Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1984 Comparison of the response of shape memory alloy actuators using air-cooling and water-cooling. Watson, Robert E. http://hdl.handle.net/10945/19197 Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer. Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943 DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 03043 # NAVAL POSTGRADUATE SCHOOL # Monterey, California # THESIS COMPARISON OF THE RESPONSE OF SHAPE MEMORY ALLOY ACTUATORS USING AIR-COOLING AND WATER-COOLING by Robert E. Watson December 1984 Thesis Advisor: W. G. Culbreth Approved for public release; distribution unlimited. T223030 | REPORT DOCUMENTATION PA | READ INSTRUCTIONS BEFORE COMPLETING FORM | | |---|--|--| | 1. REPORT NUMBER 2. | GOVT ACCESSION NO. | | | Comparison of the Response o Memory Alloy Actuators Using Cooling and Water-Cooling | | 5. TYPE OF REPORT & PERIOD COVERED Master's Thesis; December 1984 6. PERFORMING ORG. REPORT NUMBER | | `Robert E. Watson | | 8. CONTRACT OR GRANT NUMBER(*) | | Naval Postgraduate School Monterey, California 93943 | | 10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS | | Naval Postgraduate School Monterey, California 93943 | December 1984 13. NUMBER OF PAGES 119 | | | 14. MONITORING AGENCY NAME & ADDRESS(II ditterent fro | om Controlling Offic⊕) | Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE | | Approved for public release; | distributio | | 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Shape Memory Alloys Titanium-Nickel Alloys Shape Memory Actuators Cooling Time Constant Comparisons of S.M. Actuators Computer Aided Data Acquisition & Control of S.M. Actuators 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Titanium-Nickel (Ti-Ni) alloy specimens with induced shape memory were subjected to various single step current inputs under water-cooled, natural convective air-cooling, and stagnant air-cooling conditions to determine cooling time constants and subsequent delay time for successive actuation. Power input, specimen recovery and reextension CITCEASSIFFE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) displacement with various loads applied to the coil shaped actuator, and temperature distributions along the coil were recorded as functions of time. Results suggested that liquid cooling was a viable method for increased actuator response time. A brief review of the phase transformations that give rise to the shape memory effect is included. Recommendations for continued research and application are discussed. S.N 0102- LF- 014- 6601 Approved for public release; distribution unlimited. Comparison of the Response of Shape Memory Alloy Actuators Using Air-Cooling and Water-Cooling by Robert E. Watson Lieutenant, United States Navy B.S., St. Lawrence University, 1977 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL December 1984 #### ABSTRACT Titanium-Nickel (Ti-Ni) alloy specimens with induced shape memory were subjected to various single step current inputs under water-cooled, natural convective air-cooling, and stagnant air-cooling conditions to determine cooling time constants and subsequent delay time for successive actuation. Power input, specimen recovery and reextension displacement with various loads applied to the coil shaped actuator, and temperature distributions along the coil were recorded as functions of time. Results suggested that liquid cooling was a viable method for increased actuator response time. A brief review of the phase transformations that give rise to the shape memory effect is included. Recommendations for continued research and application are discussed. # TABLE OF CONTENTS | I. | INT | RODUCTION | 9 | |--------|-------|---|----| | II. | MAT | ERIALS ASPECTS OF SHAPE MEMORY ALLOYS | 11 | | III. | EXP | ERIMENTAL APPARATUS | 17 | | | Α. | ELECTRICAL HEATING SYSTEM | 17 | | | В. | FLUID FLOW SYSTEM | 18 | | | C. | DATA ACQUISITION AND CONTROL | 19 | | IV. | EXPI | ERIMENTAL PROCEDURE | 22 | | | Α. | SMA COIL PREPARATION | 22 | | | В. | SMA COIL EXTENSION, ACTUATION, AND DATA ACQUISITION | 24 | | | | 1. Single-Cycle Tests | 24 | | | | 2. Multiple-Cycle Tests | 25 | | V. | DATA | A REDUCTION | 27 | | VI. | RESU | JLTS | 32 | | | Α. | SMA COIL IMMERSED IN WATER | 32 | | | В. | SMA COIL COOLED UNDER THREE CONDITIONS | 33 | | VII. | CON | CLUSION | 36 | | LIST (| OF RI | EFERENCES | 38 | | FIGURE | ES | | 39 | | APPENI | OIX A | A SMA TEST SYSTEM UNCERTAINTIES | 57 | | | | B BASIC LANGUAGE PROGRAMS USED ON THE DMPUTER | 58 | | APPENI | OIX (| FORTRAN PROGRAMS USED ON THE IBM 3033 | 65 | | APPENI | OIX I | CALIBRATION DATA | 74 | | APPENDIX | E | DATA | LIST | rings |
7 | 7 [| |----------|------|--------|------|-------|-------|-----| | ΤΝΤͲΤΔΤ. | DIST | rrtrii | TON | TITST |
1 | | # LIST OF FIGURES | 1. | Shape Memory Behavior. A SMA Coil Deformed Will Recover Its Original Shape When Heated | 39 | |-----|--|----| | 2. | A Schematic Description of the Shape Memory Effect (Adapted from Perkins [2]) | 40 | | 3. | A Transmission Electron Microscopy Photomicrograph of Internally Twinned Martensite Plates (Reprinted with permission [2]) | 41 | | 4. | Percent Strain Recovery and Reversion Stress as a Function of Induced Strain (Adapted from [2]) | 42 | | 5. | Schematic Stress-Strain Curves for a Shape
Memory Alloy at Two Different Temperatures
(Adapted from [2]) | 43 | | 6. | Schematic Diagram of SMA Testing Apparatus | 44 | | 7. | SMA Cooling Chamber | 45 | | 8. | Block Diagram of SMA Data Acquisition and Control System with Data Reduction Process | 46 | | 9. | SMA Coil Form Shape Locking Rod | 47 | | 10. | SMA Coil Temperature and Coil Displacement as Functions Run Time for RUN 82 | 48 | | 11. | SMA Coil Temperature and Coil Displacement as Functions of Time for RUN 138 | 49 | | 12. | SMA Coil Temperature and Coil Displacement as Functions of Time for RUN 81 | 50 | | 13. | SMA Coil Temperature and Coil Displacement as Functions of Time for RUN 85 | 51 | | 14 | SMA Coil Temperature and Coil Displacement as Functions of Time for RUN 194 | 52 | | 15. | Natural Logarithm of the Normalized SMA Coil
Reextension Displacement Using Chamber Cooling,
Natural Air Convection Cooling, and Water Cooling - | 53 | | 16. | SMA Coil Temperature and Coil Displacement as Functions of Time for RUN 196, RUN 84, and RUN 191 | 5 4 | |-----|--|-----| | 17. | Natural Logarithm of the Normalized SMA Coil Reextension Displacement for Various Cooling and Loading Conditions | 55 | | 18. | SMA Coil Displacement as a Function of Temperature | 56 | #### I. INTRODUCTION A new group of actuators, or force-motion transducers, is being developed through use of alloys which exhibit shape memory behavior. The shape memory effect occurs when a part made from an alloy is deformed at one temperature and recovers its original shape when heated to a second temperature. This effect is shown in Figure 1. Numerous applications for these thermo-mechanical actuators exist; however, one area in which shape memory alloys, or SMA's, can assert a tremendous influence is robotics. Low weight and small size actuators are prime candidates to replace stepper motors and other hydraulic or mechanical actuating systems. Recent work by the Mechanical Engineering Research Lab of Hitachi, Ltd. of Japan illustrates the extent to which SMA can be employed to reduce volume and weight of small load robotic systems [1]. Their three finger 'hand' and its 'forearm' have a mass of only 4.5 kg and the entire system is only 700 mm in total length. The forearm containing the SMA actuators is only 400 mm long, 80 mm wide, and 50 mm high. The robot can manipulate a 2.5 kg load with nearly the dexterity of a human hand. The present work involved the design and construction of a liquid-cooling SMA testing system. A subsequent experimental investigation of SMA response time was conducted using heated water to assist actuation and using water cooling to decrease actuator cycle time. The system was automated by using computer control of the SMA actuator and computer-aided data acquisition from the testing system. An understanding of the basic mechanism of shape memory behavior has been included to introduce some of the working parameters used in the study of shape memory alloys. ## II. MATERIALS ASPECTS OF SHAPE MEMORY ALLOYS The shape memory effect is a behavior exhibited predominantly by titanium-nickel, copper-aluminum-nickel, and copper-zinc-aluminum alloys. Characteristic shape memory behavior occurs when an alloy is deformed from its original shape well beyond normal plastic deformation and then regains that original shape when moderately heated. Shape memory is the result of a reversible transformation, called a thermoelastic martensitic transformation, in which martensite plates form and grow continuously during cooling and then shrink by the reverse path to the
parent phase of the alloy as the temperature is raised [2]. Figure 2 depicts shape memory behavior in a coiled wire and the temperature and phase transformations that the alloy undergoes during memory inducement and cycling. An alloy specimen, the coil, is prepared by annealing it at a high temperature while it is constrained in the desired shape. Rapid cooling to below the martensite finish temperature, M_f, will produce a coil of SMA in its martensitic phase. If the coil is mechanically deformed it will be able to recover that induced shape by heating it through the parent start Ps, to parent finish, Pf, temperature range. The original shape can be recovered because internal deformations that occurred during straining will retreat along the same path by which they were introduced as the alloy is heated. As the coil is stretched both temperature and stress will cause transformation to the SMA martensitic phase. If the coil is in the temperature range between M_{d} , the highest temperature at which martensite can be produced, and M_{S} , the martensite start temperature, stress will induce the martensitic phase. If the coil is cooled to the M_{S} to M_{f} temperature range, or below, the parent phase will transform spontaneously to martensite [2]. Only low levels of elastic strain are created during the structural change so that the elastic limits of the parent and martensite phases are not exceeded. Irreversible plastic deformations do not occur during deformation. Rather, deformation causes shear transformation of parent phase regions to stress-induced martensite. Growth and/or shrinkage of neighboring plates is such that they accommodate the small strains that do develop, and in these groups the net shape change is small [2]. Simple stacking of plates in which strain vectors cancel each other is one type of group accommodation. There are also more complex mechanisms of strain accommodation that will not be discussed in this work [3,4,5]. Also, in Ti-Ni alloys, individual martensite plates have a strain accommodating substructure known as twinning [2]. Figure 3 is a transmission electron photomicrograph of internally twinned martensite plates in 50 percent Ti-50 percent Ni. During deformation, martensite plates will detwin to accommodate stress. Reversion stress and reversion strain are two parameters which characterize the shape memory phenomena. A SMA specimen constrained against recovery during heating through the P_s to P_f temperature range develops an internal stress, known as the reversion stress. When later deformed and heated while unconstrained, the reversion stress produces reversion strain that can be observed as a change in the shape of the deformed specimen. To increase reversion stress, and thus increase the work output of a specimen upon heating, a sample specimen to be formed for a particular use should be strained up to its strain limit. Figure 4 shows that the percentage of recoverable strain for a SMA specimen is a maximum for an induced strain of up to the strain limit, typically about 8 percent. If the initially induced strain is greater than the strain limit, the reversion stress and the recoverable strain, and consequently the useful work output, decreases [2]. The ambient temperature at which the SMA actuator resides is important to the design of actuators because of the temperature dependence of the parent to martensite transformation and its reverse, the martensite to parent transformation. Figure 5 shows stress-strain diagrams for a SMA at two different ambient temperatures. Figure 5a is the stressstrain diagram for an actuator at an ambient temperature above Me and below Pf. Two parameters are introduced to describe the transformation stresses and their values reflect the stability of the parent phase material. stress required to stress induce martensite, s_{n-m} , is a function which linearly increases from a minimum at $M_{\rm g}$ to a maximum at P_f . When stress reaches s_{p-m} the alloy will begin to experience strain and will transform from the parent phase to the martensite phase. For the martensiteto-parent transformation to occur, the stress level must drop to s_{m-p} . If the stress level is decreased to s_{m-p} there will be an elastic recovery to a lower strain. This is called the pseudoelastic effect, PEE. Further recovery will occur on heating the actuator -- the shape memory effect [2]. If the ambient temperature is below the martensite finish temperature, as in Figure 5b, no elastic behavior will occur on unloading the actuator. Recovery will occur on heating only. Reversion stress has been found to be well approximated by the value of the flow stress s_{p-m} [2]. Flow stress is obtainable from simple tensile tests as a function of temperature and strain. Perkins [2] reported that reversion stress will be about 20 percent lower than flow stress for a given temperature and strain. This information can be used during the design of a functional SMA actuator. The temperature dependencies discussed above must be taken into account by the designer of mechanical systems with SMA actuators. Particular attention must be paid to the temperature dependence of the flow stress and reversion stress. Reversion stress is a maximum over only a small temperature range near P_f [2]. If, during heating, the stress on the SMA actuator exceeds the parent phase yield strength so that yielding occurs there will be a decrease in reversion stress which will continue to decrease as the temperature continues to rise [2]. Accompanying the decrease in reversion stress may be a conversion of part of the initial strain into permanent damage in the form of plastic strain. A second problem situation occurs if a constant load is maintained on the SMA as the temperature approaches M_s . Since s_{p-m} is low at M_s the applied stress may produce true plastic deformation of stress-induced martensite [2]. A specimen, if cycled many times, may develop a partial two-way shape memory, that is, the SMA will have one remembered shape in the high temperature phase and a second remembered shape in the low temperature phase. A detailed review of the mechanisms of two-way shape memory may be found in references [6,7,8]. However, some observations on two-way shape memory (TWSM) training are appropriate. From a study of TWSN training routines, Perkins and Sponholz [6] reported some factors which contribute to the improvement of TWSM. Deformation beyond the strain limit of the sample in its initial training cycle was a requirement for TWSM. As a sample undergoes an increasing number of work cycles, some martensite structures may be retained in the sample even in the parent phase. This retained martensite does not now have to be induced in later training cycles and the training process becomes easier. Perkins and Sponholz [6] postulated that the retained martensite may serve as nucleation sites for the thermoelastic martensitic transformation discussed above. Through plastic deformation and retained martensite, the parent phase matrix may adjust so as to nucleate and grow a particular and preferential variant of martensite. This substructural adjustment becomes more refined as cycling continues. Optimum training for TWSM displacements will be realized when an SMA, initially in the parent phase, is subjected to some plastic deformation during the first cycle which is followed by approximately 15 training cycles. The training cycle displacements should be at least 2 times greater than the TWSM cool temperature working displacement [6]. Specific TWSM training routines are given in [2 and 6]. #### III. EXPERIMENTAL APPARATUS The SMA testing apparatus consisted of an electrical heating system, a fluid flow system, and a data acquisition and control system. Each of these systems will be described. Letters in parentheses refer to Figure 6, which is a schematic diagram of the SMA testing apparatus. #### A. ELECTRICAL HEATING SYSTEM An electrical system was built to heat the SMA coil sample, control the amount of heat applied to it, and measure the power consumed by the coil during heating. The SMA test coil was resistively heated as electrical current was passed through it. A 25 VDC variable power supply (A) was used as the current source. A precision 2 ohm resistor (B) was connected in series with the SMA coil. Using the measured voltage drop through the resistor (V_g) , the current through the coil was calculated. A switch (C) was installed in the circuit for manual control of power to the coil. A 125 VDC, 1 amp relay (D) was installed to permit computer control of power to the coil. The SMA coil was connected in the electrical circuit by two 3/8 inch diameter, 1/8 inch thick copper discs (E). The coil leading ends (F) fitted into a centered hole in the discs and were anchored by set screws. The positive electrode was fixed to an L bracket (G) which was attached to the supporting structure. The negative electrode (H) remained free to travel with the recovering SMA coil. It was sandwiched between two insulating phenol discs, each 1/2 inch diameter and 1/16 inch thick. The return wire (I) emerged from the copper disc through the center of the second phenol disc. Displacement of the SMA coil during actuation was determined through the use of a 10 turn linear potentiometer (J). A soft rubber, center grooved, grommet (K) was mounted to the potentiometer arm on a teflon disk. A wire string (L) ran from the negative electrode (H), over the potentiometer arm, to a plate (M) which carried loads applied during test runs. Voltage across the variable resistor (V_7) was measured by the data acquisition system as the potentiometer arm turned as the SMA recovered or reextended. #### B. FLUID FLOW SYSTEM A constant flow rate fluid system using water was constructed to provide cooling water to the SMA coil. The head tank (N)
was fitted with an overflow (O) to the system reservoir to maintain a constant head, and thus, constant flow rate. An immersion heater (P) was installed in the head tank, supported by the tank top to preheat the water. A type T thermocouple was installed in the head tank near the flow exit of the tank (T6). A Fisher-Porter rotometer (Q) with a ball float was installed in the system between head tank and the SMA cooling chamber. The SMA chamber (R) served as a mechanical support for the SMA coil and as the cooling chamber when water cooling was applied during test runs. A photograph of the SMA chamber is provided in Figure 7. Referring to Figure 6, type-T thermocouples were installed near the inlet (T1) and outlet (T2) of the chamber through holes in the tubing. Three type-T thermocouples were affixed to the SMA coil (T3, T4, T5) with small strips of heat-shrinkable tubing, and emerged from the chamber through a Swagelok fitting (S). After passing through the SMA chamber, water flowed into the system reservoir (T). A small electric submersible pump (U), capable of 1/70 HP, was sufficient to maintain the head tank water level for the flow rates used in the investigation. # C. DATA ACQUISITION AND CONTROL The data acquisition and control system was centered around an HP-9826 computer, an HP-3497A data acquisition system, and an HP-6942A multiprogrammer. A block diagram of the data acquisition and control system, as well as a data reduction flow chart, is provided in Figure 8. All computer programs written for the HP-9826 used the Basic programming language and are included in Appendix B. Programs written for data reduction using the IBM 3033 used Fortran and are included in Appendix C. Program 'SMA' directed electrical system control and data acquisition. Sets of data were taken by the HP-3497A as directed by 'SMA'. Data accumulated in each set included coil position, coil current and voltage drop, and all thermocouple outputs. As indicated in Figure 8, the initial portion of 'SMA' was interactive, requiring operator input of the total number of samples, TT, for each test run and the interval between each sample set, t. The total time between sets of data, including data acquisition, the programming loop and the wait interval, was measured as 2.075 seconds by the HP-9826 internal clock. Program 'SMA' directed electrical power to the coil by closing the relay installed in the electrical system (see Figure 6). This was accomplished through a relay card on the HP-6942A multiprogrammer. 'SMA' directed closing of the HP-6942A relay which, in turn, completed the required circuit to close the electrical system relay. With that relay closed, power was available to the test coil. Power to the coil was disconnected when 'SMA' directed the multiprogrammer to open its relay. Program 'SMA' directed the HP-3497A data acquisition system to sample each of the nine system voltages every t seconds. The sampling time for each channel of the HP-3497A was 0.04 seconds, for a total sampling duration of 0.44 seconds. After sampling, the HP-3497A was directed to send the data to the HP-9826 for storage. The type-t thermocouple voltages were converted to temperature in degrees Celcius using the fourth order least squares coefficients given by Beckwith and Buck [10]. Potentiometer voltage, V_7 , was converted into distance using the linear relation developed as a result of calibration of the potentiometer. Appendix D contains the calibration coefficients for this potentiometer. Current through the circuit was calculated using the voltage drop, V_8 , across the precision 2 ohm resistor. Power to the coil was calculated using the voltage drop across the coil, V_9 , multiplied by the calculated current. This data was written to a disk file by the HP-9826. #### IV. EXPERIMENTAL PROCEDURE The experimental procedure consisted of three basic steps: SMA sample preparation, SMA sample testing for response, and the measurement of temperature distributions along the sample. #### A. SMA COIL PREPARATION A SMA spring-like coil shape was chosen for testing because of the anticipated use of this shape in a robot arm. For use in the SMA chamber the coil was required to have a section of straight wire at both ends leading to the coil. The straight coil ends were required so that they would travel freely through the SMA chamber ends. Raychem Corporation of Menlo Park, California, provided samples of 50 percent Ti-50 percent Ni wire of various diameters. Wire with a diameter of 0.53 mm (0.030 inch) was chosen for use because its malleability allowed for easy coil formation. Also, less power was required to heat wire of this diameter than larger diameter wire. The Ti-Ni wire was locked into spring-like coils with straight sections at both ends by using a specially designed mandrel. The mandrel was a threaded rod, with special nuts used for locking the wire during the shaping process. The coil forming rod can be seen in Figure 9a. The rod formed a linch long coil with 20 turns per inch and lead sections of 3.5 inches long at either end of the coil. Wire was wound on the rod as the rod was hand turned on a lathe. The coil was locked at both ends with the set nuts. The leading ends were strained to approximately 4% then locked in place at the end of the rod. Leads were pressed into grooves cut into the rod with plates as seen in Figure 9b. During the heat-treating process, the plates were clamped tight into the grooves to prevent recovery to the factory-induced shape of the Ti-Ni wire that existed as it was first heated. To heat-treat the wire, the entire assembly was placed into a 320°C oven for 15 minutes. After removing the assembly from the oven the assembly was quenched in ice water. After heat-treating the SMA coil leading ends were checked for the proper straight shape. The locking nuts on the end of the rod were removed and those at the end of the coil remained in place. The leads were bent out of the rod groove, then heated to review their recovery. If the leads did not recover a straight configuration that would slide through the SMA chamber end readily, the shaping process was repeated for the leads. With the coil still locked in place, the leads were further strained and then locked in. Heat-treating and shape checking were repeated as discussed. Satisfactory coils and leads were generally obtained after repeating the process two or three times. #### B. SMA COIL EXTENSION, ACTUATION, AND DATA ACQUISITION Tests were conducted with single-cycle and repeated-cycle runs. Single-cycle extension runs included extension of the SMA coil, actuation and recovery of the coil, and cooling. Repeated-cycle runs merely repeated this sequence more than one time during a sample run. # 1. Single-Cycle Tests The primary purpose of the single-cycle runs was to identify the maximum temperatures reached during SMA recovery and to compare coil rate of recovery at various current inputs. Work done by the coil was also of interest and was easily calculated from data taken during the single-cycle runs. A single-cycle of a test run contained the following steps. - a. Apply the load. The desired load was placed on the load plate. The applied load varied from no load on the plate to 1.96 Newtons. The mass of the plate (refer to Figure 6) and wire string was 31 grams. - b. Extend the SMA coil. The coil was extended by the operator until the coil reached the end of the cooling chamber. Figure 6 shows the coil in its extended, deformed, position. - c. Set desired current. The desired current input was adjusted by the operator at the power supply. - d. Initiate computer control. For this phase of the tests a single step, constant current input heated the SMA sample. Program SMA (refer again to Figure 7) was configured to take two sample sets, then close the relay to apply power to the SMA coil. The relay was not opened by computer control until the final sample was taken. - e. Cut power-off. Power was manually cut off by the operator, using the installed switch, when the coil reached maximum recovery. Data acquisition continued whether power was applied to the coil or not. The total number of sample cycles for each run could be varied by interactive computer control, but generally, 100 samples of each parameter were taken. Sufficient data was obtained from the recovery phase and cool-down period. # 2. Multiple-Cycle Tests This phase of the testing involved a repetition of the single-cycle tests within the same run period. The most effective use of the multiple cycle tests occurred when no cooling water was present in the cooling chamber at the start of the run. The cycle was initiated as above, then when the actuator reached full recovery the operator cut off power to the system and initiated fluid flow through the chamber to cool the actuator. Once the actuator had cooled, as recognized by its reextension, coolant was cut off and power reinitiated to start the next recovery cycle. The cycle was repeated as often as possible during the run period. Once again, 100 sample sets was used as the total number of samples taken. ### V. DATA REDUCTION Data reduction included transferring data obtained during runs of the SMA testing system from floppy disk storage on the HP-9826 microcomputer to the IBM 3033 computer and then obtaining data listings or graphic output. Refer to Figure 8 during the following discussion. Programs written in the Basic programming language are included in Appendix B. Programs written in Fortran are included in Appendix C. Transfer of data from floppy disk to the IBM 3033 was accomplished by two terminal programs. Program SEND_DATA utilized the Binary Enhancement Basic program available on the HP-9826 to communicate with the IBM 3033 via modem. This program read data files from disk and transmitted data, one number at a time, to the IBM 3033. Fortran program GRAB, run on the IBM 3033, received the transmitted data and wrote it to a disk
data file for storage. Program REARRANGE was then used to reorganized the data file from a single string of numbers to nine columns of numbers corresponding to the nine measured parameters of the SMA testing system. After rearranging, the data files were easily used as input to other data reducing programs. Three programs were used for producing graphic output of the data. SMA3, LOGGRPH, and TEMGRPH were Fortran programs that used the Display Integrated Software System and Plotting Language (DISSPLA), by Integrated Software Systems Corporation of San Diego, CA, resident on the IBM 3033. DISSPLA is a library of Fortran subroutines that can be used in Fortran source code to generate graphical output. Since DISSPLA is computer and device independent, programs developed in this work may be converted for use at other installations having DISSPLA. Program SMA3 was written to present data from different test runs side by side (see Figure 10). Generally, for each run two data plots were presented. The first was a plot of temperatures along the SMA coil. It included T3, T4 and T5, and the cooling water temperature, or ambient temperature, T2, if water cooling was not used, as functions of time (Fig. 11a). The second was a plot of current, power, and SMA coil displacement as a function of time (Fig. 11b). These plots were used to identify the cooling period of each test run for further data reduction. Figures 12, 13, and 14 have been annotated to identify the cooling period which became the focus of further data reduction. Since the SMA test system was a thermal system, and SMA coil displacement versus time curve was exponential in appearance, the system was considered to be a first order system. Output of this system was SMA coil displacement, in recovery or in reextension, according to the relation: $$c(t) = 1 - e^{-t/T}$$ (t > 0) where c(t) = coil displacement divided by maximum displacement T = the system time constant t = time since zero In order to verify that cooling of the SMA coil was, indeed, first order, and to compare water and air cooled coil performance, the coil time constant was calculated for each test run. The natural logarithm of normalized displacement during the cooling period was plotted as a function of time and the first order system time constant, T, was determined from such a plot as: ### T = -1/slope Fortran program POLYFIT was used at this point to determine a linear fit to the natural logarithm of normalized data during the cooling period. Displacement was normalized by dividing the displacement value at time t by the maximum displacement at recovery. In the cooling phase, then, normalized data would decrease from 1.0 to some value which is a percentage of the total possible recovery displacement. The percentage of possible reextension is one minus that value. Data points were determined for each run using SMA3 graphs and the data listings from which they were generated. Figures 12b, 13b, and 14b, indicate that the coil did not immediately begin to reextend when power was cut-off. These represent coil recovery by stagnant air, natural convection to air, and water cooling, respectively. As can be seen from the corresponding temperature versus time graphs, the temperature decreased prior to reextension. With that in mind, the data files were examined to isolate the beginning and end of the coil reextension period. For RUN 81 and RUN 85, Figures 12 and 13, respectively, the cooling period included the remaining time of the run after power to the coil was turned off. In Figure 14 of RUN 194, and similarily in other test runs which used water cooling, the cooling period included only four data points. The final data point for inclusion in the linearity calculation was determined as the last data point to be 0.05 cm greater than the following point. At that point the SMA coil had nearly reached its limit of reextension determined by the load and the temperature of the cooling water. This data was fed into POLYFIT which normalized the displacement and then calculated the natural logarithm. POLYFIT then used these numbers to make a first order curve approximation to the data and output the coefficients of the curve fit: $$ln(X/X)_{max} = A_1 + A_2t$$ where A_1 = the y intercept A_2 = the slope of the curve and is equal to 1/T X =the displacement t = the time POLYFIT also output a set of data points which corresponds to the curve fit described above. Program LOGGRPH was used to compare POLYFIT output for different SMA test system runs. LOGGRPH used the raw log normalized data and the curve fit data developed in POLYFIT to produce graphic output of the type seen in Figure 15. The linear nature of these curves confirms that the SMA test system is a first order system [11]. And from the curves, the time constants of the system under different cooling conditions were easily compared. Program TEMGRPH was written to examine the recovery or reextension displacement of the SMA coil as a function of the coil temperature. The temperature dependence of coil recovery and reextension displacement is a characteristic that must be used in the development of feedback control of future SMA systems. Figure 18 is a displacement-temperature graph produced by TEMGRPH. # VI. RESULTS The results of this investigation into different methods of cooling the SMA coil after coil recovery can best be seen graphically in Figures 10, 11, 15 and 19. A description of these figures and some additional observations follow. # A. SMA COIL IMMERSED IN WATER Electrical heating of the SMA coil immersed in water produced no coil recovery. Figures 10 and 11 represent data obtained from two SMA test runs in which the coil was immersed in stagnant water during the entire time of the run. During RUN 82 shown on Figures 10a and 10b, 6 watts of electrical power at 2 amperes was applied for 200 seconds. The water temperature was initially at the room temperature of 22.8°C and rose to 27.3°C by the end of the run. During RUN 138 shown on Figures 11a and 11b, 2.5 watts of power at 1.25 amps was applied for 200 seconds. The water in the chamber had been preheated to 45°C and rose to 47°C during the run. In each case, it can be seen that no coil recovery displacement resulted from the electrical heating. Due to the large amount of heat transferred from a coil to a surrounding liquid, it was not possible to actuate an SMA coil immersed in water. The technique employed in later experiments was to initially heat the coil with only air present in the chamber. Water was then added to quickly cool the coil causing it to revert to its original shape. This technique dramatically increased SMA coil cycle time. # B. SMA COIL COOLED UNDER THREE CONDITIONS Data was compiled as described in the experimental procedure using three different cooling conditions for the SMA coil. The primary goal of the data reduction was to determine the coil cooling time constant, T, for the SMA coil as it is cooled in the chamber with no coolant, by natural air convection, and by water cooling. This time constant reflects the displacement of the coil with respect to time. Figure 15 is a plot of the natural logarithm of the normalized coil reextension displacement versus time for three test runs, each of which used one of the three cooling conditions. For each run the applied load on the SMA coil was 1.3 N. time constant for each cooling configuration can be read from the graph. For the three runs shown, the time constant of the chamber-cooled SMA system with stagnant air as the coolant was 25 times as long as the water cooled SMA system. The time constant for the natural convection air-cooled system was 15 times as long as that for the water-cooled system. Figure 17 shows time constant data for some additional SMA test system runs conducted with various cooling conditions and various loads. A comparison of time constants for RUN 196 (Figure 17) and RUN 85 (Figure 15), both cooled by natural air convection, and the SMA coil loaded with 1.3 N, shows a difference of 66 seconds between the two. A primary factor in this difference may be the ambient temperature at the time of the run. From Figure 16, it can be seen that the ambient temperature at the time of RUN 196 was 27 C, whereas during RUN 85 the ambient temperature was 22 C. Also from Figure 16, it can be seen that the time constant of the water-cooled system load with 2.0 N, RUN 191, was 2.2 times larger than the time constant for a water-cooled system loaded with only 0.8 N. In general, the time constant of a water-cooled SMA system was 15 to 25 times faster than a natural air cooled system and 20 to 30 times as fast a closed-chamber system. It can be seen from Figures 12 and 14 that reextension of the SMA coil did not begin immediately when power was turned off. Note the constant displacement ledge in each figure. Reextension began only when the temperature at the midsection of the coil decreased below 60 C. Also, in Figure 13, where the coil did not reach such high temperatures, reextension still did not begin immediately but accompanied a decrease in temperature below 50 C. However, the delay in this case was much less. By examining the heating portion of the temperature and displacement versus time graphs of Figures 12, 13, and 14 it can be seen that the rate of work output from the coil decreased dramatically after the coil reached approximately 50 C. This could be expected as a characteristic of this first order system and, also, it corresponded to the approximate austenite finish temperature referred to in the discussion on the material aspects of SMA's. The delay in reextension after recovery is indication that the M_d for this SMA (refer to Fig. 2) was in the 55-60 C temperature range. By plotting displacement as a function of temperature, as in Figure 18, it can be seen that very little displacement per degree was yielded when the coil temperature was above 45 C. This was true for both recovery or reextension. #
VII. CONCLUSION This work has involved the construction of a system for testing SMA actuators under different loads, different actuating electrical current, and different cooling conditions after actuation. Computer control of the SMA testing system and data acquisition system was implemented. Experimentation proved that a SMA system equipped with water cooling provided an actuator cycle time 15 to 30 times faster than a natural air-cooled system or a stagnant air-cooled system. Recommendations for further study are numerous, and included three major areas of SMA use and control. The first area for study is that of the alloys themselves. For most applications, specific knowledge may be required of the alloy transformation temperature range, the maximum reversion stress, and other alloy characteristics. This information was not available from the alloy manufacturer at the outset of this investigation but could be obtained in local laboratory testing. Also, a more thorough knowledge of two-way shape memory training and strengthening routines is needed to efficienctly use SMA actuators. This is required since one-way shape memory induced devices gain two-way shape memory after only a few cycles. The second area of continuing work would involve adaptation and expansion of the computer control portion of the SMA testing system for additional modes of control. Current input frequency, step size, and signal types such as a ramp input, may be used to vary the heating of the SMA and, consequently, the performance of the actuator. Computer control of the system using temperature feedback should be tried to prevent overheating of the coil and obtain maximum work output for a given electrical power input. Finally, the efficiency of the mechanical structures of the testing system should be improved. A more precise potentiometer should be installed. Different actuator shapes and combinations of actuators should be tried. For example, a cluster of small diameter SMA wires may have the same load capacity as one wire of larger diameter, but the cluster will have a time constant many times faster than the single wire [12]. In that case, water cooling or forced air convective cooling is an appropriate consideration for cooling in the system. Study of forced air convection cooling compared to water-cooling and to natural air-cooling should be investigated. # LIST OF REFERENCES - Nakano, Y., et. al., "Hitachi's Robot Hand," Robotics Age, V. 6(7), pp. 18-20, July 1984. - 2. Perkins, J., "Shape Memory Behavior and Thermoelastic Martensitic Transformations," <u>Material Science and Engineering</u>, No. 51, pp. 181-192, 1981. - 3. Perkins, J., "Ti-Ni and Ti-Ni-X Shape Memory Alloys," Metals Forum, V. 4(3), pp. 153-163, 1981. - 4. Mohammed, H. A., Washburn, J., Journal of Material Science, V. 12, p. 469, 1977. - 5. Mohammed, H. A., Washburn, J., <u>Metallurgical</u> Transactions A, V. 7, p. 10, 1976. - 6. Perkins, J., Sponholz, R. O., "Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-Al Alloys," Metallurgical Transactions A, V. 15A, pp. 313-321, February 1984. - 7. Schroeder, T. A., Wayman, C. M., Scripta Metallurgica, V. 11, p. 225, 1977. - 8. Delaey, L., Thienel, J., Shape Memory Effects in Alloys, J. Perkins, Ed., Plenum, New York, NY, p. 341, 1975. - 9. Otsuka, K. Shimizu K., <u>Proceedings of an International Conference on Solid-Solid Phase Transformations</u>, H.I. Aaronson et. al., Ed., TMS-AIME, Warrendale, PA, pp. 1267-86, 1982. - 10. Beckwith, T. G., et. al., Mechanical Measurements, Addison-Wesley Publishing Company, Menlo Park, CA, pp. 543-544, 1982. - 11. Ogata, K., Modern Control Engineering, Prentice-Hall Inc., Englewood Cliffs, NJ, pp. 221-223, 1970. - 12. Schetky, L. McD, Shape Memory Effect Alloys for Robotic Devices, Robotics Age, V. 6(7), pp. 13-17, July 1984. Figure 1. Shape Memory Behavior. A SMA Coil Deformed Will Recover Its Original Shape When Heated Figure 2. A Schematic Description of the Shape Memory Effect (Adapted from Perkins [2]) Figure 3. A Transmission Electron Microscopy Photomicrograph of Internally Twinned Martensite Plates (Reprinted with permission [2]) Figure 4. Percent Strain Recovery and Reversion Stress as a Function of Induced Strain (Adapted from [2]) Figure 5. Schematic Stress-Strain Curves for a Shape Memory Alloy at Two Different Temperatures (Adapted from [2]) Figure 6. Schematic Diagram of SMA Testing Apparatus Figure 7. SMA Cooling Chamber Figure 8. Block Diagram of SMA Data Acquisition and Control System with Data Reduction Process Figure 9. SMA Coil Form Shape Locking Rod RUN 82 I = 2.0 AMPS, LOAD = 1.3 N IMMERSED IN WATER COIL AND AMBIENT TEMPS VS. TIME T2 AMBIENT T3 AT COIL BEGIN T-T4 AT COIL CENTER T5 AT COIL END POWER, CURRENT, AND DISPLMT VS. TIME -----COIL DISPLACEMENT -----CURRENT THRU COIL -----POWER TO COIL Figure 10. SMA Coil Temperature and Coil Displacement as Functions Run Time for RUN 82 $\frac{\underline{RUN\ 138}}{I = 1.25\ AMPS,\ LOAD = 0.5\ N}$ $\frac{\underline{IMMERSED\ IN\ WATER}}{COIL\ AND\ AMBIENT\ TEMPS\ VS.\ TIME}$ # POWER, CURRENT, AND DISPLMT VS. TIME Figure 11. SMA Coil Temperature and Coil Displacement as Functions of Time for RUN 138 <u>RUN 81</u> I = 2.0 AMPS, LOAD = 1.3 N COOLED IN CHAMBER, STAGNANT AIR COIL AND AMBIENT TEMPS VS. TIME T2 AMBIENT ---T3 AT COIL BEGIN ----T4 AT COIL CENTER -----T5 AT COIL END POWER, CURRENT, AND DISPLMT VS. TIME Figure 12. SMA Coil Temperature and Coil Displacement as Functions of Time for RUN 81 RUN 85 I = 2.0 AMPS, LOAD = 1.3 N COOLED BY NATURAL AIR CONVECTION COIL AND AMBIENT TEMPS VS. TIME T2 AMBIENT T3 AT COIL BEGIN T4 AT COIL CENTER T5 AT COIL END POWER, CURRENT, AND DISPLMT VS. TIME Figure 13. SMA Coil Temperature and Coil Displacement as Functions of Time for Run 85 RUN 194 I = 2.0 AMPS, LOAD = 1.3 N WATER COOLED IN CHAMBER COIL AND AMBIENT TEMPS VS. TIME POWER, CURRENT, AND DISPLMT VS. TIME Figure 14. SMA Coil Temperature and Coil Displacement as Functions of Time for RUN 194 # LOG OF NORMALIZED SMA COIL DISPLACEMENT VS TIME SMA REEXTENSION DISPLACEMENT AFTER RECOVERY THREE COOLING CONDITIONS AFTER SMA RECOVERY Control of the contro COOLING OF THE SMA COIL IS ACCORDING TO THE EXPONENTIAL RELATIONSHIP: $$X(t) = 1 - e^{-t/T}$$ COOLING SMA COIL. ON THE NATLOG PLOT τ CAN BE READ AS τ - 1/SLOPE (SEC). T IS THE TIME CONSTANT OF THE FOR THESE THREE SYSTEMS: T - 161.638 SEC, NATURAL AIR CONVECTION, RUN 85 T - 265.684 SEC, STAGNANT AIR COOLING, RUN 81 11.007 SEC, WATER COOLEO, RUN 194 # LEGEND ---= LEAST SOR FIT, NATURAL AIR CONVECTION + - ORIGINAL DATA, NATURAL AIR CONVECTION O - ORIGINAL OATA, STAGNANT AIR COOLING --- LEAST SOR FIT, STAGNANT AIR COOLING ORIGINAL DATA, WATER COOLING - LEAST SOR FIT, WATER COOLING 140.0 120.0 100.0 80.0 0.09 40.0 20.0 0.0 Natural Logarithm of the Normalized SMA Coil Reextension Displace-Figure 15. ment Using Chamber Cooling, Natural Water Cooling Air Convection Cooling, and Functions of as SMA Coil Temperature and Coil Displacement RUN 191 RUN 196, RUN 84, and Time for 16. Figure Reextension Conditions Natural Logarithm of the Normalized SMA Coil Displacement for Various Cooling and Loading Figure 17. a Function of Temperature SMA Coil Displacement as Figure 18. # APPENDIX A # SMA TEST SYSTEM UNCERTAINTIES - 1. Thermocouples: ± 0.023°C - 2. Current: = 0.005 AMPS - 3. Voltage: $\pm 1 \times 10^{-6} \text{ V}$ - 4. Time: $\pm 1 \times 10^{-3}$ sec - 5. Position: ± 5.0% - 6. Load: ± 0.10 Newtons # APPENDIX B ### BASIC LANGUAGE PROGRAMS USED ON THE HP 9826 COMPUTER !Program_sma 20 1. READ NEARLY SIMULTANEOUSLY 30 GDALS: a. 6 THERMOCOUPLES b. 1 POTENTIOMETER 40 50 c. CURRENT (DELTA V) 60 d. VOLTAGE 70 80 2. STORE DATA IN ARRAYS 90 100 3. CORRECT FOR TYPE T-C BIAS 110 120 130 !BEGIN HP 9826 PROGRAM 140 150 OPTION BASE 1 DIM Data(900,9) 160 170 PRINTER IS 1 180 190 PRINT "time between samples? (sec)" INPUT Delta_t 200 210 220 PRINT "File to dump data to?" INPUT File_name\$ CREATE BDAT File_name\$,50 ASSIGN @File TO File_name\$ 230 240 250 260 270 280 PRINT "Number of sample sets?" INPUT I finish 290 PRINT "NOMINAL INITIAL CURRENT IS?" 300 INPUT I_ \lor PRINT "HEATING APPLIED (0=N0, YES,ENTER TEMP)" 310 320 330 INPUT Ht PRINT "FLOW RATE IS?" 340 350 IMPUT Fr PRINT "LOAD CONDITION? (MASS ADDED TO PLATE)" 360 INPUT Load\$ PRINT "MAX EXTENSION AT THIS TEMP?" 370 371 INPUT Max_ext PRINTER IS 701 372 380 SAMPLE NO. 1" RUN NUMBER ";File_name\$, INITIAL CURRENT =";I_v,"AMPS" HEATING CONDITION ";Ht,"C" 390 PRINT " PRINT " 400 PRINT " 410 PRINT " 420 FLOW RATE = ";Fr,"ml/sec" LOAD CONDITION IS ";Load\$,"GRAMS" NO. OF SAMPLE SETS =";I_finish TIME BETWEEN SAMPLES =";Delta_t,"SECS" MAX EXT OF WIRE AT THIS TEMP = ";Max_ext,"cm" PRINT " 430 PRINT " 440 PRINT " 450 PRINT " 460 PRINT " 461 PRINTER IS 1 470 480 490 500 Loop: ! A. Data Acquisition. 510 520 K = K + 1530 BEEP 540 IF K=3 THEN 550 BEEP 560 ดีบัโคบา 723;"0B,1,15,11" 570 END IF PRINT "Now working on loop ";K 580 ``` 600 Sample all thermocouples. 610 FOR J=1 TO 9 OUTPUT 709;"AI";J 620 630 ENTER 709; Data(K, J) PRINT "CH"; J, "="; Data(K, J) 640 650 660 NEXT J 670 680 WAIT Delta_t !pause dt secs 690 700 IF K<I_finish THEN GOTO Loop 710 OUTPUT 723;"OB,1,15,0T" 720 730 ! C. Convert to engineering units 740 ! 750 ! 1. Read chnl 18-bias for Type E T-C 760 2. Read chnl 19-terminal temp(convert to celsius) 770 780 OUTPUT 709;"AI18VT1" 790 ENTER 709; Bias_voltage 800 Bias_voltage=Bias_voltage*1000 810 PRINT "BIAS VOLTAGE =";Bias_voltage."mV" 820 830 OUTPUT 709;"AI19Vt1" 840 ENTER 709;V_terminal 850 PRINT "V_TERMINAL";V_terminal 860 Emf=V_terminal 870 880 !Convert Emf to temperature (C) for type E TC. 890 900 V=Emf*1000. !(mV) PRINT "V=";V,"mV" 910 T=1.7022525E+1*V-2.2097240E-1*V*V+5.4809314E-3*V 3-5.7669892E-5*V 4.0 920 !(C) 930 PRINT "I Terminal =":I."(C)" 940 950 3. Convert Type-T TC voltage to temperature (C). 960 970 a. Find the Emf(mV) corresponding to a given temperature. 980 990
Emf=3.8740773840E+1*T+3.3190198092E-2*T^2+2.0714183645E-4*T^3-2.19458348 23E-6*T'4. 1000 Emf = Emf + 1.1031900550E - 8 \times T^5 - 3.0927581898E - 11 \times T^6 + 4.5653337165E - 14 \times T^7. Emf=Emf-2.7616878040E-17*T^8. 1010 1020 Emf = Emf * .001 1030 1040 a. Find the EMF for a Type-T TC for the terminal strip temperature. 1050 1060 Emf_correct=Emf 1070 FOR K=1 TO I_finish 1080 FOR J=1 TO 6 1090 1100 Emf=Emf_correct+Data(K,J)*1000.-Bias_voltage 1110 1120 !Convert Emf(V) to temperature(C) for type T TC. 1130 1140 V=Emf 1150 T=2,5661297E+1*V-6,1954869E-1*V*V+2,2181644E-2*V`3-3,550090E-4*V 4. ``` ``` Data(K,J)=T 1160 1170 NEXT J NEXT K 1180 1190! 1200! 4. Correct remaining lines for Type-E TC bias. 1210 !SET FLAG FOR VOLTS FROM POT (J=7) TO X DISTANCE 1220 Flag=0 1230! 1240 FOR K=1 TO I_finish FOR J=7 TO 9 1250 1260 1270 Data(K,J)=Data(K,J)-Bias_voltage/1000 IF J=7 THEN Data(K,J)=3.022260*Data(K,J)+.00227 !VOLTAGE TO DISTANCE 1280 1290 IF Flag=0 THEN 1300 Initial_x = Data(1,7) 1310 END IF 1320 Flag=1 1330 Data(K,J)=(Data(K,J)-Initial_x)*2.54 !X IN CENTIMETERS 1340 END IF 1350 IF J=8 THEN 1360 Data(K,J)=Data(K,J)/2. !I=V/R R=20HMS. 1370 END IF IF J=9 THEN 1380 1390 Data(K,J)=Data(K,J)*Data(K,8) !P=V*I 1400 END IF 1410 NEXT J 1420 NEXT K 1430! 1440! 1450! C. Now print out all the data and write to disk. 1460!PRINTER IS 701 1470! 1480 !PRINT !SPACE LINE 1490! 1500 FOR K=1 TO I_finish 1510 PRINTER IS 1 1520 PRINT "LOOP";K 1520 FOR J=1 TO 9 1530 OUTPUT @File;Data(K,J) PRINT "CH";J,"=";Data(K,J) 1540 1550 1560 NEXT J 1570 NEXT K 1580 PRINTER IS 701 1590 PRINT FLUID TEMP AT START IS = ":Data(1,6),"C" 1600 PRINT " FLUID TEMP AT END IS = "; Data(I_finish,6), "C" 1610 PRINT 1620 ASSIGN @File TO File_name$!close the file descriptor. 1630 ! 1640 1650 PRINTER IS 1 1660 BEEP 1670 PRINT File_name$;" is written and closed." 1680 END ``` ``` 10 PROGRAM "SEND_DATA" 20 30 To VAX, IBM, TRS-80. 40 HP-9826 TERMINAL PROGRAM (REQUIRES BINARY ENHANCEMENT PROGRAM 50 60 70 "BEB"!] 80 JUNE 30, 1982 90 updated 1/5/83 100 updated 1/16/84 110 120 130 BILL CULBRETH 140 150 160 170 ! RS-232 IS SELECT CODE 9. PRINTER IS 1 ! PRINTER IS CRT. Pr=! ! DEFAULT PRINTER IS CRT. Printer_choice=701 ! MY PRINTER IS 701. 180 190 200 Bits=7 ! BITS PER CHARACTER 210 Duplex=0 ! FULL DUPLEX 220 Baud=300 ! BAUD RATE ! ASSUME IBM COMPUTER 230 Computer=1 240 OUTPUT Pr:"(300 BAUD. IBM assumed." OUTPUT Pr;" Load the binary program BEB first" OUTPUT Pr;" unless you have BASIC 2.0" OUTPUT Pr:" SET MODEM ON <FULL DUPLEX> }" OUTPUT Pr;" " 250 260 270 280 290 300 310 DIM Name$[200], Hp_file$[30], Aa(1500), Numb$[30] 320 INTEGER Isend 330 CONTROL Sc.3:Baud CONTROL Sc.4:Bits-5+4 ! BITS/CHAR & #STOP BITS. 340 350 360 370 380 To_disk=0 390 Datadump=0 I_data=1 400 410 J=1 420 430 K = 1 440 1 = 1 450 ON ERROR GOTO Errors ON KEY O LABEL "Line Mode" GOTO Line_mode ON KEY S LABEL "Terminal" GOTO Terminal ON KEY 6 LABEL "To Crt" GOTO Pr_crt ON KEY 7 LABEL "To Prt" GOTO Pr_prt ON KEY 8 LABEL "DATA" GOTO Data_dump 460 470 480 490 500 510 520 530 540 Line_mode: OUTPUT Pr;"(LINE RECEPTION MODE)" 550 560 Begin: STATUS Sc. 10:Y ! CHECK FOR FULL BUFFER 570* IF BIT(Y.0)=0 THEN GOTO Begin 580 590 ``` ``` 600 ! RECEIVE ROUTINE. 610 620 Receive: STATUS Sc.6:A B=A 630 640 QUTPUT Pr USING "#,A"; CHR$(B) IF B=63 AND Datadump=1 THEN GOTO Data_dump IF B=13 AND Computer=3 THEN OUTPUT Pr;CHR$(13) 650 660 670 GOTO Begin 680 690 Ŷ TRANSMIT ROUTINE. 700 710* 720 IF Duplex=0 THEN IF NUM(Key$)<>255 THEN DUTPUT Pr USING "#.A"; Key$ 730 740 IF NUM(Key$)=255 THEN OUTPUT Pr;" " 750 END IF 760 770 IF Computer=1 AND NUM(Key$)=8 THEN Key$=CHR$(64) 780 the previous line gives an @ 790 for a backspace for the IBM. 800 IF Computer=5 AND NUM(Key$)=8 THEN Key$=CHR$(127) 810 820 830 THE VAX/VMS REQUIRES A DELETE 840 SYMBOL FOR A BACKSPACE. 850 IF NUM(Key$)=255 THEN Key$=CHR$(13) DUTPUT Sc USING "#,A";Key$ 860 870 880 GOTO Begin 890 300 910 920 DATA FILE OUT TO THE HOST COMPUTER. 930 940 950 960 Data_dump: 970 IF I_data=1 THEN GOSUB Open_file 980 990 IF Datadump=0 THEN GOTO Begin 1000 IF Computer=1 THEN WAIT .3 1010 ! wait for the slow IBM. BEEP 1000+RND+1500..05 1020 OUTPUT Pr; "A("; I_data:")="; 1030 OUTPUT Pr:Aa(I_data) 1040 GOSUB Send_number 1050 IF Aa(I_data)=-200 THEN I_data=1 1060 1070 1080 Datadump=0 END IF 1090 1100 I_data=I_data+1 1110 GOTO Begin 1120 ! 1130 ! ERROR HANDLING SUBROUTINE 1140 1150 1160 Errors: OFF ERROR Close file=-200 ! FIRST, END OF FILE ERROR. IF ERRN=59 THEN 1170 1180 1190 Aa(I) = -200 1200 ``` ``` 1210 1220 1230 GOTO 2000 ! RETURN AFTER ERROR. END IF 1240 IF ERRN<>59 THEN OUTPUT Pr:"<error #":ERRN;" generated.>" IF ERRN=54 THEN OUTPUT Pr:"(FILE <"; Hp_files;"> ALREADY THERE)" 1250 1260 IF ERRN=54 THEN GOTO Created 1270 ERRN=56 THEN DUTPUT Pr:"<FILE (":Hp_file$;" IS NOT ON DISK.>" IF 1280 ASSIGN @File TO * 1290 GOTO Line_mode 1300 ! 1310 1320 OUTPUT TO CRT. 1330 1340 Pr_crt: Pr=1 GOTO Line_mode 1350 1360 1370 1380 OUTPUT TO PRINTER. 1390 1400 Pr_prt: Pr=Printer_choice 1410 GOTO Line_mode 1420 1430 1440 CHANGE THE TERMINAL CHARACTERISTICS. 1450 1460 Terminal: Baud Rate =":Baud Bits/Char =":Bits Duplex =":Duplex 1. 1470 OUTPUT Pr:" OUTPUT Pr:" OUTPUT Pr:" 2. 1480 1490 3. [1=full.0=half]" Computer =":Computer 1500 1510 OUTPUT Pr:" 4. OUTPUT Pr:" [IBM=1. VAX/UNIX=2. 1520 DUTPUT Pr:" 1530 TRS-80=3, Cyber=4, vax/vms=51" UNTPUT Pr:" TRS-80=3, Cyber OUTPUT Pr:" " INPUT "Change which one?", Which IF Which=1 THEN INPUT "To?", Baud IF Which=2 THEN INPUT "To?", Bits IF Which=3 THEN INPUT "To?", Computer IF Which=4 THEN INPUT "To?", Computer 1540 1550 1560 1570 1580 1590 IF 1600 Computer=1 THEN Duplex=0 IF Computer=3 THEN Duplex=0 1610 IF Computer=3 THEN Bits=8 1620 IF Computer=5 THEN Duplex=1 1630 1640 GOTO Line mode 1650 ! 1660 1670 1680 Open_file: 1690 1700 Open a file to read data from disk, 1710 1720 1730 Datadump=1 INPUT "Is this LDV data? (!=YES)",Ldv$ IF Ldv$="1" THEN INPUT "Experiment #?",Experiment$ 1740 1750 1760 1770 ELSE OUTPUT Pr:"Data file out of HP to host." INPUT "File name?".Hp_file® 1780 1790 1800 END IF ``` ``` ! IF Ldvs="1" THEN 1810 1820 Hp_file$=Experiment$&"_RESULT" END IF 1830 1840 1850 Read the file off of disk. 1860 1870 ASSIGN @File TO Hp_file$ 1880 1890 I = 1 1900 Check = 0 BEEP BEEP 1910 1920 QUTPUT Pr:"(Working on file <":Hp_file$;">.}" 1930 1940 1950* 1960 1970 1980 ENTER @File:Aa(I) Check = Aa(I) I = I + 1 1990* 2000 2010 · ASS 2020 · I 2030 RETURN 2040 ! ASSIGN @File TD * Datadump=1 2050 2060 2070 Send_number: ! 0802 ! SEND A NUMBER ONE CHARACTER AT 2080 2090 2100 2110 2120 2130 ! A TIME TO THE HOST COMPUTER. Numb$=VAL$(Aa(I data)) Length=LEN(Numb$) 2130 2140 2150 2160 2170 2180 2190 IF ((Ldv$="1") AND (I_data>13)) THEN Posit=POS(Numb$.".") IF (Posit<>0) THEN Length=Posit+2 END IF FOR I=1 TO Length 2190 2200 2210 2220 2230 2240 2250 RETURN 2260 ! 2270 ! 2280 ! Numeric=NUM(Numb$[I.I]) OUTPUT Sc USING "#,A";Numb$[I,I] NEXT I OUTPUT Sc USING "#,A"; CHR$(13) 2290 END ``` # APPENDIX C # FORTRAN PROGRAMS USED ON THE IBM 3033 ``` FILE: GRAE FCRTRAN A 1 PROGRAM GEAR TEST PROGRAM FOR DATA TRANSFER FROM THE HF-9826 TO THE IBM. BY BILL CLLERETH FOR ME2410. FALL GUARTER. 1982 FILEDEF OF TERMINAL FILEDER OF TERMINAL FILEDEF 07 DISK NYDATA DATA (PERM) GLOBAL TXTLIB FORTMOD2 MOD2EEH TYPE IN THE ABOVE 4 LINES TO MAKE THIS FORTRAN PROGRAM RUN. \mathbf{C} DIMENSION DATA(3000) I = 1 WRITE (6.80) 9.0 FORMAT(2x. DECIN INPUTING DATA FROM THE HP-9826) č 10 CONTINUE READ(5.*) DATA(I) I = I + 1 IF(DATA(I-1).NE.-200) GCTC 10 C NITEMS = I-1 FORMAT(2x,15. * DATA POINTS WERE ENTERED. *) 6 WRITE(6.6) NITEMS 0 NOW THAT ALL DATA HAS BEEN ENTERED, WRITE IT OUT ON DISK. 5 FORMAT(2x, *DATA(*, 15, *) = *, 1F15.5) I = 1 20 WRITE(7. #) CATA(I) I = I + 1 IF(DATA(I-1).NE.-200) GCTC 20 000 ALL DATA HAS BEEN WEITTEN ONTO DISK. STOP END ``` ``` FILE: WATARKHO FORTHAL SA CC PROGRAM REARTANGS BY SILL CULBRITH 22 JUNE 1984 CC REVISED BY R. WATSEN 1 SEP 84 TO HANDLE 9 CHARLELS UP DATA REVISED BY R. WATSEN 1 SEP 84 TO HANDLE 9 CHARLELS UP DATA PURPOSE: TAKE IN DATA AQUIRED ON THE HP-9820 A 10 PLACE IT IN ORDERED ARRAYS. FILEDEF 20 -- INPUT CONTINUE, X(1000), Y(1000), Z(1000), A(1000), 9(1000), C(1000), * D(1000), F(1000), Y(1000), Z(1000), A(1000), 9(1000), C(1000), * D(1000), F(1000), Z(1000), A(1000), B(1000), Z(1000), Z(1000), Z(1000), A(1000), B(1000), C(1000), * D(1000), Z(1000), Z(1000), Z(1000), A(1000), B(1000), C(1000), * D(1000), Z(1000), Z(1000 ``` ``` C PROGRAM BY LI. R. WAYLOW, SIPTEMENT 13,1934 C THE PURPOSE OF THE FROMAN IS CONTRACT TEMPERATURE AND OF THE PURPOSE OF A SALECT LAS IT RECOVERS JUNDER THE APPLIED PROMANDED BY ALLCY TO TING SYSTEM, CONSTRUCTED BY C DISPLACEMENT OF A SALECT LAS IT RECOVERS JUNDER THE OF THE SHAPE MEMORY ALLCY TO TING SYSTEM, CONSTRUCTED BY C THE SHAPE MEMORY ALLCY TO TING SYSTEM, CONSTRUCTED BY C THE SHAPE MEMORY ALLCY TO TING SYSTEM, CONSTRUCTED BY C THE SHAPE MEMORY ALLCY TO TING SYSTEM, CONSTRUCTED BY C THE SHAPE MEMORY ALLCY TO TING SYSTEM, CONSTRUCTED BY C THE SHAPE MEMORY ALLCY TO TING SYSTEM, CONSTRUCTED BY C THE SHAPE MEMORY ALLCY TO TING SYSTEM, CONSTRUCTED BY C THE SHAPE MEMORY ALLCY TO TING SYSTEM, CONSTRUCTED BY C THE SHAPE MEMORY ALLCY TO THE AREA PLOT TO THE STATE BOTTOM GRAPHS C THE SHAPE MEMORY ALLCY TO THE AREA PLOT TO THE STATE BOTTOM GRAPHS C THE SHAPE MEMORY ALLCY TO THE AREA PLOT TO MEMORY AND THE AREA TO ARE DIMPOSION ((100),Y(130),7(100),T(100),T(100),T(100),POWPAK(500) * P(100),F(100),F(100),T(100),T(100),TEMPAK(500),POWPAK(500) * P(100),F(100),F(100),T(100),T(100),TEMPAK(500),POWPAK(500) * P(100),F(100),F(100),T(100),TEMPAK(500),POWPAK(500) ** P(100),F(100),T(100),T(100),TEMPAK(500),POWPAK(500) ** P(100),F(100),TEMPAK(500),POWPAK(500) ** P(100),F(100),TEMPAK(500),POWPAK(500),POWPAK(500) ** P(100),F(100),TEMPAK(500),POWPAK(500),POWPAK(500) ** P(100),F(100),TEMPAK(500),POWPAK(500),POWPAK(500) ** P(100),F(100),TEMPAK(500),POWPAK(500),POWPAK(500) ** P(100),F(100),TEMPAK(500),POWPAK(500),POWPAK(500) **
P(100),F(100),TEMPAK(500),POWPAK(500),POWPAK(500) ** P(100),F(100),F(100),TEMPAK(500),POWPAK(500),POWPAK(500) ** P(100),F(100), ``` ``` FILE: SMAB FORTEAN AL CALL FRAME IF(ISUT.EQ.2) GD TC 998 CALL HEADIN('FUN 10+% ',-100,-1.25,4) CALL HEADIN('I = 1.25 AMPS, LUAD = 1.3 (14',100,1.4) CALL HEADIN('CCOLED IN CHAMSEF, NO WATERS',-100,.75,4) GD TO 999 CONTINUE CALL HEADIN('RUN 196$ ',-100,-1.25,4) CALL HEADIN('RUN 196$ ',-100,-1.25,4) CALL HEADIN('CCCLLD IN AIR *,-100,.75,+) CONTINUE CALL HEADIN('CCCLLD IN AIR *,-100,.75,+) CONTINUE C 998 949 С CALL HEADIM(*CCIL AND AMBIENT TEMPS VS. TIMES*,100, \pm 1.,4) SET UP LEGEND FOR THE SECOND CALL IF (ISET-EQ.1) GO TO 888 CALL HEIGHT (.12) MAKLIN-LINESY (IMPAK,500,83) CALL LINESY (IMPAK,500,83) CALL LINES(' T2 AMBIENTS; TEMPAK,1) CALL LINES(' T3 AT COIL BEGINS', TEMPAK,2) CALL LINES(' T4 AT COIL CENTERS; TEMPAK,3) CALL LINES(' T5 IT COIL CENTERS; TEMPAK,3) CALL LINES(' T5 IT COIL CENTERS; TEMPAK,3) CALL LINES(' T5 IT COIL CENTERS; TEMPAK,4) CALL LINES(' T5 IT COIL CENTERS; TEMPAK,4) C CALL LUTDRY(TEMP(K,4,4,4.75,2.3)) CALL RESET(3HALL) CALL ENDGR(0) CALL ENDGR(0) CALL ENDGR(0) CALL AND ((YIME (SEC)2*,100)) CALL AND ((YIME (SEC)2*,100)) CALL AND ((YIME (SEC)2*,100)) CALL INT ASS CALL GRAPT(0.0,20,210.,-1.0,1.,9.) CALL COURVE(T,E,NITEME,)) CALL CHANGE CALL CURVE(T,E,NITEME,)) CALL CURVE(T,E,NITEME,0) HESSIT(3HALL) HES C 888 SET UP LEGEND FOR SECOND CALL IF (ISTT-EW-1) GO TO 889 CALL HRIGHT (.12) MAXIIN=LIMEST(POWPAK,500,83) CALL LIMES(' COLL DISPLACEMENTS',POWPAK,1) CALL LIMES(' CUMBENT THRU CRILS',POWPAK,2) CALL LIMES(' POWER TO COILS',POWPAK,3) CALL LIMES(' POWER TO COILS',POWPAK,3) CALL LIMES(',POWPAK,3,4.75,2.5) 889 CONTINE c 88 9 CALL RESTT ('CCMPLEX') CALL ENDGR(0) XFHYS=XPFYS+5.5 CONTINUE CALL ENDPL(0) CALL DONEPL STOP END 99 ``` READ(23,#) NNN ``` FILE: LEGGRAH FORTS AL -1 C DD 97 J=1, 1.1.1 REAC(25,*) XXX(J), YYY(J), ZZZ(J), A6A68(J) WRITE(6,*) AAX(J), YYY(J), ZZZ(J), A6A88(J) CONTINUE C 97 CALL PHYSCR(0.75,0.60) CALL THEREN(.015) CALL THEREN(.015) CALL ENAME CALL COMPEX CALL INTAXS 0 CALL HEADIN(')LEG OF MORMALIZED SMA COIL DISPLACEMENT VS TIMES', * -100,-1.25,4) * -100,1.15,4) * -100,1.15,4) LOALL HEAGIN("THREE COOLING CONCETTIONS AFTER SMA RECOVERYS", CALL HEADIN('WATER, MATURAL AIR COMVECTION, CHAMBLE-NF COCLAMITS', 100,1.,4) C CALL RESET ('CCMPLEX') CALL XULMI ('TIME (SIC)S',100) CALL YUMME('LM (RIIXT/SELOV)$',100) CALL SAAF (03.0,20.,150.,-1.0,-.10,-0.0) CALL THKCT V(.01) PLOT FILE NUMBER ONE FECT LOS (DISPLAT) OF BRIGINAL DATA AS INDIVIDUAL DATA POINTS CALL MARKER (1) CALL LOSLIN CALL CURVE (X,Y,n,-1) C PLOT LIAIT SQUARES B. TA AS SMOOTH LINE CALL LIGHT SALL CUFVE (X.Z.N.O) 000 PLOT FILE NUMBER. THE FLORIDA AS INDIVIDUAL DATA POINTS CALL MARKET (3) CALL MARKET (3) CALL ESCION (XA,YY,NR,-1) PLOT LEAST SQUARES DATA AS SMOOTH LINE CALL CHNOCT CALL LOSLIN CALL CURVE (XX,ZZ,NL,O) PLOT FILE NUMBER THREE PLOT LOG (DISPLMT) OF ORIGINAL DATA AS INDIVIDUAL DATA POINTS CALL MARKER (5) CALL ELGLIN CALL CURVE (XXX,YYY,RMA,-1) CC PLOT LEAST SQUARES DATA AS SMOOTH LINE CALL CHIDSH CALL LEGLIN CALL CURVE (XXX,ZZZ,NHN,O) 00000000000 CALL DOT CALL BLNK1 (5.20,7.60,.800,1.6,1) CALL DOT CALL DET CALL ARISET('DET') CALL RESET('DET') CALL RESET('BLNK1') SET UP LEGEND CALL LINESP (2.0) CALL HIJGFT (.11) MAXLIN=LINEST (LEGPAK,500,40) ``` ``` FILE: LLGGS 2d F380 AD 1 CALL LINES(!= C57G13&L DATA, CCCLIG IN CHANBERS', LLGPAK, 1) CALL LINES(!= L5.51 SUN F11, CCCLIG IN CHANBERS', LEGPAK, 2) CALL LINES(!= L5.51 SUN F11, CCCLIG IN CHANBERS', LEGPAK, 2) CALL LINES(!= L5.51 SUN F11, AIR CODILINGS', LEGPAK, 2) CALL LINES(!= L6.51 SON F11, ARTER CODILINGS', LEGPAK, 5) CALL LINES(!= L6.63 F17, ARTER CODILINGS', LEGPAK, 5) CALL LINES(!= L6.63 F17, ARTER CODILINGS', LEGPAK, 5) CALL LINES(!= L6.63 F17, ARTER CODILINGS', LEGPAK, 6) CALL LINES(!= L6.63 F17, ARTER CODILINGS', LEGPAK, 6) CALL LINES(!= L6.63 F17, ARTER CODILINGS', LEGPAK, 6) CALL LINES(!TC TF6 GAPA, 5) ``` ``` FILE: TEMBRPH FURTRAM READ DATA FROM BOAT FILES INTO THE ARRAYS USED FOR PLOTTING. ARRAY O'IS DISPLACEMENT OF SMA COIL. AFRAY T'IS TIME OF BUR. c⁵² CONTINUE 53 SET UP GRAPH AREA AND HIADINGS CALL PHYSON(U.75, U.60) CALL AFE120(3.0,6.0) CALL COMPLX CALL H#ADIN('$ ',-100,-1.25,4) CALL H#ADIN('$',100,1.4) CALL H#ADIN('$',100,1.4) CALL H#ADIN('SMA CDIL DISPLACEMENT VS TEMPERATURES',-100,1.,1) CALL H#ADIN('SMA CDIL DISPLACEMENT VS TEMPERATURES',-100,1.,1) CALL ARSSET ('CCMPLEX') CALL XNAMC('GOIL TEMPERATURE (C)s',100) CALL XNAME('DISPLACEMENT (CM) $',100) CALL YNAME('DISPLACEMENT (CM) $',100) CALL GRAF(20.,5.,80.0,0,1.,10.0) CALL GRAF(20.,5.,80.0,0,1.,10.0) CALL GRAF(20.,5.,80.0,0,1.,10.0) CALL GRAF(20.,5.,80.0,0,1.,10.0) CALL GRAF(20.,5.,80.0,0,1.,10.0) CALL THKERM('COIT) CALL THKERM('COIT) CALL THKERM('COIT) CALL THKERM('COIT) CALL THKERM('COIT) CALL SMOOTH 0000 C С C PLCT DISPLACEMENT VS. TEMP OF FIRST FILE CALL CURVE (ZZ,CC,MITEM,O) ``` #### APPENDIX D #### CALIBRATION DATA # D.l Potentiometer Calibration The following relation was used in Basic program SMA to convert the 10 turn linear potentiometer voltage read by the HP 3497A to displacement: X = 3.02260V + 0.0027 where X = SMA coil displacement from zero V = potentiometer voltage output to the HP 3497A ## D.2 Flow System Rotometer Calibration The following relation converts the rotometer reading to volumetric flow rate: M = 0.03419R + 1.6411 where M = volumetric flow rate through the system R = the face plate reading on the rotometer ### APPENDIX E ### DATA LISTINGS BDAT files are to be read as follows: | Col. | 1 | 2 | 3 | 4 | |-------|--------|----|----------|---------------| | row 1 | Tl | Т2 | Т3 | Т4 | | row 2 | 2 т5 | Т6 | Displace | ement Current | | row 3 | B Powe | er | | | LBDAT files are to be read as follows: Col. 1 2 3 4 Time In Fitted normalized (normalized Data displacement displacement) Points FILE: BDAT81 DAT4 A | 93415542 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 22.4866333
22.0189362 | 22.6834412
.3031 | 22.7572174
.300000011E-05 | |--|--------------------------|---|------------------------------| | 22.6096344
22.6834412 | 22.4620209
22.0435638 | 22.658844C
.1535308555-04 | 22.7572174
.3000000115-05 | | 22.6342468
21.4768982 | 22.4620209
22.0189362 | 22.7326202
.383826991E-04 | 22.8063965
2.J2358816 | | 5.78984451
22.6096344
23.4699249 | 22.4620209
22.0189362 | 24.3099640
.1458542685 - 03 | 24.8925018
2.02343845 | | 5.7669553d
22.6096344
25.92031d6 | 22.4620209
22.0139362 | 25.9935676
.2560893825-01 | 27.7264862
2.02333386 | | 5.72432232
22.5850372
28.6273193 | 22.4620209
22.0435638 | 23.1649170
.279955745 | 30.7638397
2.02358818 | | 5.64455128
22.6096344
32.6505737 | 22.4374237
22.0435038 | 30.2790070
.033805871 | 33.6396942
2.02333366 | | 5.55213165
22.5850372
35.4684601 | 22.4128113
22.0435638 | 32.2157593
1.19027805 | 36.3565674
2.02338386 | | 5.47827816
22.5850372
37.8893423 | 22.4128113
22.6081915 | 34.J733795
2.J1596737 | 38.9167786
2.u2343845 | | 5.42620850
22.5850372
40.3946059 | 22.4128113
22.Jo81915 | 35.5885620
3.64032269 | 41.5125885
2.J2353859 | | 5.38762474
22.5850372
42.4146729 | 22.4128113 22.0185362 | 37.3389893
4.09830418 | 44.1907806
2.02350859 | | 5.35970020
22.5850372
43.9062977 | 22.3881989
22.04.5633 | 3d.7735291
5.53192463 | 46.7619019
2.J2363873 | | 5.3411445
22.5850372
45.4896393 | 22.4374237
22.6681915 | 39.3469696
6.09506402 | 49.7425300
2.J2368859 | | 5.33146239
22.5850372
47.1363209 | 22.4374237 21.9945237 | 40.8707275
6.51749039 | 52.5211334
2.J2295813 | | 5.65939730
22.6096344
48.5710297 | 22.4374237 22.0189362 | 42.1062317
p.34435749 | 55. 0565704
2.J2336886 | | 5.95195293
22.0096344
50.2339630 | 22.4128113 22.0189362 | 43.4336353
7.07085083 | 59.0043370
2.J2373845 | | 5.64875221
22.6096344
51.5887239 | 22.4128113
22.6435633 | 44.3763223
7.29758372 | 62.76\$J054
2.023638J4 | | 5.04727211
22.6096344
53.1496277 | 22.4128113
22.6435638 | 46.3852386
7.+0093750 | 66.6880951
2.02403886 | | 5.37006233
22.6096344
54.6133728 | 22.4374237 22.0435038 | 48.3312653
7.02836206 | 70.6491394
2.02243805 | | 5.66723361
22.6096344
56.0038757 | 22.4374237 22.0435638 | 49.5958160
7.75563908 | 74.4038391
2.02403831 | | 5.40049257
22.6096344
57.7602234 | 22.4020209
22.0435030 | 51.3787231
7.76963765 | 77.9784698
.1950000308-04 | | .2086550008E-08
22.5604401
57.6678497 |
22.4128113
22.0435633 | 52.3913782
7.76907349 | 79.3133240
.1300000615-04 | | 1044033005-03
22.5604401
57.6217651 | 22.4128113 22.0435638 | 52.7074283
7.76907349 | | | .9800000912-09
22.5358429
56.9053380 | 22.4123113
22.0189352 | | 79.1799774 | | 30. 703 33 3 3 | 22.010/332 | 1.10,01547 | 11770000235-04 | | .945000078E-09 22.53584299 23.5312305 .742500001E-09 22.5112305 .742500001E-09 22.5112305 .742500001E-09 22.5112305 .742500001E-09 22.5112305 .76250999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .762509999305 .76250999999999999999999999999999999999999 | 22.4128113
22.0435638 | 52.1253610
7.76907349 | 78.3347321
.169999985E-04 | |---|---------------------------|--------------------------|--------------------------------| | 22.5112305 | 22.3881989 | 51.4720764 | 77.2429962 | | 54.9845123 | 22.0435638 | 7.76914978 | .1649999475-04 | | 22.5112305 | 22.3681989 | 50.7482300 | 75.9430896 | | 53.8703766 | 22.0435638 | 7.76907349 | .160000054E-04 | | .6559999215-09
22.5112305
52.7772827 | 22.3881989
22.0435638 | 49.3532471
7.75914978 | 74.5830341
.164999947E-04 | | .593999960E=09
22.4866333
51.6587219 | 22.4128113
22.0435638 | 49.1132753
7.76914978 | 73.0801036
.155000016E-04 | | .5114999545-09
22.5358429
50.5840558 | 22.4128113
22.0189362 | 48.3129425
7.76922703 | 71.6182556
.155000016E-04 | | 22.5358429 | 22.4128113 | 47.4909663 | 70.152a794 | | 49.5319214 | 21.9943237 | 7.76922733 | .155000016E-04 | | 22.5358429 | 22.4128113 | 46.7148437 | 68.7059937 | | 48.5006551 | 22.0139362 | 7.79930332 | .155003016E-04 | | 22.5358429
48.5000551
.387500032E-09
22.5356429
47.5614624
.3409998955-09
22.5356429
46.642761 | 22.4374237
22.0435638 | 45.3140472
7.76930332 | 67.3237152
.1550000165-04 | | 22.5356429 | 22.4128113 | 45.1593170 | 65.9153442 | | 46.6442261 | 22.3435638 | 7.76930332 | .149999996E-04 | | 40.044201
.2850000246-09
22.5604401
45.7720135
.2850000246-09
22.5604401
44.9468536
.2550000215-09
22.5604401
44.143+937 | 22.4374237
22.0681915 | 44.4271698
7.70938057 | 64.5713637
.1499999965-04 | | 22.5604401 | 22.4374237 | 43.7413738 | 63.2937775 | | 44.9463336 | 22.4920192 | 7.75523495 | .149999996E-04 | | 22.5604401 | 22.4020209 | 43.0784302 | 62.0585937 | | 44.1434937 | 22.0928132 | 7.74811649 | .1400000025-04 | | 22.5850372 | 22.4620209 | 42.4384003 | 60.9124933 | | 43.4100037 | 22.0681915 | 7.73475933 | .1403000025-04 | | 22.550C3021=07 22.550C3021=07 44.143+937 -22.3599392=09 22.5850377 -195539934=09 22.5850372 42.6992498=09 22.5850373 -18159934=09 22.6992498=09 22.6992498=09 22.6992498=09 22.6992498=09 22.6992498=09 22.6992498=09 22.6992498=09 22.6992498=09 22.6992498=09 22.6992498=09 22.6992498=09 22.6992498=09 22.699298=09 22.6992998=09 22.6992998=09 23.899299984=09 | 22.4374237
22.0081915 | 41.8213654
7.09261551 | 59.7640536
.1400000J2~-04 | | 22. 6096344 | 22.4620209 | 41.2511902 | 58.6824188 | | 42. 0350342 | 22.J435u33 | 7.03450336 | .140003302=-04 | | 22.6096344 | 22.4620209 | 40.7042034 | 57.6679230 | | 41.3927836 | 22.0081915 | 7.53783U54 | .135000000E-04 | | 22.65884445 | 22.4866333 | 40.1304962 | 56.0515808 | | 40.7517853 | 22.cu81915 | 7.54392052 | .135000000=-04 | | 22.0834412
40.1566772
107999998=-09 | 22.48063333
22.0631915 | 39.6801300
7.48412037 | 55.7260437
.13500000005-04 | | 22.7080231 | 22.4860333 | 39.2031555 | 54.3453674 | | 39.5609131 | 22.0139562 | 7.41618252 | .1350000005-04 | | 22.7326202
38.9833831
809999345-09 | 22.4866333
22.0189352 | 38.7496490
7.35354233 | 54.0097656
.1350000008-04 | | 22.7326292
38.4391327
-6750000565-10 | 22.4866333
22.0435633 | 38.3196716
7.30518055 | 53.196167.)
.13500000099-04 | | 22.7326202
38.9833841
80995993416-09
22.7326202
38.4391327
.6750000564-10
22.7326232
37.8893433
.6750000564-10
22.7572174
37.3629303 | 22.4866333
22.0923192 | 37.9132538
7.24591732 | 52.4046783
.1350000007-04 | | 22.7572174 | 22.4866333 | 37.50.5460 | 51.6353912 | | 37.3629303 | 22.0435038 | 7.13097401 | .155000000F-04 | | | | | | | .53 99999395-10
22.7572174
36.8599854 | 22.4860333
22.0435638 | 37.1474457
7.12969398 | 50.9351196
.129999999E-04 | |--|--------------------------|--------------------------|---| | 22.7572174
36.3325836 | 22.4620209
22.3435638 | 36.7641296
7.07112217 | 50.2339630
.129999999 ⁵ -04 | | 22.7572174
35.8046722 | 22.4620209
22.0435638 | 36.4524841
7.00172615 | 49.5787506
.1299999995-04 | | .25 99 99 9 3 8 E = 10
22 · 7 5 7 2 1 7 4
35 · 3 4 8 3 2 7 6 | 22.4620209
22.0681915 | 36.1166840
6.93424988 | 48.9462128
.129999999 1- 04 | | .259999938E=10
22.7572174
34.8675690 | 22.4366333 | 35.8766937
6.37191582 | 48.3364105
.1299999995=04 | | .130000004E+10
22.7572174
34.3863331 | 22.4620209
22.0681915 | 35.5885620
6.80735683 | 47.749+354
.1249999975=04 | | .125000002F-10
22.7572174
33.9047699 | 22.4620209
22.0681915 | 35.3243103
6.75507927 | 47.1853485
.124999997E=04 | | 22.7572174 36.8599854 .38999977%-10 22.7572174 36.3325806 .38999977%-10 22.7572174 35.8046722 .2599938E-10 .22.7572174 35.3483276 .25.99938E-10 .22.7572174 34.8675690 .136000004E-10 .23.7572174 34.3863331 .12.5000002E-10 .23.7572174 33.9047699 .12.5000002E-10 .23.4709473 | 22.4866333 | 34.9637604
6.71661949 | 46.6235813
.1249999975-04 | | .0
22.7572174
33.0367889 | 22.4866335
22.0923192 | 34.6751404
6.65989017 | 46.1025848
.120000004E-04 | | 12 CC CO | 22.4860333
22.09231)2 | 34.3863831
6.59571457 | 45.5839844
.124999997F=04 | | 125000002E-10
22.7572174
32.2399139 | 22.4866333
22.0928192 | 34.0974579
6.50582218 | 45.1121063
.1249999975=04 | | 1250000025-10
22.7810146
31.3773193 | 22.4866333
22.6923192 | 33.8324890
6.49492168 | 44.6161957
.1449999977=04 | | 1250000021-10
22.7818146
31.5144806 | 22.4866333
22.0928192 | 33.5673823
6.45730591 | 44.1434937
.1200003045-04 | | 1200000003=10
22.7818146
31.1756134 | 22.4866333
22.0928192 | 33.3021545
6.42951679 | 43.7413788
.124999997E-04 | | 1250000025-10
22.7818146
30.6365246 | 22.4366333 | 33.0850572
6.36902018 | 43.29101J7
.124999975-04 | | 2500000215-10
22.7818146
30.5457153 | 22.4866333
22.0928192 | 32.8437195
6.32841032 | 42.8838702
.1249999975-04 | | 250000021E-10
22.7813146
30.2334993 | 22.4860333
22.0928192 | 32.5264191
6.29164600 | 42.4858398
.1249999975-04 | | 2500000212-15
22.7818146
29.9636383 | 22.4866333
22.0928192 | 32.4090576
6.25065327 | 42.0587616
.1249997975-04 | | 25 000 00 212 - 10
22 - 7813146
29 - 6966400 | 22.4866333
22.0435638 | 32.2157593
6.23866299 | 41.7026215
.1249999975-04 | | 22.7572174
29.4295044 | 22.4866333
22.0189362 | 31.9740448
6.15009117 | 41.3224945
.1249999975-04 | | 22.7818146
29.2103459 | 22.4866333
22.0189362 | 31.7305939
6.36296253 | 40.9658651
.124999997-04 | | 22. 75721 74 33.0367889 12.05000005=10 22.7572174 32.6505737 12.550000025=10 22.7572174 32.250000025=10 22.7813146 31.3773193=10 21.7813146 12.5000005=10 22.7813146 31.5144800 12.5000005=10 22.7813146 30.365526 25.00000215=10 22.7813146 30.5457153 25.00000215=10 22.7813146 30.5457153 25.00000215=10 22.7813146 30.25300000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.00000215=10 22.7813146 25.000000215=10 22.7813146 25.000000215=10 22.7813146 25.000000215=10 | 22.486±333
22.0435±38 | 31.5370667
6.00185680 | 40.6090240
.1299999995-04 | | 22.8063965
28.7469471 | 22.4866333
22.0681915 | 31.3934784
5.94689274 | 40.2291139
.1350000005-04 | | 22. 781814p
23. 53C014U | 22.4866333 | 31.2240295
5.90904608 | 39.3946223
.1299999998 - 04 | | | | | | 22.4374237 22.0681915 28.J188141 4. 74249439 32.9402613 .124999997E-04 FILE: BCAT81 CAT: 4 | .25 C00 00 21 E - 10
22.6588440
25.284283
.459999938 E - 10
22.6588440
25.2353210
.259999938 E - 10
.259999938 E - 10 | 22.4374237
22.0928192
22.4374237
22.0928192
22.4374237 | 27.3970337
4.91309357
27.3239594
4.30995125
27.7264862 |
32.6983678
.1299999995-04
32.5056763
.1299999997-04 | |--|--|--|--| | 22.6342468
25.1616805
.3750000315-10 | 22.4374237
22.0928192 | 27.7264862
4.33563709 | 32.2882538
.124999997E-04 | ``` .185593265475656 C93E-01 -.376387517155202256E-02 12 185992444731 1-01 -- 28691326 1-01 -- 28691326 1-01 -- 28690891492 1-01 -- 28690891492 1-01 -- 28690891492 1-01 -- 28690891492 1-01 -- 2869091492 1-01 -- 2869091492 1-01 -- 361109964712 1-01 -- 59735410995622 1-01 -- 59735410995622 1-01 -- 59735410995622 1-01 -- 59735410995622 1-01 -- 9859912085 1-114213377 1-01 -- 9859912085 1-1142213377 1-1242831377 1-1242831474 1-137645615439 1-1243646901648 1-127645615439 1-1243691648 1-129012177600 1-164669017640 1-19313179326 1-193131 .999999975E-05 • 358138621 • 363849580 • 367633760 • 373186643 • 377603233 ``` | 99
23.1331329
22.8135529 | 22.936+929
22.2230d35 | • 0 | 22.7643738
3000JUULTE-05 | |---|--------------------------|------------------------------|-----------------------------| | 7300000025E-10
23.0839691
22.8135529 | 22.9364929
22.3461456 | 22.7643738
767654001E-05 | 22.7643738
249999994E-05 | | 25 00 00 2 15-10
23 42 794 d J | 22.8873291
22.7151947 | 22.3135529
.767654001E-05 | 22.3381500
2.01884747 | | 5.79711056
23.1085510 | 22.8627319 | 23.2559967
.460592419E-04 | 23.771698J
2.J1869774 | | 5.78517342
23.1085510
24.5811157 | 22.8627319 22.7397766 | 23.3296967
.460592419F-04 | 24.1397705
2.01879787 | | 5.77C52021
22.9364929 | 22.8627319 22.6905975 | 23.4033813
.537357846E-04 | 24.3850J98
2.J1379787 | | 5.74710274
23.1085510 | 22.8873291
22.7151947 | 23.477066J
.460592419E-U4 | 24.5811157
2.31379737 | | 5.72489543
23.1321329
25.1669373 | 22.8627319
22.6905975 | 23.4033813
.307061564E-04 | 24.7036439
2.01914787 | | 5.85470963
23.1331329
25.3403625 | 22.8373291
22.6414032 | 23.5507355
.230296232H=04 | 24.7771454
2.31869774 | | 6.00157738
23.1085513 | 22.887U291
22.6414032 | 25.6244349
.153533355E-04 | 24.7771+54
2.01899719 | | 5.895+0299
23.1085510
25.3648376 | 22.8373291
22.7151947 | 23.4770660 | 24.7281494
2.01 #54746 | | 5.85284042
23.1321329
25.3648376 | 22.9119119
22.7397766 | 23.4525146
.153533855E+04 | 24.7036433
2.J1914787 | | 5.80524063
23.1331329
25.3668376 | 22.911911) 22.7397766 | 23.5016327
.1535308555-04 | 24.7231494
2.J1914787 | | 5.80463535
23.1331329
25.13433127 | 22.9119110 | 23.5753021
.7676540015-05 | 24.7771454
2.J1914787 | | 5.79898167
23.1576996
25.4332477 | 22.5119110 | 23.5016527
.2302962825-04 | 24.3261566
2.31939774 | | 6.1434J115
23.1331329
25.4827223 | 22.911911J
22.7643738 | 23.5998535
.3070615645-04 | | | 5.90303707
23.1576996
25.4871979 | 22.9119113 | 23.7716980
.153533255E-04 | 24.9480237 | | 6.03213215
23.1576936
25.5116577 | 22.9364929
22.7151947 | 23.7226105
.4605924198-04 | 24.9731140
2.01954746 | | 6.03835119
23.1822815
25.5645927 | 22.9364929
22.6660004 | 25.7226105
.383826991E-04 | 25.3223947
2.31949767 | | 5.96553571
23.1576496
25.5450525 | 22.9364929
22.6660004 | 23.3453369
.460592419E-04 | | | 6.13941333
23.1576996
25.6095276 | 22.9610748
22.6905975 | 23.3944244
.460592419E-04 | 25.J955659
2.31969719 | | 6.09563923
23.1822815
25.6338874 | 22.9354929
22.7643738 | 23.369873U
.537357846E-04 | 25.1200409
2.01970753 | | 6.16622925
23.1822015
25.0534473 | 22.5364929
22.6905975 | 24.0171051
.130501183E-03 | | | 99369761519142071933993807795142977597755396635446884029635451355304581309693545354681035561553646840112209971567953966354688102756155615566710568367551291766296364412220969713675512917662963332256497122097713556735332564785135667135567353647513567657356765354668135765576557656765765765765765765765765765 | 22.5364929
22.6660004 | 23.9434967
.239385050E-03 | 25.1690210
2.J1973733 | | | | | | | 5-98545742 | | | | |--|----------------------------|------------------------------|---------------------------| | 23. 1822315
25.6584473 | 22.5364929
22.6660004 | 24.J907135
.468263991E-U3 | 25.1934957
2.01984787 | | 23. 1822315
25. 70 736 09 | 22.9610748
22.7889709 | 24.3907135
.4032639913-03 | 25.2179718
2.01989746 | | 5.98545742
23.1822315
25.6684473
5.96661949
23.1822315
25.70736.09
6.03079796
23.1822315
25.7316268
6.03762150
23.1822315
25.7316268
6.03848171
23.2068431
25.03848171
23.2068431
25.04933548
23.2068481
25.04933548
23.2068481
25.04933548
23.2068481
25.04933548
23.2068481
25.08051910
6.04210949
22.1822615
25.03590012 | 22.9610748
22.7397766 | 24.0661774
.452915905E-03 | 25.2424622
2.01974773 | | 6.03762150
23.1822315
25.7318268 | | 24.0416412
.500651588E-03 | | | 6.03848171
23.2068431
25.7807312 | | 24.J416412
.498975161E-03 | | | 6.04933548
23.2068481
25.8051910 | | 24.1642914
.498975161E-03 | | | 6.04210949
23.1822615
25.3298350 | | 24.1883275
.498975161E-03 | | | 6.03590012
23.2064481 | 22.9610743
22.7397756 | 24.0907135
.506651588E-03 | | | 6.03251934
23.2068481 | | 24.1397705
.506651588E-03 | | | 6.03206253
23.2068431 | 23.0102386 22.6660004 | 24.1397705
.4939751o16+03 | | | 25.9029846
6.03034115
23.2068481 | | 24.1642914
.491298502E=03 | | | 25.9274445
6.02847004 | | | | | 25. 2008401
25. 9518390
6. 02696037 | 23.0102386
22.0135529 | 24.1397705
.491293502E+03 | 25.511.6577
2.01953746 | | 23.2314148
25.9763236
25.9763236 | 22.9856567
22.7397766 | 24.1883275
.498975161E-05 | 25.5361328
2.01979733 | | 23. 2314148
26. 0007782 | 23.0102386
22.7151947 | 24.3604889
.4989751612-03 | 25.5605927
2.31939746 | | 23.2314148
2c.0252223 | 23.0102336
22.6660004 | 24.4585571
.4836220705=03 | 25.5850525
2.01999760 | | 23. 2314148
26. 0496674 | 23. 0102386
22. 7151947 | 24.4830627
.498975161E-03 | 25.6095276
2.01939760 | | 23.231+148
20.0741119 | 23.0102586
22.7645738 | 24.5075836
.4939751615=03 | 25.6584473
2.02004719 | | 6.02538776
23.2314148
26.0985565 | 23.0102306
22.7151947 | 24.5320892
.4989751613-03 | 25.6584473
2.02009773 | | 6.0263443C
23.2559967
26.1229853 | 23.0102386
22.7151947 | 24.5075636
.4989751612-03 | 25.6829071
2.02024746 | | 6.02719593
23.2559907
26.1474304 | 23.0348206
22.0905975 | 24.4585571
.4939751613-03 | 25.7073669
2.02039719 | | 6.02804756
23.2314143
26.1713597 | 23.0102385
22.7397766 | 24.4830627
.4989751613-03 | 25.7318268
2.02044773 | | 933-9491199199199199199199199199199919999999 | | 24.4340363
.4989751612-03 | | | 6.02643108
23.2314148
26.2207336 | | 24.5566101
.4989751613-33 | | | 6.02622930
23.2314148
26.2451732 | | 24.6546326
.+96975161-J3 | | | 200 2771132 | 24.1171741 | • 47071770172 | 2.02037140 | | - | 1 | LE | : | 8031 | 82 | DAT | 4 | jin . | |---|---|----|---|------|----|-----|---|-------| | | | | | | | | | | | 4 024/2155 | | | |
--|--------------------------|-------------------------------|-----------------------------------| | 23.231414d
26.2451782 | 23.0102336
22.7643738 | 24.6546326
.491298502E-03 | 25.3296356
2.02049732 | | 6.02551746
23.2554967 | 23.0102386
22.7643738 | 24.7036438
.4912985025-03 | | | 26.2696075
6.02526283 | | | | | 26.2940369
6.02450752 | 23.0102386
22.8135529 | 24.7036438
.498975161E-03 | 25.8785400
2.02049732 | | 23.2314148
26.3134662
6.32435847 | 23.0102386
22.7151947 | 24.7526550
.498975161E-J3 | 25.9029846
2.02054787 | | 23.231+148
26.3428955 | 23.0102386
22.7151947 | 2+.6546326
.506651588E=03 | 25.9029846
2.02039719 | | 23.2314148 26.3673243 | 23.0102386
22.7645738 | 24.7281494
.4912985025-03 | 25.9274445
2.02044773 | | 23.23141+8 26.3673248 | 23.0102386
22.3135529 | 24.8261566
.4912985025-03 | 25.9763336
2.J2054787 | | 6.01839256
23.2314148
26.3917542 | 22.9856567
22.7643738 | 24.7281494
.493975161E-03 | 26.0007782
2.02074713 | | 6.01474475
23.2063481
20.4161835 | 22.9356567 22.7151947 | 24.6791382
.498975161E=03 | 26.0252223
2.02074715 | | 6.01393700
23.2068481
26.4650269 | 22.9856567
22.7397766 | 24.7526550
.498975161E-03 | 26.0252228
2.J207977J | | 6.01347923
23.2314148
20.4650269 | 22.9856567
22.8135529 | 24.7771454
.491298502E-03 | 26.0496674
2.02074718 | | 6.31231956
23.2314148
26.4824552 | 22.9850567
22.3135529 | 24.3751373
.4989751619-03 | 26.0985565
2.32094746 | | 6.01170254
23.2314148
26.5136855 | 22.9856567
22.7397766 | 24.3996429
.4939751615-03 | 26.0985565
2.02084732 | | 6.00999069
23.4314148
26.5382399 | 22.9613748
22.7397766 | 24.0506470
.4939751615-03 | 26.1229858
2.02084 7 32 | | 6.008/7/52
23.2314143
26.5627136 | 22.9610748
22.7151947 | 24.8506470
.4912985025-03 | 26.1474304
2.02059746 | | 23.2314148
26.5d71429 | 22.9610748
22.8135529 | 24.9241333
.4912985025-03 | 26.1718597
2.02069759 | | 6.00772572
23.2314148
26.6115570 | 22.9610748
22.833150J | 24.3261566
.4989751612-03 | 26.1963043
2.02079773 | | 6.00802526
23.2314146
26.0359711 | 22.9856507
22.7397766 | 24.8261566
.506651588E-03 | 26.2207336
2.02079773 | | 6.00802325
23.2559967
26.6603351 | 22.9856567
22.7151947 | 24.8751373
.491298502F-03 | 26.2207336
2.02079773 | | 6.00822544
23.2314143
26.6847992 | 22.9356567
22.7643733 | 25.0220947
.491298502E-03 | 26.2696075
2.02079773 | | 23.2314143
26.7092133 | 22.9610748
22.8135529 | 25.0710754
.4959751618-03 | 26.2696075
2.02079773 | | 55 + 62 + 67 5 3 U 9 2 8 2 7 6 5 4 8 3 7 6 8 4 2 6 1 5 0 1 7 1 3 9 6 8 2 4 6 7 5 3 U 9 2 8 2 7 6 5 4 8 2 7 6 5 4 8 2 7 6 5 4 8 2 7 6 5 4 8 2 7 6 5 4 8 2 7 6 5 4 8 2 7 6 5 4 8 2 7 6 5 4 8 2 7 6 7 8 1 6 1 4 4 7 8 3 7 6 8 2 2 4 4 7 8 3 7 8 3 5 7 7 6 7 4 1 4 1 4 1 5 1 4 7 6 4 4 7 8 3 7 8 2 2 2 4 4 7 8 3 7 8 2 2 2 4 4 7 8 3 7 8 2 2 2 4 4 7 8 3 7 8 2 2 2 4 4 7 8 3 7 8 2 2 2 4 4 7 8 3 7 8 2 2 2 4 4 7 8 3 7 8 2 2 2 4 4 7 8 2 2 2 4 5 7 4 4 8 3 7 8 2 2 2 4 4 7 8 2 2 2 4 5 7 4 4 8 2 2 2 4 5 7 4 4 8 2 2 2 4 5 7 4 4 8 2 2 2 4 5 2 4 4 7 8 2 4 | 22.9856567
22.3381530 | 25. J955658
.491296502E-03 | 26.2696075
2.02084732 | | 23.2559967
26.753041+ | 22.9356557
22.7397766 | 25.J955058
.498975161E-03 | 26.3184662
2.02094746 | | 0.00644779
23.2559967
26.7824554 | 22.9610748
22.7397756 | 25.0955058
.4989751615-03 | 20.3184652
2.02094746 | | | | | | | FILE: BCAT32 | 0474 | Δ | |--------------|------|---| |--------------|------|---| | 6.00624561 | | | | |--|--------------------------|------------------------------|--------------------------| | 23.2314148 | 22.9856567
22.7151947 | 25.1200409
.491298502E-03 | 26.3673248
2.J2114773 | | 6.00624561
23.2314148
20.8068542
6.00623417
23.2559967
26.8068542 | 22.9856567
22.7642738 | 25.1690216
.493975161E-03 | 26.3917542
2.J21J9713 | | 23.2559967
26.d3126d3 | 22.9856567
22.3381500 | 25.1445312
.498975161E-03 | 26.39175+2
2.02119732 | | 23.2559967
26.8312633 | 22.9856507
22.7397766 | 25.1445312
.4939751615-03 | 26.4161835
2.02124786 | | 6.00588322
23.2559967
26.8312683
6.00719070
23.2559967
26.8312683
6.00673294
23.2559967
26.8556671
6.00603199
23.2559967
26.9044300 | 22.9856567
22.7151947 | 25.1934967
.493975161E-J3 | 26.4406128
2.02114773 | | 6.0603199
23.2559967
26.9044300
6.00618076
23.2559967
20.9044800 | 22.9856567
22.7869709 | 25.2669373
.4912985025-03 | 26.4650269
2.02119732 | | 23.2559967 | 22.9856567
22.8135529 | 25.3153875
.491278502E-03 | 26.4894562
2.J2104759 | | 23.2559967 | 23.0102386
22.7889709 | 25.3403625
.498975161E-03 | 26.5133855
2.32124786 | | 20. 9332720
6. 00592513
23. 2559967
26. 9532923
6. 00712565
23. 2559967
27. 0020905 | 22.9850567
22.7151947 | 25.3158875
.498975161E-03 | 26.5133855
2.02144713 | | 6.00712565
23.2559967
27.0020905 | 22.985c567
22.7151947 | 25.3158875
.4912985025-03 | 26.5382996
2.02139759 | | 27.0020905
6.00657272
23.2559957
27.0020905
6.005723.00
23.2559907
27.0264893
6.00566364 | 22.9856567
22.7397766 | 25.3643376
.4912965025-03 | 26.5627136
2.J2124786 | | 6.00572300
23.2559907
27.0204893 | 23.0102336
22.8627319 | 25.4137876
.4912985025-03 | 26.5371429
2.02129745 | | 6.00566364
23.2559957
27.0503331 | 23.6348236
22.7645738 | 25.4382∓77
.4989751615-03 | 26.6115573
2.02139759 | | 6.00576431
23.2835634
27.0752869
6.00541306
23.2805634
27.0996857 | 23.0102386
22.7397766 | 25.4627228
.4912985021-03 | 26.6353711
2.J215+705 | | 27. 02048 93
6. 0056636 4
23.2 55996 7
27. 0503331
6. 005764 01
23. 2805634
27. 0752869
6. 00541306
23. 2805634
27. 0996357
6. 00460434 | 23.0102336
22.7397760 | 25.4627228
.433022075E-33 | 26.6359711
2.J2154705 | | 23.2805634
27.1240645 | 23.0102336
22.7397766 | 25.4627223
.4836220765-03 | 26.6603851
2.02149773 | | 23. 2805534
27. 1484680 | 23.0102386
22.d581500 |
25.5361028
.483622070E-03 | 26.6847992
2.02154732 | | 6.00513646
23.2365634
27.1464660
6.00584698
23.2559967
27.1972504
6.00654773
23.2805634 | 23.0102336
22.8381500 | 25.5605927
.4912985026-03 | 26.6347992
2.32169704 | | 23.2905034
27.1464640
6.00584698
23.2559967
27.1972504
6.00654773
24.2805034
6.00664916
23.2805034
6.00664916
23.2805034
27.2216492
6.00575161 | 23.0102386
22.7397766 | 25.5605927
.493975161E-03 | 26.7356273
2.52179718 | | 23. 2805634
27. 1972504
6. 00664916
23. 2805634 | 23.0102336
22.7151947 | 25.5850525
.4836220765-03 | 26.7335273
2.J216970+ | | 23. 2805634
27. 22164 72
6. 00575161 | 22.9456567
22.8135529 | 25.6339874
.4912985025-03 | 26.7580414
2.02159786 | | 23. 2805634 | 23.u102386
22.u381500 | 25.0584473
.4759454175-03 | 26.7824554
2.02169704 | | 6.00534678
23.2805034
27.2400327
0.00559044
23.2805634
27.2948151 | 23.0102346
22.7889709 | 25.6584473
.4632689918-03 | 26.8063542
2.02174759 | | 23. 2805634
27. 2948151 | 23.0102386
22.7597766 | 25.6829071
.4759454175-03 | 26.8312683
2.02174759 | | | | | | | FILE: BDAT82 | DATA A | | | |--|--------------------------|------------------------------|--------------------------| | 6.00538326
23.2805634
27.2948151
6.00594139 | 23.0102386
22.6905975 | 25.6339874
.4759454175-03 | 26.8312683
2.J2179713 | | 23. 28056 34
27. 319198 0
6.00362301 | 23.0348206
22.7645738 | 25.7318268
.4632639915-33 | 26.8556671
2.02169704 | | 23.2805634
27.3435822
6.00231457 | 22.9356567
22.6381500 | 25.7562714
.4759454175-03 | 26.8800812
2.J2159786 | | 99
23.2970276
22.308086
110030004E-10
23.2473943
22.9038036
110000004E-10
23.5917511
22.82596538
23.2970276
25.1609497
5.30337048
23.2970276
27.390289
23.2970276
27.2574045
23.2970276
25.77390289
23.2970276
25.77390289
23.2970276
25.77390289
23.2970276 | 22.4118652
22.2642059 | 22.7370770 | 22.4856873
.110000331E-04 | |--|--------------------------------------|--------------------------|------------------------------| | 23.2473943
22.9038036 | 22.4118652
22.1703534 | 22.7070770 | 22.4850873
.110003001F-04 | | 23.5917511 | 22.411d652
22.5594940 | 22.7316742
.405014277 | 22.5840912
2.02024555 | | 23. 29 702 76
25. 16094 97 | 22.4364777
22.5340912 | 24.1562042
.519394696 | 25.2098999
2.32004528 | | 5.80337048
23.2970276
27.3843079 | 22.4364777
22.6578979 | 25.5525203
.692500710 | 28.1152954
2.J2019596 | | 23.2970276
29.0154724 | 22.4364777
22.6578979 | 27.J428467
.919956c25 | 30.8840485
2.02009583 | | 5.72574045
23.2724609
31.9005737 | 22.4364777
22.657897) | 28.4317322
1.13267326 | 33.3976898
2.J2004528 | | 5.66176510
23.2970276
33.6146098 | 22.4564777
22.6086884 | 29.6714172
1.40703297 | 35.6596352
2.02009583 | | 5.60029221
23.2970276
34.9387817 | 22.4364777
22.5840912 | 29.7928009
1.35135291 | 37.6731415
2.J2J39523 | | 5.55445290
23.2970276
36.0197754 | 22.4364777
22.6333008 | 30.6417339
2.35170341 | 39.4646149
2.02029514 | | 5.51942921
23.2970276
36.9069824 | 22.4564777
22.0824799 | 31.6103363
2.76337509 | 41.107.355
2.02034569 | | 5.50441360
23.2970275
37.8884277 | 22.4364777
22.5840912 | 32.4564362
3.83020973 | 42.0509094
2.02029514 | | 5.51215649
23.2970276
33.7009735 | 22.4364777
22.5840912 | 32.9151917
4.72928617 | 44.0716553
2.02044532 | | 5.49660397
23.3215942
39.3453674 | 22.4364777
22.5840912 | 33.5869812
5.40674114 | 45.2763977
2.02044532 | | 5.47922832
23.3215942
39.9413605 | 22.6010746
22.6024799 | 34.4335937
5.90218449 | 46.5255195
2.02049541 | | 5.46602321
23.3215942
40.5605011 | 22.4610748
22.6578979 | 35.4311138
6.40023399 | 47.7250306
2.02054596 | | 5.45868773
23.3215942
41.2502747 | 22.4610748
22.5840912 | 35.7557220
6.73076458 | 40.9921875
2.02039528 | | 5.45323086
23.3215942
42.0100912 | 22.4610743
22.5594940 | 36.3075732
7.05453736 | 50.4668732
2.02059555 | | 5.45195293
23.3215942
42.7694550 | 22.4856373
22.6333008 | 30.4275813
7.24151039 | 52.3333923
2.J2049541 | | 5.45451104
23.3707275
43.5274658 | 22.4610748
22.6086884 | 35.1311138
7.30445862 | 54.2411)41
2.J2064514 | | 5.46986961
23.1937457
43.7108121 | 22.4610748
22.6086834 | 32.7703705
7.51651020 | 56.3353025
.259999943E-04 | | .704600112E-08
23.1741791
37.0986176 | 22.4616748
22.1657257 | 25.7971191
6.19420052 | 55.8177795
.235000043E-04 | | .169200010E=08
23.1987457
27.5305736 | 22.461C748
22.1057257 | 43.3401609
4.73765373 | 39.5361633
.2300000055-04 | | 3.60233737373737373737373737373737373737373 | 22.4856873
22.2395782 | 23.2970276
4.40940475 | 25.2588654
.2249999675-04 | | | | | | | .8775 COO 73E - 09 23.1004+86 24.4994906E - 09 23.1250305 24.1807496 23.1250305 24.1807496 23.1250305 23.1004486 23.8959457 23.1004486 23.8372498 | 24.5348969
22.2395782 | 23.3215942
4.36135006 | 23.8372495
.2199999295-04 | |--|------------------------------|--------------------------|------------------------------| | 23.1250305
24.1807404 | 22.559494U
22.2642059 | 23.3461609
4.34768531 | 23.6408691
.215000036=-04 | | 23. 1u04486
23. 9559457 | 22.5594940
22.2886184 | 23.3461609
4.33125782 | 23.5917511
.2150000365-04 | | 23.1004486
23.8372498 | 22 • 5594940
22 • 2149658 | 23.3215942
4.32104778 | 23.5671997
.215000036=-04 | | 23.0021362
23.6899719 | 22.5840912
22.2149658 | 23.1741791
4.31912899 | 23.46d9789
.2099999985-04 | | .420000035E-09
23.0207181
23.6654205 | 22.6086884
22.1657257 | 23.2233124
4.31774712 | 23.4444122
.204999960E=04 | | .368999942E=09
23.05130J0
23.6403691 | 22.6333008
22.1657257 | 23.2724609
4.31720924 | 23.3707275
.204999960E=04 | | .307500025E-09
23.0758667
23.6163177 | 23.2970270
22.2888134 | | 23.3707275
.204999960E=04 | | .286999979E=09
22.9529724
23.5671997 | 23.3707275
22.2395782 | 23.0513000
4.25424122 | 23.3707275
.204999960E=04 | | 23.5671977
.266499933F-07
.23.8707275
.23.8707275
.23.8707275
.23.707275
.23.707275
.23.16742
.22.000004F-09
.22.8054504
.22.000004F6
.17550000476
.175500003E-09
.22.8546295
.23.1250305
.23.1250305
.23.1250305
.23.1250305
.23.1250305
.23.1250305 | 23.3707275
22.2642059 | 22.9038036
4.25525951 | 23.1741791 | | .2339999315-09
22.7316742
23.2478943 | 23.2970276
22.2395782 | 22.8054504
4.25403118 | 23.0267181 | | .22 00000 04E=09
22.8054504
23.12503 05 | 23.2233124
22.4642059 | 22.3792114
4.25234313 | 22.9775543
.19500u030=-04 | |
.19500J0J2=-09
22.830U476
23.1004436 | 23.1495972
22.2642059 | 22.9038086
4.25080776 | 22.9775543
.195000J30E-04 | | .1755000 J3E-09
22.8546295
23.1250305 | 22.1250305
22.2642059 | 22.9038066
4.25057697 | 22.9775543
.1399999925-04 | | .1519999996E=09
22.8300476
23.1004486 | 23.0513000
22.2395782 | | 22.9775543
.139999992E-04 | | .1900000025-09
22.8546295
23.1250305 | 23.0267131
22.2542059 | | 23.0021362
.189999992E=04 | | .190000025-09
22.8546295
23.1004486 | 22.9775543
22.2642059 | 22.9283905
4.24643230 | 23.J021362
.1399999925-04 | | .208999995E=09
25.2478945
24.2052612 | 22.9775543
22.7316742 | 23.4935303
4.24412913 | 24.1562042
2.02004528 | | 5.49710045
22.9038066
26.6523437 | 22.9775543
22.6578979 | 25.0630035
4.24405193 | 27.4330750
2.01989555 | | 5.89100742
22.9033036
28.8452759 | 23.0021362
22.6324779 | 26.6035004
4.24412318 | 30.9324951
2.01974583 | | 5.83745003
22.9038036
30.8598323 | 23.0267181
22.6086834 | 27.5961029
4.24420547 | 34.J4337J4
2.U1954596 | | 5.77169037
22.9283905
32.7703705 | 23.0267131
22.5594940 | 28.3939209
4.24453981 | 36.7392426
2.31999569 | | 5.67879430
22.92d39U5
34.3132324 | | 23.7236786
4.24528027 | 38.9874573
2.01989555 | | 23.12503 05
•151999996 = -09
22.43300476
23.1004446
•190000025 - 09
22.8540295
23.12500025 - 09
22.8540295
23.12500025 - 09
22.8540295
23.1200025 - 09
23.2476942
23.2476942
24.20523437
24.20523437
25.39710045
26.90523437
26.90523437
27.89100742
22.85903236
391036
391036
391036
391037
22.8598323
5.891037
22.992337
23.77037
22.79237
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.77037
23.7 | 23.0267131
22.6036394 | 26.7938129
4.24765568 | 40.9887390
2.01999559 | | | | | | | 5.5.87913994369337539364452442333652433352239.483332283455244529167368598722994833753666666694476239.59436936445023239.6835229.59666666694418355229.596666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.59666666944185229.5966666944185229.5966666944185229.5966666944185229.5966666944185229.5966666944185229.5966666944185229.5966666944185229.5966666944185229.5966666944185229.5966666944185229.5966666944185229.5966666944185229.5966666944185269.59666694418526964499644962956666694418526964499644962956666944966295666694496649966499664996649966499664996649966499664996649966499664996649966499664996649966499664996999999 | 23.0267181
22.0324799 | 27.7255554
4.36257744 | 42.6985337
2.02004523 | |---|--|--|--| | 22.8792114
37.8445914 | 23.0267181
22.6086884 | 28.1639862
4.66664600 | 44.2608032
2.J20U9533 | | 22.9038036
38.4143219 | 23.0267181
22.5554940 | 28.8939209
4.94192600 | 45.5594940
2.J1994514 | | 5.51564503
22.9038086
38.8919830 | 23.0267131
22.5594940 | 30.350a301
5.28291798 | 46.8080750
2.01994514 | | 5.49807157
22.9233905
39.1783752 | 23.0267181
22.6333008 | 30.6659851
5.60932446 | 47.9364319
2.01999569 | | 5.48305798
22.9233905
39.3692169 | 23.0513000
22.6333008 | 31.0051727
5.85850525 | | | 5.48231838
22.9283905
39.5123138 | 23.0513000
22.5840912 | 31.2957306
6.01710224 | 50.7005920
2.J2009533 | | 5.4d009682
23.0513000
39.6553650 | 23.0758667
22.5346969 | | | | 5.48353386
22.9529724
34.9175415 | 23.0753667 22.6333008 | 31.3778198
6.35602188 | | | 5.46029900
22.9529724
40.2748413 | 23.0510000 | | | | 5.47841454
22.9529724
40.4891052 | 23.0513000 | 30.7144470
6.46736763 | | | 5.4 7666550
23.0267131 | 23.0021362 22.6333008 | | | | 5.47525120
22.9775543 | 23.1004486 22.5340912 | | | | 5.46804523
22.9775543 | 23.6654205
22.6333008 | | | | 5.46663094
23.0021362 | 23.4444122
22.6333008 | 32.0214539
7.00630138 | 05.6414642
2.02024555 | | 5.47040272
23.0021362 | 23.3952942
22.2888134 | | 67.9124146
.2950000635-04 | | 41.8204498
.4071001315-08
22.9038036 | 23.3215942
22.1903534 | 7.15883446
29.6170776
7.15898300 | .2950000635-04
67.4444214
.2750000575-04 | | 40.4653015
.2695000005=03
22.75627.4 | 22.1903534
23.3215942
22.1057257 | | | | 38.3426351
.140400003E-08
22.7070770 | 22.1657257
23.3215942
22.1903534 | | .2700000195-04
62.3324280
.2599999435-04 | | 30.0112305
.1325999986-08
22.6578979 | 22.1903534
23.3215942 | | | | 24.9405518
.7395000175-09
22.7803685 | 23.3215942
22.1905534
23.2970276 | | 32.5771942
.2550000505-04
25.1609497 | | 23.8617359
.725000060F-09
22.7316742 | 23.2970276
22.2149653 | 23.0021362
4.39904115 | 25.1609497
.250000012E-04 | | 23.6163177
.661499966E-09 | 23.2970276
22.2149658 | | 23.9103734
.244999974F=04 | | 23.5426483
.6239999635-09 | 23.2724609
22.2149658 | | 23.5917511
.239999936E=04 | | 23.4444122 | 22.2149658 | 23.J021362
4.35820198 | .23000005=-04 | FILE: BDAT34 DATA A | _ | | | |
--|--|--|--| | - C9 | 23.2478943
22.1903534 | 22.9775543
4.35490131 | 23.3952942
.2249999675=04 | | 22. 7808685
23. 41 98456 | 23.1987457
22.2642059 | 23.0021362
4.35375023 | 23.3952942
.219999929=+04 | | .505999909F-09
22.7808685
23.4444142 | 23.27246J9
22.2642059 | 23.0021362
4.35321236 | 23.6163177 | | .451499949E-09
22.7808635
23.4444122 | 23.2478943
22.1657257 | 23.0753667
4.35305882 | 23.0163177
.209999993E=04 | | .440999903E-09
22.8792114
23.4689789 | 23.1004436
22.4642059 | 23.0758067
4.35393006 | 23.6163177 | | .450999904E-09
22.7808685
23.3461609 | 23.075d6o7
22.7070770 | 23.0513000
4.33471203 | 24.0580902
2.J2029514 | | 6.49422169
22.8300476
25.6748352 | 23.100+486
22.7316742 | 24.3033600
4.35540249 | 26.0415137
2.02039528 | | 6.36887455
22.8300476
28.042363 | 23.1250305
22.6578979 | 25.7725746
4.33540249 | 29.40+2816
2.02044582 | | 6.27447513
22.8300476 | 23.1250305 22.5840912 | 26.8476257
4.33532619 | 32.5771942
2.02064514 | | 5.80974197
22.4546295 | 23.1250305 | 27.6524506
4.33517265 | 35.4194946
2.J2089596 | | 5.74639797
22.8546295 | 23.1004466 22.6333008 | 28.1396.32
4.3345.5849 | 37.94.05914
2.0209.7514 | | 5.08787193
22.8792114 | 23.1004486
22.6578979 | 28.4804077
4.33432865 | 39.9175415
2.02104563 | | 5.64G51723
22.65462 95 | 23.1495972
22.6578979 | 28.3830719
4.33673807 | 41.7492065
2.02099514 | | 5.59894753
22.8792114 | 23.1741771
22.5840912 | 28.45°0699
4.52532101 | 43.2670135
2.02114582 | | 5.50417534
22.9033066 | 23.1741791
22.5840912 | 28.3830719
4.93386650 | 44.9223323
2.02124596 | | 30.6532135
5.53455639
22.3792114 | 22.5840912
23.1495972
22.6578979 | 4.93386650
23.2126770
5.27032852 | 2.02124596
40.3843384
2.02119541 | | 39.2976685
5.51299477
22.3792114 | 22.6578979
23.1495972
22.6573979 | 5.27032852
29.4285736
5.04079857 | 2.02119541
47.0730548
2.02119541 | | 39.8222198
5.49642086
22.9038J86 | | | | | 40.0843048
5.50895214
22.3792114 | 23.1495972
22.6824799
23.1495972 | 30.1082764
5.73596210
31.0293884 | 48.8515320
2.02119541
50.2096710 | | 40.1557617
5.49615233
22.8792114 | 23.1495972
22.6333003 | 31.0293884
5.34315205 | 50.2096713
2.02124596 | | 40.2748413
5.48571113
22.8742114 | 23.1495972
22.5594940 | 31.6587219
5.99921608 | 51.5878296
2.02134514 | | 40.4653015
5.47674847 | 23.1250305
22.5340912 | 31.1504669
6.17347336 | 53.1487427
2.02124596 | | 22.8792114
40.2748413
5.48571113
22.8792114
40.4653015
5.47674647
22.8792114
40.7270813
5.47102261
22.8792114
41.0363007
5.46671134
22.8792114
41.4403992 | 23.1250305
22.7070770 | | 54.7743871
2.02129555 | | 41. 0363007
5. 46671104 | | 30.5690303
6.48091888 | 56.5813293
2.02134514 | | 41.4403992 | 22.6086634 | 30.6659851
6.64742374 | 58.6354523
2.32124596 | FILE: BDAT64 DATA A | 5.46421719
22.8792114
41.8679352
5.46403176 | 23.0513000
22.6086834 | 31.0051727
6.73122520 | 60.9575045
2.02119541 | |--|--------------------------|--------------------------|--------------------------| | 22. 8792114
42. 3603177
5.46435070 | 23.0267131
22.5594940 | 31.1262512
6.36136110 | 63.4071350
2.02114582 | | 22.9038086
42.7951519
5.51064014 | 22.9775543
22.6086834 | 31.223J988
6.726773J7 | 65.8917236
2.02129555 | FILE: LBDT848 CATA A 1 -.590658632138416854E-02 2 -.108085815003384031 3 .99999975E-05 -.999999975E-05 -.230184615 -.214959502 4.14999962 -.448545039 -.454462647 .361443400 | 99 | | | | |--|--------------------------|--------------------------|------------------------------| | 21.96083 37 | 19.3138733 | 22.4285736 | 22.3301392 | | | 22.2565019 | .0001 | .145000004 = 04 | | 21.9608307
21.9854534 | 19.4138733
22.2563019 | 22.4285736 | 22.3547516 | | 21.9854544 | 19.8138733 | 22.5023956 | 22.4039612 | | 21.7144928 | 22.6499939 | .230296209E-03 | 2.02093029 | | 21.9608307 | 19.7391388 | 24.1973377 | 24.2219238 | | 24.2219238 | 22.6745911 | .767653983E-04 | 2.02073097 | | 21.9115753 | 19.7891388 | 26.3758698 | 26.9130096 | | 27.0350189 | 22.6745911 | .230296209E=03 | 2.02063043 | | 21.9115753 | 19.7691388 | 28.3995972 | 29.8092957 | | 29.6150665 | 22.6253967 | .158750832 | 2.02073097 | | 21.936203J | 19.7391388 | 30.3277100 | 31.5783691 | | 32.1345673 | 22.5762024 | | 2.62073097 | | 21.936203U | 19.7891388 | 31.7477112 | 33.9442902 | | 33.94429U2 | 22.6745911 | 1.39666939 | 2.02033015 | | 21. 9362030 | 19.7891388 | 32.3520508 | 34.9070292 | | 35. 36. 7233 | 22.6499939 | 2.03103371 | 2.02033015 | | 5.46 C40 725
21.9115 753
36.8992920 | 19.7891388
22.6499939 | 33.3399384
3.33983307 | 36.3719330
2.02033015 | | 5.42847524
21.9115753
38.6455383 | 19.7644196
22.5762024 | 34.0388062
3.34305668 | 37.4201475
2.02083015 | | 21.9115753 | 19.7644196 | 35.0512348 | 36.4783335 | | 40.0051330 | 22.c255967 | 4.23353481 | 2.02033015 | | 21. 3369476 | 19.7396351 | 35.2195435 | 39.0752716 | | 40.6242676 | 22.6253967 | 4.74709606 | 2.02083015 | | 5.38199902
21.8869476
41.3852336 | 19.7396851
22.5762024 | 36.2293121
5.34816933 | 40.0523412
2.02083015 | | 21. 63 76 77 C | 19.7149506 | 37.210.701 | 41.2901764 | | 42. 42 98 70 0 | 22.6253967 | 5.35535567 | 2.320dd070 | | 21. 3623047 | 19.71495J6 | 38.5022278 | 42.9514465 | | 43. 4483525 | 22.7237854 | 6.24032+54 | 2.02038070 | | 21.8376773 | 19.6902151 | 38.3365734 | 44.3075232 | | 44.3004913 | 22.6991882 | 6.41904040 | 2.02098033 | | 21.8376770 | 19.6902161 22.6007996 | 39.4331207 | 47.647)134 | | 45.4811554 | | 6.61786842 | 2.02103043 | | 5.354641 J1
21.0130493
46.2354534 | 19.6c5+968
22.5762024 | 39.3622234
6.76372337 | 50.1086121
2.02103643 | | 21. 0130493 | 19.6902151 | 40.3383942 | 52.7689056 | | 47.0357819 | 22.6255967 | 6.90497112 | 2.02095029 | | 21.7884J04 | 19.6654968 | 42.0502319 | 55.9029541 | | 47.0473184 | 22.3301392 | 6.94795990 | .2500000125-04 | | 21. 7391357 | 19.6902151 | 42.3349915 | 56.3975372 | | 46. 5180664 | 22.2070615 | 6.94872761 | .2449999748-04 | | 21. 76.376.3 + | 19.c902161 | 40.3621326 | 56.5276642 | | 45. 5755005 | 22.2315395 | 6.94872761 | .235000043E+04 | | 21.96503495002
21.965054968333336317033660944
21.965054968333327
21.965054968333336619477589
21.96566666666666666666666666666666666666 | 19.7149500
22.5055257 | 40.3359711
0.94672761 | 55.76+0381
.235000043=-04 | | .140999989E=C8
21.7637634
42.5958862 | 19.6902101
22.2809143 | 40.9097595
6.94872761 | 54.7674408
.230000005E-04 | |--|--------------------------|--------------------------|---| | .1150000105-08
21.7637534
40.8146057 | 19.6902161
22.2316895 | 40.3523412
6.94872761 | 54.3265223
.230000005=04 | | 40.61+6057
•988999993F-C9
21.7637634
39.5235034
-810000067E-09 | 19.7149506
22.2070613 | 39.2661438
6.94872761 | 53.6523625
.224999967E-04 | | 21.7637634
38.3538715 | 19.7149506
22.2809143 | 37.5807526
6.94872761 | 52.9551239
.219997929E-04 | | .7039999695-09
21.7637634
37.1333245 | 19.7149506
22.3301392 | 36.0840637
6.94872761 | 52.0001221
.2249999675-04 | | •562500047E=09
21•7637634
36•2230121 | 19.7149506
22.2809143 | 34.5943146
6.95103073 | 50.3892365
.2199979290-04 | | .483999951E-09
21.7637634
35.4838409 | 19.7149505 | 34.7386627
0.95026332 | 49.0549774
.219999929E=04 | | 21.7637634
38.3538715
.7039997695-09
21.7637634
37.1336245
.602500047E-09
21.7637634
36.2230121
.4339999515-09
21.7637634
35.4838409
.180007795-09
21.7637634
34.7867737
.3439999405-09 | 19.7149506
22.2070618 | 34.7380027
6.93414211 | 47.9054138
.2150000365-04 | | .343999940E-09
21.7391357
33.7997234 | 19.7149506
22.2503019 | 34.J406342
6.d9192104 | 47.3649902
.2199999295-04 | | .285999890E-09
21.7391357
32.9798431 | 19.7149506
22.3301592 | 33.4381714
6.84816456 | 46.4945221
.219999295-04 | | .2419999765-09
21.7037634
32.3762054 | 19.71+9506
22.3055267 | 32.9557190
6.80364132 | 45.8820038
.2150000361-04 | | 34.7867737
.34.3999940E-09
21.7391357
33.7997234
.285999890E-09
21.7391357
32.9798431
.24.1999976E-09
21.7037634
32.3762054
.193499994E-09
21.7037634
31.6993250
.131595994E-09
21.7037634
31.0458374
.107459995-09
21.7391357
30.4642772
.84.300000003E-10 | 19.6902161 | 32.2070618
6.75834942 | 44.9855804
.2199999295 - 04 | | • 1319999945-09
21• 7637634
31• 0458374 | 19.7149506
22.2316395 | 31.3605304
6.68849277 | 44.0404053
.215000036F-04 | | .1074999957-09
21.7391357
30.4642792 | 19.7149506
22.2309143 | 30.7551270
6.65015079 | 43.0935974
.2399999985=04 | | .84.00000148-10
21.7391357
30.0034485 | 19.7390d51
22.33J1392 | 30.3672943
6.5817b902 | 42.453598U
.2150003364-04 | | .4500000063E-10
21.7637634
29.6393433 |
19.7396851
22.3055267 | 29.9549103
6.34724407 | 41.7890778
.2099999985-04 | | 30.0034485
.450000063E=10
21.7637634
29.63934433
.209949934E=10
21.7391357
29.1291766 | 19.7149506
22.2563019 | 29.6150665
6.44361115 | +1.1950989
.2099999935-04 | | 21.7391357
28.7158813 | 19.7149536
22.4316895 | 29.3721924
6.37759304 | 40.5756754
.209999993E-04 | | .0
21.7391357
28.3509216 | 19.7396051
22.2316895 | 29.4693451
6.29545403 | 40.0523412
.2099999985-04 | | .0
21.73913.57
27.9369965
2099999341-10 | 19.7149506
22.3055257 | 29.3479004
6.19719413 | 39.67155+6
.209955993E=04 | | 21 • 7391357 | 19.7149506
22.3301392 | 29.2021027
6.13731766 | 39.4092712
.204999960E-04 | | 21.7391357
27.2057800
2050000455-13
21.7391357
26.8641735 | 19.7396351
22.28091+3 | 28.7590454
6.05671406 | | | 2050000453-13
21.7391357
26.8641263 | 19.7149506
22.2316895 | | 38.7171733
.234999963F-04 | | 409999951E-10
21.7637634
26.4979658 | 19.7396851
22.2316895 | 28.5942535
5.37933595 | 33.1915741
.204999960=-04 | | | | | | | 409999951E-10
21.7391357
26.1804047 | 19.7396351
22.3055267 | 28.4482574
5.79724693 | 37.7611542
.204999960E-04 | |---|--------------------------|----------------------------|------------------------------| | 21.7637634 | 19.7396851
22.3055257 | 28.5942535
5.72124363 | 36.9711609
.2049999608=04 | | 21. 76 376 34
25. 593 59 74 | 19.7396851
22.2809143 | 28.6428986
5.62145329 | 36.3239594
.209999998=-04 | | 629999941=-10
21.7657634
25.3244324 | 19.7396851
22.2070018 | 28.4725952
5.54315231 | 35.844J552
.20499996JE=04 | | 26.1804047
-409999951 -10
21.7637634
25.8626251
-4099999515-10
21.7637634
25.5935974
-6299999415-10
21.7637634
25.3244324
-5149999955-10
21.7637634
25.17637634
-6000000505-10 | 19.7396851
22.2070613 | 28.1805115
5.40485233 | 35.5799255
.200000068=-04 | | 21.7391357 | 19.7644196
22.3301392 | 27.9369965
5.35354233 | 35.2195435
.2049999605-04 | | 21.7637o34 | 19.7644196
22.3301392 | 27.3882751
5.25221252 | 34.6424438
.2049999608-04 | | 21.7637634
24.7367096 | 19.7396851 | 27. 8395538
5.1531 8489 | 34.1851349
.195000030C-04 | | 21. 7657634
24. 5896759 | 19.7644176
22.2070616 | 27.5715027
5.03880405 | 33.8258220
.195000030E=04 | | 584999965E=10
21.7637654
24.4916382 | 19.7644176
22.2316895 | 27.4008036
4.97201324 | 35.4863892
.195000030=-04 | | 3899999778-10
21.7834064
24.3650491 | 19.7644196
22.3055257 | 27.2301636
4.90446472 | 33.3175964
.195030030=04 | | 389999977E-10
21.7884064 | 19.7644196
22.3055267 | 27.0350139
4.32846737 | 32.9557190 | | 1949999835=10
21.7834064
24.1723663 | 19.7891388 22.2809143 | 27.0108201
4.76858997 | 32.714325U
.1950UUU3UE-U4 | | 389999977E-10
21.7834064 | 19.7644196 | 26.3397980
4.04039230 | 32.3278809
.1950300338-04 | | 24. U 5021 0 7
-3899999 775-10
21. 7884064
23. 9766082
-3899999775-10
21. 7684064
23. 3539124
-18999990 UE-10
21. 7884064
23. 7882734
-3800000595-10 | 19.7291388 | 26.5689148
4.54445550 | 31.9653473
.1950UUU309-04 | | 389999977E-10
21.7884054 | 19.7391388 22.2309143 | 26.5224152
4.46532531 | 31.6509552
.189999992F-04 | | -1189999960E-10
21.7884064
23.7802734 | 19.8133733 | 26.4002833
4.40395451 | 31.4039813
.139999921-04 | | 21 - 8130493 | 19.8135733
22.2316395 | 26.2043340
4.33169289 | 31.0942633
.189999992°-04 | | 189959960E-10
21.8130493
23.6329803
184959932 -10
21.7884064
23.5833776 | 19.8138733
22.2809143 | 26.1070862
4.28957367 | 30.7793579
.184999953E-04 | | 184959932°-10
21.7884064 | 19.8385925 22.2563019 | 26.0093231
4.26040268 | 30.5127716
.134999953E=04 | | 21.3376775 | 19.8138733 | 25.3381°05
4.20589924 | 30.3137860
.134999953T-04 | | 23. 5347595
21. 3376770
23. 4610901 | 19.8385925
22.3301392 | 25.74035c4
4.15369892 | 29.9547133
.1849979537+04 | | 21.3376770 | 19.8385925 | 25.6425323
4.10994339 | 29.7607422
.184997953E=04 | | .184999932E-10
21.8376770
23.3628537 | 19.863327J
22.2809143 | 25.5935974
4.JB230782 | | | 20. 2020) 3 (| 46.2007143 | 4.30430162 | •1300300012-04 | FILE: bDAT65 DATA A | .180000043E-10
21.8376770
23.3137054
.184999932E-10
21.8623047
23.2891388 | 19.8633270
22.2309143 | 25.6130725
4.03317733 | 29.2507019
.1349999535-04 | |--|-------------------------------|-----------------------------------|------------------------------| | 21.8623047
23.2891388 | 19.8633270
22.2316895 | 25.4712677
3.99325943 | 28.9347382
.134999953E+04 | | 21.8623047 | 19.8880463
22.3301392 | 25.4957423
3.95103836 | 28.5942535
.184999953E-04 | | .370000003E-10
21.6869476
23.2400055
.180000043E-10
21.8869476
23.2400055
.18000043E-10 | 19.8380463
24.2315895 | 25.1286011
3.82053757 | 28.1561737
.18000J061E-04 | | .1800000437-13
21.8869476
23.2400055 | 19.8880463
22.3055267 | 24.9815742
3.73292274 | 27.9359365
.1800000515-04 | | 23.2400055
.18 0000043E-10
21.9115723
23.1908569
.339999973E-10
21.9362030
23.1908509
.350000029E-10
21.9362030
23.1417084
.339999973E-10
23.9362030
23.0925598
.495000137-10
21.5362030 | 19.8880403
22.3355267 | 24.9082031
3.74070168 | 27.6202545
.169999985E-04 | | .339999973E-10
21.9362030
23.1908559 | 19.8880403
22.2070613 | 24.8347015
3.71460152 | 27.4739990
.1750003235-04 | | .3500000295-10
21.9362030
23.1417084 | 19.8880463
22.3055267 | 24.3347015
3.70231819 | 27.4252472
.169993985E-04 | | .339999973E-10
21.9362030
23.0925598 | 19.8880463
22.2316895 | 24.7122040
3.07408357 | 27.3520966
.1049999478=04 | | .4950003135-10
21.9362030
23.0925598 | 19.3330463 | 24.6386871
3.65088558 | 27.2301636
.109999985=-04 | | .509999959E-10
21.9608307
23.0679779 | 19.3830463 | 24.4916382
3.60252380 | 27.J838165
.169999985E-04 | | .339999973E-10
21.9362030
23.0454113 | 19.3880463
22.2316895 | 24.3690491
3.57642365 | 20.9852213
.159999935=-04 | | 23.0959393
21.5362030
23.0925976
.5099999595=10
21.9608307
23.0979779
.339999735=10
21.9362030
23.043413
.5099999535=10
21.9608377
23.0133293
.50999999595=10 | 19.9127655 | 24.2709056
3.55953503 | 26.9150396
.1699999855=04 | | .5099999598-10
21.9603307
22.9096455 | 19.9127655
22.3055237 | 24.1483507
3.55376732 | 26.6933289
.1549999475=04 | | .3300000555=10
21.9334534
22.9696055 | 19.9127655
22.2563019 | 24.0747375
3.55185390 | 26.5712433
.150033054=-04 | | .480000067#-10
21.9003307
22.8959045 | 19.9127655
22.2563019 | 24.0502167
3.49351692 | 26.4735713
.1000000545-04 | | .4800000674-10
21.9854534
22.8713226 | 19.9127655
22.3301392 | 24.074 <i>1</i> 375
3.43056870 | 26.3758698
.1550000167+04 | | .3200030245-13
21.9008307
22.9205017 | 19.9375000
22.3301392 | 24.3747375
3.41061023 | 26.1315303
.1600000547-04 | | .6399999975-10
21.96083J7
22.8713226 | 19.9575000
22.2563019 | 24.0011444
3.30960324 | 25.9604340
.1600000545-04 | | .6399999975-10
21.9608307
22.d713226 | 19.9375000
22.2316695 |
23.3520721
3.38911629 | 25.8873350
.164999947F-04 | | .65 99999712-10
21.96J8307
22.8221435 | 19.9375000
22.2809143 | 23.3293610
3.37990379 | 25.7892761
.1549999475-04 | | .659999971F-10
21.9854534
22.7975616 | 75000 د9،99
75000 د22،3301 | 23.8048248
3.29853249 | 25.691+520
.1549999475=04 | | .659999971=13
22.0100351
22.7975616 | 19.9375000
22.4563019 | 23.7311859
3.19873714 | 25.6180725
.1600000548-04 | | 21. 96033 07
23. 01332 93
.500939995 93 -10
21. 96033 07
.330000055 -13
.1 96033 07
.2 966655
.48000067 -10
21. 96033 07
.2 8959045
.48000067 -10
.1 98045 34
.2 8000067 -10
.1 98045 34
.2 8000067 -10
.1 98045 34
.2 8000067 -10
.1 98045 34
.2 800007
.2 89999997 -10
.3 96033 07
.3 96033 07
.3 9603 307
.3 960 | 19.9375000
22.3055267 | 23.7311859
3.13419315 | 25.5651376
.1649999475-04 | | | | | | FILE: 3DAT35 DATA A | .659999971E-10
22.010361
22.7729645 | 19.9622192
22.2809143 | 23.0329803
3.12043667 | 25.4712677
.1649999475-04 | |---|--------------------------|--------------------------|------------------------------| | .825000068E-10
21.9854584
22.7729645
.639999975-10 | 19.9375000
22.2316d95 | 23.6820831
3.11659908 | 25.3978577
.150000054E+04 | | 22.0100361
22.7433673
.300000066E-10 | 19.9622192
22.3301392 | 23.7311359
3.08128643 | 25.3489075
.160000545-04 | ``` .363704181619400749E-01 -.613667458693775499E-02 5322011 532 -. 849406540 .556715131 143.174973 -.813542724 ``` | 99
45.0406952
45.1115112 | 44.8232013
46.d283997 | 45.1115112
.0
45.1351160
7676539835-04
45.1587219
.0
45.1351160
7676539835-04
45.295527
7676539835-04
45.3710937
7676539835-04
45.3946838
.0
45.4182739
1535308115-03
45.4182739
1535308115-03
45.42827395-04
45.4890442
2302952095-03
45.4890442
2302952095-03
45.4890442
2302952095-03
45.4890442
2302962095-03
45.4890442
3070617095-03
45.4890442
3070617095-03
45.4890442
3070617095-03
45.4890442
3070617095-03
45.4890442
3070617095-03
45.4890442
3070617095-03
45.4890442
3070617095-03 | 45.0643005
.8500000155-05 | |--|---|--|------------------------------| | 45.040.952
45.1115112 | 44.8282013
47.2786086 | 45.1115112
.0 | 45.0879059
.9000000325-05 | | 45.0406952
45.1115112 | 44.d518066
40.7613220 | 45.1351160
7676539835-04 | 45.0879059
.930000332F-05 | | 45.0643035
45.1115112 | .8100000352-16
44.3518095
47.4190608 | 45.1537219
.0 | 45.1115112
.850000015E-05 | | 45. C643005
45. 0879059 | .722499913E-16
44.2518066
48.7111664_ | 45.1587219 | 45.1115112
.9499999535-05 | | .949999975E-11
45.06430J5
45.1351160 | .9024998415-16
44.3513006
48.6408081 | 45.1351160
7676539835-04 | 45.0879059
.949999953E-05 | | .949999975E-11
45.13511 o o
45.8427429 | .9024998415-16
44.8518066
48.6173553 | 45.2295227
767653983E-04 | 45.2531128
1.28032207 | | 2.35751343
45.1115112
46.1255493 | 3.01837635
44.8990526
48.7111664 | 45.3710937
767653983E=04 | 45.5597992
1.28032207 | | 2.34873513
45.1351156
46.2433319 | 3.00739288
44.8990326
47.5138855 | 45.3946838 | 45.5305542
1.28042221 | | 2.34514904
45.13511 oc
46.2668915 | 3.00273091
44.8990326
47.0671692 | 45.4132739
767653533E-04 | 45.4541290
1.28042221 | | 2.34253842
45.1537219
46.3610992 | 2.95950218
44.5226532
47.5603326 | 45.4182739
153530811E-03 | 45.6777191
1.28032207 | | 2.34043462
45.1823273
46.3375549 | 2.39657345
44.5462535
48.3987427 | 45.4413640
1505308112-03 | 45.6541290
1.28027153 | | 2.33744907
45.1823273
46.3610992 | 2. 99250897
44.9462585
48.3827515 | 45.465454L
2302962096-03 | 45.7012939
1.28027153 | | 2.33527279
45.2059174
46.4082031 | 2.98973233
44.9462535
47.3728465 | 45.4890442
2302962095-05 | 45.6777191
1.28037167 | | 2.33391057
45.2059174
46.4317474 | 2. 78823316
45.0170898
46.3739673 | 45.4890442
2302962J9I+J3 | 45.6777191
1.26052207 | | 2.53101082
45.2059174
46.4788513 | 2.38444366
45.0170893
47.7958221 | 45.4890442
3070617095=03 | 45.7484436
1.28042221 | | 2.3276J715
45.1823273
46.4783513 | 2.98031902
44.9934845
48.7515094 | 45.+890442
307061709E-03 | 45.7956035
1.230.7235 | | 2.324337)1
45.1823273
46.4552917 | 2.97555161
45.0400952
48.0371809 | 45.489.04.42
30.7061.7095-03 | 45.7950085
1.28042221 | | 2.32389450
45.2059174
46.4783513 | 2.97556531
45.0406952
46.9495544 | 45.489U442
307J617J7=-03 | 45.7955085
1.280.7235 | | 2.32100773
45.2059174
46.4788513 | 2.97128963
45.0879059
47.4903717 | 45.4654541
38_826904@-03 | 45.7720357
1.28037167 | | 2.32009029
45.1823273
46.4552917 | 2.97057724
45.0643005
48.359_634 | 45.4654541
3838269046-03 | 45.7484436
1.28037167 | | 2.31893826
45.1823273
46.4552917 | 2.96910191
45.0879059
48.8752899 | 45.4654541
38382 0904E-03 | 45.7723337
1.28027153 | | 2.31722069
45.1823273
40.4786513 | 2.76667099
45.0643005
48.2184753 | 45.4418640
3070617095-03 | 45.7484436
1.28042221 | | 2.31693036
45.1823273
46.5259399 | 2.96671295
45.0879059
47.2493500 | 45.4054541
307061709%-03 | 45.7484436
1.28057194 | | | | | | | 2.31622696 | 2.96609497 | | | |--|---|-----------------------------|--------------------------| | 45.1823273
46.5023956
2.31576723 | 45.0643005
47.5138855
2.96573830 | 45.4654541
307061709E-03 | 45.7484436
1.23067207 | | 45.2059174 | 45.0643005 | 45.465+541 | 45.7484436 | | 46.4788513 | 48.6752899 | 3070617095-03 | 1.28037234 | | 45. 2531128 | 45.0400952 | 45.4890442 | 45.7012939 | | 46. 5023956 | 48.6877136 | 3070617095-03 | 1.28077221 | | 45.2531128 | 45.0643005 | 45.5126343 | 45.7484436 | | 46.5259399 | 47.7488403 | 307061709E-03 | 1.28067207 | | 45. 253112 8 | 45. C375059 | 45.5362244 | 45.7723337 | | 46. 5023956 | 47. 1377258 | 307061709E-03 | 1.28072156 | | 45.2767181 | 45.0643005 | 45.5362244 | 45.7720357 | | 46.4788513 | 47.51338855 | 230296209E-03 | 1.28072166 | | 45.3033082 | 45.0643005 | 45.5597992 | 45.7956085 | | 46.5023950 | 48.4531403 | 153530811E-03 | 1.28047130 | | 45.3239136 | 45.0643005 | 45.5597992 | 45.8191833 | | 46.5023956 | 48.6408081 | 767652983E-04 | 1.28087234 | | 45.3475037 | 45.0379059 | 45.5333893 | 45.8663177 | | 46.5023954 | 47.9132538 | 1535303115-03 | 1.23062153 | | 45.3475037
45.3475037
40.5259399 | 45.1115112
47.2552948 | 45.5833893
.0 | 45.8893925
1.28047180 | | 45.3475037 | 45.1351160 | 45.5833393 | 45.8663177 | | 46.5494690 | 47.8664372 | .0 | 1.28072166 | | 45.3475JJ7 | 45.1587219 | 45.5069794 | 45.3663177 | | 46.5965576 | 46.8513324 | .0 | 1.28077221 | | 45.3475037 | 45.1587219 | 45.6069794 | 45.8663177 | | 46.5965576 | 46.6513524 | .0 |
1.23037234 | | 45.3475037 | 45.2059174 | 45.5069794 | 45.8663177 | | 46.6436310 | 47.6783603 | .0 | 1.28047180 | | 2.30904375
45.3475357
46.6436310 | 45.2059174
47.0071992 | 45.6009794 | 45.8663177
1.28067207 | | 45.3710937 | 45.2059174 | 45.5069794 | 45.8663177 | | 46.6201019 | 47.6078790 | | 1.28072160 | | 45.3946838
46.6201019 | 2.95825958
45.2359174
48.7111664 | 45.5305542
.0 | 45.8898926
1.28062153 | | 2.30978534
45.3946338
46.6671753 | 2.55796138
45.2059174
48.9221302 | 45.6305542
.0 | 45.9134074
1.28052235 | | 2.30909348
45.3946838
46.6436310 | 2.95684523
45.2059174
47.7018585 | 45.6305542
.0 | 45.9370270
1.28062153 | | 2.30965605
45.4132735
46.6439310 | 45.2059174
46.9905973 | 45.0541290
.0 | 45.8893926
1.23047150 | | 45.4132739 | 45.2295227 | 45.0541290 | 45.9134674 | | 46.0430310 | 47.3723435 | .0 | 1.28057194 | | 2.31097678
45.4132737
46.5436310 | 75550590263553698255253151599302809794094040542345543975771J81177290530092530902635536982050015159930280927940954080423455479975771J811772935309253090555271476975211471673122222259107954234455479224352311523115223115223115223591021795423415231152311523115231152311523115231 | 45.6777191
.0 | 45.9841614
1.28067237 | | 45.4182739 | 45.2531120 | 45.6777191 | 45.9606013 | | 46.6436313 | 48.6408081 | .0 | 1.28042221 | | 673697143586889286911352868476777992770876870570570579438938938908947687323914390896847687323914390896847687323913913913913913913913913913913913913913 | 45.2295227 | 45.6777191 | 45.9841614 | | | 47.4608732 | .0 | 1.280072J7 | | 2.31115723 | 2. 35983413 | / F / 77 7101 | /5 2/2/210 | |---|---|--|--------------------------| | 46.6671753 | 46.3789673 | •0 | 1.23092194 | | 45.3946838
46.69J7196 | 45.2295227
47.5843811 | 45.6777191
.0 | 45.9370270
1.28077221 | | 2.31146526
45.3946838
46.7142487 | 2. 96045971
45. 2295227
49.1331177 | 45.6541290
.0 | 45.9606013
1.28067207 | | 2.31435871
45.3710937
46.7377777 | 2.96393394
45.2295227
48.5235231 | 45.6541290
.0 | 45.9370270
1.28107160 | | 2.31456947
45.3475037
46.6436310 | 4.96512390
45.2295227
47.25 <u>5</u> 2948 | 45.0541290
.U | 45.9370270
1.28062153 | | 2.31350040
45.3710937
46.71+2487 | 2.96271331
45.2531128
47.3023224 | 45.6541290
.0 | 45.9134674
1.28057194 | | 2.31323201
45.3475037
46.7142487 | 2.96232319
45.2295227
48.8752399 | 45.6305542
.0 | 45.9370270
1.28062153 | | 2.31311607
45.3710937
46.7377777 | 2.96222591
45.2295227
49.257,191 | 45.6305542 | 45.9134674
1.28077221 | | 2.31351471
45.3710937
46.7142487 | 2.96308517
45.2531123
48.4062135 | 45.0305542 | 45.9134674
1.28067237 | | 2.31340225
45.3546833
46.737777 | 2.76275572
45.2531123
47.1377253 | 45.630 <i>5542</i> | 45.9370270
1.23037167 | | 2.31215191
45.4182739
40.7142487 | 2.96041498
45.2531128
47.9604233 | 45.5541290
.0 | 45.9370270
1.28042221 | | 2.31249809
45.4182739
46.6907 <u>1</u> 76 | 2.96097374
45.2295227
48.7315094 | 45.6777191 | 45.9370270
1.28052235 | | 2.31216717
45.4182739
46.7142467 | 2.96073110
45.2531123
49.2034143 | 45.6777191
.0 | 45.9370270
1.28047130 | | 2.31169224
45.4654541
46.7377777 | 2.96005630
45.2295227
47.6078796 | 45.7012939
• 0 | 45.9606013
1.28062153 | | 2.31234741
45.4890442
4c.737777 | 2.96124172
45.2531120
47.5000820 | 45.7312939 | 45.9370270
1.28057134 | | 2.31200123
45.4890442
46.737777 | 45.2531120
48.7346171 | 45.7248638
.0 | 40.0077362
1.28072156 | | 2.31227237
45.5126343
46.7377777 | 45.2295227
45.4376673 | 45.7248038 | 46.3077362
1.28072166 | | 45.5126343
46.8033801 | 45.3003082
45.4296375 | 45.7720337
.0 | 46.0077362
1.28057194 | | 45.5362244
45.5362244
40.8319092 | 45.3003082
47.6313732 | 45.7720337
767653983E+04 | 46.0548553
1.28062153 | | 45.5597992
46.3083801 | 45.3237.36
47.7+83403 | 45.3191833
.0 | 46.J543553
1.28002153 | | 45.5833893
40.7613223 | 45.3003032
45.4296875 | 45.3427429
.0 | 46.0784302
1.28082180 | | 45.6069734
46.8083831 | 45.3239136
46.0077136 | 45.3427429
767653983 <u>-</u> 04 | 46.0784302
1.23067207 | | 2.35.3831866877177777777777777777777777777777 | 45 • 3239136
47 • 6478796 | 45.6777191 .0 45.6777191 .0 45.6541290 .0 45.0541290 .0 45.0541290 .0 45.6305542 .0 45.6305542 .0 45.6305542 .0 45.6305542 .0 45.6305542 .0 45.63777191 .0 45.6777191 .0 45.7012939 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7248638 .0 45.7720337767653983E-04 45.3191833 .0 45.3427429767653983E-04 45.3663177767653983E-04 | 46.1255493
1.28097153 | | 45.6069794
46.8554382 | 45.3239136
46.9260254 | 45.3663177
7676539335-04 | 46.0784302
1.28077221 | | 2,96373873 | | | |--|--|---| | 45.371.0937
47.3195207
2.965721.02 | 45.3898926
767653983E-04 | 46.1255493
1.28072166 | | 45.4182739 | 45.3663177 | 46.1491089 | | 43.500061J | 767653933E-04 | 1.25032180 | | 45.41.82739 | 45.3663177 | 46.172.685 | | 48.9221802 | 767653983E-04 | 1.28087234 | | 45.4418640 | 45.3893926 | 46.1726685 | | 48.6776215 | .0 | 1.28077221 | | 45.4654541 | 45.3427429 | 46.1255493 | | 47.3726465 | .0 | 1.23067207 | | 45.4654541
46.1011047 | 45. 8427429 | 46.1726685
1.28072166 | | 45.4654541 | 45.3427429 | 46.1491089 | | 48.5939325 | 7676539838-34 | 1.28082130 | | 45.4654541 | 45.3603177 | +6.1255493 | | 46.8047022 | 707653983E-04 | 1.281J2207 | |
45.4654541 | 45.8427429 | 46.1255493 | | 48.1430560 | 7676539834-04 | 1.23082130 | | 45.4390442 | 45.3427429 | 46.1255493 | | 47.6201263 | 153530811=-03 | 1.28072166 | | 45.4054541 | 45.3427429 | 46.1726635 | | 47.4154603 | 767653983d-04 | 1.28062130 | | 45.4654541
46.5468081 | 45.31 91333 | 46.1255493
1.23067207 | | 45.4413640 | 45.3427429 | 46.1019397 | | 48.8283997 | .0 | 1.28097234 | | 45.4413640 | 45.3427+29 | 46.1255493 | | 45.0393829 | .0 | 1.28097153 | | 45. +132739 | 45.8191333 | 46.1019397 | | 48. 195. J73 | .0 | 1.23082180 | | 45.4182759 | 45.3191333 | 46.1J19897 | | 47.5342811 | .0 | 1.23087234 | | 45. 41 d2 739 | 45.3427429 | 46.1013897 | | 47. 926 7371 | .767653933E-04 | 1.23077221 | | 45.4152739 | 45.3427429 | +6.1317897 | | 48.9456177 | .7676539835-34 | 1.27927208 | | 45.441.5640 | 45.3427429 | 46.1255493 | | 49.3205414 | .767653983E-J4 | 1.23092194 | | 45.41.82739 | 45.3663177 | 46.1019897 | | 48.3592834 | .767653983H=04 | 1.28382206 | | 45.4654541 | 45.3893926 | 46.1255493 | | 47.5608826 | .767653983E-04 | 1.28037234 | | 45.44186+0 | 45.3893926 | 40.1255493 | | 47.7723339 | .757653983E-04 | 1.23032130 | | 45.4054541
46.5235291 | 45. 1 134674 | 40.1491039
1.28052235 | | 45.4418640
49.2971191 | 45.9134674
.7676539835-04 | 40.1725685 | | | 37729J09210501531771591201531770155124015015317709720153921701 | 2.96373873 45.3713937 45.3713937 47.3193207 2.96069050 45.462739 45.3663177 48.9221802 2.16075821 45.4663177 48.9221802 2.16075821 45.4818040 45.8893926 -04 45.418640 45.8893926 -05 45.4654541 47.3728485 2.95900070 45.4654541 46.1011047 2.95900070 45.4654541 46.8043622 2.966298695 45.4654541 46.8043622 2.966391296 45.4654541 46.8043622 2.966391296 45.4654541 46.1480560 2.966391296 45.4654541 46.1480560 2.966391296 45.4654541 46.1480560 2.966391296 45.4654541 46.1480560 2.966364307 45.3427429 -7676539838-04 2.96137613 45.3427429 -7676539838-04 2.96137613 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.4418640 45.4418640 45.342739 45.3427429 -7676539838-04 45.4418640 45.342739 45.3427429 -7676539838-04 45.4418640 45.3427429 -7676539838-04 45.4418640 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 45.4186739 45.3427429 -7676539838-04 | | F | TI | ⊂: | А | CA. | 71 | 3 3 | DaT | 1 | 4 | |---|----|----|---|-----|----|-----|-----|---|---| | | | | | | | | | | | | | 2 02/22050 | | | |------------|-------------|------------------------|------------| | 2.28507042 | 2.92630959 | | | | 45.6777191 | 45.4890442 | 45.9606018 | 46.1962230 | | 46.9730335 | 47.8897735 | .767653983E-04 | 1.28067207 | | 2.28362274 | 2. 32457134 | | | | 45.7248638 | 45.4890442 | 45.7841014 | 46.2433319 | | 46.9730835 | 47.2317810 | 767653933F-04 | 1.28062153 | | | | • 10 10 2 3 3 3 5 T U4 | 1.25002155 | | 2.28302097 | 2.92366507 | | | | 45.7248688 | 45.5362244 | 45.9841614 | 46.2433319 | | 46.9965973 | 47.5136855 | .767653983E-04 | 1.30407156 | | 2 36278915 | 3. 18313560 | | | | 99 | | | | |---|----------------------------------|-----------------------------|--------------------------| | 25.4627523 | 25.2609673 | 25.4627533 | 25.5606232 | | 25.5116832 | 22.7393224 | •0 | 149999960F-05 | | 25.4133134 | 25.2669678 | 25.4627533 | 25.5606232 | | 25.5116332 | 24.3359985 | 2302962099-03 | 149999960E-05 | | 26.1230316 | 25.2669678 | 25.4627533 | 25.5850983 | | 25.9753641 | 24.4095612 | 3070617095-33 | 2.02035400 | | 25.4627533 | 25.3159180 | 26.7580719 | 27.5630341 | | 28.1963959 | 22.6168365 | .767653983E - 04 | 2.02095413 | | 25.4872234 | 25.3159180 | 28.2937522 | 30.0677943 | | 30.5043335 | 22.7152252 | .307061709E-03 | 2.u2145336 | | 25.4872234 | 25.2914429 | 29.5309052 | 32.7542114 | | 32.6334839 | 24.4585876 | .4721072321-01 | 2.02145386 | | 25.4872234 | 25.2669678 | 31.0373993 | 35.6195984 | | 34.9707947 | 23.9139911 | .405244589 | 2.32120399 | | 25.4872234 | 25.2914429 | 32.7300720 | 38. J159149 | | 36.7232056 | 22.4938354 | .865146101 | 2. J2125359 | | 25.48.72294 | 25.2914429 | 34.5378265 | 40.235J922 | | 38.5655823 | 22.9365234 | 1.46963461 | 2.J21J5372 | | 25.4872234 | 25 • 2914429 | 36.1237030 | 42.5639191 | | 40.4017639 | 24 • 6301575 | 3.03062153 | 2.02125359 | | 5.718143+6
25.4332735
42.8247070 | 25.2669678
24.3359985 | 37.6810608
4.54108353 | 44.788+674
2.J2115440 | | 25.4627533 | 25.2009078 | 39.1362793 | 4 3.155517 6 | | 46.25U3240 | 23.0340511 | 4.90391724 | 2 . 02150440 | | 25.4627533 | 25.2609673 | 40.7111664 | 50.3017883 | | 47.9676819 | 22.8381805 | 5.33847065 | 2.02120399 | | 25.4627533 | 25 • 2914429 | 42.2080994 | 53.5052948 | | 49.3982544 | 24 • 1388580 | 5.69092555 | 2.02130413 | | 5.69663713
25.4627533
50.2875624 | 25.2669673
23.9139911 | 43.6536407
5.39205170 | 56.4964905
2.J2155399 | | 25.4872234 | 25.2669078 | 45.1662140 | 59.7707977 | | 51.193822G | 22.3381505 | 6.07321835 | 2.02110305 | | 5.70094335
25.4872234
52.2949932 | 25 • 29 14429
23 • 96 80 83 4 | 46.6275787
6.22063776 | 62.9570263
2.02190399 | | 5.709671J2
25.4872234
53.4623434 | 25.2914429
23.5998840 | 48.1320343
6.36492634 | 66.4675751
2.J2165413 | | 25.4872284 | 25.3159180 | 49.7260742 | 69.7527771 | | 54.5273437 | 22.4092230 | 6.45474243 | 2.02140427 | | 5.71 d56735
25.4872234
55.3946975 | 25.3648682
23.5189911 | 51.2921906
6.54609299 | 72.7496643
2.J211544J | | 5.72190285
25.4872234
57.0512390 | 25.2914427
23.7226410 | 52.7375336
6.65663523 | 75.7534332
2.02160353 | | 25.5116332 | 25.3648682 | 54.2487946 | 78.7195232 | | 53.4337147 | 23.2805939 | 6.76160363 | 2.02153413 | | 25-4872234 | 25.3648682 | 55. d94 29 75 | 31.4935455 | | 59-1260632 | 24.5076141 | 6. d2705402 | 2.J2195338 | | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 25.3403931 | 57.2055131 | 34.1223297 | | | 22.5430450 | 6.87771988 | 2.J21+0427 | | | | | | | 7 9 3 4 5 5 6 3 6 3 6 3 6 3 6 5 6 6 3 6 3 6 6 3
6 3 | 25.3403931
24.4340668 | 58.6661224
6.93375874 | 86.6756293
2.02215385 | |---|--|--|------------------------------| | 25.5116882
63.8942103 | 25.3159130
22.9119415 | 60.0006714
6.99900913 | 89.0829315
2.02195353 | | 5.75692368
25.5116882
65.4669342 | 25.3393433
22.7890015 | 61.1715393
7.JJ207996 | 91.3954773
2.02130386 | | 5.76235992
25.5116882
66.8537140 | 25.3648682
24.3359935 | 62.2942352
7.04276562 | 93.4605255
2.02195353 | | 5.766427J4
25.5361633
68.1916335 | 25.2669678
24.4831035 | 63.3004608
7.37730961 | 95.6915436
2.J2175425 | | 5.76949596
25.5361633
69.4816132 | 25.3+03931
22.5184326 | 64.2364807
7.J3114615 | 97.8713226
2.02230413 | | 5.77465725
25.5361033
70.6557405 | 25.3403931
24.1152649 | 65.1026306
7.14503084 | 99.5064697
2.J2240372 | | 5.7d34d446
25.5361633
71.8274q39 | 25.2180175
23.9435272 | 65.7447327
7.14563034 | | | 5.78917217
25.5361033
72.9294231 | 25.2914429
23.0340149 | 66.7855988
7.19859836 | 103.703506 | | 5.79 102707
25. 5301033
73. 9620209 | 25.3403931
22.7398424 | 67.6025391
7.20013426 | 106.131663 | | 5.79604053
25.5301033
74.9703674 | 25.3893433
23.7226410 | 68.3730316
7.22700214 | 108.190353
2.J2255440 | | 5.81708336
25.5361633
75.3769745 | 25.3403931
24.4535870 | 69.1198573
7.22700214 | 109.925461 | | 5.81934793
25.5301033
76.9149170 | 25.2569678
24.0907440 | 69.0431356
7.22853756 | 111.529383
2.02285335 | | 5.82361331
25.5361633
77.80577.50 | 25.2669678
22.3361305 | 70.5203857
7.23007298 | 113.024155
2.J2305412 | | 5.02701874
25.0500232 | 25.3403931
22.3135936 | 71.1517639
7.29609108 | 114.473480
2.J2305412 | | 5.83U25551
25.5006234 | 25.3155130
24.5566436 | 71.7324554
7.29609103 | 115.31+380
2.J2245426 | | 5.82994175
25.0006332 | 25.3640682
22.7098224 | 72.3674774
7.29762650 | 117.049011
2.J2275372 | | 5.83424200
25.5006232 | 25.4627533
23.9435272 | 72.92935
72.9294281
7.29685379 | 113.239075
2.J2295399 | | 5.83947563
25.5000232 | 25.4133134
23.5202146 | 73.4459534
7.29762650 | 119.322361
2.J2240372 | | 5.83947563
25.5000232
81.4271240
5.83930302
25.5653983
82.0467834 | 25.4382935
22.7393224 | 73.3395305
7.29916191 | 120.384064
2.02235413 | | 5.34219265
25.5000232 | 25.4627533
24.5076141 | 74.3655701
7.29839420 | 121.319000
2.J2265358 | | 5.34219265
25.5000232
82.6215973
5.855195J5
25.5006232
81.3919573 | 25.4382935
22.9850673 | 7.29839420
74.4776154
7.301465J3 | 121.337767
.219999929F-04 | | 25.5606232 | 22.9850873
26.0741425
21.0044739 | | | | 230999997E-08
25.5606232
80.0526360
193199939E-08
25.4382935
77.3610077 | 21.a044739
25.6584778
22.9856373 | | 113.495607 | | 11.3610017 | 22.9850373 | 1.30225274 | 12049999005-04 | | 1570503 05 00 | | | | |--|-----------------------------------|---------------------------|---| | .1578500 00E-03
25.4138134
73.8722992
.149650004E-08
25.1445613
70.8812501
.132599993E-08 | 25.5361633
25.1935272 | 62.9118958
7.30146503 | 108.613998
.2049999602 - 04 | | 25.1445613 | 25.4872284 | 52.0619507 | 103.020203 | | 70.88120035-03 | 22.4446259 | 7.30146503 | .195000030E-04 | | 24.8016315 | 25.0955963 | 49.1639852 | 97.9144135 | | 63.0105743 | 23.2063787 | 7.30223274 | .139999992E-04 | | 1325949935-08
24.8016315
64.0105743
.1177999925-08
24.6050519
65.2844206 | 24.6506775
25.2069678 | 46.2743835
7.30146503 | 94.1978760
.134999953E-04 | | 24.6050519
65.2844206
109150000F-03
24.4340604
62.2713318
1007999918-03
24.3114777
50.4753734
-280000023E-09
24.1838530
45.8973846
-198000058-09
24.0907440
33.3574371
-1399979985-09
24.0171350
27.2704020
-1300000035E-09 | 24.9241638
21.92 7 6423 | 42.9668834
7.2914843 | 91.2430267
.13000061E-04 | | 24.3114777 | 24.9486542 | 37.1304732 | 79.8529053 | | 56.4733734 | 23.722641J | 6.12772179 | .1750000235-04 | | 24.1838530 | 24.9731598 | 24.0056519 | 41.0679474 | | 45.8973846 | 24.4585876 | 1.94799900 | .180000061F-04 | | 24.0907440 | 24.9976501 | 24.4095612 | 27.1241150 | | 33.3574371 | 23.7962739 | 1.62934589 | .1750000235-04 | | 24.0171350 | 24.8751831 | 24.3114777 | 24.9485542 | | 27.2704020 | 23.1577501 | 1.43956187 | .1099999357-04 | | 21.2704620
.13600000035=09
23.9680634
25.4627533 | 24.9241633
22.8135980 | 24.2379150
1.39651585 | 24.4535376
.1649999471 - 04 | | 23.96800034
25.4627533
.1319994E-09
23.9187911
24.8506775 | 24.703c743
25.1690521 | 24.1388530
1.35336411 | 24.286956d
.1649999472-34 | | 24.8536775
.115499998E-09
23.8455674
.13850000117-09
23.8208313
.44.4535876
.750000002E-10
23.7717436
24.2379150
.725000060E-10
23.7717436
24.2379150
.72500060E-10
23.7717436 | 24.5811462
21.3115537 | 24.1152c49
1.3+462261 | 24.2133789
.155000016E-04 | | 23. 6206313 | 24.4340663 | 24.J416713 | 24.1643372 | | 24. 4565876 | 21.5334167 | 1.J3464336 | .149999996E=04 | | 23. 7962799 | 24.3850403 | 23.9925995 | 24.J9J7440 | | 24. 3359355 | 24.2379150 | 1.31368637 | .135000016E-04 | | 23.7717436 | 24.26.4359 | 23.7435272 | 24.0410718 | | 24.2379150 | 23.1577301 | 1.30301571 | .14500000345-04 | | 23.7717436 | 24.1398010 | 23.d944553 | 23.9925995 | | 24.1398013 | 23.3453674 | 1.2964143d | .1499999905=04 | | 23.74/1924
24.0907440
.600000501-10
23.7226410
23.7226915 | 24.1152649
24.3359985 | 23.36991 83
1.23620434 | 23.9189911
.1499909960-04 | | 23.7226410
23.7226410
23.925935 | 24.0416718
21.3554980 | 23.3453674
1.27007155 | 23.8944550
.1400000025=04 | | 23.7717438 | 23.9080034 | 23.3453674 | 23.8944550 | | 24.0171330 | 25.34J3931 | 1.27169609 | .1450000047-04 | | 23.7717438 | 23.9680034 | 23.3699133 | 23.9435272 | | 24.0662079 | 25.4424927 | 1.26494025 | .140000002E=04 | | 23. 9189911 | 23.9925495 | 23.9925495 | 24.06620 7 9 | | 24. 213378 9 | 25.340.931 | 1.20110172 | 2.02335358 | | 23. 3453674
25. 9733041
6. 62922663 | 23.9680634
25.4382935 | 25.7563171
1.26140881 | 26.4894857
2.J227J4I2 | | 23.8659138
28.3131000
6.50516357 | 24.0662079
24.1398010 | 28.2207336
1.261486J5 | 29.7280121
2.J2295399 | | 23. 99259 95
.420000007F-10
23. 7717436
24.0171350
.7250001905-10
23. 7717438
24.0662079
.840000014E-10
23. 9129911
24.2133789
6.00383892
23. 34733674
25. 34733674
25. 8699138
28. 8699138
28. 8699133
30. 6255341 | 24.1398313
22.1000214 | 30.5528137
1.25186943 | 33.0433503
2.02320385 | | | | | | | ((2) 7 2 1 5 2 | | | |
--|---------------------------------------|---------------------------|---| | 6.60173130
23.86491839
32.0334839
46.556733514
23.6944550
34.29713449
23.64945984
6.404945984
23.9139955
6.40239811
36.40239811
36.40239811
36.40239811
37.632381
23.91329968
23.91329968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968
23.932968 | 24.1643372
22.3215790 | 32.5363958
1.20186943 | 36.0517120
2.02330399 | | 23.894455 G
34.2971344 | 24.1398010
24.9486542 | 34.0804291
1.26148605 | 38.4939117
2.02285385 | | 23. 894455 C
35.6195984 | 24.1643372
24.9976501 | 35.2332794
1.26133251 | 40.4017639
2.02295399 | | 6.40023804
23.9139911
36.7232055 | 24.1838580
23.1331635 | 36.1476398
1.20156235 | 41.7808223
2.02335353 | | 6.40069389
23.9139911
37.6532092 | 24.2133789
22.1000214 | 36.7711334
1.26893234 | 42.7535853
2.02325459 | | 6.37265968
23.9435272
38.3505554 | 24.2133789
23.4525452 | 37.1304932
1.33579445 | 45.6773071
2.02325459 | | 6.52622414
23.9660634
38.8282623 | 24.2379150
25.1445018 | 37.4417572
1.52571201 | 44.6467433
2.02295399 | | 6.43159389
23.9630634
39.4009735 | 24.2379150
24.8261871 | 37.3006744
1.74288177 | 45.0616211
2.02360439 | | 6.48566723
23.9925995
35.9492493 | 24.2624359
22.6163365 | 38.1115417
2.25275707 | 40.7923279
2.02350426 | | 6.43159389
23.9630634
39.4009735
6.48566723
23.9925995
35.9925995
6.46531609
24.0171356
40.2827148
6.46724033
23.9925995
40.8777038
6.44711494
23.9925995
41.7570331
6.4672703 | 24.3114777
22.3708038 | 38.3260032
2.93456192 | 47.92U7155
2.32290440 | | 6.46724033
23.7925995
40.8777038 | 24.3559985
23.9680634 | 3d. 5894o23
4.09789085 | 48.3592987
2.02325439 | | 6.44711494
23.9925995
41.7570301 | 24.3359935
25.2130176 | 38.3998871
4.50857536 | 49.9132996
2.02315426 | | 74.0171.55 | 24.3605194
23.3699138 | 39.1624140
4.97700787 | 50.8017485
2.02320335 | | 6.47973156
24.0416713
42.5876112 | 24.Jd504J3
21.d783722 | 39.4009705
5.27485752 | 51.3054310
2.02303412 | | 6.48026276
24.0171356
42.3905353 | 24.4095612
22.3461914 | 39.78244J2
5.51359844 | 52.9237513
2.02290440 | | 6.47209549
24.0662079
43.4642792 | 24.4095612
24.4585876 | | 54.1559143
2.02340412 | | 6.47693255
24.0662079
43.5602274 | 24.4585870
24.3359985 | 40.7111664
5.78611565 | 55.4730273
2.J2360371 | | 6.49541+73
24.0662079
44.1267700 | 24.4585876
23.9189911 | | 56.3114624
.2500000125-04 | | .20245999555-08
24.0416713 | 24.7 ₂ 31799
22.2969666 | 36.2436523
5.36513383 | 55.38536J7
.239999936E-04 | | .14399999906-C8
24.0171356 | 24.6301575 | 30.0192719
5.36441612 | 53.9004059
.2350000435-04 | | 124545993d=03
24.062079 | 24.6056519
24.9731593 | 28.5101374
5.60111046 | 51.1754761 | | .5750300+35-09
24.04167186 | 24.6056519
23.5507812 | 24.2624359
2.63310452 | 39.3055573
.2249999675-04 | | 42.18.43719 6.47973156 24.04.6713 42.5876.312 6.48026276 24.04.0713356 42.9905353 6.47209049 24.0662079 43.4642792 6.47693255 24.0662079 43.5612274 6.49541+73 24.0662079 44.1267700 -2024999958-08 24.0416713 43.1327362 -1439999058-08 24.0416718 43.1327362 -1439999058-08 24.0416718 32.6817730 -27.250003988-09 24.7250003988-09 24.7250003988-09 23.96806342 -27.97723339 -24.75000208-09 23.9139911 25.5139180 | 24.6301575
23.3297272 | 24.1883530
1.44142437 | | | 2475000205-09
23.9139911
25.013918 | 24.0050519
24.2624359 | | 24.8261871
.2099999985 - 04 | | 50.010±100 | 470414777 | 1.30100411 | • 20 3 7 3 3 3 7 5 5 5 5 1 4 | FILE: BOAT191 DATA A | .146999996E-09
23.3699188
24.7526855
.126000002E-09 | 24.4585876
24.3605194 | 24.139801J
1.33410549 | 24.4585876
.2099999985 - 04 | |--|--------------------------|--------------------------|---| | 23.8208313
24.5566406
.1469999965=09 | 24.4831085
25.1200367 | 24.J662079
1.J1706429 | 24.3850403
.2099999935-04 | | 23. 7962799
24. 4095612
.184499999E-09 | 24.3850403
21.3361969 | 23.9680634
1.29979229 | 24.2133789
.204999960E-04 | FILE: LOT191 DATA 4 | 99
26.3213231
25.4416199 | 24.1921344
24.8050079 | 25.5150146
.0001
25.5150146
.7676540415-03
25.5394897
.0001
26.1996613
.0001
26.46838388
.7676540415-03
26.5904846
.1535308085-02
26.0881561
.7676540415-03
26.7369843
.0001
26.7369843
.0001
26.7369843
.0001
26.7369843
.0001
26.7369843
.0001
26.7369843
.0001
26.7369843
.0001
26.7369843
.0001
26.7369843
.0001
26.7613831
.0001
26.3102112
.7576540415-03
26.38346100
.1535308035-02
26.9322357
.0001
26.9368345
.0001
26.9368345
.0001
26.9368345
.0001
26.9368345
.0001
26.9368345
.0001
26.9368345
.0001
26.9368345
.0001
26.9368345
.0001
26.9368345
.0001
26.9368345
.0001 | 25.4660797
.9000000325-05 | |---|------------------------------|--|------------------------------| | 26.297393d
25.4416199 | 24.2167206
26.4683d38 | 25.5150140
.7676540415-03 | 25.4660797
.9000000325-05 | | 26.39511.1
25.68626#0 | 24.2167206
25.6373444 | 25.5394897
.0001 | 25.5394897
2.03146339 | | 6.14424301
26.3462524
26.7857971 | 24.2412415
24.3050079 | 26.1996613
.00J1 | 26.3705813
2.03146339 | | 6.13693523
26.3402524
27.2000073 | 24.2412415
26.4083833 | 26.4683838
.7676540415-03 | 26.7369843
2.J3131339 | | 6.12453229
26.3706318
27.4932093 | 24.2412415
26.0774639 | 26.5904846
.153530808E-02 | 26.981J333
2.J3166771 | | 6.09792137
26.3462524
27.71257J2 | 24.2657623
24.0204773 | 26.6881561
.7676540415-03 | 27.1518250
2.03166771 | | 6.07613237
26.3462524
27.9074707 | 24.2412415
24.0940704 | 26.7369843
.0001 | 27.2493744
2.03136826 | | 6.05903435
26.3462524
28.0048931 | 24.2657623
25.3631946 | 26.7369843
.0001 | 27.2493744
2.03151798 | | 6.05155849
26.3706818
28.0536041 | 24.2412415
26.5172272 | 20.7125702
.1535503039-02 | 27.2249908
2.03171325 | | 6.04727540
26.3462524
23.0779572 | 24.2657623
24.9764862 | 26.7125702
.7676540413-03 | 27.1762035
2.J3136798 | | 6.04465367
26.3462524
28.0779572 | 24.2412415
23.6277771 | 26.7369843
.0301 | 27.2005073
2.03221793 | | 6.34348273
26.3462524
23.0536041 | 24.2657e23
24.e580043 | 26.7613831
.JU01 | 27.2495744
2.Js171825 | | 6.03955841
26.3462524
28.1023102 | 24.3393250
20.1263425 | 26.3102112
.7575540412-03 | 27.29d1567
2.U3211734 | | 6.04013729
26.3462524
23.1256632 | 25.0744324
26.2240905 | 26.8346100
.153530808T-02 | 27.3225403
2.J3196312 | | 6.03367531
26.3462524
28.1996916 | 25.1478832
25.0499420 | 26.8834229
.7676540417-03 | 27.3713074
2.J3196812 | | 6.03634711
26.3462524
28.2970734 | 25 • 1963536
23 • 9468689 | 26.9322357
.JU01 | 27.3956909
2.J3180798 | | 6.03654757
26.3402524
28.3944244 | 25.2213287
25.2702942 | 26.9566345
.0001 | 27.4444580
2.J322179d | | 6.03880882
26.3213231
28.4674377 | 25.2458191
26.9322357 | 26.9810333
.153530d082-02 | 27.4932098
2.J3190814 | | 6.03725338
26.3213231
23.5160980 | 25.2702942
25.7.0723) | 27.0298462
.767654041E-03 | 27.5419617
2.U314od39 | | 6.03373623
26.3462524
28.5890961 | 25.3192444
24.1076636 | 27.0542297
.0001 | 27.5907135
2.03261757 | | 6.039793)7
26.32182;1
28.6134136 | 25.3437195
24.4864349 | 27.0786285
.0001 | 27.6394501
2.03215639 | | 6.03703499
26.3213231
28.0 <u>3</u> 77+11 | 25.3437195
25.930a014 | 27.1030273
.7676540416-03 | 27.6882019
2.03231312 | | 6.03738662
26.3218231
28.6020636 | 25.3681946
26.1996613 | 27.1513250
.153530305=-02 | 27.7612915
2.00171825 | | | | | | | 25.34.675.74 | 6.03569794 | | | |
--|--|--------------------------------|---------------------------------------|-----------------------------------| | 20.3936343 26.346224 29.0734305 20.05497074 26.05497074 26.0734305 27.6638336 28.1266032 29.1726512 24.3634456 29.073513 20.074570507 26.073705713 20.0770570373 20.077050404 20.0770570373 20.0770570 | 24 27-3527 | 25 • 34 371 35
24 • 7805176 | 27.1762085
.767654041F-03 | 27.7856593
2.03221793 | | 20.3936343 26.346224 29.0734305 20.05497074 26.05497074 26.0734305 27.6638336 28.1266032 29.1726512 24.3634456 29.073513 20.074570507 26.073705713 20.0770570373 20.077050404 20.0770570373 20.0770570 | 26.3402524
28.6864014 | 25.319_444
23.0487091 | 27.2249908
.0001 | 27.8100231
2.J3271770 | | 20.3936343 26.346224 29.0734305 20.05497074 26.05497074 26.0734305 27.6638336 28.1266032 29.1726512 24.3634456 29.073513 20.074570507 26.073705713 20.0770570373 20.077050404 20.0770570373 20.0770570 | 26.3402524
28.0864014 | 25.2947693
24.2785095 | 27.2249908
.0001 | 27.8343811
2.03191757 | | 20.3936343 26.346224 29.0734305 20.05497074 26.05497074 26.0734305 27.6638336 28.1266032 29.1726512 24.3634456 29.073513 20.074570507 26.073705713 20.0770570373 20.077050404 20.0770570373
20.0770570373 20.0770570 | 25.3462524
28.7107239 | 25.2947693
26.3951111 | 27.2737732
.767654041E-03 | 27.8587494
2.J3216839 | | 20.3936343 26.346224 29.0734305 20.05497074 26.05497074 26.0734305 27.6638336 28.1266032 29.1726512 24.3634456 29.073513 20.074570507 26.073705713 20.0770570373 20.077050404 20.0770570373 20.0770570 | 6.04272401
26.3462524
28.7107239 | 25.2947693
25.5150146 | 27.2981567
.7676540415-33 | 27.3931177
2.J3246784 | | 20.3936343 26.346224 29.0734305 20.05497074 26.05497074 26.0734305 27.6638336 28.1266032 29.1726512 24.3634456 29.073513 20.074570507 26.073705713 20.0770570373 20.077050404 20.0770570373 20.0770570 | 6.04585266
26.3462524
28.7350464 | 25.2947693
24.3883607 | 27.3469238
.7076540415-03 | 27.9074707
2.03271770 | | 20.3936343 26.346224 29.0734305 20.05497074 26.05497074 26.0734305 27.6638336 28.1266032 29.1726512 24.3634456 29.073513 20.074570507 26.073705713 20.0770570373 20.077050404 20.0770570373 20.0770570 | 6.04883194
26.37J6818
28.6377411 | 25 • 8574524
24 • 6580043 | 27.3713074
.0001 | | | 20.3936343 26.346224 29.0734305 20.05497074 26.05497074 26.0734305 27.6638336 28.1266032 29.1726512 24.3634456 29.073513 20.074570507 26.073705713 20.0770570373 20.077050404 20.0770570373 20.0770570 | 6. J5105631
26. 3402524
28. 6620636 | 26.0530243
26.3706818 | 27.3956 #09
.767654041E-03 | 27.8130281
2.03251839 | | 6.05399343 26.34942524 29.0734305 6.05497374 26.3704318 25.8329926 27.6639336 28.126032 29.1725332 26.3704318 25.8329926 27.6639336 28.126032 29.1725332 26.3704318 25.7840881 27.0382019 28.3224,448 29.2455597 26.3704018 25.7840881 27.0382019 28.3224,448 29.3427427 26.3704618 26.3971938 26.3704818 27.7369385 28.2727356 29.3427427 26.370418 29.3427427 26.370418 29.3427427 26.370418 29.3427427 26.370418 29.3427427 26.370418 29.3427427 26.370418 29.3427427 26.370418
29.3427427 26.370418 29.3427427 26.370418 29.3427427 20.4642022 26.370418 29.3427427 20.4642022 26.370418 25.7351685 27.7356593 28.342749 29.4642022 26.375111 25.7351685 27.7356593 28.34476 29.3427427 20.3427427 20.3427427 20.3427427 20.3427427 20.3427427 20.3427427 20.3427427 20.3427427 20.3427427 20.342747 20.3427477 20.342747 2 | 6.05087948
26.3464544
28.9052582 | 25.9003410
26.1507874 | 27.517.5934
.1535308083-02 | 27.9074707 | | 6.0549774 26.3706318 27.06383336 28.1200032 27.1725512 24.3633456 27.03882019 28.224J448 29.245597 26.3706018 25.7840881 27.7369385 29.342742) 26.2971938 25.7840881 27.7369385 29.342742) 26.2971938 27.76540412-03 28.224J448 29.3913269 24.0039783 27.7612915 29.3913269 24.0039783 27.765540412-03 28.321411 29.3913269 24.2902832 26.3706318 29.342742) 29.391311 29.3913269 24.2902832 20001 28.3203251339 28.324742 29.3913269 24.2902832 26.3706318 26.3706318 26.4954036 26.3706318 26.4954036 26.3706318 26.495404 26.3706318 26.495404 27.7676540412-03 28.3700367 29.7736615 26.3706318 26.495404 29.38944244 29.380507 20.06029701 20.3231734 | 6.05396343
26.3462524
29.0754395 | 25.3529926
24.5354614 | 27.5907135
.707654041 <u>1</u> -03 | 28.0 2 92511
2.03285833 | | 6.05635357 26.3706818 29.2455597 26.2975938 27.7369385 29.342742) 26.2971938 25.7840381 27.7369385 28.2727355 29.342742) 26.2971938 27.7369385 28.2727355 29.342742) 26.2971938 27.7369385 28.2727355 29.342742) 26.2971938 27.7369385 28.2727355 28.2727355 28.3236629 28.3236629 28.3236629 28.3236629 28.3236629 28.3236629 28.3236629 28.3236629 28.3236629 28.3236629 28.3236629 28.3236629 28.324181 29.3913289 29.4642029 29.4642029 29.4642029 29.4642029 29.4642029 29.4642029 29.47796615 20.43756318 20.43756318 20.43756318 20.43756318 20.43756318 20.43756318 20.43756318 20.43756318 20.43756318 20.43756318 20.43756318 20.4387811 20.6837421 28.3944244 28.6809509 29.33231784 28.3706369 29.77796615 20.33231784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 29.376615 20.3251784 | 6.05497074
26.3706318
29.1725532 | 25.8329926
24.3638458 | 27.6638336
.0001 | 28.1260632
2.03271770 | | 6.J5735733 20.3706613 29.342742) 20.3706613 29.342742) 20.3705818 29.342742) 20.3705818 29.3913269 24.c089783 25.7840381 27.7612915 28.321411 29.3913269 24.c089783 27.7856598 28.32441825 20.3705818 29.3457489 20.3705318 29.4642029 20.3705318 20.4437545 27.7856598 28.3457489 20.3221339 20.3705318 20.3251339 20.3705318 20.3251339 | 6.05635357
26.3706d18
29.2455597 | | | | | 6.05944252 26.3705813 29.3913269 6.058304775 26.3951111 25.7351685 27.7856598 28.32441825 29.4642029 24.2902832 20.001 22.03251339 26.0463557 26.3736318 26.4432545 26.4195404 26.4195404 26.3951111 26.373638 26.3951111 26.373638 26.383636363 26.3951111 26.373638 26.3951111 26.373638 26.3951111 26.373638 26.3951111 26.373638 26.3951111 26.373638 26.3951111 26.373638 26.3951111 26.3951110 | 6.J5735733
26.J706613
29.J427423 | 25.7840381
26.2972938 | 27.7369385
.1535303085-02 | 28.2727356
2.03236839 | | 6.05830476 26.3951111 29.4642029 24.2902832 26.0001 2.03251539 26.0003557 26.37796615 26.4437545 27.7856598 28.3457489 29.3251539 29.7779615 20.373633 20.3951111 20.0037421 28.3944244 29.0809509 30.7257533 20.4683836 28.3944244 29.0809509 30.7257533 20.4835836 28.3944244 29.0809509 30.1438599 30.0713907 32.1294433 24.314041 26.9550345 31.936035921-01 2.03271770 32.1294433 24.314041 26.3951111 26.3951111 26.3951111 26.3951111 26.3951111 26.3951111 26.3951111 26.3951111 26.3951111 26.3951111 26.3951111 26.3951111 26.3951111 37.5437817 27.1513230 36.4387817 27.1513230 36.4387817 27.1513230 36.4387817 27.1513230 36.3951111 37.5437413 26.2729045 30.8702393 40.6905975 39.4042053 24.0450134 37.4923741 42.0689372 39.4042053 24.0450134 37.4923741 42.0689372 23.7505138 37.4923741 42.0689372 23.7505138 | 6.05944252
26.3705813
29.3913269 | 25.784J881
24.6089783 | 27.7612915
.7676540415+03 | 28.3214111
2.03241825 | | 20.00003557 20.37306318
20.47790615 20.4195404 20.00173633 20.3951111 20.0037421 28.3944244 28.3944244 29.0809507 30.7257533 20.4835836 20.3951111 20.3951110 20.3951111 20.395111 | 6.0583U479
26.3951111
29. 4642029 | 25.7351685
24.2902832 | 27.7856598
.0001 | 28.3457489
2.J3251339 | | 6.06193638 26.3951111 20.0637421 28.3944244 23.6809509 30.7257533 26.4635836 26.36365921-01 2.03301311 26.3706018 32.1294403 24.3140041 26.3951111 26.9566345 31.9360352 32.2502747 33.6018219 26.3951111 26.3951111 35.1423340 24.7560120 24.7560120 24.7560120 25.3951111 36.4387817 27.1513230 36.4387817 27.1513230 36.39543613 36.4387817 27.1513230 36.39543744 37.5407440 37.5407440 38.9270020 38.93951111 36.2973938 36.3549774 38.9270020 37.5407440 38.9270020 38.5549774 38.9270020 38.5549774 38.9270020 38.5549774 38.9270020 38.5549774 38.9270020 38.5549371 38.5449371 26.2729645 36.3951111 26.2729645 36.498794 26.3951111 26.2729645 36.4988794 26.3951111 26.2729645 37.4928741 42.0689372 39.4042053 24.0450134 | 6.06063557
26.3736318
29.7790615 | 26.4437545
26.4195404 | 27.9074707
.7676540412-03 | 28.3700867
2.03281734 | | 6.06029731 26.3706618 22.8834229 30.1438599 30.0711907 32.1294403 24.3140041 .105166581 2.03271770 6.0434041 26.9566345 31.9360352 32.2502747 33.6018219 23.7990216 .304758668 2.03261734 6.02026357 26.3951111 33.5777130 34.6373271 35.1423340 24.7560120 .462127745 2.03311825 5.99268818 26.3951111 26.3213231 34.9500122 36.3942108 36.4387817 27.1513230 .577275613 2.03281784 5.99436117 26.2973938 36.0549774 38.9270020 37.5407410 26.2973938 36.3549774 38.9270020 37.5407410 26.2729045 30.8702393 40.6905975 38.5449371 23.7505138 .944982111 2.03290757 5.91621304 26.2485199 37.4928741 42.0689372 39.4042053 24.0450134 1.40327163 2.033316784 | 6.06193633
26.39511.1
30.7257533 | 20.0037421
26.4033836 | | | | 6.043434044
26.3951111 26.9500345 31.9360352 32.2502747
33.6018219 23.7990216 304758068 2.03261734
6.02026367
26.3951111 20.3951111 33.5777130 34.0373271
35.1423840 24.7500120 402127745 2.03311825
5.99268818 20.3951111 26.3213231 34.9500122 36.8942108
36.4387817 27.1513230 577275613 2.03261784
5.9043611 26.2973938 36.0549774 38.9270020
37.5407410 20.6881551 321389794 2.03311825
5.939014404
20.3951111 26.2729045 30.8702393 40.6905975
38.5449371 23.7505138 944982111 2.03290757
5.91621304 26.2485199 37.4928741 42.0689372
39.4042053 24.0450134 1.40327168 2.03316784 | 6.06029701
26.3700018
32.12944J3 | 26.8834229
24.3148041 | 30.1438599
.105166581 | 30.071J907
2.J3271770 | | 6.0205367
26.3951111 20.3951111 33.5777130 34.0373271
35.1423340 24.7500120 .402127745 2.03311825
5.99268818 20.3951111 26.3213231 34.9500122 36.3942108
36.4387817 27.1513230 .577275613 2.05261784
5.90436117 26.2973938 36.0549774 38.9270020
37.5407410 20.6881551 .321389794 2.03311825
5.93901443 20.6881551 .321389794 2.03311825
5.93901443 20.6881551 .944982111 2.032290757
38.5449371 23.7505138 .944982111 2.032290757
5.91621304 26.2485199 37.4928741 42.0689372
26.3951111 26.2485199 37.4928741 42.0689372
39.4042053 24.0450134 1.40327168 2.033316784 | 6.04314041
26.3951111
33.6018219 | 26.9508345
23.7990216 | 31.9360352
.304758668 | 32.2502747
2.03281734 | | 5.99268818 26.3951111 26.3213231 34.9500122 36.3942138 36.4387817 27.1513230 .577275613 2.05261784 5.90436117 26.3951111 26.2973938 36.0549774 38.9270020 37.5407410 20.0881551 .321389794 2.03311625 5.93901443 20.3951111 26.2729045 30.6702393 40.6905975 38.5449371 23.7505138 .944982111 2.03290757 5.91621334 26.2465199 37.4923741 42.0689372 39.4042053 24.0450134 1.40327163 2.033316784 | 6.02026367
26.3951111
35.1423340 | 20.3951111
24.7500120 | 33.5777130
.402127745 | 34.6373291
2.03311825 | | 5.96436117
26.3951111 | 26.3951111
36.4387817 | 26.3213231
27.1513250 | 34.9500122
.577275613 | 36.3942138
2.33231784 | | 20.3951111 26.2729045 30.6702393 40.6905975
38.55449371 23.7505188 .944982111 2.03290757
5.91621304 26.395111 26.2485199 37.4923741 42.0689372
39.4042053 24.0450134 1.40327168 2.03316784 | 5.90436117
26.3951111
37.5407410 | 26.2973933
20.0881551 | 36.3549774
.321389794 | 38.9270020
2.J3311825 | | 5.916213J4
26.395111 26.24ē5199 37.4923741 42.J689372
39.4042U53 24.J45U134 1.4U327163 2.J3315784 | 20-3951111
38-5449371 | 26.2729645
23.7505138 | 36.6702393
.944982111 | 40.6905975
2.03 2 96757 | | | 26.395.111
39.4042053 | 26.24ē5199
24.0450134 | 37.4923741
1.40327163 | 42.0689372
2.03315784 | | FILE: SDAT194 DA | ATA A | |------------------|-------| |------------------|-------| | 5.6.39541135
5.6.39511135
5.6.395511335
5.872766641
40.872766641
40.8397261515
5.873953631
5.8397346111
5.839734611
5.83973461
5.84974747
41.8395364
42.8085354938
42.8085354938
44.83953535
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.81874747
6.8187 | 26.2240906
25.5684094 | 37.9952393
1.83699603 | 43.2070150
2.03291798 |
--|--------------------------|--------------------------|---------------------------| | 5.87276649
26.3951111
40.8095551 | 26.1996613
27.0054474 | 38.4732666
2.30142639 | 44.2245636
2.03306770 | | 5.85327625
26.3951111
41.9739838 | 26.1752167
24.9274902 | 38.9747467
2.93934727 | 45.2402191
2.03316784 | | 5.83546329
26.3951111
42.8042145 | 26.1507874
23.5295563 | 39.4042053
3.01181259 | 46.1126709
2.03321833 | | 5.81853294
26.4195404
43.4674938 | 26.1265428
24.1676636 | 39.7856750
4.09382794 | 46.9131775
2.03331757 | | 5.80377293
26.3951111
44.0353851 | 26.1263428
26.0530243 | 40.0954285
4.64277172 | 47.3064728
2.33331757 | | 5.78730297
26.4195404 | 26.0774689
26.2973938 | 40.3097627
5.37050724 | 48.1352234
2.03286839 | | 5.77240131 | 26.0774689
24.3633453 | 40.4526062
6.J176+J11 | 48.5570172
2.0334177J | | 44.0353851
5.78730297
26.4195404
44.6026917
526.3951111
45.1458130
526.3951111
45.73637167 | 26.0774089
23.4977814 | 40.5954132
6.+5904064 | 49.4243657
2.J3331757 | | 26.3951111
45.0834155
5.76371070
26.4195404
46.2069072
5.76030779 | 26.0530243
25.9063416 | 40.7357666
6.79680920 | 51.2253265
2.03336811 | | 5.76030739
26.4195404 | 26.0285797
26.7013d31 | 41.1425J13
7.J2556992 | 52.8570362
2.03356611 | | 5.76019764
26.4195404 | 26.0041351
25.00J9766 | 41.5702920
7.23667431 | 54.5557139
2.03341773 | | 5.76257613
26.4439545
47.8534546 | 26.0041351
23.8732452 | 42.J214691
7.J9250351 | 56.5227661
2.J3346325 | | 5.76617527
26.4195404
48.5136964 | 25.9796906
25.8035480 | 42.4722748
7.40236515 | 53.7613331
2.03376770 | | 5.77170372
26.4195404
49.0500051 | 25.9308014
26.8334229 | 42.3753204
7.52609013 | 61.1287842
2.J3346325 | | 761954944413575494442744125439719549644135744427442744274427442744274427442744274 | 25.9063416
25.5394897 | 43.1359553
7.59133053 | 63.5091553
2.03351784 | | 5.78563493
26.4439543
49.9164734 | 25.9308014
23.7996216 | 43.3698120
7.65504646 | 65.7836047
2.J3351784 | | 5.7931594d
26.41954U4
50.6414U32 | 25.9063416
24.4374034 | 44.6971393
7.53191433 | 67.9633228
2.J3346825 | | 5.79993057
26.4439545
51.3137133 | 25.3313970
26.4439543 | 45.7005737
7.72797298 | 7J. J946195
2.J3315784 | | 5.80842731
26.4434545
52.0884247 | 25.5574524
26.4834229 | 47.2659607
7.75789093 | 72.0555873
2.03341770 | | 5.81991863
26.4439545
52.7039771 | 25.8213970
25.0744324 | 43.5743962
7.79706192 | 74.5478821
2.J3346325 | | 5.83633916
26.4439545
53.3224335 | 25.2574524
23.6763799 | 50.0100708
7.3J243537 | 77.3766327
2.03321833 | | 5.84028316
26.4439545
53.9267833 | 25.8329925
25.7340881 | 51.2486725
7.33237457 | 80.8093297
2.03325797 | | 52.7039771
5.83439145
26.4439545
52.4374335
5.844395635
5.844395633
5.85424192
20.4439545
5.85439440 | 25.8574524
26.8590240 | 52.4146576
7.35310078 | 84.2795863
2.03316784 | | | | | | | E 07002331 | | | | |--|---------------------------|--------------------------|---------------------------------------| | 5.87003231
26.4195404
54.9248810 | 25.8329926
26.6149139 | 53.6479340
7.85617161 | 88.6704407
2.03291798 | | 26. 4439545
55. 3885040 | 25.8574524
25.2213237 | 54.7248310
7.38341248 | 92.3992310
2.03281784 | | 26.3951111
54.6929321 | 25.a329926
23.5u50049 | 55.1799164
7.89608955 | 94.3525238
.3700000521-04 | | 26.2240906
53.0605436 | 26.3951111
26.3102112 | 37.4450073
7.69455414 | 94.0707703
.365000014:-04 | | .500050135E=08
26.2729645
51.2253255 | 26.2485199
23.9959412 | 33.6741180
7.89532185 | 93.1378784
.3599999765-04 | | .421200141E-08
26.3402524
49.3780212 | 26.3462524
23.5295563 | 32.12944J3
7.J96U8955 | 91.4419703
.3549999585-04 | | .3656499999E=08
26.1752167
47.5430347 | 26.3462524
25.9552400 | 30.J468292
7.29608955 | 89.6321106
.354999933=-04 | | .326599991°-03
26.0041351
45.8534393 | 26.1507874
27.6298462 | 29.0754395
7.89532185 | 37.7510376
.350000046F-04 | | .297500002E-08
25.9063416
44.2718353 | 26.1018982
24.9274902 | 28.3809509
7.67730808 | 84.5879974
.350000046=-04 | | .2064993951-08
25.3329926
40.2621450 | 26.1018982
23.2593536 | 27.5063452
6.45136452 | 70.7941234
.339999970E-04 | | .1904U0U07E-08
25.7596233
32.4913671 | 26.1018982
23.9959412 | 25.9063416
4.35566902 | 53.6882324
.3549999325-04 | | 6.07 8299475 266.44395450 266.44395450 266.44395450 266.3710004 266.39999044 266.22439455 266.22496255 266.22496255 266.22496255 266.3349126 266.33493935 266.33493935 266.33493935 266.33493935 266.33493935 267.334935 267.334935
267.334935 267.33 | 26.15J7874
26.039323J | 25.3329926
4.08391953 | 27.6633336
.3349990321-04 | | .1407000375-03
25.68626+0
27.0786285 | 26.2485199
26.3951111 | 25.7840831
4.02097225 | 26.2729645
.3300030395-04 | | .1320000113-08
25.0613042
26.5416555 | 26.2729645
23.8732452 | 25.7596283
3.97951639 | 26.0530243
.525000001T=04 | | .12025JJ105-08
25.0128693
26.2973938 | 26.2240906
23.7505108 | 25.7351085
3.74113541 | 25.9552460
.3199999635 - 04 | | -115200005E-08
25-6128693
26-0530243 | 26.0774689
25.5639490 | 25.7351585
3.91042995 | 25.9063416
.3150030736-04 | | 110250009E-03
25.5884094
25.9063+15 | 25.9552460
27.0786285 | 25.6862640
3.39584446 | 25.3574524
.31500J07J=-04 | | 25.33/99/6 | 25.8329925
25.9552460 | 25.4618042
3.37511730 | 25.7596283
.310000032E-04 | | 25.5639496
25.3329926
.1022999915-03
25.5639496
25.7640351 | 25.784U\$31
23.6523235 | 25.5373444
3.30397659 | 25.71.07237
.5049.9994H=04 | | .100649999E-08
25.5394897
25.7351885 | 25.7596283
23.946d689 | 25.o123693
3.85399o39 | 25.6362643
.304999994=-04 | | • \$759999485=09
25• 5639496 | 25.7107239
26.3951111 | 25.0123693
3.34517860 | 25.6613042
.299999950E=24 | | .93 0000077E=09
25.5394897 | 25.6862640
26.8834229 | 25.5884094
3.83059400 | 25.5884094
.299999950==04 | | .9000000746-09
25.5394897
25.6618042 | 25.6375444
25.2458191 | 25.5639+96
3.82368469 | 25.5884094
.2950000635-04 | | 25.5639496
25.5639496
25.5394897
25.5394897
25.5394897
25.5394897
25.7599999465 - 09
25.7107239
93.00000776 - 09
25.5394897
25.5394897
25.5394897
25.5394897
25.5394897
25.5394897
25.5394897
25.5394897
25.5394897
25.5394897
25.6373444 | 25.6373444
23.6032257 | 25.5639+96
3.8137J544 | 25.5834094
.2900000257-04 | | 200 UJ 13777 | 23.6032231 | J.0 E.J.1 0.J. T.T. | 12/0000525. 04 | ## FILE: BDAT194 DATA A | .840999936E-09
25.5039496
25.6123693 | 25.6128693
24.9519806 | 25.5639490
3.30602837 | 25.5884094
.234999937E-04 | |--|--------------------------|--------------------------|------------------------------| | .326499980E-09
25.5394897
25.5884094
.812000023E-09 | 25.5884094
26.9073369 | 25.5394897
3.79988766 | 25.5639496
.∠79999949F=04 | | 25.5394897
25.58844094 | 25.5639496
26.4683838 | 25.5394397
3.79221058 | 25.5637496
.2750000575-04 | ## FILE: LBOT194 DATA A 1 .3025289997801723925-C1 2 -.7085489095729185065-01 | .999999975E-05 | .999999975E-05 | .802519321E-01 | .999999975E-05 | |----------------|----------------|----------------|----------------| | 2.07499981 | 230014426E-01 | 138270943 | .276130289F-01 | | 4.14999962 | 201978633 | 296794832 | .132887673 | | 6.22499943 | 594792068 | 465318723 | .448322773 | | 8.25999924 | 659212066 | 673842609 | .482741833 | | 0.0 | | | | |--|---------------------------|--------------------------|---| | 99
26.2843170
25.6487122
- 3400000145-10 | 25.1347961
38.9142303 | 26 • 3820343
• 0 | 26.2354534
.120000004=-04 | | 26.2843170
25.6447122 | 25.1103058
38.914_303 | 26.3576202 | 26.2354584
.1200000045-04 | | 26.35762J2
24.5223389 | 25.1347961
38.5380951 | 27.187561J
.11.213720 | 27.6751556
2.03567410 | | 26.3331909
27.33338776 | 25.1347961
38.9142303 | 29.J361317
.396377110 | 30.6463909
2.03562355 | | 25.6487122
-3400000146-10
26.2843170
25.6487122
-7200000325-10
26.3576232
24.5223389
6.36687133
26.3351909
27.3538776
6.72233368
20.5331909
30.3976746
6.72892952
26.3087463
33.4442749
6.68011665 | 25.1592712
38.7709808 | 30.7612610
.792986631 | 33.7576294
2.03552437 | | 26.3087403
33.4442749 | 25.1592712
38.9142303 | 32.6233556
1.25511456 | 36.6417389
2.03547332 | | 6.68011665
26.3007403
34.5522750 | 25.1592712
38.8426056 | 34.3838196
2.03888e93 | 39.2960358
2.03592396 | | 6.54376125
20.3087463
39.6775814 | 25.1347961
38.8664856 | 35.6820526
4.02557755 | 41.74760+4
2.03607363 | | 6.68011665
26.30a7403
34.5522750
6.54376125
20.3087463
39.6775818
6.56256771
26.3087463
41.0584504
6.58961135
26.3087403 | 25.1592712
38.5380951 | 37.3603821
5.12639332 | 44.0936390
2.03587437 | | 6.58961135
26.3087463
41.8425751 | 25.1592712
38.8426056 | 40.4398604
5.71595192 | 46.3827302
2.03547355 | | 6.52315521
26.3087463
43.5021320 | 25.1592712
33.8664356 | 41.3912506
6.13662624 | 49.0140223
2.03502355 | | 6.51796246
26.2843170
44.9679413 | 25.183761 o
30.74710J3 | 42.1274414
6.40684u32 | 51.6795654
2.03547355 | | 6.54229459
20.2843170
46.3120390 | 25.159.2712
36.8187403 | 42.9574432
6.6243540) | 54.4859650
2.03562355 | | 6.53073651
26.3087463
47.6294556 | 25.1592712
38.6993408 | 44.3262c34
6.3943UJ46 | 57. J651245
2. J3587437 | | 6.62014961
26.2843176
48.6858065 | 25.1592712
38.7471338 | 47.3643799
7.10156727 | 60.1933032
2.03572369 | | 6.02800789
26.2843170
49.2952118 | 25.159.712
38.6993403 | 49.5294189
7.22669500 | 63.5654602
2.03627396 | | 6.20421076
25.2843170
47.9975536 | 25.1592712
36.62770J3 | 49.3889160
7.43246775 | 66.7765350
2.00597355 | | 6.20881+54
26.3067465
51.0960999 | 25.1837616
36.6038203 | 49.6699066
7.53995922 | 69.6082001
2.03592395 | | 6.34077930
26.3087403
52.0293427 | 25.1592712
38.6993408 | 49.5464995
7.54987717 | 72.6058350
2.J3627396 | | 6.37750435
26.2843170
52.7950304 | 25.1592712
38.6995438 | 50.5990051
7.38902740 | 75.4090424
2.03607368 | | 0.48031044
26.3087463
52.7282410 | 25.1347961
38.4365937 | 53.1935798
7.03608373 | 76.5711975
.2550000509-04 | | .4003499755-08
26.2843170
51.3995819 | 25.1592712
36.5321503 | 52.9377239
7.63663373 | 76.2535449
.253030312E-34 | | .2925000025-08
26.2843170
50.1372089 | 25.1592712
38.5799255 | 51.9593964
7.60663373 | 75.5879822
.2449999745 - 04 | |
26.30874751
61.8425751
626.30874523
63.5021323
63.5021323
63.5021323
63.5021323
63.5021323
63.5021323
63.5021323
63.5021323
63.5021323
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.502343
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234
63.50234 | 25.1592712
36.5082733 | 50.7924652
7.60668373 | 74.4014435
.244999974E-04 | | | | | | | 20 82 499 9 5 E - C3 26 28 431 7 0 47 179 99 99 38 = 08 26 28 431 7 0 46 40 62 80 5 1551000 00 5 = 08 26 25 98 87 7 44 94 43 35 9 138 65 00 03 E - C3 26 28 43 1 7 C 43 25 25 8 4 8 4 121 90 00 0 1 E - C8 26 25 98 8 7 7 41 04 00 00 0 E - C3 26 25 98 8 7 7 41 04 02 00 0 0 1 E - C3 26 25 98 8 7 7 40 03 50 3 4 2 E - U9 26 25 98 8 7 7 37 30 57 43 4 1 73 20 57 43 4 1 73 20 57 43 4 1 73 25 98 8 7 7 37 3 - 36 57 36 56 26 4 50 98 97 3 7 37 3 - 36 36 37 7 37 3 - 36 37 7 36 4 97 99 94 = 09 25 28 4 31 7 0 | 25.1592712
33.6038208 | 49.1780701
7.00663373 | 73.0777130
.239999936E=04 | |---|--------------------------|--------------------------|---| | 179999935-08
26.284317J | 25.1592712
38.5082705 | 48.9671473
7.6J668373 | 71.4356842
.235000045E-04 | | 1551000005-08
26-2590877
26-2590877 | 25.1037616
38.5321503 | 49.1077723
7.60668373 | 69.8567047
.235000043E-04 | | 138650003E-G3
26.284317C | 25.1837616
38.4343750 | 48.7326965
7.50668373 | 67.9738666
.230000005=-04 | | 121900031E-08
26.2598877
42.1274414 | 25.1837616
38.5321503 | 47.5324535
7.60663373 | | | 110400000E-03
26.2598877
41.0822296 | 25.1837616
38.5560455 | 45.4399414
7.60668373 | 64.4554443
.230000005E-04 | | 1012000 041-03
26.2598877
40.0350344 | 25.1837615
38.3410187 | 44.6845551
7.60663373 | 63.0399475 | | .8359999365-09
26.2598877
39.0574341 | 25.1337616
38.5382703 | 43.4785156
7.60668373 | 61.7354735
.215000036E+04 | | .730999927=09
26.2598377
33.1976.69 | 25.1837616
38.4843750 | 42.5409882
7.60514832 | 60.1983032
.2150000365-04 | | 645000053E-09
26.2598477
37.3603821 | 25.2382367
38.2932281 | 41.1297913
7.57904310 | 58.5873143
.219999929=-04 | | .572000003E-09
26.2593377
36.4978943 | 25.1337615
38.4365997 | 40.4160767
7.51993942 | 57.2268366
.2099999988 - 04 | | 36.4978943
461999934=-09
25.2843170
35.8501232
4514991491-09
26.2843170
35.1294601 | 25.1337616 | 40.2494049
7.+6006203 | 55.3625031
150000365-04 | | .4514997495-09
26.2843170
35.1294801 | | 40.9395599
7.41630554 | 54.68U5115
.2099979935-04 | | 26.2593877
34.4800373 | 25.1837610
38.4004797 | 40.8681946
7.35796356 | 53.3332307
.2049909607-04 | | 3484993161-09
26.48+3170
33.6781128 | 25.2J92307
38.2693176 | 40.3922577
7.30346012 | 52.3550061
.2049999607-04 | | 3280000721:-09
26.2843170
33.5156016 | 25.1837616
38.2932281 | 39.0775318
7.25356293 | 51.5862427
.1950000305-04 | | 292500024F=09
26.3087403
33.2272136 | 25.2032367
38.3649139 | 39.6060633
7.19329173 | 50.7924652
.1899999925-04 | | 246999976F-U9
26.2843170
32.9618225 | 25.2082367
38.4355997 | 39.2006073
7.15145542 | 50.0443420
.1399999925-04 | | 20 a999993E=09
26・3087463
32・5997009 | 25.2082367
38.3868092 | 38.5321503
7.08851719 | 49.2483673
.189999925-04 | | .1900000025-09
26.2843170
32.0923309 | 25.2082367
38.3171234 | 38.4604797
7.JJ368130 | 48.4740357
.1399999925-04 | | 1710000065-09
26.3037463
31.7054443 | 25.20a23b7
38.38a8092 | 37.5954346
6.91502762 | 47.7704163
.1849999535-04 | | 26.2843170 35.1294601 .3989999442-09 26.2593877 34.48493765-09 26.2843170 33.6761128 .3280000722-09 26.2843170 33.6761128 .3280000724-09 26.2843170 32.72136 .2469999765-09 26.2843170 32.59618223 .2469999765-09 26.3367463 32.59973039 .20323309 .171000062-09 26.3037463 32.59973039 .17100069-09 26.2843179 31.7054443 .1480000015-09 26.2843179 31.17394944 | 25.2082367
38.3171234 | 36.0417389
6.35591793 | 46.9946899
.1349999535-04 | | 30.7612610 | 25.2082367
38.3410187 | 35.3981323
6.78632399 | 40.1707453
.1849999538-04 | | .111000001E=09
26.3037463
30.4461670 | 25.208_307
38.3668092 | 36.2100830
6.7539639 | 45.2276001
.1500033617-04 | | | | | | | 1070000035 00 | | | | |--|--------------------------|--------------------------|------------------------------| | .107999998E-09
26.2843170
30.1551514 | 25.2082367
38.3410187 | 36.3540039
6.69394302 | 44.5191803
.1800000613-04 | | 26.2843170
30.1551514
.d999999368-10
25.3087463
25.8397064
.a999999362-10 | 25.2082367
38.2932281 | 36.2340351
6.63790417 | 43.9044800
.130000061F-04 | | .8999999362-10 | 25.2082367 | 35.8501282 | 43.5495300 | | 26.3087403 | 38.3171234 | 6.58954239 | .175000023E-04 | | 26.3087463
29.5463551
.700000058E-10
26.3331909
29.4026184
.700000058E-10 | 25.2082367
38.3410187 | | | |
29.4026184 | 38.3410187 | 34.9131012 | 43•1705696 | | .700000058E-10 | | 6.53427124 | •17500002∋ē=04 | | 29.1596527 | 25.2327271 | 34.5041504 | 42.6255951 | | 700000058E-10 | 38.3171234 | 6.40825314 | .175000023"-04 | | 26.3331909 | 25.2082367 | 33.3053319 | 42.1511633 | | 28.9408875 | 38.2693176 | 6.37920475 | .175000023E-04 | | 26.3576202 | 25.2327271 | 33.4683838 | 41.6233452 | | 28.7220306 | 38.2454224 | 6.35771034 | .175000023=-04 | | .525000043E-10
26.3576202
23.4787445 | 25.2327271
38.2215271 | 33.4201508
6.23642159 | 41.106J181
.175000023E-04 | | .525000043E-10
26.3576202
28.2353666 | 25.2327271
38.1020050 | 33.2272186
6.15197945 | 40.7492523
.180000061E-04 | | .7200000325-10
26.3331909
27.9675140 | 25.2572021
38.1976166 | 33.2995758
6.09517298 | 40.2732086
.175000023F-04 | | .5250000431-10 | 25.2327271 | 33. J342102 | 39.3920898 | | 26-3576204 | 38.1259003 | 6.01456923 | .175000023F-04 | | .525000043E-10 | 25.2572021 | 32.9135590 | 39.4391479 | | 26.3576202 | 38.1737213 | 5.96313667 | .175000023=-04 | | 27.60205 38
.5250000342=→13 | | | | | 26.3576202
27.4801036
.5250000458=10 | 25.2572021
38.1020050 | 32.3098297
5.90095615 | 39.1290233
.1750000235-04 | | 26.3576292
27.3826447
500999959E=10 | 25.2572021
38.1737213 | 32.4306335
5.35566521 | 38.6993408
.1699999355-04 | | 26. 3576202 | 25.2210772 | 31.7231110 | 38.1493103 | | 27. 28511 35 | 36.493108 | 5.81193872 | .169999852 - 04 | | 26.3576202 | 25.257_021 | 31.2214508 | 37.9107056 | | 27.2607269 | 38.0541340 | 5.77659702 | .1699999355+04 | | 26.3820343 | 25.2816772 | 30.7127991 | 37.5757904 | | 27.2119446 | 38.1020050 | 5.73821354 | .1649999475-04 | | 26.3331909
28.9408875
.7000000368E-10
26.3576202
28.7220306
.525000043E-10
26.3576203
.525000043E-10
26.3576203
.525000043E-10
26.3576203
.726.3576203
.726.3576203
.726.3576203
.726.3576203
.726.3576203
.727.7726203
.727.7726203
.727.7726203
.727.7726203
.727.7726203
.727.7726203
.727.7726203
.727.7726203
.727.7726203
.727.7726203
.727.7726203
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.772603
.727.7726 | 25.2816772
38.1737213 | 30.4219208
5.68294239 | 37.3125000
.104999947=-04 | | 27.1145799 | 25.3061523 | 30.2279235 | 37.0730433 | | | 38.1020050 | 5.6069450+ | .1649999479+04 | | .495000013F-10
20.3820345
27.0899311 | 25.3061523
38.1259003 | 30.1306899
5.35167389 | 36.8334655
.1600000543-04 | | 20-3820345
27-0899311
-4800000675-10
26-4303929
27-041135
-4800000675-10 | 25.3061523
38.0780945 | 30.1308899
5.51712990 | 35.5698242
.160003054=-04 | | 26. 9679371 | 25.3306274 | 30.0338440 | 36.2340851 | | | 38.0780945 | 5.47797966 | .1000JJJ545-04 | | 26.4303929 | 25.3306274 | 30.1794123 | 35.3021083 | | 26.7971497 | 38.1259003 | 5.41963768 | .160000054=-04 | | 26.8703766
.4800000367E=10 | | | | | 26.7971497 | 25.3551025 | 30.3491821 | 35.4413793 | | | 38.0302 7 3+ | 5.37895203 | .154999947=-04 | | .65 99999715-10
26.4064636
26.7239227 | 25.3305274
38.0061629 | 30.2764282
5.35054674 | 35.1294d51
.16000054=-04 | |--|--|--|-------------------------------| | 26. +304929
26. 6018524
48000006 75-10
26. 4304929 | 25.3551025
37.9824524 | 29.8397064
5.29911513 | 34.7637983
.160000545-04 | | 26.4308929
26.5041656 | 25.3306274
37.9107056 | 29.3783264
5.23002720 | -34.4800873
.1600000546-04 | | 26. 4308929
26. 4503923
26. 4503929
26. 4503929
26. 4503929
26. 4503929 | 25.3306274
37.9585419 | 29 • 548 3551
5 • 1778 26 83 | 34.1139830 | | .495000013E-10
26.4308929
26.3820343 | 25.3551025
37.5824524 | 29.6454926
5.15019131 | 33.8781123
.16000J0545-64 | | .4800000673-10
26.4303929
26.3331909 | 25.3551025
37.5535419 | 29.5483551
5.10132358 | 33.4633838
.160000054E-04 | | .4800000675-10
26.4308929
26.2843170 | 25.3551025
37.7911224 | 29.4269104
5.07114217 | 33.2995759
.15500001 oF=04 | | 26.4064636
26.2598877 | 25.3795776
37.9546313 | 29.3783264
5.03581047 | 32.8894196
.155000016E-04 | | .4649993837-10 | 25.3795776
37.9107050 | 29.1596527
5.00394260 | 32.6721497 | | .600000050E-10
26.4553223 | 25.3795776
37.9585419 | 29.0138245
4.95597458 | 32.4306335
.1499999967-04 | | 26. 4338929
26. 2354534
.60000005005-10
26. 4553223
25. 211138
.60000005005-10
26. 4553223
26. 1363345
.6000000505-10 | 25.4040527
38.0063629 | 28.79499d2
4.90991497 | 31.9231110
.149999996=-04 | | 26.4553223
26.4553223
26.1365645
.5799599375-10
26.4553223
20.1365845
.0000000505-10
26.4553223
26.4553223 | 25.4040527
37.7911224 | 28.5517426
4.32086754 | 31.5361023
.1450000045=04 | | .579999937E-10
26.4553223 | 25.4285278
37.8867950 | 28.3573739
4.71416373 | 31.415:J01
.149999996E=04 | | .6000000505-10
26.4553223 | 25.4235278
37.9107056 | 28.2353668
4.66263967 | 31.2698669
.145000004E-04 | | 26.4553223
26.1865845
+34999933E-10
26.4553223
26.2110133
-57999937E-10
26.4553223
26.2110138
-57999937F-10
26.4797363
26.1865845
-55999963E-10
26.18658+5
-55999963E-10
26.1365845
-55999963E-10
26.1365845
-55999963E-10
26.1365845
-55999963E-10
26.1365845 | 25.4529877
37.8628845 | 28.2110133
4.04123631 | 31.1003875
.145000034=-04 | | .5799999375-10
26.4553223 | 25.4774623
37.7671967 | 4.04123631
28.2597046
4.59901524 | 30.9792939
.145000004=-04 | | .579999937F-10
26.4797363 | 25.4774628
37.7911224 | 4.59901524
43.2353663
4.56063271 | 30.382+005
.1400000325-04 | | 26.1865845
.5599999632-10
26.4797360 | 25.4774628
37.9107056 | 4.56063271
28.2597346
4.52762313 | 30.7612610
.140000025=04 | | 26.18658+5
.559999963F=10
26.4553223 | 37.9107056
25.5019226
37.9585419 | 4.52762313
28.2353668
4.53612926 | 30.5153500
.1+00000321-04 | | 26.1d65845
.559999963E=10
26.4797363 | | | | | 26.1865845
.5599999639-10 | 25.4774628
37.9346313 | 28.2110133
4.46467590
28.259704b | 30.5188904
.1+00000025=J4 | | 26. 1377106
.5599999635-10 | 25.5019226
37.9324524 | 28.2597046
4.44394970 | 30.4219208
.140000032F=04 | | 26.113266J
.405000J615-1J | 25.5019226
37.d389587 | | | | 26.4797363
26.1865845
.5599999638-10
26.4797363
26.1377136
.5599999638-10
.26.4753223
.4050000615-10
.26.4753225
.4050000615-10
.4050000615-10
.4050000615-10
.4050000615-10
.4050000615-10 | 25.5019226
37.7671967 | 28.1136322
4.39558697 | 30.1551514 | | 26.4553223
26.0399475 | 27.4114628
37.2623345 | 28.0405731
4.37869835 | 29.9125061
.135000000E=04 | ## FILE: 804T196 CATA A | .2699999995E-10
26.4303929
26.0135029 | 25.4774628
37.7911224 | 27.9675140
4.33417511 | 29.7653752
.135000000E-04 | |--|--------------------------|--------------------------|------------------------------| | .405000061E-10
26.4553223
25.9660138
.405000061E-10 | 25.4774028
37.6475830 | 27.9431610
4.32956386 | 29.6212006
.135000000E-04 | | 26.4308929
25.9177094
.405000061E-10 | 25.4774o28
37.o150482 | 27.0507374
4.30270100 | 29.4512024
.135000000E-04 | ``` .1211420741526007305-01 -.4403960530049334725-02 .999999975E-05 .343190646E-02 .1120413495-01 .190773755E-01 .430705438 .434238374 ``` ## INITIAL DISTRIBUTION LIST | | | No. | Copies | |----
--|-----|--------| | 1. | Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314 | | 2 | | 2. | Library, Code 0142
Naval Postgraduate School
Monterey, California 93943 | | 2 | | 3. | Department Chairman, Code 69Mx Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943 | | 1 | | 4. | Dr. William G. Culbreth, Code 69Cb Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943 | | 3 | | 5. | LT Robert E. Watson US Naval Shipyard Repair Facility (Subic Bay) Box 34 FPO, San Francisco, CA 96651 | | 4 | 213216 Thesis W244 c.1 Watson Comparison of the response of shape memory alloy actuators using air-cooling and water-cooling. 21.216 Thesis W244 c.l Watson Comparison of the response of shape memory alloy actuators using air-cooling and water-cooling.