

Calhoun: The NPS Institutional Archive

An analysis of the relationship of personnel characteristics to the performance of DD 963 class ships.

May, John D.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/19633

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

AN ANALYSIS OF THE RELATIONSHIPS OF PERSONNEL CHARACTERISTICS TO THE PERFORMANCE OF DD 963 CLASS SHIPS

by
John Donald May
December 1983

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPOWT NUMCER ${ }^{\text {a }}$ 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (end Subtillo) An Analysis of the Relationships of Personnel Characteristics to the	5. TYPE OF REPORT \& PERIOD COVERED Master's Thesis December 1983
nce of DD 963 Class Ships	6. PERFORMING ORG. REPORT NUMEER
7. AUTMOR(0) John Donald May	B. CONTRACT OR GRANT NUMBER(0)
D. Perfonming onganization name ano adoness Naval Postgraduate School Monterey, Califormia 93940	10. PROGRAM ELEMENT. PROJECT, TASK area a work unit numbers
11. CONTMOLLING OFFICE NAME AND ADORESS Naval Postgraduate School	12. REPORT OATE December 1983
Monterey, Califormia 93940	13 number of pages 83
12. MONITOAINC ACENCY NAME ADORESSIII dlltermi Irom Conitoling Ollice)	is security class. (ot inie report)
	15. OECLASSIFICATION DOWNGRADING SENEGULE

16. DISTAIDUTION STATEMENT fol inlo Report)

Approved for Public Release; Distribution unlimited
17. DISTRIBUTION STATEMENT (of the abetfect entered in Block 20, if dilforent from Report)
16. SUPDLEMENTAAY NOTES
19. KEY woROs (Cantinue on reverce elde If noceesery and taentlity by block number)

Personnel attributes and performance, engineering department, DD 963
20. ABSTRACT (Consimue on reveree alde ll neceaeery and ldentity by block number)

The purpose of this thesis was to analyze the relationship of fill ratios and personnel attributes to the performance of seventeen operational DD 963 class ships. Data sets were created from files provided by the Defense Manpower Data Center to determine the fill ratios and attributes. Descriptive aggregate data such as percentage of high school graduates, entry age, AFQT score and time in grade were selected to provide demographic information for the personnel involved. Summary CASREP data,

provided by SPCC, were converted to nine variables to be used as the measures of ship performance. They included total downtime, downtime due to maintenance, total number of CASREPs, and two "readiness" indices. The relationships between these variables and personnel attributes were examined at the ship, departmental and individual rating level. Separate effects of the individual UIC's as well as overhaul quarters were accounted for. Personnel attributes and number of personnel vs personnel requirements had little relationship to readiness. In summary, the relationships between personnel attributes, personnel staffing levels and ship readiness measures remain to be proven.

An Analysis of the R elationships of Personnel Characteristics to the Performance of DD 963 Class ships

bY
John D. May
Lieutenant Commander United States Naval Reserve

Submitted in partial fulfillment of the
requirements for the degree of

MASTER CF SCIENCE IN MANAGEMENT
from the

NAVAI POSTGRADUATE SCHOOL December 1983

a $\operatorname{ASTRACT}$

The purpose of this thesis was to analyze the relaticnship cf fill ratios and personnel attributes to the performance of seventeen operational DD 963 class ships. Data sets were created from files provided by the Defense Manfower Lata Center to deteriine the fill ratios and attributes. Lescriptive aggregate data such as percentage of high schcol graduates, entry ace, AFQT score and time in grade were selected to provide demographic information for the perscnnel involved. Summary Casrep data, provided by SPCC, were converted to nine variables to be used as the measures of ship performance. They included total downtime, downtime due tc maintenance, tctal number of CASREPS, and two "readiness" indices. The relationships between these variables and $p \in r s c n n \in l$ attributes were examined at the ship, departmental and individual rating level. Separate effects of the Endiridual oIC's as well as overhaul quarters were accounted for. Fersonnel attributes and number of personnel vs personnel requirements had little relationship to readiness. In summary, the relationships between personnel attributes, perscnnel staffing levels and ship readiness measures remain to $b \in$ proven.
I INTRODUCTION 8
A. EFCBIEM 8
B. EACKGROUND 9
C. PUEFCSE 11
II DATA 12
A. [ATA BASES 12
B. DEFENDENT VARIABLES 14
C. INDEEENDENT ∇ akIABLES 17
III ANALYSIS 20
A. METHCD 20
B. ANALYSIS 20
C. SOMMARY OF DATA ANALYSIS 27
IV CONCIUSIONS 29
APPENDIX A PERSCNNEL SELECTION PROGRAM LISTING 31
APPENDIX E CASREP PFCGRAM LISTING 50
APPENDIX C DATA - ENGINEERING DEPARTMENT 53
APPENCIX Σ DATA - OTEER VABIAELES 57
APPENLIX E FINAL REGRESSION OUTPUT 72
REFERENCES 81
INITIAL DISTRIBOTION IIST 82

LIST OF Tables

II EEEENDENT VAEIABLES_1. 15
III RATING USED IN ANALYSIS_-_18
IV EERSONNEL ATTRIBUTES SELECTED 18
\square EEFCENT OF VARIANCE ACCOUNTED FOR $\quad 21$
VI F-RATIO - EACH ATTRIBUTE 23
VII STATISTICALIP SIGNIPICANT ATTRIBUTES___-_ 24
VIII F-EATIO BY FATING 25
IX
EFFECT OF THE PREDICTORS28

ACKNOWLEDGEMENT

I wculd like tc thank CDR Bill King, USN (REt.) and Mrs. Barbara Cunningham from DMDC for their assistance in providing the personnel input files used in this thesis. I would alsc like to thank Professor William E. McGarvey for his expert technical guidance, generous assistance and untiring patience.

I. INTRODOCTION

A. PRCBLEA

Thented to docurent quantitative relationships between readiness and resources is an ongoing problem that the Navy is trying tc solve. Manning Naval ships with the "correct" number of sailors with the proper "attributes" receives an enormcus amcunt of attenticn by personnel at all echelons within the Navy. The problem is also of vital concern and receives much attenticn from the Congress, OMB and OSD.

A ccnceptual model $d \in s c r i b i n g ~ r e l a t i o n s h i p s ~ b \in t w e e n ~$ resources and readiness needs to be developed. If the Navy had an explicit, quantitative method for determining the best mix of each rating and rate on board each class of ship, it wculd be better able tc man that ship.

As a result, ship readiness coula then be increassd ccst effectively. Knowledge of how personnel characterisiics are likely tc contribute to readiness is necessary for pclicy analysis regarding ship manning, assignment and rotation.

Research, to date, has not produced an accefted. "working" model which can measure current ship readiness or predict future ship ferformence. Two such formal measures currently used by the Navy to measure readiness are the UNITREP and CASREP reforting systsms. One problem with such a measurement is that many areas are difficult to quantify, e.g., training, morale and esprit de corps.

From cne perspective, an effective unit can te defined as one that meets its commitments. Throughout the fleet there are various administrative and pracさical procedures to measure readiness. There are local assistance visits and more formal inspecticns such as Propulsion Examining Eoard
inspecticns, Diesel Readiness Assistance Team inspections, Squadron Administrative inspections, Operational Readiness inspecticns, and Command insfections, just to name a $f \in W$. All of these, however, usually result in a subjective analysis $k y$ the inspecting party instead of a consistent, valid, and quantifiable measure.

The purpose of this thesis was to examine the relaticnship $k \in t w \in n$ personnel characteristics and unit performance. The terms "readiness" and "downtime" are used interchangeably in this thesis as a measure of "success". Emphasis was not flaced on the reasons fcr differences among pezscnnel assigned to different ships or ship types, but rather on the unit and the eelaticnship that may exist between personnal characteristics and the performance of that unit. Similarly, reasons fcr the differences between UIC's as to their reasons for submitting CASREPS were not explored; however, some differences among णICs were statistically contrclled for in the regression equations.

E. BACRGECUND

Every cfficer has thought to himself "If I oniy had enough of the right people, I'd get better results mare quickly." There is more discussion than research as to whether higher quality people or the proper number of people is more important in accomplishing the mission. For the purpose of this thesis, personnel characteristics are hypothesized to influence the readiness of a unit.

Amcng cther things, a studyby the center For Naval Analyses (CNA) in 1976, [Ref. 1] concluded, that entry scores appear to be more consistent predictors of maintenance effectiveness than high school graduation, and that lengib of service was fiequently a significant determinant of a ship's condition.

The CNA published another study in 1977 [Ref. 2] which concluded in part that higher quality personnel are more valuatle cn shifs with more complex equipment. On ships with relatively simple equipment, however, having a full complement cf personnel might be more valuable.

Both CNA studies used CASREP data as the bases for their criteria. Total number of CASREPS, total downtime and downtime due to mairtenance were all used as dependent variables. In addition, to the thyee criteria mentioned above, the present study will look at six other variables based on the CASREP system.

Perscnnel turbulence (crew turnover) has been examined as a predictor for ship performance. Reeves [Ref. 3] determined that no significant relationship could be supported tetween aacrc levels of turnover and ship performance. It could not $k e$ concluded that personnel characteristics were Iflated to downtime.

Since clder more experienced personnel are likely to be in the higher paygrades, an analysis which only focused on paygrade wculd not be able to determine how much productivity was due to promotion and how much was actually the result of experience. By including both paygrade and years of active duty, it is hoped one can separate to some extent the quality dimension of higher paygrade from the effect of experience.

Age was used as a predictor in order to determine if an clder force made a difference. With an increase in retention rates, the average age of the force will increase. Might such an increase in age foretell an improvement in readiness? Additiorally, time in grade was examined ± 0 ascertain the correlation between individual time in pay grade and level cf ship performance. However, an extended period of time in a paygrade might mear poor performance because the individual was not fromoted.

Even when personnel characteristics have been taken into account, a very large range of individual human behavior remains unaccounted fcr. Individuals in the same rating at the same time, having the same years of service and paygrade, may still be extremely different from one another in how they will perform their shipboard jobs. These performance differences among the individuals may be largely uncorrelated with level of education, metal group, pay grade etc. Additionally, attitudes and motivation are influenced ly the interacticn of the crew. Regretably, such measures were not available for use in the present study. Future studies cf ship readiness shculd try to take into account measures cf motivaticn, esprít de corps, etc.

C. PORECSE

The crjectives of this thesis were to:

1. examine the characteristics and fill fatios of each rating for the fersonnel on the ships involved; and 2. examine the differences among ships on measures of readiness; and
2. explore any relationship that may exist between measures of readiness and personnel attributes of the crew.

The study will examine seventeen DD 963 class ships and their assigned personnel from September 1976 士o March 1983. Eerscnnel characteristics and personnel fill =atios will be the predictors, and CASREP informatior will provide the measures of readiness.

II. DATA

a. data eases

Three data bases were utilized in this effort. The first was a personnel characteristics file created from informaticn provided by the Lefense Manpower Data Center (DMDC). Tre data came frcm all personnel assigned to the ships in question during the time frame involved and contained scme 14,622 observations. A data file was then created which aggregated for each ships Unit Identification Code (UIC) within each of the 27 calender quarters, attributes of personnel assinged to a given rating. An example cf a Statistical Analysis System (S.A.S.) "production model" used for the 32 ratings aggregations, (develcped by Prcf. W. E. McGarvey, Naval Pcstgraduate School. Monterey, Calif.) is given in appendix a.

Thus, the new file asscciated each UIC by quarter with the perscnnel assigned to it. It also recoded the education level of each individual by high school or non high school graduate. The percentage cf high school graduates within a rating was then calculated. The data were then sorted by quarter and UIC bringing along the data for the independent variables that were chosen for use in this thesis. In total, thirty three files were created and then sorted and merged $k y$ UIC and quarter for each rating to create the final output file.

A second data bark utilized was also created by DMDC and included the fill ratio, by rating, oz each ship's billets. The data included number authorized, number assigned and the fill ratio. Fill ratio was computed as the number of perscnnel on board divided by the number required. The
number required for each ship, by Department and rating, were frovided by OPNAV914 from the Ship Manning Document (SMD) files.

A third data base was a statistical summary report provided bythe Navy Ships Parts Control Center (SECC), Mechanicsburg, Pa. The data contained information frovided ky the individual units thrcugh the consolidated casualty Reporting System (CASFEP).

The casualty reforting system provides a timely method for reporting equipment failures and the effect $c f$ these failures cn the capability of the reporting units. The CASREF REports are designed to assist in indentifying Eroblem eguipment, supply support deficiencies, maintenance difficulties, etc. Which tend to reduce the combat readiness of the Navy. CASREPs are reported by the individual ships and the data was compiled by sPCC. The severity Iating of each CASREE is assigned by the individual ship in accordance with Operation Reforts Publication NWP 7. The severity codes are as follows:

$$
\begin{aligned}
C-2- & \text { (Substantially Ready) A deficiency exists in } \\
& \text { mission essential equipment which causes a } \\
& \text { minor degradaticn in any primary mission area. } \\
C-3- & \text { (Marginally Ready) A deficiency exists in } \\
& \text { mission essential equipment which causes a major } \\
& \text { degradaticn but not the loss of any primary } \\
& \text { mission area. } \\
C-4- & \text { (Not Ready) A deficiency exists in mission } \\
& \text { essential equipment that is worse than c-3 } \\
& \text { and causesa loss of at least one primary } \\
& \text { mission area. }
\end{aligned}
$$

The three data files were merged into one file that contained for each quarter the personnel characteristics, fill Iatics and CASREF data for each UIC.

TABLE I

List of Ships

USS	SEROANCE	DD963
USS	EAUL F. FOSTER	DD964
USS	KINKAID	DD965
USS	HEWITT	DD966
US	ELLIOTT	DD967
USS	AETHUR \dagger. RADFORD	DD968
US	EETERSON	DD969
USS	CARON	DD970
USS	IAVID R. RAY	DD971
USS	CIDENDORF	DD972
USS	JCHN YOUNG	DD973
USS	CCMTE DE GRASSE	DD974
USS	C'BRIEN	DD975
USS	MERRILL	DD976
USS	EFIS COE	DD977
USS	STUMP	DD978
USS	CCNOLLY	DD979

The seventeen shifs involved are named in $T a b l e$ I. a single class of shifs built by the same contractor was selected to eliminate some factors that could effect readiness. Tre ships contain, for the most part, similiar equipment, propulsion plants, and armament, and are all were approximately the same age, viz., three to seven years cld at the time the data were collected for this thesis.

B. DEfendert variabies

A completely adequate set of measures of readiness, or ship perfcrmance, is difficult to achieve. Yet a set of readiness measures must be used to analyze or design policies. Instead of trying to invent measures of readiness, measures which are currently in use were utilized. In this study, CASREP data prcvided by SPCC were used for the dependent variables. Nine criteria were used. They are given in Table II.

The variables TK1, TK2, TK3 and TK4 were taken directly from the information provided on the SPCC tape.

An alternative "readiness" index (TINDEX01) was derived by Professor W.E. McGarvey. It is a rough parallel to the

"material condition index" (MCI) and the "mission essential material readiness and conditon" (MEMRAC) indices computed by SPCC tut is slanted more toward maintenance downtime. INDEXO1 was computed as follows:

$$
\begin{aligned}
\text { INDEX 01 }=\mathrm{LCG} \quad(& (.1 * \mathrm{TK} 2 * D O \text { WNMNT })+(.5 * T K 3 * D O W N M N T) \\
& +(1.0 * T K 4 * D O W N M N T)) / 10
\end{aligned}
$$

Tc smooth and help equate this alternative index (INDEXO1) to other variable distributions, a log transformation was employed. Instances of calls for outside technical assistance were also coded for use directly from the SECC tape.

The "Mission Essential Material Readiness and Condition Report" (TMEMRAC) is used by SPCC [Ref. 4] to identify systems/equipments that contribute to the downtime of a Ship Category which falls below the Standard Ready Material Condition ty 5\% or were. Mathematically it is defined by SPCC as:

$$
\begin{aligned}
& \text { Index=1/P } \left.X\left(\begin{array}{l}
\text { w }
\end{array} \text {) (Sum } C-3\right)+(W 4)(S u m C-4)\right)\left(W^{\prime} 3\right) \\
& \text { (Sum DTC-3) + (WI4) (Sum DTC-4) }
\end{aligned}
$$

W3 = A factor tc weigh the severity of the C-3 CaSREPS in relation to $c-4$ CASREPS. ($\mathrm{W} 3=.5$)

W4 = A factor tc weigh the severity of the C-4 CaSREPS in relation to $\mathrm{C}-3 \mathrm{CA}$ SREFS. ($\mathrm{W} 4=1.0$)

W'3 = a factor to weigh the effects of "URGENCY" on C-3 CASREP downtime. (W'3=.33)

W'4 = A factor to weigh the effects of "URGENCY" on C-4 CASREP downtime. (W'4=.67)

DTC-3 $=$ Total Dcwntime for a C-3 casualty.
DTC-4 $=$ Total [owntime for a $C-4$ casualty.
 category, as taken from EDAC Group I Report.

A lcg transformation, plus a recoding of fractional values on this index, was alsc performed.

For casualtiss that have been corrected, the follcwing were used:

TDCWNMN - FOI casualties which have been CASCORed (casualty correction message) this reflects the number cf hours the equipment was down due solely to maintenance. It is the resultant figure of subtracting the CASREP message (msg) date time group (DTG) from the CASCOr msg DTG; obtaining a balance; chen subtracting the hours awaiting parts given in the CASCOR msg. The underlying assumption is that time not awaiting parts is maintenance time.

TDCNNTOT - FOI casualties which have been CASCORed this reflects the total number of hours the equipment was CASREPed. If the CASREP and the CASCOR aIE the same day, the total will be 0000 .

Total dcwntime was used even though it includes supply downtime (time spent waiting for parts). While arguable, it was hypothesized that higher quality personnel could influence the total amount of time spent waiting for parts. In addition, if a problem was misdiagnosed total downtime would te increastd while waiting for the the correct part to arrive (after the part which did arrive was found tc be incorfect).

If preventive maintenance were performed better, the total number of CASREFs might also decrease, assuming that more qualified personnel perform better. since the personnel characteristics may well influence total supfly time, the two measures of downtime were included.

It was felt that $k y$ using nine different dependent variables a more complete picture of the inter-relationshifs of the perscnnel attributes and measures of "readiness" could be developed. Each dependent variable may measure a different aspect of raintenence, and hence, readiness.

C. Indefendent variaeles

When bcth files had been sorted by UIC and calender quarter, the data file created from the DMDC tape of personnel attributes was merged with the CASREP file. The program that was $n \in \in d e d$ to first match each individual assigned tc a \quad IC, and then to correlate the individuals' characteristics with each quarter's CASREPS within each UIC is shown in Appendix E.

The $n \in W$ file for each quarter now contained the $d \in p \in n-$ dent variables and the perscnnel characteristics of the sailcrs assigned to those units in each quarter. The fill ratio file and CASFEP data file were then merged so a complete file with all the desired information was available for analysis.

Ratings Used in Analysis

EN	Engineman	
MR	Machinery Repairman	
EM	Electricians Mate	
IC	Intericr communications	
日T	Hull TEchnician	
GSE	Gas Systems T Echnician	(Electic)
GSM	Gas Systems Technician	(Mechanical)

Although the file contained information for all 33 ratings assigned to the DD 963's, this Iesearch was directed instead tcward the seven ratings assigned to the engineering department. Under the assumption that mary (or most) of a ship's CASREPs will originate in the engineering department, this was felt to be an acceptable, plausible directicn in which to proceed. The ratings used are shown in Table III.

A list $c f t h e e n g i n e \in r i n g$ ratings with the mean, standard deviation, minimum value, maximum value and the standard errcr of the reanfor each variable by rating is

TABLE IV

Personnel Attributes Selected

Where __ represents each of the seven individual =atings.
provided in Appendix $C . \quad$ A complete list of the cther ratings on the ships as well as other variables is frovided in Appendix D. TableIV shows the attributes selected for each rating. An "attribute" is operationally defined as the combined contributicn of the seven engineering ratings for each characteristic. For example the HSDG attribute is the
combined $H S D G$ effect of the $E N$, MR, $E M$, IC, $H T, G S E, ~ a n d ~ G S M$ ratings.

These attributes were selected because it was hypothesized that as each attribute showed improvement. readiness would improve. It was hypothized that "smarter", older, more senicr perscnnel, plus a full complement of personnel, would be associated with increased readiness.

Because of its greater statistical robustness as a measure cf central tendency with small samples, the median was used to represent the personnel characteristics of ratings ($\in x$ xept for $H S D G$ and FILLR). The $m \in d i a n$ for $\in d u c a-$ tion was almost always a high school education, or just less than that $l \in v e l$ of education. As a result, a new variable was $d \in v \in l o p \in d$ - $H S D G$, or percentage of high school graduates on board (college education was not taken into account). The $n \in w$ variable had enough variability to be used as a predictor. FILLR was calculated as a percentage of the on board strength as ccmpared to the required strength of the SMD.

III. ANALYSIS

A. BETHCD

Multiple regression analyses was used to determine if a set of variables could be developed to predict "readiness". The $n i n \in$ dependent $v a r i a b l e s$ and the eight personnel characteristics for each engineering rating were utilized, for a total of 72 predicticn equaticns.

Calculating B Squares in this manner and using the F test to $\in \operatorname{valuate~the~statistical~significance~of~increments~}$ to prediction is a robust method of analysis. It enables the $u s e r$ tc determine the relative contribution of different variatles in the regression equation.

The statistical significance used in this thesis was the . 05 level. It is quite possible for a variable to be in and of itself a significant predictor of a dependent variable, tut. when added to a model with another variable fhat by itself is a significant predictor) contribute insignificantly tc the prediction. Numerous systematic regressions were run in an effort to derermine the significant predictors.

B. ANAITSIS

The first step in the a nalysis was to examine the realtionship of downtime to the UIC's themselves. Before addressing the issue of personnel attributes, it was felt that some individual differences among the ships had to be examined before the personnel characteristics should be utilized as predictors of readiness.

Overhaul quarters were accounted for with the variable OVERHAUL. This dichotomous dumy variable takes into
account the quarters that $t h e$ individual UIC's reported C-5 in the CASREP system (CASREPs, perhaps not supprisingly, drop to a very low level during overhaul quarters). The variatle made each quarter that a ship was ir. overhaul a separate fredictor. It separated overhaul quarters from normal operating quarters.

TABLE ∇

PERCENTAGE OF VARIANCE ACCOONTED FOR

DEPENDENT	$\begin{aligned} & \text { OIC'S } \\ & \text { ONLY } \end{aligned}$	OITH UIC'S ε OVERHAUL	VARIABLES	FINAL	CHANGE I
VARIAELE	ONLY	ε OVERHA UL	VARIABLES	REGRESSION	R2 $\times 10$
TDOWNMNT	32. 73	36.59	55.70	40.64	4.05
TK1	28.10	41.57	60.28	46.85	5.28
TK2	25.94	40.66	56.21	***	
TK3	16.29	16.89	47.54	22.71	5.82
TK4	11.43	11.86	33.07	16.16	4.30
ITNDEX01	36.69	43.06	63.12	47.06	4.00
TMEMRAC	22. 13	22.61	49.92	25.31	2.70
TTECHASS	17.79	31.21	50.80	32.59	1.38
TDOWNTOT	30.98	33.03	53. 18	33.50	. 47

*** Not Statistically Significant

The =esults were significant. Individual ship differences accounted for from 11.43 percent to 36.69 percent of the variance for each individual dependent variable and with the overtaul quarters added, the percentage of variance accounted for ranged from 11.86 to 43.06. The results are given in Takle v. This table shows the percertage of R-squared for the shif differences, with all the variables and the final regression after the F tests.

The variables used in the regressions to get the results in the "AIL VARIABLES" column of Table V are: the cverhaul predictors. UIC effects, and each personnel variable listed in Table IV for all the shipboardratings. For the "FINAL REGRESSICN", the list of variables used is shown in Table VII.

The change in $R-s q u a r \in d$ (times 100) is the increase in the percentage of defendent variable variance accounted for ty the final regression equation over the regressions with just the OIC's and CVERHAUL as predictors. The R-squared with all the variables entered is shown as an example of how a R-Square can be artifically inflated by using a large number of predictors. This is why successive F-tests must be computed - to determine which predictors are statistically significant and appropriate for retention.

The results of the UIC and overhaul regressions are interesting. FOr the total number of CASREPS. 41.57\% of the variance could be "explained" by ship differences, while only 11.86\% could be explained for the number of c-4 CASREPS and 16.89 for C-3 CASREPs. This could be the result of the differences among the fhilosophies or practices of Commanding Cfficers or Squadron Commanders.

While the directions cf the CASREP system are quite specific, the judgment of the Commanding officer procably always plays a part. If a system is C-3 or C-4 it wiil usually be casRep'd because it seriously degrades scme missicn area of the ship. But che number of $C-2$ CASREPS could $b \in a$ functicn of the operational policy of tine Commanding officer. If his philosophy (or that of the Squadren Ccmmander) is such that CASREPs make the shiplook sad, then he might te hesitant to submit too many. On the cther hand, if he follows policy to the letter, more CASREPS might be surmitted.

The next step was to compute an F ratio on each of the personnel "attributes" listed in table Four. As described above an "attribute" is operationally defined as the combined contribution of the seven engineering ratings for each characteristic. For example the HSDG attribute is the combined HSDG effect cf the EN, MR, EM, IC, HT, GSE, and GSM ratings. The combined data from all 工atings were utilized.

The guestion that must be answered is: Does the additicn of each attribute add significantly to the prediction? TheF ratio must be calculated for the difference between the two R-Squares for each predictor on each dependent variable. The fcrmula used [Ref. 5] was:

Where $N=$ total number of cases
R2xyz = larger R Squa red
R2xy = smaller f Squared
K1 = Number of independent variables of the larger R Squared and

K2 = Number of independent variables of the smaller R Squar \in d.

TABLB VI
F Batio - Each Attribute

	HSDG	$\stackrel{\text { ar }}{ }$	EN AGE	PRAG	PAYGR	YRACD	$\begin{aligned} & \text { TMEGR } \\ & 0.64 \end{aligned}$	
TK1			0.64	$\begin{aligned} & 0.974 \\ & 0.54 \end{aligned}$	2.65**	1.53	$\begin{aligned} & 0.64 \\ & 0.82 \end{aligned}$	
TK2								
TK4	0.43	1.	1.16	0	0.	0.90	0	
TINDEXO 1			0.					
TMEMRAC					0	1.26		
IDCWNTOT	1.49	0.98	0.60	1.3	2.24	1.6	0.9	. 35

In this case each individual attribute (i.e., 7 degrees of freedcmu was remeved frcm each equation and a ratio calculated. The results are given in Table VI. In this step, 72 different regression equations were derived and 72 F ratios calculated.

TABLE VII
Statistically Significant Attributes

DEPENDENT VARIABLE	$\begin{aligned} & \text { SIGNIFICANT } \\ & \text { PREDICTORS } \end{aligned}$
TDOWNMNT	HSDG, PAYGR
TK1	HSDG, PAYGR
TK2	NONE
TK3	HSDG YRACD
TINDEX01	HSDG, PAYGR
TMEMRAC	HSDG' PAYGR
TTECHASS	AFQT
TDCW NTCT	PAYGR

As can be seen, only twelve variables seemed to contribute significantly (p less than .05). These are shown in Table VII. TK2 had no personnel att=ibutes which proved to be statistically significant predictors of it.

Even though there was a variance among individuals within ships, as can be seen in Appendix C, it is interesting tc note that entry age, present age, and tire in grade did nct contritute tc any prediction. These results would indicate that in the engineering department age and time in grade are not a factor in determining "readiness".

The two attributes that proved statistically significant most cften were the fercentage of high school graduates and pay grade. This would seem to indicate that the more high school graduates and more senior personnel on board each UIC would $\in f f \in c t$ the measure of downtime, but such a conclusion
would be premature. Additionally, this finding disagrees with the earlier studies by CNA that found HSDG was not a significant predictor of maintenance effectiveness.

TABLE VIII

P Ratio - By Rating

Now that it was determined twelve attributes were statistically significant, the next step was to take these twelve, and separate each individual attribute into seven different predictors, one for each of the seven ratings' within the engineering department. In this stage, each individual ratings' characteristics a=e =aken into consideration, tc determine. in other words, which rating in each proven predictor made the difference. For example, was it the $H S D G E N$ (the percentage ot EN's with high-school degrees) cr HSDGGSM fthe percentage of GSM's with high schcol degrees) attribute that made the difference. The results are summarized in Table VIII.

By way of explaration, Table VIII is broken down into five sections. One section for each attribute that proved significant.

Each section shows the F ratio that was computed when each rating was omitted from the regression equation. Another series of regressions were computed to determine for which rating the attribute was statistically significant.

For example, the general attribute $A F Q T$ was shown to predict tre number of technical assistance calls requested. A series of seven regressions was computed, leaving a
 for which ratings AFCT was impcrtant. The result of the F test indicated that in the $E N$ rating $A F Q T$ was significantly related tc the measure, number of technical assistance calls Iequested. Allthe ratings found which influenced the dependent variable fcr each valid predictor are stared in Table VIII.

The twenty =ating variables whose F ratios indicated they contributed significantly were then combined with the original regression equation. The R-squares of these new regressions werethen used to compute a $n \in w$ ratic to determine if the variables that were deleted had added to the prediction. The following F's were computed: TDCWNTOT 1.09. TK1 1.13. TK 3 1.62. TK4.814. TINDEXO1 1.46. TMEMRAC 1.58. TTECHASS 1.17. TDOWNMNT 1.35. (The F for p less than $.01=1.65$ and for p less than $.05=1.44$.)

This showed that for the dependent variables TK3 and the two =eadiness indices, the combined predictive value of all the variatles was significant at the . 05 level (but nct at the .01 level). although individually each independent variatle was not significant enough.

Tc determine if any of the other variables, which had been $d \in l \in t \in d$, made a difference in the prediction a t test was run on all the predictors to see if any more could be

determined to be significant. The t test indicates which variatles contribute significantly to the regression after the cther variables are taken into account. as a result of this frocedure the variable $H S D G M R$ was found to be valid and was added to the final regression equations.

C. SOGMARI OF DATA ANALYSIS

A statistical truism: it is worth remembering that F or t ratios can be statistically significant when the magnitude of a relaticnship is actually small. This is the case in this research. Althcugh the several variables discussed did make a statistically significant addition to the prediction equation, the contributicns were small (the percentage change ranging from . 47 to 5.82, as was shown in Table V).

Another important, if yet unaddressed problem in the analysis, is the sign of the indepencent variables. Naively, it was thought that as each variable "improved" the amount of downtime would decrease. Surprisingly, this was not always the case in the empirical results. In most regressicn $\in q u a t i o n s, ~ s o m e ~ p r e d i c t o r s ~ h a d ~ p o s i t i v e ~ s i g n s ~ a n d ~$ some negative signs. An example of the final regression output is provided in Appendix E.

This shows that for the dependent variable Total Hours Downtime, percentage of high school graduates for the MR rating (BSDGMR) had a negative effect and pay grade for the GSM Iating (PAYGRGSM) had a positive. This car be interpreted tc mean that as the percentage of high schocl graduates increased the tctal number of downtime hours decreased. However, it also means that the more senior the GSM's on toard. the greater was the total hours of downtime.

Of the retained predictors for the dependent variables nine were fcsitive and the other eleven negative. The actual results can $k \in$ seen in Appendix E and Table IX also

TABLE IX
Effect of the Predictors
Directicn of Obtained Relationship
Dep
TDOWNTOT
TK1
TK 3
TK4
TINDEXO1
TMEMRAC
TTECAASS
TDOWNMNT

Intuitive
 HSDGMR
 HSEGMR PAYGRIC YRACDGSM FIIRIC FILLRGSE HSDGMR PAYGRIC

EAYGRIC

Counter-In

PAYGRGSM
HSDGEN PAYGRGSM HSDGEN HSDGIC HSDGEN PAYGRGSM
HSDGEN HSDGIC
AFQTEN
PAYGRGSM
shows the effects of each fredictor on each dependent variable. HSDGMR and PAYGRIC behaved as expected but HSDGEN and FAYGRGSM did not. An "intuitive" effect indicates that as the predictcr increases (e.g. more senior, greater percentage. etc.) the downtime decreases. A "counter-intuitive" $\in f f e c t, ~ o f ~ c o u r s e, ~ i s ~ o p p o s i t e . ~$

As is evident, attributes of the personnel in the EN rating had nothing but counter-intuitive relationships with downtime. Four of the five variables for the GSM ratings also had counter-intuitive relationships. an explanation for this right be the rapid promotion in the GSM rating when it was first created. Perhafs the promotion rate was so accelerated that the requisice experience level of senior petty officers was lcst.

As can be seen, the only independent variable that consistently had the intuitively proper sign was fill-ratio. The variatle FIIIR was only significant for the total number of $C-4$ CASREPS, however, and not at all useful in the predictions of the other eight measures used. The results showed that the more IC's and GSE's on board, the lower the number of C-4 CASREE's. However, the IC rating alsc had scme predictors that had ccunter-intuitive signs. Such a mixture cf results makes any comprehensive conclusion ambiguous.

IV. CONCLOSIONS

The amount of ship downtime was related to the individual ship, (i.e.. there were differences among the readiness data of ships that could not be explained by the predicters used) the fill ratio and the characteristics of the crew. Disregarding the direction of their relationship for the $\mathbb{C} \mathbb{\square} \in \ln ^{\prime}$, those perscnnel characteristics that influenced readiness included percentage of high schocl graduates, AFQT scores, pay grade, years of active duty and fill ratio.

The analyses determined that although a relationship existed $k \in t w \in e n$ certain personnel characteristics and equipment dcwntime, it was small and often in a counter-intuitive directicn. For example, the inverse relationship between the median $G S M$ paygrade and downtime is difficuit to explain. The fill ratio for the GSE's did, however, behave as exfected in predicting the total $n u m b \in I$ of $C-4$ CASREFs.

Other questions remain. What effect did each Commanding officer have on the number of CASREPs submitted? Further research is warranted in this area, matching Commanding Officers against CaSkeps submitted during their command.

The differences that were discovered in the amount of R-squared for the number of CASREPs submitted in the different categories makes it imperative that each individual OIC be accounted for in any analysis before any cther variatle is examined.

Some predictors and some ratings showed both an intuitive and ccunter-intuitive relationship with readiness. For Example, the HSDG predictor and the IC rating had both sorts of relaticnshifs. Without a plausible theoretical explanaticn for this, the results might be due to charce.

CASREF reporting may depend on what a ship is dcing when the equifment fails. What effect does a $3-M$ or INSURV inspection have? The CASREP system itself is often said to te atused. For instance, were some CASREP's submitted to get priority status for the ordering of parts? Although this is nct allowed, it does happen.

Inclusion of the other ratings from the other ship departments would undoubtedly have raised R-Squares to a higher figure. Alternatively, concentrating on only those equipment identificaticn codes (EIC's) associated with the engineering $d \in p a r t m \in n t$ might have proven useful. But
 this thesis. The effect, if $\exists \mathrm{n}$. of the perscnnel characteristics of $t h \in r a t i n g s$ in the engineering department cn dcwntime was the frime concern.

Given all the above, the analysis of the personnel characteristics can still be considered valid because the effects of differences between UICs were accounted fcr. However, theresults would tend to indicate that personnel characteristics have no real effect and other correlates should $b \in$ scught.

The results do not mean that personnel characteristics do not make a difference, but that variations in these characteristics within the ranges observed on the DD 963's are not likely to make much difference. Furthermore, such effects may often be counter-intuitive.

CASREFs for the entire ship level might result in too gross a criterion for analysis. Analysis by sub-systems or pieces of individual equipment, where downtime can be identified by a specific rating, might be more appropriate. Such an approach, however, would still not preclude the possirility that the rating which "should have" worked on the equifafnt might nct have. In summary, the relationships between personnel attributes, fill-raiios and ship readiness remain ccaplex--not intuitively obvious.

APPENDIX A
 PERSCHEL SELECTION PROGRAM LISTING

IATA RATING;SET FILEIN.MRGDFIO1;IF
(The cases having a given rating through the 27 quarters are extracted by the following section)
((RATING01='__') OR (RATINGO2='__') OR (RATING03='__') OR (RATINGO4='__') OR (RATING05='__') OR (RATING06='___') OR (RATING07='__(') OR (RATING08='__') OR (RATINGO9 = ' _ ' ${ }^{\prime}$) OR (RATING10=' ___') OR (RATING11='___') OR (RATING12='__ ${ }^{\prime}$) OR (RATING13='__') OR (RATING14='__') OR (RATING15='__') OR (RATING16='__') OR (RAIING17='__') OR (RATING18='__(') OR (RATING19='__') OR (RATING20='__') OR (RATING21='__') OR (RATING22='__ ') OR (RAIING23='__ ${ }^{\prime}$) OR (RATING24='__1) OR
 (RATING27='__')):
DATA QUARIRO1; SET RATING:
(Here high-shcool degreed are defined and those with a given rating aboard cne of the UIC's a=e assembled.)

IF (((UICO1='574') OR (UICO1='575') OR (UICO1=1576')
OR (OICO1='586') OR (OIC01= '588')) AND (RATINGO1='__'));

THEN CHYECO $1=0$; IF (($\mathrm{HYECO1} \mathrm{GE}$ 6) AND (HYECO1 LE 12))
THEN CHYECO $1=1$; EROC SORT DATA=QUARTRO1 OUT=QUARTRO1;BY UIC01; CATA QUARTRO2; SET RATING:

IF ((HYECO 2 GE 1) AND (HYECO2 LE 5)) OR (HYECO2 EQ 13)) THEN CHYECO2=0; IF ((HYECO2 GE 6) AND (HYECO2 LE 12)) THEN CHYECO 2=1;

EROC SORT DATA=QUARTEC2 OUT=QUARTRO2;BY OIC02;
CATA CUAETRO3;SET RATING;
IF (((UICO3=1574') OR (UICO 3=1575')
OR (OICO3='576') OR (OIC03= '586') OR
(OICO3= '587') OR (UICO3='588')) AND (RATINGO3='__') ;
IF (((HYECO3GE 1) AND (HYECO3 LE 5))
OR (HYECOZ EQ 13)) THEN CHYECO $3=0$;
IF ((HYECO GE 6) ANC (HYECO3 LE 12)) THEN CHYECO 3=1;
EROC SORT DATA=QUARTRO3 OUT=QUARTRO3;BY UIC03;
DATA QUARTRO4;SET RATING;
IF ((UICO4=1574') OR (UIC04=1575') OR
(UICO4='576') OR (OICO4='586') OR
(UICO4= '587') OF (UICO4='588') OR
(UICO4='589')) AND (RATINGO4=1 \qquad '

IF (($\mathrm{HYECO4} \mathrm{GE}$ 1) ANL (HYECO4 LE 5))
OR (HYECO4 EQ 13)) THEN CHYEC04=0;
IF ((EYECO4 GE 6) AND (HYECO4 LE 12)) THEN CHYECO 4=1;
EROC SORT DATA=QJARTEO4 OUT=QUARTRO4; BY UICO4;
LATA QUARTROS:SET RATING;
IF (((OICO5=1574') OR (OICO 5= '575')
OR (UICO5='576') OR (OIC05= '586') OR (OICO5='587') OR (UICO 5='588')
OR (UIC05='589') OR (OIC05= 590')) AN
(RATING05='__') :
IF ((HYECOSGE 1) ANL (HYECO5 LE 5))
OR (HYECO5 EQ 13)) THEN CHYEC05=0;
IF ((EYECO5 GE 6) AND (HYECO5 LE 12)) THEN CHYEC05=1;
EROC SORT DATA=QOARTROS OUT=QUARTRO5;BY UIC05;
DATA QUARTROG;SET RATING;

CR (OIC06= $\left.{ }^{\circ} 576^{\circ}\right)$ OR (OIC06= $\left.{ }^{\prime} 586^{\prime}\right)$ OR
(UIC06= '587') OR (UIC06='588')

OR (UIC06='589') OR (OIC06= $590^{\prime \prime}$) OR (UIC06=591')) AND (RATING06='_-_'));
IF (((HyECO6 GE 1) aND (HyEC06 LE 5))
OR (HYECC6 EQ 13)) THEN CHYEC06=0;
IF ((HYECO6 GE 6) AND (HYECO6 LE 12)) THEN CHYEC06=1;
EROC SORI DATA=QUARTRO6 OUT=QUARTRO6; BY UIC06;
data cuartroliset railng;

(OICO7= 5 587') OF (OICO7='588')
OR (OICO7='589') OR (OIC07='590') OR
(OICO7='591') OF (UICO7=1598')
OR (OIC07='601') OR (OIC07='602')) AN
(RATING07='__'));
IF (((HyECO7 GE 1) AND (HYECO7 LE 5))
CR (HYECC7 EQ 13)) T日EN CHYECO7=0;
IF (($\mathrm{HYECC7}$ GE 6) AND (HYECO7 LE 12)) THEN CHYECO $7=1$;
EROC SORT LATA=QUARTFO7 OUT=QUARTRO7; BY UIC07;
data cuaftrob; SET Rating;
IF (((UICC8= 5 574') OR (OICO 8='575') OR

(UICO8='587') OR (UIC08='588') OR
(OIC08='589') OR (OICC8='590') OR

$$
\text { (UICO8= } 59 \text { 1' }^{\prime} \text {) OF (OICO 8='598') OR }
$$

(UIC08='599') OR (OICO8='601') OR
(UICC8=602') OR (UICO 8='603')) AND (RAT INGO 8='__')):

IF (($\mathrm{HYECO8} \mathrm{GE}$ 1) AND ($\mathrm{HYECO8} \mathrm{LE}$ 5))
OR (HYECC8 EQ 13)) THEN CHYEC08=0;
If ((HyECO8 GE 6) AND (HYEC08 LE 12)) THEN CHYEC08=1;
PROC SORT DATA=QUARTRO8 OUT=QUARTRO8;BY UIC08;
cata quartro9; 5 ET Rating;
IF ((OICO9=9574') OF (UICO 9= 5 575') OR
(UIC09='576') OR (UICO9= 586') OR

(OIC09='589') OR (OICO9= 590°) OR
(UICO9=1591') OR (UICO9=1598')
OR (UICO9='599') OR (OIC09= '600') OR
(UICO9=1601') OF (OICO9=1602')
OR (UICO9='603') OR (UIC09='604')) AND (RATING09='___');
IF (((HyEC09 GE 1) anc (HyEC09 Le 5))
OR (HYECO9 EQ 13)) THEN CHY ECO9=0;

FROC SORT LATA=QUARTFO9 OUT=QUARTRO9; BY UIC09;
data quartr 10: SET RaIING;
IP (((UIC10=1574') OF (UIC10=1575') OR (UIC10= 575°) OR (UIC10=1586') OR
(UIC10= '587') OR (UIC10='588') OR (UIC10= '589') OR (UIC10='590') OR
(UIC10='591') OR (UIC10='598') OR (UIC10='599') OR (UIC10='600') OR
(UIC10=1601') OF (UIC10='602') OR (UIC 10='603') OR (UIC10='604') OR
(OIC10='611')) AND (RATING10='_-_')):
IF (($\mathrm{HYEC10} \mathrm{GE}$ 1) aND (HYEC10 LE 5))
OR (HYEC10 EQ 13)) TBEN CHYEC10=0;
IF ((HYEC10 GE 6) aNC (HYEC 10 LE 12)) THEN CHYEC10=1;
FROC SORT DATA=QUARTR10 OUT=QUARTR10; BY UIC10;
data quarir 11; SET RAIING;
IF (((OIC11= '574') OF (UIC1 1='575') OR
(UIC11='576') OR (UIC11='586') OR
(OIC11='587') OF (UIC11='588') OR
(OIC11='589') OR (UIC11='590') OR
(OIC11='591') OR (UIC11='598') OR
(UIC11='599') OR (UIC11='600') OR
(OIC11='601') OF (UIC11='602') OR
(UIC11='603') OR (UIC11='604') OR
(UIC11='611')) AND (RATING11='_-_'));
IF ((HY EC 11 GE 1) AND (HYEC11 LE 5)) OR (HY EC 11 EQ 13)) THEN CHYEC11=0;

EROC SORT DATA=QUARTE11 OUT=QUARTR11; BY UIC11;
[ATA QUARTR12; SET RATING;
 (UIC12= '576') OR (UIC12= 5 $^{\circ} 6^{\prime \prime}$) OR
 (UIC12= '589') OR (UIC12= $\left.59^{\circ} 0^{\circ}\right) ~ O R$ (UIC12='591') OR (UIC12='598') OR (UIC12= '599') OR (UIC12='600') OR (UIC12=1601') OEF (UIC12='602') OR (UIC12='6O3') OR (UIC12='604') OR (UIC12=1611')) AND (RATING12='__-'));

OR (HYEC12 EQ 13)) THEN CHYEC12=0;
IF ((HYEC12 GE 6) AND (HYEC12 LE 12)) THEN CHYEC12=1;
PROC SORT DATA=QUARTR12 OUT=QUARTR12;BY UIC12;
[ATA QUARTR13;SET RAIING:

 (UIC13= '587') OR (UIC13='588') OR (UIC13= '589') OR (UIC13= '590') OR (UIC13='591') OR (UIC13='598') OR (UIC13='599') OR (UIC13='600') OR (UIC13='601') OG (UIC1 3='602') OR (UIC1ミ=' 603^{\prime}) OR (UIC13='604') OR (UIC13='611')) AND (RATING13='__-'));
IF (($\mathrm{HYEC13} \mathrm{GE}$ 1) $\mathrm{AND}(\mathrm{HYEC13} \mathrm{LE} 5)$)
OR (HYEC1ミ EQ 13)) THEN CHYEC13=0;
IF ((HYEC13 GE 6) AND (HYEC 13 LE 12)) THEN CHYEC1 3=1;
EROC SORT DATA=QUARTR13 OUT=QUARTR13;BY UIC13;
CATA QUARTR14; SET RATING;

(UIC14='589') OR (UIC14='590') OR
(UIC14=9591') OR (UIC14= 598°) OR

(UIC14='599') OR (OIC14=1600') OR
(UIC14='601') OK (UIC14='602') OR
(UIC14=9603') OR (UIC14= '604') OR
(UIC14='611')) AND (RATING14='__-')):
IF (($\mathrm{HPEC14} \mathrm{GE}$ 1) AND (HYEC14 LE 5))
OR (HYEC14 EQ 13)) THEN CHYEC14=0:
IF ((HYEC14 GE 6) AND (HYEC 14 LE 12)) THEN CHYEC14=1;
EROC SORT LATA=QUARTE14 OUT=QUARTR14;BY UIC14;
LATA QUARTR15; SET RATING:
 (UIC15= (576') OR (OIC15= $^{\prime} 58^{\prime \prime}$) OR
(UIC15= '587') OR (UIC15='588') OR
(UIC15='589') OR (UIC15='590') OR
(UIC15='591') OR (OIC15='598') OR
(UIC15='599') OR (UIC15='600') OR
(UIC15=1601') OK (UIC15='602') OR
(UIC15='6C3') OR (UIC15='604') OR
(UIC15='611')) AND (RAIING15='__-')):
IF ((HYEC 15 GE 1) AND (HYEC15 LE 5))
OR (HYEC 15 EQ 13)) THEN CHYEC 15=0:
IF ((HYEC15 GE 6) AND (HYEC15 LE 12)) THEN CHYEC15=1:
EROC SORT DATA=QUARTR15 OUT=QUARTR15; BY UIC15:
[ATA CUARTR16; SET RATING;
 (UIC16='576') OR (UIC16='586') OR
(UIC16='587') OE (UIC16='588') OR
(UIC16='589') OR (UIC16= $\left.590^{\prime \prime}\right)$ OR
(UIC16='591') OR (UIC16='598') OR
(UIC16='599') OR (UIC16='600') OR
(UIC16='601') OF (UIC16='602') OR
(UIC16='603') OR (OIC16='604') OR
(UIC16='611')) AND (RATING16='__-')):
IF ((HYEC 16 GE 1) AND (HYEC16 LE 5))
OR (HYEC16 EQ 13)) THEN CHYEC16=0:
IF ((HYEC16 GE 6) AND (HYEC 16 LE 12)) THEN CHYEC16=1;

EROC SORT LATA=QUARTE16 OUT=QUARTR16;BY OIC16;
DATA QUARTR17; SET RAIING;

CR (UIC17=9576') OR (UIC17= '586') OR (UIC17= 587°) OR (UIC17=1588年)
OR (UIC17='589') OR (UIC17= '590') OR (UIC17=1591') OR (UIC17=1598')
CR (UIC17='599') OR (OIC17= '600') OR

$$
\left(U I C 17=1601^{\prime}\right) \text { OF (UIC17=1602') }
$$

OR (UIC17='603') OR (UIC17=1604') OR
(UIC17=1611')) AND (RATING17='__-'));

IF (($\mathrm{HYEC17} \mathrm{GE}$ 1) ANE (HYEC17 LE 5))
OR (HYEC 17 EQ 13)) THEN CHYEC17=0;
IF ((HYEC17 GE 6) ANE (HYEC17 LE 12)) THEN CHYEC17=1;
EROC SORT DATA=QUARTR17 OUT=QUARTR17;BY OIC17;
LATA QUARTR 18; SET RATING;
 (UIC18=9576') OR (UIC18='586') OR

$$
\text { (OIC18= } 5 \text { 587') OF (UIC1 8='588') OR }
$$

(UIC18='589') OR (UIC18= 5 ' $^{\circ} 9^{\circ}$) OR
(OIC18= '591') OR (UIC18='598') OR (UIC18='599') OR (UIC18= '600') OR

$$
\left.\left(\text { OIC } 18=1601^{\prime}\right) \text { OF (OIC1 } 8=1602^{\prime}\right) \text { OR }
$$

(UIC18='603') OR (OIC18='604') OR
(UIC18=.611') AND (RATING18='__-'));

IF (($\mathrm{HYEC18} \mathrm{GE}$ 1) AND (HYEC18 LE 5))
OR (HYEC 18 EQ 13)) THEN CHYEC18=0;
IF ((HYEC18 GE 6) AND (HYEC 18 LE 12)) THEN CHYEC18=1;
EROC SORT DATA=QUARTR18 OUT=QUARTR18;BY UIC18;
DATA CUABTR19; SET RATING;
 (UIC19 = '576') OR (UIC19= 5 ' $^{\circ} 8^{\circ}$) OR
(UIC19 = '587') OR (UIC19 = '588') OR

(UIC19=1591') OR (UIC19= (598') OR
(UIC19='599') OR (UIC19='600') OR
(UIC19=1601') OR (UIC19=1602') OR
(UIC19='603') OR (UIC19='604') OR
(UIC19='611')) AND (RATING19='__-')):
IF (($\mathrm{HYEC19} \mathrm{GE}$ 1) $\mathrm{AND}(\mathrm{HYEC19} \mathrm{LE} 5)$)
OR (HYEC19 EQ 13)) THEN CHYEC19=0;
IF ((BYEC19 GE 6) AND (HYEC19 LE 12)) THEN CHYEC19=1;
EROC SORT CATA=QUARTR19 OUT=QUARTR19;BY UIC19:
EATA QUARTR20; SET RATING;
 (UIC20=9576') OR (UIC20='586') OR
(UIC20='587') OR (UIC20='588') OR (UIC20= '589') OR (UIC20='590') OR
(UIC20=1591') OR (UIC20='598') OR
(UIC20='599') OR (UIC20=1600') OR
(UIC20=1601') OF (UIC2 0='602') OR
(UIC20=1603') OR (UIC20=1604') OR
(UIC20='611')) AND (RATING20='__-')):
IF ((HYEC 20 GE 1) ANE (HYEC20 LE 5))
OR (GYEC20 EQ 13)) THEN CHYEC20=0;
IF ((HYEC20 GE 6) AND (HYEC 20 LE 12)) THEN CHYEC20=1;
EROC SORT DATA=QUARTR20 OUT=QUARTR20;BY UIC20;
LATA COARTRZ1: SET RATING;
 (UIC21=1576') OR (UIC21=1586') OR
(UIC21='587') OR (UIC21='588') OR (UIC21='589') OR (UIC21='590') OR
(UICえ1= '591') OR (UIC2 1='598') OR
(UIC21='599') OR (UIC21='600') OR
(UIC21='601') OF (UIC2 1='602') OR
(UIC21='603') OR (UIC21='604') OR
(UIC21='611')) AND (RATING21='__('));
IF (((HYEC21 GE 1) AND (HYEC21 LE 5))
OR (HYECえ1 EQ 13)) THEN CHYEC21=0;
IF ((HYEC21 GE 6) AND (HYEC 21 LE 12)) THEN CHYEC2 1=1:

FROC SORT［ATA＝QUARTR21 OUT＝QUARTR21；BY UIC21；
LATA QUARTR22；SET RATING；
IF（（（OIC22＝574＇）OF（UIC22＝1575＇）OR

（UIC22＝＇587＇）OR（UIC22＝（588＇）OR （UIC22＝（589＇）OR（OIC22＝590＇）OR
（UICく2＝－591＇）OR（UIC22＝1598＇）OR （OIC22＝＇599＇）OR（OIC22＝1600＇）OR （UIC22＝＇601＇）OF（UIC22＝＇602＇）OR （UIC22＝＇と03＇）OR（OIC22＝1604＇）OR （UIC22＝＇611＇））AND（RATING22＝＇＿＿－＇））； IF（（HYEC22 GE 1）ANL（HYEC22 LE 5）） OR（HYEC22 EQ 13））THEN CHYEC22＝0；
IF（（HYEC22 GE 6）ANL（HYEC 22 LE 12））THEN CHYEC2 2＝1；
EROC SORT DATA＝QUARTR22 OUT＝QUARTR22；BY UIC22；
LATA COARTR23：SET RATING：
 （UIC23＝1576＇）OR（UIC23＝1586＇）OR
 （UIC23＝（589＇）OR（UIC23＝590＇）OR
（UICえ3＝＇591＇）OR（UIC23＝＇598＇）OR （UIC23＝＇599＇）OR（OIC23＝＇600＇）OR （UIC23＝＇601＇）OK（UIC2 3＝＇602＇）OR （UIC23＝1603＇）OR（UIC23＝1604＇）OR

$$
\text { (UIC23= } 611^{\prime} \text {)) AND (RATING23='__-')): }
$$

IF（（（HYEC23 GE 1）AND（HYEC23 LE 5））
OR（ HYEC 23 EQ 13））THEN CHYEC23＝0；
IF（（HYEC23 GE 6）ANE（HYEC 23 LE 12））THEN CHYEC2 3＝1：
EROC SORT DATA＝QUARTR23 OUT＝QUARTR23；BY UIC23；
DATA QUARTR24；SET RAIING；
 （UIC24＝ 576^{\prime} ）OR（UIC24＝ $586^{\prime \prime}$ ）OR
 （UIC24＝ （U89＇）OR（OIC24 $^{\circ}$（590＇）OR
（UIC24＝＇591＇）OR（UIC24＝1598＇）OR
(UIC24='5c9') OR (OIC24=1600') OR
(OIC24= 6001) OF (UIC24='602') OR
(UIC24='603') OR (UIC24='604') OR
(UIC24='611')) AND (RATING24='_--'));

OR (HYEC24 EQ 13)) THEN CHYEC24=0;
If ((HYEC24 GE 6) AND (HYEC 24 IE 12)) THEN CHYEC24=1;
FROC SORT LATA=QUARTE24 OUT=QUARTR24;BY UIC24;
cata QUartre 25 ; SEI Rating;
 (OIC25= 5 576') OR (UIC25= (586') OR
(UIC25='587') OR (UIC25='588') OR (UIC25= '589') OR (OIC25='590') OR
(UIC25='591') OR (UIC25='598') OR (UIC25='599') OR (UIC25='600') OR
(OIC25='601') OF (UIC25=1502') OR (UIC25=16C3') OR (OIC25='604') OR
(OIC25=6611')) AND (RATING25='_-_'));
IF (((HYEC25 GE 1) ANL (HYEC25 LE 5))
OR (HYEC25 EQ 13)) THEN CHYEC25=0;
If ((日YEC25 GE 6) AND (HYEC 25 LE 12)) THEN CHYEC25=1;
FROC SORT LATA=QUARTR25 OUT=QUARTR25; BY UIC25;
cata quartr 26:SET Rating;
IF ((1OIC26=1574') OF (UIC26='575') OR (UIC26='576') OR (OIC26= 586') OR
(OIC26='587') OF (UIC26='588') OR (UIC26='589') OR (OIC26='590') OR
(OIC26='591') OR (UIC26='598') OR (UIC26='599') OR (UIC26='600') OR
(UIC26='601') OE (UIC26='602') OR (OIC26='603') OR (UIC26='604') OR (OIC26='511')) AND (RATING26='__-'));
IF (((HYEC26 GE 1) AND (HYEC26 LE 5))
OR (BYEC 26 EQ 13)) THEN CHYEC26=0;
If ((HYEC26 GE 6) AND (HYEC26 LE 12)) THEN CHYEC26=1;

FROC SORT DATA=QUARTE26 OUT=QUARTR26;BY UIC 26;
cata Quartr 27; SET Rating;
IF (((UIC27=1574') OE (UIC27=1575') OR (OIC27='576') OR (UIC27= 586') OR
(UIC27=1587リ) OR (UIC27='588') OR
(UIC27='589!) OR (OIC27= 590') OR
(OIC27='591') OR (UIC27='598') OR
(OIC27=1599') OR (OIC27=1600') OR
(OIC27= 60 1' $^{\prime}$) OE (UIC27='602') OR
(OIC27=1603') OR (UIC27=9604') OR
(UIC27=1611')) AND (RATING27='_-_'));
IF (((HyEC27 GE 1) AND (HYBC27 LE 5))
OR (BYEC27 EQ 13)) TBEN CHYEC27=0;
If ((HyEC27 GE 6) AND (HYEC 27 Le 12)) THEN CHYEC27=1;
FROC SORT DATA=QOARTR27 OUT=QUARTR27;BY UIC27;
froc univariate data cedartrol noprint; ey uicol;
VAR CHYECO1 AFQTMSTR ENTAGEO 1
PRSAGE01 FAYGRD01 YRACDU01 TIMEGR01;
OUTPOT CUT=SUMMRYO1 MFAN=HS DG__
MEDIAN=MELHSDG AFQT__ ENAGE___
PRAGE__ PAYGF__ YRACD___ TMEGR__ N=N_HSD___;
data Summryol; SET SUMMRY01; DROP MEDHSDG; QUARTER=1;
EROC FRINT LATA=SUMMRYO1;
title on the contents of a proc onivariate output dataset; TITLE3 ___ FATING, QUARTER NO. 1;
(The aggregate statistics are now computed)
FROC UNIVARIATE DATA=CUARTRO2 NOPRINT; BY UIC02;
VAR CHyECO2 AFQTMSTR ENTAGEO2 PRSAGEO2
FAYGREO2 YRACDU02 TIMEGR02;
OUTPUT OUT=SUMMRYO2 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT_ \qquad ENAGE__ PRAGE__ PAYGR__ YRACD__ TMEGR__ N=N_HSD data summryo ; set summry 02 ; deop medhsdg; Quarter=2; EROC ERINT [ATA=SUMMFYO2;
title on the contents of a proc univariate output dataset;

IITLE3 EATING, QUARTER NO. 2;
EROC ONIVARIATE DATA=QUARTRO3 NOPRINT; EY UIC03;
VAR CHYECO3 AFQTMSTR ENTAGEO3 PRSAGEO3
PAYGREO3 YRACDUO3 TIMEGR03:
OOTPUT COT=SUMMRYO3 MEAN=HSDG_ MEDIAN=MEDHSDGAFQT_-
 DATA SUMMRY03; SET SUMMRY03; DROP MEDHSDG; QUAETER=3;
EROC ERINT LATA=SUMMEYO3:
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPOT DATASET:
IITLE3 _- FATING, QUARTER NO. 3 ;
EROC UNIVARIATE DATA=QUARTRO4 NOPRINT; BY UIC04;
VAR CHYECO4 AFQTMSTR ENTAGEO4 PRSAGEO 4
EAYGRLO4 YRACDOO4 TIMEGR04:
COTPUT OUT=SUMMRYO4 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT \qquad ENAGE__ PRAGE__ PAYGR__ YRACD__ TMEGR__ N=N_HSD \qquad ;
DATA SUMMRYO4; SET SUMMRY04; DROP MEDHSDG; QUARTER=4; EROC ERINT LATA=SUMMEYOU;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; TITLE3 __ RATING. QUARTER NO. 4;
EROC UNIVARIATE DATA=QUARTR 05 NOPRINT; BY UIC05;
VAR CHYECO5 AFQTMSTR ENTAGEO5 PRSAGEO5
FAYGREO5 YRACDUO5 TIMEGR05:
OUTPOT OUT=SUMMRYOS MEAN=HS DG__ MEDIAN=MEDHSDG AFQT \qquad
 DATA SUMMRY05; SET SUMMRY05; DROP MEDHSDG; QUARTER=5;
EROC ERINT LATA=SUMMFYO5:
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
IITLE3
EATING, QOARTER NO. 5:
EROC UNIVARIATE DATA=QUARTRO6 NOPRINT; BY UIC06;
VAR CHYECO6 AFQTMSTR ENTAGEO6 PRSAGEO6
EAYGRC06 YRACDU06 TIMEGR06;
OUTPUT OUT=SUMMRYO6 MFAN=HS LG \qquad MEDIAN=MEDHSDGAFQT_ ENAGE \qquad PAYGR_ YRACD \qquad TMEGR \qquad N=N_HSD__ ; DATA SUMMRYO6; SET SUMMRYO6; DROP MEDHSDG; QUARTER=6; FROC ERINT [ATA=SUMMEYO6:

TITLE ON THE CONTENTS OF A EROC UNIVARIATE OUTPUT DATASET; TITLE 3 FATING, QUARTER NO. 6;

EROC UNIVARIATE DATA=CUARTRO7 NOPRINT; BY UIC07;
VAR CHYECO7 AFQTMSTR ENTAGEO7 PRSAGEO7
EAYGRDO7 YRACDUO7 TIMEGR07:
OUTPOT OOT=SUMMRYO7 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT \qquad ENAGE__ FRAGE__ PAYGR__ YRACD__ TMEGR__ $N=N_{\ldots} H S D_{\ldots}$ _
LATA SUMMRYO7; SET SUMMRY07: DROP MEDHSDG; QUARTER=7;
EROC FRINT DATA=SUMMRYO7:
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET: TITLEミ __ RATING, QUARTER NO. 7;
FROC UNIVARIATE DATA=COARTRO8 NOPRINT: BY UIC08;
VAR CHYECO8 AFQTMSTR ENTAGEO8 PRSAGEO8
PAYGREO8 YRACDU08 TIMEGR08;
OUTPUT OOT=SUMMRYO8 MEAN=HSDG_ MEDIAN=MEDHSDG AFQT \qquad ENAGE__ $F R A G E _$PAYGR___ $Y R A C D_{1} \quad$ TMEGR__ $N=N _H S D_{\ldots}$;
DATA SUMMRYO8; SET SUMMRYO8; DROP MEDHSDG; QUARTER=8;
EROC FRINT CATA=SUMMRYO8;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
TITLE \qquad RATING, QUARTER NO. 8 ;
EROC UNIVARIATE DATA=CQURTRO9 NOPRINT; BY UIC09;
VAR CHYECO9 AFQTMSTR ENTAGEO9 PRSAGE09
EAYGRD09 YRACDUO9 TIMEGR09;
OUTPUT OUT=SUMMRYO9 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT \qquad ENAGE \qquad FRAGE \qquad PAYGR \qquad YRACD \qquad TMEGR \qquad $\mathrm{N}=\mathrm{N} _\mathrm{HSD}$ \qquad ;
DATA SUMMRYO9; SET SUMMRY09: DROP MEDHSDG; QUARTER=9;
FROC FRINT DATA=SUMMRYO9;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; TITLE ב__ RATING, QUARTER NO. 9;
EROC UNIVARIATE DATA=CUARTR 10 NOPRINT; BY UIC 10:
VAR CHYEC 10 AFQTMSTR ENTAGE10 PRSAGE10
FAYGRD10 YRACDU 10 TIMEGR10;
OUTPOI OUT=SUMMRY10 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT \qquad ENAGE__ ERAGE__ PAYGR__ YRACD__ TMEGR__ $N=N_{\text {_ }} \mathrm{HSD}_{\ldots}$ __ LATA SUMMRY10; SET SUMMRY 10; DROP MEDHSDG: QUARTER=10;

EROC FRINT DATA=SUMMRY10;
IITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET: TITLE \qquad FATING, QUARTER NO. 10 :

EROC ONIVARIATE CATA=CUARTR11 NOPRINT; BY UIC11;
VAR CHYEC 11 AFQTMSTR ENTAGE11 PRSAGE11
FAYGRD11 YRACDU11 TIMEGR11;
OUTPOT OOT=SUMMRY11 MEAN=HSDG \qquad MEDIAN=MEDHSDG AFQT \qquad ENAGE__ ERAGE__ PAYGR__ YRACL__ TMEGR__ N=N_HSD__: CATA SUMMRY11; SET SUMMRY11; DROP MEDHSDG; QUARTER=11; EROC ERINT LATA=SUMMRY11;

IITIE CN THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET: TITLE \qquad RATING, QUARTER NO. 11 ;

EROC UNIVARIATE DATA=CUARTR12 NOPRINT; BY UIC 12:
VAR CHYEC 12 AFQTMSTR ENTAGE12 PRSAGE12
EAYGRD12 YRACDU 12 TIMEGR12;
OUTPUT OUT=SOMMRY12 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT__
ENAGE \qquad FRAGE \qquad PAYGR__ YRACL \qquad TMEGR \qquad $\mathrm{N}=\mathrm{N}$ _HSD \qquad ;

LATA SUMMEY12; SET SUMMRY 12; DROP MEDHSDG; QUARTER=12;
FROC PRINT DATA=SUMMRY12;
IITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
TITLEב __ RATING, QUARTER NO. 12:
EROC ONIVARIATE CATA=COARTR13 NOPRINT; EY UIC13;
VAR CHYEC 13 AFQTMSTR ENTAGE13 PRSAGE13
EAYGRD13 YRACDU13 TIMEGR13:
OUTPUT OUI=SUMMRY13 MEAN=HSDG \qquad MEDIAN=MEDHSDG AFQT \qquad ENAGE__ ERAGE__ PAYGR__ YRACD__ TMEGR__ N=N_HSD__ ; CATA SUMMRY13; SET SUMMRY 13; DROP MEDHSDG; QUARTER=13;

EROC PRINT LATA=SUMMRI13:
IITLE CN THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; TITLE \qquad RATING, QOARTER NO. 13;
EROC UNIVARIATE DATA=COARTR14 NOPRINT: BY UIC14;
VAR CHYEC 14 AFQTMSTR ENTAGE14 PRSAGE14
EAYGRD14 YRACDU14 TIMEGR14;
OUTPUT OUT=SUMMRY14 MEAN=HSDG \qquad MEDIAN=MEDHSDG AFQT \qquad ENAGE__ PRAGE__ PAYGR__ YRACD__ TMEGR__ $N=N_{1} H S D_{\ldots}$;

DATA SUMMRY14; SET SUMMRY 14; DROP MEDHSDG;QUARTER=14;
EROC PRINT LATA=SUMMRY14;
IITLE ON THE CONTENTS OF A FROC UNIVARIATE OUTPUT DATASET; TITLEZ __ RATING. QUARTER NO. 14;
EROC UNIVARIATE DATA=COARTR15 NOPRINT: EY UIC 15:
VAR CHYEC 15 AFQTMSTR ENTAGE15 PRSAGE15
FAYGRD15 YRACDU15 TIMEGR15:
OUTPOT OUI=SUMMRY15 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT__ ENAGE__ ERAGE__ PAYGR__ YRACD__ TMEGR__ $N=N$ _HSD___:
CATA SUMMRY15; SET SUMMRY 15: DROP MEDHSDG;QUARTER=15;
EROC ERINT CATA=SUMMRY15:
IITLE CN THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; TITLEミ__ RATING, QUARTER NO. 15:
EROC UNIVARIATE LATA=CUARTR16 NOPRINT: BY UIC16:
VAR CHYEC 16 AFQTMSTR ENTAGE16 PRSAGE16
EAYGRD16 YRACDU16 TIMEGR16:
OUTPUT OOT=SUMMRY16 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT__
ENAGE__ $E R A G E _$_ PAYGR__ YRACD__ TMEGR__ $N=N$ _HSD___;
DATA SUMMRY16; SET SUMMRY 16; DROP MEDHSDG;QUARTER=16;
EROC ERINT DATA=SUMMRY16:
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET:
TITLEE __ RATING, QUARTER NO. 16;
EROC ONIVARIATE DATA=CUARTR 17 NOPRINT: BY UIC 17:
VAR CHYEC 17 AFQTMSTR ENTAGE17 PRSAGE17
EAYGRE17 YRACDU 17 TIMEGR17:
OUTPOT OOT=SUMMRI17 MEAN=HSDG \qquad MEDIAN=MEDHSDG AFQT__ ENAGE__ FRAGE__ PAYGR__ YRACD__ TMEGR__ N=N_HSD__ :
CATA SUMMRY17: SET SUMMRY 17: DROP MEDHSDG:QUARTER=17;
EROC ERINT DATA = SUMMRY17;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET: tITLE \qquad RATING, QUARTER NO. 17:
EROC ONIVARIATE LATA=COARTR 18 NOPRINT: BY UIC 18;
VAR CHYEC 18 AFQTMSTR ENTAGE18 PRSAGE18
EAYGRE18 YRACDO18 TIMEGR18:
OUTPUT OOT=SUMMRY18 MEAN=HSDG \qquad MEDIAN=MEDHSDG AFQT \qquad

ENAGE \qquad PRAGE \qquad PAYGR__ YRACD__ TMEGR \qquad $\mathrm{N}=\mathrm{N}$ _ HSD \qquad DATA SUMKFY18; SET SUMMRY 18; DROP MEDHSDG;QUARTER=18;
EROC PRINT LATA=SUMMRY18:
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; TITLE \qquad RATING, QUARTER NO. 18 ;

EROC UNIVARIATE LATA=ÇOARTR19 NOPRINT: EY UIC 19;
VAR CHYEC 19 AFQTMSTR ENTAGE19 PRSAGE19
PAIGRD19 YRACDU19 TIMEGR19;
OUTPUT OUI=SUMMRY19 MEAN=HSDG_ MEDIAN=MEDHSDG AFQT \qquad ENAGE__ FRAGE__ PAYGR__ YRACL__ TMEGR__ N=N_HSD__;

DATA SOMMRY19; SET SOMMRY 19: DROP MEDHSDG;QUARTER=19;
EROC ERINT LATA=SUMMRY19:
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; TITLE3 __ RATING, QUARTER NO. 19;

FROC ONIVARIATE LATA=CUARTR20 NOPRINT: BY UIC20;
VAR CHYEC20 AFQTMSTR ENTAGE20 PRSAGE20
FAYGRE20 YRACDU20 TIMEGR20;
OUTPUT COT=SUMMRY20 MEAN=HS LG__ MEDIAN=MEDHSDG AFQT \qquad ENAGE__ PRAGE__ PAYGR__ YRACD__ TMEGR__ N=N_HSD__; DATA SUMMRY20; SET SUMMRY 20; DROP MEDHSDG; QUARTER=20; EROC ERINT LATA=SUMMEY20;

TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; TITLE3 \qquad FATING, QUARTER NO. 20;

PROC UNIVARIATE DATA=CUARTR21 NOPRINT; BY UIC21;
∇ AR CHYEC 21 AFQTMSTR ENTAGE21 PRSAGE21
FAYGRD21 YRACDU21 TIMEGR21:
OUTPUT OUT=SUMMRY21 MEAN=HSDG \qquad MEDIAN=MEDHSDG AFQT \qquad ENAGE__ FRAGE__ PAYGR__ YRACD__ TMEGR__ $N=N_{\text {_ }} H_{S D}$ ___ LATA SUMMRYZ1; SET SUMMRY21; DROP MEDHSDG;QUARTER=21; EROC ERINT [ATA=SOMMSY21;

TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET: IITLE3 __ FATING, QUERTER NO. 21;
FROC ONIVARIATE DATA=QUARTR 22 NOPRINT: BY UIC22;
VAR CHYEC22 AFQTMSTR ENTAGE22 PRSAGE22
FAYGRD22 YRACDU22 TIMEGR22:

OUTPUT COI=SUMMRY22 VEAN=HSDG \qquad MEDIAN=MEDHSDG AFQT \qquad ENAGE__ FRAGE__ PAYGR__ YRACD__ TMEGR__ N=N_HSD \qquad :
LATA SUMMRY22; SET SUMMRY 22; DROP MEDHSDG; QUARTER=22;
EROC ERINT [ATA=SUMMFY22;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPOT DATASET;
IITLE3 __ FATING, QUARTER NO. 22;
EROC UNIVARIATE DATA=QUARTR 23 NOPRINT; BY UIC23;
VAR CHYEC23 AFQTMSTR ENTAGE23 PRSAGE23
PAYGRL23 YRACDU23 TIMEGR23;
OUTPOT OOT=SUMMRY23 MEAN=HSDG_ MEDIAN=MEDHSDG AFQT__
ENAGE__ PRAGE__ PAYGR__ PRACD__ TMEGR__ N=N_HSD \qquad
DATA SOMMRY23; SET SUMMRY 23; DROP MEDHSDG;QUARTER=23;
EROC ERINT LATA=SUMMEY23;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET;
TITIE3 _ EATING, QUARTER NO. 23;
EROC UNIVARIATE DATA=QUARTR 24 NOPRINT; BY UIC 24 :
VAR CHYEC 24 AFQTMSTR ENTAGE24 PRSAGE24
EAYGRD24 YRACDO24 TIMEGR24;
OUTPUT OUT=SUMMRY24 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT \qquad ENAGE__ PRAGE_ PAYGR__ YRACD__ TMEGR__ $N=N_{\text {_ }} \mathrm{HSD}_{\ldots}$ _ $:$ DATA SUMMRY24; SET SUMMRY 24; DROP MEDHSDG;QUARTER=24;
EROC ERIXI LATA=SUMMRY24;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; IITLE3 \qquad EATING, QUARTER NO. 24;
EROC ONIVARIATE DATA=QUARTR 25 NOPRINT; EY UIC 25;
VAR CHYEC25 AFQTMSTR ENTAGE25 PRSAGE25
PAYGRE25 YRACDU25 TIMEGR25:
OUTPOT OUI=SUMMRY25 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT__

DATA SUMMRY25: SET SUMMRY 25: DROP MEDHSDG; QUARTER=25;
FROC ERINT LATA=SUMMET25;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; IITLE3 __ EATING, QUARTER NO. 25:
EROC UNIVARIATE DATA=COARTR26 NOPRINT; BY OIC 26;
VAR CHYEC 26 AFQTMSTR ENTAGE26 PRSAGE26

EAYGRE26 YRACDU26 TIMEGR26;
OUTPUT OUI=SUMMRY26 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT__ ENAGE__ $E R A G E _$_ $P A Y G R_{\ldots} \quad$ YRACL___ TMEGR__ $N=N _H S D_{\ldots}$;
LATA SUMMRY26; SET SUMMRY 26; DROP MEDHSDG;QUARTER=26;
EROC FRINI LATA=SUMMRY26:
TITLE ON THE CONTENTS OF A PROC ONIVARIATE OUTPUT DATASET;
TITLEZ __ RATING, QOARTER NO. 26;
EROC UNIVARIATE EATA=CUARTR27 NOPRINT: BY UIC27;
VAR CHYEC 27 AFQTMSTR ENTAGE27 PRSAGE27
EAYGRD27 YRACDO27 TIMEGR27;
OUTPOT OUT=SUMMRY27 MEAN=HSDG__ MEDIAN=MEDHSDG AFQT \qquad
 [ATA SUMMRY27; SET SUMMRY 27; DROP MEDHSDG;QUARTER=27;
EROC FRINI LATA=SUMMRY27;
TITLE ON THE CONTENTS OF A PROC UNIVARIATE OUTPUT DATASET; TITLE3 __ RATING, QOARTER NO. 27 ;

DATA REACY \qquad ; SET
(The 27 quarters of data aggregation across a rating within a OIC are now combined.)

SUMMEYO1 SUMMRYO2 SUMMRYO3 SUMMRYOU SOMMRYO5
SUMMRYO6 SUMMRYO7 SUMMRYO8
SUMMRYO9 SUMMRY 10 SUMMRY11 SUMMRY12 SUMMRY13
SUMMRY14 SUMMRY15 SUMMRY 16
SUMMFY17 SUMMRY18 SUMMRY19 SUMMRY20 SUMMRY21
SUMMRY22 SUMMRY23 SUMMRY 24
SUMMRY25 SUMMRY 26 SUMMRY27;
IF (UICO1 NE.) THEN UIC=UICO1;
IF (UICO2 NE.) THEN OIC=UIC02;
IF (UIC03 NE.) THEN UIC=UIC03;
IF (UICO4 NE.) THEN OIC=OIC04;
IF (UIC05 NE.) THEN OIC=OIC05:
IF (UIC06 NE.) THEN UIC=UIC06;
IF (UIC07 NE.) THEN OIC=OIC07;

```
IF (OICO8 NE.) THEN OIC=UICO8:
IP (OIC09 NE .) THEN OIC=UIC09;
IF (UIC10 NE.) THEN OIC=OIC10;
IF (OIC11 NE.) THEN OIC=OIC11;
IF (OIC12 NE.) THEN OIC=UIC12;
IF (OIC1ミ NE.) THEN OIC=OIC13;
IF (OIC14 NE.) THEN OIC=UIC14;
IF (OIC15 NE .) THEN OIC=OIC15;
IF (OIC16 NE .) THEN OIC=OIC16;
IF (UIC17 NE.) THEN UIC=UIC17;
IF (OIC18 NE.) THEN UIC=UIC18;
IF (OIC19 NE.) THEN UIC=UIC19;
IF (OIC2O NE.) THEN OIC=OIC2O;
IF (UIC21 NE .) THEN OIC=UIC21;
IF (OIC22 NE.) THEN OIC=UIC22;
IF (UIC23 NE .) THEN OIC=UIC23;
IF (OIC24 NE .) THEN OIC=UIC24;
IF (OIC25 NE.) THEN OIC=UIC25;
IF (OIC26 NE.) THEN OIC=UIC26;
IF (OIC27 NE.) THEN OIC=OIC27;
```

DROP UICO1 UICO2 UICO3 JIC04 OICO5
OICO6 OICC7 UICO8 OICO9 UIC 10 OIC11
OIC12 OIC13 UIC14 UIC15 UIC16
OIC17 OIC18 UIC19 OIC20 UIC21 OIC22
OIC23 UIC24 UIC25 UIC26 OIC27;

HSDG \qquad =INT (100*HSDG \qquad) ;
LABEL N_hSD__ =N OSED IN COMPUTING hIGH SCHOOL GRADS HSDG___ =PERCENTAGE OF HIGH SCHOOL GRADUATES;
FROC SOFT DATA=READY__ OUT=FILEOUT.READY \qquad ; BY UIC QUARTER;
EROC PRINT DATA=FILECOT. READY \qquad ;
title scrted by o.I.c. and the aggregate data for the; title3
__ RATING;

APPENDIX B
 CASREP PROGRAM LISTING

HERE TEE FIRST CARD ONLY IS SELECTED, THROUGH USE OF tHE SEVERITY OF CASREE VARIABLE. THIS DISTINGUISHES THE CASREFS FFCM THE SITGEPS (SITOATION REPORTS) WHICH FOLLOW ON CARD NOMEER 2 .

IF SEVERITY NE'.';

IN THIS SECTION, A SERIES OF NEW VARIABLES ARE DEFINED. THE CCCURRENCE OF ANY SEVERITY CASREP (K1). THE OCCURRENCE OF A LEVEL 2 CASREP (K2). THE CCCURRENCE OF A LEVEL 3 CASREP (K3) , THE CCCURRENCE OF A LEVEL 4 CASREP (K4), ARE NOTEC. AN AITERNATIVE 'READINESS' INDEX IS DERIVED, IN ROUGH PARALLEL TO THE 'MATERIAL CONDITION INDEX' (MCI) AND THE 'MISSION ESSENTIAL MATERIAL READINESS AND CONDITION' (MEMRAC) INDICES CCMEUTED BY THE NAVY SHIP PARTS CONTROL CENTER (USNSPCC), AS WEII AS A ROUGH ECQIVALENT TO THE 'MEMRAC' INDEX. TC SMOOTH, AND HEIE TC EQUATE THIS ALTERNATIVE INDEX (INDEXO1) TO OTAER VARIABLES' DISTRIBOTIONS, A LOG TRANSFORM--ANC A DIVISICN EY 10--ARE EMPLOYED. A LOG TRANSFORM. ELUS A RECODING CF FEACTIONAL VALOES, ON THE MEMRAC' INDEX ARE ALSO PERFCRMED. ADDIIIONALLY, CASREP CAOSE CODES (CAUSECDE) WHICH MIGHT LOOSELY EE TERMED 'PERSONNEL-RELATED' ARE ALSO NOTED AND THEIR OCCURRENCES CODED.

INSTANCES OF CALIS FCG OUTSIDE TECHNICAL ASSISTANCE (CODE 'T' OF THE VARIABLE REPRACTV) ARE ALSO CODED.
$M=D O W N M N T N+0 ; S=D C W N S U E L+0 ; T=D O W N T O T L+0 ;$
IF ((SEVERTY=2) CR (SEVERTY=3) OR (SEVERTY=4))
THEN K $1=1$;ELSE K $1=0$;
IF SEVERTY=' $\mathbf{2 ' ~}^{\prime}$ THEN K2=1;ELSE K2=0;
IF SEVERTY='3' THEN K3=1;ELSE K3=0;

IF SEVERTY＝＇4＇THEN K4＝1；ELSE $K 4=0$ ；
INDEXO1 $=(\operatorname{LOG}((.1 * K 2 * M)+(.5 * K 3 * M)+(1.0 * K 4 * M)+1)) / 10$ ；
IE K3 $=1$ THEN DT3＝．33＊T：ELSE DT3＝0；
IF $K 4=1$ THEN DT4＝．67＊T；ELSE DT4＝0；
MEMRAC $=((.5 * K 3)+K 4) *(D T 3+D T 4)$ ；
IF MEMRAC＜1．C THEN CMEMRAC＝1．0；ELSE CMEMRAC＝MEMRAC；
MEMRAC＝ICG（CMEMRAC）；
IF（（CAUSECDE＝＇F＇）OR（CAUSECDE＝＇3＇）OR（CAUSECDE＝＇S＇） OR（CAUSECDE＝＇ 7^{\prime} ）OR
（CAUSECDE＝＇ $6^{\prime \prime}$ ）OR（CAUS ECDE＝＇H＇）OR（CAUSECDE＝＇9＇） OR（CAUSECLE＝＇ $\left.0^{\prime}\right)$ ）THEN PRSCAUSE＝1；ELSE ERSCAUSE＝0；
IF REPRACTV＝＇T＇THEN TECHASS＝1；ELSE TECHASS＝0；
THE［ATA ARE NEXT SORTED BY UIC AND QUARTER NUMBER．
EROC SORT DATA＝CASREF OUT＝CASREP；BY UIC QUARTER；
QUARTERLY TCTALS FOR EACH UIC ARE COMPUTED NEXT ON THE FCLLCWING VARIABLES：
（1）TOTAL NUMBER OF CASUALTY REPORTS－－TK1。
（2）TCTAL NUMEER OF LEVEL 2 CASREPS－－TK2，
（3）TOTAL NUMBER OF LEVEL 3 CASREPS－－TK3．
（4）TOTAL NUMBER OF LEVEL 4 CASREPS－－TK4。
（5）ICTAL ALTERNATIVE READINESS INDEX SCORES－－TINDEXO1．
（6）TOTAL＇MEMRAC＇INDEX SCORES－－TMEMRAC．
（7）TCTAL＇PERSONNEL－RELATED＇INDEX SCORES－－TPRSCASE。
（8）TOTAL TECHNICAL ASSISTANCE CALLS－－ TTECHASS．
（9）TOTAL DCWNTIME DUE TO MAINTENCE－－ TDOWNMNT。
（10）IOTAL DCWNTIME DUE TO SUPPLIES－－ TDOWNSUP。

AND（11）TCTAL DOWNTIME－－TDOWNTOT．

PROC MEANS NOPRINT DATA=CASREP;BY UIC QUARTER;VAR K1 K2 K3 K4 INDEX01 MEMRAC PRSCAUSE TECHASS M S T;

OOTECT CUT=NEW

SUM=TK 1 TK2 TK3 TK4 TINDEXO1 TMEMRAC TPRSCASE TTECHASS TDOWNMNT TDOWNSUP TDOWNTOT:
FROC FLOT UNIFORM DATA=NEW; ELOT
TMEMRAC*QUAETER='M' TINDEX01*QUARTER='I'/

```
HAXIS=1 TO 27 BY 1
VAXIS=0 TO 60 BY 1 OVERLAY;BY UIC:
```

TITLE SCME MEASURES CF READINESS, ACROSS QUARTERS, EY UIC: FROC EIOT UNIFORM DATA=NEW: ELOT

TK 1*QUARTER=11*
TK2*QUARTEF=? 2•
TK 3* QUARTEE= $\mathbf{I}^{\prime \prime}$
TK4*QUARTER=14*
TERSCASE*QUARTER='P'
TTECHASS*QUARTER='T'/

```
HAXIS=1 TO 27 BY 1
VAXIS=0 TO 35 BY 1 OVERLAY;EY UIC;
```

TITLE SCME MEASURES CF READINESS. ACROSS QUARTERS. EY UIC; IABEI
TK1 =TOTAL NUMBER OF CASREPS
TK2 =TCTAL NUMEEF OF C- 2 CASREPS
TK3 =TOTAL NOMBER OF C- 3 CASREPS
TK4 =TCTAL NUMBEF OF C-4 CASREPS
TINDEXO $1=T R A N S F O R M E D$ READINESS INDEX (NPS)
TMEMRAC =TRANSFORMED EEADINESS INDEX (SPCC)
TPRSCASE=TOTAL OF PRESUMED EERSONNEL-BASED CAUSES
TTECHASS=NUMBER OF TECHNICAL ASSISTANCE REQUESTS
TDOWNMNT=TCTAL HCURS LOWNTIME LUE TO MAINTENANCE
TDOWNSUP=TOTAL HOURS DOWNTIME DUE TO SUPPLY
TDOWNTCT=TOTAL HCORS DOWNTIME;

APPENDIX C
 Data - Engineering department

Descriptive Statistics

VARIABLE	N	MEAN	STANDARD	$\begin{gathered} \text { MIN } \\ \text { VALUE } \end{gathered}$	$\begin{gathered} \text { MAX } \\ \text { VALUE } \end{gathered}$	$\begin{gathered} \text { STD EIIOI } \\ \text { OF MEAN } \end{gathered}$
			DEVIATION			
HSDGEM	386	94. 191	8.56781	60.00	100.00	0.4360
APQTEM	386	66.255	11.35749	21.00	92.00	0.5780
ENAGEEM	386	18.831	0.81473	17.50	23.50	0.0414
PRAGEEM	386	23.507	2.10471	19.00	32.00	0.1071
PAYGEEM	386	4. 306	0.55915	3.00	6.00	0.0284
YRACEEM	386	4. 555	1.55342	1.00	11.50	0.0790
TMEGREM	386	15.905	6.82800	2.00	44.00	0.3475
N_HSDEM	386	7. \& 52	2.62781	2.00	16.00	0.1337
HSDGEN	386	80.588	12.82403	33.00	100.00	0.6527
AFQTEN	386	57.770	8.23785	41.00	82.50	0.4192
ENAGEEN	386	18.408	0.52715	17.00	21.00	0.0268
PRAGEEN	386	21.920	1.47123	19.00	29.00	0.0748
PAYGEEN	386	3.871	0.62398	2.00	6.00	0.0317
YRACDEN	386	3.667	1.05741	2.00	9.00	0.0538
tMEGREN	386	10.677	4.51724	2.00	33.00	0.2299
N_HSDEN	386	15.313	5.96985	5.00	38.00	0.3038
HSDGGSE	305	96. 186	7.09901	71.00	100.00	0.4064
AFQTGSE	305	77.442	5.96984	55.00	91.00	0.3418
ENAGEGSE	305	18.867	0.75300	17.50	22.50	0.0431
PRAGEGSE	305	24.459	1.93839	21.00	31.00	0.1109
PAYGRGSE	305	4.947	0.39802	4.00	6.00	0.0227
YRACDGSE	305	5.272	1.39950	2.00	11.00	0.0801
TMEGRGSE	305	19.057	6.44581	5.00	40.00	0.3690
N_HSDGSE	305	7.911	1.78131	2.00	13.00	0.1019
HSDGGSM	306	94.673	5. 13021	78.00	100.00	0.2932
AFQTGSM	306	76.276	6.05925	64.50	91.00	0.3463

ENAGEGSM	306	18.669	0.55711	18.00	20.00	C. 0318
PRAGEGSM	306	23.176	1.23404	20.00	28.00	0.0705
PAYGRGSM	306	4.516	0.48895	3.00	6.00	0.0279
YRACEGS	306	4. 223	0.89884	2.00	8.00	0.0513
TMEGRGSM	306	17.772	5.55006	2.00	37.50	0.3172
N_HSLGSM	306	16. 130	4.19413	1.00	25.00	0.2397
HSDGGS	128	87.890	32.44990	0.00	100.00	2.8681
APQTGS	111	68.121	20.03908	29.00	93.00	1.9020
ENAGEGS	128	18.800	2.62284	17.00	28.00	0.2318
PRAGEGS	128	37.464	3.11915	32.00	47.00	0.2756
PAYGRGS	128	8. 339	0.47344	8.00	9.00	0.0418
YRACDGS	128	19.230	2.30363	14.00	24.00	0.2036
TMEGRGS	128	23.113	13.25183	2.00	59.00	1.1713
N_HSDGS	128	1. 031	0.17468	1.00	2.00	0.0154
HSDGHT	386	84.663	11.18931	42.00	100.00	0.5695
AFQTHT	386	56.306	6.54463	36.00	83.00	0.3331
ENAGEHT	386	18.582	0.55443	17.50	20.00	0.0282
PRAGEHT	386	22.444	1.48591	20.00	35.00	0.0756
PAYGRHT	386	4.077	0.46895	2.00	5.50	0.0238
YRACDHT	386	4. CO 0	0.85165	2.00	8.00	0.0433
TMEGRHT	386	10.661	3.96744	1.00	29.00	0.2019
N_HSDHT	386	10.792	2.50476	2.00	18.00	0.1274
HSDGIC	385	93.838	11.75466	50.00	100.00	0.5990
AFQTIC	385	67.853	10.45295	36.00	90.50	0.5327
ENAGEIC	385	18.809	1.05168	17.00	24.00	0.0535
PRAGEIC	385	22.309	1.53621	20.00	32.00	0.0782
PAYGRIC	385	4.215	0.55693	2.00	6.00	0.0283
YRACDIC	385	3. 771	0.97946	2.00	9.00	0.0499
TMEGRIC	385	12.972	6.60807	2.00	40.50	0.3367
N_HSLIC	385	4.446	1.30420	1.00	9.00	0.0664
HSDGMR	363	86.545	32.52470	0.00	100.00	1.7071
AFQTMR	323	63.273	17.05995	22.00	97.00	0.9492
ENAGEMR	363	19.950	2.71257	17.00	31.00	0.1423
PRAGEMR	363	26.287	5.02512	19.00	41.00	0.2637
PAYGEMR	363	4.820	1.26399	1.00	7.00	0.0663

YRACDMR	363	6.840	4.29626	1.00	21.00	0.2254
TMEGEMR	347	18.309	15.95436	1.00	97.00	0.8564
N_HSDMR	363	1. 269	0.47461	1.00	3.00	0.0249
AUTHREM	388	5.000	0.00000	5.00	5.00	0.0000
ASSGNEM	388	7.811	2.68081	0.00	16.00	0.1360
FILIREM	388	156.237	53.61616	0.00	320.00	2.7219
AUTGREN	388	11.000	0.00000	11.00	11.00	0.0000
ASSGNEN	388	15.234	6.05480	0.00	38.00	0.3073
FILIfEN	388	138.500	55.04216	0.00	345.50	2.7943
AOTHRGS	388	1.000	0.00000	1.00	1.00	0.0000
AS SG NGS	388	0.340	0.49570	0.00	2.00	0.0251
FILLRGS	388	34.020	49.56993	0.00	200.00	2.5165
AOTHRGSE	388	7.721	0.44877	7.00	8.00	0.0227
AS SGNGSE	388	6. 219	3.61177	0.00	13.00	0.1833
FILIRGSE	388	80.107	46.24058	0.00	171.39	2.3475
AOTERGSM	388	21.000	0.00000	21.00	21.00	0.0000
AS SG NGSM	388	13.273	7.82282	0.00	25.00	0.3971
FILIRGSM	388	63.204	37.25216	0.00	119.00	1.8911
AUTHRHT	388	9.000	0.00000	9.00	9.00	0.0000
AS SGNHT	388	10.737	2.61539	0.00	18.00	0.1327
FILLEHT	388	119.296	29.06051	0.00	200.00	1.4753
AUTHRIC	388	5.054	0.22655	5.00	6.00	0.0115
ASSGNIC	388	4.412	1.35641	0.00	9.00	0.0688
FILIRIC	388	87.465	27.09953	0.00	180.00	1.3757
AOTHRMR	388	1.000	0.00000	1.00	1.00	0.0000
ASSGNMR	388	1.188	0.55514	0.00	3.00	0.0281
FILIRMR	388	118.814	55.51392	0.00	300.00	2.8182

Where:

HSDG__ The percentage of high school graduates AFQT_ Armed forces qualification test scores
ENAGE_ EntIY age
PRAG_- Present age
FAYGR_ Faygrade
YRACD_ Years of active duty

TMEGR__ Time in grade
AUTHR_ Number Authcrized
ASSGN__ Number Assigned
FILLR_ Fill ratio

Sortiondano zodan antur Deapleas Jedert Mneat

APPENDIX D

DATA - OTEER VARIABLES

Descriptive Statistics

VARIABLE	N	MEAN	STANDARD DEVIATION	$\begin{gathered} \text { MIN } \\ \text { value } \end{gathered}$	$\begin{gathered} \text { MAX } \\ \text { VALUE } \end{gathered}$	$\begin{gathered} \text { STC EIIOI } \\ \text { OF MEAN } \end{gathered}$
HSDGNC	114	88.596	31.92572	0.00	100.00	2.990
AFQTNC	67	57.761	20.92562	18.00	86.00	2.556
ENAGENC	114	20.074	2.24124	17.00	27.00	0.209
Pragenc	114	33.767	3.04987	27.00	39.00	0.285
PAYGENC	114	6.008	0.09366	6.00	7.00	0.008
YRACDNC	114	14.258	2.90805	9.00	20.00	0.272
TMEGFNC	114	55.000	31.22627	1.00	120.00	2.924
N_HSENC	114	1.008	0.09366	1.00	2.00	0.008
QUARIER	389	15.840	6.97679	1.00	27.00	0.353
HSDGHM	385	95.355	14.52712	0.00	100.00	0.740
APQTHM	374	64.604	17.09624	24.00	98.00	0.884
ENAGEHM	385	19.732	1.59544	17.00	25.00	0.081
PRAGEHM	385	28.594	3.23908	20.00	42.00	0.165
PAYGRHM	385	5.266	0.74471	2.00	7.00	0.037
YRACLHM	385	9.353	2.92905	2.00	24.00	0.149
TMEGEHM	385	27.131	16.58898	1.00	120.00	0.845
N_HSDHM	385	2.137	0.53935	1.00	4.00	0.027
HSDGMA	348	97.270	16.09649	0.00	100.00	0.862
AFQTMA	272	61.716	20.51902	22.00	95.00	1.244
EnAGEMA	348	19.748	3.22845	17.00	31.00	0.173
PRAGEMA	348	35.150	5.21866	25.00	51.00	0.279
PAYGEMA	348	6.636	0.56753	5.50	8.00	0.030
YRACDMA	348	15.992	4.18631	7.00	31.00	0.224
TMEGEMA	348	44.765	29.97601	1.00	120.00	1.606
N_HSCMA	348	1.063	0.24371	1.00	2.00	0.013
HSDGFC	356	84.269	35.28197	0.00	100.00	1.869

$A F Q T P C$	ミ26	46.C82	19.88647	13.00	88.00	1.101
ENAGEPC	356	19.931	2.17771	17.00	30.00	0.115
PRAGEPC	356	26.592	4.71585	19.00	41.00	0.249
PAYGRPC	356	4.449	0.87306	2.00	6.00	0.046
YRACEPC	356	7.188	4.22481	1.00	18.00	0.223
TMEGRPC	356	23.369	22.73486	1.00	100.00	1.204
N_HSDPC	356	1.087	0.28235	1.00	2.00	0.014
HSDGPN	386	92.556	17.63064	0.00	100.00	0.897
APQTEN	384	65.332	10.42854	39.00	93.00	0.532
ENAGEPN	386	19.990	2.06279	17.00	29.00	0.104
PRAGEFN	386	26.479	3.57347	18.00	37.00	0.181
PAYGRPN	386	4.475	0.85511	1.00	7.00	0.043
TRACDEN	386	6.555	3.00867	1.00	16.00	0.153
TMEGRPN	386	18.165	12.87476	1.00	85.00	0.655
N_HSDEN	386	2.367	0.70942	1.00	5.00	0.036
HSDGYN	387	92.994	13.14743	33.00	100.00	0.668
AFQTYN	387	55.202	11.01104	24.00	79.00	0.559
ENAGEYN	387	19.020	1.09560	17.00	23.00	0.055
PRAGEYN	387	22.771	2.08188	18.00	29.00	0.105
PAYGRYN	387	3.762	0.54613	2.00	5.00	0.027
YRACEYN	387	3.542	1.22902	1.00	9.00	0.062
TMEGRYN	387	10.116	5.02565	1.00	34.00	0.255
N_HSDYN	387	4.565	0.96180	1.00	8.00	0.048
HSDGEXC	387	92.622	7.14921	70.00	100.00	0.363
AFQTEXC	387	59.071	7.79602	37.00	83.00	0.396
ENAGEEXC	387	19.033	0.79435	17.00	22.00	0.040
Prageexc	387	25.645	2.27967	18.00	32.00	0.115
PAYGREXC	387	4.444	0.60451	2.00	6.00	0.030
YRACDEXC	387	5.480	2.01040	1.00	11.00	0.102
TMEGREXC	387	14.175	5.70168	5.00	37.00	0.289
N_HSDEXC	387	11.307	1.57244	1.00	17.00	0.079
HSDGBM	387	77.193	14.57715	28.00	100.00	0.740
AFQTEM	386	45.621	8.81149	22.00	68.00	0.448
ENAGEBM	387	19.047	0.88359	18.00	24.00	0.044
PRAGEEM	387	25.732	2.39687	21.00	35.00	0.121

PAYGRBM	387	4.440	0.54257	3.50	7.00	0.027
YRACLEM	387	6.000	1.94083	3.00	17.00	0.098
TMEGRBM	387	13.624	6.33469	2.00	46.00	0.322
N_HSLBM	387	9.428	2.48456	1.00	18.00	0.126
HSDGOS	388	89.286	7.70872	64.00	100.00	0.391
AFQTCS	388	69.921	5.43730	58.00	86.00	0.276
ENAGEOS	388	18.800	0.70486	18.00	22.00	0.035
PRAGEOS	388	22.393	1.13928	20.00	27.00	0.057
PAYGROS	388	3.984	0.49652	3.00	5.00	0.025
YRACDOS	388	3.472	0.69134	1.00	6.00	0.035
TMEGROS	388	10.324	3. 14572	1.00	21.00	0.159
N_HSDOS	388	17.943	3.32353	1.00	28.00	0.168
HS DGQM	387	86.183	15.20601	0.00	100.00	0.772
AFQTCM	387	60.475	10.09778	35.00	91.00	0.513
ENAGEQM	387	18.825	0.96234	17.00	23.00	0.048
PRAGEQM	387	22.675	1.88225	18.00	29.00	0.095
PAYGRQM	387	3.859	0.54124	2.00	5.50	0.027
IRACLQ	387	3.680	0.98346	1.00	7.00	0.049
TMEGRQM	387	10.379	4.56464	1.00	26.00	0.232
N_HSDCM	387	5.359	1.32637	1.00	9.00	0.067
HS DGRM	386	92.489	6.84531	70.00	100.00	0.348
AFQTRM	386	56.615	5.85421	39.50	78.00	0.297
ENAGERM	386	18.466	0.67336	18.00	21.00	0.034
PRAGERM	386	22.970	1.45799	20.50	27.50	0.074
PAYGRRM	386	4.156	0.45088	3.00	5.00	0.022
YRACDRM	386	4.290	1.02184	2.00	8.00	0.052
TMEGREM	386	12.917	5.06307	3.00	44.00	0.257
N_HSDRM	386	12.450	1.56385	8.00	18.00	0.079
HSDGSM	386	73.266	17.87805	16.00	100.00	0.909
AFQTSM	386	58.170	9.65808	32.00	86.00	0.491
ENAGESM	386	18.511	0.83541	17.00	22.00	0.042
PRAGES	386	22.168	1.74107	19.00	32.00	0.088
PAYGRSM	386	3.713	0.68683	1.00	5.50	0.034
YRACDSM	386	3.674	1.11186	1.50	10.0 C	0.056
TMEGRSM	386	9.502	4.08183	2.00	25.00	0.207

N_HSDSM	386	5.305	1.09536	2.00	8.00	0.055
HSDGOPS	388	85.693	5.49007	66.00	100.00	0.278
AFQTCPS	388	57.936	4.82315	32.00	75.00	0.244
ENAGEOPS	388	18.654	0.46927	18.00	20.00	0.023
PRAGEOPS	388	22.903	0.92220	20.00	25.00	0.046
PAYGROPS	388	4.076	0.26902	3.00	5.00	0.013
YRACDOES	388	4.020	0.54354	1.00	7.00	0.027
TMEGROPS	388	10.807	2.58971	1.00	22.0 C	0.131
N_HSDOPS	388	50.358	6.17597	1.00	64.00	0.313
HSDGDS	387	99.152	3.95637	71.00	100.00	0.201
APQTDS	387	82.602	8.64254	55.00	97.00	0.439
ENAGEDS	387	18.764	0.79929	18.00	22.00	0.040
PRAGEDS	387	23.928	1.85434	21.00	31.00	0.094
PAYGRDS	387	4.904	0.36157	4.00	7.00	0.018
YRACDDS	387	5.087	1.23791	2.50	12.00	0.062
TMEGRDS	387	20.346	5.91621	7.50	43.00	0.300
N_HSDDS	387	6.819	1.08849	1.00	12.00	0.055
HSDGET	385	99.124	3.42023	75.00	100.00	0.174
AFQTET	§85	83.687	6.24104	66.00	95.50	0.318
ENAGEET	385	18.736	0.75604	17.50	21.50	0.038
PRAGEET	385	25.836	4.04280	21.00	38.00	0.206
PAYGRET	385	5.067	0.88129	4.00	8.00	0.044
YRACDET	385	7.123	4.09185	3.00	21.00	0.208
TMEGRET	385	24.674	18.09155	2.00	103.00	0.922
N_HSDET	385	8.592	3.70704	1.00	16.00	0.188
HSDGET2	388	98.865	3.06140	88.00	100.00	0.155
AFQTET 2	388	82.997	5.25930	67.50	95.50	0.267
ENAGEET2	388	18.730	0.73945	17.50	21.5 C	0.037
PRAGEET2	388	23.572	1.41830	19.50	29.00	0.072
PAYGEET2	388	4.618	0.45621	4.00	6.00	0.023
YRACDET 2	388	4.682	0.86192	2.00	9.00	0.043
TMEGRET2	388	18.951	5.81777	2.00	40.00	0.295
N_HSDET 2	388	11.679	2.10851	1.00	21.00	0.107
HSDGETN	115	98.826	5.41483	66.00	100.00	0.504
AFQTETN	115	79.517	8.13184	66.00	95.50	0.758

ENAGEETN	115	19.178	1. 15885	17.50	22.5C	0.108
PRAGEETN	115	22.630	1.50596	19.50	26.00	0.140
PAYGRETN	115	4.330	0.53347	3.00	5.00	0.049
YRACDETN	115	3.760	1.03098	2.00	6.50	0.096
TMEGRETN	115	20.656	7.76699	2.00	40.00	0.724
N_HSDETN	115	4.460	2.04033	1.00	11.00	0.190
HSDGETR	114	97.798	6.21471	75.00	100.00	0.582
AFQTETR	114	80.991	6.89683	58.00	94.00	0.645
ENAGEETR	114	18.868	0.98001	17.50	22.00	0.091
PRAGEETR	114	22.307	1.25245	19.00	26.00	0.117
PAYGRETR	114	4.359	0.48202	3.00	5.00	0.045
YRACDETR	114	3.815	1.07519	2.00	7.50	0.100
TMEGRETR	114	17.188	10.50966	2.00	67.50	0.984
N_HSDETR	114	4.192	1.69788	1.00	11.00	0.159
HSDGEW	354	96.412	9.24513	50.00	100.00	0.491
APQTEW	349	81.514	8.23190	55.00	97.00	0.440
ENAGEEW	354	19.423	1.19896	17.50	24.00	0.063
PRAGEEW	354	24.461	2.33870	19.50	33.00	0.124
PAYGEEW	354	4.819	0.50192	3.00	6.00	0.026
YRACDEW	354	5.080	1.67717	2.00	13.00	0.089
TMEGREM	354	18.610	8.10094	2.00	56.00	0.430
N_HSDEW	354	4.155	1.22585	1.00	9.00	0.065
HSDGFTG	386	94.717	9.04106	55.00	100.00	0.460
AFQTFTG	386	80.777	7.50305	60.00	96.00	0.381
ENAGEFTG	386	18.822	0.82666	17.50	22.00	0.042
PRAGEFTG	386	23.318	1.75463	20.00	29.50	0.089
PAYGRFTG	386	4.643	0.53396	3.00	6.00	0.027
YRACDFTG	386	4.652	1.28879	2.00	9.50	0.065
TMEGRFTG	386	17.453	6.86941	2.00	37.00	0.349
N_HSDFTG	§86	6.966	2.19478	2.00	15.00	0.111
HSDGFTM	369	96.913	7.25341	66.00	100.00	0.377
$A F Q T F T M$	369	75.338	7.32989	51.00	97.00	0.381
ENAGEFTM	369	18.704	0.93803	17.00	23.00	0.048
PRAGEFTM	369	22.521	1.40441	18.00	28.50	0.073
PAYGRFTM	369	4.226	0.54263	2.00	6.00	0.028

YRACLFTM	369	4.025	1.11073	1.00	12.00	0.057
TMEGRFTM	369	17.124	7.03297	1.00	44.50	0.366
N_HSEFTM	§69	6.344	1.93037	1.00	12.00	0.100
HS DGGMG	386	81.777	15.49334	20.00	100.00	0.788
APQTGMG	386	62.306	9.62530	44.50	91.00	0.489
ENAGEGMG	386	18.808	0.90570	17.00	23.00	0.046
PRAGEGMG	386	24.229	2.61810	19.00	33.00	0.133
PAYGRGMG	386	4.619	0.66940	3.00	6.00	0.034
YRACDGMG	386	5.435	2.09909	2.00	13.50	0.106
TMEGRGMG	386	14.003	5.46969	2.00	32.00	0.278
N_HSDGMG	386	7.235	1.73695	2.00	12.00	0.088
HSDGGMT	386	83.611	18.75583	33.00	100.00	0.954
APQTGMT	385	62.206	10.31923	26.00	93.50	0.525
ENAGEGMT	386	18.602	1.42264	17.00	26.00	0.072
PRAGEGMT	386	23.358	3.06151	18.00	32.50	0.155
PAYGRGMT	386	4.405	0.69656	2.50	6.00	0.035
YRACDGMT	386	4.672	2.35449	2.00	16.00	0.119
TMEGRGMT	386	14.415	11.65934	2.00	115.0 C	0.593
N_HSDGMT	386	4.160	1.26084	1.00	8.00	0.064
HSDGGMM	363	91.517	20.10131	0.00	100.00	1.055
AFQTGMM	355	65.415	11.57132	35.00	96.00	0.614
ENAGEGMM	363	18.973	1.35282	17.00	22.50	0.071
PRAGEGMM	363	23.396	2.75565	18.00	36.00	0.144
PAYGRGM	363	4.165	0.79897	2.00	6.00	0.041
YRACDGMM	363	4.720	2.23907	1.00	15.00	0.117
TMEG FGMM	363	15.792	13.34012	1.00	100.00	0.700
N_HSEGMM	363	2.451	1.06151	1.00	6.00	0.055
HSDGSTG	386	94.567	5.91295	77.00	100.00	0.300
AFQTSTG	386	77.764	4.83670	64.50	90.00	0.246
ENAGESTG	386	18.661	0.59898	18.00	20.00	0.030
PRAGESTG	386	22.423	0.89515	21.00	26.00	0.045
PAYGRSTG	386	4.182	0.37059	3.00	5.00	0.018
YRACESTG	386	3.778	0.70676	2.00	6.50	0.035
TMEGRSTG	386	14.550	3.72958	3.00	27.00	0.189
N_HSDSTG	386	17.608	2. 14532	10.00	24.0 C	0.109

HSDGTM	385	85.680	21.66228	0.00	100.00	1.104
AFQTTM	380	47.119	11.28648	16.00	91.00	0.578
ENAGETM	385	18.462	1.30024	17.00	25.00	0.066
PRAGETM	385	22.122	3.54280	18.00	46.00	0.180
PAYGETM	385	3.690	0.78349	1.00	6.00	0.039
YRACDTM	385	4.053	2.73202	1.00	21.00	0.139
TMEGRTM	380	12.573	12.41392	1.00	97.00	0.636
N_HSDTM	385	2.296	0.85733	1.00	5.00	0.043
HS DGCMB	388	93.229	2.81496	87.00	100.00	0.142
AFQTCMB	588	76.694	3.68654	67.00	94.00	0.187
ENAGECME	388	18.590	0.50024	17.00	20.00	0.025
PRAGECME	388	22.907	0.75081	19.00	26.00	0.038
PAYGRCME	388	4.512	0.48872	4.00	5.00	0.024
YRACLCMB	388	4.213	0.57790	2.00	6.00	0.029
TMEGRCME	388	15.712	2.67161	8.00	26.00	0.135
N_HSDCME	388	68.064	9.02414	3.00	85.00	0.458
HSDGMM	59	94.915	22.15719	0.00	100.00	2.884
AFQ TMM	51	81.686	13.06712	25.00	96.00	1.829
ENAGEMM	59	19.076	1.77340	17.00	24.00	0.230
PRAGEMM	59	22.237	4.13704	18.00	30.00	0.538
PAYGEMM	59	4.364	0.79237	2.00	7.00	0.103
YRACLMM	59	3.635	2.93732	1.00	12.00	0.382
TMEG EMM	59	9.847	7.70538	1.00	34.00	1.003
N_HSDMM	59	4.355	8.35786	1.00	58.00	1.088
HSDGENG	386	89.145	3.89868	79.00	100.00	0.198
$A F Q T E N G$	§86	66.446	3.87957	58.00	80.00	0.197
ENAGEENG	386	18.595	0.48471	18.00	19.50	0.024
PRAGEENG	386	22.567	0.76064	20.50	25.00	0.038
PAYGRENG	386	4.195	0.38808	4.00	5.00	0.019
YRACDENG	386	4.034	0.53154	3.00	7.00	0.027
TMEGEENG	386	13.226	3.03183	6.00	25.00	0.154
N_HSDENG	386	59.181	7.32782	14.00	73.00	0.372
HSDGEK	385	93.228	18.63827	0.00	100.00	0.949
AFQTEK	373	51.643	15.86621	12.00	93.00	0.821
ENAGEDK	385	20.238	1.79700	17.50	26.00	0.091

PRAGEDK	385	27.902	4. 12282	20.00	39.00	0.210
PAYGRDK	385	4.767	0.80193	1.00	7.00	0.040
YRACEDK	385	8.101	3.62843	1.00	22.00	0.184
TMEGRDK	385	26.751	21.18170	1.00	120.00	1.079
N_HSDDK	385	1.828	0.58338	1.00	3.00	0.029
HSDGMS	386	82.152	9.64728	50.00	100.00	0.491
AFQTMS	386	44.760	8.25166	13.50	62.00	0.419
ENAGEMS	386	19.611	1.10924	18.00	23.00	0.056
PRAGEMS	386	26.432	3.35003	20.00	36.00	0.170
PAYGRMS	386	4.160	0.46443	2.50	5.00	0.023
YRACLMS	386	6.097	2.66756	2.00	16.00	0.135
TMEGRMS	386	15.370	6.09546	1.00	49.00	0.310
N_HSDMS	386	12.217	1.89169	6.00	17.00	0.096
HSDGSH	386	82.670	15.69277	25.00	100.00	0.798
AFQTSH	386	46.287	8.82765	19.00	76.00	0.449
ENAGESH	386	19.707	1.36222	17.50	26.00	0.069
PRAGESH	386	24.606	2.63229	19.00	32.50	0.133
PAYGRSH	386	4.036	0.62521	2.50	6.00	0.031
YRACESH	386	4.672	1.84763	1.50	12.00	0.094
TMEGRSH	386	12.796	6.05500	1.00	43.00	0.308
N_HSDSH	386	5.924	1.52283	2.00	11.00	0.077
HSDGSK	386	87.525	14.49839	33.00	100.00	0.737
AFQTSK	386	52.652	10.02820	24.00	75.00	0.510
ENAGESK	386	19.567	1.31598	17.00	24.50	0.066
PRAGESK	386	26.167	3.12945	19.00	35.00	0.159
PAYGRSK	386	4.501	0.69926	3.00	6.00	0.035
YRACESK	386	5.744	2.53347	1.50	16.00	0.128
TMEGRSK	386	15.533	8.91170	2.00	73.00	0.453
N_HSDSK	386	5.896	1.43233	3.00	10.00	0.072
HSDGSUP	386	84.163	6.66776	60.00	100.00	0.339
AFQTSUP	386	47.665	4.98293	35.00	60.50	0.253
ENAGESUP	386	19.492	0.79115	18.00	22.00	0.040
PRAGESUE	386	25.625	1.99945	21.00	31.00	0.101
PAYGRSUP	386	4.200	0.44045	3.00	5.00	0.022
YRACDSUE	386	5. 126	1.63229	2.00	10.00	0.083

TMEGRSUP	386	13.905	4.10093	5.00	32.50	0.208
N_HSDSUE	386	25.862	3.40806	12.00	37.00	0.173
HS DGSR	375	65.181	24.65840	0.00	100.00	1.273
AFQTSR	371	50.320	9.64230	21.00	82.00	0.500
ENAGESR	375	18.310	0.78600	17.00	23.00	0.040
PRAGESR	375	19.460	0.92340	17.00	25.00	0.047
PAYGRSR	375	1.000	0.00000	1.00	1.00	0.000
YRACESR	375	1.486	0.57332	1.00	3.50	0.029
TMEGRSR	365	5.893	2.79881	1.00	19.00	0.146
N_HSESR	375	6.856	4.18113	1.00	21.00	0.215
HSDGSA	387	72.718	15.23310	0.00	100.00	0.774
AFQTSA	387	48.807	6.70761	30.50	67.00	0.340
ENAGESA	387	18.529	0.59881	17.00	21.00	0.030
PRAGESA	387	19.918	0.71383	18.00	24.00	0.036
PAYGRSA	387	2.000	0.00000	2.00	2.00	0.000
YRACDSA	387	1.803	0.47359	1.00	3.00	0.024
TMEGRSA	- 387	- 6.910	3.19677	1.00	22.00	0.162
N_HSDSA	387	14.560	5.95869	2.00	43.00	0.302
HSDGSN	387	81.981	12.82554	41.00	100.00	0.651
AFQTSN	387	50.135	6.31485	32.50	74.00	0.321
ENAGESN	387	18.817	0.80784	17.50	22.50	0.041
PRAGESN	387	21.147	0.93244	19.00	24.00	0.047
PAYGESN	387	3.000	0.00000	3.00	3.00	0.000
YRACDSN	387	2.586	0.56758	1.00	4.00	0.028
TMEGRSN	386	8.527	3.23313	1.00	18.00	0.164
N_HSESN	387	16.516	5.12553	2.00	33.00	0.260
HSDGFR	298	50.510	36.88359	0.00	100.00	2.136
AFQTFR	287	49.707	10.10953	15.00	82.00	0.596
ENAGEFR	298	18.414	1.11776	17.00	25.00	0.064
PRAGEFR	298	19.614	1.29571	17.00	26.00	0.075
PAYGRFR	298	1.000	0.00000	1.00	1.00	0.000
YRACDFR	298	1.644	0.77480	1.00	6.00	0.044
TMEGEFR	275	6.849	5.22469	1.00	41.00	0.315
N_HSEFR	298	2.748	1.86959	1.00	9.00	0.108
HSDGFA	379	67.411	25.66872	0.00	100.00	1.318

AFQTFA	376	48.531	9.97726	21.00	75.00	0.514
ENAGEFA	379	18.503	0.84632	17.00	24.00	0.043
PRAGEFA	379	20.022	1.03390	18.00	26.0 C	0.053
PAYGRFA	379	2. 100	0.00000	2.00	2.00	0.000
YRACDFA	379	1.978	0.67716	1.00	4.00	0.034
TMEGRFA	379	8.201	5.24488	1.00	33.00	0.269
N_HSLFA	379	5.514	3.18423	1.00	23.00	0.163
HSDGFN	383	74. 627	21.14996	0.00	100.00	1.080
AFQTFN	381	50.108	8.83120	22.00	73.00	0.452
ENAGEFN	383	18.822	0.95367	17.00	25.00	0.048
PRAGEFN	383	21.011	1.13741	19.00	27.00	0.058
PAYGRFN	383	3.100	0.00000	3.00	3.00	0.000
YRACDFN	383	2.652	0.60390	1.00	4.00	0.030
TMEGRFN	383	8.134	3.95668	1.00	20.00	0.202
N_HSTFN	383	6.558	2.88725	1.00	19.00	0.147
UIC	389	591.239	10.65929	574.00	611.00	0.540
UICEFFO1	388	-0.023	0.34021	-1.00	1.00	0.017
OICEFFO2	388	-0.020	0.34415	-1.00	1.00	0.017
UICEFFO3	388	-0.018	0.34802	-1.00	1.00	0.017
UICEFFO4	388	-0.015	0.35184	-1.00	1.00	0.017
UICEFF05	388	-0.015	0.35184	-1.00	1.00	0.017
UICEFF06	388	-0.020	0.34415	-1.00	1.00	0.017
UICEFFO7	388	-0.018	0.34802	-1.00	1.00	0.017
UICEFF08	388	-0.015	0.35184	-1.00	1.00	0.017
UICEFFO9	388	-0.012	0.35560	-1.00	1.00	0.018
UICEFF10	388	-0.010	0.35929	-1.00	1.00	0.018
OICEFF11	388	-0.007	0.36294	-1.00	1.00	0.018
UICEFF12	388	0.000	0.37354	-1.00	1.00	0.018
UICEFF13	388	-0.005	0.36652	-1.00	1.00	0.018
UICEFF14	388	0.000	0.37354	-1.00	1.00	0.018
UICEFF15	388	0.000	0.37354	-1.00	1.00	0.018
UICEFF 16	388	0.000	0.37354	-1.00	1.00	0.018
OVERHAUL	388	0.203	0.40320	0.00	1.00	0.020
AUTHRE9	388	1.000	0.00000	1.00	1.00	0.000
ASSGNE9	388	0.000	0.00000	0.00	0.00	0.000

FILIRE9	388	0.000	0.00000	0.00	0.00	0.000
AUTHRHM	388	2.000	0.00000	2.00	2.00	0.000
ASSG NHM	388	2.121	0.56903	0.00	4.00	0.028
FILIRHM	§88	106.056	28.45127	0.00	200.00	1.444
AOTHEMA	388	1.000	0.00000	1.00	1.00	0.000
ASSGNMA	388	0.953	0.39755	0.00	2.00	0.020
FILIFMA	388	95.360	39.75537	0.00	200.00	2.018
AOTHRNC	388	1.000	0.00000	1.00	1.00	0.000
ASSGNNC	388	0.296	0.46287	0.00	2.00	0.023
FILIRNC	388	29.639	46.28720	0.00	200.00	2.349
AUTHEPC	388	1.000	0.00000	1.00	1.00	0.000
ASSGNPC	388	0.997	0.40347	0.00	2.00	0.020
FILIEPC	388	99.742	40.34650	0.00	200.00	2.048
AUTHRPN	388	2.000	0.00000	2.00	2.00	0.000
ASSGNEN	388	2.355	0.72767	0.00	5.00	0.036
FILIRPN	388	117.783	36.38347	0.00	250.00	1.847
AOTHRYN	388	5.000	0.00000	5.00	5.00	0.000
ASSGNYN	388	4.554	0.98813	0.00	8.00	0.050
FIIIRYN	388	91.082	19.76250	0.00	160.00	1.003
AUTHREXC	388	13.000	0.00000	13.00	13.00	0.000
ASSGNEXC	388	11.278	1.67204	0.00	17.0 C	0.084
FILIREXC	388	86.742	12.87052	0.00	130.79	0.653
AUTHRBM	388	11.000	0.00000	11.00	11.00	0.000
ASS G NBM	388	9.404	2.52710	0.00	18.00	0.128
FILIRBM	388	85.482	22.98931	0.00	163.59	1.167
AUTHROS	388	25.162	0.67966	25.00	28.00	0.034
AS SG NOS	388	17.943	3.32353	1.00	28.00	0.168
FIILROS	388	71.347	13.21283	3.59	112.00	0.670
AUTHRQM	388	5.000	0.00000	5.00	5.00	0.000
ASSGNQM	388	5.345	1.35231	0.00	9.00	0.068
FILIFCM	388	106.907	27.04617	0.00	180.00	1.373
AUTHRRM	388	13.000	0.00000	13.00	13.00	0.000
ASS G NRM	388	12.386	1.79722	0.00	18.00	0.091
FILIERM	388	95.275	13.83530	0.00	138.50	0.702
AUTHRSM	388	6.000	0.00000	6.00	6.00	0.000

ASSG NSM	388	5.278	1.15687	0.00	8.00	0.058
PILIRSM	388	87.969	19.28254	0.00	133.29	0.978
AUTHROPS	388	60.162	0.67966	60.00	63.00	0.034
ASSGNOES	388	50.358	6.17597	1.00	64.00	0.313
FILIROPS	388	83.706	10.18457	1.59	103.29	0.517
AUTHRDS	388	6.938	0.24120	6.00	7.00	0.012
ASSGNDS	388	6.801	1.14088	0.00	12.00	0.057
FIIIEDS	388	98. 168	16.89963	0.00	171.39	0.857
AUTGRET	388	11.000	0.00000	11.00	11.00	0.000
ASSGNET	388	8.525	3.76875	0.00	16.00	0.191
FILIRET	388	77.511	34.25471	0.00	145.50	1.739
AOTHREW	388	6.000	0.00000	6.00	6.00	0.000
ASSGNEW	388	3.791	1.65975	0.00	9.00	0.084
FILIREW	388	63.190	27.65994	0.00	150.0 C	1.404
AOTHRFT	388	0.000	0.00000	0.00	0.00	0.000
ASSGNFT	388	0.113	0.32553	0.00	2.00	0.016
FILIRFT	388	0.000	0.00000	0.00	0.00	0.000
AUTHRFTG	388	7.347	1.27390	7.00	12.00	0.064
ASSGNFTG	388	6.930	2.24536	0.00	15.00	0.113
FILIEFTG	388	96.237	33.51442	0.00	214.29	1.701
AUTHRFTM	388	7.278	0.92334	7.00	11.00	0.046
AS SGNFTM	388	6.033	2.32866	0.00	12.00	0.118
FILIRFTM	388	83.642	33.17007	0.00	171.39	1.683
AUTHRGM	388	0.000	0.00000	0.00	0.00	0.000
ASSGNGM	388	0.012	0.11293	0.00	1.00	0.005
FIIIRGM	388	0.000	0.00000	0.00	0.00	0.000
AUTHRGMG	§88	6.876	0.32968	6.00	7.00	0.016
ASSG NG MG	388	7.198	1.80848	0.00	12.00	0.091
FILIRGMG	388	104.951	26.83412	0.00	171.39	1.362
AUTHRGMM	388	3.000	0.00000	3.00	3.00	0.000
ASS G NGMM	388	2.293	1.19052	0.00	6.00	0.060
FILIRGMM	388	76.465	39.68699	0.00	200.00	2.014
AUTHRGMT	388	3.000	0.00000	3.00	3.00	0.000
AS SG NGMT	388	4.139	1.29248	0.00	8.00	0.065
FILLRGMT	388	137.966	43.08477	0.00	266.68	2.187

AUTHRSTG	388	18.000	0.00000	18.00	18.00	0.000
ASSGNSTG	388	17.518	2.48451	0.00	24.00	0.126
FILIESTG	388	97.318	13.80928	0.00	133.29	0.701
AOTHRTM	388	2.000	0.00000	2.00	2.00	0.000
ASSGNTM	388	2.278	0.87742	0.00	5.00	0.044
FILIRTM	388	113.917	43.87100	0.00	250.00	2.227
AUTHRCME	388	71.440	1.59427	70.00	76.00	0.080
ASSGNCME	388	68.190	9.04252	3.00	85.00	0.459
FILLRCME	388	95.514	12.86908	4.00	121.39	0.653
AOTHRMM	388	0.000	0.00000	0.00	0.00	0.000
ASSGNMM	388	0.662	3.59470	0.00	58.00	0.182
FILIRMM	388	0.000	0.00000	0.00	0.00	0.000
AUTHRENG	388	60.775	0.53191	60.00	62.00	0.027
ASSGNENG	388	59.878	9.64476	0.00	131.00	0.489
FILIRENG	388	98.507	15.70193	0.00	214.79	0.797
AUTHRAK	388	0.000	0.00000	0.00	0.00	0.000
ASSGNAK	388	0.005	0.07170	0.00	1.00	0.003
FILIRAK	388	0.000	0.00000	0.00	0.00	0.000
AUTHRDK	388	2.000	0.00000	2.00	2.00	0.000
ASSGNDK	388	1.814	0.60283	0.00	3.00	0.030
FILLRDK	388	90.721	30.14170	0.00	150.00	1.530
AOTHRMS	388	12.000	0.00000	12.00	12.00	0.000
ASSGNMS	388	12.154	2.08025	0.00	17.00	0.105
FILIGMS	388	101.287	17.33906	0.00	141.69	0.880
AOTHRSH	388	5.000	0.00000	5.00	5.00	0.000
ASSGNSH	388	5.894	1.57719	0.00	11.00	0.080
FILIRSH	388	117.886	31.54370	0.00	220.00	1.601
AOTHRSK	388	5.000	0.00000	5.00	5.00	0.000
ASSGNSK	§88	5.865	1.48987	0.00	10.00	0.075
FILIRSK	388	117.319	29.79744	0.00	200.00	1.512
AUTGRSUE	388	24.000	0.00000	24.00	24.00	0.000
ASSGNSUE	388	25.734	3.87187	0.00	37.00	0.196
FILIRSUP	388	107.226	16.13454	0.00	154.19	0.819
AUTHRAR	388	0.000	0.00000	0.00	0.00	0.000
ASSGNAR	388	0.115	0.33635	0.00	2.00	0.017

FILIRAR	388	0.000	0.00000	0.00	0.00	0.000
AUTARCR	388	0.000	0.00000	0.00	0.00	0.000
ASSGNCR	388	0.002	0.05077	0.00	1.00	0.002
FILIRCR	388	0.000	0.00000	0.00	0.00	0.000
AUTHRFR	388	10.000	0.00000	10.00	10.00	0.000
ASSGNFR	388	13.971	3.58676	0.00	29.00	0.182
FILIRFR	388	139.716	35.86757	0.00	290.00	1.820
AUTGRSR	388	37.226	1.75799	33.00	39.00	0.089
ASSGNSR	388	37.626	6.98925	0.00	66.00	0.354
FILLRSR	388	101.353	19.61752	0.00	173.69	0.995
AOTHRNCN	388	47.226	1.75799	43.00	49.00	0.089
ASSGNNON	388	51.716	8.85788	0.00	92.00	0.449
FIIIFNCN	388	109.71093	19.51958	0.00	191.69	0.990
AUTARTOT	388	276.60567	2.48232	271.00	284.00	0.126
ASSGNTOT	388	267.54124	26.20020	4.00	359.00	1.330
FILLRTOT	388	96.73761	9.52046	1.39	129.59	0.483
TK1	366	21.16940	11.34774	1.00	51.00	0.593
TK2	366	18.35246	10.34839	0.00	50.00	0.540
TK3	366	2.51639	2.61890	0.00	17.00	0.136
TK4	366	0.30055	0.66403	0.00	4.00	0.034
TINDEXO1	366	6.02063	3.79400	0.00	21.91	0.198
TMEMRAC	366	11.53407	11.97704	0.00	86.17	0.626
TPRSCASE	366	6.44536	4.89238	0.00	23.00	0.255
TTECHASS	366	5.68033	3.86399	0.00	21.00	0.201
TDOWNMNT	366	11319.2759	11465.676	0.00	75936.0	599.32
TDOWNSUF	366	10951.1284	8190.798	0.00	61281.0	428.13
TDOWNTOT	366	22270.4043	16609.540	171.00	106439.0	868.19
TOTC	359	1840.2701	2755.719	0.00	19103.0	145.44
TOTE	359	2027.0835	2969.708	0.00	23699.0	156.73
TOTO	359	21.4206	348.205	0.00	6563.0	18.37

Where:

HSDG_
AFQT_
ENAGE
The percentage of high school graduates Armed forces qualification test scores Entryage

ERAG Present age

PAYGR_-
YRACD_
TMEGR_
$A^{A S S G N}$
AOTHR_
FILLR_
OICEFF_
TK1
TK2
IK3
TK4
IINDEXO1
TMEMRAC
TTECHASS
IDOWNMNT
TDOWNTOT
TOT

Paygrade
Years of active duty
Time in grade
Number $A s s i g n \in d$
Number Authorized
Fil1 ratio
OIC Effect of each ship
Total number of CASREPS submitted by a unit
Number of $C-2$ CASREPS
Number of $C-3 C A S R E P S$
Number of $C-4$ CASREPS
Readiness Index01 (McGarvey)
Readiness Index (SPCC)
Number of technical assistance calls requested Total downtime for maintenance (hours)

Total downtime (hours)
Total

APRENDIX E

FIMAL REG BESSION OUTPUT

FINAL REGRESSIONS FOR ALL VARIABLES
THAT PASSEL THE F TEST

DEP VARIABLE: TDOWNTCT TOTAL HOURS DOWNTIME SOM OF

SOURCE	DF	SCOARES
MODEL	19	31931104892
ERRCR	229	46639899138
CTOTAL	248	78571004031

ROOT MSE 14271.219 DEF MEAN 23427.795 C. V.
60.91576

PARAMETER
VARIABLE DF ESTIMATE

INTERCEF	1	5548.529
OICEFFO1	1	-4421.994
UICEFFO2	1	-5172.832
UICEFFO3	1	-11718.158
UICEFFO4	1	17379.680
UICEFF05	1	9793.099
UICEFFO6	1	-13593.889
UICEFFO7	1	14881.765

UICEFFO8 1980.813
UICEFFO9 16950.595
OICEFF10 1 -14961.330
UICEFF11 $1 \quad-5175.444$
UICEFF12 1213136.213

MEAN

SQUARE	F VALUE	PROB $P F$
1680584468	8.252	0.0001

$$
\begin{array}{ll}
R-S Q U A R E & 0.4064 \\
\text { ADJ R-SQ } & 0.3571
\end{array}
$$

STANDARD T FOR HO:
ERROR PARAMETER=0
9600.701
0.578
3891.181
-1. 136
4036.091
-1. 282
3462.851
-3.384
3749.434
4.635
3521.378
2. 781
3557.343
-3. 821
4. 225
0.468
3429.337
4.943
4939.773
-3.029
3511.702
-1.474
4013.530
-3.273

UICEFF13	1	-2651.594	3432.200	-0.773
UICEFF14	1	1335.107	3620.996	0.369
UICEFF15	1	-740.071	4066.522	-0.182
UICEFF16	1	17704.234	3480.064	5.087
OVERHAUI	1	-8583.670	2522.566	-3.403
HSDGMR	1	-132.980	45.458227	-2.925
PAYGRGSM	1	6822.226	2111.960	3.230

FINAL REGRESSIONS FOR ALL VARIABLES
THAT PASSEC THE P TEST

DEP VARIABIE: TK1 TOTAL NUMBER OF CASREPS

SOM OF

SOURCE	DF	SCUARES
MODEL	21	14772.305
ERROK	227	16756.594
C TOTAL	248	31528.900
FOOT MSE	8.591717	
DEP MEAN	21.353414	
C.V.	40.2358	

PARAMETER
VARIABIE DF

INTERCEP	1	11.624726
UICEFFO1	1	-5.119238
UICEFFO2	1	2.053294
UICEFFO3	1	-6.446311
UICEFF04	1	$8.2 \varepsilon 3701$
UICEFF05	1	8.152205
UICEFF06	1	-8.880552
UICEFFO7	1	7.858420
UICEFF08	1	-0.586175
UICEFF09	1	12.411956
UICEFF10	1	-4.127897
UICEFF11	1	-2.710987

MEAN
SQUARE 703.443 73.817596
R-SQUARE

$$
0.4685
$$

$$
A D J R-S Q
$$

$$
0.4194
$$

STANDARD T FOR HO: ERROR PARAMETER=0

8.495726	1.368
2.461969	-2.079
2.592819	0.807
2.088245	-3.087
2.281926	3.630
2.198673	3.708
2.156702	-4.118
2.216212	3.546
2.582591	-0.227
2.134175	5.816
2.997472	-1.377
2.118128	-1.280

UICEFF12	1	-8.337958	2.462128	-3.386
UICEFF13	1	0.687631	2.097971	0.328
UICEFF14	1	-1.253051	2.224906	-0.563
UICEFF15	1	-4.097570	2.516532	-1.628
UICEFF16	1	5.016752	2.189573	2.291
OVEREAOL	1	-10.363435	1.546171	-6.703
HSDGEN	1	0.043401	0.052978	0.819
HSDGMR	1	-0.068901	0.027835	-2.475
PAYGRIC	1	-1.988643	1.089516	-1.825
PAYGRGSM	1	4.936087	1.272171	3.880

FINAI REGRESSIONS FCF ALL VARIABLES
THAT PASSED THE F TEST

DEP VARIABIE: TK3
TOTAL NUMBER OF C-3 CASREPS SUM OF

SOURCE	DF	SQOARES
MODEI	21	392.650
ERROR	227	1335.953
C TCTAL	248	1728.602
ROOT MSE	2.425954	
DEF MEAN	2.349398	
C.V.	103.2586	

PARAMETER

VARIABLE	CF	ESIIMATE
INTERCEF	1	-0.970982
UICEFFO1	1	-1.000923
UICEFFO2	1	0.138726
UICEFFO	1	-0.807997
UICEFFO4	1	-0.041764
UICEFF05	1	-0.00798798
UICEFF06	1	-1.010776
UICEFFO7	1	$3.6 C 9680$
UICEFF08	1	-0.689457

mean
SQUARE 18.697611 5.885254

R-SQUARE ADJ R-SQ 0.2271
0.1557

STANDARD T FOR H0: ERROR PARAMETER=0
1.958948
-0.496
0.677504
-1.477
0.191
-1.378
-0.065
-0.013
-1.675
5.634
-0.931

UICEFF09	1	1.692948	0.647232	2.616
UICEFF10	1	-0.316427	0.844663	-0.375
UICEFF11	1	-0.721348	0.604763	-1.193
UICEFF12	1	-0.804408	0.699026	-1.151
UICEFF13	1	0.133607	0.628943	0.212
UICEFF14	1	-0.487682	0.637676	-0.765
UICEFF15	1	-1.098730	0.715484	-1.536
UICEFF16	1	1.011689	0.596174	1.697
OVERHAUI	1	-0.528242	0.439166	-1.203
HSDGEN	1	0.023832	0.015225	1.565
HSDGMR	1	-0.013163	0.007738342	-1.701
HSDGIC	1	0.043914	0.014475	3.034
YRACEGSM	1	-0.337999	0.213181	-1.585

FINAL REGRESSIONS FOR ALL VARIABLES
THAT PASSED THE F TEST

DEP VARIABLE: TK4
TOTAL NUMBER OF C-4 CASREPS
SOM OF

| SOURCE | LF SCOARES |
| :--- | :--- | :--- |

MODEL 19 17.ع62910
ERROR $229 \quad 92.643114$
C TOTAL 248
ROOT MSE
EEP MEAN C.V.

		PARAMETER	STANDARD	T FOR HO:
VARIABLE	LF	ESTIMATE	ERROR	PARAMETER=0
INTERCEP	1	1.196981	0.304683	3.929
UICEFFO1	1	-0.066458	0.166810	-0.398
UICEFFO2	1	0.018384	0.186498	0.099
UICEFF03	1	0.015866	0.153552	0.103
UICEFFO4	1	-0.102711	0.165367	-0.621
UICEFFO5	1	0.143942	0.157543	0.914

UICEFF06	1	-0.202937	0.169923	-1.194
UICEFF07	1	0.445774	0.160634	2.775
UICEFF08	1	-0.103352	0.187552	-0.551
UICEFF09	1	0.558753	0.150903	3.703
UICEFF10	1	-0.185018	0.170707	-1.084
UICEFF11	1	-0.189952	0.158960	-1.195
UICEFF12	1	-0.077447	0.177617	-0.436
UICEFF13	1	0.061348	0.159126	0.386
UICEFF14	1	-0.211516	0.162901	-1.298
UICEFF15	1	-0.305762	0.183406	-1.667
UICEFF16	1	-0.120055	0.154927	-0.775
OVERHAUI	1	-0.185411	0.113329	-1.636
FIILRIC	1	-0.00678605	0.002192912	-3.095
FILIRGSF	1	-0.0034275	0.002309794	-1.484

FINAI REGRESSIONS FOR ALL DARIABLES

THAT PASSEC THE F TEST

DEP VARIAEIE: TINDEX01 TRANSFORMED READINESS INDEX (NPS) SUM OF MEAN

SOURCE	DF	S COARES	SQUARE	F VALUE	PROB>F
MODEI	<1	1848.552	88.026284	9.609	0.0001
ERROR	227	2079.407	9.160384		
C total	248	3927.959			
FOCT	MSE	3.026613	R-SQUARE	0.4706	
DEP	MEAN	6.206335	ADJ R-SQ	0.4216	
C. ∇.		48.76651			
		PARAMETER	STANDARD	T FOR H0:	
VARIABLE	LF	ESTIMATE	ERROR	PARAMETER $=0$	
INTERCEP	1	3. 642305	2. 992798	1.217	
UICEFFO1	1	-1.635419	0.867280	-1.886	
UICEFFO2	1	-1.018781	0.913375	-1. 115	
UICEFFO3	1	-2. 938144	0.735628	-3.994	
UICEFFO4	1	3. 361746	0.803856	4. 182	

UICEFF05	1	3.051413	0.774529	3.940
UICEFFO6	1	-3.030693	0.759744	-3.989
UICEFFO7	1	$2.8 \subseteq 8149$	0.780707	3.712
UICEFF08	1	0.611743	0.909772	0.672
UICEFF09	1	5.181669	0.751808	6.892
UICEFF10	1	-2.752034	1.055923	-2.606
UICEFF11	1	-1.450196	0.746155	-1.944
UICEFF12	1	-3.161426	0.867336	-3.645
UICEFF13	1	0.438981	0.739054	0.594
UICEFF14	1	0.178774	0.783770	0.228
UICEFF15	1	-0.897679	0.886501	-1.013
UICEFF16	1	2.612683	0.771323	3.387
OVERHAOL	1	-2.515674	0.544671	-4.619
HSDGEN	1	0.014030	0.018662	0.752
HSDGMR	1	-0.030455	0.009805563	-3.106
PAYGEIC	1	-0.330350	0.383805	-0.861
PAYGRGSM	1	1.303154	0.448149	2.908

FINAI REGRESSIONS FOF ALL VARIABLES
THAT PASSED THE F TEST

DEP VARIAELE: TMEMRAC TRANSFORMED READINESS INDEX (SPCC)

		SUM OF	MEAN		
SOURCE	DF	SQUARES	SQUARE	F VALUE	EROE $>$ F
MODEI	19	9395.381	494.494	4.085	0.0001
ERROR	229	27723.364	121.063		
C TOTAL	248	37118.744			
ROOT	MSE	11.C02851	R-SQUARE	0.2531	
DEE	MEAN	10.756668	ADJ R-SQ	0.1911	
C.V.		102.2886			
		PARAMETER	STANDARD	T FOR H0:	
VARIABLE	DF	ESIIMATE	ERROR	PARAMETER=0	
INTEECEF	1	-10. ع62993	7.782410	-1.396	
UICEFFO1	1	-3.822403	2.964483	-1.289	

UICEFF02	1	-1.391949	3.286655	-0.424
UICEFFOE	1	-3.980647	2.629888	-1.514
UICEFFO4	1	-2.152893	2.868579	-0.751
UICEFF05	1	-0.076521	2.761266	-0.028
UICEFF06	1	-6.426480	2.692132	-2.387
UICEFF07	1	17.603876	2.828506	6.224
UICEFF08	1	-5.422810	3.341368	-1.623
UICEFF09	1	10.641185	2.871149	3.497
UICEFF10	1	-0.671062	3.017736	-0.222
UICEFF11	1	-3.230901	2.724936	-1.186
UICEFF12	1	-4.021291	3.075372	-1.308
UICEFF1ミ	1	2.482705	2.835014	0.876
UICEFF14	1	-2.848687	2.878616	-0.990
UICEFF15	1	$-3 . \varepsilon \varepsilon 1452$	3.178404	-1.221
UICEFF16	1	4.187176	2.693936	1.554
OVEREAUL	1	-1.894058	1.958756	-0.967
HSDGEN	1	0.079346	0.066641	1.191
USDGIC	1	0.165242	0.065215	2.534

FINAI REGRESSIONS FCG ALL VARIABLES THAT PASSED THE F TEST

DEP VARIABLE: TTECHASS NUMBER OF TECHNICAL ASSISTANCE RECQESTS

		SUM OF	MEAN		
SOURCE	DF	SQUARES	SQUARE	F VALUE	EROB $>$ F
MODEI	18	1136.374	63.131907	6. 177	0.0001
ERROR	230	2350.782	10.220793		
C TOTAL	248	3487.157			
ROOT	MSE	3. 196997	R-SQUARE	0.3259	
LEE	mean	5. 566265	ADJ R-SQ	0.2731	
C. ∇.		57.43524			
		PARAMETER	STANDARD	T FOR H0:	
VARIABLE	DF	ESTIMATE	ERROR	PARAMETER=0	
INTERCEE	1	2.230403	1.836799	1. 214	

UICEFF01	1	-0.224980	0.835593	-0.269
UICEFF02	1	-1.640671	0.900286	-1.711
UICEFF03	1	-0.651695	0.759823	-1.121
UICEFF04	1	1.395168	0.828624	1.684
UICEFF05	1	0.178005	0.779531	0.228
UICEFF06	1	-1.545767	0.778697	-1.985
UICEFF07	1	1.250213	0.810057	1.543
UICEFF08	1	-1.016931	0.946478	-1.074
UICEFF09	1	2.645828	0.758966	3.486
UICEFF10	1	2.533714	0.865914	2.926
UICEFF11	1	-0.117980	0.793764	-0.149
UICEFF12	1	-0.729838	0.909285	-0.803
UICEFF13	1	-1.558194	0.759174	-2.052
UICEFF14	1	-1.570366	0.824056	-1.906
UICEFF15	1	-0.617845	0.894158	-0.691
UICEFF16	1	2.355788	0.780563	3.018
OVEREAOL	1	-3.860134	0.562218	-6.866
AFQTEN	1	0.071244	0.032899	2.166

FINAI REGRESSIONS FOG ALL VARIABLES
THAT PASSED THE P TEST

DEP VARIABIE: TDOWNMNT TOTAL HOURS DOWNTIME DUE TO MAINTENANCE

		SUM OF	MEAN		
SOURCE	DF	SCUARES	SQUARE	F VALUE	PROB>F
MODEL	19	13426 ع 2498	706678026	6.072	0.0001
ERROR	229	26652958570	116388465		
C total	248	40079841068			
ROOT	MSE	10788.349	R-SQUARE	0.3350	
DEP	MEAN	12453.904	ADJ R-SQ	0.2798	
C. ∇.		86.3489			
		PARAMETER	STANDARD	T FOR H0:	
VARIABLE	DF	EStimate	ER ROR	PARAMETER=0	
INTERCEP	1	93¢8.201	9222.760	1.019	

UICEFF01	1	-6561.047	2920.772	-2.246
UICEFF02	1	-6925.338	3037.691	-2.280
UICEFF03	1	-8566.722	2604.309	-3.289
UICEFFO4	1	11404.057	2808.393	4.061
UICEFF05	1	7650.291	2668.748	2.882
UICEFF06	1	-9084.174	2686.562	-3.381
UICEFF07	1	4367.707	2641.678	1.653
UICEFF08	1	4095.237	3182.395	1.287
UICEFF09	1	9386.285	2567.996	3.655
UICEFF10	1	-4252.314	2915.995	-1.458
UICEFF11	1	-6255.954	2628.229	-2.380
UICEFF12	1	-8369.711	3065.466	-2.730
UICEFF13	1	-162.088	2565.953	-0.063
UICEFF14	1	757.893	2716.524	0.294
UICEFF15	1	1416.563	3011.502	0.470
UICEFF16	1	$1264 \varepsilon .607$	2733.941	4.627
OVERHAUI	1	-4629.826	1929.469	-2.400
PAYGRIC	1	$-9 C 7.140$	1362.898	-0.666
PAYGRGSM	1	1661.903	1559.373	1.066

IIST OE REFERENCES

2.

3.

5.

NC. Copies

Department of Administrative Science Naval Fostgraduate School Monterey, California 93943
5. Defuty Chief cf Naval operations
(Manpcwer personnel and Training)
Arifington Annex
Cclumkia Pike and Arlington Ridge Road arlington, Virginia 20370
6. Deputy chief of Naval operations

Arlington Annex
Columeja Rike and ALlington Ridge Road Arlington, Virginia 20310
7. Deputy Chief cf Naval operations
(Manpcwer fapersonn $n \in 1$ and Training)
Arlington Annex
Columkia Pike and Arlington Ridge Road Arlington. ∇ inginia 20370
8. Deputy Chief of Naval operations
(yand wer personnti and Training)
Chíf cfaval personnel (OF-12B)

Arlington annex
Columpia pike and Arlington Ridge Road ArIington. Vinginia 20370
9. Defuty Chief of Naval operations (Manpcwer personnel and Training)
Arlingtonannex
Columeja Pike and Arlington Ridge Road ArIington, Virginia 20370

6. LCDR Jchn D. May

4408 Glen Lake Path
$\nabla i \operatorname{ligia}$ Beach. Víginia 23462
Lates , hlosentyyrelationships of per-sonnel characteristics

$$
1.501
$$

Thesis
M3883 May
c. 1 An analysis of the relationships of personnel characteristics to the performance of DD 963 class ships.

