
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1983

Development of the computer systems management

instructional laboratory at the Naval Postgraduate School

Mills, Kenneth J.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/19743

I)udieV^^°^„^ 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
DEVELOPMENT OF THE COMPUTER SYSTEMS

MANAGEMENT INSTRUCTIONAL LABORATORY AT
NAVAL POSTGRADUATE SCHOOL

THE

by

Kenneth J. Mills
Jesse M. Richards

Glen F. Tilley

June 19 8 3

Thesis Advisor: N. F. Schneidewind

Approved for public release; distribution unlimited

imPMh

SECURITY CLASSIFICATION or THIS PACE (Wtti, Dmim Bnturud)

REPORT DOCUMENTATION PAGE
I. RtPOnr NUMBER

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (ma SubtltU)

Development of the Computer Systems
Management Instructional Laboratory at
the Naval Postgraduate School

5. TYPE OF REPORT A PrRlOO COVERED
Master's Thesis
June 1983

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf*;

Kenneth J. Mills
Jesse M. Richards
Glen F. Tilley

B. CONTRACT OR GRANT NUM8ERr«J

•. PCRFORMINO ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

H. CONTROLLING OFFICE NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

June, 1983
O. NUMBER OF PAGES

295
14. MONITORING AGENCY NAME ft AOORESSCI/ dllUrunl Irom ControlUnt OUtcm) 15. SECURITY CLASS, (of Ihia raport)

UNCLASSIFIED
ISa. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

l«. OlSTRiauTlON STATEMENT (of IM» Rtport)

Approved for public release; distribution unlimited

17. OISTRISUTION STATEMENT (ot (h« mbatrmct unlmfd In Block 30. It dlHmtmnt Irom Roport)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Contlnuo on tovorao midm H noeooaary m»d Idontlty by block numbmr)

Computer Technology, Instructional Laboratory

20. ABSTRACT (Cottlnuo on r«v«r«« old* II noeooamrr snd Idmntlty by block numbor)

The ability to converse effectively with technicians has been
recognized as a critical skill for managers of data processing
activities. This need has been addressed by the Association
for Computing Machinery in their recommended curricula for the
education of Information Systems specialists. Members of the
Association have also described the functions of a graduate
of those curricula to be that of a boundary spanner and a (Cont)

DO /j
FORM
AM 73 1473 EDITION OF I NOV 6S IS OBSOLETE

5/N ain5. IF. n^A. Axni

SeCUmTY CLASSIflCATIOM or this page fWhii Dmtm gnfr>«0

ABSTRACT (Continued) Block # 20

change agent. Other authors have identified that these skills
need to be gained in practical environments, and that the man-
ager needs to know at least a minimum of the technical language
in order to select good technicians for his staff, and to
communicate with that staff effectively. At the Naval Post-
graduate School a course of instruction in technical aspects of
the computer was designed into a newly constructed microcomputer
laboratory. This thesis is the report of the evolution of
that laboratory and course of instruction.

S'N 0102- LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGerW»»»n Omtm Enfrmd)

Approved for public release; distribution unlimited.

Development of the Computer Systems Management
Instructional Laboratory at the

Naval Postgraduate School

by

Kenneth J. Mills
Lieutenant, United" Staxes Navy

B.S. , University of New Mexico, 1976

Jesse M. Richards
Ccmmanderr United States Navy

E.&-, University of Virginia, 1967

Glen F. Tilley
Lieurenent, United States Navy

E.S., University of Washington, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTZS OF SCIENCE IN INFOEMATION SYSTEMS

from the

NAVAL POSIGRADUATE SCHOOL
June 19 83

rh5^S7
CJ

Dudley Knox Library, NPS
Monterey, CA 93943

ABSTRACT

The ability to cor.verse effectively with technicians has

been recognized as a critical skill for managers of data

processing activities. This need has been addressed by the

Association for Computing Machinery in their recommended

curricula for the educaticn of Information Systems special-

ists. Members of the Association have also described the

functions of a graduate of those curricula to be that of a

boundary spanner and a change agent. Other authors have

identified that these skills need to be gained in practical

environments, and that the manager needs -o know at least a

minimum of the technical language in order to select good

technicians for his staff, and to communicate with that

staff effectively. At the Naval Postgraduate School a

course of instruction in technical aspects of the compuxer

was designed into a newly constructed microcomputer labora-

tory. This thesis is the repor* of the evolution of that

laboratory and course of instruction.

TABLE OF COHTEHTS

I. INTEOEDCTION TO THE LABORATORY 8

A. RATIONALE FOR THE LABORATORY 8

B. ESTABLISHMENT OF THE LABORATORY 13

II. CONSTRUCTION OF THE EQUIPMENT AND THE ROOM 15

A. BACKGROUND 15

B. EVOLUTION OF THE LABORATORY 15

C. DESIGN AND CONSTRUCTICN CONSIDERATIONS 17

1. Equipment and Software 19

2. Physical Layout of Room 19

3. Cooling, Heating, and Ventilation 20

4. Electrical Power Requiremen-s '.20

5. Work Station Requirements 21

6. Cleaning 21

7. Security 21

D. REMARKS 22

III. INSTRUCTIONAL MATEBIAL DESIGN AND TESTING 23

A. METHOD 23

3. STYLE 23

C. TUTORIAL USER'S NEEDS 2U

D. TUTORIAL DESCRIPTION 25

1. DE-1 Digi-Cesigner 25

2. Heathkit Digi-cal Logic Training Device . , 26

3. Prompt 80 26

a. SCK-85 27

5. Sybex Self-Study Tape Library 27

6. Heathkit H-9 Terminal 27

7. Heathkit H'89 Microcomputer 28

E. TUTORIAL TESTING 28

F. TUTCEIM. CONSIDERATIONS 29

17. LESSONS LEARNED FRCM THE INSTALLATION - . 30

A. FRCELEM AREAS ENCOUNTERED 30

B. PITEALLS TO BE AVOIDED 31

7. FOTDRE ELANS FOR THE LABORATORY 33

A. SUBECRT OF COURSES AT THE SCHOOL 33

B. HARDWARE PLANS FOR THE LABORATORY 36

C. CONCLUSION 36

LIST OF REFERENCES 38

APPENDIX A: DE-1 DIGI-DESIGNER TUTORIAL UO

APPENDIX E: HEATHKIT DIGITAL LOGIC TRAINING DEVICE

TCTCRIAL 1U2

APPENDIX C: EBCMPT 80 TUTORIAL 165

APPENDIX D: SDK-85 TUTORIAL 233

APPENDIX E: SYBEX SELF-STUDY TAPE LIBRARY 257

APPENDIX F: EEAIHKIT H-9 TERMINAL TUTORIAL 269

APPENDIX G: EEATHKIT H-89 MICROCOMPUTER TUTORIAL . . . 277

BIBLIOGRAPHY 293

INITIAL DISTRIBUTION LIST 295

LISI OF FIGURES

2.1 MANHCOE ALLOCATICN 18

I- INTROPOCTICN TO THE LABORATORY

A. HATIONAIE FOR THE LABORATORY

In 1972 Oliver Wight identified a problem for executives

who knew too little about how computers work.

"What a great job the technicians have done in creating
a ccmputer "mystique. ". ..the computer technicians have
sold {the executive} a bill of goods that he must under-
stand hew the computer works... But what he really
needs to know about how the computer works is very
liniited indeed, and when technicians create a "mystique''
around the machine--a barrier for the manager— they not
only make hin dependent upon them, but they also seri-
ously impair his ability to make intelligent decisions
about the use of the coiputer. " [Ref. 1]

Wight's warning was that the executive should not try to

become a technician himself, but that he needs to know

enough about what the computer system could do and how it

does it to make sound managerial decisions. This requires

some knowledge of the technical jargon used by specialists,

but net a full technical competency. At a minimum, he must

be able to overcome the mystique of the computer and under-

stand it as a management tool.

Despite this warning that the executive must not be

surrounded by computer mystique, the current state of

affairs is such that many top executives are not always

fully able to penetrate that mystique and make those intel-

ligent decisions. In a recent article Debra Zahay indicated

that many businesses which are hiring graduates with Masters

in Business Administration degrees are using them in data

processing functions, principally to improve communication

between technical and non-technical staff. This is a result

of the "shortage of programmers and technical people who can

communicate with nontechnical staff." [Ref. 2]

8

Cbviously, the inability of the executive to communicat9

effectively with the techiical staff in tha computer opera-

tions area is an area of growing concern to top management

executives. In one of the latest textbooks on management of

information systems the author states

F
ships with the users of their service. ... IS has
specialized in order to harness the various necessary^__i._^__i -u^-i-.- ^- __^ ^u- ^ -•_

(jQne. The specialistr
.r own language sys-cems,

speciaiizea m oraer to narness tne
_,

technical skills to get the job done. The specialists
have appropriately developed their owr "

such as sales growth, return on invest.ment, and produc-
tivity. " [B€f . 3

]

The writers of that statement do not argue that the

language created by the technicians is to blame for the fact

rhat communication is poor between technicians and managers.

They term the language systems that have been developed

"appropriate." The fault for the lack of communication lies

partly with managers who cannot understand the most basic

vocabulary of computers and partly with technicians who

cannot understand the most basic vocabulary of management.

The education of business administrators in basic technical

vocabulary caE be addressed by assigning MBAs zo jobs in the

management of data processing operations as an ^ntry-level

position, buz as Zahay points out, "{This practice} is often

a stopgap solution to the problem of communication between

functional areas and systems staff." [Ref- 4] It is

apparent that there is a problem of poor communication

between the ncn-EDP business manager and tha computer scien-

tist and programmer.

The Association for Computing Machinery views the role

of the information systems specialist as a bridge between

these two diverse areas. One educator in IS said, "The

information system designer {and} iaipiamenter is a boundary

spanner and a change agent. Therefore, the organizational

knowledge should include an understanding of the typical

problems encountered by boundary spanners and change agenis

and the ccmmcn concepts, strategies and tools required of

the individuals enacting such roles." [Ref. 5] In order for

the manager tc act as this boundary spanner, he must have a

working knowledge of the areas he is to span. In fact, the

ACM delineates the graduate of the recommended IS curriculum

thusly:

"1. The Informatior Systems curriculum teaches informa-
tion system concepts and processes with the two contexts
of organizational functions and managemem: knowledge and
technical information systems knowledge...

2. The Information Systems graduate is expected to work
within the environment of an organization and to
interact with bcth organizational functions and coraputar
technology.

3. In technical expertise. the Information Systems
curriculum places substantial emphasis on the ability tc
develop an information system structure for an organiza-
tion and to design and implement applications."
(Ref. 6]

This is not to imply that the technical expert need not be

mindful of the need to communicate with non-technical staff.

Indeed, the need for the technicians to be able to communi-

cate with lay persons has already been clearly identified

[Ref. 7]. However, the training of technicians tc communi-

cate with the lay individual does not relieve management of

the responsibility of having some basic skill in the tech-

nical area, if only in the terminology. This training obvi-

ously need net be so technical as that of the technician,

but should be deep enough that the manager may reasonably

communicate with the technician and be able tc evaluate and

hire a technically competent staff [Ref. 8]. Ideally this

training shculd be consistant between information system

specialists, or problems will undoubtedly develop both

10

within and without T:he organization as the translators need

someone to translate between them as well.

In the curriculum descripxion for the Graduate Education

program the ACM called for "... knowledge of basic hardware

{and} software components of computer systems, and their

patrerns of configuration [Ref. 9]. In the descripxicn of

the recommended course content, the ACM further specified

"Processor, memory, input/cutput , mass storage, remote tran-

smission modules; function and possible realization of each"

were to b€ the subjects cf the Computer Systems course of

the curriculum (Fef. 10]. Additionally, the ACM provided

this rationale for the inclusion of a course in computer

concepts in tte curriculum, "It is important for the student

to pcssess a broad familiarity with fundamental concepts and

terminology associated with computer hardware systems and

operating systems." [Ref. 11]

The desire tc enable the information system manager to

be conversant with the technical language as well as the

financial language creates some unique problems for the

schools which cffer ar information systems curriculum. At

the Naval Postgraduate School, for instance, the students

have a variety of educational backgrounds, ranging from the

more technical degrees in computer science, physics, engi-

neering, etc., to the liberal arts degrees in such diverse

majors as psychology, English, etc. Seme of the students

have highly skilled financial backgrounds, including a few

with MBAs and many from the Supply Corps. Soma have a wide

experience in working with computers on a daily basis as a

result of previous tours cf duty in data processing centers

of various sizes. The challenge for the curriculum managers

is tc provide sufficient course work in both the financial

and managerial arenas as well as the technical information

on the functioning cf ccmputers to provide the graduates

with at least the minimum skills called for by the ACM

11

curriculum guidelines. This challenge is made more diffi-

cuIt by the reguirement that the student officers be

returned tc ncn-scholastic duty as soon as possible. The

standard course of instruction, then, must have -he requi-

site coursework, but at such a level that the somewhat expe-

rienced student has a challenge and the novice is not left

behind.

At the Naval Postgraduate School the traditional

approach of classroom lectures has been used to provide the

courses which cover the hardware and operating systems.

Only one of the courses normally in the Computer Systems

Management curriculum has a technical laboratory associated

with it: CS 2810, which is an elementary structured

programming course in which PASCAL is taught on an IBM 3033

as an adjunct to the structured programming concepts

[Hef. 12]. Ncne of the required courses has any practical

exposure tc the subject hardware or software, although seme

do offer exposure to development of software as a product of

a design program. The school does offer courses in other

curricula that can provide the information systems student

with this technical background. Due to scheduling

conflicts, however, it is not always practical for every

information systems student who wishes to include these

courses in his studies tc be able to do so. i In a similar

circumstance, where hardware concepts are taught in the

several predetermined subsets of course orferinas called
Emphasis areas (£A) . This system is driven somewnat by the
military nature of the school, in that the various warfare

a CO

es to take a course outside the normal sequence for his
it must be taken as an overload, or as a replacement for
urse in which the student can receive validation for

12

classroom ty lecture, Ccok described the computer scisEce

curriculum at Central Michigan University as having "A major

failing. . .the absence of a digital logic laboratory for the

course. The design problems and the operation of the

Arithmetic/Logic Unit and control unit could be made much

more understandable to the student if such a laboratory were

available," [Ref. 13] It is therefore logical to decide

that the iirplementaticn of a hands-on laboratory for logical

device training would be cf major benefit to the students in

an information science curriculum.

B. ESTABLISHfllNT OP THE laBORATORY

In 1980 it was decided that the Administrative Science

Department, tte department of the Naval Postgraduate School

responsible for administering the degree of Master of

Science in Infornation Systems, would install a microcom-

puter laboratory for the sxudents and faculty of the schccl

to use for research. The opportunity was seen to incorpo-

rate into this laboratory a course of instruction in the

technical area that the faculty could use to supplement the

classroom work and that the student could use to explore

further the technical aspects of computing and computing

equipment. In addition the laboratory would provide the

student with the opportunity to work with microcomputers and

desk-top computers. The laboratory would also support

thesis work by students as well as the faculty research

taking place at the school.

The laboratory was envisaged as spanning the technolo-

gical levels from the simplest logic circuits to the most

complex microccmcuting system and local networks with peri-

pheral I/O and teleco irmunicat ion equipment. The laboratory

was to have a coherent ccurse of instruction to assist the

student in learning as much as he wished on each of the

13

technological levels. In addition, it was planned to incor-

porate sufficient equipment that ultimately the laboratory

could be used to simulate the functioning of a full computer

center and thus be used as a teaching aid in the course for

computer center operations.

It was decided to supplement the users manuals that came

with the equipment of the laboratory with additional educa-

tional and training materials, principally because the

general quality of users manuals provided with the systems

was poor. It appeared that those manuals were written with

the assumption that the user was to be knowlegeable cf the

subject area as a prerequisite to using the manual. Iha

overall intent cf the laboratory was that the novice student

would be able to learn the technical language and operations

without havinc tc decipher an intensely technical journal of

instructions. Additionally, the laboratory was unique to

the Naval Postgraduate Schcol, and few texts were available

for self-paced work of this kind. Therefore, the decision

was made to create the texts in-house, using a team of

students tc produce them. The same team of text-writers was

also to manage the installation and construction of the

various computer systems that were to go in the laboratory.

This thesis is the report cf that development effort.

1U

II. CCNSTBOCTION OF THE EfiOIPHENT AND THE ROOM

A. EACKGBCUNC

The basic groundwork for the Laboratory was initiated in

1980 when Professor N. Schneidewind proposed and had

approved the furdamental concept of a student and faculty

learning center. At that time the NPS computer center was

installing a new mainframe computer and would require all

available room in Ingerscll Hall as remote terminal sites.

In September cf 1982 the room originally chosen for the

instructional laboratory space was cleared of the terminals

and construction was started on the laboratory. The authors

were intrcduced to the project during the two months

preceding the construction phase and began by updating the

two year eld wcrk request that had initiated the action.

The problems encountered and mistakes made during the

construction phase will be discussed in this chapter.

B. E?OLaTI0N OF THE LABOBATORY

During the development of the laboratory, the United

States Coast Guard offered to locate a multi-user microcom-

puter in the laboratory. In the interest of obtaining a

system with high ordar languages and application programs

installed, the Administrative Sciences department accepted

the offer. There was no delay in the development of the

laboratory as a result, however a re-alignmenx of goals and

objectives was required of the authors in order to accommo-

date the introduction of this additional system to the labo-

ratory. The authors were directed by Professor Schneidewini

to plan the physical placement of the Coast Guard system in

the front room of the two room laboratory. On 19 November

15

the Ccast Guard system was moved into the lab and placsd in

operation. Of the original 8 work stations present in the

front room, all but two were taJcen by the systemr leaving

little space for other types of eguipment.

Ihe first piece of equipment received for the laboratory

was the Intel Frcmpt-80 microprocessor design and training

device. One of the authors was assigned the tasks of

reviewing all the documentation accompanying the Prompt-SO

and developing a user manual that would allow a computer

novice to begin self-paced education az the machine language

level.

The next equipment received was the Heanhkit Digital

Logic Trainer (in an unassembled kit form). The assignment

for cne of the authors was to assemble the kit and prepare a

user manual that would allow a computer novice to educate

himself on the digital electronics level of computers. The

same authcr received the Heathkit Digital Techniques self-

instruction ccurse for review and evaluation.

The third author was assigned the tasks of reviewing a

series of pre-recorded cassette tapes prepared by SYBZX,

Inc, as a tutorial on micrccompu ters, interfacing techniques

and computer architecture, and preparing a synopsis on each

tape selected for the laboratory.

The above lentioned projects were performed in parallel

with the construction of the room which began in August,

1982. By 21 October the tutorial on the Prompt-80 was

nearing completion, and by 6 November the Heathkit Digital

Logic Trainer was assembled and tested. The ?rompt-80

manual was submitted tc Professor Schneid?^wind on 11

November for examination and recommendations. The tutorial

for the Heathkit Digital Logic Trainer was submitted on 25

November and by 29 November the Heathkit Digital Techniques

self instructional course had been thoroughly reviewed and

was returned tc Professor Schne idewind. The pre- recorded

16

cassette tapes were reviewed and the synopsis prepared for

the laboratory by 15 December 19 82.

A second round of equipment construction was begun at

the end of December with the assembly of a Heathkit H-9

video terminal. A Heathkit H-25 dot matrix printer and H-89

computer with H-17 external disk drives followed in January.

This work was completed by one of the authors, and he began

writing introductory tutorials for these additional pieces

of equipment. Another of the auxhors was assigned the rask

of writing a user's manual for the Intel SDK-85 microcom-

puter experimentation device. The third auuhor began assem-

bling a series of digital electronics experiments that could

be performed en the Heathkit Digital Logic Trainer or rhs

E S L Instruments, Inc. " Cigi Designer" device.

By 28 February all construction and preliminary writing

was completed. The authors then began compilation of infcr-

maticn and data required tc include in tnis thesis.

It should be mentioned at this time that during the

academic quarter from January to March, 1983, the front room

of the laboratory was opened for student use, with the Coast

Guard multi-user system and three modem equipped terminals

installed to permit access to the ARPANET for the course on

telecommunications.

A brief summarization of events and cumulative time

required for each is listed as figure 2.1. The time summary

for the tutorial preparation is included in a later chapter,

C. DESIGN ASD CCNSTROCTICN CONSIDEBATIOHS

One prime consideration in the development of the labo-

ratory was to present a friendly, well defined setting for

anyone interested in learning about microcomputers and

digital electronics. The importance of a friendly user atmo-

sphere cannot be over emphasized, particularly since most

17

Coll€cting compcnents
fcr experiments

MANHOURS

58

Interfacing equipment 3

Planning, paperwork and
discussions with advisors 49

Hcnitoring of construction
progress 27

Total 142 hrs.

—

Fignre 2.1 MANHOOR ALLOCATION.

people facing unfamiliar equipment feel a certain level of

apprehension. With this goal in mind, the authors planned

for equipment that would provide a logical learning contin-

uity from the digital electronics level to higher level

languages and application programs.

At the outset of the project, the Naval Postgraduate

School already owned some of the equipment to be used, a

Heatbkit H-8 computer, HeathJcit H-9 terminal, an Intel

Prompt-80, and an Intel SDK-85 system design kit. The

authors requested that additional computer equipment be

logically related to this inventory. As a result a Heaxhkit

H-89 computer and external disk drives were ordered for the

laboratory. This chcice provided the laboratory with a

contiguous line of equipment that was from the same family

of central processor units.

The sequence of events during the construction of the

laboratory and the equipment could have, at times, been

described as fraught with problems. This report should

assist the reader in developing and building an instruc-

tional labcratcry by presenting some of the pitfalls encoun-

tered and considerations necessary for a successful

installation.

18

The follcwing secticns will highlight those items -hat

require planning and decisions based on the desired use of

the laboratory,

!• JSiJilSJSi ^Ik^ Soft war e

Although it would appear that equipment and software

selection would contain the bulk of decisions concerning a

project of this type, that is not necessarily the case. Ihe

choice of software is, of course, very significant if a

particular application is important to the use of the lab.

Care should be taken to select software and hardware that

meets all projected needs, is relatively easy to learn and

use, and is popular tc the extent that it has a good history

of use and maintenance.

^- £]iisical Layout of Boom

In the design of a computer laboratory, there are

some specific considerations concerning the physical layout

of the rocm. In a laboratory like xhe one at the Naval

Postgraduate School, it will be necessary to allocate space

for computer workstations, peripheral devices such as prin-

ters and disk drives, laboratory equipment such as meters

and cscillcsccpes, digital training devices, and associated

documentation. Sufficient storage space for unused equipment

should alsc be provided. If the laboratory is supposed to

support several courses, as it does at NPS, there will be

different equipment required at different times, so large

storage cabinets should be included in the lab. The counter

tops for the work stations should be designed to make

maximum use of available wall space. When laying out the

floor plan, it is important to remember that people need leg

room and elbow room . A collision may occur if there are

adjacent wcrk stations located around an inside corner.

19

On€ cf the most difficult decisions will be the

placement cf shared devices such as printers and plot-rris.

The work stations utilizing these devices will need a

reasonable path for the connecting cables. Another factor

for consideration is the expected traffic flow and possible

interference tetween doors, counters, and equipment.

3» Coding, Heating, and Vent ilation

The rccm will certain electronic equipment, and

therefore adequate heating, cooling, and ventilation should

be provided. Each computer by itself will generate only a

small amount cf heat, but in the aggregate a room full of

equipment may become warm enough no cause damage to the

devices. One cf the largest sources of heat will be the

number of people in the room. Twenty people in a small room

will hav€ a definite effect on the room temperature.

Generally speaking, computers function better in a cooler

environment with low humidity. The trade-off to be consid-

ered is that people may not use the lab if they are uncom-

fortatly ccld. The best scurce of required temperature and

humidity levels is the manufacturer's literature.

^» Slectric al Power Beguir e ments

Most digital electronic equipment contains an

internal pcwer supply and is designed to be plugged into a

standard 110-120 volt three pronged (grounded) outlet. For a

laboratory, at least two cutlets per work s-cation should be

installed. Some computers provide auxiliary outlets to power

peripheral devices, but not all can supply the heavy power

requirements of high current devices such as printers. The

outlets should be located in a convenient location, keeping

in mind that mcst power cords extend from the rear of the

device. Another consideration for electrical power is that

computers ar3 sensitive to voltage spikes and fluctuations

that occur on a random tut frequent interval. There are

20

filters available to suppress voltage spikes and constant

voltage transformers or uninteruptable power supplies to

protect against fluctuaticns.

5- 12 lis Statio n Begu irement s

Each workstation should have enough room for a CRT

display, a keyboard, a computer, and a printer or space for

a modem and telephone. Since it may be unrealistic ro fully

equip all stations, the temptation may be to reduce the

workstation space allocation in an attempt -o save room. If

the work stations spaces are too small to move things

around, a serious degradation of flexibility can occur.

6 . Cl ean in^

A small but significant problem of a computer labo-

ratory deals with routine cleaning. Methods should be

provided tc adequarely remove waste paper and trash from the

lab. If the rccm is normally locked, an arrangemeni: with the

cleaning service will have tc be made. Special cleaning

solvents ard equipment are needed for CRT screens, compute-

cases, and peripheral devices. Disk drives and other equip-

ment are extremely sensitive to smoke and dirt. It would be

a good idea to provide a whiteboard and felt tip markers

instead of a standard chalk board. No smoking signs should

be prominently displayed. Cleaning instructions are normally

included with each piece cf equipment.

7 , Security

Security of a ccmputer laboratory falls into two

catagories. First, considerations must be made concerning

the physical security of the equipment and software in tne

room. The NFS Instructional laboratory is protected with

cipher locks en the doors and keyed locks on the storage

cabinets. Ihe ccmbinations for the cipher locks are released

21

only to persons who read and sign a non-disclosure state-

ment. Secondly, the software disks for proprietary software

ar € issued in a similar manner, with an agreeman- not xo

copy proprietary software teing signed prior to issuance.

D. BEHARKS

The seven topics discussed above were all significant

considerations in the development of the NPS Instructional

laboratory. The list is by no means intended tc be a compre-

hensive indicatci of all fcssible problems. The chapter on

lessens learned will discuss several problems encountered by

the authors in these areas.

22

Ill* INSTBOCTIONAL MATERIAL DESIGN AND TESTING

During the formulation phase of the development of the

laboratory instructional materials, several areas of consid-

eration were evaluated. It was determined rhat due to the

variety of equipment incorporated into the lab, uniformity

in t€xx style and instructional method should be a major

factor in the design of the instructional materials.

A. HETHOD

The two instructional methodologies considered for

implementation were Computer Aided Instruction (CAI) , and

hard-copy, printed tutorials. The CAI method of instruction

is primarily used for direct institutional support. 'Typical

examples of CAI are Erill and Practice, Tutorials,

Simulation/Gaming, Inquiry/Dialogue, Information Retrieval,

and Problem Solving [Ref- 14]. CAI is accomplished

through interactive computer tutorial sessions and thus

requires the availability and use of a computer system. This

requirement, coupled with the goal of uniformity in method

and style, lead to the decision to utilize hard-copy,

printed tutorials for all instructional equipmenx used in

the laboratory. It was decided that printed tutorials would

provide greater access to the learning materials and wouli

allow greater mobility cf the tutorials for independent

study.

B. STYLE

When approproiate for the equipment type, the primary

style used in designing the tutorials was an adaptation of

the "Prompt and Eesponse" style [Ref- 15]. This type of

23

instructicn is designed tc prompt the reader to respond to a

stimulus presented in a frame type format. As adapted for

use in this laboratory, the response is in the form of an

action taken fcy the reader, thus leading the reader through

the tutorials in a step-ty-sxep manner. This insrructional

style provides the reader with immediate feedback concerning

the correctness of the action taken. Additionally, this

style allows the reader tc skip lessons previously covered

or undesired, and to review any material covered which is

unclear.

C. TUTORIAL DSEB'S NEEDS

The first step in designing the --utorials was to

consider the gualifi cat ions and background of the users of

the laboratory. Their ability level and background in elec-

tronics, mathematics, and computer systams were evaluated so

as to design instructional materials best suited to the

users' needs and to supplement education received through

other courses taken at the Naval Postgraduate School.

Because the tutorials were being written primarily for grad-

uate students the authors could assume a high level of scho-

lastic and verbal ability, relatively high motivation

(participation in this lat may be voluntary) , and varying

acquaintance with ths terminology and concepts of elec-

tronics, mathematics, logic design, and microcomputer

theory. There are no prerequisites for the material

presented in this lab. It was designed to be studied inde-

pendently or in conjunction with courses such as CS28 10,

CS3010, CS3030, CS3200, IS2000, IS3100, IS4183, and others.

24

D. TOTORIAI DBSCHIPTION

E€for€ tb€ authours cculd begin work on the tutorial

manuals, they had to learn the equipment and its operations

sufficiently well to be able to teach it to others. This

task was made more difficult by the poor manuals that accom-

panied some of the equipment. Having mastered the equip-

ment, the authors then had to become proficient at the

creation of programmed texts, and combine the machine skills

with the writing skills. The final stage of the labor was

the actual crearion of the tutorials. A total of 340

manhcurs were spent on the research and preparation of the 7

tutorial sets for use on the laboratory equipment. A brief

description of each tutorial set is listed below.

''• 2^zl Diq i-D es iq ner

The Digi-Designer tutorial contains a functional and

physical description of the equipment and its use m the

design of logic circuits. Included in the tutorial are the

following topics:

a. Binary Mathematics

The basic concepts of binary addition, subtraction, and

multiplication is provided for those readers who desire to

review this topic.

b. Logic Design

A review of the concepts of logic design utilizing AND, OR,

XOR, and NAND gates is provided.

c. Karnaugh Maps

The use and techniques cf Karnaugh mapping as a tool for

reducing Boolean equations are discussed.

25

d. Latoratory Experiments

Several laboratory experiments are included to familiarize

the reader with the Digi-Cesigner and the physical concepts

of logic design.

2. Heat^Jsil Digital Logi c T raining Device

The tutorial for the Heathkit Digital Logic Training

Device was written in the "Prompt and Response" style

discussed earlier and contains three sections. Part one of

the tutorial is a functional and physical description of the

digital console. Part two contains experiments designed to

demonstrate correct procedures for operation of the digital

console. Part three contains experiments utilizing logic

gates. These experiments are designed to provide a basic

introduction to logic design concepts and digital logic

"breadbo arding".

3. Prompt 8

The tutorial for the Prompt 80 computer is a

programmed text writt an in the "Prompt and Response" linear

style for ease of use with the computer. Section one of the

manual contains a physical and functional description of the

Prompt 80 console and peripheral ports. Section two provides

instruction on modifying the registers and memory and intro-

duces tha reader to the task of entering a machine language

program into the computer. In section three, this concept is

expanded by showing the reader how to write a machine

language program when given an algorithm. Section four

contains instruction on the advanced functions of the Prompt

80, reading and writing to a PROM, debugging machine

language programs, and seme advanced concepts in machine

language programming.

26

U. SDK^85

Th€ tutorial for the SDK-85 was written in' th«

"Prompt and Response" style and contains three sections.

Part one is a general description of the SDK-85 computer.

Part two contains a component-by-component functional

description of the SDK-85. Part nhree contains assembly

language sample programs and explanations of the additional

capabilities provided by the 8085 CPU in comparison to the

8080 CPU used in the Prompt 80.

5- S^bex Se lf- Study T ape Library

Three ccurses from the Sybex tape library were

reviewed and selected for inclusion in the laboratory. The

courses selected were:

SE3 - Military Microprocessor Systems

SB5 - Bit Slice

SE7 - Microprocessor Interfacing Techniques

The manual for the tape library contains a descrip-

tion of rhe library system and, for each course, an outline

describing the course goal, the topics, and the material

covered within those topics. The brief synopsis of each

course allows the reader to review the maxerial contained in

the courses and to determine the applicability of the

courses to the reader's abilities and field of study.

6- He^lliiSil ihi Terminal

The manual for the Heathkit H-9 terminal explains

the effects of each of the control keys of -he terminal and

describes the functioning cf the terminal. In addition, the

user is taken through a "Prompt and Response" tutorial

demonstrating the procedure to utilize rhe H-9 (via a modem)

as a remote terminal for the IBM 3033 computer system

located at the NPS W, R. Church Computer Center.

27

7. Hsathkit H^BS Miciccomputer

Th€ manual for the Heathkix H-89 Microcotn-puter

explains the general outline of the computer. It describes

the steps necessary to boot the CP/M operating system. It

also gives a very brief overview of the imbedded commands of

CP/M, the utility programs that came with CP/M and the

working of the function keys of CP/M as installed in the

H-89. No applications software is described in this manual,

as that is left to the user to learn. The manufacturer

manuals on the interfaces, monitors and OT.her specific elec-

tronic issues are available for reference. The s-cyle of the

tutorial is traditional text.

E. TDTOHIAL lESIING

The completed tutorials were tested by a member of the

faculty, members of the project design team, and selected

"non-technical" students of the Naval Postgraduate School

The experience level of the evaluators ranged from readers

with little or no knowledge of microcompuxer systems to

those who were highly experienced in the concepts covered in

the laboratory. During the tasting, weaknesses noted in the

tutorials were evaluated and the tutorials were modified for

improvement and re-evaluated. Both experienced and inexperi-

enced ^valuators were able to complete the tutorials with

little difficulty. The inexperienced evaluators were gener-

ally impressed that the tutorials were not written in a

highly technical language, thus providing a better concep-

tual understanding for them. It was judged by these evalua-

tors that -he laboratory could provide a useful and

worthwhile learning experience.

28

F. TOTORIAl CCNSIDEEATIONS

The authors found that one of the most difficult tasks

was to insure that all the tutorials were consistent for

style and format. With three authors and seven different

manuals it was not a trivial task to make them so. The

authors attempted to keep some consistency by proofreading

each other's work, using conferences to decide format policy

and through intense communications. This sharing of the

labor and talent made it possible to achieve the consistency

demonstrated in the appendices.

29

IV., LESSONS LEARNED FHOH THE INSTALLATION

A. EEOBLEH ABIAS ENCCONTIBED

In reviewing the original wcrJc requests and discussing

the initial project with zhe sponsor, the authors discovered

several items that had net been originally considered in

those requests, as well as areas in which technological

changes had nade the plans obsolete. For example, the ccun-

tertop height for the laboratory as specified was too high

for comfortable typing for long periods. In addition, there

was no provision made for storage of materials in the labo-

ratory, nor for security of the more pilferable items of the

laboratory. The laboratory had been designed to be parti-

tioned into two rooms. Loclcable cabinets and cipher locks

on both the inner and outer doors were also provided.

Although this change was aiade late in the development cycle,

and was made to plans that had been approved for two years,

the Public Works Department was able to respond to the needs

and provide the facility as desired. The division of the

room into two work areas complicated the situation by

forcing a change in the ventilation system of the area to

provide exhaust and inflow to both areas. Again, the

response of Public Works fcas gratifying.

The enthusiastic response of Public Works to the

changing requirements was not entirely without pitfalls.

Some problems developed in the actual execution of the

design of the cabinets and countertops. The authors were

able to correct the communications failures by personal

intervention, and the ultimate product was most suitable for

the purpose.

30

In general, the difficulties faced in -he production

effort of the physical facility all stemmed from poor commu-

nication on the parts of both the transmitting individual

and the receiving individual. In those areas where communi-

cation was clear and effective, no delays or errors were

made. Once again, communications have proven tc be critical

in program development. Also, the authors appreciate the

fact thano ccmplex project can be implemented without some

degree of uncertainty and ambiguity. That is, some aspects

must te learned by actually forging ahead, doing the work

and obtaining experience. Hindsight then allows one to

state how the prcject could have been done "perfectly".

B. PITFALLS TC EE A?OIDEE

It is impassible to rigidly define the areas in which

any project will experience delays and failures, principally

because the ccnditior.s in which the project is undertaken

will be unique. It is, however, possible to identify the

general areas in which clcse personal supervision will help

avoid some of the pitfalls and failures. In a most general

way, the ccmmunicaticns nentioned above apply to all of the

areas in which failures occur.

Communications failures can occur between any of the

elements of the design and production team: the design

supervisor, his workers, the supervisor of the producing

workers, and the actual technicial staff performing the

physical wcrk. Failures at the junction of design super-

visor and his workers leads to mis-designed or mapprcpri-

atly designed plans. Failures at the junction of design and

production teams can lead to incorrectly followed plans or

improperly drawn plans followed to the letter. Failures

between production supervisors and their workers results in

improperly installed facilities or delays in installation.

31

It is not possible to overemphasize the need for accurate,

timely and clearly understood communications between ail

members of the teeun.

Another area of concern for the designer of a similar

laboratory must be tha ccmpatability of the planned equip-

ment. In the NPS Instructional laboratory the original plan

was to use the Heathkit H-9 Terminal both vith the H-8

computer and as an additional terminal for AfiPANET and the

IBM 3033 at NFS. Unfortunately, the design of the H-9

terminal makes that impossible, in than zha terminal has no

capatiliry for lower case characters and if a lower case

ASCII code is received, the terminal displays a control

character in its place. This discrepancy was discovered

when the terminal was first used on the ARPANET, and has

made the terminal less attractive than it mighr otherwise

have been. Eesigners of laboratories similar to .this one

should carefully screen all hardware for full ccmpatability,

including the obtaining of manuals in advance, if that is

what is required to investigate fully the capabilities and

limitations cf a machine.

32

V. FOTORE PLiNS FOR THE LABORATORY

A. SOPPORT OF CCORSES AT THE SCBOOL

There are twc areas of concern for the immediate future

of The instructional laboratory: the use of the laboratory

and the equipient to be added to the laboratory. The first

issue to be discussed is the future use of the laboratory.

It is the intention of the school to increase the usage

of the laboratory in direct support of classworlc in both the

Information Systems course area and in the Compu-cer Science

course area. In particular there are seven courses in which

the laboratory can be made an integral part of zhe course-

work and to which the laboratory represents a significant

improvement in facilities. Each of xhese courses will be

discussed in detail below. It is recognized that the use of

a physically snail laboratory to assist in teaching classes

with sometimes as many as UO students or more may be fraught

with problems of crowding and scheduling clashes. However,

the fact that the laboratory is available to the user

twenty-four hours a day, seven days a week, all year long,

significantly reduces the problem of crowding and scheduling

to a lesser problem of having some users come to the labora-

tory at unconventional hours. As discussed in the initial

chapter, the motivation of the students at NPS is high, and

the maturity of the students makes it possible to accept the

smallness cf the laboratory and still use it as a primary

teaching aid.

The lowest level course to be supported in the labora-

tory is IS 2000, Introdu ctio n to Computer Management. The

NPS Ca-^alogue [Ref. 12] states that this course covers the

elementary hardware and software concepts of Computer

33

Maragement. In IS 2000 the laboratory can be used to intro-

duce to the novice student the various terms of - data

processing, with a chance for the student to actually see

and use ccmputers for perhaps the first time. The equipment

in the laboratory that might be used very well in this

course includes the Digi-designer, the SDK-85, the Prompt

80, the Heath 8 micicomputer, and the Heath 89 microcom-

puter. Althcugh the instructional material for xhcse

devices may well be mere advanced than the student needs at

this level, the devices can be used to introduce the

concepts of registers, memory, storage davices and media,

hexidecimal, cctal, and binary arithmetic, busses, CPU,

"chips", etc.

The IS 3100 course. Survey of Contemporary Com puter

Systems, has as part of its course coverage the comparison

of microcomputers and their price and performance character-

istics. With the Heath 89 as a demonstration of a rela-

tively advanced 8-bit machine and the USCG system as an

example of a typical 16-fcit system, the laboratory can

demonstrate the change in performance and price which

occurs across this range cf computers.

IS 32 20, Ccmputar Canter Ope rations, was designed to be

taught using the W. R. Church Computer Center as a training

site for the student to actually manage a large system.

However, with the recent installation of the new IBM 3033

equipment at the Center, that arrangement has been elimi-

nated. In its place, the laboratory can be used to simulate

a large ccmputer canter. All the roles in a typical large

center can be emulated in the laboratory, and problems

placed before the studenxs to solve pertaining to allocation

of assets and priorities, production scheduing and control,

operational prccedures, and computer performance evaluation

can all be taught through simulation. The use of the labo-

ratory in this way is virtually open-ended. Its success

34

depends entirely on the response of -he students and the

inventiveness of the simulation designers.

Application cf Database Man agemen t, IS 4 183, can be

assisted in this labcratcry in both the use of microcom-

puting in datatase management and in the teaching of rela-

tional database management systems. The laboratory has

CONDOR (tm) relational data base management software avai-

lable for the student to experiment with and actually see a

database system at wcrk. It is possible that problems in

datatase design could be given with the assets of the labo-

ratory available for the student to use in their solution.

In addition, rcle playing could also be used to demonstrate

to the students the functions of a database administrator in

a simulation environment.

The final Information Systems course to be supported

directly is IS 4185, Compu ter-based Information Systems. In

this course the student is presently required to prepare a

small decision support system for part of the course credit.

The laboratory can be used as a resource for that project,

as well as a demonstration site for microcomputer-based

decision support and management information systems.

In the Compter Science course area, there are two

courses that the laboratory could support. One of these is

CS 3010, Computing Devices and S ystem s. In this course the

student is taught computing at the bits and bytes level,

with emphasis en the hardware and the interconnections

between hardware, rather than on software. The

Digi-designer , logic trainer and both the Prompt 80 and the

SDK-eS will be significant teaching tools in this course.

The lower level devices can be used to teach the concepts of

logical circuits, while the SDK-85 and Prompt 80 can be used

to demonstrate the effect of clock pulses, timing circuits,

and data transfers. In the latter part of the course, the

Heath 89 can be used in the final integration of the logical

35

training and tc help the student see thai: the principles cf

the Icwer machines apply equally to the higher.

Finally, CS 3020, Software Design, can use the labora-

tory as an asset with high level languages such as FORTRAN,

COBOL, etc., to assist the student in the design of software

that meets the currently accepted criteria of modularity,

changeability, etc.

B. BARDHABE £IA11S FOB THE LABORATOBI

Most cf the initial equipment has already been installed

in the laboratory. However, several pieces of equipment

will te ordered, or are at NPS and not installed. These

include a Heath 8 microcomputer to be used with the Heath 9

terminal, an IBM Personal Computer, an Apple microcomputer,

a microcomputer development system, a small local network

and a micrcccmputer interfacing system. In addition, more

software is planned, including some of the more recently

developed slectronic spreadsheets, some other database

management systens and perhaps different operating systems.

With the state cf the art in microcomputers in such flux,

the present plans are to remain flexible, and to add to the

laboratory whatever hardware and software seems to be

gaining acceptability in the Department of Defense (DoD) as

a whcle, with a view tc keeping the student and faculty

abreast of those developments.

C. CGNCLOSICM

The laboratory has been a long time in development, and

during its development technological changes have provided

new opportunities for upgrading its technical capabilities.

However, now that the laboratory is a reality, it will be

maintained with the latest in hardware and software, and

should be used by the faculty and students of NPS for

36

research tc tenefit the DcE as a whole. That use alone will

justify its existance, but the more important usa of the

laboratory is ic the instructional mode, to reduce the

mystique of ccicputers mentioned in Chapter 1, and to provide

to the DoE Information Systems specialists who can bridge

the communications gap between the technician and the

manager.

37

LIST CP REFERENCES

1.

2.

Hiqht- C, The Executive's New Com puter—

S

ix
Systems SuccaflT ^T'US, KesTo!!7~1^2-^

Ke^s to

Zahay, D. , ^

Volume 21, Number 2, pp
"Carvir.g a Systems Niche",

100-104, February,
Datamation,

3. Cash, J. I. Jr., McFarlan, F. W., and McKenny, J.
Corporate Informaticn Systems Management: Text
Ul5€£,'"!Jichar^ D. irwm , Tnc, 19HT"

" and

4.

5.

Zahay, p. 100.

Couger, J. Daniel, "Improving the Effectiveness of
Campus Recruiting", Computing Newsletter for
Instructors of Data Pro ces sing, Tolurae T7,'~JIo. "8, p.
TT—SpfilT^lSH?.

^

6. Ibid., p. 4.

7. Mein, ». J., "On the Need for Students to Present
Technical Material to Non-technical Audiences in a
Computer Science Curriculum". SIGSCE B0LLETI!7, Volume
14, Number 1, pp. 97-101, Februafy7~1^H2~

8. Lucas, H. C. Jr., "Preparing Executives for Corporate
Informaticr Management", Inf osy ste ms, pp. 114-117,
October, 1S79.

9. Asscciation for Computing
Curricula for Coip puter S cie nce
frocissmg Proaraas m Colleges
I2515IiI37 i9"BT7"pT~'"''

— ^""

Machinery, ACM R ecom mended
ana Tnfprma'ign
an^ Universities

,

10. Ibid., p. 77.

11 . Ibid., p. 5.

12. Naval Postgraduate School
Postgraduate School, 1982-83.

Catalogue, Naval

13. Cook, R. N. , "A Hardware Course
Curriculum", SIGSCE BULLETIN, Volume
pp. 17-22, Junel T^BT:

for
13r

a Software
number 2.

,

38

14, Milner, Sxuart D. , "How To Make The Right Decisions
khoMt Micrccoraputers", Ins tructional Innovaicr, v. 25,
no. 6, FF. 12-19, SeFtem5er IIBV , p. T3.

15, Markle, Susan M., Good Frames and Bad: A Grammar For
Frame Writing . New York: Wiley, 1964.

39

APPENDIX A

DD-1 DIGI-CESIGHER TOTORIAL

3>:«i«**«:(t* **«««* :0c«****** **********
:«c******:tc4c* ******** ***>»****************
********************** ****:«£ *:«£******:*«**
*** ***
*** INSTBUCTICNAL LABORATORY ***
*** ***
*** DD-1 CIGI-DESIGNER: ***
«** ***
*** ***
*** ***
** LOGIC CIRCniT ***
*** ***
*** DESIGN METHODOLOGIES ***
** ***
4:«i:«c***«4c*******4c**** ******************
:4e ************************ 4c* *********
******:4c** *********** **«*:**««**««****

40

TABLE OP COHTENTS

Sect! en page

1. DD-1 DIGI-DESIGNER 3

INTFODOCTION 3
DD-1 DESCRIPTION 3
SK-10 SOCKET DESCRIPTION U
MANUAL DESCRIPTION 4
GENERAL LABOBATORY INSTRUCTIONS 5
Equipment Invenzory For Digi-Designer Lab

EXPERIMENTS 6

2. BINSBI MATHEMATICS

—

TWO'S COHPLEMENT ARITHMETIC . . 7

BINARY ADDITION 9
EINARY SUBTRACTION 11
EINARY MULTIPLICATION 11

3. lOGIC DESIGN 12

INTEODUCTION 12
SWITCHING ALGEBRA 12
SWITCHING FUNCTIONS ' 15
LOGIC SPECIFICATIONS 19
IKPLEMENTATICN OF A LOGIC OR SWITCHING FUNCTION . 20

THE SUM-OF-PRODUCTS FORM OF THE LOGIC FUNCTION 20
I irple mentation of the Sum-of-Products Logic

FUNCTION 22
NAND GATE IMPLEMENTATION 23

Implementation of the Product-of-3 urns Logic
FUNCTION 26

NOR GATE IMPLEMENTATION 27
ANSWERS TO PEOBLEMS 29

4. KABNAOGH MAPS 39

5. IHTfiODOCTION TO FLIP-FLOPS 46

6. LAECEATOHY EXPEBIMENT #1 51

USE OF THE DIGI-DESIGNER 51
LOGIC SWITCHES AND LAMP MONITORS 53
PULSERS 53
CLOCK 53

THE INTEGRATED CIRCUITS 53
THE AND GATE 55

A 3-INPUT AND GATE 57
THE OR GATE 58

A 3-INPUT OR GATE 60
THE NAND GATE 61
THE NOR GATE 62
INVERTERS 62
AN OPTIONAL DESIGN PROBLEM 63

7. LAECEATOHY EXPEBIMENT #2 64

THE EXCLUSIVE-OR GATE 65
THE HALF-ADDER 68
THE FULL-ADDER 70
OPTIONAL FULL-ADDER EXERCISE 71

41

8. LIBOBATORY EXPBBIMENT #3 72

THE RS LATCH 73
THE FS LATCH WITH ENABLE > . 75

CLOCKED RS LATCH 76
THE D-TYPE FLIP-FLOP 77

THE 7«*7U B-TYPE FLIP-FLOP 78
SCME APPLICATIONS OF D-TYPE FLIP-FLOPS 78

SERIAL-LOAD, LEFT-SHIFT REGISTER 78
A RING COONTER 79
A PARALLEL-LOAD, LEFT-SHIFT REGISTER 80

9. LAflCHATCRY EXPEEIHENT #4 81

THE KASTER/SIAVE CONFIGURATION 82
THE MASTEB/SLAVE RS LATCH 83

THE JK FLIP-FLOP 85
THE DUAL JK FLIP-FLOP 87

ASYNCHRONOUS COUNTERS 87
IHE BINARY RIPPLE UP-COUNTER 88
THE BINARY RIPPLE-DOWN COUNTER 39
THE RIPPLE UP/DOWN COUNTER 89

10. LAECBATOHY EXPEBIMEHT #5 91

ASYNCHRONOUS COUNTERS (CONCLUDED) 91
THE RIPPLE BCD DECADE COUNTER 91
THE DECADE COUNTER (CONTINUED AND OPTIONAL) . 93

SYNCHRONOUS COUNTERS 93
THE SYNCHBCNOUS EINARY UP-COUNTER 9U
The Synchicnoas Binary Up-coan-ar with Ripple

CARRY ; . . 94
THE SYNCHBCNOUS DOWN-COUNTER (OPTIONAL) ... 95
A MODULO-3 SYNCHRONOUS UP-COUNTER 95
A MODULO- 6 COUNTER 96
A MODULO- 12 COUNTER (OPTIONAL) 97
A MODULO-5 COUNTER (OPTIONAL) 98

11. ABBREVIATIONS 199

12. DEFINITIONS 100

13. TABLE OF DECIHAI HOLTIPLES AND SUBHULTIPLES ... 101

H2

Section 1

DD-1 DIGI-DESIGNEH

1.1 INTBOEOCTIOM

This series of iEstruction is designed to teach the

readsr to understand and to design logic circuits utilizing

the DC-1 Digi-Designer and logic components. A review of the

basic mattematics requirements is also provided.

1-2 DE-J PESCRIPTICS

The DC-1 Digi-Designer, produced by E 5 L Instruments

Incorporated, is a complete digital circuit design instru-

ment that will meet your requirements for digital circuit

design laboratory experiments. It will handle both

Integrat€d Circuit (IC) and discrete components without

soldering: connections are made using any 22 gage insulated

wire. The unit includes a regulated 5 volt (•5V) direct

current power supply, a selectable frequency clock (pulse

generator), dual bounce-free pushbuttons (pulsers) , four

switches for applying voltage or ground as required, four

Light Emitting Diode (LED) logic lamp monitors, and the SK10

universal component socket.

43

4

1*3 SK-JO SOCKET DESCRIPTION

The SK10 sockst is basically a matrix of 64 pairs of

common contacts (5 per strip) arranged symmetrically;

combined \<ith 8 buss strips running along the length of the

socicet (40 contacts per strip) . The socket allows the user

to insert all electronic components required for the experi-

ments with lead diameters up to 20 gage wire. For very

large components, the E & L BP24 adapter pins, which accept

leads up tc 16 gage wire, should be used. When inserting DIP

ICs, be certain to preset the leads at the correct spacing.

Insert one side partially in, then roll the second set of

leads into the other side , then press squarely down seating

the IC properly.

1.4 MA II DAL DESCRIPTION

This manual is primarily an adaptation of the notes and

labs for the Hewlett Packard HP 5035T Logic Lab as raught in

the EE-2810 course at NPS. The manual conzains some useful

review information on binary ma-chematics, logic design,

Karnaugh Maps, theory behind flip-flop circuits, and some

specification sheets for TTL ICs. Following the review

information, ycu will find five laboratory experiments that

should prove helpful in making use of zhe Digi-Designer to

conveniently design, assemble, and test relatively complex

circuits, without soldering, and in only a few minutes. It

should be noted that since the advent of large scale inte-

graricn, the types of design involved in these experiments

are not the main ccncern of computer system designers;

however, these experiments can be very useful in learning

the basic concepts involved in logical and digital circuit

design.

44

5

1.5 GENERAL LABQRAICHY IN STRUCTIONS

If you desire to make not9£ of experimental results cr to

answer the questions contained within the experiments,

please ottain a copy of the experiment you wish to perform.

DO NOT MHI ON THE PAGE S WITHIN THIS MANUAL!

Ee sure tc inventory all of the Digi-Designer equipment when

checking the equipment in or out. An inven-cory sheet and the

components necessary for ccJmpleting the experiments are

contained in this macual following the introduction.

U5

6

1.6 E^OIIMENT INVENTOHY FOB DIGI^DE SIGNER LAB EXPEHIMENTS

^OANTJIY ITEM

1 DD-11 DIGI DESIGNER

1 MANUAL

2 7400 QUAD 2-INPUT POSITIVE NAND GATES

2 7402 QUAD 2-INPUT POSITIVE NOR GATES

2 7408 QUAD 2-INPUT POSITIVE AND GATES

2 7432 QUAD 2-INPUT POSITIVE OR GATES

1 7 4 04 HEX INVERTER

1 7466 QUAD 2-INPUT POSITIVE XOR GATE

2 7483 DUAL JK MASTER/SLAVE FLIP-FLOPS

2 7474 DUAL D TYPE EDGE TRIGGERED FLIP-FLOPS

1 7411 TRIPLE 3-INPUT POSITIVE AND GATS

1 7420 DUAL 4-INPUT NAND GATE

1 7442 BCD- TO-DECIMAL DECODER DRIVER

1 7482 2-BIT BINARY FULL-ADDER

10 330 OHM RESISTORS (1/4 WATT)

2 ALLIGATOR CLIP JUMPER LEADS

1 IC EXTRACTOR CLIP

ASSORTED PIECES #22 »IRE

46

Section 2

BIHABI MATHEHATICS—T«0»S COMPLEMENT ARITHMETIC

For purposes of the following example, we will use a

register length of four bits. Three bits are necessary to

represent the numbers zero through seven in binary form and

the additior.al bit is used to rspresent the sign of the

number, whether negative or positive. The left-most digit

is the most significant digit (MSD) and the right-most digit

is the least significant digit (LSD) .

Most Significant Digit< >Least Significant Digit

(MSD) >) All A2| A3l A u] < (LSD)

1
1 I i i

3 2 10
weights > 2 2 2 2

The binary representation for -8 through +7 is as follows:

7 0111

6 0110

5 0101

4 0100

3 0011

2 0010

1 0001

0000

-1 1111

-2 1110

-3 1101

-U 1100

-5 1011

-6 1010

-7 1001

-8 1000

47

8

Notice that all negative numiDers have a MSD of value 1.

This bit is known as the sign bit.

Note also, that A ^^ (-A) = 0.

For example, 6 0110

+ (-6) +1010

1 < 0000

In this case, tha 1 carried out of the register is lost

leaving 0000 as the (correct) result of the calculation.

3
The largest possible positive nuaber is 0111 =2-1

(k-1)
(in general, 2 -1, where k is the register length). The

3
negative number with the greatest magnitude is 1000 = -2

(k-1)
(in general, - (2))

.

It is easy to see, by example, that to complement a

binary number (i.e. to change it's sign) we have only to

complement every bit (four in the example above) , and add

one to the result, fcr example:

6 = 0110

-6 = -0110 = (1001 + 0001) = 1010

where 1001 is the bit by bit complement.

The result is called the t wo * s complamen- . (The bit-by-bit

compleaient is called -he one 's cq mp lem ent .) The process

for forming either cne's or two's complements is easily

implemented in computer hardware.

48

2.1 BINABY ADDITI0 8

Twc binary numbers are added (as in the above example)

just as one would add decimal numbers, except that we use

the binary "addition tables",

B INARY A DDITIO N TABLES

11
±0 tl ±0 tl

1 1 10

However, because of the finite (U-bit) register length,

there are five cases we ausr consider. Illustrations of the

five cases are given on the following page.

49

10

(a) A,B > 0; (A+E) < 2 -1

3

+ 2

011

+ 0010

(b) A, 3 > 0; (A+B) >
3

2 -1

3

+ 6

0011

+ 0110

5 101 9 1001

Overflew

(c) A > 0; B <

3 0011

+ (-6) +1010

3
(d) A, B < 0; (A+B) > -2

-3 1101

+ (-2) +1110

-3 1101

Overflow cannoT cccur

whan A and B have

cpposits signs.

-5 1< 1011

Carry-out is lost;

4-bit answer is

correct.

3
(e) A,B < 0; (A+B) < -2

-3 1101

+ (-6) +1010

-9 1< 01 11

Carry-cut is lest;

Overflew condition;

C CI care wirh (d) .

Clearly cases (b) and (e) lead to erroneous 4-bit answers.

We say that ove rfl ow has occurred. Computer hardware (a

logic circuit) must he used to detect this condition.

11

2.2 BINARY SOBIBACTION

Tc ccDBFUtG A - B we actually calculate A • (-3) . Th=at is,

we take the 2* s complement of B and zhen add. The addition

hardware is unchanged —^ including the overflow indicator.

2.3 BINARY MOLUPLICATION

One method for accomplishing multiplication could te by

repeated addition. This method would be very slow for large

numbers. An alternative is to use the shift-and-add-method.

For example, consider the unsigned binary multiplication of

the decimal problem 11 x 13 = 1U3. The binary representation

for 11, 13, & 143 is 1011, 1101, & 10001111 respectively.

The multiplication is performed as follows:

C =

1 01 1 =A

X 1101=B

1011

0000

1011

1011

10001111

Set memory cell for C equal -co zero

3 = 1 , so add A -o C (C previously zero)

3 = 0, so shift A bur don't add to C
1

B = 1 , so shift k and add no C
2

B = 1, so shift A and add to C
3

The product is now in memory cell for C

We can detect a 1 (or a 0) in each successive digit of 3

by ANDing 3 with a shifting MASK. Thus,

Initial mask = 0001

:4ask shifted left

Mask shifted again

And again

E 1 MASK

1101

1 101

•

a

00 01

00 10

?t 0,

0,

so

so

3 = 1

3=0
1

3 = 1

2
3 ^ 1

1 101

1 101

• 0100

1000 *

0,

0,

so

so

51

Section 3

LOGIC DESIGN

3.1 INTEODOCTION

Our objective is to davelop procedures for the design of

logic networks which will perform specified logical tasks

(e.g. tc turn on a light in your home from either of two

switches)

.

3.2 SilTCHING ALG2EEA

The basis for such design is Boolean algebra (18U7),

which was applied tc switching circuits in 1938. You will

already appreciate, for example, that

all represent "logical addition" or the "OR switching opera-

tion". (An open switch is a "0"; a closed switch is a "1".)

So our first task is to pcstula-ce the properties of

§)iilchin3 a lgebra (which is one possible Boolean algebra) .

52

13

We postulate that each variable can take only two values,

cr 1, and that the funda meixtal operations are negation,

logical sum, and rhe logical product.

r- 1r—yr - ^

NZGAIION ICGICAL SDM LOGICAL PRODOCT

X X X Y Z=X+Y X Y Z=X«Y

.. ,..-. .. __ -.

.

1

1 1 1 1

1 1 1

1 1 1 1 1 1

1 _J 1

53

14

From these postulates the following theorems nay be

proven:

1 + X = 1 (1)

• X =

+ X = X

1 • X = X

X + X = X

X • X = X

X+X = X + X = 1

X«X = X • X =

X = X

X > Y = Y * X

X • Y = Y • X

X + (Y + Z) = (X Y) + Z

X • (Y • Z)

X + (X • Y)

X • (X + Y)

= (X • Y) • Z

= X

= X

X«(Y>Z)=X«Y + X«Z

(X+Y) -(X+Z) =X + Y«Z

X+ (X«Y) =X + Y

X« (X+Y) =X«Y

(2)

(3)

(^)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

54

15

Problem J

Use truth tables and the postulates to prove

(i) Theorem (1) above,

(ii) Theorem (7) above,

(iii) Theorem (14) above,

(iv) Theorem (17) above.

Problem 2

Show th€ switch arrangement corresponding to:

(i) X • Y (Hint: See the diagram for X+Y above.)

(ii) 1 ••• X (What switch position corresponds to 1?)

(iii) X ••• X.

Problem 3

Use switch diagrams tc show that X+(X«Y)=X

finally we can list two theorems due to DeHorgan:

X+Y=X«Y (2 0)

X • Y = X I- Y (21)

These too may be proved with the help of truth tables. They

are easily extended tc more variables; e.g.

X+Y>Z = X»Y«Z.

3.3 SWITCHING FO NOTIONS

Consider the statement,

F = ABC + A (B + C) + A

We say that F is a function of the three variables A, B,

and C. (A, B, and C are "input" or "independent" variables.

55

16

each cf which caa take on ths values or 1 independen-tly of

the othars.) For any combi natio n of values of A, 3, and C

(e.g. 1 1) we could evaluate the value of the function, F.

A switching function is a (boolean) algebraic statement,

and, like <±ny ether algebraic expression, can often be

simplified by applying the appropriate theorems. For

example,

(*We will omit the "•" which represents the AND operaticn)

Aa -^ AB + AB = E(A + A) + AB (Theorem 16)

= El + AE

= E AB

(Theorem 7)

(Theorem U)

= E + A (Theorem 18)

Let us now draw a logic circuit corresponding to this

switching function, both before and after simplification.

A

B

B

AB

AB

AB

B

56

17

Clearly we have saved three AND gates.

Problem U

Simplify the circuit even further, by using a NAND gate.

Problem 5

Apply the rules (theorems) of switching algebra to simplify:

WXYZ WXYZ + WXYZ.

Then draw the logic circuits for the given and the simpli-

fied logic functions.

Problem 6

Simplify ABC • A (B •«• C) •• A . Check your result

by completing the following truth table.

ABC

1

1

1 1

I

E + C j A (B »• C)

+

1 I

I

1

... X.

ABC

T~^
F I

1 I

1 I

Problem 7

Use the rules (theorems) of switching algebra to show that;

AB + AB= AB + AB

57

18

Com ments

:

(i) Ycu may work en either cr both sides of the equation

algebraically un^il you get equality between left and right

sides

.

(ii) There are many ways that ycu could do this.

(iii) One hint, which makes it easier to apply the v ery

useful DeBorgan theorems, is to complement both sides of the

equation:

AB+AB =AB + AB

Then start algebraic manipularion according to the rules.

(The left-hand side becomes simply A B •• A B, while you can

apply D€Morgan*s theorem to the right-hand side.)

58

19

3.4 LOGIC SPECIFICATIONS

Oft€n th€ logic specifications will be in the fcrm-cf an

English language statement describing rhe desired objective.

For example.

On a democratic desert island, three people. A, B, and
C decide to build a voting machine. Th^ inputs are A,
E, and C (which will be 1 for a yes vote and for a no
vote). The outpux must light an LED marked M if the
maicrity vote yes and must light an LED marked U (as
well as m) if tfiey vote yes unanimously.

Prob lgm _3

Complete the truth table for this device (rhree input varia-

bles A, E, and C, and two output functions M, and U) .

I 1

Inputi Outputs

A E

1

c M a

1 1

1

As another example of a performance specification, consider

the fcllcwing.

The seat-belt interlock system for a two-seat automo-
bile IS to prevent starting unless the driver and the
passenqer (ir any) are buckled in. The state of the
passenger's seat-belt is to have no effect if there is
no passenger.

The first step in setting up the truth table is the defi-

nition of the appropriate variables. Here, for example,

W = 1 if there is a passenger,

W = if no passenger

B and B = 1 if seat-belts on,
d p

B and B = if seat-belts not connected
d p

F, the output function, must be 1 if the car is to be

allowed to start.

Problem 9

Set up the truth table for this seat-belt interlock system.

59

20

3.5 I fiflj MENTATION OF k LOGIC OR SWITCHING FUNCTION

Given that we have obtained a truth table corresponding

ro the logic specifications, the next step is to design an

appropriate logic circuit. Here we will demonstrate seme

systematic approaches to this problem.

3.5.1 The Sum~cf»Piodacts Form of the Logic Function

Suppose that we have obtained the following truth table

(logic specification) for some system.

1— MM^^H^B-- —

n

~t — -1

A E C F COMMENTS

_ ^

1 1 <-- A 3 C = 1 only when A=0, B=0, C=1

1

1 1

1 _

1 1 1 <-- A B C = 1 only when A=1 , B=0, C=1

1 1 1 <

—

A B C = 1 only when A=1 , B=1, C=0

1 1 1

1 1L «

Looking at the rows with 1 • s in the F column, we can obvi-

ously make the statements in the Comments column. It then

follows that

F=ABC + ABC-»'ABC

will be 1 cnly if A =

C = 1 or if A = 1, B

F, above, will have

logic specification-

0, E = 0, C = 1 or if A = 1, B = 0,

= 1, C = 0. That is, the expression for

the same truth table as does F in the

60

21

Problem 10

Obtain the truth table for F=ABC+ABC+ABC, -

and confirm that it agrees with the table above.

A logic function in the form of our example,

F=ABC + ABC-»- ABC, is for obvious reasons called

the sum -cf-Fro ducts f crm of the logic function. If ycu now

reread the present section you should have no difficulty in

seeing that -iihe sum-cf -products form of F can always be

written down by inspection of the truth rable.

Nctics, particurlarly, that although we looked at only

three rows of the above truth table (those rows for which

F - 1), the resulting expression for ? is correct for any

combination of values of A, B, and C. (We made sure that

F = 1 for the proper three cases onlv, and so F naturally

toolc the only other possible value, 0, for all the ether

cases.)

Problem JJ

Obtain the logic function in sum-of-products form for the

following system (actually an XOR gate).

—1

A B ?

!
1

I

"

1 1 1

1
1
•

1 1
1

1

I _j
Problem J2

Obtain the sum-of-prcducts form of the logic functions M and

U in the voting machine example (Problem 8).

Problem J

3

Repeat the sum-of-prcducts form for the seat-belt interlock

system (Problem 9) .

61

22

3.5-2 IiplementaticD of the Sua-of - Pro du cts Logic Function

Having found that

F = ABC+ABC+ABC
for the truth table at the start of this section, it is easy

to see that the AND/OR/INVERTER implementation is as

follows.

Actually, this sun-of -products function can be simplified

by Boolean algebra or by Karnaugh mapping (discussed later).

That is,

F = AEC + ABC*A EC=BC + ABC

This is also sasiiy iiplemented, with some saving of gates.

Problem J4

Starting with the sum-of-products logic functions, obtain

the ANE/0S/INV2RTEE implementations corresponding to

Problsms 11 and 12. Optionally, for Problaa 13 also.

62

23

3.5.2.1 SAND Gate Inplementation

Scmetinies it is convenier.t to use NAND gates only. (We

will see in tiie next section how to use NOR gates only.)

Consider the following manipulation.

F=ABC-»-ABC + A3C

P=ABC-«- ABC + A3C (complement both sides)

= ABC»ABC»ABC (DeMorgan* s theorem)

F=F=ABC»ABC«ABC (complement theorem)

We can recognize ABC as a NAND operation on A, B, and C,

Similarly for ABC and ABC. Then the entire expression

may be thought of as F=a«b«c

Shich is a NAND operation on a =A B C, b =A 3 C, c =A 3 C

A B

i '

•NAND Gate Inverters

ABC

ABC

.A3C

63

24

It then fellows that

F= (A + £^C)(a^ E + C)(A + 8+C)CA + B^-C)(A+ E + C)

will te if A = 0, E = 0, C = and ifA=0, B=1, C=0
and if A = 0, B = 1 , C = 1, and if A = 1, B = 0, C = and

if A = 1, B=1, C = 1. That is, this product-of-sum s logic

function, F, will have the same truth table as does F in the

logic specification. (F will be for all the above lisxed

values of A, 3, and C only, and must therefore be 1 for all

ether values of A, B, and C)

Problem J

5

Obtain the truth table for

F = (A + E + C) (A E - C) (A + B + C) (A + B + C) (A ^- B + C)

and confirm that it agrees with the table above.

If ycu new reread the present section, you should have no

difficulty in seeing tha* the prcduct-of-sums form of F can

always be written down by inspection of the -ruth table.

Notice that although we looked at only five rows of the

above truth table (those rows for which F = 0) , the

resulting expression for F is correct for any combination of

values of A, B, and C. Note, too, that by comparing and

combining the present result with that in the first section

we have incidentally shown that

F = AEC + AEC * ABC = (A+B+C) (A + B+C) (A+B+C) (A +B+C) (A + B-^C)

emphasizing that there are, in general, many alternative

ways cf writing a (Boolean) algebraic logic function.

64

Firoblem J[6

Obtain the logic function in product-of-sums form

following system (an XOR gate again) .

25

for the

A B F

1 1

1 1

1 1

—

1

i

Problem ^7

Obtain the product-of-sums form of the logic functions M and

in the voting machine example (ss'^ Problem 8).

Problem J

8

Repeat, for the seat-belt interlocJc sysxem of Problem 9.

65

26

3-5.3 IffiplementaticD of the Pro duct -of-Sums Logic Function

Having found that

F = (A E + C) (a E -^ C) (A B C) (A + B + C) (A + B + C)

for cur exampla system, it is easy to see thai, the

AND/OB/INVEFTER implementation is as follows.

A B

B

A+B + C

A+B + C

A+B + C

A + B + C

A + B + C

Actually, this product-of-sums function can be simplified by

Boolean algebra or ty Karnaugh mapping (discussed later) .

That is

F = (A + E + C) (A + E + C) (A + B + C) (A + B + C) (A + 3 »• C)

= (B C) (B C) (A + C)

This is much more easily i iplemented, with a considerable

saving cf gates. (We would need two inverters, three 2-inpui:

OR gates, and one 3-input AND gate.)

Problem J9

Starting wi'rh the picduct-of-sums logic functions, obtain

the AND/OR/INVERTEE implementations corresponding to

Problems 16 and 17. Optionally, for Problem 18 also.

66

27

3.5.3.1 NOB Gate Implementation

Sometinies it is convenient to usa NOfi gates only.

Consider the following manipulation.

F = (A + E + C) (A + E + C) (A + B + C) (A + B + C) (A + B + C)

F = (A -f E + C) (A + E + C) (A + B > C) (A + B + C) (A -•• B + C)

= (a + E + Ci + (A + B+C) + (A+B-«-C) + (A+B + C) + (A+B + C)

F = F = (A+B+C) -^(A+B^C) (A+B+C) + (A+B + C) + (A-fB+C)

which you should recognize as a NOR operating on each of the

bracketed quantities, each of which in turn is a NOR oper-

ating on the three "added" quantities within the brackets.

IB

1

B

NOR Gate Inverters

A + B+C

A + B+C

A + B + C

A+B + C

A + B +C

67

28

Problem 20

Starting with tha prcduct-of-sums logic funcrions, obtain the

NOR gate iirple mentations corrasponding to Problems 16 and

17.

Review Question

Consider a binary adder, which will add the nth digit of a

binary number A, the nth digit of a binary number B, and the

"carry" into the nth position. Let these quantities be:

A , B , and C . The sum, s , will be 1 if any one cf
n n n n
these is 1, cr if all three are 1. The carry to the next

stage, C , will be 1 i f any two or all three are 1.
n * 1

68

29

3.6 AHSBEES TO PROBLEMS

1. (i) 1 1

1

X 1 1 > X

1

1

1 1

1

I -^-

1

1

1

_x — —J

i.e 1 + X = 1

(ii)

X X = 1

(iii) I

The last column

clearly equals X

(iv)

——

'

X Y Z X+Y , X+Z (X+Y) (X + 2) Y»Z X+Y»Z

1

10 1

oil 1

10 1

10 1 1

110 1

111 1

l .1.^-

1

1

1 L 1

1

1

L —

1

I saual- i

69

30

i^.

Jr.

1 + X
One switch
permanently
clos €d.

X + X
One switch
opens as other
closes.

Diagram for X+(X»Y)

This is equivalent to a short (1) when X = 1 (closed)

and to an open (0) when X = (open)

So the combination is equivalent to X itself

4. A

P = A + B = A»B
by DeMorgan's theorem

70

5. WXYZ WXYZ + WXIZ = (WX+WX+WX)YZ

= [W (X + X) + WX]YZ

31

W

= (W +WX)YZ

= (W * X) YZ

There are other possibilities,

X Y 1 Z

WXYZ

WXYZ

WXYZ

Y-
Z

W + X

71

32

6. flEC * A(B+C) + A = A(BC^B+C) * A

= A(B*C+C) > A

= A(3 + 1) A

= A«1 +A=A + A= 1

The truth tabl3 should show the function equal to 1 fcr all

sight ccibinations of A, B, and C.

7.

AE + AB = AB + A£

AE + AB = AB + AE complementing both sides

AE •«• AB = AB •» AE Theorem 9 and DaMorgan

= (A+B) (A+B) DeMorgan

= AA AE BA + BB Theorem 16

= *• AB + BA Theorem 6

72

33

8, A E c M '

c

1

1

1 1 1

1

1 1 1

1 1 1

1 1 1 1 1

. 1 11 1

1

« B
d

E

F h

1

1 1

1 1 1

1

1

c

1

1 1

1 1 1 1

73

34

10,

^^M _ .^

A B c ABC ABC ABC F

1 1 1

1

1 1

1

1 1 1 1

1 1 1 1

1 1 1
1

1

J .

11 F = AE + AB

12. M = ABC + ABC + ABC -•• ABC

U = AtC

13 (a) F = WB B W3 B ^ WE 3dp dp dp
(b) Your answer will depend on your definition of

variables. Our answer is

F = SDT + SDT + SDT

74

14.

35

F = AE + A.

75

36

15.

I

1

_ —

1

1

r
E c A+B>C A+B + C A+B + C A + B+C A+B+C- F

r

C 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1

1
1

1 1 1 1 1 1

1

1
1

1 1

16.

—
A 3 F

1

1 1

1 1

1 1

L J -J

F = (A+B) (A+B)

17. M = (A+B + C) (A+E+C) (A+ B+C) (A+B + C)

= (A+B + C) (A+E+C) (A+B+C) (A + 3+C) (A + B+C) (A+B+C) (A + B+C)

18. F = (W+B +E) (W + B +B) (W+B +B) (M+B +B) (W + B +E)dp <ip <ip ^ ? ^ V

76

37

19. B

A+B

A>B

F= (A + B) (A+B)

A B

L_ '^rm

NOTE There is nc need to repeat
ottam U.

the apper fear OR gares to

77

38

20-

Similarily for the voting machine.

Esview Question.

A
n

B
n

c
n

s
n

c
n+1

1 1

1 1

1 1 1

1 1

1 1 1

1 1 1

1 1 1 1 1

- JL

78

Section 4

KABN&aGH HAPS

Karnaugh maps visually portray the properties of Boolean

functions and can be used to sysrematically simplify the

combinational logic circuits (functions). To start with, we

will assume that the logic function to be simplified has

teen pux in standard sum-of -products form.

Example: F = A« [<£-«•€) -Dj-A
To put t.his in sum-of-products form we set ud the truth
table.

r
—

A B C D B + C (B+C) 'D [(B + C) •D]«A [(B+C) •T)}»k F

.. . ._ .. „„ _ ,,

1
1

1 1 1

10 1 1 1

11
1

1 1 1

10 10 1 1 1

10 1

110
1

1

1 1

1 1

111 1 1 1

10 1

10 1 1

1 1 c
1

1 1

10 11 1 1 1

110 1 1

110 1 1 1 1

1110
1111

L J

1

1

I - _J

1

o

o

•

1

1

<L. J

79

40

It new fcllcws, from -^-he last column, that

F = A3CD + ABCD + ABCD + ABCD > ABCD

There are 16 possible input combinations of a function of

four variables: ABCD, ABCD, ABCD, ARC D,..., of

which only five appear in the sum-of-products expression.

Each possible input combination is called a m interm .

A Karnaugh map for a function of four variables is merely a

four by four table of 16 squares or cells, one for each

minterm.

A

B + +

i

I

I

• +
I

I

1

I

-4..

I

i.j...U

A B C C = 1

A B C D = 1

Figur e J

The Karnaugh map is a function of four variables (for

example. Figure 1) is divided into regions A, B, C, and D as

shown. This clearly implies the assignment of regions

A, B, C, and D also. Then each cell will correspond to one

minterm, whose value may be entered in the cell as in

Figure 1.

Figure 1 has a "cyclic" structure. If you were to wrap the

diagram around a vertical cylinder, the two isolated C

columns would join and become adjacent. Similarly, if the

map were wrapped around a horizontal cylinder, the two

30

41

isolated C columns would join and become adjacent. Ihe

importance cf these observations will become apparent in a

moment.

The next step is to group adjacen-c 1 -ce lls -- cells

containing 1»s. Each group must be "rectangular", and must

contain exactly 2 1-cells. That is, 1x1, 1x2, 1x4, 2x2,

2x4, . ..groupings are legitimate, a 1x3 group or an odd-

shaped group is not. It is possible that a given l-cell

will be a member of more than one group. There will, in

general, be more than one way to group the 1-calls. For cur

purposes we will find that we should use the largest

possible legitimate grcups.

Fiaure 2

The five 1-cells correspond to the five minterms in the

above sum-cf-products expression for the example function,

F. In Figure 2, the 1-cells corresponding to the above

example have been grouped (circled). Note that the cyclic

property has been used. The two 1-cells in the top row are

adjacent to the two 1-cells in the bottom row.

81

H2

The grouping focuses attention on particular cells. With

With this grouping, we can do nothing with the minrerm ABCD,

which appears in a group of 1. But consider the 4 minterms

in th€ ether group:

ABCD ABCD + ABCD + ABCD = ABD (C + C) »• ABD (C * C)

= ABD > ABD = AD (B ^ B)

- AD

A considerable simplification! Thus we can now write a more

simplified expression for the function F in the example:

F = A ECC+AD
Actually, the Karnaugh map allows us to skip the above

algebra of simplification. ** Note that the 2x2 group of

Figure 2 is entirely in the A region and entirely in the

D region. So we can now write down the simplification A D

by inspection!

Let's examine the logic behind this "rule". Recall that any

1-cell represents a linterm of the function, F. For example,

in Figure 2 the third cell in the top row represents ABCD
This will be unity when, A = 0; B = 1; C = 1; and D = 0.

Now, suppose you wished to locate the 1-cells which will

contain I's when A=0 and D=0 regar dless of the values cf

^ §il^ Q.' This describes all the cells in the region ccmmon

to A and C, that is the 2x2 group of Figure 2.

Some ether examples ate in order. We will assume that the

functions have been put into sum-of-products form, and will

only show the maps and the corresponding simplified

functions.

82

43

F=AD + ABC
(A better grouping than that: of the previous example,)

F= EC + A3 + ACD

T
B

X c^

- + -T 1 \\
<-^

-f-
N«*'^»

-+

F = A + B
(A function of 2 variables)

F = B C + A B
(A function of 3 variables)

Fig ure 2

83

Karnaugh maps can be used for functions cf more than four

variables, fcut those functions will not be illustrared here.

For functions of "many" variables, computer-basad methods

can be used.*

Now let us turn to the product-of-sums form of the switching

functions. Returning to the example, with its -ruth table,

on the first page of these notes, we can write down the

product-of-sums form df F by inspection of the final column:

F = (A + B+C+D) (A-^B + C+D) (A+B+C + D) (A + B^C + D)

(A + B+C+D) (A-t-B+C+D) (A + B + C-t-D) (A + B>C^D)

(A>E+C+D) (A+Bi-C+D) (A + B+C+D)

Each cf the sums is called a ma xter m and corr <sspoiids to a

zero in the Karnaugh map.

The maxterm (A + B + C + D) , for example, will be zero when

A=0;B=0;C=1;D=1

The 0-cells corresponding to this maxterm will be

net in A; net in E; in C; in D

in -he Karnaugh map (see Figure U). Note the inversion!

If ycu compare Figure 2, where the 1-cells are obtained from

the sum-cf-products minterms, with Figure u, where the

0-cells follow from the product-of-sums maxxarms, you should

agree that the results are eguivalsnt.

E. J. McCluskey, Jr., Minimization of Boolean Function,
Bell Syst. Tech. J., vol.25, pn. I417-ma4, 1956.
W. V. Quine, A way to Simplify Truth Functions, Am. Math.
Monthly, vol. 62, pp. 627-631, 1955.

84

U5

Figur e u

The 0-cells can be grouped as shown, and by inspection,

F = A <3 « D) (A C D)

Again, a considerable simplification! Note that if a grcup

is entirely in one region, say A, then the corresponding

term in the logical sum is A.

The justification of the inspection "rule" is very sirnila:

to that given for the minterm or sum-of-products me-hcd,

You should be able tc do this yourself.

85

Section 5

IHTBODOCTION TO FLIP-FLOPS

Let us consider a pair of cross-coupled NOR gates as

shown balcw. The inputs are S (set) and R (rese t or clear) ,

and the (ccuplementary) outputs are Q and Q.

Q

If the inputs are S = 1 and R = 0, the ourput cf NOR gate

number 1 must be 0; that is , Q = 0. If Q = (and, as given,

R = 0) , the Durput cf NOR gate number 2 must be 1; that is

Q = 1. In summary, a set input (S = 1 , R = 0) will set Q

to 1 (and Q to 0)

.

Exercise: Show, similarly, that a reset input (S = 0,

R = 1) will clear Q tc (and Q to 1) .

The case cf S = R = can be bewildering. No Icngsr dees

data dictate the state of the outputs Q and Q. Do you agree?

Whenever this happens - and it oftan happens with circuits

containing flip-flops - we overcome the difficulty by

£2§ii3l§iii52 3-^ output state, say Q = 1 and Q = 0. Then we

check the validity of the postulate. In other words, we must

check to see if we are violating any of the properties of

the circuit. Here with Q = 1, it follows that the output of

NOR gate number 1 must be 0. That is, Q = 0, as postulated.

Finally, since both inputs to NOR gata number 2 are 0, its

output (Q) , must be 1, as postulated.

86

HI

In sunnnary, if seme previous event left (Q = 1, Q = 0) r

then the input pair S = R = will leave the output .state

unaltered. We say that the flip-flop remains latched in the

set state as long as S = R = 0.

Exercise: Show, similarly, that if some previous event

left (Q = 0, Q = 1) , then the flip-flop will remain latched

in the cleared state as long as S = R = 0.

In total, the input pair S = R = latches the pre viou s

gutout state (no matter whether this is the set or cleared

state) into the flip-flop. Consequently, this circui- is

often called a latch.

The input S = R = 1 is undesireable for two reasons.

First, it is easy to see that the corresponding outputs are

Q = and Q = 0. So we could no longer use the Q, Q notation

for the two outputs. Second , if we were to change the inputs

from S=R=1toS= R=0, what would happen? Suppose S

changes tc zero a little quicker xhan R. Then we would have

the input sequence S = R = 1 > (S = 0, R = 1) >S = R = 0,

which would clear the flip-flop and then latch the cleared

state. Cn the ether hand, if R changes to zero a little

faster than S, then we would latch the set state intc the

flip-flop. In general, we won't know whether R or S will

change mere rapidly, and so we wonJ[_t know what will h appe n

when we switch from S=R=1toS=R=0.
In practice, we will call the input condition S = R = 1

ambiguous and avoid it like the plague!

This has been quite a mouthful. He can put it all

together as in the following diagram and table, where Q- is

the previous state of the RS latch and Q+ is its state after

the specified inputs have been applied.

87

U8

R

RS
Latch

I S 1 B 1 Q>
i I I

I
1 I

Action

1 I j 1

1 I 1 I *

^j L

stays latched

clears Q

sets Q

*

*The ambicuoas case will be avoided.

Note that the action of this device depends on history -

that which has gene before. For example; (S = 0, R = 1) will

have no effect if Q were previously sez to 0. But from the

same input, (S = 0, R = 1) , will chan ge Q from a

previously-set 1 to 0.

This device can be, and often is, used as one cell of a

memory. We can write one bit of data in-io the cell by

setting (S = 1, R = 0) or (S = 0, R = 1) and we can hold

(i.e., memorize) the data bit, now represented by Q = 1 or

Q = 0, by setting S = R = 0.

Finally, all the flip-flops which follow are built up

around this basic RS latch, and all will be designed to

avoid the ambiguous S = R = 1 input combination.

Exercise : See if you can complete the table of states

for the cross-coupled NAND gate latch. Hint: Leave the

first line in the table until the end.

88

49

A B Q^ Action

1

1

1 1

** Answer on next pags

89

Answer

50

V T 1

S, B Q+ Action

1

1 c

•

*

1

Q-

*

S9rs Q

clears Q

stays latched

. , -, 1

edThis is cppcsite of the cross-coupl
NOR gate latch. Wirh this latch, the
case where S = R = is the ambiguous
case that is to te avoided.

90

Section 6

LAEORATORT EXPERIHEHT #1

GMES

Objec tives

1. To become familiar with the operating features cf

th€ CD-1 Digi-Designer.

2. Ic investigate the operation of AND, OR, NAND, and

NOB gates.

Eguip men t

1. DC-1 Digi-Designer.

2. One €ach of the following circuits:

7400 - Quad 2-InpuT: Positive NAND Gate

7402 - Quad 2-Input Positive NOR Gate

7408 - Quad 2-Input Positive AND Gate

7432 - Quad 2-Input Positive OR Gate

3. Card showing IC pin assignments,

4. Assortment of hook-up wire.

5. IC Extractor Clip

6.1 USE OE THE DIGI-DESIGNER

The Digi-Designer consists of a +5V logic power supply,

four logic switches, two pulsars, four light emitting dicde

(LED) lamp monitors, a clocJc capable of generating square

waves of six different frequencies, two pairs of terminals

for external connections, a BNC (co-axial) connector, and a

breadfcoarding assembly.

The terminal next to each logic switch provides access to

the test signal available at the switch. If a switch is in

91

52

the +5V (up) position, the corresponding terminal will be at

"••57 potential (a logical 1) ; in the GRD (down) position the

terminal will be at ground potential (a logical 0)

.

Each pulser has two terminals which have complementary

outputs; when one terminal is in the logical 1 state (-t-SV)

the ether terminal is in the logical state (OV) , and

vice-versa. When a pulser* s button is depressed, the termi-

nals reverse states; when the button is released, the

terminal outputs return to their former states.

Each of the LED lamp monitors will light when a signal

connected tc its terminal is •5V; when the signal connected

is OV, the LED is extinguished.

The pulse generator, or clock, produces six

frequencies 1 Hertz (Hz) , 10 Hz, 100 Hz, 1 kHz, 10 kHz,

and 100 kHz which can be selected by a rotary switch.

The deck output terminals provide complementary outputs;

when the left-most terminal is logical 1, the right-most

terminal is logical 0, and vice-versa.

The 3NC connector and the two pairs of jack terminals may

fce used tc icute signals to or from the DD-1.

The breadboarding assembly consists of two symmetrical

halves separated by a groove which runs from left to right-

Consider the upper half. There are sixty-four vertically

running cclumns each having five holes. The five holes in a

column are connected internally; the columns are all

isolated from one another. Above the sixty-fcur columns are

four horizontal sets of twenty-five interconnected tie

points.

In this part of tfce experiment you are to investigate the

operation of the DD-1.

92

53

6.1-1 Lojgic Switches and Lamp Monitors

i. Connect on* logic switch output connector to cn«? cf

the lamp mcnitcr input connectors.

ii. Move the logic switch from the +57 to GRD and back

again and note the illumination level of the lamp

monitor.

iii. Repeat, using other lamp monitors and other logic

switches.

6.1.2 Pqlsers

i. Connect the "1" output connector of one of the pulsers

to a lamp monitor and the "0" output of this same

pulser to another lamp monitor.

ii. Note the illunina tion levels of the lamp monitors;

depress the pulser switch and again observe the

illumination levels of the lamp monitors.

iii. Repeat, for the other pulser.

6.1.3 Clock

i. Connect one cf rhe clock's output connectors to a

lamp monitor and the other clock output to another

lamp mcnitcr.

ii. Observe the LEEs at each of the clock frequencies

payinc particular attention to the 1 Hz case. Time

this with your watch. What do you observe?

6.2 THE INTEGRATED CIRCUITS

Pick up one of the integrated circuits (ICs) . It will

have either 14 or 16 pins. The top surface of the IC should

have two numbers marked on it. One of them, with four or

five digits, starting with 74, identifies the type cf IC.

93

54

(There may be oii9 or mere letters preceding this number, for

example, EM7U32N.) In this course you will use the

TTL-family or 74-series of IC exclusively. The second number

marked on the IC is a manufacturer's date code. Since many

ICs were manufactured in 1974, confusion is a very real

possibility!

Now search out a 7408, a Quad 2-Input AND Gate, from your

IC assortment. Locate the "1-end" of the IC, which is

marked by a notch, a small hole, or the like in its surface.

Match the orientaticn of the top of the IC with the (top

view) of the 7408 in the pin-assignment card (located in the

manual after this tutorial) . Note that the numbers run from

the "1-end" down the length of the IC and then back to the

"1-end) along the other side.

* Turn the DD-1 off.

* Never do any wiring unless the power is OFF. Turn the

DD-1 ON onl;2 when you are ready to test a circuit.

* Make sure that all of the 7408»s pins are straight and

then place it, "1 -en d" to the left, so that its pins

5jst gently in hcles above and below the central gap of

the breadboard. That is each pin will make contact with

a 5-hole vertical bus. Then, gentl-^r and firmly press

the IC down with a slight rocking motion until the pins

enter their holes. Continue until the body of the IC

has come into ccntact with the breadboard.

* Hiring errors will be less likely if you habitually

mount ICs "1-snd" to the left.

* Take a fairly short wire and connect +5V to one of the

horizontal buses. Leave this bus connected.

It will always be convenient to construct a full-width

-•"5V bus when working with logic circuits on the DD-1.

94

55

* Construct a full-wid-ch COMMON (Ground) bus in a siiilar

manner. Leave this bus connec ted .

* locate the ^cc and GN D pins for the 7U08 from the pin-

assignment card. Connect these pins to the previously-

wired +57 and COMMON buses, respectively, (Use the

5-pin buses into which the appropriate IC pins have

teen plugged) .

* Develop the habit of connecting ^SV and COMMON (GND) to

all ICs before ycu do any ether wiring. These connec-

tions are usually omitted from wiring diagrams, so that

only unvarying habit can keep you from error.

6.3 THE AND GATE

The operation of a (positive-logic) AND gate is defined

by the truth table, below. That is, both inputs must be HIGH

(1) to yisld a HIGH (1) output.

AND Gare Truth Table

A'

C = A • B

95

A. Wirs cne of the AND Gates as shown below,
pin 7 to COMMON and pin 14 to +5V.

56

Also, connect

To logic switch # 1

tTc
logic swi

i

7408
\

X
•To lamp 1

Pin numbers

To logic switch #2

B. Turn on the power, and for each pair of swit-ch settings

(columns A and B in the table below) record the output that

you observe in column C of the table.

(LED on = 1 ; LED off = 0.) Turn the DD-1 off when you have

finisbed-

2-Input AND Gate Truth Table

Inputs Output

A B C

(LO)
1

(LO)

1 (HI)

1

1 1

_

96

57

6.3.1 A 3;In2ut AND Gate

A. Bak€ sure that the power is off and thsn construct a

S-input AND gate from two, 2-input AND gates as shown b€low.

SW1<-
A 1

SW2<-

SW3<-

A«B

LI

k

(A«B) •€
->L2

B. Turn on the DD-I. set the switches as showr. in the
table belcw, and reccrd the outputs that you observe.

3-Input AND Gate Truth Table —

A
Inputs
B C LI = A«B L2 = A«B«C

C

1

1

1 1

1

1 1

-
r

1 1

1 1 1
1

L
1

i. _ — J _j

97

58

C. Turn off tha power and remove the wires from the bread-

board. <Ycu can always leave the full-width -t-SV and COMMON

buses connected, since you will use them in every experi-

ment.) Then carefully remove the IC using zhe IC extractor

clip.

6.U TBE OH GATE

If at least one input to an OR gate is HIGH (1) the

output will be HIGH (1). The operation of a 2-input OR gate

is illustrated below.

A-

B-
7432

C = A B

OR Gate Truth Table

Inputs Output 1

A B C

1 1

1 1

1 1 1

JL _ - J

98

59

&• Insert a 7432 quad, 2-input OR gate into the bread-

toard. Connect +5V and COMMON. Wire one of the OR gates as

shown belcw.

A To logic switch # 1

T
t
7432

To logic switch #2

To lamp 1

B. Turn on the power, and for each pair of switch settings

(coluinns A and B in the table below) record the output that

you observe in column C of the table.

2-Input OR Gate Iruth Table
r

Inputs
T

Output

A B C

(LC) (LO)

1 (HI)

1

1 1

1 —J

99

60

6. U.I A 3-Inpq-t OR Gat e

A. Kak€ sura that the power is off and then construct a

3-input CE gate from two, 2-inpat OS gates as shown belcw.

LI

SH1<-

SW2<-
B

A + B

SW3«-

(A + B) +C
»L2

B. Turn on the DD-1- set the switches as shown in the
table below, and record the outputs that you observe.

3-Input OR Gate Trurh Table

Inputs
1 a B c

r— —
LI = A+B L2 = A+B+C

1

1

1

1 1

,_

1

1 1

1110
I.-.
r

11111
._ —_jL- .i

100

61

C. lurr. off the power and remove the wires and the IC from

the breadtoard.

6.5 THE NAND GATE

A. Complete the following circuit diagram showing how you

could test one of the 7U00's NAND gatas. Show pin numbers

and switch and LED ccnnecticns.

t

f

B. Plug in a 7U00 and wire it according to your circuit

diagram. Then test it, completing the following table as

you do so.

2-Input NAND Gate Truth Table

Inputs Output

A B C

(LC) (LO)

1 (HI)

1

1 1

101

62

6.6 THE NOB GATE

Repeat the preceding procedurs, using a 7402 NOR- gate.

Draw the circuit diagram (showing pin numbers, etc.) and

draw up and complete a table for your rest results.

6.7 IMISIERS
a. Use the DD-1 to obtain the truth tables for

1. A 7400 NAND gate with its two inputs connected

together, and

2- A 7402 NOR gate with its two inputs connected

together.

(Draw your circuits diagrams, first, showing pin numbers.)

Circuit for 7400
NAND-Gate Inverter

Circuit for 7402
NOR-Gate Inverter

NAND-Gate Inverter— -,

Inputs
A = B

J

Output
c

1

NOR-Gate Inverter

Inputs
A = B

1

Output 1

C 1

1

1

102

63

6.8 AN CPTIONAL DESIGN PROBLEM

A Consider the following logic function

X = AEC + ABC + ABC * ABC

a. Simplify the function

b. Construct a truth table.

c. Design a logic circuit (using the ICs investigated

in the lab) tc realize this function.

B. Kirs up your circuit and verify that it actually satis-

fies the function.

This logic function can be simplified zo the point where one

requires only two separate ICs and five gates, including

those used as inverters. (It is not essential that you

reach this degree of "perfection".)

Attach a separate page showing your work and results.

Include the circuit diagram with pin connections.

103

Section 7

LAECBATOBX EXPEBIHENT #2

THE XOR GATE, FULL-ADDERS AND HALF-ADDERS

Objectives

1. lo design and test several realizations of an XCR

gate.

2. Tc design and test half-adders and full-adders.

Eguipment

1. CE-1 Digi-Designer.

2. The following integrated circuits:

2 - 7400 Quad 2- Input Positive NAND Gates

2 - 7U02 Quad 2-Input Positive NOR Gates

- 7404 Hex Inverter

- 7408 Quad 2-Input Positive AND Gate

- 7432 Quad 2-Input Positive OR Gate

- 74 86 Quad 2-Input Positive XOR Gate

- 7482 2-Eit Binary Full-Adder

3. IC Extractor Clip.

4. Assorted hock-up wire.

5. IC pin-assigr. ment card

104

65

7.1 THE EXCLOSIVE-OE GATE

An EXCLOSIVE OR (XCS) gate functions so that its output

is 1 whenever an odd number of inputs is 1, otherwise its

output is 0. The truth table for a two-input XOR gate is

shown below.

Inputs
X Y

1

1

1

1

I

Output
Z

1

1

= -®y

A. Mark pin numbers on the above diagram corresponding to

the 7a86 XOR gate. Connect Vcc and GND to +5V and CO»MCN;

connect the inputs to logic switches; and the output to a

LED monitor. Test the 7U86»s logic: does it agree with the

above truth table?

105

66

B. resign a sura-of -products realization of the 2-inFUt XOR

gate using AND^ OR, and NOT (inverter) logic. Draw the

circuit tslcw or on separate paper. (It will always be

helpful to include pin numbers and, of course, the numbers

of the ICs.) Then test the circuit using two logic switches

and a LEE. Put your data in a truth table. Does the latter

agree with that given for an XOR gate above?

C. Repeat the preceding exercise, buu use only NAND gares

(IC 7U00) .

106

67

D. Design a product-of-su ms realization of the 2-inpiit XOR

gate using AND/OR/INVERTSR logic. Draw the circuit and rest

it to obtain its truth table. Does the latter agree wizh the

given truth table for an XOR gate?

E. Repeat the preceding exercise, but use only NOR gates

(IC 7U02) .

107

68

7.2 THE HALF-ADDER

A half-adder has cnly zwo inputs, A and B, and thus -ices

not include any carry which may have resulted from adding

together less significant bits. The outputs of the half-

adder are the sum S, and carry, C*, for which the truth

table is shewn below.

H'
uts
B

1

Outputs
S C*

1 1

1 1

1 1 1

A-

B-

Half-

adder

A. Design and test a half-adder using AND/OR/INVERTER

logic. (Draw the circuit, and complete the truth xable,

experimentally.

)

108

69

B. Repeat the preceding exercise, but use an AND gate

(7408) and an XOR gate (7486) .

* DO NOT DISASSEMBLE IHIS CIRCUIT. YOa WILL USE IT AGAIN.

109

70

7.3 THE FDLL-ADDER

The truth table fcr one bit of a binary full-add^r is

shown below. The bits to be added are denoted by A and B and

the carry from the previous bits by C. The zvo outputs are

the sum bit, S, and carry, C*, for the next stage.

Inputs j

C A B
1

I

Outpu-cs
S C*

"^ o""o j

11 10
10 1 10
1 1 1

1 1

1 1 1

1 1 1

1 1 1 1 1

A

—

>

n . .
•V

C——>

Full-

adder

^S

^C*

A full-adder can be constructed from two half-adders as
shown belcw.

Half-
sum

^ Aaasr
carry

Half-

Adder

sura

carry

Full-adder

"1

»S

^C*

1 10

71

A. Ccnstruct another half-adder as in the previous exer-

cise, but using an AND and an XOR gate. Then, combine the

two half-adders and an OR gate (7^32) to complete a 'full-

adder. (A complete circuit diagram, with pin numbers, will

help you avoid wiring errors.) Test the full-adder, putting

your data in a truth table. Does the latter agree with the

given table above?

7.4 OPTIONAL FOLL- ADEE R EXERCISE

From the full-adder's truth table, set up the sua-of-

products and product-cf-sums forms of the logic functions S

and C*. See if you can simplify them, being on the lockout

for terms ccmmon to S and C*, which will therefore need only

be generated once. (Don't spend a lot of -cimel Very little

simplification is, in fact, possible.) If you wish, draw an

AND/OR/INVEBTER logic or a NAND/NOR logic realization. Your

circuit diagrams will be quite involved, and constructing

and testing such a circuit would not tiach you much. (If you

do try, you may have to ask for additional ICs)

If you wish, take a 7482 IC (a 2-bit binary full-adder),

try to untangle its Icgic diagram (on its data sheet) , and

Ill

Section 8

LAEORATORY EXPEBIBENT #3

RS LATCH, D-TYPE FLIP-FLOPS, AND SHIFT REGISTERS

Objectlygs

1. Tc investigate the operating characteristics of the

ES latch and C-type flip-flop,

2. To design and test some regis-ers using D--cype

flip-flops.

E^ui^oeEt

1. DE-1 Digi-Designer.

2. The following integrated circuits:

1 - 7U02 Quad 2-Inpuc Positive NOR Gates

1 - 7U0 4 Hex Inverter

1 - 74 08 Quad 2-Input Positive AND Gate

2 - 7474 Dual D-type, Edge-tr iggared Flip-flcps

3. IC Extractor Clip.

4. Asserted hook-up wire.

5. IC pin-assignment card

112

73

8.1 THE RS LATCH

The RS latch may be thought of as the basic building

block frcm which various types of flip-flops can be

constructed. <RS stands for reset-set. Sometimes SC is used,

meaning set-clear. Occasionally the term flip-flop is used

instead of latch.) The basic configuration is shown in the

following figure.

A. Mark pin numbers on the above diagram, assuming the use

of 7U02 NOB gates. Plug in a 7a02 IC about midway across the

breadboard. Then wire up an RS latch with S and R coming

from logic switches, and with LSDs monitoring rhe outputs

Q and Q. Now "play" with the circuit. Observe that as you

operate the switches you can cause the LEDs to "flip-flcp".

You should never see both LEDs lighted at the same time,

and only when both switches are set HI should boxh LEDs be

unlit.

When C is 1 we say that the latch is set. When Q is 0, we

say that the latch is reset or cleared. Make sure you know

how to set or reset the latch. The condition S = R = 1 is

said to be ambiguous, since Q = Q = and the latch is then

neither set nor reset. Furthermore, when you switch from

S=R=1 toS=R=0, you cannot foretell which way the

latch will "flip". Try it a few times. We will go to seme

trouble to avoid this condition in practical circuits.

113

Finally, note that whenever you switch to S = R

state of the latch remains unchanged (except in

guous case)

.

7U

= 0, the

the ambi-

B. Run through this again, systematically recording your

observations in the following table. Her? Q- and Q+ are the

values of Q before (-) and after (+) the inputs are applied.

[

Previous
Inputs State
S R Q-

New
State

Q

1

1

1 1

1

1 1

1 1

1 1

L_. -. ..- J
i_ 1

Hint: Hew should you obtain a desired previous state (Q-) ?

Suppose for example, xhat you are ready to complete the

fourth line in the table. You can

(i) set S = 1 and R = to obtain Q- = 1,

(ii) set S = R = 0, a neutral starring point, and then

(iii) set the inputs S = and K = 1.

Now ycu can record the new outputs, Q+ and Q+

.

Does your completed table agree with the following short

taDle?

iia

75

Inputs
S E

1

1

1

1

Q> Action

^

Q-
I
Stays latched

j Resets (clears) Q

1
j
Sets Q

Q+=Q-f=o j Ambiguous

* DO NOT EISCONNECT lEE LATCH CIRCUIT.

8.2 THE HS LATCH ilTH ENABLE

A. Add ar enable prevision to your RS latch by inserting

AND gates as shown below. Ose logic switches for the S* , I,

and R* inputs and connect LEDs to the outputs Q and Q. Test

the circuit and complete the truth table. (To obtain each

desired previous state, Q-, you may have to set or reset the

latch with the logic switches.)

C f
<J

I
1

D 1
i<

'

1 15

76

—

1

E
Inpu-^.s

R«

Previous
State

New
Star,*

1

1
'

1 1

1

1 1

1 1

1 1 1

1

1

1 1

1 1
1

1

1 1

t 1

1 1 1

_J[.

8.2.1 Clocked RS Latch

Connect the enable input of the previous circuit to the

1-Hz clock instead of the logic switch. Connect a LED to

nonitcr the clock. Then observe the effects of changing the

S* and R* inputs at various times during the clock cycle.

Confirm that "he latch performs as in the tru-h table above,

except that the clock now takes the place of the input E.

1 16

77

8.3 THE D-TYPE FLIP-FLOP

Add an inverter (IC 7404, or one of the NOR gates .as an

inverter) tc your decked RS latch, as shown. The resulr is

a level-clocked, D-type flip-flop. Test the circuit and

complete the truth table (in which X = '*don't care"). Unless

your reactions are very fast, you will find it convenient to

use a logic switch instead of the 1-Hz clock to enable the

flip-flop.

Clock
S Q
RS LATCH

Inputs
CLOCK D '

Previous
State

New
State

Q* 1

X

X 1

1

1 1

1 1

1 1 1

L JL _ JL— — J

At this point you should turn off the DD-1 and remove all

of the wires and ICs.

1 17

78

8.3.1 The 7t»74 D-tjjge FlJE-floE

Set up a 7U74 edge-clockad D flip-flop with a 1-Hz deck

input (CF cr. the pin-assignment card). Use logic switches to

set the data input (D) , preset (S), and reser (R) . Connect

LEDs to monitor Q# Q , and the clock. (Note the fact that the

set and reset inputs are inverted— bubbled.) Investigate the

flip-flop's operation. In particular, try to answer the

following guesticns experimentally.

(i) At what time during a clock cycle can (or does) a

data input take effect?

(ii) Is the 7474 positive or negative edge-clocked? In

this respect, how does the 7474 compare with the standard

D-type flip-flop?

(iii) When can (cr does) a preset or reset input take

effect?

(iv) Eoes the state of the data input and/or the clock

influence the effect cf the preset or reset inputs?

(V) To preset a 7474 flip-flcp, musz the input, S, be

zero cr one? To clear a 7474 flip-flop, must R be zero

or one?

8.4 SCflJ APPLICATIONS OF D^TIPE FI.IP::PLOPS

D-type flip-flops are very common in digital systems.

Three typical circuits follow.

8.4.1 Serial-load^ left-shift Register

A. Use two dual 7474 flip-flops to construct the following

serial-load, left-shift register. As always, numbering the

pins in the diagram \iill help you avoid wiring errors.

1 18

79

fLI • L2 tL3

- Q2 D2

CP<

Q1 D1

CP<

L4

QO DO

CP<

S R

D in
->SW1

-»+5V

>£W2

->CLK

»SW3

B. Test the register, observing that you can

(i) retain the register contents indefinitely by disa-

bling the clocic with SW3 ,

(ii) shift data left on each clocic pulse, entering the

new LSB from SW1, and loosing the MSB off the left end of

the register, and

(iii) clear the register at any tiae with SW2.

8.4.2 A Ring. Counter

Make two changes in the previous circuiu so that

(i) the clear operation (SW2) now enters the number 0001

into the register, and

(ii) successive clock pulses then left-shift the single

1-fcit circularly around the register.

Make the changes in the diagram and test the ring

counter. Did it perform as reguired?

1 19

80

8. U.3 A P ara llel^lcad. Left-shift Register

Redraw the ssrial-load, left-shift register with the

modifications needed to allow a synchronous parallel load

(all four input bits loaded on one clock edge when the LOAD

input is high) . When LOAD is low, the registar should

operate as in the circuit above. Construct and test the

circuit if you like.

120

Section 9

LAEORATORI EXPEBIMENT #4

THE JK FLIP-FLOP AND ASYNCHRONOUS COUNTERS

ObJ€CtiV€S

1. To investigate the operating characteristics of the

JK flip-flop.

2. To design and test some ripple (i.e. asynchronous)

counters.

Equ ip ge nt

1. DC-1 Digi-Designer.

2. The following integrated circuits:

1 - 7402 Quad 2-Input Positive NOR Gates

1 - 74 a Hex Inverter

2 - 7U08 Quad 2-Input Positive AND Gate

1 - 74 3 2 Quad 2-Input Positive OR Gates

2 - 7473 Dual JK Master/Slave Flip-Flops with

Separate Clears and Clocks

2 - 7474 Dual D-type, Edge-triggered Flip-flops

3. IC Extractor Clip.

4. Assorted hock-up wire.

5. IC pin-assignment card

121

82

9.1 THE MiSTEH^LAVJ CONFIGUBATION

If cn€ or more flip-flops in a logic circuit are driven

by the outputs of flip-flops (directly, or through gates)

there are potential timing difficulties with the tasic

clocked BS latch constructed in experiment 3 (RS LATCH, D

FLIP-FLOF, AND SHIFT REGISTERS) . Specifically, the clcclc

pulse must te narrow enough so thar no flip-flop responds to

the "new" output of a flip-flop clocked at the same time. On

the ether hand, the clock pulse must be long enough to

ensure that every flip-flop has time -co respond reliably to

its legitimate inputs. One way to avoid this difficulty is

to use the master/slave configuration shown below. The

master latch responds to its inputs only when the clock is

high. When the clock goes low, the master is disabled first

and immediately thereafter the slave is enabled and responds

to the naster's outputs. The new output (coming from the

slave) cannot affect a master until the clock next goes

high. Thus a short clock pulse is nor necessary, and a

square-wave clock signal can be used.

CLK

R
m Q

m

R

S m
s

s Q

MASTER/SLAVE RS LATCH

122

83

9.1.1 The Master/Slave RS Latch

A. Os9 two 7402 NOB gates to build each of two RS latches

as in experiment 3. Then complete the circuit as shown abcv«

using 7408 AND gates and a 7404 inverter. (Be careful! Make

sure that Q not Q , leads to the slaveys set input, and be
IE m

certain to identify C = Q correctly.) It will help if you

draw the complete circuit,* with pin numbers marked. Connect

logic switches to S and R, the 1-Hz clock to CLK, and use

LSDs tc mcnitor Q , Q (=Q) , and CLK.
m s "

B. "Play" with this circuit until you are sure that it is

functioning correctly, and that you understand the master/

slave idea. (You will probably find it convenient to replace

the 1-Hz clock with a logic switch.) In particular, dc you

agree that

(i) A set or reset input can take effect (on the

master) only when CLK is HI?

(ii) The set or reset input then takes effect at the

slave's cutput (Q and Q) at the instant that the CLK

next goes LO?

C. Test the circuit, completing the full and abbreviated

logic tables, below. DO NOT DISMANTLE YOUR CIRCUIT.

123

8t»

Inp uts Inputs
\

S R c- Q+ C+ S R Q* Action*

1

1

1

1

1

1

1

1 1

1

1 1 1

1 1

1 1 1 1 1

1

1

*rha action of the circuit

(if any) can be:

To stay latched

To set

To reset

Ambiguous

124

85

9.2 THE JK FLIP^IIjCF

A. Use two additional 7408 AND gazes to convert your master

slave RS latch into a JK master/slave flip-flop. (Note that

Q feeds tack to the rese t side of the master; Q feeds back

to the set side.

)

CLK

K —

S

CLK

R

Master
Slave

RS Latch

Q

JK FLIP-FLOP

E. Connect logic switches to J and K, the 1-Hz clock or a

logic switch to CLK, and monitor Q, Q, and CLK with LSDs.

"Play" with the circuit until ycu are satisfied that it is

behaving as you expect. Complete the logic tables, below.

To avoid confusion, J and K should be changed only when CLK

is HI. Then the outputs Q and Q will reflect such a change

at the instant that the CLK next goes LO - a negative edge.

125

36

Inputs

S R

1

1

1

1

1

1

1

1

1

1

1

1

f
Inputs

1 S R Q* Action*

1

1

1 1

. , ,,- ,.J IL — —

.

The action of the circui"

(if any) can be:

To stay latched

To set

To reset

Ambiguous

NOW YCO SHOULD DISASSEMBLE ALL YOUR CIRCUITS FROM THE DE-1.

126

87

9.2.1 The Dual JK F llP-flop

Set ap cne of the 7473 JK flip-flops with logic switches

to set J, K, and R. * Dse the 1-Hz clock or a logic switch

for CP (CF = clock pulse) . Monitor CP, Q, and Q with L2Ds.

Test the flip-flop tc see if ixs behavior agrees with that

that of ycur home-grcwn unit of the previous section.

Does the output (slave) transition occur on a positive
clock edge or a negative edge?

Dees a LO or a HI input to R clear the flip-flop?

Dees a reset signal clear the flip-flop regardless of

the state of J, K, and CP?

9.3 ASYNCHMNOOS CCDHTERS

There are two basic types of counter - synchronous and

asynchronous. The latter is also known as a ripple or serial

counter. In it, one flip-flop changes state, triggering a

second flip-flop, which triggers a third, and so on, ...The

effect ripples through the array of flip-flops.

1 Note the non-standard Vcc and GND connections with a 7473
JK flip-flop.

127

9.3.1 The Binary Ripple Op-Coonter

A. Insert two 7473 dual JK flip-flops on the DD-

1

construct the counter shown below.

98

and

* Note that the J and K inputs must be connected to +5V

(logical 1) even though some texts suggest that they may be

left floating (i.e., unconnacced) . If you do leave them

unconnected, erratic or even non-operation may result.

CLK

*-»+5V

»SW1

B. Make sure that the counts runs correctly from 0000

(after clearing) tc 1111 (binary) before automatically

reseting to 0000 for the next cycle.

Compare the frequency at the output of each stage with the

input clock frequency. This circuit is often called a

freq uency d ivi der.

f
CLK

f =
f =

1

f =
2

f =
3

= 1-Hz

DO NOT DISMANTLE YOOE COUNTER.

128

89

9.3.2 The Binary Ripple-Down Counter

Convert your circuit into a down-counter. You need not

draw the circuit, but you should describe the change (s) that

you made. (Changes tc LED connections are not allowed.)

Did the counter operate correctly? What was the count

sequence following a clear signal?

9.3.3 The Rifi£le ap/Dovn Counter

The counting acticns of the previous two circuits can be

combined ty adding a suitable arrangement of gates. One such

configuration is shown below, (You could use four NAND gates

instead of the AND/OR/INVERTER arrangement)

LI

Q1 J

CF<

CI R K

D

CLEAR

cz

fL2
up

COUNT ENABLE

down

O

QO J

CP<

Q1 R K

D

—

O-

SW1

CLK

->SW2

-^SW3

129

90

Construe- and test this inodulo-4, binary, up/down ripple

counter. (A modulo-N counter is defined to be a counter with

N states. Here N = 4 and the four states are 00, 01, 10, and

11.) Did this counter perform as you expected?

There will be more on counters in the next experiment.

130

Section 10

LAECBATOHI EXPEfilHENT #5

MORE COUNTERS

Objectives

1. To investigate the characteristics of an asynchronous

(i.e. ripple) decade counter,

2. To investigate the properties of several synchronous

counters.

Equipment

1. BE-1 Digi-Designer.

2. The following integrated circuits:

1 - 7U08 Quad 2- Input Positive AND Gate

1 - 74 11 Triple 3-Input Positive AND Ga-ces

2 - 7473 Dual JK Master/Slave Flip-flops with

separate clears and clocks

3. IC Extractor Clip.

U. Asscriied hock-up wire.

5. IC pin-assignment card

10.1 ASINCpONQDS CODNTEB S (CONCLUDED)

In the previous laboratory (THE JK FLIP-FLOP AND

ASYNCHECNCDS COONTERS) you investigated a number of ripple

counters. Here is one more.

10.1.1 The Ri£ple BCD Decade Counter

BCD (binary coded decimal) implies that the digits in

this counter are assigned the usual binary weights of

8-4-2-1. Eecade and decimal imply modulo-10. So the counter

must te designed to ccunt up normally from 0000 to 1001, and

must then automatically reset to 0000 on the next (the

tenth) clock pulse. One such circuit follows.

131

92

CLK

CLEAR
SW1

A. Show that the above circuit operates as a

counter ty completing the timing diagram, below,

that your diagram shews a proper count sequence:

0000, 0001, ..., 1001, 0000, 0001, ...

BCD decade

Make sure

CLK

QO

Ql

Q2

Q3

Q3

ITLTLT.TTLTL J
1 T 1

1 1

il
1

1

1 1

... „„ I

r
"1

, 1

1

. . 1
\

J

1 f

, ... J

1

' "1

L. .

1

1
1

1

~1

1

1 i

1

1 1

J L J L

B. Set up the circuit, using two 7473 dual JK flip-flops

and a 7UC8 AND gare. Does your counter behave as your timing

diagram predicts?

132

93

10.1.2 The Decade Counter (continued and optional)

A. If more than cne decade of counting is required, a

"carry" must be generated by each of the lower decades as it

resets. This carry will act as the clock input to the next

higher decade. Show hew you would obtain this carry signal

(which should go low when the decade resets to 0000).

B. Design a logic system to "decode" the four outputs of a

decade counter. That is, the four signals QO, Q1, Q2, and Q3

must generate a high output in the appropriate one of ten

output lines (one corresponding to each decimal digit

through S) . All other output lines must be low.

C. Design a circuit which will generate an output voltage

propcrticnal to the count in a decade counter. This voltage

must lock like a staircase as the count rises from OOCO to

1001, and the vcltage must return to zero on the next count

(great accuracy is not required) . This is basically a

digital-to-analog converter.

10.2 SYNCHRONOUS CCDNTERS

The principal limitation of an asynchronous (ripple)

counter is that the frequency at which the counter can be

driven is limited hy the number of flip-flops and their

delay times. The reason for this is that the clock pulse for

each flip-flop (except the first) is received from the

preceding flip-flop in the chain. Thus, one flip-flop must

change state before the next can, and so on.

Synchronous counters, on the other hand, are designed so

that all flip-flops receive common clock pulses, and hence

change state simultaneously. Gate networks are added to

selectively control the inputs to -he flip-flops and thereby

provide xhe counting action.

133

94

10. 2, 1 The Synchronous Binary O p-counter

A. Use two 7473«s and a 74 11 to construct the follcwing

counter. Does it perforin as a modulo- 16 binary up-ccunter?

fLI

10.2.2 The Synchronous Binary Op-counter with Ripple Carry

A. A counter which offers a compromise between the simpl-

icity of a ripple counter and the speed of a synchronous

counter is the synchronous counter with ripple carry shewn

below. Construct and test this counter. Does it perform as

a modulo-16 binary up-counter?

L1

134

95

B. Discuss (or comnent on) the speed (i.e., maximum clock

frequency) and complexity of ripple counters; syp.chronous

counters with ripple carry. Note: A flip-flop is slower

than a sinple gate.

10.2.3 %he Synchronous Down-counter (optional)

Modify (and describe the modifications of) the counxer of

the previous section so that it will count down. Don't alter

the connections to the LEDs. Does the new counter operate

correctly?

10.2.4 A ModulQ~3 Synchro noas Dp-coun ter

A circuit for a modulo-3 up-counter is shown below.

f L2

ft. Show that this circuit operates as a modulo-3 up-counter

by drawing the timing diagram. Does it count correctly:

00, 01, 1C, 00, 01, ,..?

135

96

CLK

QO

Q1

- 1

nriTT"LTirnrrMI 1 1 r ^ r 1\ 1
^^^1

_ , 1 1 1
j

r— 1

1

1

1

1r— '" 1

1

. -

.

1 1 i , 1 1 J. -J— J—_i ,

E. Construct and test this counter. Does it behave as pred-

icted by your timing diagram?

10.2.5 a Modulo- 6 Counter

A modulo-6 counter can be obtained by adding an ordinary

binary stage to the modulo-3 counter of the previous

section. (Mcdulo-6 counters can be used to build modulo-12,

modulo-24, and modulc-60 counters, which have obvious appli-

cations in time-of-day clocks.)

<• LI (• L2 i
> L3

.Q2 J

<

K

Q1

]

J

<

K

QO

]

J

<

K

D^>-i >
1

C
p

f J (J

CLK

CLEAR
SW1

136

97

A. Euild this counter and show, sxpsrimentally , that it is

a niodulc-6 counter. Complete the following table of counts.

Clock

False Q2 Q1 QO
I

1

1 1

1 2

3

4

5

•

7

I .-

B. What code does this circuit use? In other words, what

weights must be assigned -^ro the three digits? (It is not the

usual binary u-2-1 cede.)

10.2,6 a Modulo~12 Counter (optional)

Add another binaiy stage to yield iacdulo-12 counting.

(This is not quite so easy as in the previous section.) The

counter should still be synchronous. Draw the circuit. What

weights must be assigned to the digits in this counter? If

you built and tested this unit, did it perform properly?

137

98

10-2.7 A aodnlO"5 Counter (optional)

S6€ if you can design a nicdulo-5 up-counter along the

lines of the inodulo-3 counter you designed earlier. As well

as three JK flip-flops, you will need one AND gate.

138

Section 11

ABBREVIATIONS

Hz; Hertz

IC; Integrated Circuit

kHz : kilcH€rtz

i
LED: Light Emitting Eicde

LSB: Least Significant Bit

i LSD: Least Significant Digit

MSB; Most Significant Bit

MSP; Most Significant Digit

TTL: Transistor/Transistor Logic

ECD: Binary Coded Decimal

139

Section 12

DEFINITIONS

Discrete: Consisting of distinct or unconnected elements.

Gate

;

A device that outputs a signal when specified input

conditions are met.

Hertz: A unit of frequency equal to one cycle per second.

IHligrated Circ uit: A tiny complex of electronic compo-

nents and their connections that is produced in or on a

small slice of material (as silicon) .

Inverter: A circuit that realizes negation. A circuit that

performs logical complement.

Karn augh «a£: A mathematical tool used to visually portray

the properties of Boolean functions and to simplify combini-

tional logic circuits or functions.

Latch: Name often used for flip-flop circuits that held

the circuit outputs at their previous state when the inputs

are set tc zero.

140

Section 13

TABLE OF DECIflAL HOLTIPLES AND SOBMOLTIPLES

Multiples And
Submultiplss Prefixes Symbols

18
10 exa E

15
10 pscta E

12
10 tara T

9
10 giga G

6
10 msga M

3
10 kilo k

2
10 h9Cto h

10 deca da

-1
10

-2
10

-3
10

-6
10 micro (Greek mu)

-9
10 nano n

-12
10 pico p

-15
10 femto f

-18
10 atto a

Prefixes

exa

pecta

tera

giga

mega

kilo

hecto

deca

deci

centi

railli

micro

141

AEPENDIX B

HEATHKIT DIGITAL LOGIC TRAINING DEVICE TUTORIAL

:»«*:0i«***«**********:**** ******
********************* *****************

**
** * ***
*** INSTSaCTICNAL LABOBiVTORY ***** ***
*** ***
*** ***
** * ***
*** F.EATHKIT ***
*** ***
*** DIGITAL LOGIC ***
*** ***
** TRAINING DEVICE ***
*** ***
*** ***
*** ***
**

142

TABLE OF CONTENTS

INTRODOCTION ii

CAUTION iii

Section page

1. HZATHKIT LOGIC TBAINING DEVICE 1

PHYSICAL LAYOCT OF CONSOLE 1

POWER SWITCH 2
LOGIC INDICATORS 3
POWER SUPPLY SECTION 4

+ 12 5
GND 5
-12 5
+ 5 5

LINE SOURCE SECTION 6
CLOCK SECTION 7

CLK 7
GND 7
CLK NOT 7
SWITCH 7

LOGIC SWITCHES SECTION 8
A and A NOT 8
B and E NOT 8

DATA SWITCHES SECTION 9
SW1 (SW2,SW3, SWU) 9

BREADBOARD SOCKET 10

2. EXPERIMENTS 11

EiFOBE PERFORMING EXPERIMENTS 11
LOGIC INDICATORS EXPERIMENT 12
CLCCK EXPERIMENT 13
LOGIC SWITCHES EXPERIMENT 1U
DATA SWITCHES EXPERIMENT 15
D-IYPE FLIP FLOP EXPERIMENT 16

3. CLOSING REMARKS 18

143

IMTBODOCTION

Welccme tc the Instructional Laboratory. This booklet is -o

assist you in familiarizing yourself with the HEATHKIT

DIGITAL DESIGN EXPERIMENTER. This device can be used to

breadtoard (build) digital circuits using integrated

circuits and connecting wires. The use of this device

requires a fundamental knowledge of digi-al switching

theory. A minimum understanding of Boolean Algebra may be

sufficient if all ycu desire is a device tc assist ycu in

understanding or learning digital theory. Check cut the

BEATHKII DIGITAL EXEEEIMENTER and the HEATHKIT DIGITAL

TECHNICOES instruction books in Ingersol, room 224. For NPS

students, xhase bocks and the DIGITAL DESIGN EXPERIMENTER

form a complete digital electronics training course.

Recommended courses of instruction to augment this book and

the ether material mentioned are: IS-2000, ES-2810, and

CS-3010.

This bcok is written in programmed instruction format, so

please fcllcw the page prompts for maximum benefit.

iHEN RE AC I TO CONTINUE, TURH THE PAGE.

144

1. CAOTION

A precautionary message must be inserted at this time.

This design console is not itself designed to handle mere

components than will easily fit on the large terminal strip

at the bottcm. Therefore, do not "jumper" to components not

on the HEATHKET device,

WHEN BEAEY TO CO NT IHOE, TURN THE PAGE.

145

Ir. order to familiarize you with ths DIGITAL TRAIIJING

DEVICE, we will first describe the physical layout. In order

to follow along, please use the device itself and the

HSATHKIT assembly manual. Place the trainer where it is

convenient to look at and open the manual to page 3U.

HHEH BEADY TO CONTIHOE, TURN THE PAGE

146

Section 1

HEATHKIT LOGIC TRAIMIHG DEVICE

1.1 PHISICAL LAY 00J OF CONSOLE

As ycu look at the top of the console, it is apparent

that it is divided into seven sections. We will start at the

top left and describe the function of each of the areas.

First, however, notice that each of the top six sections has

several plastic blocks mounted on them and each block has

four hol€s in the top. These are called connector blocks

and are used to make the electrical connections between

sections and components. Each of the holes is electrically

connected to the others in the same block, thus any hole in

a block will connect to the signal or component as per the

label directly above the connector. For example, each of the

holes in the connecter under the ••12 label will provide a

positive 12 volt signal.

WHEN BJADJ TO CONTINUE, TURN THE PAGE.

147

1. 1, 1 EC WEB SWITCH

Looking at the top left hand corner of the console,, you

will find the power on-off switch. This switch is on when

the rccker is pushed down on the left and off when pushed to

the right. Do not pl^^ ^^ or turn on the console until

instructed to do so.

HHEM BE AD I TO CONTINOE, TOBM THE PAGE.

1U8

1.1.2 ICGIC INDICAIORS

The first area we will look at is labeled -LOGIC

INDICATOfiS. You will see four connector blocks ,as

described earlier, and four light emitting diodes (LED)

labeled L1,L2, L3, and L4. When connected to a logic

circuit, these LED's will turn on or glow when a logical "1

"

or "HIGH" signal is applied. A logical "0" or "LOW" will

extinguish the led.

MM UiDI TO CQNTINDE, TORN THE PAGE-

149

1.1.3 PCiEE SOPPLY SECTION

Directly below the LOGIC INDICATORS, you will see a

section marked POWER SOPPLY. This is the part of the console

that provides the required operating voltages for the inte-

grated circuits you will be using to do designs and experi-

ments. Please ensure that you understand this section prior

to connecting any circuits together on the console.

WHgN READY TO CONTINUE, TURN THE PAGE.

150

5

1.1.3.1 +12

This block provides a positive twelve volt source. It

should only be connected to the +12 volt input pin (normally

labeled Vcc) on integrated circuits that require +12 volts.

1.1.3.2 GND

The function of this block is to provide a complete

connection for the operating power by allowing current to

flow back tc the power supply from the integrated circuits.

The connection is normally to the GND pin of the integrated

circuit.

1.1.3.3 -12

The -12 volt source is similar to the +12 source, and

should cnly be connected to components that require -12

volts.

1.1.3.4 +5

This is a different kind of power source. It provides the

+5 volt operating power as required by some integrated

circuits and thus is quite similar to the +12 and -12 volt

sources. The difference is that this block is also capable

of providing a constant logic signal of "HIGH" or "1", This

feature is necessary in some digital applications.

WHEN BEADl TO CONTINOE, TORN THE PAGE.

151

1.1. U LINE SODRCE SECTION

To the right of the POWER SUPPLY section you will find

the LINE SOURCE section. The function of this section is to

provide a digital signal (square wave) that, varies at the

wall socket frequency, normally around 60 HZ (cycles per

second) . An associated ground connection is provided for

this signal also. This ground is the same as the ground

provided in the POWER SUPPLY SECTION,

WHEN BEADY TO CONTINUE, TURN THE PAGI-

152

1.1.5 CLOCK SECTIOH

The CLOCK section provides a source of constantly

changing or switching logic signals, at one of three speeds.

Experiment #2 demonstrates the clock operation.

1.1.5.1 CLK

This is the clock output that normally will be used. The

signal is a square wave that switches at the frequency

selected by the switch.

1.1.5-2 GND

This is the same ground connection as before.

1.1.5.3 CLK NOT

This signal is the logical coirplement of the CLK signal.

It is provided for the instances when the "FALSE" or

inverted clock signal is needed.

1.1.5.4 SWITCH

The switch allows selection of one of three operating

frequencies for the clock; 1HZ, 1 KHZ, or 100 KHZ. A HERTZ

(HZ) is one cycle per second, a KILOHERTZ (KHZ) is 1000

cycles, and thus 100 KHZ represents 100,000 cycles per

second. If you have the LED's connec-ad, you can see the

effects of the switching circuitry a:: 1 HZ but the ether

speeds are too fast for the human eye to respond.

WHEN PEADJ TO CONTINDE, TUHN THE PAGE.

153

8

1-1.6 LCGIC SIJTCHJS SECTION

The LCGIC SWITCHES section will be looked at next. These

connection blocks and switches supply selectable logic level

to the positions they are in now (A NOT and B NOT) .

1.1.6.1 A and & NOT

These two blocks provide complementary signals, that is,

when A is "HIGH", A is "LOW", and vice versa. A will be

"HIGH" when the A switch is in the A posi-ion, and A will

be "HIGH" when the switch is in the A (normal) position.

1.1. 6o2 E and B NOT

The operation of these connectors and switch is the same

as for A and A.

A simple exercise will be performed later to clarify the

operation of this section.

WHEN BEAEY TO CONTINOE, TORN THE PAGE.

154

1.1.7 CATA SWITCHES SECTION

The section tslow the LOGIC SWITCHES SECTION is called

th9 EATA SWITCHES section. It consists of four connecters

and switches. Each performs in exactly the same way, so only

one will be explained. The DATA SECTION will be the source

cf logic input signals for your circui-::s.

1.1.7,1 SHI (SW2,SW3,SW4)

The operation of these switches is such that if the

switch is in the "UP" position (moved toward the LOGIC

SWITCH section) a +5 volt logic signal is applied to the

connector directly below the switch. Conversely, the "DOWN"

position connects GND or a logical "LOW" to the connector.

As with the LOGIC SSITCHES section, an experiment will be

performed that will clarify these features.

WHEN HEADY TO CONTINDE, TORN THE PAGE.

155

10

1.1.8 EBJADBOABD SOCKET

Th€ last section of the console is the BREADEOAPDING

SOCKET, which is not labeled but is the long object full of

holes located at the bottom of rhe console. This is where

you will be inserting integrated circuits for design or

experimentation. Look carefully at the socket and observe

that it resembles several of the connectors we have seen

elsewhere all connected together. Ir performs the same func-

tions as the connecters but has one major difference. Notice

that the socket is divided horizontally by a slot that sepa-

rates twc horizontal rows of holes. The socket has five

holes per vertical section, and as before, all five holes

are electrically connected to each other internally. When

inserting integrated circuits in the BfiEADBOARD SOCKET,

always straddle the slot with the two sides of the chip.

NEVER make connections to external devices or sockets, since

damage tc the power supply and console may result.

JHEN BE AD I TO CONTINOE, TOHH THE PAGE.

156

Section 2

EXPERIHENTS

2-1 JJICRE PERFORMING EXPJRIHEHTS

Bead this page before performing the following experiments-

1. It is now time to plug the HEATHKIT LOGIC DESIGN

EXPERIMEKTEE in and apply power to it. First, ensure that

the power switch is in the OFF (to the right) position. Now

plug it in xo any 110 volt grounded outlet:.

2. Turn the power switch on and observe that the red power

indicator light to the left of the switch illuminates.

3. When inserting and removing components, it is best to

turn power off.

U. After components are in place, you can connect or remove

wires with the power en or off without any danger.

5. If at any time ycu suspect the console is not operating

correctly, lORN IT OFF, and report the problem to Professor

Schneidewind or your instructor.

6. Remove integrated circuits with the extraction tool

provided (looks like a tweezer) in order t:o prevent damage.

WHEN READY TO CONTINDE, TURN THE PAGE.

157

12

2-2 LOGIC INDICATOBS EIPERIMENT

Refer to page 27 of the HEATHKIT MANUAL and connect ens

end of a wire to 5. Then connecx the other end of the wire

first to LI, then L2, L3 , and L4 . Each LED should light when

you connect the wire to it.

BHEN BJi5I TO CONTINOE, TURN THE PAGE.

158

13

2.3 CLOCK HPERIHEHT

Refer to page 28 and position the CLOCK switch to -he 1HZ

position, connect a wire from L4 to CLK, and ancxhsr wire

from L3 to CLK NOT. L3 and L4 should now alternate on-off at

a one cycle per second rate. L3 should be on when LU is off

and vice versa. Now position the switch to the 1KHZ posi-

tion. You should obserr seccnd rate. L3 should be on when L4

is off and vice versa. Now position rhe switch to the IKHZ

position. You should observe that the LED's appear to be on

continuously.In fact they are switching faster than your

eyes can detect. With the switch in the 100 KHZ position,

the LED's will also appear to light continuously but at a

brighter intensity.

WHEN READY TO CONTINOE, TORN THE PAGE.

159

14

2.4 LOGIC SWITCHES EXPERIHENT

Refer tc page 29 and connect one wire from LU to -LOGIC

switch A. Connect another wire from L3 tc logic switch A

NOT. Operate the switch and observe that when rhe switch is

in the A NOT position L3 is lighted, and when the switch is

in the A position. La is lighted.

WHEN EJADY TO CONTINOE, TORN THE PAGE.

160

15

2.5 DATi SWITCHES EXPERIMENT

Refer tc page 3 1 and connect a wire from L4 to- DATA

SWITCH 1. Operate the switch and observe that in the UP

position, LU is on. In the DOWN position, LU should be off.

JHEN BEADJ TO CONTINUE, TURN TBE PAGE.

161

16

2.6 D^IJPE FLIP FLCi EXPERIHEHT

fiefer to page 35 and carefully connect the virss required

to build a D-TYFE FLIP FLOP, using the DM7U00N integrated

circuit. Page 36 has a schematic representation of the

circuit. In order to ensure correctness of your connections,

you can fellow the fcllowing listing.

PIN 14 TC >5

PIN 13 SEE PIN 10

PIN 12 TC SH-1

PIN 1 1 10 PINS 9 AND 1

PIN 10 TO PIN 13 AND LOGIC SWITCH A

PIN 9 SEE 11

PIN 8 TO PIN 5

PIN 7 TC GND

PIN 6 SEE PIN 2

PIN 5 SEE PIN 8

PIN U SEE PIN 3

PIN 3 TO PIN 4 AND Li

PIN 2 TO PIN 6 AND L2

PIN 1 SEE PIN 11 To test the operation of the D- TYPE

FLIP-FLOP, apply power to the console and observe LI or L2

is on. Put Data switch 1 in the "up" position and cycle

Logic Switch A. At this time LI should be lighted. Now put

Data Switch 1 in the "down" position and cycle Logic Switch

A again. L2 should be lighted and LI off. For this experi-

ment, the Data Switch acted as the input signal and the

Logic Switch acted as the Clock input. The flip flop has

performed as expected, since a D-TYPE FLIP-FLOP is supposed

to have as it* s output the same signal that was at the input

when the Cloclc signal arrived.

162

17

Additional information on the D-TYPE FLIP-FLOP and ether

circuits can be found in the HEATHKIT DIGITAL TECHNIQUES

instructional material. For the adventurous, see exfarimsnt

11 of section 6 for an example of a J-K FLIP-FLOP frequency

divider.

163

Section 3

CLOSING BEHABKS

This booklet , the Heathkit Digital Design Experimenter

Console, and the Heathkit Digital Techniques material are

provided to assist you in learning and understanding how

digital electronic circuits operate. If you discover an area

where improvement is needed, please notify Professor

Schneidewind or your instructor.

164

iEPENDIX C

EROHET 80 TOTOBIAL

« 4t 1^ 4c 4 «:«(:((41 4c« ^ « « 44c« 4c3lc * :» :te 4c 41141 :4e :4c:(e :«c 4c * :4c 4(4: * :((

:^ * 4 *****t ************* ********^* *******
4t4i:)e:4i4i4c4c4E4c4E«:t>««4>««4c4c*4c4c*4E4c4>«J4c*:«(**4e:4(4>4e^4c4c4e

*** ***
** * ***
*** INSTRUCTIONAL LABORATORY ***
*** ***
*** ***
*** ***
*** ***
*** ***
*** FBCMPT 80 ***
** ***
*** **:ic

*** ***
*** ***
*** ***
tlf*:ilf***********::^******* **** «4c ***********

165

TABLE CF COHTEHTS

INTBODOCTION ii

Section page

1. THE EBOMPT 80 COHPOTER 1

Introduction to the ProniDt 80 1

?lajor Divisions of the Keyboard 2
Register Display Group 3
Command Function Group 4
Interrupt/Beset Group 7
PECM Socket 8
I/O Port Connector 8
Input/Output Group 9

Applying power to ths Prompt80 11
Mcdirying a Register's contents 13
Error messages 19
Modifying Memory Locations 20
GC .:.... 21
single Step 22

2. BOMNING A PROGRAH IN THE PROMPT 83 24

Entering a Program 24

3- iRITING ASSEMBLY LANGUAGE PROGRAMS 31

Assembly Language Programming 31
Multiply Flow Chart ; . . 32
Multiply Algorithm 35
Final Machine Language Program 45

4. ADVANCEE OPERATICNS WITH THE PROMPT 80 54

Advanced Concepts and Functions 54
Debugging 55
Limitations 57

Advanced Operations of the ?rompt80 60
E50M Operations '. 6 1

166

INTBODOCTIOH

Halcome to the Instructional Laboratory. In this laboratory

you may work with digital devices on a level from logic

gates and the elementary electronics of computers to the

fully integrated level of advanced microcomputer systems.

Through this series of texts you can progress from little

or no knowledge of digital equipment to a working famil-

iarity with advanced Automated Data Processing. However,

this course of instruction was not designed to make an

expert of the student. Extensive outside study is needed

for that. For that reason, the text will present only

simple examples and problems for demonstration. For the

more serious student other books and reference manuals are

available in the Computer Center Library and the Kr.ox

Library.

You should have teen given the following material for

this tutcrial:

This textbook on the Prompt 80

The Prompt 80 machine

The Prompt 80 Microcomputer User's Manual by Intel

A FHCM (programmable read-only-memory chip)

167

In this phasa of the instructional series you will be

exposed to a low level digital computer, the Prompt 80 by

INTEL COEE. The Prompt 80 is based on the 8080 Central

Processing Unit (CPU) chip, and is programmed direcxly from

the keyboard. As a prerequisite to this manual you should

have a working knowledge of the basics of computer arith-

metic, including binary and hexidecimal notation, and a

basic understanding of the functions of -che computer.

At the end of this course you will be able to:

1. Turn on and initialize the Prompt 80.

2. Load and run given programs on the Prompr 80.

3. Understand the basics of machine language

programs

.

4. Write a simple machine language program from a

given algorithm, enter, debug and run the

machine language code on the Prompt 30.

Additionally, you will be given instructions on hew to

save ycur programs by "burning" a Programmable Read/Only

Memory chip (PROM) with the Promp-c 80.

52 R2l 2liia iJl iilS ££2Sl£i J^ Miii instructed to dc so.

Put the Pro mpt 80 in fronx of you and turn to Section I.

163

Section 1

TBE PROMPT 80 COHPOTEB

1. 1 INTBOEOCTION TO THE PBOHPT 80

This section is a self-paced programmed guide to the

Prompt 80. Each page has a short section to read^ some

action for you to perform, and further instructions. If you

get confused return to the last page which you fully under-

stood and try again.

When Beady, turn the page.

169

2

1.2 MAJOB DIVISIONS OF THE KEYBOAfiD

For this section of the tutorial you will be referred tc the

keyboard of the Prompt 80 itself and to the labels of the

keys. There is a picture of the keyboard on page 1-6 of the

Prompt 80 User's Manual. You should fold that page out of

the manual and have it ready for reference to help you find

the appropriate sections of the keyboard as you go along.

With the Prompt 80 in front of you, notice that there are

six major divisions indicated on the face of the computer:

1. Regisxer Display Group

2. Command Functicn Group

3. Reset, Interrupt Group (Unmarked group of three)

a. EECM socket

5. I/O Forts connector

6. Input/Output Group

Locate sach of these 6 divisions.

When Ready, turn the page.

170

3

1.2.1 Beqister Display Groap

The Register Display Group is ussd to display the ccntsnts

of tha CPU registers four bytes at a time, using hexidacimal

notation. (If you do not understand hexidecimal notation,

stop now and read the section in the Prompt 80 User*s Manual

on computer arithmetic.) The four bytes represent four

registers in the 8080 CPO. The printing below the digits

show the names of the registers. The selector lights beside

the titles show which four of the registers are being shown

at the time. In the first row are the labels B,C,D and S.

In row 2 are H,L,Flags and A (Accumulator). The third row

shows the two bytes cf the Program Counter and the two bytes

of the Stack Pointer. These are the names of the registers

available in the Prcmpt 80 's 8080 CPU. They are normally

associated in pairs, E and C, D and E, H and L, and A and

Flags. The Program Counter (PC) and Stack Pointer (SP) are

always treated as pairs.

If these terms are unfamiliar, or you do not understand

the concept of Program counter and Stack Pointer, read the

User*s manual, pages 3-1 to 3-13.

When Seady, turn the page.

171

4

1.2.2 Cca ian d Function Gr oup

To change the register display from one set of registers to

another, use the SCECLL REGISTER DISPLAY key in the CCMAHD

FONCTICU GECnP.

The COMMAND FONCTICN GROUP has eight digital readouts, 16

numeric keys and 8 ccmmand keys. Two of the command keys

have two marKings--Next and (,) and Execute/End and (.) .

These keys are the delimiting keys, and will be important in

data entry.

The digital readout has three fields: The function

field; the address field and the data field. Data frcm the

numeric keys are entered into these fields until a delimiter

key is pressed. More on data entry later in this secticn.

When Ready, turn the page.

172

5

Th€ numeric keys have the 16 haxidacimal digits 0-9, k-F,

These keys are used tc enter data into the address field and

data field cf the display group. The F key also is a

command key when pressed from the monitor state tc select

one cf the 8 internal functions available to the user.

These functions will be discussed later, in the advanced

operations section.

When Ready, turn the page.

173

6

The ccmmand keys are used to command the built in mor.itor

program in the Prompt 80. Four of rha keys cause the func-

tion field in the display to change after clearing:

Examine/Modify Register produces Er

Cisplay/Modify Memory produces dn

GO produces GO

Single Step produces SS (then FC)

The SCROLL REGISTER DISPLAY changes the display in the

Register Display Group as previously discussed. The

PREVIODS/CLEAR ENTRY key either erases the current entry or

backsteps to the next lower address, depending on the

sequence and mode in which it is used.

Whan Ready, turn the page.

17a

7

1.2.3 Ipterrupt/Reset Group

The Interrupt/Reset key grcup controls the monitor prcgram

built into the Prompt 80. This program actually monitors the

state of the CPU and provides the housekeeping functions to

enable the user to concentrate on the program he/she wishes

to operate without concern for a starting program. The

monitcr controls the input and output for the keys on the

machine, and interprets the key strokes of the user into the

functions discussed in this section. The MON INT key inter-

rupts the currently operating program and returns control to

the monitor. The OSR INT kay interrupts the present opera-

tion and steps to the location 3C02 H. The programmer may

install at that location a jump to any address desired to

indicate the beginning of the interrupt handling routine.

The SYS RST key reinitializes the Prompt 80 to initial turn

on conditions. This key will "rescue" the computer from

uninterruptable lock ups.

When Ready, turn the page.

175

8

1.2. a EBOM Socket

Tha PEOM socket holds PROMs for reading and writing. It is

a zero insertion force socket. The movable handle locks the

PROM in the socket and releases it when desired.

1.2.5 1^0 Port Connector

The I/O PORTS connecter is provided to connect the Prompt 80

to an external device. This connector is used to connect to

card or tape readers and printers, for example. The use of

the I/O ccnnector is beyond the scope of this text. See the

Oser's manual for more information.

Hhen Beady, turn the page.

176

9

1 . 2 • 6 Input/Output Group

The Input/Output Grcup has 16 L2Ds, 8 each for Inpu^. and

Output. Ihe 9 keys below the lighrs control them." A

lighted LID represents a binary 1 and an unlit LED repre-

sents a binary 0. Pressing the key below the appropriate

LED changes the input from to 1. To erase the 1*s, the

EST k€y resets ALL bits to 0.

When Eeady, turn the page.

177

10

This concludes the basic description of the keys. You

should new know where the keys are, and roughly what they do

en the panel of the Prompt 80. If you need to you can

repeat this phase. The fol dout page of the Prompt 80 User's

Manual can be kept fclded out as a reference for the rest of

this tutorial. If you are referred to a section of the

board and cannot remember where ir is the picture can help

you find it.

If you wish to repeat this phase, do so now.

When Ready, turn the page.

178

11

1-3 APELIINS PQBER TO THE PH0HPT8Q

Move the Prompt 80 near an electrical outlet with 110 v. AC

(normal mains). EO NOT PLUG THE PROMPT 80 IN 'UNTIL

INSTEUCTED TO DO SO.

The On/Off switch is a rocker switch found near the fuse

socket on the back of the unit. Before plugging the unit in

to the wall socket, check to see that the selector switch

next to the ON/OFF switch is in the 115 v. position. Turn

the On/Off switch to Off and then plug the Promp- 80 into

the wall socket.

Mcv€ the On/Off switch to the On position. The fan for

air cooling should now come on, indicating power is applied.

The digital readouts should light and quickly stabilize. If

this does NOT happen, return the On/Off switch to OFF.

When the unit is properly turned on you will be ready to

contiLue.

When Beady, turn the page.

179

12

The Register Display Group should display the following

digits:

1 2 3 4 F F A A

And the selector light should indicate that this represents

the data in the HL and FLAGS, A pairs of the CPU.

Depress the SCROLL REGISTER DISPLAY key in the COHMAND

Group once. The group indicator should move down to indi-

cate the registers new displayed are the Program Counter and

Stack Pointer. The digits should read:

67393F90
indicating that the Program Counter points to 6789 H* and

the Stack Pointer is pointing to 3F90 H, the first available

stack address. The PC value is not usable, but is an

initializing value only.

Press the SCROLL key again. The selector LED now shows

that the BC, DE pairs are displayed. The digits should

read:

bbCCddEE
Again, these are initializing values.

Press the SCROLL key again to return the display to the

HL, Flags, A display.

When Ready, turn the page.

* The "H" indicates that the preceding number was written in
hexideciiral notation. This convention continues throughout
this text.

180

13

1.4 MODIFYING A REGIST ER* S CONTESTS

To deicnstrate hew tc modify the conxants of a register pair

we shall use the HL register pair. The Register Display

Group now indicates that that pair contains 123U H.

To modify that pair, or any pair, the Examine/Modify

register ccmmand key is used. Press that key now, once.

The Function field of the digital command readout should

change from a hyphen and now display "Er" indicating rhat we

are going to examine or modify a register.

If it does, turn the page.

If it does not, press SYS RST and then Examine/Mcdif

y

register. It should now be as described above. If it still

is not, seek assistance.

181

The mcnitcr now anticipates tha input of which register

to modify. The registers are numbered from to B hexide-

cimal (0 to 11 decimal). To indicate the regis-cer to

modify, you will press one of the numeric keys from to B.

To determine which key to press for each register, look at

the Register Display group now. The registers are identi-

fied telow the Register Display Group in three rows cf four

each. In addition to the name of the register, there is a

small number beside the register name as they are displayed

that indicates which numeric key to press for the corres-

ponding register. In other words the B register is number

0, the C register is number 1, etc. Using this scheme the H

register is number 4.

Press the 4 key once now.

When Ready, turn the page.

182

15

The address field of the command/f uncrion group should

now display a 4, indicating the address of the register -hat

is to be displayed and modified. To indicate that the data

entry is finished, we must now press a delimiter key. Since

we will be entering more information, the correct key to

press is the Saxt (,) key. Press -hat key now.

Hhen Beady, turn the page.

183

16

The data field of the command/functicn group now displays

the number 12, the current contents of the H register. This

is another confirmation that you have selected the proper

register for modification. Look at the Register Display

Group and ccnfirm that the H register is filled with a "12".

Now that the monitor has the function and register infor-

nation the last thing needed is the data to insert. Press

any numeric key and observe that the number is displayed in

the data field of the command display. Press another number

and the first number moves to the left, with the new number

showing up in the right most place. Press a third number

and the left one disappears, shifted left out of the

display. The second digit moves to the left and the new

digit is again in the right most place. The shifted cut

digit is lest, and net remembered by the Prompt 80. This

feature of shifting cut can be used to correct incorrect

entries without having to go through the sequence fully.

Additicnally , this will continue as long as you press keys.

To make sure we are still together press the A key followed

by the B key. The data field should new display the digits

Ab. This is the value to be inserted to the H register.

When Eeady, turn the page.

184

17

To accomplish the insertion of rhe data into the H

register we must press a delimiter key. Either the (,) or

(.) key will do. The difference between them is that the

(,) dees not end data entry and the (.) does. Since we are

going to enter data into the L register , in addition to

entering data into the H register, press the (,) key now.

The At in the data field should now go away, and the

display of the HL register should now display that the H

register has that value in it. The Register Display Group

should new read Ab34FFAA. The command/function group now

displays

Er. 5,34.

If it dees, turn to the next page.

If it dees not, redo the previous five pages until you

understand and have the right results.

185

18

Th€ mcnitor program has cow stepped to the next register

in ar ascending sequence. That is, the Donitor is ready to

modify register number 5, as seen by the "5" in the address

display, (which is the the L register) and is currently

indicating the value in that register, 3U. Check the

Register Display Group again to verify that this is the

contents cf the L register. Press the C and D numeric keys

in that order, observe that the data field of the command

display new has the two characters in it, and then press the

(.) key to indicate to the monitor that the data in the data

field is ready for the L register, and that no more data

will be entered.

The display in the command ragister will display the

characteristic hyphen indicating no function selected, and

the Register Display Group should read AbCdFFAA.

If it does, proceed to the next page.

If it does not, re-enter the data until the L register

indicates the proper data.

I When ready, turn the page.

186

19

1.5 ERBCB MSSiGES
You may have discovered that the monitor may give you the

message "Error" in the command display if you do net press

the correct type of key. This is a simple alerting devic*

to advise the user that the sequence of key presses is not

proper. The monitor does NOT test for the validity of an

acceptable key, only that an acceptable key has been

pressed. If the Ericr message appears, the Clear Entry key

will correct it and return you to the monitor program.

As a demonstration, press the Examine/Modify Register key

twice now. At the second press the Error message appears,

indicating that the second key press was inappropriate. To

clear the Error message, press Previous/Clear Entry. The

hyphen reappears.

When Beady, turn the page.

187

20

1.6 MODIFYING MEHO EI LOCATIONS

The Display/Modify Memory works in much the same way as -he

Examine/Mcdify Register function. The difference between

the two is that the Memory function must be given an address

to modify or display, which will be present in the address

field of the ccmmand display, and that data field will

display the previous contents of that memory address before

modification.

To modify an address in memory, the sequence of key

presses is:

Press Display/Modify Memory

(produces dn in display)

Enter the address into the address field.

Terminate address with (,)

Enter data to go into address in data field.

Press (,) if more data for next address is to be

entered, (.) if no more data is ready.

The FPEVIOUS key will backstep through memory in the

display mcde. To step forward, simply enter no data to

modify the address and press either (,) or (.) for the next

address.

As an example, press the Display/Modify Memory key new.

Observe that the display shows dn. Now input a four digit

address (any number below 3000 will do. To end the

address, press (,) . The display will immediately show the

contents cf that address- Press PREVloas to see the address

decrease by one and the contents change. Press NEXT (,) to

return to the initial address and p ress (,) again to step

to the next higher address.

When Ready, turn the page.

188

21

1.7 GO

The GC key transfers control to either an address entered

from the keyboard into the address field or to the address

in the FC register if no data is entered into the address

field. The command is executed when the delimiter (.) is

pressed.

The sequence of key presses is:

Press GO, observe GO in the function field

Enter an address, press (.) to go there or

Press (.) to go to the address in the PC.

An example of this function will be given in a later discus-

sion.

When Eeady, turn the page.

189

22

1.8 SINGLE STEP

SINGLE STEP moves through the program similarly to GO,

except that each press of the key moves the PC one step.

This can be a useful key to debug or examine the functioning

cf the program in a slew manner. The register contents can

be checked at each step to see if xhe program is working as

desired, cr to locate the mistake.

An example of this will be given later in the text.

When Ready, turn the page.

190

23

This ccncludes the introduction phase of this t~xt. In

the next section you will be asked to enter a simple prcgram

from the keyboard, tc run and test it, and then to load the

same progran from the PROM you have been given.

If you desire to stop in the middle of the text, rhis is

a convenient place tc stop.

Continue when you are ready.

191

Section 2

RUNNING A PB06BAH IN THE PROUPT 80

2.

1

ENTERING A PROGEAH

Now that you know hew to modify memory and registers, it

is time to enter and run a program which is given to you.

The sequence of operations is the same as in the previous

section, using the Display/Modify Memory key of the

Command/Function Group.

To begin, the first address of the program is 3DE0 H. To

enter this address, press Display/Modify Memory, and observe

the "dn" in the Function field. In turn press the 3, d, e,

and numeric key. The address field should now display

BdEO. The data for that address is 3E. Press the Nf^xt (,

)

key to indicate that there is more data to follow, then

press the 3 and E keys in turn. The Command display should

now read:

dn3dE03E
To enter the data to memory, press the Next (,) key.

The ccmmand field should now rsad:

d n 3 d E 1 X X

where the X»s indicate that any value could be present. The

address field has been incremented to the next higher

address, and is ready for data entry ro that address. The

data for this address is 8b. Enter that data.

Now that you know how to enter data, turn the page and enter

all the data as shewn in the table. You have already

completed the first 3 sxeps. Begin with step four. Note

192

25

the difference in step 21 where you enter a (.) to end data

entry.

When Eeady, turn the page.

193

26

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

ia.

15.

16.

17.

18.

19.

20.

) Cisplay/Modify Memory

3) (d) (e) (0) (,) (3) (e)

(8) (b)

(<3) (3)

(€) (b)

(C) (e)

(0) (f)

(5) (9)

«3) (b)

(?) (9)

(c) (d)

(f) (1)

(0) (7)

(0) (d)

(f) (2)

(€) (6)

(3) (d)

(c) (3)

(€) (^)

(3) (d)

21. (.) (this ends program loading)

When Beady, turn the page.

194

27

Now that the program is in memory you are ready to

execute it. Press the GO key and observe that the function

field reads GO.

To provide the prcper address for the GO instruction,

recall that the program you entered started at address 3ED0

H. Press the 3, e, d, and keys in order and observe that

the address field r€ads correctly. If it does, you are

ready to begin the operation cf the program. Before you

execute the program, here is what it does:

Each of the digital LEDs on the display board is

made uf of 8 sections, 7 straight bars and one

pericd for decimal points. These 3 sections can

te lit individually by this program. To choose

which sections to light the input/output group

keys will be used. One of the bars, or the

decimal point, will illuminate when the corres-

ponding I/O key is pressed. Pressing another key

will illuminate another section. When you run the

program you can experiment and find which keys

light which sections. To extinguish all sections

you will press the reset key. That is the sole

function of the program you have entered. It

tests all of the segments of all of the LEDs at

onc€

.

When Beady, turn the page.

195

28

Now ycu may begin the program execution by pressing the

Execute/End (.) key.

You may experiment with this program as you wish. ' Make

as many patterns with the I/O Group keys as you can. It is

an interesting effort to determine the binary combinations

that make up the decimal digits. Note also that not all

segment combinations have any meaning, and that not all

alphabetic letters can be formed with the led segments

given.

When you are ready to end the program, turn to the next

page.

196

29

To and the prcgrain, press the SYS EST key and the initial

state of the compatex is restored. If you wish you can

examiEe the memory contents and see that the reset did not

destroy ycur program and thus a G0(,) 3DS0(.) will start the

program again.

WHEN REAEY, TURN THE PAGE.

197

30

This concludes the introductory phases of this manual.

The fcllcwing pcrticn of the text is written in a mere

classic style, without the directions to perforin any actions

directly. The remainder of this manual will give y cu infor-

mation on the Instruction Set of the 8080 CPU, how to

convert an algorithm to machine language, and an introduc-

tion to the advanced functions of the Prompt 80 (such as

reading and writing a PROM of your own.)

198

Section 3

WRITING ASSEMBLY LANGUAGE PROGBAMS

3. 1 ASSEMBLY LAN GO AGE PROGRAMMING

Now that you can enter data into and manipulate the

memory of the Prompt 30 you can begin to write ycur cwn

programs for the machine. If you already know how to

program in machine language, you may skip this chapter and

continue in Section IV. If not, this chapter will present a

simple example of how to program the Prompt 80. More inde-

pendent study will be needed for the serious student of

machine language programming.

To begin the process of writing a program one needs to

analyze the problem tc determine the input, process and

desired output the program is to have. In this example we

shall use a simple task as the process; the multiplication

of a 16 bit number by an 8 bit number to produce a number

whose bit size is no larger than 16 bits. The input will be

the two numbers, in binary, and the output will be in binary

(note that the Prompt 80 will display the answer as hexide-

cimal, but That the program will handle the data one bit at

a time.) The process will be the typical binary multiplica-

tion , as shewn in the figure on the next page.

199

32

3.2 HO IT I FLY PLOW CHABI

I
Multiply Algorithm |

I

I
Get Multiplicand |

[

I
Get Multiplier

I

I

I
Initialize Partial Product Location |

[

I
Lead Loop Counter |

I

j Shift Partial Product Left Once |

''*"

I
Shift Multiplier Left Once Into Carry !

I

Most Significant Bit = ? Y

I

I
ADD Multiplicand to Partial Product

|

1^

I
Shift Multiplicand Right Once |

[

I ADD Carry to Multiplier \^

T
(Decrement Counter by One

|

T — — "-————— —— — — ——— — — —-._._-.-.— __-.___

I

Counter = ? N

j^

I
Move Partial Product to Memory

|

[

I Fnd of Algorithm |

200

33

The first stsp in writing the program is to write

(usually in longhand) the steps that we wish to perform, in

order, and to desk check the solution. In ^his case, the

first stsp in the algorithm is to fetch the multiplicand

from memory. The second step is to fetch the multiplier

from memcry. Write these two steps down in a column on a

piece of paper new. At this time we are net concerned with

the specifics of HCW the Prompt 30 will do these two

actions, tut with WHAT we wish it to do.

Continuing, -he third step is to initialize a partial

product location in the computer that will be used later en.

As the last step in this initializing process, we want to

load a counter with the number of times the process is to be

repeated, that is, 8.

Our plain text program should now read:

Get multiplicand.

Get multiplier

Initialize partial product location.

Set counter to 8.

With this much completed, we are ready to perform the

actual multiplication loop. The first step in the loop is

to shift the partial product to the left one place. Then

the multiplier word is shifted to strip off the most signi-

ficant byte. The first branch is about to occur. IF the

most significant byte is a 0, the program jumps to the point

at which the most significant byte is restored to the multi-

plier. The counter is then decreased by one. IF it is a 1,

the intervening step of adding the multiplicand to the

partial product occurs. In either event, the multiplier is

then shifted to the right, and the counter is decreased by

one.

If the counter is now NOT equal to 0, the loop is

performed again from the point at which the partial product

201

34

was shifted left, as above. This process is continued until

the counter reaches 0. At that point the answer is now in

the partial product location, and all that ramains to do is

to store it in memory. As a test, writs out the steps

above, and then look at the next page to see if your program

agrees with the one provided by the author.

202

35

3-3 MUITIiLY ALGORITHH

FHCGBAM TO MUIIIPLY TWO BINARZ NUMBERS

Get multiplicand.

Get multiplier.

Initialize the partial product location.

Initialize counter to 8.

Shift left the partial product. <

Strip multiplier bit.

IF it is 0, jump to

Else, add multiplicand to partial product.)

Restore the multiplier bit. <

Decrement the loop counter.

If NOT zero, repeat from

Store in memory.

End cf program.

203

36

Now that we have a program in English, we have tc Trans-

late it into machine code, Q's and 1's. To assist in this

process the developers of the 8080 CPUs provide a system of

mnemonic devices to assist the programmer. The first step

is tc translate the English into the mnemonics, then

transfer the mnemonics to hexidecimal equivalents. This

avoids the necessity of making a much larger jump from

English tc machine language directly.

In the Prompt 80 manual you will find a summary of the

mnemonics fcr the 8080 chip on pages 3-20 to 3-37. Although

at first the code locks imposing, study will reveal that the

instructicns fall into several categoriss--accumulator

instructions, byte instructicns, word instructions and

control instructions. The manual has divided the mcemcnics

within the four groups into functional areas with add,

subtract, etc, grouped together.

The first step in cur program was to get -he multiplicand

from somewhere in memory. For the time being we shall

assume that the location will ccme later. For now we shall

refer to the word instruction table fcr an instruction to

fetch a word from memory. On page 3-31 we see the instruc-

tion mnemonic "LHLD," This machine instruction will load the

HL register pair with the contents of a memory address. The

memory address is tc follow rha mnemonic and has four

digits. Of importance is the fact that the L register gets

the information at that address and the H register the

information at the address-1. This is a pattern followed

throughout the 8080 family of CPU's. Note also that the

next instruction on page 3-3 1 is "SHLD" and performs the

inverse of "LHLD", i.e., it stores the contents of the HL

pair in an address in memory. Looking at our program w«= see

that we shall want to do that as a last step, so we should

arrange to have the answer in the HL pair so we can store it

conveniently using SHLD. Since the partial product will

eventually be the final product, then the HL pair should

2oa

37

hold th€ part-iai product of ths process, rather than

holding the multiplicand or mulriplier. After the LHLD

instruction the HL pair will hold the multiplicand, so we

have tc move the data somewhere else to make room for the

partial product. Between "Get mulriplicand" and "Get

Multiplier" now comes "Move HL to somewhere".

We have now added a step to our program, namely, MOVE THE

HL PAIR TO (somewhere) . The (somewhere) can be cur free

choice of any of the registers that can be addressed by the

8080 program instruction set. To make that decision, look

at the word instructions that move data and pick one. The

quickest of them is on page 3-30, "XCHG". It rrades the

value in the HL registers with the value in the DE registers

and only takes U cycles to accomplish. This is efficient,

and will be used from here on. This is NOT the only way to

do it, and may not be the best in all applications. It

works here and we shall use it.

Now that the multiplicand is safely in the DE pair, we

have but tc get the multiplier from memory. The prcgram

calls for the multiplier to be shifted eight times, and

looking at the instruction set we see that the accumulator

can be shifted directly (pg.3-23). Therefore, it is best to

have it in the accumulator. Looking through the accumulator

instructions we see "IDA" as one that loads the accumulator

from an address in iremory. This will be the nex-^ step in

the program. The final step prior to the multiplication is

the initialization of the partial product and counter. For

the initial value of the partial product, recall that the

partial product will be in the HL pair. We want tc ensure

that this pair is at now. Looking for an instructicn to

put a value into HL we find "LXI regl6, data 16". This

loads the register identified by reg16 with the number

data16. In ether words, "LXI H,0" will put zeroes in both H

and L registers, as we want. Similarly, if we use the B

205

38

register as the counter, putting an 8 in iz can te acccm-

plished using the byt€ instruction "MVI B, 8."

Since we are now ready to loop it is useful to identify

the position of the beginning of the loop with some -empo-

rary name (label) so we can rapidly find it again. For this

exercise the loop will simply be called "LOOP" and that name

should be written beside the instruction to shift the

partial product left, since that is the first instruction in

the Icop. At this point we should reorganize the program

into three columns, one for labels like "LOOP", one for

mnemcnics and one for the plain English description.

Do that now, and then turn to the next page for a ch ack

of your wcrk so far».

206

LABELS MNEMONICS

39

ENGLISH

Start LHLD Get multiplicand.

XCHG Move multiplicand to DE registers.

LEA Get multiplier.

LXI HrO Set Partial product to 0.

MVI B,8 Load loop counter.

LOOP Shift left the partial product.

Strip multiplier bit.

IF 0, jump around next instruction,

else, add multiplicand to P. Prod.

Restore -he mul-iplier bit.

Decrement loop counter.

If NOT zero, jump to LOOP

Store answer in memory.

Now that you have the process, see if you can find

instructions to shift the partial product to the left. (As

a hint, remember that a shift to the left of one position

doubles the value of a binary number!)

207

no

although many ways of accomplishing that task ars avai-

lable tc the programmer, we have chosen was "DAD H", which

simply adds tha HL pair to itself, thereby doubling it. The

result is that the pair is shifted to the left one position,

as desired. Tricks like this one are frequent in machine

language programming. Remember that the most obvious solu-

tion may NOT be the most affective. Search for efficient

code whenever possible, either to decrease memory require-

ments or to speed up the operation of the program.

To strip off the multiplier bit the accumulator command

"RAL" will shift the accumulator left through the carry bit.

In this way the carry bit holds the most significant bit of

the accumulator, the bit we are interested in at the moment.

Since the carry bit can be tested for its value, we can

branch at this point depending on the stare of the carry

bit. The desire is to jump around the next sxep if the

carry is C (NOT SET) . Th^ mnemonic is "JHC addr16". Fight

now we do not know the address we wish to jump to, but it is

the statement which says "Shifx the multiplicand to the

right." Fcr now give it the name "NOADD" and the mnemonic

will he "JNC NOADD" for the time being.

If the carry is 1 (SET) , the next step is executed,

namely, add the multiplicand to the partial produc-c. The

partial product is in HL, the multiplicand m DE. "DAD D"

will add DE to HL, which is what we want. Now we want to

restore the carry bit to the number in the accumulator.

(This is not needed tc perform the multiplication, but will

restore the multiplier at the end of the program, a desi-

rable result in some applications. This is call "non-

destructive".) The command ACI will add the carry bit,

the accumulator, and together, resulting in putting the

carry bit back into its place in the accumulator.

Tc decrement the counter (the B register), at NOADD, we

use "ECR E". After decrementing it, we test fcr the value

209

of B and if it is we jump back to LOOP to continue. Like

"JNC" above, the command "JNZ LOOP" will jump to LOOP if the

Z flag (shewing a resulted from the DCR B) is NOT set.

When the CCE B results in a the Z flag is SET and the jump

does NOT take place.

After looping 3 times, the B register is 0, the Z flag

SET and the JNZ falls through the LOOP command (does not

perform it) to the Store in memory. Remember that we

planned to use "SHLC" to move the answer to memory. That

concludes the programming of this multiplication. You

should have a program that looks like the one on the next

page to work with at this rime.

209

U2

LABEL

Start

LOOP

NOADD

MNEMONIC

LHLD

XCHG

LCA

LXI H,0

MVI B,8

DAD H

RAL

JNC NOADD

DAD D

ACI

DCRB
JNZ LOOP

SHLD

ENGLISH

Get multiplicand-

Move it to DE.

Get multiplier.

Initialize partial product.

Initialize counter

Shift left partial prod.

Shift the most sig. bit to carry

Slcip if in carry.

Add DE to HL. (m'cand to P. prod.)

Restores carry bit.

Decrement counter

LOOP if 0.

Store answer in memory.

End of program.

This is the heart of the program. Our task is not

completed, however. All of those jumps and memory reads and

writes need addresses. In addition, the 8080 CPU does not

work directly on the mnemonics, but needs binary (or hexide-

cimal) cede. That is the final stage of programming in

machine language—coding the mnemonics in-co hexidecimal.

As you can see, each mnemonic in the Prompt 80 manual has

associated with it a hexidecimal repr esen-cation in one byte.

In addition, some codes require additional by-es as informa-

tion for the instruction. For example, our firsi: instruc-

tion "LHLD" is shown as 2A XXXX, where the X's represent two

additional bytes as an address. Since we have net decided

where to put the input information, simply transfer the

"2A " to the paper with the program. We will fill in the

addresses later. New finish looking up the codes for the

rest of the mnemonics, being careful to get the additional

bytes correctly. When done, turn to the next page and

compare ycur answer tc that of the author.

210

MACHINE CCDE LABEL MNEMONIC

2A Srart LHLD

£B XCHG

3A
- LDA

210000 LD H,0

0608 MVI B,8

29 LOOP DAD H

17 RAL

D2 JNC NOAD

19 DAD D

CEOO AC I

05 NOADD DCR B

C2 JNZ LOOP

22 SHLE1

43

ENGLISH

Get Multiplicand.

Put it in DE.

Get multiplier.

Initialize HL.

Initialize B.

Shift HL left.

Strip MSB of A.

Jump if carry=0.

ADD DE to HL.

Restores carry bit.

Decrement counter.

Jump if NOT zero.

Store in memory

Now that we have a program wi-h fixed length, we can

choose a start addre.£s and fill in the blanks we had to

leave before. For this problem, set the start address to

3D39 H and assume that upon commencement of the program the

multiplicand will be at address 3E01 H and the multiplier at

3E00 H. We will stcre the answer back into 3E01 H when

finished.

To insert these addresses remember the discussion about

the process used to lead registers and that the 8080 family

of CPD*s locks at information in reversed order. Therefore

the addresses should follow the instructions in reversed

tyte order. That is, instead of 3E0 1, we write 013E. The

CPO will reverse the address as a process of fetching the

inforiraticn. Hence, the first line now becomes "2A013E",

indicating that the function "2A" is to be performed on

memory Iccarion 3E01 H. Similarly, "3A " becomes

"3A003E", and the SHID instruction is "220 13E".

That leaves only the jump addresses to examine. For this

program the start address will be 3D39 H. That means that

the first byte in the program will be loaded in 3D39 H, and

211

each following tyte goes into successive locations. To

indicate ths start address, the mnemonic "ORG" (for ORiGin)

is used, with the address of the start of the program. To

compute the JUMP addresses simply count down byte-by-byte to

the JUMP destination and insert the data.

Finally, we must end the program somehow or it will

continue to execute beyond the code we wrote. If this

happens we cannot anticipata what will happen! To prevent

this trip to never-never land, we insert a command that will

perfcrm seme step we KNOW. EST 6 is the mnemonic for a

breakpoint, and can be used here to return control to the

ncnitcr program so we can examine our results. The code for

RST 6 is "F7" and is the final byte of the program.

Number the locations, fill in the jumps and then compare

your work tc the final product on the next page.

212

45

3.4 FINAL MACHINE LANGOAGE PRQGRAH

ADD. MACHINE CODE LABEL MNEMONIC ENGLISH

ORG 3D39H

3D39 2A013E Start LHLD Get Multiplicand.

3D3C EE XCHG Put it in DE.

3D3D 3A003E LDA Get multiplier.

3D40 210000 LD H,0 Inixialize HL.

3DU3 C6C8 MVI B^8 Initialize E.

3D45 29 LOOP DAD H Shif^ HL left.

3D46 17 HAL Strip MSB of A.

3D47 D24C3D JNC NOADD Jump if carry=0.

3D4A 19 CAD D ADD DE to HL.

3D4B CECO ACI Restores carry bit.

3D4D C5 NOADD DCR B Decrement counter.

3D4E C2453E JNZ LOOP Jump if NOT zero.

3D51 22013E SHLD Store in memory

3D54 F7 RST 6 Breakpoint to monitor.

Final program, with addresses.

New that we have the program, we are ready to enter it,

insert data in the appropriate locations, and run it. Using

the techniques already discussed, enter the program as it is

written atcve. When you have put the final byte into 3054 H

remenher to press the (.) key to end the input phase. When

you have done that turn the page.

213

46

Now that the program is entered into the machine we have

to give it some data with which to woric. In this prcqram

the data is read from two addresses in memory, and the

assumption was made that the data would be placed there by

some other action external to the program itself. For the

first prcblem we will multiply 7 by 4, and will expect to

get 26 as a result. Osing the Display/Modify Memory key put

the a into 3E00 H, and the 7 into 3E0 1 and 3E02. Since the

8080 CPU addresses memory in inverse order, r the Least:

Significanx Byte of the number goes into 3E01, and the Most

Significant Byte goes into 3E02. The four digit representa-

tion of 7 decimal in Hexidecimal is 0007. The first two

zeroes are the Most Significant Byte (MSB) and the 07 is the

Least Significant Byte (LSB) . In the case of the multi-

plier, 4, the byte to insert into 3E00 is 04 H. Enter these

numbers now, and wher done turn to the next page.

214

47

To ruE the program press the Go key, enter the address of

the program, 3D39, and press (.) .

The Command/Function readout should have changed zc read:

P C. 3 d 5 5. 7 F

If it does not, re-check that you have entered the

program properly. If the readout does not light, press the

SYS RST key to break the program running and return to the

turn en condition. The program should then be checked for

entry errors usir.g the Display/Modify memory function.

The answer is in the location we stored it, 3E01 H. Look

there now, using Display/Modify Memory, and see if you got

the correct result, Eemember, the answer is in hexidecimal

notation. You should see that 3E01 has 1C and 3E02 has 00-

Putting these values together in proper order yields 001C H,

and that evaluates tc 28 decimal. If you cannot find these

values, ch«ck that the program is properly entered and try

again.

When Beady, turn the page.

215

48

Onc€ ycu hav3 the program properly running you can see

that it does not ta)c€ long to compute the answer. In fact,

it is £0 fast that ycu cannot really see what is happening-

To slew the process down we can use the Single Step function

to move one step at a time through the program. We shall do

that in a moment, but before that we should consider what

the 8080 CPU actually does in each single step.

In the irternal picgram of -he 8080 CPU the instructions

implement micro-instructions that actually carry cut the

data manipulations necessary to accomplish the events called

for. This taices place through the fetch-execute cycle. In

each step of the program we have written the 8080 CPU actu-

ally performs many operations, each directed by the micro-

instructicn set in the CPU. Loclc at the first instruction

in our program "LHLD 3E0 1", transformed to hexidecimal code

as "2A0132". At the start of xhe instruction execution, the

program counter points to the location in memory where the

first byte is stored. We gave that address as a part of the

Go key instruction. The CPU first fetches from memory that

byte, loads it into an internal instruction register and

translates it into internal code. Since the instruction

which results needs the address of the information tc be put

in the HI register pair, the CPU returns to the memory at

one higher location than the 2A was found and fetches from

that location the LSE of the address it needs. This process

is repeated to get the MSB of the address from the next

memory location. New that the CPU has the address of the

byte to fetch, it sends that address to the I/O unit,

directing that the byte be fetched and placed into the

internal data register. Once the I/O unit has completed

this fetch, the CPU then transfers the data to the HL

register. The last step is tc update the program counter to

point to the next instruction. Since the instruction "2A"

actually takes 3 bytes, one for the 2A and two for address.

216

49

the program counter is inc rem anted by 3, to point to the

next instruction byte at 3D3C H. The fetch-execute cycle is

complete for that first instruction.

This cycle repeats for every step in the program. When

the instruction at location 3D5U is executed (EST 6) the

control is returned to the monitor program and the cycling

stops. In the Prompt 80 the Command/Function Group readout

shows the value in the Program counter and the value that

the program counter is pointing to. This is a function of

the mcnitcr program that is designed to aid the programmer.

Nc« we can single-step through the program to watch the

data flow through the registers and memory.

When ready, turn the page.

217

50

Reinitialize the Prompt 80 by pressing tha SYS RST kay

and then enter the data in 3E00 to 3E02 H as above. Use AO

H for address 3E00, 70 for 3E01 and 00 for 3E02. In this

single step demonstration we shall multiply the numbers 70 H

(112) by AO H (160) to get 4600 H (17920).

To single-step press the Single Step key, and enter the

address of the start of the program, 3D39. Do NOT press the

(.) key at the end, but press (,) instead.

The Ccmmand/Functicn Group read-out should now read:

E C. 3 d 3 C. E b

indicating the the Program counter is pointing to 3D3C, and

that that address certains the byte EB H. That is the

second step in the program we wrote. Look at the value in

the HL register as shown in the Register Display Group. It

should read 0070, the bytes that ware in the memory location

3E01 and 3E02. To check -ha* the Program counter has actu-

ally moved, press the Scroll Register Display key once, and

see that the Program Counter registers display 3d3C, as

expected. Press the Scroll key once and see that the DE

registers now have the value ddEE in them. Then press the

Scoll key once again to see rhe HL pair.

Now press the Next (,) key once. Look at the HL register

pair display now. It shows the value ddEE that was in the

DE register. Press the Scroll key twice and note that the

DE register now has the value 0070, transfered from the HL

pair. The instruction was XCHG, and the instruction has

been carriad out. Press the Scroll key once to return to

the HI register pair.

Prass the Next key once. The ins-crucrion was LDA, lead

the Accululator with the contents of memory. See that the A

register now has the value AO in it. The program counter

has again been ircremented, as usual, and points to the next

instruction at 3d40 H. Press Next again.

218

51

The instruction at 3dU0 was to load the HL pair with

zeroes. The display shows tha-c this has been dene. Press

the Next key then Scrcll to view the B register to see that

it has the loop counter 08 in it.

Now all the variables have been initialized. Press the

Scroll key again to view the HL pair. The Program Counter

(PC) new points to the memory location 3d45, the first byte

in the multiplication loop. The byte at that address is 29,

an instruction to add HL to HL and put the answer in HL.

This doubles the value in HL. Since that is presently 0,

doubling it will not change the value. Press the Next key

once and see that all -chat changes is the PC. The next

instruction, 17, shifts the Accumulator right, putting the

Most Significant BIT into the carry register. The value AO

is representative of the bit pattern 10 10 0. The

Most Significant BIT is a 1 , so that value should enter the

carry bit of Flags. That bit will change the Flags Register

to read an cdd number, since the carry bit is the bit in

the Flags register, and the shift of the remaining bits in

the A register will produce a pattern 1 0, cr UO

H. Press the Next key once and see that these values show

up. Any cdd number in the Flags register shows that the

carry bit is 1. /

The PC now points to 3dU7, an instruction to jump to

another address unless the carry bit is equal to 1. Since

the carry bit IS equal to one, the jump will not take place.

Instead, the PC will change to point to the next address in

the program at 3d4A. Press the Next key and observe the

change.

The instruction at 3dUA is DAD D, the command to add the

value in the DE register to the value in the HL register,

and put the results in the HL register. Using the scroll

key note that right now the HL register = 0000 and the DE

register = 0070. Press the Next key and see that the sum of

these two shows up in the HL register.

219

52

The FC now points to 3cl4b, an instruction to add the

carry bit to the A register and the value 0. Press Next.

Observe that unlike we planned, -he 1 that we carried cut

did NCT get added to the A register. We shall come to this

"BOG" in the program later. It is not fatal, and does not

affect the result in this simple program. The "BUG" is in

the program to demonstrate the difficulty of writing flaw-

less code in machine language.

The PC new points to the byte at 3d4d, the decrement B

instruction- To watch it work. Scroll the register display

to the E register, and then press Next. The 08 should

change tc 07. The PC points to 3d4E, a Jump unless the zero

flag is set. The Zero flag is NOT set at this -ime, so the

jump cccurs. Press the Next key to execute this step.

The PC now points to 3d45, the first step in the Icop

again. Press Next. The HL pair is doubled to OOEO. Press

Next. The A register shifts left, shows 80, and the previ-

ously Most Significant BIT is in the carry bit. Since the

Carry bit is 0, the Flags register is an even number.

Press Next. Because the carry bit was NOT SET, the jump

to NOADD occurred, and the adding of DE to HL did NOT take

place. Press Next twice. The B register has been decre-

mented to 06, and the PC new points again to the beginning

cf the Iccp.

You may now continue pressing Next and watching the flow

of data. When the E register finally reaches 00, the jump

to LOOP at 3d4E does NOT happen, and the program continues

at 3d51, an instruction to transfer the information from HL

to the nemcry Iccaticn 3S01, After that instruction is

executed, the PC points to 3d54, a EST instruction.

Pressing Next at that point transfers control out of the

program we wrote, and sets in motion a sequence of instruc-

tions that begins at 0030 H. You may follow if you wish

through the sequence, but it is not germane to this course.

To stop, press the Execute/End key.

220

53

This concludes this section of the text. The BUG we

identified will be addressed in the next section of the

text. If you have not done so, you should execute the

program you have entered with the data we wers working with

to its conclusion, and see that you get the correct answer-

This program not only contains the BUG discussed above,

but also has limitaticns on the size of numbers. To demons-

trate the limitation, what is the largest number you can

have as a result? (Hint: when all the ones are set in the HL

register, the next 1 added will recycle them to all O's.)

In addition, what should you get when you multiply 255

decimal times 512 decimal (FF H times 0200 H) ? Try it and

see what you get. Finally, can the program handle negative

numbers? If so, how, and would it mean a change in limita-

tions? If net, can it be made to do so?

The answers to these, and other questions, will be

discussed in the next secticn.

This is a convenient place to stop if you wish to.

221

section U

ACVANCEO OFEBATIONS WITH THE PROMPT 80

4.

1

ADVANCED CONCEPTS AND FUNCTIONS

In th€ previous section we left unanswered some questions

about tfce program that was constructed to multiply two

integers. Those questions concerned the limitations and

usefulness of that program. In addition, there was a BUG in

the program in that it did not restore the A register to the

original value that it had had in it. These questions and

the bug will be discussed in this section. In addition, the

latter portions will discuss the advanced functions of the

Prompt 80 that were deferred from the first section. If you

have not entered the program to which we will refer, tarn to

page 42 and enter the program found -chere into the Prompt

80. This Section will refer to page 42 and the program flow

in the Prcmpx 80 computer.

222

55

1-1.1 Debugging

The purpose of the ACI intruction at 3D4B was to restore

the carry bit to the A register so that the A register would

contain the same data at the end that it did when the

program started through the looping process. In running the

program, however, the A register was NOT restored, and ended

up with 00 H. We will now attempt to correct that bug.

The instruction ACI was originally presented as adding

the carry bit, the iirniediate data of the and the value in

the A register together. That is the seedling definition

given on page 3-20 cf the Prompt 80 User's manual. However,

the actual function cf ACI is to add the value to the A

register, put the result in the A register and IF THERE IS A

CARRY, put it in the carry bit of the Flags register. That

is NCT what we wanted. Locking through the instruction set

we see no add instruction that adds the carry bit by itself

to the A register. So what can we do to get what we want?

Since the ACI only occurs when we go through the loop,

and we only go through the loop when the carry bit was set,

we can safely assume that if we are in the loop the carry

was set tc 1. Since we can assume that, we can then add

that 1 to the A register without having to add the carry

bit. Simply change the ACI to ACI 1. Now every time we

go through the loop the A register gets a 1 added to it, as

we wacted. To make the change, use the Display/Modify

memory function to change memory location 3EUC to 01 instead

of 00. New load any data you wish into the locations at

3E00 to 3E02, and run the program. You will see that the A

register ends up with the value originally fetched from

3E00, and that was our desire. We have de-bugged the

program.

This process of de-bugging is necessary for almost evsry

program written. This bug was simple tc fix, but mere often

the program has to have some bytes added or daleted or both.

Those changes may then change the addresses of labels

223

56

further down in the program, producing even more modifica-

tions that have to be made to the program. To avoid making

too many changes to a program that has been translated- into

machine language, the programmer should design his prcgram

very carefully, and desk-check the flow of data before he

encodes the program- In this way he can reduce the exten-

sive program modification to a minimum.

224

57

4-1.2 Limitations

The program now runs, but still has limitations. Th-a final

page of Section III listed these problems to be considered:

1. What is the largest value that can be the result of

the multiplication?

2. What happens when you exceed that number?

3. What about negative numbers?

In the first question the issue of RANGE is raised. The

largest numter expressable in 8 bits is 255 decimal (FFH) .

That is the largest number that can be held in the A

register as the multiplier. The largest 16 bit number is

65535 decimal (FFFFH) . That is the largest value that can

he held in the register pairs, and is the largest multipli-

cand that can be accepted. However, the largest answer is

NOT the product of these two, but the same as the largest

multiplicand, 65535. That is because the same registers

hold the answer and have the same limitations as the multi-

plicand.

But what does the program produce when the limits are

exceeded? Use the program to multiply FFH times FFFFH (255

times 65535 decimal). Ths answer should be 16711425 decimal

(FEFF01H) , but that is beyond the ability of the registers

and memory locations set aside by the program to hold.

Since there is no prevision in the program for this sizing

error in the output, the Prompt 80 merely presses en in the

manipulation of the data. It then shows the answer as

FF01H, or 65281 decimal, and gives no indication that the

capability of the program has been exceeded.

This problem of the range of accuracy of the program is

one that irust be faced by every programmer. The answer to

the problem is usually taken in two ways— a limitation on

the program is documented for the user to learn it and the

program itself is set up to detect such over- and under-

225

58

flows and to issue warning messages -that this has occurred.

In integer work this is much easier to do than in floating

point notations, and thus many simpler machines restrict

operations to integers.

226

59

The final question raised the issue of negative numbers.

The program as written can only handle positive numbers. If

we use the two's ccmplement notation, then the pcs'itive

limits are reduced to 127 decimal in the multiplier and

32767 in the multiplicand. The negative numbers will be

represented by the binary numbers with the most significant

bit set to 1, i.e., in the multiplier by the numbers thar in

standard noration would have been 128- and in the multipli-

cand by those that would have been 32768 and higher. Eut

does that make it possible to multiply negatives using this

program? Try multiplying -1 times 255 (81H times OOFFH)

The answer should be -255 decimal or (FF01H). What dees the

program give?

It is obvious that the program is inadsquata for the

multiplication of negative numbers. Since the fix for that

problem is beyond our intention in this text it will net be

discussed further. It is sufficient to say that the

program, and indeed any program, has limitations built in to

it and that these limitations need to be understood by the

programmer and the user to prevent misuse.

227

60

^•2 ADVANCED OPERATIONS OF TBE PRO MPT 80

The final discussion en th9 Prompr 80 is ths description of

the advanced functions of the machine. In the discussion- on

the function of the numeric kays it was stated that the 16

numeric keys were used to enter the hsxidecimal digits and

to chose the functions . Those functions selectable from

. the numeric keys are:

0. Read hexidecimal tape.

1. Write hexidecimal tape,

2- Write a PROK from memory.

3. Compare a PFCM to memory.

tt. Transfer PRCM to memory.

5. Move memory (block).

6. Hsxidecimal add/subtract function.

7. Byte search function.

8. Word search function.

To select one of these function, you have merely to prass

the appropriate numeric key with the hyphen in the command

function group display. The prompt of the letter F followed

by the number you have selected will appear in the ccmmand

function group display. For more details on the ether

parameters that must he provided, see pages 4-15 to 4-21 in

the Prompt 80 User's manual.

Of the functions available, the ones you are most likely

to be interested in are the Read, Write and Compare PROM

functions. These functions are used to transfer programs

from memory to a PRCM, from the PROM to memory, and to

compare, byte for byte, the program in the PROM and ths

program in the memory. The next few paragraphs will discuss

these functions.

To prepare for this section turn the Prompt 80 OFF and

turn the pace.

228

61

4.2.1 iJOM Operations

To insert the PROM ycu have been given into the PROM socket,

move the hardle on the top left-hand side of the soclcst to

the vertical position. This unlocks the socket. Examine

the PROM carefully, without removing it from the protective

foam. One €nd of the PROM has a distinguishing notch cr dot

on it. This designates the end of the PROM on which the #1

pin occurs. Ths end of the PROM with the dot or notch goes

to th€ back cf the sccket. There are numbers painted around

the socket to show where the 1, 12, 13 and 24 pins go. As

long as the notch cr dot is at the 1, 24 eiid the PROM is

inserted correctly. Now that you know which way the PROM is

to gc, ycu are almost ready to install ir.

The PECM is sensitive to static, and measures to protect

it must be taken. Avoid handling the PROM by the pins, and

if the day is such that static electricity is a profclsm,

ground yourself by touching the chassis of the Prompt 80

while relieving the PECM from the protective foam.

Remove the PROM from the foam, insert it into the sccket

in the prefer direction and push the locking handle toward

the back until the PROM is locked into the socket. IT

SHOULE NCT EE NECESSARY TO USE FORCE ON THE CHIP OR SOCKET

HANDLE.

Hhen ready, turn the page.

229

62

Now that the PROM is safely in t.ha socket you can turn

the Prompt 80 back on. The display should light up exactly

as before. The presence of the PROM makes no differenrce in

the basic operation of the machine.

To transfer a program from the chip to the memory the #4

function is used. We shall now transfer the same multiply

program that was written earlier from the chip to memory.

First use the Display/Modify memory function to observe that

the memory locations 3D39H to 3D55H presently do not have

the program in them. Since the machine was turned off to

insert the PEOM the memory was erased and now has only

"garbage" in it.

To invoke the function press the number 4 key on the

keypad in the command/function group. The display should

show:

F U

Now we have to enter the address to which the PROM is to

be loaded in memory. In the Prompt 80 this is address

3C00H, the lowest address available to the user. Enter

3C00, press (,) . The command/function group display should

show the number 3C00 until the (,) is pressed then it should

show:

F 4.

Now enter the LAST memory location zo be entered from the

PROM, the last address available in memory, 3D55H. Press

the (,) key. Ths display again shows:

F 4.

Now we enter the PROM address for the program tc be

loaded. In the PRCM you have been given the address is

OOOOH. Enter that data but do not press the (,) key this

time. The display should show:

F 4 . 3

230

63

Press ths (.) key. The program will load into memory

from the PRCM. The process takes a very short time and the

display will flicker when finished. The Irput/output "group

lights will flicker as the data is transfered from the PEOM

to the memory. To check that the program has loaded prop-

erly examine the memory locations from 3D39 to 3D55 and

compare them to the program as we wrote it. It should be

exactly the same.

To Write a program to a PROM, called in the vernacular

"BURNING a PROM", the function F2 is used. There are a

number of restricticns on the use of this function. For

future reference the procedure can be found on pages 4-16

and 4-17, as well as a discussion on page 5-6 of the User's

manual.

231

64

This concludes the manual on tha Prompt 80 micrcccmput^r

.

There ars numerous reference manuals in the Laboratory for

the sericus student of machine language programming to use.

In th€ next volume of the series in the laboratory you will

be introduced to software which dcss the functions of assem-

bling the ffcemcnics and allocating the addresses for you.

These tools, called "assemblers," are an invaluable aid to

the dedicated programmer. It is these tools which allow

rapid development cf higher languages, and increase

programmer cutput.

232

APPENDIX P

SDK-85 TOTOBIAL

:»«* *«5}t*«*:|i#******« *=«:************
** ***

** I!TSTBaCTIONAL LABORATORY ***** ***
*** ***
*** ***
** ***
*** ***
*** SDK-85 ***
*** **** **«
*** ***
«:4c4(***
*** ***
4:^:^:»4 4'»*:4c4c4c*«4c«4<X<:4(4c4c:(e4c ******************

******************** ****************

233

TABLE CF COMTEHTS

IHTHODOCTION ii

Secticn £Me
1. SDK-eS SYSTEH DESIGH KIT 1

Th€ SDK-85 SYSTEM 1

CAUTION 2
ECOIEMENT NEEDED 3
FUNCTIONAL COMPONENTS U

POWER SUPPLY SECTION 5
TIY INTERFACE 6
CLOCK CIHCUITS 7
ADDRESS DECODER 8
CPU 9
READ ONLY MEMORY 10
RAM I/O 11
KEYBOARD AND DISPLAY 12

NUMERALS AND THE EXAM REG KEY 13
RESET KEY lU
SINGLE STEP KEY 15
SUBST MEM KEY 16
NEXT KEY 17
VECT INTR 18
GO KEY 19
EXEC KEY 20

2. CLOSING REMARKS 21

23U

IHTBODUCTION

Welcome to the Instructional Laboratory. In this laboratory

you may work with digital devices on a level from logic

gates and the elementary electronics of computers to the

fully integrated level of advanced microcomputer systams.

Through this series of texts you can progress from little

or no knowledge of digital sguipment to a working famil-

iarity with advanced Automated Data Processing. Howevar,

this course of instruction was not designed to make an

expert of the student. Extensive outside study is needed

for that. For that reason, the text will present only

simple examples and problems for demonstration. For the

more serious student other books and reference manuals are

available in the Computer Center Library and the Knox

Library.

WHEN EEAEY TO CONTINUE, TORN THE PAGE.

235

Section 1

SDK-85 SYSTEM DESIGH KIT

1.1 THE SpK-85 SYS TEH

Th€ SEK-85 microprccessor development system is designed

around the INTEL 8085A family of integrated circuits. This

set of components represents a major technological improve-

ment ever it's predecessor, the 9080 family. In the interest

of retaining its investment, INTEL dasigned the 8085 series

to be upward compatible with all existing 8080 devices and

software. What this means is that any eguipment and programs

thai: were developed for the 8080 will function (and do so

more efficiently) on the 80 85A- The 8085A family was devel-

oped with newer technology and thus only 3 integrated

circuits will replace 26 components which were reguired in

an 8080 circuit that performed the same job.

The 8085A is a much faster CPa than the 8080, and it

provides the user with two additional instructions.

WHEN BEADY TO CONTINDJ, TOBN THE PAGE

236

1.2 CADTICN

Before ycu apply any electrical power to the SDK-85, . yoa

should read this page in its entirety.

In order to use the SDK-85 you must provide a source of +5

volts DC elsctrical power. In the Instructional Laboratory

this may be accomplished by the use of the DIGI DESIGNER

console which has a built in power supply.

First, ensure that power to the DIGI DESIGNER is turned

off, ther connect the red wire from the SDK-85 power supply

secticn to the +5 vclt terminal post on the DIGI DESIGNER.

Connect the green wire from the SDK-85 to the GND (ground)

terminal of the DIGI DESIGNER. Verify your connections

before applying power to the DIGI DESIGNER. Ycu can now use

the SEK-eS for experimentation and design.

WHEN READY TO CONTINOE, TURN THE PAGE.

237

1.3 EQDIPMENT NEEDED

Ycu may need the following itsms in order to ccioFlste

this tutorial:

INTEL SDK-85 User's Manual

Microccmputsr Experimentation With The
INTEL SDK-85 by Leventhal and Walsh.

INTEL MCS-85 User's Manual

INTEL SDK-85 Design Kit

DIGI-DESIGNER Console

If ycu dc not havs these items , plaass acquire them from

your instructor.

IHEN HEADY TO CONTINUE, TURN THE PAGE.

233

In order to fi^iliarizs jo'z ith

cria~€ that jcu first gi«2 scae kzz

parts cf *h€ iesign kit itself. In

place the S2K-85 where jou can easi

ars readirq.

th9 SDK-35,

ererore.

— — . ~

— - #

7oa

notice that the right site of the boari is seai-tcpala

with electronic devices and the left side is -npopulat

The left side is available for design, experisent ation,

expansion of the hasic beard. Advanced students aaj fin

use fcr the left side of the heard, and for gni dance

referred to the publications listed previonslj.

JHSH HEiEY TO COSTINCE, T2R^ 2^1 Pijg-

239

1.4,1 FCIEP SOPPLT SECTIOH

The ECWEE SDPPLY section is located at the top 'right

corner of the circuit board. It is the place that electrical

power from an external device is provided to the SDK-85. As

discussed earlier, +5 volts dc and a return path (ground)

are required.

If you have net done so, you may now connect the SDK-85

to the DIGI DESIGNEE. Use the instructions in the CAOTION

page at the beginning of this tutorial.

WHEN EEADJ TO CONTINUE, TORN THE PAGE.

240

1.4.2 TTI INT ERFACE

Slightly below and to the right of the power supply

section is a group of components labeled ««tty INTERFACE".

These components form the interface circuits needed to

connect tte SDK-85 tc a Teletype -erminal. This feature is

not implemented in this laboratory, so no more will be said

about it.

WHEN BEADY TO CONTINDE, TORN THE PAGE.

24 1

1.4.3 CLOCK CIRCOIIS

Near the center of the board, and above the large 'inte-

grated circuit labeled "CPU", yea will see some discrete

circuit ccmpcnents and a flat metal box that is the crystal.

These items form the external timing circuitry for the oper-'

aticn cf the 8085A CPU.

This area is one cf the major improvements of the 8085A

over the 8080 family cf components. The 8085A contains xhe

majority cf clock circuitry en the integrated circuit

itself, while the 8080 reguired many more external compo-

nents to generate the necessary clock and timing signals.

WHEN BEADY TO CONTINUE, TURN THE PAGE-

242

8

1.4. a ADD BESS EECODER

To the right of the timing crystal is the small .inte-

grated circuit known as the ADDRESS DECODER. The funcricn of

the decoder is to determine whar address in random access

memory (RAM) the CPU is trying to read from or write -c. A

chip enable signal is then generated to select the appro-

priate memory chip. In addition, the address decodar will

enable the read only memory (ROM) and the keyboard decoder

circuitry when they are selected by the CPU.

WHEN EEADl ^0 CONTINOE, TURN THE PAGE.

243

1.4.5 CFO

The 8085A Cantral Frocsssing Unit (CPU) is located .below

the timing circuitry and the address decoder. It is the

large, UO pin integrated circuit labeled CPU on the circuit

toard.

As in all computers, the CPU is the "BRAIN" xhat performs

the work for the system. All other components are in support

of the CfD chip. The 8085A CPU will control the input and

output of instructions and data. It also de-codes and

executes instructions and acts as uhe system controller.

For a complete set of 8085A instructions, see the MCS-85

User's manual.

MEN HEADI TO CONTINUE, TURH THE PAGE.

244

10

1.4.6 BEAD ONLY MEMORY

Directly belcw the 8085A CPU chip you will find the

system Read Only Memory (ROM) chip. This component is

labeled "ERCM (ROM) I/O" and contains the system monitor.

The monitor will be discussed later in this tutorial.

Also provided on this integrated circuit are two ports

which car. fce individually programmed as either input or

output ports.

The RCM resides between memory address locations 0000 and

07FF (hexadecimal) . It is a permanent or non volatile niemory

chip and retains its information when electrical power is

removed.

WHEN REAEY TO CONTINDE, TORN THE PAGE.

245

11

1.4.7 BAM I^q

Below th€ ROM you will see a UO pin integrated circuit

that is labeled "RAM I/O". This is 2K birs (K=102U) of

random access memory, which equates to 256 words cf 3 bits

each. This memory is NOT permanent and will lose any infor-

mation stored in it if power is removed. Tha system R aM is

used to store instructions for the CPU to execute, data to

be operated on, and the results after computations are

performed.

The installed RAM resides at memory loca-iiions 2000 to

27FF (hexadecimal) . You will see a place above and below

this mencry chip which is provided for expansion by the

addition cf two more RAM chips.

HHEH BEADY TO CONTINOE, TORH THE PAGE.

246

12

1.4.8 K|I HOARD AND DISPLAY

The remaining section of the board contains the Keyboard

and light eirittirg diode (LED) display device. The two inte-

grated circuits perform the keyboard decoding and provide

the correct signals to the display. The group of discrete

components directly above the LED unit provides the driver

voltages necessary for the LED segments.

The display consists of a six-digit LED, and can ba used

to view input or output data, CPU registers, instructions,

and the contents of memory locations. The display can func-

tion under user control or by CPU commands. The different

keys will be explained separately.

WHEH BEADY TO CONTINDE, TOHS TBE PAGE.

247

13

1.4.8.1 NOHERALS AND THE EXAH REG KEY

On rh€ bottom right corner of tha SDK-85 you will find 24

white keys arranged in 4 rows of 6 columns. The 4 right-most

columns are the Numeric Keys and are labeled "0" through "F"

(Hexadecimal). lou will notice that some of the numeric keys

have additional writing on them; for instance, the 8 key is

also marked "H". These keys can be used in conjunction with

the EXAM REG (EXAMINE REGISTER) key to determine the

contents of the CPU registers. See below for a listing of

all dual function keys. As an example, pressing the EXAM

REG key followed by the 4 key will display the contents of

the SPH register which is the eight most significant bits of

the CPU stack pointer (stack pointer high) .

The keys A through F will also display CPU register

contents when used with the EXAM REG key, but they are not

double marked because the registers they are associated with

correspond to their Hexadecimal no-ation. Key A can repre--

sent the number 10 (Hex) or register A of the CPU.

Functions Of the Keys

KEY FUNCTION

3
4
c

6
7
8
9
A
B
C
D
E
F

UDt)
pointer- high)
pointer-lowi

am counrer-high)
am counter-low)
address-high)
address-low)

lator)
ni c-i- o- B

c
D

gis-
gister
gisrer
gister 3
ags byte

WHEN HEADY TO CONTINUE, TURN THE PAGE.

248

1U

1.4.8.2 RESET KEI

Th€ RESET key is used to generate a conrrol signal t har

will cause the computer to enter a • start-up' program. When

the RESET key is pressed, the display will read - 80 85 and

control of the computer is passed to xhe monitor program in

the

system RCM (Read Only Memory). The Monitor program will

allow the user to place programs and data in memory, execute

programs, examine and modify the contents of RAM, and

examine the contents of the CPU registers.

The RESET key also resets all registers and flags, sets

all I/O (Input/Output) ports to Input mode, and disables

interrupts. If you should want to examine CPU registers or

flags after executing a program, DO NOT PRESS RESET after

the program is finished.

WHEN BEADY TO CONTINDE, TORN THE PAGE.

249

15

1.4.8.3 SINGLE STEP KEY

The SINGLE STEP key will allow you to execute a program

one step at a time. Pressing the SINGLE STEP key will first

caus€ the computer to enter the single step mode. Then

pressing xhe NEXT key will cause execution of the instruc-

tion that was in the LED display, and the display is updated

to shew the next instruction to be executed. This mode of

operation is good for de-bugging and to allow examinauicn of

CPU registers and flags at a specific point in the program.

WHEN BEADY TO CONTINOE, TORN THE PAGE.

250

16

1.4. 8. U SOBST HEH KEY

Th€ SUEST MEM (Substitute Memory) key is used to examine

the ccnteiits of memory. In order to examine a memory loca-

tion, the SOBST MEM key is pressed and then the Hexadecimal

address of a memory loca-ion is keyed in. As you enter an

address, notice that the address is displayed starting on

the right side of the display and moves to the left as

fc subsequent digits are entered. Once an address is entered,

the contents of that address are displayed when the NEXT key

is pressed.

It is important that you remember that all addresses have

U digits and all data has 2 digits. The display always indi-

cates information in Hexadecimal form.

WHEN BEJEY TO CONTINOE, TURN THE PAGE.

25 1

17

1.4.8-5 NEXT KEY

After an address has been entered by use of the SUBST mEM

key, the contents of that address is displayed when the NEXT

key is pressed. From that point on, successive presses of

the NEXT key causes the contents of succeeding memory loca-

tions tc be displayed.

The NEXT key also functions as the single step execution

key as mentioned earlier in this tutorial.

HHEN HEAEY TO CONTINOE, TUHN THE PAGE.

252

18

1.4.8.6 VECT INTR

The VECT INTR (vectored interrupt) key is used to cause a

keyboard initiated interrupt to a program in execution.

This key provides a jump to a RAM location which must held

the starting address of the interrupt handling routine. If

this does not make sense to you--don't worry. This feature

is normally used at a more advanced stags of programming.

WHEN BEADY TO CONTINOE, TORH THE PAGE.

253

19

U4.8.7 GO KEY

Th€ GC key is used in conjunction with the SXEC key -to

tell the computer to execute a program. First the GO key is

pressed, then the starting address of the program is

entered, and the EXEC key is pressed. At this pcint the

computer attempts to execute the program you specified. The

GO key simply tells the computer to go to an address and do

what it is tcld to dc by the contents of that address.

HHEN BEADY TO CONTINOE, TORN THE PAGE.

254

20

1.4.8,8 EXEC KEY

Th€ EXEC (execute) key tells the comparer that it should

execute a program. As already mentioned, the GO command

would have already been used to set the computer to the

starting address.

HHEH BEADY TO CONTINOJr TOHM THE PAGE.

I

255

Section 2

CLOSING BEHABKS

By this time, you should have some familiarty with the

features and functions of the SDK-85. In order to gain seme

actual experience, please perform the laboratory experiments

outlined in the Leventhal and Walsh book:. That book provides

an excellent presentation of the SDK-85 and the 8085A

assembly language programming commands.

In addition, you can learn how a computer obtains data

from an outside source, outputs data to an external device,

responds to interrupts, and execut.es programs. The book

provides examples of binary, hexadecimal, and decimal arith-

metic as well as logical comparisons such as AND, OR, and

NOT.

Additional information can be obtained from the two INTEL

books provided.

You are now invited to turn on the power and begin

assembly language programming on the SDK-85.

256

APPENDIX E

SYBEX SELF-STODI TAPE LIBRAfiY

«Ql 3BC mC %^ ^^ ^^

*** INSTEOCTICNAL LABOEATORY - ***
*** ***
*** ***
*** SYBEX ***

*** SZLF-STUDY =«'**
*** ***
*** LIBRARY ***

*** MICROPROCESSOR COURSE ***** ***

257

TABLE OF CONTEHTS

Sect icn page

1. INIBCDOCTION 2

2. LIST OF SELF-STUDY MICROPROCESSOR COURSES AVAILABLE . 3

Seminar 3 Eesigning A Microprocessor System . , 4
Seminar B3 Military Microprocessor Systems ... 6
Seminar B5 Eit-Siice 8
Seminar 37 Microprocessor Interfacing Techniques 10

258

Section 1

INTBODOCTION

The Sybex Self-Study Library is a set of independent sxudy

courses prepared by Sybex, Incorporated of Berkeley,

California. Each course on microprocessors consists of a

set cf cassette tapes accompanied by a tsxt. The time

required to complete each course varies from 2.5 hours to 12

hours. These courses require a fundamental knowledge of

EDicr cccmputer components and architecture, and may be

beneficial for concurrent study with NPS courses: EE-28 10,

CS-3010, and CS-3200.

When a course of study has been selected, check cut a

cassette player and the appropriate tape / text set from

In-22U, The student may wish to bring pencil and paper for

taking nctes. Please do not write in the text books.

25 9

section 2

IIST OF SELF-STUDY ^|ICRO|EOCESSOB COURSES

51 introduction To Microprocessors

52 SrcgramiDing Microprocessors

53 Designing A Microprocessor System

SB1 Microprocessors

SE2 Microcomputer prog ramming

SE3 Military Microprocessor Systems

SE5 Eit-Slioe

SE6 industrial Microprocessor Systems

Microprocessor Interfacing Techniques

,n introduction To Personal And Business Computing

..is lab currently has available courses S3 SB3 SB5

,,, SE7. . brief overview of each course available .n .h.-

lab fcllcws.

SB7

SIO

260

2.1 SEHINAR DESIGNING A HICHOPHOCESSOR SYSTEM

Presented by Rodnay Zaks

Time required: 2.5 hours

This seminar addresses how to interconnect a complete

microprocessor system, wire by wire, including: Read Only

Memory (ROM), Random Access Memory (RAM), Programmable

Input-Output (PIO) , Universal Asychronous Receiver

Transmitter (UART) , Microprocessing Unit (MPU) , and decks.

Additionally, tradeoffs in addrsssing techniques and techni-

ques applicable tc all standard microprocessors are

discussed.

TOPIC

1. Comparative

Microprocessor

Evaluation

2. System Component

Characteristics

and Interfacing

MATE RliL COVERED

•Comparisons of Microprocessor

classes including:

•U Bit Microprocessors

•8 Bit Microprocessors

16 Bit Microprocessors

•Bit Slices

'8008 vs. 8080 CPU

'AMD Microprocessors: 9080

'Z80 CPU vs. 8080

Motorola 6800

'Intel 8085

'Intel 8 04 8 / 87 48

•Static and Dynamic RAMS

•ROM's including Field-

Programmable (PROM) , Fusibls

Links, Rsprogrammable Memory

(EPROM) , and Electrically

Erasable ROM (EAROM)

.

26 1

I

I

3. System Design

U. Systems Developmeni

UART

•PIO

Direct Memory Access (CMAC)

•Programmable Interrupt

Ccntroller (PIC)

•Programmable Interval Timer

(PIT)

•Asynchronous and Synchronous

Interfacing

•Typical system organization

•Typical microprocessor pinouts

and signals

•Connecting a system: i.e. CPU,

Multiplexing, Data Bus,

Address Bus, Memory, I/O

•Standard microcomputer

architecture: 6800, MCS-85

•One and two chip systems

•Expanding the memory

Three I/O techniques: Polling,

Interrupt, and DMA

-Cosx / performance tradeoffs

•How t.0 speed up development

-Hardware cost analysis

•Basic software development

•Sofxware costs

Typical time-sharing prices

-Qse of emulators in developing

a system

-Debugging aids available

262

2.2 SEHINAB B3 MIIITART aiCHOPROCESSOR SYSTEMS

Prssented by Rodnay Zaks

Time required: 6 hours

This seminar addresses topics on military or severe envi-

ronment microprocessor systems utilized in military

avionics, aerospace, naval, and industrial applications. The

goal cf the course is to cover all the main concepts, tech-

niques, and some simple systems used in such militarized

systems. Problems normally encounterad in such designs are

addressed and typical solution principles and practical

implementations are proposed.

TOPIC MATERIAL COVERED

1. Technical Introduction -Definitions of terms

LSI Technologies

3. Militarized

Micioprocesscr

Systems

Main goal is to underline the

specific properties of seme

LSI technologies as they

relate to possible choices of

equipment.

•Which Icinds of technologies

may be radiation hardened

•Which kinds of technologies

will be suitable for the

portable systems such as

aerospace applications.

•Several typical militarized

militarized boards are

presented.

•Suitable features and design

weaknesses of rhese boards are

covered.

263

I

I

U. Militarized

Microprocessors

5- Standardization

6. Building a system

7. Applications

8. Reliability

Testing

10. Summary and

Perspective

•Which microprocessor chips

(components) qualify for

military applications.

•Gaidalinas available for

selecting such equipment and

how to use the guidelines in

choosing the components

utilized in the system.

•Procedures normally used to

make tha system ruggedized and

resistant to the environment

as per military specifications

•Various architectures used for

military applications are

discussed.

•How to measure and predict

reliability.

•Methods used in military

conrraczs for measuring and

predicting reliability.

•The main concepts and testing

techniques to ensure that

systems meet specifications

are covered.

•The evolution of such products

•What expectations one may have

of forthcoming designs.

•Differences between military

systems and the current

commercial/industrial systems.

264

4

I

8

2.3 SEMINAB B5 BIT-SLICE

Presented by Rodnay Zaks

Time required: 6 hcurs

The goal of this course is to show you how to use

Bit-Slice components to implement efficient computer archi-

tectures with both traditional and non-convenxional

Eit-Slice applications.

The purpose of this course is:

1. To explain what Bit-Slices do and why -hey exist.

2. To demonstrate the procedure for designing with

Bit-Slice.

3. To survey Bit-Slice devices on the market.

4. Tc survey the applications of Bit-Slice devices.

TOPIC

1. Introduction

2. Brief history

of CPU Design

3. Bit-Slice Principles

MATE RI AL COVERED

-Definitions of terms.

-The evolution of Bit-Slices

-The technological principles

behind the architecture

implemented in Bit-Slices.

4. Bit-Slice In Detail / -How ro build a complete high

Building with Bit-Slice performance central processing

unit using an AMD - 2901

Bit-Slice chip.

5. Other Bit-Slice

Devices

-Bit-Slice devices available on

the market, their merits and

applications.

265

6. Bit-Slice Applications

7, Devalopment Aids

8. conclusion;

9. Appendices

-NcB-conventional applications

-cascaded slices on data paths

paths for purposes such as

very efficient high speed

arithmetic word processing,

string processing, and multi-

channel memory searches

through multi-port memories.

-Simulators, PROMS, Assemblers

-Questions and answers.

-Reference data on technologies

circuitry, and components.

266

h

10

2.4 SEHINAB B7 MICROPROCESSOR INTERFACING TECHNIQOES

Presented by Rodnay Zaks

Time required: 6 hcurs

The goal of this course is to provide a comprehensive

look at all the basic techniques required to interface a

fflicrcprccessor systeiD to the most commonly us«5d peripherals.

The student will learn:

1. Hew to assemble, interface, and connect a system.

2. Hew to assemble a complete CPD.

3- Input / output techniques.

4. Basic interfacing.

5. How to connect the peripherals: keyboard, LED, tele-

type, printer, cassette, floppy-disk, and CRT display.

lOEIC

1. Introduction

CPU Interfacing

4.

Input / Output

aAIS HIAL COV ERED

-Basic concepts.

-Assembly of the basic micro-

computer board with the micro-

processor clocks, drivers,

memory, etc.

-Connecting the basic beard

with all the peripherals.

-Review of basic input / output

techniques and interconnects.

Peripheral Interfacing -Interfacing with keyboards,

LED's, reletypes, printers,

floppy-disk, cassette, and CRT

-Techniquas and difficulties

are addressed.

267

5. Ccmmur.ications

6. Bus Standards

7. Testing

8. Evoluticn

11

•Problems and solutions

available for interfacing with

communications equipment,- time

division multiplexing, modems,

data links, etc.

•Solutions available to

simplify interfacing by use

of standardized buses.

•The IEEE 488, 583 CAMAC, and

S-100 hobbyist buses are

discussed.

•Brief coverage of testing and

troubleshooting techniques

associated with interfacing.

•Summary of the trends of

evolution and predictions of

future interfacing techniques.

268

i

aPPENDIX F

BIATHKIT H-9 TERMIHAL TOTOEIAL

** ***
*** IN3TRUCTICNAL LABOBATORY ***
« *

^ '('
*** **
*** ***
** EIATHKIT ***

*** H-9 TERMINAL **** ***
** ***
*** ***
*** ***

269

TABLE CF CONTENTS

INTROEOCTION ii

Sect ion page

1. EEATHKIT H-9 TERMINAL 1

Intrcduction 1

K«rys 2

2. CCMMDNICATIONS WITH THE IBH 3033 AT NPS OSING THE . . U

270

INTBODOCTIOH

W€lcciD€ to the Instructional Laborarory. In this labora-

tory you may work with digital devices on a level from logic

gates and the elementary electronics of computers ro the

fully integrated level of advanced microcomputer systems.

Through this series of texrs you can progress from little

or no knowledge of digital equipment to a working famil-

iarity with advanced Automatsd Da-a Processing (ADP) .

However, this course of instruction was not designed to make

an expert of the student. Extensive outside study is needed

for that. For that reason, the text will present only

simple examples and problems for demonstration. For the

more serious student other books and reference manuals are

available in the Computer Center Library and the Knox

Library.

27 1

Section 1

HEATHKIT H-9 TERHINAL

^- 1 O2J0E0CTI0N

Th€ H€athlcit H-9 terminal is a dumb terminal with an

internal RS-232 port that enables it to be used with a MODEM

to communicate to any computer similarly equipped. The

display is 80 columns wide, 12 lines high, upper case

letters only. The screen is a whi-e on black, with a

protective cover. A repeating key, separate line feed and

carriage rerurn key, and an on/off line key make this a

versatile terminal.

To use the terminal, ensure that, the small connecter on

the back of the terminal is securely locked in place. (This

connector is kept in place by a locking rab. It is unlikely

tha^ it should ccme Icose. It is also keyed so that it can

he installed in only cne way.) The oxher end of the cable

attached to the connector should be attached to the modem.

Again, the connector is firmly attached by screws on this

end, and cnly fits cne way.

If the connectors are firmly attached, turn rhe terminal

on using the on/off switch on the back of the machine. The

terminal will warm up in a few moments and the cursor on the

screen will be visible. While waiting for the terminal to

warm up, check to see that the baud rate switch on the back

of the terminal is set to "300". The "Baud rate" key on the

keyboard should be down (depressed). If the "Baud rate" key

is UF, the baud rate will be 110, but if i- is DOWN, the

rata selected on the back (300 baud) will be selected. The

modem is designed for 300 baud and will not work at any

ether speed. The terminal itself is capable of 1200 baud.

272

2

To get this speed, move the switch on the back of the

terminal frcm the 300 position to the "preset" position. In

that position, the baud rate key will select 110 baud when

DP and 1200 baud when DOWN.

1 . 2 KEYS

By now the terminal should be warmed up and ready to use.

The top row of keys are function keys. The functions are:

Baud Bate— already discussed

Full Duplex—UP for half duplex, DOWN for Full duplex

Off Line— OP for teruinal on line, DOWN for Off line

Xmit Page—The page, as displayed, is transmitted, starting

at the cursor and continuing to the end of the

page.

Plot--a diagnostic key, no function in normal use.

Auto Carry— OP for the cursor to stop at the end of a line,

DOWN for the cursor to continue on the next line

automatically.

Break— Terminates the Xmit page function, transmits a

continuous "Space" at the serial output. Osed

to interrupt the sending computer from the

terminal.

Erase Page— erases the page, returns uhe cursor to the upper

left corner of the screen.

Erase EOL— erases the line the cursor is in from the cursor

position to the end of the line.

273

3

In additicn to these keys, there are control keys in the

lower part of the keyboard as well. These keys are:

ESC--'rhis key transmits an ASCII escape code.

CTRL— Used to transmit special control codes.

SHIFT—Shifts from UFPER to lower case (Note: this is

the reverse of a normal typewriter. In addition,

the display does NOT show lower case letters.)

SCROLI—after 12 lines are entered, if -chis key is

depressed, an additional input will move

the top line out and move the remaining 11 up one

line, creating a new blank line at the bottom. If the

key is DP, the screen will not scroll and additional

data cannot be entered.

Line Feed— the cursor will move down one line and the ASCII

character for LF will be transmitted.

Return— mcves cursor to the first position of the line it is

currently in, transmits the RT ASCII cods.

Short Form--when DOWN, the display is changed to 12 lines, U

columns of 20 characters. When UP, the display is 80 X

12 characters.

Rub Out—transmits a DEL ASCII character.

Bept--wh€n ased with another key, this causes the same

character to be transmitted until the key is released.

Normally the keys will transmit only one character for

a keypress.

Home--ieturns the cursor to the upper left position, does

net erase screen. Not transmitted,

Arrows--move the cursor the direction pointed to, one

position per keypress. Not transmitted.

274

Section 2

CCHMONICATIONS ilTH THE IBM 3033 AT NPS OSING THE

H9 TERMINAL

1. Turn en the terminal, checking to see that 300 taud rate

is selected.

2. Turn en the modem.

3. When the CRT has the cursor visible, the terminal is

warmed up and ready tc use. Make sure that the FULL DUPLEX

button is DCWN (Full Duplex) and that the modem is selected

for Full duplex as well.

4. Dial the number of the NFS IBM 3033 (presently x3025).

5. When the tone is heard, cradle the handset in the modem

with the cord at the end marked for it.

6. The screen should begin to display the following message:

"VM/370 ONLINE".

7. When the message is fully visible, press any letter key

on the keyboard.

8. The IBM will respond with a "!'• and then a "." (+his is

the indication that the computer is ready to receive input.

9. Logon using your account number exactly as at a terminal

in xhe center "L ####P", followed by "RETURN".

10. The IBM will respond by presenting the message, "ENTER

PASSWORD", then type n********"
^ return and overtype

"HHHHHHHH" and xhen return again and overtype "SSSSSSSS".

(On a Decwriter this produces a blob character like this S.)

This serves to protect your password on that device, but

does net prctecx it en the terminal.

275

5

11. Type your password followed by a "RETURN" and the

console will eventually respond with a signon message and

whatever profile exec's you have in your account. Note -hat

some cf the execs are very slow to start, and may require

prompting with a keypress of some sort. Eventually the

machine shculd yield the "R;" message, followed by the ".

"

prompt that you may enter data.

12. For information, if this is your first contact via tele-

phone, type "Q TERM", RETURN and see what characters do what

functions. Particularly note which kay is the character

delete key, since this is the key that you must use to

"erase" your typing mistakes.

13. FLISI and XEDIT are NOT available over the modem, but

LIST and EDIT are. LIST produces a list of file names, with

the usual ability to define the list by adding

"LIST <filename> <filetype> <filemod3>".

14. EDIT is a one-line text editor that uses the XEEIT

commands that work on one line— in addition, CLocate,

CFirst, CHange, etc, work. The display is limited to one

line at a time, but you can type more than one line at a

time by using "t#", where the # is the number of lines to

type. Numbers alone will move you up or down the file

appropriately.

15. Because the terminal does not display lower case

letters, ycu may be surprised by the output in upper and

lower case. The terminal CAN send lower case, and does so

when the SHIFT key is depressed. This is t.he reverse of a

normal typewriter, and is difficult to use for most people.

If you intend to use the EDIT function to create text files

for SCRIPTing, then you would do better with a different

terminal than the H9-

276

AFPENDIX G

BiATHKIT H-89 HICROCOHPOTEB TOTOBIAL

;«[« « :(i :» «:» :tc 4c 4i* « 4c « 4:4c« :4e 4c « « :«(« :4i !«t * :0c « 4e :«c « 4^ 4c :«c :4e

4i:»«4 4i4<4i4c4c4i4i4E4c4(4i4(4c4c4e4c4c 4t4t4t4t*'ie*4t4c**4t454c4t*4t

4c4(4c4i*4c:^4c4c4(4c4c4e4c4'«:»4'4c4e4c4c:»4c4'4i4c'^4c4c4c4c4c4e^4c4c4e4e4c

4i4c4i 4c4c4e

=^ IN3TH0CTICNAL LABOBATORY **= 4c4t*
4i4c4e 4c4c4e

** 4c4t4c

*** 4e4c4c

** fciATHKIT ***
4t4c4t 4c4c4c

*** H-89 MICROCOMPUTER ***
4i4c4e 4c4c4c

^4c4' 4c4e4c

4i4t4c 4c4c4c* ***
** **4t

:»««:»>^4c«4c4c:((* 4t* * * 4t 4>4t4t 4t4c* 4t4:*******4c4E4e**4t4t4t4e
4E4t4(4i4e4c4c4c4c4c:<(4c4c4i4>4<4c4c4(4c4e4(4c4c4(4c4:4c4c4E4c4c:4c4i:i(4c4c4c

4(:^4i4i4:4(4t4c4'*4e4e4c4>4>74e4c4:4(4'4E4t *4e* 4c*4c 4c 4c4t *** *

277

TABLE OF COHTESTS

INTRODDCTION ii

Sect ion page

1. IHTRCEOCTION TO THE H-8 9 1

Description of the H-89 1

Powering Op the H-25 Printer and External Drives . 1

Powering Op the H-89 3

2. CP/M 5

Basics 5
Control Characters of CP/M 8
Utilities 8
Powering Down the System 10

I

278

INTRODUCTION

WelcciD€ to the Instructional Laboratory. In this labora-

tory you may work with digital devices on a level frca logic

gates and the elementary electronics of computers zq the

fully integrated level of advanced microcomputer systems.

Through this series of texts you can progress from little

or no knowledge of digital equipment to a working famil-

iarity with advanced Automated Data Processing (ADP) .

However, this course of instruction was not designed to make

an expert of the student. Extensive outside study is needed

for that. For that reason, the text will present only

simple examples and problems for demonsxration. For the

more serious student other books and reference manuals are

available in the Ccmpu-cer Center Library and the Knox

Library.

279

In this manual ycu will be given a short course on the

H-89 Micrccomputer from Heathkit and -he H-25 printer. In

addition, you will be given a short course in the operating

system which is used on that machine, CP/M from Digital

Research, Inc. It is strongly recommended that you read

this entire text before turning any of the equipment en or

removing any of the diskettes from their jackets. If you

are not familiar with the use of floppy diskettes, you

should pay particular attention to the suggestions on the

next to the last page of the text.

It is not the intent of this course to make you an expert

en the intiiate workings of the H-89, nor is it designed to

make you an expert en CP/M. However, it is designed to

provide you with sufficient information to allow ycu to work

comfortably in the laboratory with the CP/M system and the

H-89, As ycu use the system your confidence should grow.

280

Section 1

INTBODOCTION TO THE H-89

1. 1 DESCBIPTION OP THE H^SS

The Heath H-89 prccsssor is based on the Z-30 CPU from

Zilog, Inc. The operating system that the Laboratory has

purchased is tha CP/M system from Digital Research, Inc.

This system is popular, and has the clever design than it

supports transportable programs. A program written for CP/M

will run on any machine that has CP/M, regardless of manu-

facturer, as long as it does not violate the rules of stan-

dard CP/M. In the commercial market there are over 500

programs available from vendors to run under CP/M.

Before applying power to the H-89, make sure no diskettes

are in any of the drives, since the application of power to

a drive while

a diskette is in may damage the diskette or alter the data

recorded en it.

1.2 POWERING OP THE H^^S PRINTER AND EXTERNAL DRIVES

To turn on the Heath H-89 you need to turn on the H-25

printer and the external disk drives first. This is a good

rule for any system--power the peripherals first. The power

switch fcr the H-25 and the external drives are on the back

of the respective unit. From the front of the printer the

switch is in the rear upper right corner, set in a small

indentation of the outer case. On the external drives the

switch is also on the back, in the lower right side. In

each case the switch is a rocker switch. Position the

switch tc the ON position. On the printer the lights on the

control panel will light, and tha ribbon begin to wind to

281

2

the start pcsition. On the disk drives there is no indica-

tion, but you may te able to detect a slight hum from the

transformer in the power supply.

The ccn-rol pansl on the front right corner of the

printer has 7 buttons and U lights for control and indica-

tions. The ON/OFF LINE button switch alternately places the

printer in an on-line and off-line condition. In the

cn-line condition the printer will accept data and in the

off-line condition ir will not. Note: to operate the

"form" switches of the printer it must be OFF-LINE. Ihe

TEST switch allows ycu to test the printer operations. In

the interest of the laboratory only the operator should test

the printer. As a user you should not have to operate the

test switch. See the operation manual for the printer for

details. The CLEAR EUFFER switch has two functions: if you

press it for less than about 1/2 second it will clear the

buffer of the printer; if you hold it in more that 1/2

second it will PfiiNT the buffer, then clear it. The RESET

switch will reset any alarm from the printer and restart it.

This switch is used to reset the printer after an out-of-

paper, jammed paper or fault condition. The FORMS ALIGN

switches will move the paper in the direction of the arrcws

near them. Use these switches to move the paper one line at

a time in the direction of the arrow. These switches can be

used to align the top of the paper with the print head. The

TOP OF FORM switch is used to advance the paper to what the

printer thinks is the top of the next page. Once there, use

the FORMS ALIGN switches to actually line up the print head

with the top of the paper. From that point on the printer

should keep track of the top of the page.

The POWER light indicates that power is applied to the

printer. The ON LINE indicator is lit whenever the printer

is ready to accept data from the computer. The PAPER indi-

cator indicates either an cut-of-paper or jammed paper

282

3

ccnditicn. The FAULT indicator lighzs when the prim: unit

(inside the printer) is open, the carriage is in an over-

travelled condition (beyond physical limits) or the printer

is overheated. IF THE FAULT LIGHT COMES ON SEEK ASSISTANCE

BEFORE CONTINUING TO OPERATE. UNLESS THE FAULT IS CORRECTED

THE EEINTER MAY EE DAMAGED.

1.3 POHEBING OP THE H^SS

Once the printer is on and operational (the POWER and

CN-LINE lights lit only) and the external drives are

powered, you may power up the H-39 itself. The power switch

for the H-89 is in the back, at the right side of the

machine as seen from the front. Again, a rocker switch is

use for the ON/OFF switch. Move the ON/OFF switch to the ON

position. The machine should issue a single beep, the disk

drive may turn momentarily, then the screen will light up

with the single prompt in the upper left corner , "H: " . This

indicates that you are in the internal monitor program of

the terminal.

Load the SYSTEMS disk that you got from the operator into

the external drive left side slot, labeled "A Drive," with

the cut cut notch cf the package down, the oval slot

pointing toward the back of xhe machine, and the label

pointing toward the left side of the drives. When the disk

is fully inserted, close the door of the drive. It should

nox require any force to close the door. If you meet resis-

tance, check to see that the disk is FULLY inserted into the

drive.

Press the "B" key of the keyboard. On the screen you

should see the word "Boot" appear beside the "H:" prompt.

If it dees NOT, press the OFF LINE key that is found in the

upper left position cf the keyboard. Press the "B" key

again. If the word "Eoot" does not appear, seek assistance.

283

4

Once the screen says "Boot", press the RETURN key on the

keyboard. The external drive with the disk in it should

tegin to turn, the light on the drive door will light and

after a few moments you will be given some informazicn on

the screen about the configuration of the system. When the

system is fully hoot€d, the standard CP/M prompt will appear

"A>" . This prompt indicates that CP/M is in operation, and

that the presently active disk is disk A, the left hand

external drive. The external drives are configured as

drives A, B and C. The internal drive is configured as

drives D, E and F. NOTE: THE INTERNAL AND EXTERNAL DRIVES

DO NOT DSE THE SAME TYPE OF DISKETTE. DO NOT PLACE A

DISKETTE MARKED FOR INTERNAL USE ONLY IN THE EXTERNAL DRIVE,

AND DC NCT USE DISKETTES MARKED FOR EXTERNAL USE ONLY IN THE

INTERNAL DRIVE. THE CNLY DISKETTE YOU NEED FOR THE INTERNAL

DRIVE IS THE SYSTEMS EISKETTE WHICH YOU HAVE BEEN GIVEN AND

IS MARKED AS SUCH.

If the system fails to boot, try again. Press the SHIFT

and RESET keys simultaneously to force the computer back to

the "H:" prompt and type "B", followed by RETURN, again. If

the computer will NOT boot at all, seak assistance from the

coerator

.

284

Section 2

CP/H

2. 1 BASICS

Once the computer has booted the operating system, you

are in ths CP/M envircnment . There are many excellent bocks

on the CB/M operating system. If you wish to learn mere

about the system you are encouragad to read some of them.

This manual will only provide you with the information

necessary tc run the applications packages provided with the

system.

The "A>" prompt indicates that the active drive of the

system is the k drive. To change drives simply type in the

letter of the drive and a colon and press RETURN. The

system will check tc see that that drive has a disk in it

and change the prompt to the letter of the new active disk.

For instance, load an external disk in drive B and clos? the

door. Fress the B key, the colon key (:) and then the

BETUBN key. After a short interval in which the drive turns

briefly, the screen will show the new prompt "B>". To

return to the A disk type "A:" and RETURN. The A> prompt

will return immediately because the system already kncwLS

that there is a disk in drive A. To read a list of files on

the disk in the addressed drive, type the word "DIR",

followed by the RETURN key. Upper and lower case dc not

usually matter to CF/M--it converts all commands to upper

case. The screen will show a list of all the files on the

active disk. For the directory of any other disk than the

active one, type the word "DIE", a space, and the letter of

the desirsd drive, followed by a ":" and then RETURN. The

directory of the designated diskette will be displayed.

285

6

A filerame in CP/M consists of three parts: the disk

specification, the filename and the filetype, in the format

"d:f ilename. filetype" where "d" is the disk drive naffie,

filename is the primary name of up to 8 alphabetic or

numeric characters, and filetype is the optional filetype of

up to three alphabetic or numeric characters separated from

the filename by a period. Legal variations are:

filename (a file on the current drive, filetype " ")

d: filename (a file on drive "d", filetype " ")

filename, typ (a file on currsnt drive, filetype "typ"

d: filename. typ (a file on drive "d", filetype "typ")

If the drive specification is missing, CP/M will Icck for

the file en the presently active drive only. To lock at

drive B from the "A>" prompt, for example, the "B:" MUST be

in the file specification. To view all the files en the B

disk from the "A>" prompt type "dir b:" and press return.

To view files on drive C, type "dir c:", etc.

At this point it is appropriate to discuss briefly the

concept of ambiguous and unambiguous file specifications.

Unambiguous specifications are of the forms previously

displayed. The name is specific to the drive, filename and

filetype. In the ambiguous file specification some element

of the specification is replaced by an asterisk "*" or a

question mark "?". In these instances the system will

perform the operation directed en all files with names that

match the unambiguous part of the name, without regard to

the part substituted for by the asterisk. The drive speci-

fication will NOT accept the asterisk. For example from the

sequence "A>dir *.com" will display all the files en the A

disk with the filetype ".com". Some CP/M functions will

allow ambiguous specifications, and some will not. See the

Digital Research literature on CP/M for specifics. The

question mark is a "wild card" replacement for any letter or

number in a filename. "A>dir stats?, fil" will display all

286

7

the files on -he diskette which match the format, including

variations such as:

statsl.fil

stats2.fil

statsd.fil

statsa.fil

It will NOT match "stats 1 1 , fil" however, because the length

is longer on the file than the designated pattern. <Note

that "A>dir ????????.???" is the same as "A>dir *.*")

To erase a file en a disk type "ERA " followed by the

file ycu desire to erase. If the disk is not write

protected or read-only, the file will be erased immediately.

If you use an ambiguous specification, all files meeting the

specification will b€ erased. (A>era *. * will erase ALL

files on the A disk, A>era *.doc will erase all files with

the filetyp ".doc" on the A disk, etc.)

To rename a file, use the command "REN". "REN" requires

unambiguous specifications. The syntax for REN is "A>ren

d:newnam€.typ=d: cldname. typ ", (The convention of the new

coming first is common to ALL CP/M commands and functions.)

To save a file tc memory use the "SAVE" command. The

syntax for the command is "A>save ## d: filename- typ". The

indicates the number of "pages" of memory to save. A

page of lemcry is 256 bytes. CP/M uses the first page for

itself, and therefore the pages begin an the second page for

the user. The SAVE command will move to the disk indicated

the number of pages indicated, starting at the second

physical page of memory and continuing to the page number

"##" plus one.

TYPE d:f ilename. typ will display on the console the data

of the file named. Names must be unambiguous. To stop

display, press ANY key.

287

^

8

2.2 CCHTBOL CHARiClERS OF CP/M

Th€ fcllowing table indicates the control characters in

CP/a and their function. For more detail, see the CF/M

users manual from Digital Research, Inc.

moves cursor one space back, erasing character

aborts a running program,

causes a warm boox from the D> prompt

same as ROB

forces a physical carriage return,

does NCT pass to CP/M

same as BACKSPACE

Linefeed, terminates input at console

same as carriage return

echoes all screen data to printer, the second

CTRL-P terminates the function

re-types the current line, as corrected

carriage return

erases character immediately to -chs left cf

cursor echoes the character to the screen

stops listing of file to screen temporarily,

second CTRL-S resumes the listing

cancels the present line

deletes the present line

string or field separator

2. 3 DTILITES

There are several utilities included with the standard CP/M.

These utility programs are on the disk which is marked

"SYSTEMS DISK, Use in INTERNAL drive only". To run these

programs you must address the programs with the drive desig-

nation "D:". The programs supplied are:

PIP.COM (Peripheral Interface Program)

ED.COM (EDitor program)

STAT.COM (STATUS of disks, files, etc.)

288

BACKSPACE

CTRL--C

DEL

CTRL--E

CTRL--H

CTRL--J

CTRL--M

CTRL- r

CTRL--R

RETURN

RUB

CTRL--s

CTRL--U

CTRL--X

CTRL--z

9

ASM.COM (ASseMbler program for 8080 mnemcnics)

DDT.COM (Dynamic Debugging Tool)

F0RMAT.COM (Formats new diskettes)

SYSGEN.COM (Installs system tracks on diskettes)

Of these utilities, PIP is the one most often used. It can

be used to transfer information from one peripheral to

another. The uses of PIP include printing to paper the

contents of a file on diskettes, printing to the screen the

input from a reader device, copying disk files from one

source diskette to another destination disk, making backup

copies of a diskette, etc. For more information on the uses

of PIP, see the Digital Research literature on the subject.

The second most popular utility is STAT, STAT returns

the status cf files, diskettes, drives, peripherals, etc.

You can use STAT to determine the size of existing files,

the space left on a diskette, the size and type cf drive

connected, the logical input and output devices addressed by

CP/M, etc. Again, see the Digital Research manuals for

inf or maticn.

ASM and DDT are tools for the programmer who wishes to

write assembly language programs. The ASM program assembles

standard Intel 8080 mnemonic language into machine code.

DDT will display any portion cf memory, allow it to be modi-

fied, and run with breakpoints and controls in the

sequences. See the manual from Digital Research for mere

inf orma ticn. If you wish to learn about machine language

code, see the Prcmpt80 tutorial of this series of tutorials.

FORMAT and SYSGEN are tools normally not needed by the

applications user or programmer. If you need to format a

new diskette, FORMAT is self documenting. SYSGEN is simi-

larly self documenting. Note that NO USER DISKETTE SPACE is

consumed by the system of CP/M. For that reason, there is

nothing to be saved ty NOT SYSGENing every diskette as it is

289

10

formatted. The policy of the laboratory is' that EVERY disk-

ette will have CP/M SYSGENed to it. If you need help, see

the Digital Research literature.

2-4 POHERING DOHN TBE SYS TEH

The last issue to be covered is the power-down sequence.

It is important to remove power in a logical sequence to

prevent inadvertent erasure of data on diskettes.

The first step in shutting down the H-89 is to remove all

diskettes from the drives. Note that if you remove a disk-

ette from a drive with a file still OPEN, the directory for

that file is not accurate, and the file will be lost or

damaged. To be sure, a good policy is to always return to

the CE/M prompt "A>" before shutting down. This way all

files are closed and diskettes are ready to be removed.

Once the diskettes are removed, and properly stored, turn

off the equipment in the inverse of the power on sequence--

main computer first, followed by peripherals. Once all

equipment is turned off, close the disk drive doors to

reduce the entry of dirt to the drives. The printer

requires nc special attention at shutdown.

290

11

The diskettes of a microcompater are the key to the

urility cf the installation. They do, however, require

certain care in handling. Do not touch the magnetic

material visible through the holes in the covering with your

hands or with any foreign object. Virtually undistingui-

shable dust particles can ruin a diskette and the read/write

heads of the drive in which it is installed. Beyond

physical abuse, tte diskettes are also susceptible to

magnetic fields. One of the most common mistakes is to put

the diskettes on top cf the computer, in the magnetic field

cf the Cathcde Ray Tube of the display. Another enemy of

diskettes is the telephone. When the bell rings, the

magnetic field around the instrument is strong enough to

erase a diskette if it is nearby. Always return the disk-

ette to its jacket when out of the machine, and store care-

fully, even if it is needed again soon. These lessons have

been learned with considerable "pain" by others. 3e wise!

291

^

12

This ccncludes the tutorial on the H-89 Microccmpu-car and

peripherals. For mere detail, see -che Hsathkit cpsra-ing

manuals fcr the specific equipment. For applications pack-

ages, see the individual program instructions and manuals

that accompany the software.

292

BIELIOGBAPHY

Bork, A., I<?arninQ with Com put ers, Digital Squipment
Corpcraticn, I^TI

Buckingham, P.A.(ed), Education and Large Informatio n
Systems, Ncrth-Hclland Putlishing Co.7"Ty777

~

Couger, J.D,, Computgrs and the Schools of Business,
Business aesearcli division, ScHooT~' ot "Business
AdministraticE, University of Colorado, 1967.

Dinerstein, N., "On the Education of Information System
Specialists", SIGSCE BOLLETIN, v. 13, n. 2, pp. 21-25, June,
19 82.

Glass, R.I., and de Nim, Sue, The Second Com ing: JJcre
Computing irojects Which F ailed , Coipuring~Tr ends, 1^80. ""

Gruenberger, F. (ed.) , The EDP Pi2£i^ Problem , Data
Processing Digest, inc., 197T.

"

Ksarsley, G.P., Hillelsohn, M.J., and Sidel, R.J.,
"Micrccomputsi-based Training in Business and Industry:
Present S-taxus and Future Prospects", Jour nal of Educarional
Technology Systems, v. 10, n. 2, pp. 1T3T^TT787 T'98T";

Kraft, P., Programmers and Managers, The Routinizat ion of
Computer Programniing in the 'Onited l^axes, Springer- VerTag,

McCluskey, S. J., Jr., "Minimization of Boolean Function",
lill S^srem Technical Journal, v. 25, pp. 1417-1444, 1956.

Mein, Wm. J., "Cn Students Presenting Technical Material to
Non- technical Audiences in a Computer Sciance Curriculum",
SIGSCE BULLETIN, V. 14, n. 2, pp. 97-101, February 1982.

Pratt, L.J., and Davis, I. D. , "The Use of Computer Aided
Instruction m the Teaching or Macroeconomic Principles",
SIGCUE BULLETIN, v. 15, n. 1, pp. 2-14, January, 1981.

Pratt, L.J., and Davis, L.D., "The Use of Computer Aided
Ins-ruction m the Teaching of Macroeconoraic ?rinciples--an
Update", SIGCOE BULLETIN, v. 16, n. 1, pp. 16-21, Summer,

293

§
uin€, W. v., "A way to Simplify Truth Functions", American
athjmatics Mcnthlj., v. 6 2, pp. 527-631, 1955.

Sayl€, S.F., "Assessing your Data Managemen'
Computing, n. 18, pp. 38-U1, March, 19 83.

Needs", Desktop

Sheppard,
for you?"

J.G., "Automation in the Office: What can it do
5S§iSl5£ Co mput ing, n. 18, pp. 50-58, March, 1983.

Shsrrard, John C. , Hayes, John R., "A Compu-^.er Aided
Instruction Tutorial for the RAMTEK 9^400 Color Graphics
Display System at the Naval Postgraduate School Monrerey,
California". Naval Postgraduate School Monterey, Ca.,
December 1981.

294

INITIAL DISTRIBOTION LIST

No. Copies

1. Defense Technical Informaticn Cenxar 2
Camercn Station
Alexandria, Virginia 22311*

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Prof. N. Schneidawind 4
Code 5ass
Naval Postgraduate School
Monterey, California 93940

4. Prof. C. R. Jones 1

Code 54Js
Naval Postgraduate School
Monterey, California 93940

5. Prof. R. S. Elster 1

Code 54Ea
Naval Postgraduate School
Monterey, California 93940

6. Asst. Prof. D. H. Dolk 1

Code 54Dk
Naval Postgraduate School
Monterey, California 93940

7. Computer Technology Curriculum Office 1

Code 37
Naval Postgraduate School
Monterey, California 93940

8. CDR Jesse M. Richards, III 1

4132 Minton Drive
Fairfax, Virginia 22032

9. IT Glen F, Tilley 1

620 Thomas McKeen Street
Grange Park, Florida 32073

10. LT Kenneth J. Mills 1

56 White Pine Court
Califcrnia, Maryland 20619

295

201620

iThesis

,3957 Hills
^^^^^^^^^, ^, ,^

"'
computer systems manage _

.ent i--^-f^^°Xe .aval
laboratory at the ln

Postgraduate School.

3 16 6
1

SEP 25 85

/

Thesis
M5957
c.l

201G20

Mills

Development of the
computer systems manage-
ment instructional
laboratory at the Naval
Postgraduate School.

