array-one had 2000 elements the program unit crashed

the compiler. Lowering the number of elements to 200

allowed satisfactory compilation.

8. LINKER

The linking process of a users program is tedious. A

separate link program needs to be written for each program

that is to be linked. The time to link a orogram is

considerable, usually in the range of two to three minutes.

Many default Darameters occur in the linking process which

can be changed by directives in the users link program. No

problems were experienced with the default values, but

depending on a default value for proper program execution

can easily lead to difficult debugging errors in future

proaram maintenance. In our ooinion all the directives

should be reguired to be explicitly stated.

The linker has at least one ambiguous characteristic.

After a successful linkage, a message is written to the

67

screen which states "LINKAGE SUCCESSFUL". This message may

also be accompanied by one or more warning messages. In

every case that we experienced, if a warning message

occurred during linking then the program would not execute.

The message "LINKAGE SUCCESSFUL" can be very misleading,

C, DOWNLOADING

The process of downloading programs from the host VAX

11/780 system is probably the biggest drawback to the

432/670 system, since the iMAX operating system is part of

the downloaded object files (EOD), the files reauiring

transfer are guite large, A typical small ADA program (less

than 100 lines of source code) takes nearly twenty minutes

to download at 2400 baud. This makes program changes very

time consuming. Even if a 9600 baud line were used, the

entire process of correcting source code, re-compillng

affected modules, and then downloading them, reauires a

significant amount of time. There is a program called

UPDATE for merging a recompiled module of a program with

the existing EOD file. The smaller re-compiled module is

much faster to download, about seven minutes, but the UPDATE

program takes about 3 to 4 minutes to execute. The time

saved was not considered significant to warrant use of the

UPDATE feature. Especially since a new link program would

have to be written each time it was desired to recompile a

portion of a Drogram,

68

D, DEBUGGING AND EXECUTION

Our Impression of the debug facility was favorable. It

allowed for access to the program structure at an assembly

language level. This did not allow any type of assembly-like

programming but did provide a means to locate errors in our

source code by mapping the error location to a source code

statement number. A very useful utility is the LOG proqram.

This allows everything that was input or output at the

terminal to be logged for future reference. The debug

facility could be made much more user friendly by

Implementing the ADA exception features. At present, the

lack of exceptions means that run time errors may not be

reported, and indeed may cause the system to crash with no

indication to the user as to the cause. An example of this

occurred when one of our Drograms attemDted to index an

array outside the declared array bounds. No error messages

were reported, and the system crashed.

The execution of a program was difficult to initiate.

The followinq sequence of commands represents the minimum

time required to execute a oroqram after the cower is turned

on and the ISIS-II operating system is booted. The times are

approximate and they depend on the size of the orogram that

is going to oe executed.

69

command time required

run work :F0: .5 min.
RUN DE9432 1 min.
INCLUDE DEB432.TEM 1 min.
INIT 1 min.
DEBUG "userprogram" 1 min,
START

Once the system debugger is loaded (once per session) things

proceed a little faster. Only the last three commands of

INiT r DEBUG, and START are required per program.

E. ADA IMPRESSIONS

One of the many interesting facets of wording on this

thesis was the exposure to the new DoD language ADA.

Inasmuch as our use of ADA was limited to the benchmarXs in

this thesis, plus the fact that we dealt with a compiler

which did not fully implement the languaoe, our impressions

are limited. However, the features of ADA we did exercise

left us with some favorable imoressions.

The feature we used and HKed most was the ability to

separate the specifications of a program from the

corresponding body of the program. The package feature of

ADA was used to do this. A specification pacXaqe is simply

the formalizing in ADA of what the interface of the program

is to be, i.e., the 'what* of the program. The body package

on the other hand is the formalizinq in ADA of the manner in

7ft

which one plans to implement the program, I.e., the 'how' of

the program. The contribution of this separation is

twofold:

1. Given a specification package, a programmer is
free to implement the program in the manner he or
she sees fit, so long as it satisfies the specif-
ication, or interface.

2. Users of a particular program or programs need
only be given the specification package in order
to discern what the particular code can do for
them. The 'how' of the code, or the body package,
need not concern them.

Using this technique in very large software projects

should have a significant effect on software development and

maintenance. In our small scale projects the separation of

soecif ication and body allowed for easy parallel develooment

of the benchmark programs. The acceptance of AD* by DoD

computer personnel could be seen to lead to:

1. The arowth of software libraries with specifica-
tion packages as the user interface to the li-
brary,

2. Greater productivity among programmers. For in-
stance, suppose a decision is reached on what a

particular piece of software is to do. This
"what" is formalized in ADA, and given to the
programmer(s) . The programmer is now free to
bring all of his or her abilities to bear on suc-
cessfully implementing the body, or the "how" of
the piece of software.

3oth of these abilities are generally regarded to be very

worthwhile, something which up to now has been pursued with

no great degree of success. Supporting and thereby

71

facilitating this feature of packages is the separate

compilation ability of ADA, while still enforcing strong

type-checking of interfaces. That is, making sure that

parameters in the body package are of the exact same kind as

those delineated in the specification, which may have been

compiled Sonne time before actual coding was ever begun on

the body.

72

VI. CONCLUSIONS

In its present state the INTEL Cross Development System

(CDS) is very much a development tool. Areas which we feel

could be changed to improve the user friendliness of the

system have oeen presented in the previous chaDter.

As an execution vehicle for the ADA language, the

processor seems especially well suited. However, the

incompleteness of the compiler did not permit us to

rigorously exercise the 432 as much as we wanted to. Though

the 432 and ADA seem esoecially well matched, it is not

reflected in program execution speed, An object-oriented

architecture, wnich also incorporates system management

facilities in hardware', undoubtedly must have some

drawbacks. In this version of the 432, this was

unfortunately reflected in execution speed. As an aside,

when the compiler comes to suPDort floating point

operations, benchmarks which exercise floating point

manipulations should provide some interesting results. As

elaborated previously, hardware support for floating point

operations in the 432 are outstanding.

The lack of a hardware interrupt is a handicap that

should be capable of being overcome through the use of the

attached orocessor. This feature was not operational on the

432/670 system and therefore could not oe tested.

73

The timing performance of the system, at first glance,

does not present a very favorable impression. The benchmarX

programs that were compared with the previous study by

HansenC3] confirmed that the 432 is slow in it's execution

speed. Execution speed is but one of many measures of any

computer architecture, it is, however, a measure which

readily lends itself to numerical analysis as opposed to

qualitative features which do not. This subjective

qualitative category can include such items as the amount of

fault tolerance and protection available.

The multiprocessor capabilities of the 432 provide a

case study in some of the issues which must be addressed by

any system using multiprocessina. Moreover, the system in

general permits one to analyze the more basic concepts of an

ooerating system. Processes, inter-Drocess communication,

ready, running, and blocked states are all generic terms to

the architecture. Any study of the processor's architecture

cannot help but to provide an excellent insight into these

concepts

,

Finally, the architecture has been designed to be

programmed in a high level language only. As the compiler

inefficiencies are removed and the cost of procedure

invocation is lowered the 432 should show a narked

improvement in it's overall performance.

74

APPENDIX A

HARDWARE DESCRIPTION

This thesis used a modified INTEL MDS SYSTEM 800

interfaced with the iAPX-432 execution vehicle. This setup

reouired a special circuit board to allow communication

between the MDS 300 system and the 432/670, The chassis

name, slot number, and board number of the system components

used in this evaluation follow.

Card cage number to circuit board identification

MDS-800 Doard description;

1.
2.

3,
4.
5. RPB-86
6,
7,

8.

9.
10.
11.
12.
13.
14.
15.
16.
17. 432 IP INTEL 432/670 172080-006-rev H

S/N-XD-000198
18.

432/670 board description:

1.
2.

3.

4.

75

5. MEMORY INTEL 112340-004 REV C 112354-001 REV c
S/N 000279

6. MEMORY INTEL 112340-004 REV C 112354-001 REV C
S/N 000262

7. MEMORY CONTROLLER INTEL 172075-005 REV E

S/N -xp-000033
8. GDP INTEL 432/601 005 REV F S/N-xp-000 1 87
9. GDP INTEL 432/601 MF-006 REV H S/N-xp-000104
10. GDP INTEL 11/16/82 432/601 MF-005 REV F

S/N-xp-000095 MD-17-0003
11.
12. IP-LINK INTEL 432/603 172028-004 REV E

S/N-xp-000-227

76

APPENDIX B

OPERATING SYSTEM MODIFICATIONS

The 1MAX-432 operating system supplied with the 432/670

was not compatible with the hardware configuration.

Specifically, interface processors are not yet supported,

even thouqh the iMAX-432 operating system is configured for

them. This necessitated a chanqe to the ADA package body

that describes the system processor configuration. The name

of this package is PSORS.MBS, The code referring to the

number of processors and interface processors in the package

body PSORS.MBS must be changed to reflect the current

physical state of the 432/670 system. For a three GDP board

configuration with no IPL boards, the PSORS.MBS would

include the following description!

•- Define GDP boards present
package osorl is new GDP.Def Cpsor„num => 1);
package psor2 is new GDP.Def (psor.num => 2);
package psor3 is new GDP-Def (psor.num s> 3)?
processorl: processor retypes psorl.Dsor;
orocessor2: processor retypes psor2.DSor;
processor3: processor retypes psor3,psor;
-- Define emDty slots
processor3: constant processor := null:
processor4: constant processor := null;
processors: constant processor := null;

A complete discussion as to now these changes can be

incorporated in the PSORS.MBS package can be found in

Reference 7.

77

APPENDIX C

ADA SOURCE CODE

All of the benchmark programs that were coded In ADA

follow. Most proarams are composed of three parts. That is,

a package specification, package body, and a driver or main

routine. The respective Darts are labeled accordingly. The

programs obtained from U.C. Berkeley are composed of just a

sinole main routine. For easy cross reference the program

name and the corresponding benchmark program are listed

below.

program namel
............

I

CHARS1

CHARS2

QUICK1

QUICK2

H&SH1

DC0M1

DC0M2

MEM1

MEM 2

SEARCH

SIEVE

ACKER

program description

Character search witn procedure
overhead.
Character search without procedure
overhead.
Quicksort iterative

Quicksort recursive

Hash function

Digital Communication with procedure
overhead.
Digital Communications without procedure
overhead.
Recursive memory test

Iterative memory test

U.C. Berkeley character search

U.C. Berkeley prime numper generator

U.C. Berkeley Ackerman's function

78

In addition to the programs above , two otner programs were

coded in ADA but were not executed due to compiler

limitations. The Runge-Kutta intearation was coded and the

source code appears under the program name RUNGE, Some of

the programs were extensively tested under an ADA-ED

interoreter. The linked list insertion program was written

and tested in ADA-ED and the source code for it is under the

program name LINK. The reader is warned that these two

programs, RUNGE and LINK have NOT been tested under ADA-432

and some modifications may be necessary to get them to

execute.

79

— CHARS1 package SDec i f i cat i on

-- This is the ADA soec i f

i

cat i on oackage for the
-- CFA character search benchmark.

— CHARS1

pac kage SChAR i s

subtype subint is integer range 1..256?
tvoe txtarray is ar r av (1 . . 256) of character?
ar ray I / ar ra v2 : txtarrav;
orocedure RDFIL;
orocedure SE ARCH

(

srch 1 en , arg 1 en
a r rav Uar ray?

1 oc
end SCHAR;

IN subint;
IN txtarray;
OUT subint);

— CHARSt package bodv

oragma envi ronment

(

H ACS : TEXT 10 .MLE" ,
" INT 10 . MSE" ,

"SCHAR. MSE")

;

with text*-io»intio; use text«-io/intio/ascii;
oackage body SCHAR is

orocedure RDFIL is

1i ne«-o f «- i nout : strina80;
char : character;
i t \ l integer;
begi n

sk i d<- 1 i ne ;

new«-Hne();
out«-1 i ne<-30 ("Enter Srch-strng, S ends ");

i : = i;

i : = t ;

while i < 256 1 oop
1 i ne«-ofH nout := GetH i ne«-*0 f) ;

exit when 1 i ne«-of «-i nout (1) = ' $ ' ;

for } in 1 . . 80 1 ooo
exit when 1 i ne«-o f « i nout (i) = ' ' and

1 i ne«-of«-i nout (i 1) = ' ';

arrayl(i) := 1 i ne«-of «-i nput (j) ;

i : = i + 1 ;

end 1 ooo;
end 1 ooo;

-- fill arrav 2

80

new«-l ine()»*
out«-l i ne«-30 ("Enter Srch-aro, S ends...
i := 1;

while i < 256 1 ooo
1 i ne«-ofH nout := Get *-li ne«-80 () ;

exit when 1 i ne«-o f «-i nout (1) = '$•?

for i in 1 . .80 1 ood
exit when li ne«-of «*i nDut (i) = ' ' and

\ ine^of* input (j + l) = ' ';

array2(i) := 1 i ne<-of « i nout (j) ;

i := i + 1 ;

end looo;
end 1 ooo

;

);

-*• check the array's contents

new«-

f or
out

end
new«-

f or
out

end
out*-

end SD
oroced

1 1 i :

beai n

i : =

i : =

1 oc
*h i 1

i f

i f

i

i

el

1

e

en
el s

i

J

end
end

1 in

i i

(ar
1 oo
1 in

i i

(ar
1 oo
1 in
FIL
ure

e()l
n 1 .

ray 1

o;
e();
n 1.

ray2
o;
e«-10("end ROFIL ") ;

SEAI

.80 looo
(i))

;

.80 looo
1 1))

;

"CH(srchl en, aral en
array 1 t array?

1 oc
i nt eqer

;

IN integer;
IN txtarray?
OUT i nt eoer) i s

1

1

• —

e

ar

i

se
oc
x i

d

e

lo

}

-l ;

i <= s rch 1 en 1 ood
rayl(i) = array2(j) then
+ 1 <= arq 1 en t hen
= i 1 ;

= j + l;

: = i - j ;

t

;

i f ;

i +i;
l ;

f ;

oo;

81

end SEARCH;
end SCHAR;

CHARS1 driver routine

oraqma environment ("ACS : TEXT 10 .M|_E M ," INT 10 .MSE" , "SCHAR .MSE" t

"MAIN. MSE") ;

with tex t«-i o* i nt i o r schar ? use t ex t * i o / i nt i o i schar , asc i i ;

ROFIL and SEARCH contained in t h e _ S ame oackaqe
Timing also includes tine for procedure
invocation,
la Oct. 1982

oackage body USER*-PR0CESS«-1 is
orocedure MAIN is

i , 1 oc / s re h«- 1 enat h , s rch«*arq# t i mer«- 1 ooo : inteaer?
forever : boolean :=true?
answer : character;

beqi n

while forever 1 ooo

-- initialize the arrays

for i in 1 . . 256 1 ooo
arravl (i) := ' ' ;

array2(i) := ' ' ;

end Iood;

-- get the search arquments

new<-1 i ne () ;

out«-30 ("Character search Q =Quits ") ',

qet (answer)

;

exit when answer ='Q';
RDFIL;
new«-l i ne () ;

out<-30 ("Lenath of strinq to search ?...*') ;

qet (srchn-1 enqt h) ;

new«-l i ne() ;

out*-30 ("Lenqt h of strinq to search for");
get (srch+-arq) ;

new*- 1 i ne () ;

out<-30 ("Number of 1 ooos to time ");

82

get (t i mer«-1 ood) ;

new<- HneO;
out<-20(" Start of Search....");
out (BEL);
for i in I . • timer«-1ooo looo
SEARCH(srch«-1enqth,srch«-arq,arrayl,arrav2»loc);
end Iood;
out (BEL);
newHineO;
out<-20("end the search) ;

new«- 1 i ne () ;

out«-l ("Locat ion= ") ;

Dut(ioc);
sk i o«- 1 ineJ

end 1 ooo;
end main;

end USER«-PR0CESS<-1 ;

8 3

-- CHARS2 package specification

package SCHAR i s

tyoe txtarrav is array(1..256) of character?
array 1 1 array? : txtarray?
procedure RDFIL;
procedure SEARCH (

s

rch 1 en , arg 1 en : IN integer;
array 1

,

array? : IN txtarray?
loc : OUT inteaer);

end SCHAR;

— CHARS2 oackage body

Timing prompts in the body of the search orocedure

pragma envi ronment (

"

ACS : TEXT 10

.

mi_E " ,

"

INT 10 .MSE" ,

"SCHAR. MSE") ;

with text«-io*intio; use text«-io*intiorascii;
package body SCHAR is

procedure RDFIL is

li ne«-ofH nout : string80;
char : c^arac t er

;

i t j t i nt eger

;

beai n

skip*-] i n e ;

new«-l i ne () ;

outH i ne<-30 ("Enter Srch-strna/ 5 ends "
) ;

i : = 1 ;

i : = l ;

while i < 256 1 oop
1 ine<-of<-inout := Get*- 1 i ne«-80 () ;

exit when 1 i ne«-ofH nout (1) = '$';

for j in 1..80 1 ooo
exit when 1 i ne«-of «-i nout C j) = ' ' and

1 i ne«-of «-i nout (j +1) = ' ';

arrayl(i) := li ne*-o f «-i nout (J) ;

i : = i + 1 ;

end looo;
end 1 oop;

-- fill array 2

new«-l i ne () ;

put<-1 i ne<-30 ("Enter Srch-ara, S ends ");

i : = 1 ;

while i < 256 1 ooo

sa

1 i ne«-of «-input := Get<-1 i ne«-80 () ;

exit when li ne«-ofH nout (1) = '$';

for j in 1 . .80 1 ooo
exit when 1ine«-of«-input(j) = '

'

} ine«-of «-i nput (i + 1) = ' '?

array2(i) := !i ne*-of «-i nput (j) ;

i := i + 1

;

end 1 ood;
end Iood;

"** check the array's contents

end RDFIL;

and

IN i nt eger

;

IN txtarray?
OUT integer) is

orocedure SEARCH (srch 1 en

,

arql en
array I r array?

1 oc
i , j , k, 1 i mer«-l ooo : inteqer;
begi n

new«-l ine();
out«-30 ("Number of 1 oods to time ");

get (t i mer«-l ooo) ?

new«-1 i ne () ;

out«-20("Start of search ");

out(BEL);
for k in 1 . . t i ner«-l oop 1 ood
i : = l ;

j := l;

loc := -1

;

while i <= srchlen loop
if arrayl(i) = a r r a y 2 (j) then
if j+1 <= arglen then

i : = i + 1 ;

j := i+1?
el se

1 oc := i - j

;

exit;
end i f

;

el se
i := i +1 ;

j := i;

end i f i

end 1 ooo?
end 1 ooo?
out (BEL) ;

out<-20 ("end
new*- 1 i ne () ?

the search ");

85

end SEARCH;
end SCHAR;

-- CHARS2 driver routine

pragma envi ronment (

"

ACS : TEXT 10 .MLE" ,

"

INT 10 .MSE "

/

"SCHAR . MSE" *

"MAIN. MSE") ;

with text«-io»intiorSChar; use text«-io*intiofSChar,ascii;

RDFIL and SEARCH contained in the same package
Timina is for the SEARCH only. Promots are from
the SEARCH orocedure

14 Oct. 1982

package body USER«-PR0CESS<-1 is

procedure MAIN is
i r 1 oc i srch«-l engt h , srch«-arg : integer;
forever : boolean :=true;
answer : character;

begi n

put«-30 ("chars2 with 4 ado con f i gurg t . . "
) ;

new«-1ine();

while forever looo

•- initialize the arrays

for i in 1 . .256 1 oop
a r r a y 1 (i) : = ' ' ;

a r r a v 2 (i) := ' ';

end 1 ooo;

-- get the search arguments

new«-l i ne () ;

put«-30 ("Character search Q =Quits ");

get (answer) ;

exit when answer ='0';
RDFIL;
new«-line();
Put«-30 ("Length of string to search?...");
get (s rch<-1 engt h) ;

new*-l i ne () ;

86

put«-30 ("Length of strina to search for");
get (srch«-arg) ;

new<-l ineO?
SEAPCH(srch*«length,srch«>aro,arravl i array 2 t loc)

;

out<-10CLocation= M
);

put (loc)

;

sk i d«-1 ine;
end loop;

end main;
end USER«-PROCESS«-l;

87

—QUICK1 package soec i f i cat i on

•- QUICKSORT package specification (Iterative)

package QUICKSORT is

type i tern i s

record
kev J i nt eger ;

data : character;
end record;

type inarray is array(1..20) of item;

procedure SORTCarg : IN OUT inarray);

end QUICKSORT;

— QUICK1 package body

— QUICKSORT oackage body (Iterative)

pragma envi ron^ent (" ACS : TEXT 10 .M|_E" / " INT 10 . MSE" ,

"QUICK. MSE") ;

with t ex t «-i Or i nt i o# gu i c ksor t ;

use t ex t *-i o f i nt i o » ou i c ksort ;

oackage body QUICKSORT is

procedure S0RT(arg : IN OUT inarray) is
m : constant : = 20 ;

i f j t 1 t r : i nt eger

;

mid*"Ot#temp : item;
type stack«-frame is

record
] r r : i nt eger

;

end record;
stack : array(l..m) of s t ac k«-f rame ;

s J i nt eaer7

Bea i n

1 : = 1 ;

r := 20;
s : = 1 ;

stack(l).l := l;

stack(l).r := 20;
1 OOP

1 := stack(s) . 1

;

88

p := stack(s).r;
s := s-i;
1 OOD

i : = 1 ;

j := p;

mid«-Dt := arg(U *r)/2) ;

1 OOD
while arg(i).key < mi d«-Dt . k ev loop

i : a i + 1 ?

end 1 ood?
while mid«-Dt.key < arq(j).key 1 ood

j := r-t?
end 1 ooo;
if i < = j then
temo : = arg(i)

;

a r g (i) : = a rg (j)

J

arq(j) : = t emp;
i : = i + 1 ;

j := i-i;
end i f

;

exit when i > j ?

end 1 ood?
if i < p then
s : = s 1 ?

st ack (s) . 1 : = i?

st ack (s)

.

p : = p ?

end if?
p := j?

exit when 1 >= p

?

end Iood?
exit when s = ?

end 1 ooo ?

end SORT?
end QUICKSORT?

- - QUICK1 driver routine

-- QUICKSORT package body for Oriver (Iterative)

oragma envi ronment (" ACS : TEXT 10 . MLE"

,

"QUICK .MSE" ,

"INTI0.WSE H
,

,, MAIN.MSE") ?

with quicksort/text«-io*intio?
use quicksort,text«-io» i n t i o , a s c i i ?

oackage body USER<-PR0CESS«-1 is
procedure WAIN is
arq, t emo*-ar r ay : inarray?

89

i , 1 oop*-val , j : integer;
data : boolean := true;

Begi n

for i in 1 . .20 looo
arg(i) .key : = 0;

arg(i) .data I s ' a '

?

end loop?

new«-l i ne () ?

out«-l ine«-20("Qt)ICKSORT BENCHMARK ");

out«-1 ine«-20("Iterative Version...");
out*-20 ("Enter key* followed ");

out«-20 (" i mmedi atel y by data*")?
out<-l i ne«-20 (" terminates ");

new<-1 i ne () ?

i := i;

while dat a 1 ood
get(arg(i).key);
exit when arg(i).key = 0;

sk i p««l i ne;
get (ara('i) .data) ?

i : = i 1 1

;

sk i o*-l i ne;
end 1 ooo

;

new«-l i ne () ;

out«-l i ne«-l ("Your Input")?
for i in 1..20 looo
out (arg (i) . key)

?

out (arg (i) .dat a)

;

new«-1 i ne () ;

end 1 ooo;

Loop
out«-30(" Number of loops to time.....
get (1 ooD«-va 1) ;

exit when (1ooo«-val) = 0;

new«- 1 i ne () ;

for i in 1..20 looo
t emo«-ar ray (i) . key := arg(i).key;
t emo«-ar ray (i) .da t a := ara(i).data;

end 1 ooo;
out«-20("Start of Quicksort..");
out (bel) ;

for i in l..(looo«-va1) looo
for j in 1..20 Iood
arg(j).key := t eio«-ap ray (j) . kev ;

arg(j).data := t emo«-ar ray (j) .dat a ;

");

90

end loop;
SORT(arg) ;

end looo;
out (be!) ;

new«*l ine();
Dut«-H ne«-20 ("End the Quicksort ... H

);

out«-Hne«-l 0("The Output");
for i in 1 . .20 1 ooo
put (arg(i) .key) ;

out (arg(i) .dat a) ?

new«-l i ne () ;

end loop?
end Lood;

end MAIN;
end USER«-PR0CESS«-1 ',

91

-- QUICK2 packaqe spec i f

i

cat i on

-- QUICKSORT packaqe specification (Recursive)

package QUICKSORT is

t yoe i t em is

record
key I integer;
data l character ;

end record?
tyoe i n a r r a y is array(l«.20) of item;
subtyoe subint is inteqer ranae 1..20?

procedure SORT (1 ef

t

, r i qh t : in subint;
ara : in out inarray);

end QUICKSORT;

-- QUICK2 package body

— QUICKSORT oackage body (Recursive)

Draqma envi rcn<*ent (

"

ACS : TEXT 10 .MLE" ,

"

INT 10 . MSE "

,

"QUICK. mse") ;

with t ex t<-i O/ i nt i o# qui cksor t ; use t ex t «- i o f i nt i o, qu i c k so r t ;

package body QUICKSORT is
procedure SORT (1 eft t r\ qh t : in subint;

arq : in out inarray) is

i t j : subint;
mid^Dtftemo : item;

Beqi n

i : = left;
j := riqht;
mid«-Pt := arq((1 ef t + ri qht) /2) ;

1 OOP
while arg(i).key < mid«-Pt.kev loop

i : = i 1

;

end looo;
while mid«-pt.kev < arq(j).kev looo

j := j-i;
end 1 ooo;
if i <= j then
temo : = ara(i) ;

92

arq(i) := arq(j);
ara(i) := temp;
i : = i 1

;

i := i-l;
end if;
exit when i > j ;

end loop;
if left < j then
SORT (left, i,arq);

end if;
if i < right then
SORT (i ,riqht»ara);

end i f ?

end SORT;
end QUICKSORT;

--QUICK2 driver rout i ne

-- QUICKSORT oackage body for Driver (Recursive)

oraqma envi ronment ("ACS:TEXTIO.MLE M
,
H QUICK.MSE",

" INTIO.MSE","MAIN.MSE") ',

with quic*Sortrtext«-vorintio;
use quicksortftext«*io, int i o / a s c i i ?

oackaqe body USER«-PROCESS<- 1 is

orocedure MAIN is

arq, t emo«-ar ray : inarray;
1 ef t «-i ndex , r i ah t H ndex : subint;
i , 1 ooo*-va1 / j : integer?
data : boolean := true?

Beqi n

for i in 1 . . 20 1 ooo
arg(i).key := 0;

arq(i

)

.dat a : = * a ' ;

end 1 oop;

new«- 1 i ne () ;

Dut<-1 in*«-20("QUICKSORT BENCHMARK ");

out«-20(H Enter key* followed ") ;

out<-20 ("immedi atel y by data,");
out«-l i ne«-20(" terminates ");
new«-1 i ne () ;

i := l;

while data 1 ooo

93

get (arg(i) . key)

;

exit when arg(i).key = 0;

sk i o*-l i ne?
get (arg (i

)

.data) ?

i : = i + 1 ?

sk i d«-1 i ne?
end looo;
new«-l ineO?
outHi ne<*10("Your Inout");
for i in 1 . .20 1 oop
out (arg (i)

.

key) ?

out (arg (i) .dat a) ?

new«-l ineO »

end looo?

Loo
ou
ge
e

ne
fo
t

t

en
ou
ou
fo
f

e
1

r

S

en
ou
ne
ou
ou
fo
o

D
n

en
ne

end
end

end U

P
t«-30

t(lo
xi t

w«-1 i

r i

emD«-

emp«-

d)o
t<-20

t (be
r i

or j

arg(
arg (

nd 1

ef t«-

ight
0RT(
d 1o
t (be
w«-1 i

t<-l i

t*H
r i

ut (a
ut (a
ew«-1

d 1o
w«-l i

Loo
MAIN
SER«-

("

OD
wh
ne
i n

ar
ar
OD
("

1)

i n

i

j)

j)

oo
i n

M
1?

oo
1)

ne
ne
ne
i n

rg
rq
i n

OD
ne
d;

M of looos to time?..0 exits ") ;

«-val) ;

en (1 ooo«-va 1) = ;

o;
1 . .20 1 ooo

ray(i).key : = arq(i).kev;
ray(i).data := arq(i).data?
r

Start of Quicksort..");
t

1 . . (1 ooD«-va 1) 1 ooo
n 1 . . 20 1 ood
.key := t e^o^ar ray (i) . key

;

.data := t emD«-ar ray (j) . dat a ?

o;
dex := 1?

ndex := 20;
ft«-index,riqht«-index f arg);

();
<-20

«-10

1.

(i)

(i)

e()

o;

("End the Quicksort
("The Output");
.20 looo
.key) ;

.data);

. it

r

PROCESS*!

;

94

-- HASH1 package soec i f

i

cat i on

package HASH is

size : integer : = 10;
table : arrav(0..9) of integer;

function HASHESCkey : IN integer) return integer;
end HASH;

-- HASH1 Dackage body

pragma envi ronment (

"

ACS : TEXTIO . MLE" , " I MT 10 . MSE" , "H ASH . MSE ")

J

with text«-iorintio;
use text**i o» i nt i o * asc i i ;

package body HASH is
function HASHESCkey : IN inteaer) return inteoer is

check t i : i nteaer ;

Begi n
-- compute the first place to look

check := key mod size;
for i in 1.. size/2 1 ooo
if table(check) = key or table(check) =

t hen
return chec k

;

else
check := (check+i) mod size;

end i f

;

end loop;
return ;

end hashes;
end HASH;

HASH1 driver routine

-- hash table search benchmark

hashl.eod on disk
timing includes procedure invocation overhead

pragma envi ronment (
n ACS:TEXTI0.ViLE", M INTI0. MSE". "HASH. MSE "

,

"MAIN. MSE") ;

with text«-i O, i nt i o»HASH;
use text*-io*intiorHASH,ascii;

95

package body user*-orocess*-l is

procedure main is
t i mer*-J oop» posi t i on, key t j : integer?
answer ' character?
forever : boolean := true?

begi n

new**l i ne () ?

out«-20(w HASHl benchma rk")?

fill the hash table with CFA sample entries

table(O) :

> s 0?

tablet 1) :

> r 183?
table(2) !

> s 11?
t abl e(3) !

- 10 35?
table(U) ;

- 10 35?
table(S) ; s 183?
table(6) !

» s 86?
taol e(7) : ; s 0?

tab1e(8) :
r 183?

tabl«(9) :
r 183?

while forever 1 ooo

new+-l i ne () ?

out*-20("Cont inue?
get (answer) ?

exit when answer =

Q: gui ts. M
)

?

•Q' ?

new*- 1 i ne () ?

out «-20 ("enter an integer key")?
get (key) ?

new*- 1 i ne () ?

out *-30 ("number of Ioods to time
get (t i mer*-l ood) ?

new*- 1 i ne () ?

out«-20("start hash lookuo...")?
put (bel)

?

for j in l..timer*-1ooo Iood
Dosition := HASHES(key)?

end looo?

")?

96

out (bel);

new«-l <ne()i
out«*20 ("end of hash lookup.. 1*);

new<-l ine() ?

Dut«-20 ("hash oosition =");
out (oos i t ion)

J

Ski 0+1 ine»

end looo?

new*-! i ne () ?

out<-30("end of HASH t^ble
end main?

end user«-orocess«- 1 /

IooVud ")

;

97

-- DC0M1 package spec i f i cat i on

-- Digital Communication Processing Program

— 19 Oct 82

oraqm
with
Packa

cl
c2
sub
sub
typ
t yp
t yp

sub
t yo
t yo
des
buf

a en
text
ge D

: co
: co
t voe
t yoe
e me
e me
e me
reco

de
co
s i

da
end
type
e b

e b

t i na
fer«-

vi ronment C
" ACS : TEXT 10 .MLE") ,*

H o ; use text«-i o;
IG«-C0M is
nstant := 10;
nstant := 10,*

dest«-tyoe is inteqer ranqe l..ct*
Con«-i d«-t voe is inteaer range l..c2*
ssage

*

ssage**otr is access message*
ssage i s

rd
st i nat i on
nnec t i on
ze
ta
record;
buf«-index is integer ranqe l..c2;

uf«-fbl is array (1, ,c?1 of buf«-index;
uf«-tbl«-otr is access buf«-tb1?
tion«-tb1 : array(l..cl) of buf «-t b 1 «-ot r ;

array * array (1 . .c2) of string30*

dest«-t yoe;
con* i d«-t yoe ;

i nt eaer

;

St r i ng30

;

orocedure forward(msa: IN message«-ot r) ;

end DIGICOM;

-- DC0M1 package body

pragma envi ronment (

"

ACS : TEXT 10 . M|_E M
, "DCOM . MSE" ,

" I NT 10 . MSE "

)

7

with text«-io»intio ; use text*-iorintio»ascii;

package body DIGICOM i s

orocedure forward(msg : IN message«-ot r) is

i f j : i nt eger

;

buf f er«-i ndex : buf«-index;
1 i ne : buf <-tb1 «-ot r ;

buf«-array : buf«-tbl;

98

begi n

line := dest i nat i on«*tb! (msg.dest i nat i on) ;

buf*arrav := line. all;
i : = 1 ;

while buf *-ar ray (i) / = msa .connec t i on 1 ooo
i : = i + 1

;

end 1 ooo?
bu f f er**i ndex := buf «-array (i)

'>

buf f er«-ar ray (buf f er«-i ndex) := msg.data;
end forward;

end DIGICOM;

DC0M1 driver routine

diqital communication benchmark

DC0M12.E00 on disk
timing includes orocedure invocation overhead

2b Oct 1982

pragma envi ronment (" ACS : TEXT 10 . **LE " , " INT 10 . MSE" , "DCOM .MSE M
,

"MAIN. VISE") ;

with text<-io#intio/ DIGICOM;
use text«-i o^ i nt i 0, DIGICOM, asc i i ;

oackage body user*>orocess«- 1 is

procedure main is

i t j : i nteger ;

timer«-looo : integer;
k : buf<-index;
buf «-t abl e*-Dt r : buf «-tbl *o't r ;

nsg«-out : message«-ot r

;

forever : boolean := true;
answer : character;

begin
out«-30 ("chars* . 4 qdp configuration...");

new«-l i ne () ;

out «-30 (" t i mi ng includes dpoc ovhd ");
-- initialize the destination table

new«-line();

99

out*-30("ini t destination table ") ;

for i in 1 . .c 1 1 ooo
dest inat ion«-tb1 (i) := new buf*-t'bl;

end Iood;

-- initialize all buf«-tbl's

new*- 1 i ne () ?

out*-30("init buf*-tb1 ' s ");

for i in 1 • • c 1 1 ooo
buf «-t ab 1 e«-ot r := des t i nat i on*-tb 1 (i) ;

for j in 1 . .c<? 1 ooo
buf «-tabl e«-ot r (j) := j ;

end Iood?
end Iood?

-- initialize buffer

new«-l i ne C) J

Dut«-20("ini t the buffer ") ;

for k in 1 . . c2 1 ooo
buf f er*-ar ray (k) := "

end 1 ooo i

newt-1 i ne C) 7

while forever 1 ooo
out<-10("cont inue? ");

get (answe r) ;

exit when answer s * N ' }

msg*-out := new nessaqeJ
Tsg*-out .size : = ;

new«-l i ne () ;

Dut«-20 ("start digit comm. ...");
new«-line()»
out*- 30 ("ent er dest inat iorif conn f data
get (msg«-out .dest inat ion) ;

sk i d*-1 ine?
get (msg*-out .connect ion) »

sk i d*-1 ine»
msg*-out .dat a : =aet *-l i ne*-30 () ;

new*- 1 i ne () ?

out*-30(" number of Ioods to time
get (t i mer*-l ooo) ;

out«-lO("sending...");
out (bel) ;

for i in 1 . . t i mer*- 1 ood 1 ooo
forward(msg*-out);
end 1 ood?

");

");

100

out (bel)

;

out«-20("«..done sendinq ")?

new*- lined!
put«-20(H buf fer flush is ");

for k in l..c2 1 ood
put(k);
put<-l ine«-30(buffer*-array(k)) ;

new«-1 i ne () ?

end 1 ood ;

s k i o<- line?
end 1 ood;
new«-1ine();
out«-20("end of decoW ") ;

end main;
end user*-orocess<-l;

101

-- DC0M2 package soecificaM'on

-- Digital Communication Processing Program

-- 19 Oct 82

prag
with
Pack

cl
c2
SU
su
ty
ty
ty

su
ty
ty

de
bu

ma e

tex
age

: c

: c

bt yo
b t yo
De m

De m

oe m

rec
d

c

s

d

end
bt yp
De
oe
st i n

f fer

nvi ronment (
H ACS:TEXTIO.MLE n

);

t*-io ; use text«-io;
DIGICOM is

on st ant := 10;
onst ant : = 10;

e dest«-type is integer ranae 1 • • c 1 J

e con«-ia«-tyoe is inteaer range !..

e s s a q e ;

essaae«-ot r

essage i s

ord
es t i nat i on
onnec t i on
i ze
at a

record;
e bu f «- i ndex

ange

is access message ;

: dest<-tyDe;
: con<- i d«-t yoe ;

: i n t eger

;

: string 30;

orocedure forward(msq: IN message<-otr);

end DIGICOM;

-- DC0*2 Dackaqe body

Dragma en vi ronment ("ACS : TEXT 10 .MLE" , "DCOM.MSE" ,
M INTIO.MSE")

;

with text«-io*intio > use text*-io>i"t io> asci i
»*

Dackage body DIGICOM is

orocedure fo^wardCmsq : IN messaqe<-otr) is
i / j : integer;
timer«-looo ; integer;
buffers-index : ouf<- index;
line : buf<-tb1«-otr;
buf*-array : buf«-tol;

102

begi n

new*- HneOl
put «*30 ("number of looos to time ") r

get (t i mer<-1 ood) ;

put<-10("sending...");

out Cbe))

;

for j in l..timer«-loop Iood
line := destinat ionftbl (nfisg. destination);
buf<-array := line.alll

while buf*-array(i) / = msa.connection looo
i r = i + 1 ;

end 1 ooo

;

bu f f er<- i ndex := bu f*-ar ray (i) ;

bu f f e r«-a r ray (bu f f er<- i ndex) := msg.data?
end loop;
Dut (bel) ;

Dut<-?0("...done sending ");

new«- lined?
end forward;

end DIGICOM;

DCG SA 2 driver routine

digital communication benchmark

DC0M21 .EOD on di sk
timing does not include orocedure invocation overhead

2b Oct 1982

pragma environment("4CS:TEXTI0.yLE"»', INTI0.MSE%"DC0M.MSE",
"MAIN.MSE")

;

with textHorintto* DIGICOM;
use text«-io,intio,DIG«-COM,asci i ;

oacfcage body user«-orocess*- 1 is
procedu re main is

i * j : i nt ege r

;

k : ou f «- i ndex ;

buf <-t ab 1 e<-ot r : bu f «-t b 1 «-ot r ;

TSg<-out t Tiessage<-o t r ;

forever : boolean := true;
answer : character;

103

begi n

out«-30 ("chars* . Q gdp con f i qurat i on . . . ") ;

new«*1ine()?
out«-30 (" t i m i ng does not include oroc..");

-- initialize the destination table
new«-1 i ne () 1

DUt«-30(" i ni t destination table ") #

for i in l..cl loon
destination«-tbHi) := new buf«-tbl?

end 1 ooo

;

-- initialize all b u f *> t b 1 ' s

new*- HneOJ
out<-30("init buf«-tb1 ' s ") 7

for i in 1 • . c 1 1 ooo
buf «-t ab 1 e«-ot r := des t i nat i on«-t b 1 (i) ;

for j in 1 . . c 2 1 ooo
buf «-tabl e*-Dt r (j) := j ;

end 1 o o o

;

end 1 ood ;

•• initialize buffer

new*-line();
put«-20(" i ni t the buffer "

) ',

for k in 1 . . c<? 1 ooo
buf f er«-ar ray C k) := "

end 1 ooo)

new*-1 i ne () ?

while forever 1 ooo
out*- 1 ("cont i nue?
get (answer)

;

) ;

exit when answer ='n';
TiSQ*-o'jt := new messaae?
nsg«-out .size : = ;

new*- 1 i ne () ?

out<-20 C "start digit com-n. ...");
n e w «-

1 ine()»
out«-30("enter destination, conn, data
get (-nsg*-ou t . 3es t inat ion) ;

sk i d«- 1 i ne ?

get (msg«-out .connect i on) ;

s k i o<- 1 i ne ?

fnsgoout .data : =aet «-
1 i ne<-30 () ;

.) i

ioa

forward(msg*-out) r

out«-20("buf fer flush is ") ;

for k in 1 . .c2 1 ooo
put (<) ;

put«-1 ine«-30(buffer«-array(k));
new«-1 i ne () /

end 1 ood?
sk i d<-1 i ne?
end looo;
new*- 1 i ne C) 7

put«-20 ("end of decornl ") ;

end main;
end user*-Drocess<-l;

1 05

-- MEM1 package soec i f

i

cat i on

-- MEMl recursive memory test package specification

pragma environment("ACS:TEXTIO.MLE");
with text«-io; use text*-io;
package EAT«-MEMORY is

size : constant := 50;
i : i nt eger : =0;
type small stable is ar r ay (1 . . s i ze) of character;
type sma 1 1 <-t ab 1 e«-ot r is access sma 1 1 «-t ab 1 e ;

procedure FOREVER;
end EAT<-MEM0RY;

--MEM1 package body

-- MEMl recursive memory test body

oraqma envi ronment (

"

ACS : TEXT 10

.

MLE" , " E A T . MSE "
, " I NT I . MSE ")

;

with i n t i o » t e x t « i o ;

use intio»text*-io;

package body EAT«-ME^0RY is

Drocedure FOREVER is
table<-otr : sma 1 1 «-t ab 1 e*-ot r ;

begi n

i : = i + 1

;

Dut (i)

;

new«-l i ne () ;

table*-ptr := new sma 1 1 *-t ab 1 e ;

FOREVER;
end FOREVER;

end EAT«-MEMQRY;

_. v^E M l driver routine

- - v^EMl recursive memory test driver routine

pragma envi ronment C " ACS : TEXT 10. MLE" , "EAT .MSE"

,

"MAIN.MSE") ;

with text«-i Of EAT<-MEM0RY;
use text«-i o, EAT«-MEM0RY;
oackage body use r «-oroc ess<- 1 is

106

Drocedure main is

begi n

Put«-30(" start of eat memory
FOREVER;

end main?
end user<-Drocess«-l ;

M
);

107

-- MEM2 oackage specification

— MEM2 interative memory test oackage soec i f i cat i on

pragma environment("ACS:TEXTIO.MLE");
with textHo? use text«-io;
package EAT«-MEMORY is

size : constant := 50;
i : i nt eger : = ;

type small«-table is array(l..size) of character;
tyoe small <-t ab 1 e*-ot r is access smal 1 «-tab1 e#

procedure FOREVER;
end EAT«-ME^0RY;

-- MEM2 oackage body

-- MEM2 interative memory test body

pragma envi ronment (

"

ACS : TEX T 10 . MLE" , "E AT . MSE "
,
" I NT 10 . MSE ")

;

with intio>text«-io;
use intio/text«-io;

package body EAT«-MEM0RY is

procedure FOREVER is
tab1e«-otr : sma 1 1 **t ab 1 e«-ot r ;

infinite : boolean : = t r u e ;

begi n

while infinite looo;
i : = i + 1

;

put C i) ;

new* 1 i ne ()

»

table«-otr := new smal 1 *t ab 1 e;
end loop;

end FOREVER;
end EAT«-MEM0RY;

-- ^EM 2 driver routine

-- vt £ m 2 interative memory test driver routine

pragma envi ronment ("ACS: TEXTIO. ML E"

,

"EAT. MSE",
"MAIN. MSE")

;

with text«-io,EAT«-MEMQRY;

108

use text«-iorEAT«-MEMORY;
package body user«-orocess«- 1 is

opocedure main is

begi n

put«-30(" start of eat memory");
FOREVER;

end main?
end user«-orocess«- 1 ;

109

— SEARCH

-- Courtesy Prof. Pat t erson , Comput er Science Division,
-- Department of Electrical Engineering & Computer Sciences*
-- Univ. of California, Berkeley#CA.

pragma envi ronment ("ACS:TEXTIO.Ml_E"f " INT 10 .MSE "
/ "MA IN . MSE ")

;

with text«-iorintio?
use t ex t«-i Of i nt i o/ asc i i ?

package body USER«-PR0CESS<- 1 is
procedure MAIN is

tyoe strin is array(inteaer range 1..120) of character;
numi t er at i ons : integer;
pos i t i on f ns / nk : integer;
Sik : strin;

function STRSCH(s,k : IN strin;
n s * n k : IN integer) return integer is

i * j : i nt eger

;

baser ksave r cont : integer;
kend/ssave ; integer;
r ; i n t ege r

;

begi n

base : = 1

;

ksave : = 1 ;

cont := ns-nk+base;
kend := ksave + nk-l;
i : = 1 ;

j := l;

<<top>>
while s(i) / = k(j) loop

if i >= cont t hen
r : = - 1 ;

goto finish;
end i f

;

i : = i 1 ;

end 1 oop;
ssave : = i ;

i := i+l;
while j < = kend loop

i : = i 1 ;

if s(i) /= kCj) then
i : = ssave + 1 ;

j : = ksave ;

goto too?
end i f

;

1 10

j := j+i;
end loop?
p : = ssave -

<<f i ni sh>>
return (p) ;

end STRSCH;

base + l;

Begi n

s(1..60) := "000000000000000000000000000000000000
oooooooooooooooooooooooo"

;

SC61..120) := "HERE0OOOOO0000OO0000000OOOOO00HERE
IS A MATCHOOOOOOOOOOOOOOO";
led. .60) := "HERE IS A MATCH

W .
t

k (61 . . 120) := "

1 ooo
out«-l i ne<-30 ("Bepkel ey Character Search
put«-30("# of looos to time?..0 Exits H

);

get (numi terat ions)

;

exit when numi terat ions = 0;

new*- 1 i ne () ;

n s : = 12 0;
n k : = 15;
out (bel)

;

for i in 1 . . nun i t e ra t i ons 1 ooo
oosition := STRSCH (s *

k

, ns i nk)

;

end 1 ooo;
out (bel);
put«-1 ine«-10("E*JD SEARCH");
out(oosition);

end loop;
end MAIN;

end USER«-PR0CESS<-1 ;

");

1 1

1

-- SIEVE

-- Courtesy Prof. Patterson* Computer Science Division
»• Department of Electrical Engineering & Computer Sciences
-- University of California/ Berkeley C A

.

pragma environment("ACS:TEXTIO.MLE"#
"MAIN.MSE") ;

with text«-iOfintio?
use text«-io,intio,ascii;
package body USER<-PROCESS«- 1 is
orocedure M A IN is

size : constant integer := 200;
flags : ar ray (. . s i ze) of boolean;
Dr i me / k / count r 1 ooD«-va 1 : integer;

INTIO.MSE"/

Begi
1 oo
DU
ge
e

ne
ou
fo

c

f

e

f

e

en
DU
DU
DU
DU
ne

end
end M

end US

n

D

t<-30

t (lo
xi t

w*-l i

t (be
r i t

ount
or i

flag
nd 1

or i

i f f

or i

k :

wh i

f 1

k

end
cou

end
nd 1

d lo

t (be
t«-1 i

t (co
t<-10

w«-l i

1 oo
ain;
ER«-P

(" U of loops to time?
oo«-va 1) ;

when 1 ooo«-va 1 = ;

ne();
1);

er in inteaer range 1

:= 0;

in . . s i ze 1 oop
s(i) := t rue;
ooo;
in . . s i ze 1 ooo

1 ags (i) then
m e : = i i + 3

;

s i
• dp i me }

1 e k <= size 1 ooo
ags (k) : = false;
: = k t or i me;

l ood ;

n t : = count + 1 ;

i f ;

ood;
op;
i);

ne<-10(" End Sieve");
unt)

;

(" Primes ") ;

n e () ;

p;

POCESSM ;

exits ") ;

(1 ooD«-va 1) 1 ood

112

-- ACKER

•- Courtesy Prof. Pat t erson , Comput e r Science Division,
-- Department of Electrical Engineering & Computer Sciences
- • Univ. of California, BerkelevrCA.

pragma envi ronment

(

B ACS : TEXT 10

.

MLE" ,
M INT 10 .MSE "

, "MA IN .MSE)

;

with text *-i o, i nt i o ;

use tex t «-i o> i nt i 0/ asc i i ;

package body USER«-PR0CESS<-1 is
procedure MAIN is

a,i,arql,arq2 : inteqer;
function ACKER (x,y : IN integer) return inteqer is

begi n

i f x = then
return (y 1)

;

els if v = then
return ACKER (x- 1 , 1)

;

e 1 se
return ACKER (x- 1

,

ACKER (x , y- 1)) ;

end if;
end;

Begi n

out«-line*-20("Ackermann Benchmark "
) ;

put«-Hne«-20("To Exit, Enter ") ;

put<-line«-30("8egin time when bell sounds
1 OOP
out«-l i ne<-30 ("Enter ACKER Aguments
get (argl)

;

exit when argl = ;

sk i p«-l i ne;
get

(

arg2) ;

put (bel) ;

a := ACKER(argl , arg2) ;

out (bel)

;

out«-l ("Output of ");

out (argl)

;

out (•
,

•
) ;

out

(

arg<?)

;

new*- 1 i ne () ;

out (a) ;

n e w <-
1 i n e () /

end 1 ooo

;

end MAIN;
end USER«-PR0CESS<-1 }

");

");

1 13

APPENDIX D

CFA BENCHMARK ALGORITHMS

The twelve benchmark program algorithm descriptions

used in the first CFA study follow, A more detailed

discussion of these can be found In Reference 8.

1. I/O INTERRUPT KERNEL, FOUR PRIORITY LEVELS

The interrupt Kernel will be activated by an I/O

interrupt with priority level 0,1,2 or 3 from one of four

devices. Actual interrupt processing will be simulated by

countina the occurrences of each type of Interrupt. Higher

level interrupts will be aole to DreemDt processing of lower

priority interrupts. The interruot handler must provide for

resumDtion of processing of the preempted lower level

interrupt from the point of preemption. As much processing

as possible will be done witn higher priority I/O interrupts

enabled.

2. I/O INTERRUPT KERNEL, FIFO PROCESSING

The Interrupt kernel will be activated by an I/O

interrupt from one of four devices which will be Diaced in a

service oueue for f lrst-in-f Irst-out (FIFO) processing.

Actual interrupt processing will be simulated by counting

the occurrences of each type of interrupt. SDace should be

114

provided to handle at least ten aueued Interrupts at one

time.

3. INPUT/OUTPUT DEVICE HANDLER

After an I/O request is issued by an application

program, and after the executive queues an input control

block, this test program is initiated and it performs the

following actiors:

1. Check status of the tape drive. If device is busy
exit. If the device is not operable branch to an
error routine. If the device is available, set up
and initiate the requested transfer.

2. After completion of the transfer, and a conse-
auent interruDt, the device handler is reentered
and the following processing is performed:

a. Store status information (device tyoe and
identification) .

b. If transfer was unsuccessful, abort further
processing.

c. If a successful transfer occurred and all re-
quested transfers accomplished then exit.

The application programs perform hign level logical I/O

calls that cause the queuing.

4. FAST FOURIER TRANSFORM

The following variables are used in the algorithm:

N: The numoer of data points o< = n <= 2**16,
X: a vector holding the N samples as complex

numbers .

x: A vector holding the first n/2 powers of EXPC-
2*pi*i*/N) .

work: Auxiliary working storage.

115

procedure FFTCN,X,W)
GROUPS := N

do for PASS :s by steps of 1 until
log2Cn)-l

do for all ELEMENT such that
<= element <= N/2

"generate complex addend"

WEXP :=

If PASS >

then WEXP :=C(ELEMENT*N)/2) /

2**PASS) MOD CM/2)
end-lf

If WEXP <>
then TEMPI := X CELEMENT+N/2)*

W(EXP)
else TEMPI := X (ELEMENT+N/2)

end if
"generate 2 element entries

In data vector"
X1CELEMENT) := XCELEMENT) +

TEMPI
X1CELEMENT N/2) := XCELEMENT) -

TEMPI
end-do
if PASS < Clog2(N) - l)

then
"execute perfect card shuffle

on data vector"
P := 2**PASS
GROUPS := GROUPS/2
do for all I such that

<= I < GROUPS
do for all J such that

o <= j < ?

INDEX1 := 2*P*I + J

INDEX2 := P*I + J

XCINDEX1) != X1CINDEX2)
XCINDEX1+P) := X1CINDEX2+N/2)

end-do
end-do

else
do for all I such that <= I < N

x := xi CD
end-do

end-if
end-do

116

5. CHARACTER SEARCH

The variables used in this algorithm are:

SRCHSTR : pointer to a string of characters
to be searched.

SRCHLNGTH : lenath of that string.
SRCHARG : pointer to a string of characters.
ARGLNGTH : length of that string.
LOC : an integer return code,
work : pointer to any needed storage.

procedure CHARSRCHCSPCHSTR , SRCHLNGTH,
SRCHARG, ARGLNGTH, LOC, WORK)

integer I

LOC := 1

do for all I such that 0<= I <s SRCHLNGTH-SRCHARG
or until LOC <> -1

if the substring of SRCHSTR from I to
I+ARGLNGTH-1 = SRCHARG

then LOC := I

end-if
end-do

6, BIT TEST, SET, OR RESET

The variables used are:

F : Function code, l=test, 2= set, 3= reset.
N : Relative bit to be tested.
Al: Pointer to tightly packed bit string.
RC: Return code indicating original bit status.
WORK: Pointer to any needed work storage,

procedure BITTESTCF, n , Al , PC, WORK)
integer ABIT,D

ABIT := Al + N/Cword length)
D :e N mod (word length)

if D'th bit at address ABIT = 1

then RC := 1

else RC :=

end-if

117

if F 3 2

then D'th bit at address ABIT := 1

else if F = 3

then D'th bit at address ABIT :=

end-if
end-if

7, RUNGE-KUTTA INTEGRATION

This algorithm solves the differential equation F(t,y)

t+y s dy/dt using a third order Runge- Kutta integration.

The variables used are:

TO : Initial value ot T, single precision.
YO ! Initial value of Y, single precision.
H : Interval of integration, single precision,
TMAX: Final value of T, single precision,
YMAX: Final value of Y returned, sinale Drecision.

procedure RUNGEKUTTACTO, YO,TMAX , YMAX , WORK)
real K1,K2,K3

YMAX ;= YO

do for all T from TO lncrmented in steps of H

until T > TMAX
Kl := H*CT+YMAX)
K2 := H*(T H/2 + Y + Kl/2)
K3 := H * (T 3*H/4 + Y * 3*K2/4)
YMAX := YMAX + 2*Kl/9 + K2/3 + 4*K3/9

end-do

8, LINKED LIST INSERTION

This algorithm inserts an element into a doubly linked

list. Variables used are:

LISTCB : Pointer to a list control block
containing :

HEAD: oointer to first node.
TAIL: do inter to last node.
NUMEMTRIES : number of entries.

NEWENTRY: oointer to new entry to be inserted.

118

procedure LISTINSERTCLISTCB,NEWENTRY)

"the notation POINTEP, FIELD is used to access a

particular field of the structure ponted to by
POINTER"

pointer PRESENT
if LISTCP.NUMENTRIES a

then "list is empty, so initialize"

LISTC3.HEAD ;= LISTCB.TAIL ;= NEWENTRY
LISTCB.NUMENTRIES := 1

NEWENTRY. NEXT := NEWENTRY, PREV :=

else
"list not empty"

PRESENT := LISTCB.HEAD
LISTCB.NUMENTRIES := LISTCB.NUMENTRIES 1

"determine position of new entry"
while NEW. KEY >= PRESENT. NEXT <> do

PRESENT := PRESENT. NEXT
if PRESENT. PREV = and NEW. KEY < PRESENT. KEY
then

"new list head"

LISTCB.HEAD := NEW
NEW. PREV :=

PRESENT. PREV := NErt

NEW. NEXT := PRESENT
else

if NEW. KEY => PRESENT, KEY
then

"new list tail"

PRESENT. NEXT := LISTCB.TAIL := NEW
NEW. NEXT :=

NEW. PREV := PRESENT
else

"insert in middle"

NEW. NEXT := PRESENT
NEW. PREV != PRESENT. PREV
PRESENT, PREV := NEW
"bacK up and linK with predecessor"

PRESENT := NEW, PREV
PRESENT. NEXT := NEW

end-if
end-if

end-if

119

9. QUICKSORT

This algorithm performs a quicksort on an array of

records. The variable used are;

N j The number of records to be sorted.
M : Integer Darameter specifying the changeover

Doint between quicksort and a simple insertion,
REC : Pointer or the first element of the

array to be sorted,
WORK: Dointer to any needed working storage.

procedure QUICKSORT CN, REC ,M, WORK)
integer L,R,I,J,K
integer array STACK CO :2*f(N)-l]
character string V

REC
L :

do
I

do
d

d

i

e

en
end-

sw
if
th

CN+i] := infinite
= l; R := N

forever
:= L; j: = R+i ; V := RECCL]
forever

o I := 1+1 until RECCI] => v end-do
=J-1 until RECCJ3 <= V end-do
I

en swap RECCI] with RECCJJ
se ooto end-first

t!

ECCLJ with RECCJ3
h subfile sizes (J-L and P-J) <= M

tack empty
hen goto end-outer
lse pod L and R from stack
if

el

o J;
f J>

th
el

nd-i
d-do
firs
aD p

bot
en
if s

t

e

end
se
if s

t

mailer subfile size <= M

hen set L and R to lower and upper
limits of laraer suDflle

else push lower and upper limits of
larger subfile onto stack
set L and R to limits of srnalle:

subfile

en
end-
end-

end-
d-if
do
oute

if

r

:

120

do for I from N-l to 1 In seps of 1

if PECCI] > RECI+13 then
V :s RECCI3 ; J i«I*l
do forever
RECCJ-1] := RECCJJ ; J :=J + 1

if RECCJ] => v then goto end-last end-if
end-do

end-last: ACJ-13 := V

end-if
end-do

10. ASCII TO FLOATING POINT CONVERSION

The following variables sre used in this algorithm:

n : Number of characters in the string,
Al : Address of the character string.
A2 : Address of floating ooint number where the

result will be placed.

procedure AFP(H,A1,A2)
integer number, position
real RESULT, DIVISOR
boolean ISNEGATIVE

ISNEGATIVE := false
position :=

if first character of Al is a sign character
then

if sign character is "-"

then ISNEGATIVE := true
end-if
POSITION := 1

end-if
NUMBER :s integer eauivalent of characters

POSITION to J-l of Al wnere
character J of Al is "."

RESULT := floating point eguivalent of
NUMBER

the following two steDs can be done in
parallel if desired"

NUMBER := integer equivalent of characters J+l
to n of Al

DIVISOR := floating eauivalent of 10**(N-J)

A2 := RESULT + (floating point equivalent of
NUMBER) / DIVISOR

121

11. BOOLEAN MATRIX TRANSPOSE

The following variables were used in this algorithm:

Al i Pointer to a word of storage.
A2 : bit number within word Al where

the matrix begins.
N : Size of the boolean matrix.

procedure BMTCN,A1,A2)
integer T,J
boolean Btl:N,l:N] beginning at bit A2 of word Al
do for all I and J such that (i<= J <= N)

3rd CJ+1 <= I <= N)

swap 3CI,J] and 3CJ,I]
end-do

12. VIRTUAL MEMORY SPACE EXCHANGE

This algorithm performed a virtual memory space exchange

through the use of a suDervisor call. There are two

functions which must be orovided by the algorithm.

1. CALL: saves enough information to restore the en-
tire state of the caller.

2. RETURN: restores the environment active before
the previous call,

The sixteen benchmark proarams written by the second CFA

study group follow. A complete discussion of them can be

found in reference 1.

1. TERMINAL INPUT DRIVER

This alaorithm inputs one line of ASCII characters from

a terminal device. ASCII rubouts should delete the

character. A carriage return terminates the line. The

program need not be reentrant.

122

Algorithm: A subroutine TTYIN (BUFFER) initiates the
transfer. It has a single reference parameter, the
buffer to be filled. The buffer consists of:

ADDRESS TERMADDR

CHAPACTER CBUFC1:?]
The buffer is assumed to be large enough for the

line. The transfer is started and the routine re-
turns. The interruot service routine collects the
line in some machine dependent manner. The terminal
interface is assumed to oe a minimal one, (it does
the serial-carallel conversion), When a carriage re-
turn is entered, the terminal input is disconnected
and a transfer to the buffer TERMADDR is made.

2. MESSAGE BUFFERING AND TRANSMISSION

This algorithm gueues a message buffer and then

transmits the message over a DMA link in FIFO order.

RECORD BUFRCADDPESS NEXT, ADDRESS TERMADDR,
INTEGER SIZE, INTEGER DATA C 1 : SIZE])

;

POINTER BUFR END, START
ADDRESS TEMP;
1QUEUE SUBROUTINE
PROCEDURE QUEUECREFERENCE BUFFER)=
BEGIN
IF START NEQ THEN END, NEXT <- ADDRESS C BUFFER) FI;
END <- ADDRESS(BUFFER);

•QUIT IF CHANNEL ALREADY RUNNING
IF START NEO THEN RETURN
ELSE

START <- ADDRESS(BUFFER) ;

TEMP <- 0;
GOTO RESTART

FI;
END;

INTERRUPT:
BEGIN
t

123

i Programmers should insert here device and
! machine dependent code to terminate the
! device transfer
TEMP <- STAPT.TERMADDR;
START <- START. NEXT;

restart:
IF START =

THEN
GO TO TEMP

ELSE
Programmers should insert here device and
machine dependent code to initiate the
device transfer.

FI:
IF TEMP
THEN RETURN
ELSE GO TO TEMP
FI
END

3. MULTIPLE PRIORITY INTERRUPT HANDLER

This test program is desioned to orocess interrupts from

four devices in priority order, UDon receiving an interrupt,

the processor will hranch to the appropriate device service

routine, All interrupts from lower priority devices will be

disabled. Device priority is egual to device number, device

number 1 has lowest priority, device 4 has highest, After

the device dependent service the device ID is added to the

executive gueue for user scheduling purposes. This program

need not be reentrant. Each device service routine will be

simulated by the algorithm below.

•DEVICE SERVICE ROUTINE INTEGER OWN A; FOR I <= 1 TO
A CO : 23 DO A <- CA*899) MOD 123757 OD;

124

4, VIRTUAL MEMORY SPACE EXCHANGE

This algorithm will involve a supervisory call handler

which will provide the functions "call" and "return". The

supervisor is to imolement protected procedure calls with

parameters, "call" will select index into a table of address

space descriptors maintained by the supervisor. The "call"

performs the following:

1. Save the caller's state.

2. Determine the callee's address space,

3. Set up the memory mapping and protection to ac-
cess the callee's address space.

The "return" function takes no parameters. It re-
stores the environment active before the orevious
call.

5. SCALE VECTOR DISPLAY

This algorithm scales a list of graphic vectors about a

given center. The vectors are represented as:

function 4 bits
x coordinate 12 bits
intensity 4 bits
y coordinate 12 bits

PROCEDURE SCALEADJUSTCREF DLIST, VALUE LEN,
VALUE XCENTR, VALUE YCENTR,
VALUE SCALE)=

BEGIN
10 LEO XCENTR, YCENTR LEQ 2047
JSCALE IS THE ACTUAL SCALE FACTOR TIMES 129
INTEGER LEN, XCENTR, YCENTR, SCALE, I, XTMP,YTMP;
RECORD VECTORCINT4 FUNCT,INT 12 X, INT4 INTEN,

INT 12 Y);
VECTOR DLISTC1 :LEN]

?

FOR I <- 1 TO LEN DO

125

XTMP <- DLIST.XCI3*SCALE;
YTMP <• DLIST.YCI3*SCALE;
IF DLIST.FUNCTCI] NEQ
THEN
XTVp <- XTMP+XCENTR*(128-SCALE);
YTEMP <- YTEMP+YCENTR*(128-SCALE);

FI
DLIST.XCI3 <- XTMP/128;
DLIST.YCI3 <- YTMP/128;

OD;
RETURN

END

6. ARRAY MANIPULATION - LU DECOMPOSITION

This algorithm factors a square matrix into an upper and

lower triangular matrix.

LUD
BEG
REA
PEA
INT
FOR
FO
A

F

OD
OD
END

FCOMPCREFEPENCE A, VALUE N)=
IN
L ARRAY AU:N,l:N] t

L MULT;
EGER DIAG, ROW, COL;
DIAG <=1, N-l DO

R ROW <= DIAG+1,N DO
[ROW,DIAG]<- MULT<- A CROW , DI AG] / A CDI AG , DI AG3
OR COL <= DIAG+1,N DO
A[POW,CQL3<=A[ROW,COL]-MULT*ACDIAG,COL3
D

7. TARGET TRACKING

This algorithm taxes the coordinates of an unknown

object and finds in a table sorted by x coordinate the

closest entry.

PROCEDURE TARGETCPEFEREMCE TABLE, VALUE LEN, VALUE X

VALUE Y, REFERENCE FOUND)=
BEGIN
INTEGER LEN, ST ART, END, MID, UP, DOWN;

126

REAL MINDIST;
ADDRESS FOUND
RECORD TENTRYCREAL X, REAL Y, REAL DAT1,REAL DAT2);
TENTRY TABLECllLEN]
START <- 1; END <- LEN;
WHILE START <- END DO

MID <- (START+END)/2
IF TABLE. XCMID] < X

THEN
START <- MID+1

ELSE
END <- MID

FI
OD;
ICompute distance of nearest x entry
MINDIST <- DISTCTABLECMID] ,X,Y) ;

FOUND <- ADDRESSCTABLECMID]);

isearch neighborhood for a nearer entry
UP <- MID+1; DOWN <- MID-1;
WHILE UP>0 OR DOWN >0 DO
IF UP>0 THEN CHECKCUP); UP<- UP +1 FI;
IF DOWN >0 THEN CHECK(DOWN)? DOWN<-DOWN-l FI;

OD;
RETURN;
ICheck an individual entry against closest found
PROCEDURE-MACRO CHECKCJ) =

BEGIN
IF J<1 OR J>LEN OR ABS(TABLE.XCJ]-X) >= MINDIST
THEN J <-0 ; RETURN FI;
IF DISTCTABLEEJJ ,X,YJ < MINDIST
THEN

MINDIST <- DISTCTABLECJ3 ,X,Y);
FOUND <- ADDRESSCTABLECJ3)

FI;
RETURN
END
I DISTC) is the metric defined in the problem
END

8. DIGITAL COMMUNICATIONS PROCESSING

This algorithm is given a message with a header which

contains the destination and connection ID, and places the

message in the aporopriate transmission line's output

buffer.

127

PROCEDURE FORWARDCREFERENCE MSG) =

BEGIN
RECORD MESSAGECINT16 CID,INT16 DEST, INT16 SIZE

CHARACTER MSGC1:?]);
BUFTABLECINTEGER CID, ADDRESS BUFFER);
MESSAGE MSG?
POINTER BUFTABLE LINE;
EXTERNAL ADDRESS DESTABLE [1 : ?]

;

iFind BUFFER table for destination line
LINE <- DESTABLECMSG.DESTJ ;

iFind ring buffer for this connection
I <- 1;
WHILE LINE.CIDCI] NEQ MSG, CID
DO I <- I + 1 OD;
BUFFER <- LINE.3UFFERCI] ;

{Copy the message to the buffer
MOVE (ADDRESS (MSG) , BUFFER , MSG , SIZE)

;

RETURN
END

9. HASH TABLE SEARCH

This program locates the position a Key would occupy in

a hash table,

PROCEDURE HASHLOOKCREFEPENCE TABLE, VALUE SIZE,
VALUE KEY, REFERENCE POSITION,
REFERENCE FULL) =

BEGIN
ADDRESS POSITION
INTEGER SIZE, KEY, CHECK;
BOOLEAN FULL;
RECORD TENTPYCINTEGER KEY, INTEGER DATA);
TENT&Y TABLE[0:SIZE-13 ;

iComoute first place to loofc

CHECK <- KEY MOD SIZE;
FULL <- FALSE;
FOR I <- 1 TO SIZE/2 DO

IF TARLE.KEYCCHECK] = KEY OR TABLE . KEY [CHECK] =

THEN
POSITION <- ADDPESSCTA3LE.KEYCCHECK])

;

RETURN
FI;

CHECK <- (CHECK t I) MOD SIZE
OD
FULL <- TRUF
RETURN
END

128

10, LINKED LIST INSERTION

This algorithm inserts a node in an ordered doubly

linked list.

PROCEDURE LISTINSERTCVALUE LISTCB, VALUE NEWENTRY)=
BEGIN
RECORD LC

RECORD LI
POINTER L

POINTER L

IF LISTCB
THEN
LISTCB.
LISTCB.
NEWENTP
ELSE
PPESEN
LISTCB

WHILE NEW

DO PR
IF PPESE
THEN
LISTCB,
NEWENTR
PRESENT
NEWENTR

ELSE
IF NEWEN

THEN
PRESEN
NEWENT
NEWENT

ELSE
NEWENTRY
NEWENTRY
PRESENT.
PRESENT
PRESENT,
FI

FI
FI
RETURN
END

BCADDRESS HEAD, ADDRESS TAIL,
INTEGER NUMENTRIES);

STENTRYCINT32 KEY, ADDRESS NEXT, ADDRESS PREV)
CB LISTCB;
ISTENTRY, NEWENTRY, PRESENT;
.NUMENTRIES =

HEAD <- LISTCB, TAIL <- NEWENTRY;
NUMENTRIES <- 1;
Y.NEXT <- NEWENTRY. PREV <-

T <- LISTCB. HEAD;
.NUMENTRIES <- LISTCB

.

NUMENTRIES+ 1

;

ENTRY. KEY GEO PRESENT, KEY AND
PRESENT. NEXT NEQ

ESENT <- PRESENT. NEXT QD;
NT. PREV =0 AND NEWENTRY. KEY < PRESENT. KEY

HEAD <- NEWENTRY;
Y.PREV <- 0;
.PREV <- NEWENTRY
Y.NEXT <- PRESENT;

TRY. KEY GEO PRESENT. KEY

T.NEXT <- LISTC3.TAIL <- NEWENTRY;
RY.NEXT <- 0;

RY.PREV <- PRESENT

.NEXT <- PRESENT;

.PREV <- PRESENT. PREV;
PREV <- NEWENTRY;
<- NEWENTRY. PREV;
NEXT <- NEWENTRY

129

11. PRESORT ON A LARGE ADDRESS SPACE

This algorithm takes an array of records in random

order and rearranges them to form a heap. The heap Is a

binary tree In which each node is greater than or equal :o

its descendents.

HEAPIFYCREFERENCE REC, VALUE N)=
BEGIN
INTEGER ARRAY RECClSN] ;

INTEGER CHECK, NEW;
FOR MEW <- 2, N DO

CHECK <- NEW;
WHILE CHECK NEO 1 AND RECCCHECK] > RECCCHECK/2]
DO

RECCCHECK] <=> RECCCHECK/2];
CHECK <- CHECK/2

OD
OD
END

12. AUTOCORRELATE ON A LARGE ADDRESS SPACE

This algorithm computes the autocorrelation of the

vector A from 1 to T,

PROCEDURE AUTOCREFERENCE A, VALUE N, VALUE T,
REFERENCE PES)=

BEGIN
INTEG
REAL
FOR I

FOR I

FOR
I

R

OD
OD
RETUR
END

ER N,T,TAU;
A[i:N], RESCltT];
<- 1 TO T DO RESCI] <- QD;
<- 1 TO N DO
TAU <- 1 TO T DO

F I TAU-1 > N THEN EXITLOOP FI;
ESCTAU3 <- RESCTAU] A CI] * A [I +TAU-1]

;

N

130

13. CHARACTER SEARCH

This algorithm searches a given string to see If it

contains a substring that exactly matches the given argument

string.

PROCEDURE CHARSRCHCREF SRCHSTR, VALUE SRCHINGTH,
REF SPCHARG, VALUE ARGLNGTH, REF LOC)=

BEGI
INTE
BYTE
LOC
IF A

FOR
IF

OD;
RETU
END

N

GER I,
VECTOR
<- -l;
RGLNGT
I IN
SRCHS

THEN L

RN

SRCHLNGTH, ARGLNGTH;
SRCHSTR CO :SRCHLNGTH-13 , SRCH A RG CO : ARGLNGTH- 1

3

H LEQ THEN LOC <- 0; RETURN FI;
,SRCHLNGTH-ARGLNGTH DO
TRCI;I+ARGLNGTH] LEQ SRCHARG
OC <- I? RETURN FT:

14. BOOLEAN MATRIX TRANSPOSE

This algorithm computes the transpose of a given N by N

matrix in place.

PROCEDURE BMTCVAL N,VAL Al, VAL A2) =

BEGIN
INTEGER I, J?
BOOLEAN BC1:N,UNJ
FOR I IN 1,N-1 ; J IN 1*1, H DO

8CI,J3 <=> BCJ,I3
OD
RETURN
END

131

15. RECORD UNPACKING

This algorithm unpacks the fields of a record into an

integer array.

PROCEDURE UNPACKCREF RECORD, REF FORMAT, VALUE LEN
PEF RESULT)*

BEGIN
BITSTPING RECORDCO:?] ;

INTEGER LEN, START, RESULT C 1 : LEN] , TEMP, I;
ARBTYPE F0RVATC1 ;LEN]

;

START <-
FOR I <- 1 TO LEN DC

TEMP <- PECORDC3TAFT:START + FORMAT[I3-13 ;

START ,. START + FORMATCI3;
IF FORMATCI3 IS A DISTINGUISHED VALUE
THEN
TEMP <- SIGNNEXTENDCTEMP)

Fl;
RESULT CI3 <- TEMP;

OD;
RETURN
END

16. VECTOR TO SCAN LINE CONVERSION

This algorithm takes a list of vectors and produces a

raster scan line conversion.

PROCEDURE VECSCANCREF DLIST, VALUE LEN, REF TEMP)=
BEGIN
RECORD DISPLAYCINT16 XS, INT16 YS, INT16 XE, INT16 YE),

WORKLISTCINT16 XS,INT16 XE,INT32 Y,INT32 SLOPE);
DISPLAY DLISTflJLEN)
WOPKLIST TEMPCl:LEN*l) ;

INTEGER I, START, LINE, DENOM;
BITSTPING BITC1 :1024]

;

iGenerate working vector
FOR I <- 1 TO LEN DO

TEMP.XSCI3 <- DLIST. XSCI];
TEMP.XE <- DLIST. XECI3 ;

TEMP.YCI3 <- DLIST. YSCI3 *1024;
DENOM <- CDLIST.XECI3 - DLIST. XS CI] + 1);
TEMP,SLOPE[I) O (DLIST. YECIJ-DLIST. YSCI3)*1024/DENOM

132

OD;
TEMP,
! Gen
START
FOR L

BIT
I <

WHI
FO

DO
TE
IF
TH

FI
I

CD
OD

RETUR
END

XSCLEN+13 <- 1025
erate the scan image
<- l;

INF <- 1 TO 1024 DC
<-

- START;
LE TEMP.XSCI3 LEQ LINE DO
R K <- TEMP.Y CI3/1024 TO CTEMP.YCI3 t

TEMP.SLOPECI])/1024
BITCK] <- 1 OD;

MP.YCI] <- TEMP.YCI3 TEMP.SLOPECI];
TEMP.XECI3 = LINE

EH TEMP [START] < = > TEMP CI];
START <- START + 1;

<- I + 1;

N

133

APPENDIX E

CDS 432/670 USERS MANUAL

The following Is an effort to enable someone with no

prior knowledge of the 432/600 system to be able to compile,

link, and execute proarams on the 432 in a minimum amount of

time and 'fuss', A knowledge of ADA is assumed, as is

familiarity with VMS (e.g. the vms editor).

Referring back to FigureC63 it can be seen that a

variety of hardware and software is involved in simply

getting a program to 'run' on the 432. This variety of

needed hardware/software is collectively referred to as the

432 "Cross Development System", or "CDS" for short. Not

surprisinaly, those functions needed first in order to

achieve the desired result of a program executing on the 432

are accomplished on the VAX 11/790 host. Briefly, the steps

reauired ,olus their CDS 'companion elements' are:

1. Program Creation/Editing -

2. Compilation

3. Linking

4. Downloading

5. Program Load/Execution

- VAX/VMS

- VAX/VMS

- VAX/VMS

- MDS 800

- MDS 800/432

134

1, PROGRAM CREATION/EDITING

Creation of a login file with at least the following

commands will substantially add to the ease of your terminal

sessions while workino with those CDS parts which reside on

the vax/vms host:

SADA432

srnooo :=:

Smopc :=:

$mope s«i

del *.mso;*+*,mbo;*

del *.msc;*+*.mpc;*

del *,mse;*+*.mbe;*

The reason for these commands will become evident as we

continue.

ADA source files to be compiled by the Intel ADA cross

compiler must have a file extension type of either:

1. <filename>. MSS
file.

2. <f iiename>.MBS

3. <f ilename>,MCS

=> An ADA source SDecif ication

=> An ADA source body file,

=> Both specification and body.

In our ooinion, dividing source code into separate

specification C.MSS) and body C.M3S) files was in Keeping

with some of the original philosophies behind ADA, i.e.,

encapsulation and information hiding. Unfortunately, the

compilation efforts, of necessity, must double (2 files to

compile vs. 1 in the mcs case). What follows next are

figures of a sample program. Figure 19 illustrates the

135

division into specification and body. Figure 20 illustrates

the combined (MCS) format. Besides the distinction of

working with two separate files as opDOsed to one, take

special note of the line, common to the 'body', which begins

with "pragma environment,.,".

package EXftMPLEl is I

procedure simple; I

end EXAMPLEl; I

I The specification filed as EXAMPLEl, MSS

I The body filed as EXAMPLEl. MBS I

V V

pragma environment ("ACS :TEXTIO.MLE M
, "EXAMPLEl ,MSE" ,

"INTIO.MSE");
with text.io,intio;
use text.io, intio,ascii ;

oackage body EXAMPLEl is
procedure SIMPLE is

x,y,z : integer;

Begin
x : = 10;
y := 15;
put. line. IOC" SIMPLE ");
put (be l)

;

-- this rings the bell, 'use ascii 'enables this
z := x+y;
putCz); -- 'intio' allows you to do this
put (be l)

;

put.line. lOC'END SIMPLE");
end SIMPLE;

end EXAMPLEl;

Figure 19. Specification and Body Format (SeDarate)

136

pragma environment ("ACS: TEXTIO.MLE" , "INTIO.MSE")

;

with text_io,intio;
use text.io, intio;

oackaqe EXAMPLE2 is
procedure simple;

end EXAMPLE2;

oackage body EXAMPLE2 is
orocedure SIMPLE is

x,y,z : integer;
•a •

Begin
x := 10;
y • s 15*

put-line. IOC" SIMPLE
put(bel) ;

z := x+y?
putcz);
Put.line.lOC'END SIMPLE");

end SIMPLE;
end EXAMPLE2;

Combined specification and body filed as
EXAMPLE2.MCS.

•« i •);

Fiaure 20, A Combined Format Examole

Information is conveyed to the ADA compiler system by

means of pragmas. The environment oragma specifies the names

of external environment files Cor library units) that

constitute the compilation environment for the current

compilation unites). If the current compilation depends on

other compilation units from other compilations, then the

environment files from these compilations must be listed in

the ENVIRONMENT pragma in the current compilation. These

137

environment pragmas enable separate compilation while still

maintaining strong type checking of interfaces, two features

which ADA is supposed to fulfill. In these examples the

compilation of the body depends on:

-- ACSiTEXTIO.MLE => so the package can perform
character I/O.

»- INTIO.MSE => so the package can perform integer
I/O.

-- EXAMPLE1.MSE => the corresponding specification
file.

To alleviate confusion on file extensions, the following

is a list of VMS file extensions used in the 432 ADA

Compiler System (ACS),

1. First character:

M -- The file contains a liorary unit. M stands
for module.

S -- The file contains a SEPARATE stub.

2. Second Character:

S -- The file contains a program unit specifica-
tion.

B -- The file contains a program unit body.

C -- The file contains the combination of a pro-
gram unit specification and a prooram unit
body,

L -- The file is a program liorary file supplied
by Intel.

3. Third (last) Character:

S -- The file is an ADA source text file.

138

E -- The file is an environment file,

R -- The file is a REPORT file.

-- The file is an object code CEOD) file.

L -- The file is a REPORT listing file.

C -- The file is an object code listing file,

m -- The file is a specification file for the
COMBINE utility and contains a list of en-
vironment files that are to be meraed,

1 -- Tne file is an integrated environment file
created by the COMBINE utility.

T -- The file is a listing file produced by COM-
BINE and contains the file table listing of
the integrated environment.

For added clarification:

e,g. <f ilename>.MSS -- An ADA source text file
which corresponds to a specification,

e.g. <f ilename>, MBS -- An ADA source file contain-
ing program unit bodies,

e.g. TEXTIO.MLE -- A library environment file sup-
plied by Intel.

2. COMPILATION ^

The Intel compiler is invoked by the command

"IDA", followed by the filename, If the filename is

omitted, the compiler will promot for it. Our input to the

compiler consisted either of <f ilename . MSS> , for

specification files, or <f ilename. M8S>, for the

implementation, i.e., body, files. Output from a successful

compilation consists of files of type:

139

1. ,MBE or .MSE -- The environment file represen-
tation,

2. ,MBC or ,MSC -- The object code listing file.
It is utilized when debugging on the 432,

3. .MBO or ,MSO -- The oblect code. This is input
to tne linking orocess.

Unsuccessful compilation results in files of the type:

1, ,MBL or ,MSL -- A report listing file.
erally never used this.

2,

We g e n -

A typical session on VAX/VMS consists of the following:

Code and compile the body, which is the means by
which one implements the program. Since the body
depends on what the interface is, the environment
file representation of the corresponding specifi-
cation file must be included. Additionally, if
I/O is to be performed in the body, which is gen-
erally the case, the general I/O, Intel-supplied
packaae (TEXTIO), must also be included in the
pragma environment statement.

An example of all this can be found in Appendix C, which

shows the ADA source code for the programs done in this

thesis.

140

In case it wasn't made clear in the above discussions,

compilation order is important. Any modules included in the

pragma environment statement or referenced in the standard

ADA constructs, "WITH,.." and "USE,,," must be successfully

compiled beforehand, otherwise unsuccessful comoilation is

all the reward one will get for one's efforts in the current

comDilation attempt.

Successful comDilation means the creation of three new

files in addition to the original source file. Directory

space in VMS is quickly exhausted if one is performing many

compilations. Without adequate directory space, the INTEL

compiler and linker will abort. Therefore, when asking for

an account, the system managers must be informed that more

directory space than is normally given a VMS user is needed.

Furthermore, in an attempt to provide a quick means of

deleting unneeded environment, object-code listing, and

object-code files, the commands, mope, mope, and mopo will

automatically delete all files of the corresponding filetyoe

in the current directory.

Once one has successfully defined one's interface, coded

it, compiled it, and has done the same with the

corresponding body or bodies, one has reached the point

where in most traditional systems one is ready to link the

object code in preparation for actual program execution. In

the 432 case, additional compilation must still be performed

before the lin<ing process may begin.

141

First, a module termed PSERP.MBS must be compiled. An

example of this is included in Appendix C. Its function is

to initialize the user processCes). It essentially marks

which module is to begin execution first. For instance, a

Driver routine which invoices all other subroutines is

usually executed first. In our case, PSERP always

initialized the Driver routine, which we always termed MAIN,

in an attempt to cut down on our coding/compilation efforts.

Secondly, as pointed out in the architecture overview on

operating system support, users can tailor some of the iMAX

O.S, packages. In this thesis, modification of the system

configuration package, PSORS.MBS , was implemented. Hence, the

successful compilation of this modified packaae was also

needed. This package is also included in Appendix C.

3. LINKING

The ,mso or .MBO files produced by a successful

compilation are input to the 432 linker by being listed in a

user created directives file. The output from a successful

link is of filetype ,EOD t EOD stands for "External Object

Description", Actually, the respective MSO and mbo output

files from the compiler are in this EOD format. The choice

of using EOD as the filetype of the outout from the linker

is an arbitrary one.

The 432 linker comoines a set of compiled EOD's (e.g.

the .MSO and .¥50 files) into a single linked EOD. Compiled

142

EOD's, generated by the ACS, contain program modules. These

modules, In turn, contain a collection of compiler-generated

objects, such as segments, refinements, etc. The output from

the linking process, a single file, is then downloaded to

the MDS 800 system.

The 432 linker performs the following traditional

functions :

1. Resolves inter-module references.

2. Assigns physical memory addresses to all segments
contained in the input modules,

3, Verifies the compatibility of modules that are
linked together.

4, Produces a linked EOD that may be loaded into the
System 432/670 main memory and executed,

5, Generates error messages for abnormal conditions
encountered during processing,

6. Generates a linker listing that summarizes the
results of the linker operation and address as-
sianment ,

In addition, the linker performs the following 432-specific

actions :

1, Version checks the input ECDs for compatioility ,

2, Assigns object table directory indices and object
table Indices (known as object coordinates) for
objects contained within the input modules.

3, Builds the physical 432 access segments described
symbolically within each input module,

4, Builds object tables and the object table direc-
tory associated with the objects in tne input
modules .

143

5. Generates Initialization object tables, access
descriptors, and storage allocation information.

The net result of all this is an EOD which, when loaded

into 432 memory, will execute as one has programmed it.

The input or directives file to the 432 linker should be

a file created on VMS with a file extension of LKD. This

file, an example of which is provided in Figure 21, may have

other file extensions or types. However, if that is the

case, then the full file name must be given to the linker,

i.e., LKD is the default file type. For example, given a

link file which we call "TEST.LKP", to link this file, the

following command would be entered:

LINK432 TEST

The linking process can be appreciably longer than

compilation. However, if linkaae is successful, a single,

simple message of:

LINKAGE SUCCESSFUL

should be the only message which appears on the console,

warning messaaes, not error messages, accompanied by

"LINKAGE SUCCESSFUL", do not really mean a successful

linkage! At least this has been true in our experience, A

detailed explanation of the different directives which can

appear in the linker file, plus their meanings, can be found

in the manual, "VAX/VMS Host User's Guide". With the

144

culmination of a successful linking, one is ready to

download tne output file generated by the linker to the MDS

800 system. For a detailed explanation of the linking

process and the available directives , i.e. , commands included

in the link file, refer to "VAX/VMS Host User's Guide".

; An examDie of a link file which serves as inout
; to the 432 linker. The semicolons which precede
;These statements signify comments. Link, free,
; output ,orint, and objectmap are examples of
; linker directives. The blank lines which occur
; between directives MUST be present!

link ACS:iMAXvl.eod
ACSitextio.mlo
examplel ,mso
examplel ,wbo
main.nso
main. ^do
pserp.mbo
Dsors ,mbo

freed in directory)

output example. eod

print example. maD
objectmap

This could be filed in VMS as TEST.LKD

Figure 21. A Linker Input File

4. DOWNLOADING

Downloading is performed on the MDS 800 system. In

order for downloading to be accomplished, the VAX nust be

145

operating under VMS, A cable, marked with a tag which reads

"VAX", is the transmission facility for downloading. The

following steps comprise the Procedure to follow when

downloading a file:

1. Attach the VAX cable to the ADM36 terminal. Logon
to VMS as you normally would. Enter the following
command : "SET TERM/SPEED=2400" . This is done be-
cause the MDS 800 system is currently modified to
suDoort only 2400 baud communication rates unless
hardware/software changes are implemented.

2. Remove the VAX cable from the ADM terminal, con-
nect one end to a null modem. Connect the other
end of the null modem to the MDS 800 TTY port lo-
cated on the control unit.

3. Insert into drive of the MDS 800 system the
ASYNCH LINK diskette.

4. Insert into drive 1 the diskette one wishes to
download to. Boot the system,

5. On the MDS 800 terminal, enter the following com-
mand : "DNLOAD <Vms EOD flle> TO :Fi:<new or same
file name>. For Instance, assume one nas an EOD
file named TEST.EOD in the VMS directory. Furth-
ermore, one wishes to call this file TEST1.E0D on
the MDS 800 system. One would enter the following
command: "DNLOAD TEST, EOD TO
:F1 :TEST1 ,E0D" , guotes not included.

we ha\/e experienced average download times of

approximately 20 minutes. Any errors in transmission mean

that downloading must be redone until a complete error-free

download is accomplished, we have not experienced any errors

in downloading to date, The conclusion of a successful

download marks the beginning of the next step, execution on

the 432.

146

5, PROGRAM LOAD/EXECUTION

Now that a linked EOD file is on a diskette, all that

remains is to load it into 432 memory and execute it. The

following procedure assumes that the MDS 800 system and the

432/670 execution vehicle are powered up and have no

hardware faults. In the following discussion, commands which

are to be entered at the MDS 800 terminal (termed the

"debugger console" by INTEL) will be printed in capital

letters and enclosed in guotes. This is for illustration

purposes only. Capital letters are not necessary, and quotes

will result in an error message.

1. Insert into drive of the MDS 800 system, the
disxette labeled UPDATE-432/DE8UG-432,

2. Insert into drive 1 the diskette which contains
the executable prooram. Boot the system.

3. Enter the following command: "RUN WORK :F0:",

4. When the ISIS prompt O) returns, enter: "RUN
DEB432". This should result in the display of
"SERIES III 432 Systems Level Debugger, vt.00".

5. Once 'in the debugger' the ISIS prompt will be
replaced by a "?" as the prompt symbol. Enter the
command: "INIT".

6. When the prompt returns, enter: "INCLUDE
DEB432.TEM".

7. When the prompt returns, enter: "DEBUG :F1:<
filename. filetype >". For examole, suppose one
has downloaded the file TEST, EOD which one wishes
to execute. Here, one would enter: "DEBUG
:Fl:TE3T.E0D".

8. Enter: "START", This command initiates program
execution ,

147

This command will result in program execution on the

432, For an in-depth explanation of debugging facilities

available on the 432, in case the program does not execute

as planned, refer to "Workstation User's Guide",

148

LIST OF REFERENCES

1. Dletz, William B. and Szewerenko, Leland, "Archi-
tectural Efficiency Measures : An Overview of
Three Studies", IEEE Computer

,. April, 1979.

2. Meyers, Glenford J., Advances in Computer Archi -

tecture, second edition . John Wiley S, Sons, 1992,

3. Hansen, Paul v., et, al., "A performance Evalua-
tion of the Intel iAPX 432", Computer Architec -

ture News, June, 1982.

4. Wilkes, M.V., "Hardware Support for Memory Pro-
tection : Capability Implementations", acm, 1982.

5. Fabry, R.S., "Caoabi 11 ty-Based Addressing", Comm .

of the ATM. July, 1974.

6. Wilkes, M.V., page 116.

7. Intel Corporation, 1 M A X 432 Reference Manual,
1981.

8. Shoop, Darreld Russel and Holdcroft, Richard T.,
a. Comparative An alysis c_i inters 432 General
Data Processor and Control Data 's AVA Y K-14 (V)
Computer System, Master's Thesis, *Javal Postgrad-
uate School, Monterey, California, 1982.

149

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52
Deoartment of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. Associate Professor Uno R. Kodres, Code 52Kr
Department of ComDuter Science
Naval Postgraduate School
Monterey, California 93940

5. Capt, Bradford D, Mercer, Code 52ZI
Department of Computer Science
Naval postaraduate School
Monterey, California 93940

6. RCA AEGIS Data Reoository
RCA Corcoratlon
Government Systems Division
Mail Stoo 127-327
Moorestown, New Jersey 08057

7. Library (Code E33-05)
Naval surface warfare Center
Dahlgren, Virginia 22449

3. Daniel Green (Code N20E)
Naval surface Warfare Center
Dahlgren, Virginia 22449

9, CDR J, Donegan, USN
PMS 40035
Naval Sea Systems Command
Washington, DC 20362

150

10, G. LuKe
Fleet Systems Department
Applied Physics Laboratory
Laurel, Maryland 20310

11. Lt. Dave Appiegate
413 Exeter Place
Marina, California 93933

12, Cant, Robert Coates
5?40 Avenida Jinette
Bonsall, California 92003

151

20007U
Thesis
A623 Applegate
c.l The INTEL 432/670

and ADA performance
benchmarks.

30 AUG 84
2 97UO

TOW*
Thesis

A623 Applegate

c.l .The
and

r
AD^

INTEL 432/670
pel

:el
;rformance

benchmarks

thesA623

The INTEL 432/670 and ADA performance be

II III I III III!

3 2768 002 01215 5
DUDLEY KNOX LIBRARY

