
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1980

The utilization of requirement statement

methodologies in the United States Navy and their

impact on systems acquisition.

Petrie, Frederic Andrew

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/19103

raH

Mm

MR?

^: ::..

ilil
HMBHfff

ffiH|

Hi

OUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCMrtr*
MONTEREY, CALIF £&"****-

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
The Utilization of Requirement Statement
Methodologies in the United States Navy
and Their Impact on Systems Acquisition

by

Frederic Andrew Petrie III

March 19 8

Thesis Advisor: N. F, Schneiciewind

Approved for public release ^distribution
unlimited

T 1 •.

SECURITY CLASSIFICATION O' THIS » r. C fWHan Data Ifnr.f.rii

REPORT DOCUMENTATION PAGE
C»0»T NUMBER

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. OOVT ACCESSION NO »• «eCl»llNriC«T«LOCNUUIEK

4 TITLE fund Su6ilil»)

The Utilization of Requirement Statement
Methodologies in the United States Navy
and Their Impact on Systems Acquisition

S. TYPE OF «PO«T * FCNIOO COVERED

Master *s Thesis; March 8

• . PERFORMING ORG. REPORT NUMBER

7. »uTnO»f«J • • CONTRACT OH GRANT NUMICAMI

Frederic Andrew Petrie III

I. PERFORMING ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

io. program element, project task
AREA 4 WONK UNIT NUMBERS

II CONTROLLING OFFICE NAME ANO AODRESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE
March 8

IS NUMBER OF PAGES

122
TT MONITORING AGENCY NAME A AOORESttM tllttoront /row Controlling Olllet)

Naval Postgraduate School
Monterey, California 93940

It. SECURITY CLASS. <ol thlt nvoni

Unclassified
ISa. OCCLASSIFI CATION/ DOWN GRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (at (hi, Homorf)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (at iKm akarraec mnlorod In »loo« JO. II dlllmront tntm *o»ort)

• SU< NOTES

It. KEY WORDS (Continue on rmwmr»» old* II nac«a«arr «"*" Idoniltr or Hoc* numoor)

requirements specifications
SREM
PSL/PSA
systems acquisition

20 >CT (Continue on ravaraa *ldo II nmeooomwy mnd identity mj oloet mimoot)

The success or failure of weapons systems software projects
can often be traced back to the project's definition phase.
There currently exists in the literature many articles dealing
with the problems inherent in the development of requirements
specifications. This thesis reviews some of the problems and
examines an evolving, disciplined method to better state the
user's requirements, called Requirement Statement Languages (RSL)

nn FORM 1J71 EDITION OF I MDV At 11 AllALfTf

fSmmSZZ Ck *,<ty,c * T '»«* °* T »'» •»OI^'"»w 5tj! !•••«.,

Two automated systems utilizing RSL, SREM and PSL/PSA,are
reviewed as to their strengths and weaknesses in system defini-
tion and development, particularly as they are currently used
in the Navy. Also discussed are how these systems may be utili-
zed in the Navy's system acquisition process and recommendations
are made as to how the Navy can incorporate such software tech-
nology.

DD Form 1473
,. 1 Jan .3 unclassified

Approved for public release? distribution unlimited

The Utilization of Requirement Statement Methodologies
in the United States Navy and Their Impact on

Systems Acquisition

*y

Frederic Andrew Petrie III
Lieutenant, United States Navy

B.S., United States Naval Academy, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March, 1980

PMic a

A?STR»CT

The success or failure of weapons systens software

projects can often be traced back to the project's

definition phase. There currently exists in the literature

rrany articles dealing with the probletrs inherent in the

development of requirements specifications. This tresis

reviews some of the problems a~d examines sn evolving,

disciplined method to better state the users' requirements,

called Requirement Statement Languages (RSL). Two automated

systems utilizing RSL, SR2M and PSL/PSA, are reviewed as to

their strengths and weaknesses in system definition ari

development, particularly as they are currently used in the

Navy. Also discussed are how these systems may be utilized

in the Navy's system acquisition orccess and recommendations

are made as to how the Navy can incorporate surh software

technology.

TABLE OF CONTENTS

I

.

INTRODUCTION 8

II. BACKGROUND 12

III. REQUIREMENTS STATEMENT LANGUAGE 15

IV. SOFTWARE REQUIREMENTS ENGINEERING METHODOLOGY 19

A. BACKGROUND 19

B. SREM OBJECTIVES 23

C. SREM EVOLUTION 25

D. OVERVIEW OF REVS COMPONENTS 27

E. REQUIREMENTS STATEMENT LANGUAGE 32

1. Flows 33

2. Extensions 35

a. Elements 35

d. Relationships 36

c. Attributes 36

d. Structures 36

3. Translator 38

F. THE ABSTRACT SYSTEM SEMANTIC MODEL 38

G. AUTOMATED TOOLS 40

1. Interactive Graphics 40

2. Simulation 41

3. Static Analysis 42

4. Report Generation 43

V. PSL/PSA 44

A. INTRODUCTION 44

5

B. PSL/PSA OVERVIEW 44

1. Data Collection 45

2. Analysis 45

3. Design 45

4. Evaluation 45

C. COMPARISON OF SREM AND PSL/PSA 46

1. Transportability 46

2. Graphics 47

3. Simulation 50

4. Other Considerations 50

VI. UTILIZATION OE RSL IN THE U.S. NAVY 51

A. INTRODUCTION 51

B. NAVAL RESEARCH LABORATORY (NRL) 52

C. NAVAL AIR DEVELOPMENT CENTER (NADC) 52

D. FLEET COMBAT DIRECTION SYSTEMS
SUPPORT CENTER (FCDSSA) 53

E. NAVAL OCEAN SYSTEMS COMMAND 55

F. NAVAL SURFACE WEAPONS CENTER 56

G. NAVAL UNDERWATER SYSTEMS CENTER (NUSC) 57

H. SUMMARY 58

VII. RSL AND SYSTEM ACQUISITION 60

A. OMB CIRCULAR NO. A-109 60

B. DEPARTMENT OF DEFENSE DIRECTIVES
5000.1 AND 500F.2 61

1. Technology Base 61

Alternative Solutions 6*.
o

2. Competitive Exploration of
Alternative Solutions

C. DEPARTMENT OF DEFENSE DIRECTIVE 0.29

6

D. DEPARTMENT OF DEFENSE INSTRUCTION 5010.21 65

E. MILITARY STANDARD 1679 (NAVY) 66

F. SPECIFICATION AND DOCUMENTATION STANDARDS 67

G. SUMMARY 71

VIII. RECOMMENDATIONS 7

A. INTRODUCTION 72

B. PROBLEM IDENTIFICATION 73

C. AUTOMATED TOOL AND METHODOLOGY EVALUATION 73

D. ACCEPTANCE AND TRAINING 74

E. OTHER CONSIDERATIONS 75

IX. CONCLUSIONS 76

APPENDIX A.- MILITARY STANDARD 1679 (NAVY) 77

APPENDIX B.- MILITARY STANDARD 490 116

LIST OF REFERENCES 119

INITIAL DISTRIBUTION LIST 122

I. INTRODUCTION

The Department of Defense is faced every year with the

development of clear, concise requirements specifications

for hundreds of systems. These specifications serve as a

vehicle for the development of systems that are vital to the

support of the missions of the armed services end, more

importantly, the overall national defense. It is with these

specifications that the relative success or failure of the

development of a system rests.

For example, take a real-time combat system. The first

feature of such a system is that it is required to be highly

reliable ; ideally it should function properly at all times.

This system is required to be extremely flexible in

response. Conditions, be they meteorological,

electromagnetic, tactical, etc., can vary rapidly thus

forcing the development of a system that is almost

self-adjusting. Automation is a prerequisite for such a

system due to the short length of engagements forseen in

future military encounters and because the programs that

drive such systems are large and quite complex, receiving

many inputs and then performing multiple commmand and

control functions, [l] [2]

Unfortunately, the above requirements cannot be

adequately tested in anything other than either an

operational evironment [l] or a highly realistic simulation,

8

making development of precise requirements specifications

even more critical.

Much to the consternation of the project offices and

end-users, many problems exist in the area of requirements

specifications. These problems cost the taxpayers millions

of dollars and create countless headaches for the military

as it is delivered systems that do not perform as expected.

What are some of the causes? Part of it is due to the

fact that some of the projects are simply too ambitious. A.11

of the requirements that are forced on a system raise the

level of complexity to the point where the project is

absolutely infeasible in terms of technology, time, and

money. On a higher level, too often ambiguous, incomplete,

and untestable requirements, symptoms of poor communication,

are forced upon contractors, often coupled with documentary

information that is factually incorrect. [3]

Once the requirements specifications reach the

contractor there immediately is the likelihood of

misinterpretation due to the aforementioned ambiguity and

incompleteness, plus the fact that many of the requirements

are highly conceptual in nature. The programmer who views

structured design as a handicap and is more concerned with

code than with overall design further exacerbates the

problem [2] .

Between the initial misinterpretation and the

programmer's code comes the problem with the design phase.

Too often there seems to be subsystem optimization at the

9&XMX

expense of the overall system. [2] This is the result of the

pressures of time and "pride of workmanship" rather than an

attempt to undermine. Development and maintenance of

structure charts are another problem. [2] Typical charts

measure 20' "by 10' and take days to update. Finally,

inconsistent and ill defined approaches in this phase have

resulted not only in lackluster results, hut also in poor

presentation, inconsistency, incompleteness, and general

confusion about the status of the project in question. [3]

Hammond et al. [4] noted the importance of careful

design; that errors originating during the design phase are

very costly to correct during later development. They cited

a COD report that estimated that design errors discovered

during the operation of a system cost 8-9 times more to

correct than those detected during the detailed design.

Munson [5] cited another DOD report that stated that

approximately 60-70% of its software dollars ($2 billion in

1976) are spent after software has been tested and

delivered.

It is the intent of this thesis to look at the problem

of requirements specifications in terms of what they are,

how they should be properly utilized, and how their

effectiveness can be enhanced when developed through the

relatively new concepts of requirement statement languages

and software requirements methodologies. Two of the more

mature systems utilizing this concept, the Software

Requirements Engineering Methodology and the Problem

10

,-!-.

Statement Language/Problem Statement Analyzer, will be

reviewed as to their capabilities and possible limitations

in development of requirements specifications in DCD . This

thesis will also examine how these systems may be utilized

in the Navy's system acquisition process and will make

recommendations as to how the Navy can incorporate such

software technology.

11

II. BACKGROUND

Mullery [4], Balzer and Goldman [6], and Heninger [7]

have all addressed the question of exactly what the overall

airrs of requirements specifications should be ard how these

aims can he realized.

The most basic aim of a requirement specification should

be that of defining the requirement so that the system may

be implemented later and be proven to have been implemented

correctly and also to define the requirement so that the

customer and end-user can verify that the system will

perform the requisite functions. [4] This forces the issue

of clarity and the elimination of ambiguity. Forethought,

systematic development of specifications, and error checking

of system logic on a very high level are paramount.

The requirement specification should take a modular

approach to the task of system definition. The specification

must be localized and loosely coupled [6] and should specify

external behavior only so as not to force a particular

solution [7] . Since during system development many

modifications are likely, the separation of particular

requirements (localizing and loosely coupling) contributes

greatly to the overall flexibility of the system development

and minimizes the side effects of modifications. To carry

this thought even further, the specifications must be

tolerant of any omissions and permit augmentation of

12

»».„.

requirements at some future point [6] [7], This would seem

to defeat the purpose of structured formulation of

requirements specifications but it is necessary due to the

highly iterative nature of large system design and the

uncertainties of the human thought process.

As a design tool, these specifications should be

consistent and compatible for each of the individual

requirements [3]. Such things as naming conventions for the

various components and interfaces between modules must be

considered. Also, avoidance of unnecessary repetition of

information so as to reduce bulk and prevent possible

confusion is important.

Three other key aids to design are (1) to define each

module so that all parties involved in the design of the

system can grasp the overall concept of the system [5], (2)

to characterize acceptable responses to undesired events,

and (3) specify constraints, particularly in the area of

hardware interfaces [7] . All of these serve as a means of

defining the overall system and its purpose.

Heninger went even further by stating that the

specifications should serve as a reference tool, having the

ability to answer specific questions quickly, and also

record forethought about system lifecycle costs. What types

cf changes are likely to occur? What functions would

maintenance like to be able to remove easily? [7]

!*erten and Teichrow [8] cited a study by the Office of

Management and the Pudget. The study, conducted to improve

13

the effectiveness of systems analysts and programmers,

stated that the most important way to improve the

effectiveness of these personnel is to reduce the time spent

on and greatly improve the efficiency of systems analysis,

design, implemetations , and maintenance. Granted, this

statement in and of itself says nothing new, hut it does

reinforce the idea of a need for a more rigorous,

disciplined approach to systems design and implementation.

This approach to he successful and effective must start with

the requirements specifications.

Willis and Jensen [2] noted the shortcomings of

so-called "methodologies" vis a vis engineering when they

described methodologies as being generic and subject to

interpretation. Conversely, they cited engineering as a

discipline that stresses standardization and serves as a

much more effective and efficient vehicle for developing

systems and conveying information and concepts. They went

even further by explaining that the fundamental precepts of

systems engineering must be preciseness, consistency, and

completeness of applications. They also felt the use of

automated tools to be necessary for training, configuration

control, and quality control.

Since computers are used for design, modeling, and

simulation in other areas, why not use them to generate

requirements and overall system design?

14

III. REQUIREMENTS STATEMENT LANGUAGE

On a macro level, the use of engineering principles and

automated tools looks like a boon to mankind . However,

whether one communicates with a computer or with a team of

designers, the fact still remains that a medium is still

necessary to effectively convey system requirements. For

years proponents of natural languages such as English have

claimed far and wide that these languages are "very high"

level and that their use constitutes the wave of the future.

Exception to this is taken by Jones [9]. His own independent

survey noted that English is actually a very low level

language as it requires 3 to 11 times as many English words

to specify a program as it takes lines of assembler to code

it. He found that with programs that exceed 128K lines of

assembler specifications become too bulky and cease to be

useful. It is at this point that "verbal communication"

becomes the dominating factor.

Combining the findings of Jones with one's own

experience with the vagueness and ambiguity inherent in the

use of the English language, it becomes readily apparent

that what is required is a requirements statement language,

a language that precisely, concisely, and completely conveys

to all concerned the actual user requirements.

Whereas a programming language serves as a means of

communication between a programmer and a compiler or

15

VIXn.*,

assembler, a requirements statement language (RSL) should

serve as a means of communication between the user and an

analyst or system designer [a]. Teichrow [10] listed three

main functions of an RSL:

1. RSL should accomodate the statement of requirements

of the kind that are occuring new as well as those in the

future.

The future will produce hardware improvements in both

quality and reliability. Parallel processing and concurrency

will become more common. There will be a marked increase in

the interrelationship of requirements. As the number and

types of users increase, additional problems of interfacing

will arise. Tar greater demands for system performance and

real-time applications will occur. There will also be an

additional requirement for system monitoring. All of these

problems and more must be taken into consideration in the

design of an RSL.

2. RSL should be suitable for use by humans for

determining and stating requirements.

The RSL should be so structured that it can be used by

personnel on all levels, in all phases of design. This

hopefully will reduce the strict dependency on the analyst

as a go-between for management and design. The RSL should

16

22Ski

also be suitable for use in top-down design and should be

computer testable for completeness and consistency. All of

this should augment the capabilities of those involved in

the defintiion of requirements.

3. RSL should be suitable for building the system to

accomplish the stated requirements.

This will occur if the RSL is allowed to generate

statements of requirements and not statements of data

processing — what the system is supposed to do, not how to

do it. This will aid in keeping the requirements hardware

independent, thus saving possible reconversion costs.

Merten and Teichrow [8] amplified the last few

statements when they noted that the major purpose cf the RSL

is to force the user to state his requirements in a manner

which does not force a particular processing procedure.

However, they also noted that this is a difficult concept to

impose given the techniques that are ingrained in the

specification process. If followed rigorously, this should

reduce the existence of illogical requirements due to poor

specifications.

The concept of PSL is not new, being first developed as

early as 1958, but, until recently, has not been in wide use

due to the lack of ability to analyze problem definitions in

the RSL, so it has been mainly relegated to use as a

17

documentation tool [8] . Jones [9] noted that there are about

150 design languages that have been developed.

The following chapter will address a current methodology

that employs a requirements statement language, namely the

Software Requirements Engineering Methodology, developed by

TRW for the Ballistic Missile defense system. As noted

above, there are some 150 languages; however, SRSM was

chosen for further discussion due to its relative maturity

of development, the fact that it was developed for a major

project, and because its has proven successful to some

degree. Its discussion will center around its structure and

its approach to system specification and design.

18

IV. SOFTWARE REQUIREMENTS ENGINEERING METHODOLOGY

A. BACKGROUND

In 1974 the Ballistic Missile Defense Advanced

Technology Center (PMDATC) initiated sponsorship of an

integrated software development research prograrr aimed at

improving the techniques for developing correct, reliable

software for the proposed Ballistic Missile Defense (PMD)

system. The overall program sought to cover a broad

spectrum, from development of software specifications tc the

completion and testing of the software process design [11] .

Other areas of research involved software reliability,

static and dynamic validation techniques, and adaptive

control and learning.

At the center of this program was the Software

Requirements Engineering Program (SREP), an effort concerned

with a systematic approach to the development of complete

and validated software requirements. Its overall objectives

were to:

1. Ensure a well defined technique for the decomposition

of system requirements into structured software

requirements.

19

>73?<,ST,

2. Provide a vehicle to enable management to clearly see

and understand all phases of the requirements development.

3. Ensure that requirements development was completely

machine and design independent.

4. Provide for easy response to changes in systems

requirements

.

5. Produce testable and easily validated software

requirements [11] .

The product of the above program is the Software

Requirements Engineering Methodology (SHE!*). SREM includes

techniques and procedures for requirement decomposition and

for managing the requirements development process [12] .

Within this methodology are software support tools which

were implemented to automate many of the manual activities

associated with requirements engineering. Among these tools

are the Requirements Statement Language (SSL), a

machine-processable language for stating requirements, and

the Requirements Engineering and Validation System (REVS)

which supports the development of requirements written in

RSL. SREM represents a different approach and philosophy for

software requirements engineering. It utilizes a flow

orientation that precludes many of the problems inherent in

the classical functional hierarchy.

20

The functional hierarchy (Figure 1.) is the most

prevalent way to organize software requirements. In Figure 1

the "boxes marked B,C, and D represent major functions of

software such as tracking, guidance, etc. These major

functions are broken into subfunctions down to seven to ten

levels. It is from these lower levels that the requirements

are written.

The first problem encountered with this approach is the

requirements are written at too low a level. Though each

individual subfunction can be tested for correctness, there

is extreme difficulty in testing the system as a whole, i.e.

top-down, against the system specification. The requirements

must be developed so that each condition that could possibly

be encountered can be traced down through each appropriate

subfunction until the output is determined.

Another problem encountered from developing requirements

at too low a level is that performance requirements are not

easily derived. This is due to the fact that the timeline

and accuracy budgets have to be partitioned among too many

levels

.

Finally, it is difficult to check for completeness and

consistency. Since there is no algorithm to guide the

derivation of the tree structure, there is no algorithm with

provable validity to guide the analysis.

The methodology expressed in SPEM encompasses four major

areas of engineering activity that commence with the input

of information that defines the system level requirements on

21

>?:j\i

B

B.l B.2

B.2.1 B.2.

2

B.3

c

C.l C.2

B.2.

3

D

D.l D.2

Figure 1

.

Hierarchy of Functions

22

ami«iMu

the Data Processing Subsystem. This information is denoted

as the Data Processing System Performance Requirements

(DPSPR) Specification [11]. The DPSPR includes system

interface and performance requirements specifications. These

enable the requirements engineer to involve himself in:

1. identification, definition, and development of the

functional requirements.

2. identification, definition, and development of the

performance requirements.

3. development of the Process Performance Requirements

Specifications.

4. development

demonstrations .

of the analytic feasibility

B. SREM OBJECTIVES

The key concept in the development of SREM was that

design-free functional software requirements should specify

the required processing in terms of all possible responses

(and the conditions for each type of response) to each input

message across each interface. These functional requirements

identify the required stimulus and response which are

expressible in terms cf Requirement Networks (R-Nets) of

processing steps. Each step is defined in terms of input

23

data, output data, and the transformations which are

associated with the step [13].

Though designed for the BMD system, SEEM was aimed

towards any major system with the following characteristics:

1. Systems with more than 100K lines of code.

2. Tire responses are critical. This is the criteria

that defines a "real-time" system, i.e., receiving input,

processing the information, and producing output that will

in some way influence the immediate environment.

3. Processing is very intensive. A real-time system

could perhaps "be tasked with tracking several hundred

targets

.

4. Database is large but not massive. The database must

be indigenous to the system? time cannot be wasted in

information retrieval.

5. Technology of the object system initially is not

fully understood. Justification and feasibility of the

system and its possible subsystems are still an issue [11]

.

SEEM was also designed to encompass a wide range of

system development environments, ranging from systems which

must deal with hard performance requirements, firm threat

24

definition, and maximum design freedom, to systems with

minimum performance requirements, flexible threat

definition, and reduced design freedom.

SPEM was never intended to be the ultimate panacea for

the woes of system design and development. A thorough

knowledge of systems engineering and data processing

technology are still paramount. The utilization of SFEM

commences only after system analysis has identified the

functions and stress points of the system; the interfaces

between subsystems; top-level weapon system functions and

operating rules; and the top-level weapon system functions

have been allocated to the data processor.

The termination point is reached when all system

requirements have been decomposed to the point where

software development expertise is necessary to continue;

interfaces have been defined on the element level; ell

responses to system stimuli have been determined; and the

processing necessary to generate all required output

interface messages has been identified [11] .

C. SREM EVOLUTION

During the initial definition of SREM it was necessary

to determine those properties required of both a

specification and of the individual requirements of which it

is composed. The initial considerations were that, first, a

specification is a set of all requirements which must be

satisfied together with the identification of the subsets

25

which must be met concurrently. Secondly, a specification

must be consistent with the laws of logic and nature before

they can be realizable and legally binding. Lastly, a

specification must be so stated that any delivery satisfies

the specification and the user's needs.

The above considerations were further evaluated and

meshed with technical, economic, and management points of

view, producing several properties that were felt to be

mandatory to the success of SREf. The properties that

evolved include:

1. internal consistency

2. consistency with the physical universe

3. freedom from ambiguity

4. clarity

5. minimality

6. predictability of specification development

7. controllability of software development [11]

.

To ensure the property of freedom from ambiguity, it was

mandatory that a rigorous machine-readable language be

developed. Ey employing an unambiguous language which is

translated and analyzed by a program intolerant of

ambiguity, a precise statement of requirements was ensured.

Analysis of the requirements statements, through use of

static and dynamic decomposition of the individual

statements and analysis of the com-oosite flow of data and

26

vraK»»f»nra3Ui*v

processing, provides an internal consistency check. Physical

universe consistency is ensured by converting the

specification into a model which is tested against a rrodel

of the real world. These checks help to validate the

software specification before it is imposed.

The use of selective documentation and analysis of the

software specifications, when coupled with sound engineering

and management techniques, provides predictability in the

specification process and aids in avoiding

overspecifi cation.

D. OVERVIEW 0? REVS COMPONENTS

The Requirements Engineering Validation System (REVS) is

composed of three major components (Figure 2.):

1. Requirements Statement Language (RSL) translator

2. Abstract System Semantic Model (ASSM), a centralized

database.

3. A set of automated tools for processing the

information held by the ASSM.

The entire system is based on the ASSM, a relational

database similar in concept to that used by the PSL/PSA

system developed at the University of Michigan. Though the

2?

E
• <u

Cvl +J

w
<U >s
>H CO
3
oos
•H w
Uh OS

CO

28

concepts are similar, the implementations differ due to the

need for extensibility, configuration management, and for a

flow approach for simulation being strongly stressed in the

development of SRFM.

The ASSK is the interface between the Requirements

Statement Language and the set of automated analysis tools.

This allows the extension of the language without having to

take into consideration such things as operating system

impact and control of the automated tools. It also allowed

the RSI to he developed as a natural method in which to

express requirements; not "being constrained by control

languages or configuration management [12]

.

Besides providing a means to naturally express

requirements, the RSI also provides a rigorous structure

that allows it to be machine-interpretable. This is due to

the fact that it was designed around the specification of

flow graphs of required processing steps [11, 12, 13]. These

flow graphs are expressed as "structures", the product of

mapping a two dimensional graph (Figure 3.) onto a one

dimensional input stream (Figure 4.) [12]. The

aforementioned extensibility allows the modification of the

RSL to suit particular requirements and provides a means to

accomodate new, unanticipated needs for stating requirements

including non-procedural statements. The RSL statements and

structures, once entered, are abstracted and entered into

the ASSr* where they can be used by the automated system

tools

.

29

y
EXTRACT
MEASUREMENT

OTHERWISE
-e

VALID RETURN

DETERMINE_IF
OUTfUT NEEDED

I
DETERMINE
IF GHOST

A

DETERMINEJF
REDUNDANT

DETERMINE
ELEVATION

1

&
KALMAIV FILTER

04-

1
UPDATE
STATE

DETERMINE.
ELEVATION

DETERMINEJF
REDUNDANT

A

Figure 3

R-Net

30

R_NET: PROCESS_RADAR_RETURN.
STRUCTURE:

EXTRACT_MEASUREMENT
DO (STATUS =VALID_RETURN)

DO UPDATE_STATE AND KALMAN_FILTER END
DETERMINE_ELEVATION
DETERMINE_IF_REDUNDANT
TERMINATE

OTHERWISE
DETERMINE_IF_OUTPUT_NEEDED
DO DETERMINE_IF_REDUNDANT,

DETERM!NE_ELEVATION,
TERMINATE

AND DETERMINE_IF_GHOST,
TERMINATE

END
END

END.

Figure 4.
Input Stream

31 '

i ii urn n i mi ii t ii IMM1IBI1 IM————mHWMl IMtlHMHif

The automated system tools include: interactive graphics

to aid in development, specification, and modification of

flow graphs; static consistency checkers used to ensure

internal consistency in specifications; and an automated

simulator generator and execution package which aid in

dynamic testing.

These tools also ensure that portions of system

specified later than some segments will "be consistent since

their connectivity with the early segments was defined at

the highest levels. This is a particularly attractive

feature as it allows system design to progress without all

segments developing at the same pace and allows several

persons to participate in the design process. Additionally,

any extensions of the system are forced to "be compatible

with all prior specifications since any incompatibility

would preclude entering the extension into the ASSM.

The next several sections will go into greater detail as

to some of the specific mechanics employed by the

aforementioned components. This information is derived from

the papers by Alford et al. [ll] and Bell, 3ixler, and Eyer

[12].

E. REQUIREMENTS STATEMENT LANGUAGE

Chapter III pointed out the findings of Jones [9]; that

the use of English for documentation and specification is

too often unsatisfactory due to the ambiguity inherent in

the language. Alford [14] noted the inability to provide an

32

effective means of ensuring traceability and testability of

requirements J that in nearly every software project that has

failed, the requirements were accused of being late,

incomplete, over-constraining, or just plain wrong. In order

to overcome these and other problems the first of three

goals established during the initial development of SREM was

to develop a language for stating requirements that

addressed the properties of unambiguity, design freedom,

testability, modularity and communicabil i ty [14].

The language that evolved, RSL, is an artificial

language that incorporates naturalness of expression.

Through use of the flow approach- to defining requirements,

it provides information on how pieces of the system will fit

together, something not possible when the hierarchy of

functions approach to specifying requirements is employed.

Additionally, since the language can precisely define

concepts and constrains the semantics to a simple level of

detail, the risk of ambiguity is significantly reduced and

only the true requirements of the system evolve.

1. Flows

The traditional hierarchy of functions approach to

requirements specifications, currently mandated in BOD

MIL-STB 490, describes the operations that each module is

expected to perform, rendering the requirements to little

more than program specifications. This method fails to

adequately address the sequence of operations and the

communication between modules, thus creating problems with

real-time systems. In order to overcome this, RSL is

33

structured to represent a stimulus/response approach or a

"flow". Each flow is initiated by some "stimulus" or input

and cascades down through the various functions, producing

the appropriate response until the processing is completed.

By utilizing this approach the exact sequence of processes

"becomes explicitly thereby enhancing testability.

The flows, commonly known a Requirements Networks or

R-Nets, consist of nodes, which specify an operation, and

their connecting arcs. The basic nodes consist of ALPHAS,

which are the specifications of functional processing steps,

and SUBNETS, which are specifications of processing flows at

a lower level in the hierarchy. As noted previously, these

nodes are single entry, single exit, however, more complex

flows may be specified by use of structured nodes which

enable the system to execute multiple flow paths. These

structured nodes include AND, OR, and FOR EACH.

The AND node specifies that its eminating arcs

leading to further nodes are mutually order-independent,

able to be executed sequentially in any order or in

parallel. The rejoining, or fan in, of the arcs at the end

of the AND structure specifies a synchronization point? the

execution of the processes as specified by each path in the

structure must be completed in order to trigger an output

from the structure.

The OR node is similar to the IF-TEEN-ELSE construct

in structured programming. The complete execution of all

processes specified on any or all paths will trigger an

output from this structure.

34

BfHHHin

The FOB EACH node is sirrilar to a loop construct in

structured programming. It has only one processing path and

the number of times that this path is looped through is

based on the number of elements contained in a set. For

example, in a tracking problem an update in the range for

each target may be requested.

Because the syntactic structure of the R-Nets is

similar to that of structured programming, it aids the

requirements engineer in determining areas that are vague or

ambiguous, in communicating with others, and in utilizing

automated analysis tools.

2. Extensions

As mentioned previously, RSL incorporates the

concept of extensibility so that new concepts that may

develop in the future may be easily integrated into the

existing system. The requirements of real-time systems is

one of the primary forces behind the dynamic nature of

state-of-the-art developments in digital processing and

computing. Coupled with the evolutionary nature of weapons

systems requirements, such as new interfacing or processing

techniques, the situation would clearly render a language

with fixed concepts ineffective.

By keeping the underlying architecture of RSL simple

it has been possible to incorporate extensibility through

use of four primitives:

a. Elements

Elements are the equivalent of nouns in English

and describe the properties of each element. Elements

35

include ALPHA, DATA (class of conceptual pieces of data),

and R-NET (class of processing flow specifications).

b. Relationships

These are the equivalent of English verbs or

more precisely a statement of association between two

elements such as DATA INPUT TO ALPHA. It should be noted

that this is a non-commutative relation; a distinct subject

and object element are expressed.

c. Attributes

Attributes are similar to adjectives in English

are used to formalize important properties of elements.

Associated with it are a set of values which may include

numbers, mnemonic names, or text strings. INITIAL VALUE and

PRESENT RANGE are examples of attributes of type DATA.

d. Structures

Structures are the mapping of two-dimensional

graph structures into a one-dimensional stream of computer

input. They serve as a model of flows through the various

processing steps.

As noted above, these four primitives define the

structure of RSL. The structure in itself is not extensible;

however, the primitives enable the user to define new types

of elements, relationships, and attributes into the language

in order to express new concepts.

Figure 5 gives an example of how ALPHA, DATA,

RELATIONSHIPS, and new elements are defined.

36

lYKr-OftHHn

ALPHA: EXTRACT_MEASUREMENT.
INPUTS: CORRELATED_RETURN.
OUTPUTS: VALID_RETURN, MEASUREMENT.
DESCRIPTION: "DOES RANGE SELECTION PER

CISS REFERENCE 2 - 7".

ENTERED BY: "M. RICHTER".

ALPHA: DETERMINE_IF_REDUNDANT.
INPUTS: CORRELATED_RETURN.
OUTPUTS: REDUNDANT_IMAGE.
DESCRIPTION: "THE IMAGE OF THE RADAR RETURN

IS ANALYZED TO DETERMINE IF IT IS

REDUNDANT WITH ANOTHER IMAGE".
ENTERED BY: "F. BURNS".

DATA: MEASUREMENT.
INCLUDES: RANGE_MARK_TIM£, AMPLITUDE,

RANGE^VARIANCE, RD_VARIANCE,
R_AND_RD_CORRELATION.

. DESCRIPTION: "THIS IS THE ESSENCE OF THE
INFORMATION IN THE RETURN".

. ENTERED BY: "F.BURNS".

ORIGINATING REQUIREMENT:
DPSPR_3_2_2_A_FUNCTIONAL.

DESCRIPTION: "ACTION: SEND RADAR ORDER
INFORMATION: RADAR ORDER. IMAGE
(REDUNDANT)".

TRACES TO : ALPHA COMMAND_PULSES
ALPHA DETERMINE_IF_REDUNDANT
MESSAGE RADAR_ORDER_MESSAGE
DATA REDUNDANT_IMAGE
ENTITY IMAGE.

ENTERED BY: "T.E.BELL".

Figure 5.
RSL Definitions

37

3. Translator

The uurpose of the translator is to analyze RSI

statements and make entries into the ASSM corresponding to

the meaning of the statements. It accomplishes this by

extracting the RSL primitives which exist in the input

statements and then mapping them to constructs in the ASSM.

The translator can also perform modifications and deletions

from the database as commanded by RSL statements and also

perform consistency check on the incoming statement to

prevent duplication of element name or an illegal

relationship. Additionally, it also handles the introduction

of extensions with great care; the introduction may

invalidate a large segment of the requirements. For this

reason a lockout mechanism was designed to control the use

of extensions and enforce a disciplined use of the power of

RSL.

F. THE ABSTRACT SYSTEM SEMANTIC MODEL (ASSM)

The RSL statements that are entered into REVS are

analyzed and their representation is entered into the ASSM,

a database that maintains information about the system being

designed in an abstract, relational model. Since checks are

made for syntax and semantics before information is entered,

it is possible to employ the various tools or REVS, assured

of data format correctness. Also included in the ASSM

entries are all extensions, including core concepts (basic

RSL) and additions and modifications to specific projects.

38

They, too, are available for immediate use as soon as they

are entered.

The information contained in the AS SM is not simply a

string of RSL statements. Rather, it is a relational model

where elements are represented by nodes and their

relationships are represented as connections. Attributes and

their values consist of a node for the value and a

connection to the node for which the value is attributed.

This representation facilitates retrieval of information,

particularly in complex combinations of relationships and

permits queries about specific information or relationships

such as finding all DATA elements which are not INPUT TO

anything.

The centralization of information in the ASSM is

mandatory due to the large numbers of individuals who enter

additions, deletions, and modifications to the various

system requirements. This centralization ensures that all

involved are working with a repository of information that

is current; they can immediately see the effect of their

work on other engineers, the characteristics of parts of the

system that other people are defining, and the current

status of their own work. In addition, centralization aids

in configuration management (where blocking of modifications

freezes the configuration) and in checking for consistency

throughout the entire system.

39

G. AUTOMATED TOOLS

Eor large software projects, it is necessary to employ

the services of many individuals to develop requirements for

different segments of the system; each formulating the RSL

descriptions for his/her particular part of the system. The

mechanisms for imposing discipline and control on this

process are the automated tools provided by REVS. These

tools aid the engineer in identifying the various areas that

require further development, resolve conflicts, and evaluate

inputs. Since the requirements engineering process is of an

iterative nature, these tools help to evaluate the entire

system when various milestones are reached.

1 . Interactive Graphics

The interactive graphics facility of REVS

enables the engineer to input, modify, or display R-NETS. It

is possible to use it in lieu of the translator for the

specification of the flow portion of the requirements and it

can he used to generate a graphic display of an R-NET

previously entered. The two-dimensional nature of graphics

serves to provide a more easily understood representation

than a one-dimensional input stream; however, the facility

allows the use of hoth graphics and the RSL language for

representation of the R-NETs.

Along with the graphics are a full range of

editing capabilities. A new R-NET may he constructed or one

previously entered may he modified. At the end of the

session the new R-NET is entered into the ASSM in nlace of

4:0

the old one. prom a menu, the user may select functions to

position, connect, and delete nodes, to move them,

disconnect them from other nodes, or to change their

associated name and commentary. Finally, the size of an

P-NET is not size-limited due to the zoom-in, zoom-out, and

scroll functions.

2. Simulation

Simulation offers an effective means by which to

test consistency, completeness, and validity of

requirements. The building of simulations must he automatic

to preclude divergence of the requirements from the

simulation and to allow rapid response and analysis of

change

.

The automatic simulation generation in PFVS

takes the ASSm" representation of the requirements and

generates from it simulations of the system. The System

Environment and Threat Simulation (SETS) program is the

driver for the software requirements model.

SETS provides all stimuli necessary for each

processing option and also accepts and properly executes all

valid commands. SETS is structured to simulate the required

actions, calculate how long the activity would have taken in

a real system, and make the results of the activity

available to the software at the proper simulated time.

Because of the asynchronous nature of real-time systems,

R-NET timing is implicitly modeled.

SETS takes the ASSK representation of the

requirements and puts them into simulation code written in

41

PASCAL. The flow structure of each R-NET is used to develop

a PASCAL procedure whose control implements that of the

R-NET structure. Each processing step (ALPHA) on the R-NET

becomes a call to procedure consisting of the model or

algorithm for the ALPHA. The data definitions and structure

for the simulation are synthesized from the required data

elements, their relationships, and their attributes in the

ASStf.

2 . Static Analysis

Since most requirements inconsistencies do not

require simulation for their discovery, REVS provides

several tools to statically check for completeness and

consistency. They are able to detect deficiencies in the

flow of processing and data manipulation stated in the

requirements.

The first class of these tools is to check the

structure of the R-NETS entered interactively, including one

and only one start node, proper branching and rejoining of

paths, and their proper termination.

The second class of tools checks the flow of

data through the R-NETS. They check for definite and

potential errors in data use.

The third class of tools checks for proper

hierarchy in the specification. Definitions rust be

specified for all SUBNETs, that SUBNETs must not make

reference to each other recursively, and that all ALPRAs and

SUBNETs must appear on at least one R-NET.

42

4. Report Generation

In order to reduce the necessity of adding a new

tool each time a specialized report or analysis is required,

P.EVS provides the requirements engineer with a specialized

tool known as the "extractor". The exactractor enables the

user to control the scope of the analysis and content of the

reports generated, not burdening him with format

specification or the need to review tabular forms to extract

information.

This system enables the user to subset elements

in the ASSM based on some condition or conditions and then

display the subset elements. The output produced is in RSL

compatible, standardized format to which prepositions and

punctuation are added to produce formal documentation.

The information the user desires to be retrieved

is identified in terms of RSL concepts. For example:

SET A = DATA INPUT TO KALMAN-FILTER

.

LIST A.

By combining and manipulating these sets it is possible to

detect the presence and absence of data, trace references,

and analyze interrelationships.

The extractor provides both reports for ad hoc

inquiries and routinely generated special reports which

enable managers to check for completeness and consistency,

and perform automatic regressive testing.

43

V. PSL/PSA

A. INTRODUCTION

The survey discussed in the next chapter revealed that

many commands in the U.S. Navy interested in RSL have used

the Problem Statement Language/Problem Statement Analyzer

(PSL/PSA) system. For that reason a brief overview of this

system will presented, as well as a section that deals with

some of the drawbacks of both SREM and PSL/PS/

.

B. PSL/PSA OVERVIEW

PSL/PSA [15] was designed to provide an improved

approach to system design. This approach is based on the

premise that more effort and attention should be devoted to

the front end of the process where a proposed system is

being designed by the potential user; that since large

amounts of information are being handled, a computer should

be used; that computer-aided approaches to system

development must start with documentation.

The system is based on a counterpart of RSL, namely PSL

or Problem Statement Language. It is based on a model of a

general system and also on the specialization of the model

towards information systems .

44

Much like SREM, PSL defines a set of OBJECTS which have

PROPERTIES and PROPERTY VALUES and their interconnections

are referred to as RELATIONSHIPS. PSL also takes into

account timing and volume considerations.

The intent of PSL is to separate the definition of user

requirements and the processing solution of these

requirements [16] . If the two were carried out in

concurrently, requirement changes in the future may not he

accomodated due to a firm design. Therefore, PSL does not

presuppose solutions, it only states requirements.

The second half of the system, the Problem Statement

Analyzer or PSA, performs basically the following functions:

1

.

Data Collection

Several intermediate outputs of the PSA include

checklists for deciding what additional information is

required.

2. Analysis

A variety of analyses previously performed

manually can he handled hy PSA, including static analysis of

the entire developed system.

3. Design

PSA allows data to he manipulated more

extensively hy the designer.

4. Evaluation

PSA can perform computations on volume or work

measures from data in the problem statements [15].

45

The PSA also serves as a report generator, including

narrative description, lists, tables, arrays, matrices,

diagrams, and charts. The PSA can produce reports on what

changes have been made in the database, reference data items

of similar type or property, or produce reports of

analytical nature such as gaps in information flow,

similarity of inputs and outputs, and the dynamic nature of

the system [15] .

C. COMPARISION OF SREM AND PSL/PSA

One of the difficulties in the area of RSL is that there

has been no in-depth comparative studies of the

effectiveness of the various systems and methodologies. The

main reason is readily apparent: such an endeavor would be

costly in terms of both time and money and the criteria for

judging overall effectiveness and usefulness would be

difficult to develop. However, there are some practical

aspects of SREM and PSL/PSA that bear some scrutiny.

1 . Transportability

SREM, at the moment, is highly machine dependent

due to memory hierarchy mapping and that the bulk of the

system operates with approximately 60,000 lines of PASCAL.

SREM is presently operating on Texas Instruments Advanced

Scientific Computer (ASC) and certain models of Control Data

Corporation's CDC 7620. Work is presently underway to make

SREM compatible with Digital Equipment Corporation's VAX-11

system.

46

PSL/PSA does not have this problem. It is

written in standard FORTRAN, making it compatible with a

wide range of computers.

2. Graphics

With SREM, the use of the CA.LCOTP plotter

imposes a severe limitation on the number of elements that

can be drawn. However, the on-line graphics package, along

with the features discussed in the previous chapter, have

demonstrated good editing capabilities and fast turn around

[17].

PSL/PSA has some strict limitations in graphics.

First is its representation of functional flow diagrams,

called "process-chains" (Fig. 6 [17]). This type of

representation cannot show all types of logic branching,

such as IF-TEEN-ELSE type constructs. One has to refer back

to the formatted problem statements to determine the logic

being used. Feedback cannot be represented as well [17].

PSL/PSA can, however, produce a "picture-report"

(Fig. 7 [17]), which is a partitioning of the various

processes. The picture-report can show what the process is

part of, inputs and outputs, and the entities the process

uses or derives. A description of these items can be found

in the formatted problem statements. This report can be very

useful to program designers [l?]

.

It should also be mentioned that PSL/PSA

utilizes only a line printer for graphics output and that

development work is being done to interface both plotters

47

1 1

u: 1 UJ
> c 1^ i-
Ui ^ '-) U
I < C US v:

p" _J U3 o

c/)

C
• •H

vD 03

XJ
<u c
h
3 </>

00 CO

•H <U

Uh o
o
M
0-

1 fcin ii
</) iu H
U OS
c <
as t->
0,

1

CO

48 '

n
>• -J uaJ- m i» > J a b-

h< S <-" I* H > t-1

UJ

OS.

UJ

a
UJ OS

a
SS U,

CO
U>
M
&S
UJ
3

n
3

Iw a w a u

UJ LJ I

CO
u

U. Ul

u
o
J

1

1

CO
>- -J UJ

h X -*
i—

i

o »•
(- to JH
x u UJ
UJ

1 I

1

.

§-
V> o
CO l«4

UI 1

u
,o 1 1 r>

OS H O Q

r
O UJ
< OS

g

SI

o
• Oh

ps!

o

GO 3
•H -P
PU u

•H

49 «

graphics terminals. The use of line printers for the graphic

output has caused difficulty in readability .

3. Simulation

SREM's static and dynamic capabilities were

described in the preceeding chapter.

PSL/PSA, at present, has no simulation

capability, but development work is underway to implement

this feature utilizing SIMSCRIP II. 5. [fur].

4. Other Considerations

As described previously, SREM was developed for

large, real-time systems. The approach taken in the

development of PSL/PSA was more universal: the system was

aimed towards utilization by a wide range of users.

50

VI. UTILIZATION OF RSL IN THE U.S. NAVY

A. INTRODUCTION

A sizeable portion of the research behind this thesis

was spent in conducting a telephone survey of various naval

centers engaged in research and development. The centers

contacted were:

1. Naval Research Laboratory, Washington, D.C.

2. Naval Air Development Center, Warminster, Pa.

3. Fleet Combat Direction Systems Support Centex,
San Diego, Ca

.

4. Naval Oceans Systems Center, San Diego, Ca.

5. Naval Surface Weapons Center, Dahlgren, Va.

6. Naval Underwater Systems Center, New London, Conn.

The purpose of the survey was to ascertain the current

level of utilization of requirements statement languages in

system design and development. The personnel contacted were

questioned as to which RSL and/or methodology was currently

being employed, to what type of project it was being

applied, perceived or proven successes and failures, how

much interest has been expressed by higher authority, and

51

their personal assessment as to the future of such tools in

system specification, design, and development. A summary of

the findings follows, however, the views expressed should

not and cannot he taken as the official position of the

individual commands.

B. NAVAL RESEARCH LABORATORY (NRL)

Other than some work performed for the Applied Physics

Laboratory, The Johns Hopkins University, in 1978, utilizing

SREtt, there has been little interest expressed in RSL per

se . However, Heninger et al . [18] have advanced the notion

of developing a disciplined methodology in order to develop

clear, concise requirements specifications through their

work in redesigning and rebuilding the operational flight

program for the A -7 aircraft.

It is their contention that it is necessary to approach

such a problem by formulating questions before answering

them, rather than being influenced by available information,

separating concerns, and using precise notation [7]. From

these basic principles they developed their disciplined

approach which is more fully discussed in [7] and [18].

C. NAVAL AIR DEVELOPMENT CENTER (NALC)

NADC was introduced to RSL when it was directed by Naval

Air Systems Command (NAVAIR) in 1978 to install and utilize

SREM in conjunction with the CV/TSC project (since

52

redesignated CV/ASWM), an effort to develop a computer-based

tactical support center for S-3A aircraft to be integrated

with the Naval Tactical Data System (NTDS).

Problems with the utilization of SREM were caused by its

being introduced too late in the development phase.

Personnel were not comfortable with it and there seemed to

be a lack of unanimity among these same personnel as to

whether or not the SREM approach to system design was

viable.

Though no further projects have utilized SREM, several

internal studies have been conducted at NADC aimed at

determining its feasibility for future projects. The interim

findings have suggested that SREM or some similar

methodology should be more actively incorporated into the

requirements definition phase of system development. The Air

Force's Rome Air Development Center (RADC), Griffiss Air

Force Base, New York, will soon send personnel to NAEC for

developmental work with SREM.

D. FLEET COMBAT DIRECTION SYSTEMS SUPPORT CENTER (FCDSSA)

FCDSSA has looked closely at the problem of requirement

level documents as they are currently developed and at the

use of methodologies and automated tools in defining and

analyzing requirements for tactical data system software.

Their study of requirement level documents revealed the lack

of conformity in terminology, such as:

53

different words and phrases used to convey the same
meaning.

same words and phrases used to convey different
meanings

.

slightly different words and phrases used with
only slightly different meanings.

different disciplines such as navigation,
sensors, aviation, fire control, etc. having
different terminology, complicating their
integration into the overall system.

Additionally, too often the applicability to subsystems;

the conditions, external and internal, under which the

requirements apply; and the duration of their applicability

are ill-defined.

FCDSSA feels that any proposed methodology should

include:

- disciplined requirements statement language.

- extensive use of graphics to facilitate communication.

- model building techniques for verifying completeness.

Above all, it is felt that it is the methodology, not the

tools employed, that is of the greatest importance.

Since early 1978, FCDSSA has evaluated several systems

utilizing RSI, including SREM and PSL/PSA. It noted the

strong and weak points of each system and decided that none

provided the flexibilty, user interaction, and ease of use

54

that it thought to be mandatory. Therefore, it embarked in

late 1978 on the development of its own requirements

language analyzer, named CORVAIR. The eventual aim is to

produce a system with a highly extensible language that can

be configured to suit the needs of the individual and that

will ultimately produce source code from the requirements

automatically.

It was mentioned that the requirements developed for a

project utilizing a system using RSL were not accepted by a

contractor; it was felt by the contractor that the system

was already designed by ECDSSA. It was the opinion of the

person contacted at ECDSSA that an effort is needed to

educate all parties in the government and civilian sectors

as to exactly what the purpose of RSL developed

specifications serve.

E. NAVAL OCEAN SYSTEMS CENTER (NOSC)

The System Design Laboratory at NOSC found PSL/PSA to be

of great use in enforcing discipline in the way requirements

specifications are written. As an example, they checked the

specifications of the NTDS Model 4 software for FCDSSA,

using PSL/PSA. Their analysis uncovered over 200 occurances

of ambiguous, undefined, or inconsistent statements.

A feature of PSL/PSA that was very well received was the

ability to store the developed requirements specifications

in a database and the ability to partition specifications in

55

order to determine the effect that any modification would

have on the overall system.

NOSC has not received much direction as to the use of

PSL/PSA or any other RSL. NOSC has, however, "been a strong

proponent of such a system and has conducted seminars for

government and civilians in the San Diego area. The

personnel involved feel that it is an area that should be

actively pursued and developed.

One of the problems noted was the difficulty of mapping

RSL developed requirements into the structure required by

SECNAVINST 3560.1.

F. NAVAL SURFACE WEAPONS CENTER

The Naval Suface Weapons Center is presently

incorporating PSL/PSA into the life cycle support of the

AEGIS combat systems. Their initial work has centered around

the retrofitting of AEGIS specifications into PSL so as to

verify and validate the system at least on a high level. It

is hoped in the future the work will be focused on lower

levels of the system to check the stimulus/response of

individual modules and eventually investigate the automated

generation of performance specifications.

PSL/PSA has been very well received by personnel at the

center. They very much feel that this is the direction in

which requirements definition in the system design should

proceed. Briefings on this technique have been given to

56

officials from Washington, D.C. and they, in turn, have

expressed some interest in its development.

Problems noted "by the center were the need of educating

personnel as to the techniques involved and the fact that

SECNAVINST 3560.1 does not facilitate the use of RSL

generated specifications because this instruction predates

the development of RSL.

G. NAVAL UNDERWATER SYSTEMS CENTER (NUSC)

The experience at NUSC with RSL has been limited to the

IBM Federal Systems Division's work on the Submarine Active

Detection Sonar (SADS) project using PSL/PSA.

The project, as far as utilization of PSL/PSA, proved to

be unsuccessful and was finally abandoned. The person

contacted at NUSC listed as some of the nroblems:

personnel at NUSC were not sufficiently familiar
with PSL/PSA to fully appreciate its capabilites
and peculiarities.

due to security considerations and the fact that
the host IBM 370 computer had to be shared with
others, forcing third shift operations, there
existed a time constraint on development work.

- the output produced was hard to understand.

there were constraints imposed by SECNAVINST
3560.1 that could not be waived.

57

IBM Federal Systems Division was contacted for its views

on the problems with the use of PSL/PSA and SADS. They

noted :

personnel were not sufficiently familiar with
PSL/PSA.

there was poor support for the tool as it had
been only recently installed.

adequate training was not received by personnel
involved in the use of the system.

there is extreme difficulty in attempting to
translate PSL/PSA generated requirements into
the narrative form required by SECNAVINST
3560.1.

The personnel contacted at IBM Federal Systems Division

said that they felt that PSL/PSA would be of significant

value on future government projects. They are confident that

most of the problems experienced on the SADS project will be

corrected .

H. SUMMARY

The survey conducted revealed several views that were

expressed by the majority of the personnel interviewed. They

were:

the use of RSL has forced discipline in
specification writing. As a consistency checker,
it has uncovered numerous errors in critical
documents.

58

the concept and use of RSL should be continued
and expanded in future projects.

there exists an education gap in both the
government and civilian industry as to the use
of RSL. This is a problem that must be resolved
so as to avoid the misunderstanding and
misapprehension experienced in the past.

strong management support is required to
overcome the tendency by some to resist change,
regardless of how oroven a new technology may
be.

though not addressed in the above sections, the
majority felt it would benefit the government to
utilize RSL early in the conceptual phase of a

project instead of introducing its use after the
specifications have been written. A conversation
with Dr. Teichroew, one of the prime developers
of PSL/PSA, revealed that the vast majority of
private sector users of his system use it from
project inception.

it is extremely difficult to translate RSL
generated specifications into the form required
by SECNAVINST 3560.1.

59

VII. RSI AND SYSTEM ACQUISITION

It is important to examine how RSL methodologies fit

into the various rules, regulations, directives, and

standards that currently govern systems acquisition in the

Department of Defense and the U.S. Navy. It would he neither

possible nor meaningful to examine every document dealing

with this area, nor would it he possible to do an in-depth

analysis of each. Rather, it is the intent of this chapter

to look at some of the major points stressed in the above

rules, regulations, etc. and determine whether or not RSL

methodologies satisfy the letter and intent of these

documents from both the government and the contractor points

of view and to consider changes which may be necessary to

better incorporate the capabilites of RSL methodologies.

A. 0MB CIRCULAR NC. A-109

On April 5, 1976, the Office of Management and Budget

issued Circular No. A-109, "Major Systems Acquis! ti on" [19]

,

to the heads of all Executive departments in the government.

The purpose of A-109 was to give strict guidance in the

acquisition of major systems. It stressed: (1) justification

of the acquisition based on mission need, not the perceived

need of new hardware, software, etc., (2) competitive

development of alternate solutions to solve the mission

60

need, (3) tradeoffs between cost, performance, and

production schedules, (4) ensuring adequate test and

evaluation of the new system, and (5) development of a sound

acquisition strategy, looking at the entire life cycle.

B. DEPARTMENT OF DEFENSE DIRECTIVES 5300.1 AND 5000.2

The Department of Defense's implementation of A-109 was

Department of Defense Directive (DODD) 5000.1, "Major

Systems Acquisition", and DODD 5000.2, "Major Systems

Acquisition Process". In both of these directives are areas

in which an RSL methodology may prove beneficial.

1 . Technology Base

DODD 5000.1 tasks each DOD Component Head, such as

the Secretaries of the Army, Navy, and Air Force, with

advancing technology in both product and manufacturing

technology to support future system development. It is

recommended that the methodology employed in designing and

developing software should certainly be incorporated into

this base. As EOL's level of experience with the use of a

formal methodology in the design and development of software

grows, it certainly is quite feasible that modifications to

the methodology may be warranted, certainly in the critical

area of real-time systems. This inclusion in the technology

base ensures a greater probability of wide dissemination of

the methodology to those agencies and contractors involved

in the system acquisition process.

61

2. Corpetitive Exploration of Alternative Solutions

DODD 5000.1 and DODD 5000.2 state that after a

rrission need has been established and approved there will be

a competitive exploration of alternate solutions to the

need. Participation in this exploration is open to industry,

educational institutions, and government facilities.

Though industry and educational institutions are

considered to be the primary sources of solutions, this in

no way should lessen the contribution that government

laboratories and facilities can make through use of an RSL

methodology and a corporate history of lessons learned.

A hypothetical case might be the total replacement

of the Naval Tactical Data System (NTDS) during the 1990 's

due to system obsolescence. By this time there will have

been a large database built concerning the performance

problems, acquired from user reports in the past and from

the evaluative study required to establish the mission need

of a replacement system.

A methodology such as SRSM might prove beneficial to

an on-going, evaluative study as it enables personnel to

determine the effect of additional or modified requirements

on a system such as NTDS. The lack of an expeditious and

efficient handling of any new threat or threat scenario by

the system could be determined as far as the present

hardware and software configuration is concerned. These

findings, coupled with the known problems in the development

of the old system, serve as a solid foundation for the

62

Request for Proposals (RFP) that is sent to interested

contractors, soliciting alternate solutions.

The RFP cannot presuppose system design but it

should accurately reflect the user's requirements of the

system. The contractors' proposals can be no better than the

RFP on which they are based.

The government laboratory that undertakes the

development of an alternate solution to the mission need

should first of all be totally divorced from the group that

developed the RFP so as to preclude the possibility of a

prejudicial view of the system, which may stifle the

creativity of the system designers, and also to ensure fair

competition among the various parties involved.

The government facility may have an advantage in

that it should have a better opportunity to evaluate the

operational environment in which the system will be

deployed. Since in the case of NTLS the government facility

would in all likelihood be a Navy command, the personnel

involved should have among them those who fully understand

the functions of the Combat Information Center (CIC) in a

wartime environment. This alone should improve the human

engineering aspect of the system design, a facet too often

overlooked or misunderstood, especially in the stressful

situation of actual combat. Not only is a system that works

critical, but also a system that can be effectively

interfaced by personnel of various ranks, educational and

experience levels. An RSL methodology can enable the

63

designers to take this into consideration as the sytem

design develops since all inputs, outputs, and human

interfaces become highly visible.

C. DEPARTMENT OE DEFENSE DIRECTIVE 5000.29

DODD 5000.29, "Management of Computer Resources in Major

Defense Systems" [22], addresses the problem of management

and control of computer resources during the development,

acquisition, deployment, and support of major defense

systems.

This directive has a significant impact on software. It

mandates that the software design (specifications) be

validated (demonstrated that it satisfies all current stated

requirements of the system) during the Concept Formulation

and Program Validation phases of system development, prior

to the Defense Systems Acquisition Review Council (DSARC)

II. (DSARC II rules on whether or not to permit full-scale

engineering development of a proposed system).

Other points emphasized are that correctness of

software, reliability, integrity, maintainability, ease of

modification, and transf errability are major considerations

in the initial design.

The above paragraph contains what must still be

considered moot points: these requirements have yet to be

defined in a manner by which a universally accepted criteria

for evaluation of these requirements can be established.

However, the validation requirement should serve to force

64

the issue of requirement and specification visibility. A

methodology such as SREM can enable the contractor to

accurately validate his specifications against the stated

requirements and verify that his system, as far as the

specifications are concerned, will function properly.

The cognizant naval agency could also use SREM to

validate the contractor's specification. This, however, may

prove troublesome if the specifications are not written in

RSL format as there may not he an accurate translation of

the specifications from narrative form to RSL form.

The criticality of the validation process cannot "be

overemphasized. It is the last point in the acquisition

process in which major changes can easily he implemented

into the system design. Once full-scale engineering

development is initiated, the Navy effectively reduces its

design control. Therefore, the use of an RSL methodology can

help ensure proper validation of system design.

D. DEPARTMENT OF DEFENSE INSTRUCTION 5010.21

DODD 5010.21 [23] is entitled "Configuration Management

Implementation Guidance". Configuration management is a

discipline applying technical and administrative direction

end surveillance to (1) identify and document the functional

and physical characteristics of a configuration item

(hardware/software that satisfies an end use function), (2)

control changes to those characteristics, and (3) record and

report change processing and implementation status.

65

As previously discussed, both SPEM and PSL/PSA can

perform certain configuration management tasks, including

"locking-in " selected portions of the design to prevent

further change, and they will also generate reports as to

changes made to the database.

E. MILITARY STANDARD 1679 (NAVY)

Military Standard (MIL-STD) 1679 (NAVY), "Weapon System

Software Development", [24] was developed to reflect the

need to have more stringent control in the development of

software for weapons systems. The main reasons for this were

the criticality of performance inherent in such systems, a

changing operational environment necessitating changes to

the system, and the high life cycle cost.

Appendix A contains Chapter 5 of this MIL-STD entitled,

"Detailed Requirements". Because of their capabilites

discussed in previous chapters, it is felt that systems such

as SRFM and PSL/PSA directly aid the contractor in meeting

the requirements imposed by the following sections of

Chapter 5:

5. 1.2. 5.

b

Block Diagrams

5. 1.2. 5.

d

Function Description

5.1.2.6 Detailed Functional Requirements

5.2.2.3 Program Functional Flow

5.4.2 Naming

5.4.4 Narrative Description

66

5.5 Program Production

5.5.6.2 Cross-reference Listing

5.9.1.4 Program Design

5.11 Configuration Management

5.11.1.2 Documentation Identification

There are, however, two sections which should he

considered for modification so as to "better utilize a system

such as SREM.

The first is section 5.2, "Program design requirements".

Chapter IV included a discussion of the problems inherent

with the traditional functional hierarchy approach to the

development of requirements. SREM does not design in such a

manner, it utilizes a flow orientation to the problem. This

is presently not compatible with the above section.

The second is section 5.4.5, "Flow charts". SREM has the

capability of producing detailed functional-flow diagrams.

These diagrams can give a clear, concise view of the

system's operation and the interrelationship of the various

functions; a very valuable visual aid. If a system is indeed

developed utilizing SREM, functional-flow diagrams should be

considered a deliverable item.

F. SPECIFICATION AND TOCUMENTATION STANDARDS

Perhaps the greatest conflict between RSL systems and

the requirements imposed in the systems acquisition process

is in the area of specification and documentation. One of

67

the problems discussed in Chapter VI was that PSL generated

specifications do not easily map into the structure and

format required by OPNAVI.MST 3560.1, "Department of the Navy

Tactical Digital Systems Documentation Standards" [25]. The

same holds true for Military Standard 490, "Specification

Practices" [26l

.

Appendix B contains an excerpt from MIL-STD 490 which

deals with specifications applicable to development of

computer programs.

Figure 8 lists the required inputs for a hypothetical

engine monitoring system. Figure 9 lists the required

processing flows for the same system. Both of these were

produced "by SREM and should be compared to sections 60.3.2.1

and 60.3.2.2 in Appendix B respectively. It is evident that

RSI generated specifications are of a highly structured

nature, whereas MIL-STD 490 is narrative dependent.

The chief complaint expressed by RSI users towards

standards such as MIL-STD 493 is that such a standard

imposes such a strict format that the structure of the

system is lost, especially since a system such as SREM

structures it designs uniquely.

For now, the above complaint should be considered one of

a highly subjective nature. Some users have at their

disposal a translator which transforms specifications of the

form given in Figures 8 and 9 into the form required by

MIL-STD 490, including narrative, with some degree of

success. It will take both further use and refinements of

68

SUBSYSTEM: ENGINE-MULTIPLEXER
CONNECTED TO

INPUT-INTERFACE: MUX-INPUT
PASSES

MESSAGE: ENGINE-MEASUREMENTS
MALE EY

DATA: MEASUREMENTS
INCLUDES

DATA: SENSOR-DATA
INCLUDES

DATA:
DATA:
DATA:
DATA:
DATA:
DATA:

DATA: SWITCH-DATA
INCLUDES

DATA: MEASURED-SI
DATA: MEASURED-S2

SUBSYSTEM: ENGINEERING-STATION
CONNECTED TO

INPUT-INTERFACE: FROM-ENGINEER
PASSES

MESSAGE: ENGINE-SET-UP
MADE BY

FILE: SET-UP-LIST
CONTAINS

DATA: SET-UP-DATA
INCLUDES
DATA: NEW-PARAMETERS
DATA: NEW-VALUE

MEASURED-PI
MEASURED-P2
MEASURED-P3
MEASURED-P4
MEASURED-T1
MEASURED-T2

MADE EY
DATA:
DATA:

MESSAGE:
MADE BY

DATA:

COMMAND-TYPE
ENG-NO

HISTORY-REQUEST

COMMAND-TYPE

Figure 8.
Required Inputs

69

R-NET: PROCESS-ENGINE-DATA
S TRUC TURE

•

INPUT-INTERFACE: MUX-INPUT
VALIDATION-POINT: VP-1
ALPHA: VALIDATE-MESSAGE
CONSIDER DATA: DATA-VALIDITY
IE (VALID)

SELECT ENTITY-CLASS: ENGINE SUCH TEAT
(CEANNEL-NUM = MONITOR-CHANNEL-NO)
DO

ALPHA: UPDATE-EISTORY-FILE
TERMINATE

AND
ALPHA: COMPARE-TO-LIMITS
CONSIDER DATA: MEASUREMENT-STATUS
IE (ALARM-STATE)

ALPHA: TRANSMIT-ALARv
VALIDATION-POINT: VP-3
OUTPUT-INTERFACE: TO-ENGINEER

OR (WARNING-STATE)
ALPHA: TRANSMIT-WARNING
VALIDATION-POINT: VP-4:

OUTPUT-INTERFACE: TO-ENGINEER
OR (NORMAL)

TERMINATE
END

Figure 9.
Reauired Processing

70

the translators to instill confidence in the translaed

requirements

.

G. SUMMARY

The above sections are by no means a comprehensive

review of the documents discussed, nor do they review

all documents governing system acquisition. However, the

above discussion points out the fact that RSL systems,

for the most part, can be made to support the current

system acquisition process, if the incompatibilities of

RSL with existing military specifications and standards

can be resolved.

71

VIII. RECOMMENDATIONS

A. INTRODUCTION

The Navy is in need of increasing its activities in the

requirements definition area. DOD has provided development

funds to the Air Force for URL/URA (a derivative of PSL/PSA)

and to the Army for SREM [27]. The Navy currently has no

development projects of this nature.

The research conducted "by the other services may he of

benefit to the Navy, but there is no guarantee of

universality in its application. Cue to differences in

weapon systems requirements and overall management

philosophies, it is highly unlikely that inter-service

transfer of technology could occur without undue

modification. One Navy user of URL/DRA found it

unsatisfactory for Navy applications. As subjective as this

opinion may be, it points out the fact that, much like

aircraft, it is nearly impossible to satisfy two services

with a single system.

The Navy needs to take corrective action to

systematically improve its procedures for the development of

software. The first step recommended is to hold a major

conference with all facilities within the Navy involved in

software/system design, including project offices,

72

represented. Some of the area that should be dealt with are

discussed in the following sections.

B. PFOBLEM IDENTIFICATION

It is quite important to initially identify all problems

that currently exist in the development of requirement

specifications and the application of automated

tools/methodologies. Those problems cited in Chapter VI are

only a small fraction of the those existent today. Through

their proper identification, a strategy can be evolved to

develop solutions.

C. AUTOMATED TOOL AND METHODOLOGY EVALUATION

At present, there has been no comprehensive, comparative

study of the major automated tools and methodologies that

currently exist in this field. Initiation of such a study

should seriously be considered by the Navy.

The study should be initiated under the premise that no

one tool or methodology will entirely satisfy the needs of

all projects. Real-time combat systems and ADP systems are

almost totally divergent in their system requirements.

Though current experience shows that, at a minimum, a

disciplined methodology of some form is required throughout

the entire spectrum of software-related projects, it is a

question of applying a particular methodology or automated

tool where it will give the greatest return in terms of

73

improved definition of requirements specifications.

Acceptance of any new technology comes mainly through

demonstration of superior results.

The tools and methodologies chosen for application in a

particular area should meet known requirements, have a

capacity for evolutionary growth, and have a reasonably long

expected lifetime. Above all, it must he understandable and

suitable for training [26], The fact that tools and

methodologies developed by highly trained, highly educated

personnel do not guarantee successful application by

personnel of varying backgrounds should not be overlooked.

The members of the evaluation group must reflect this

diversity.

D. ACCEPTANCE AND TRAINING

Some of the reasons stated by Wolverton [28] for

personnel not using tools in general are that they see no

benefit to them, lack of understanding of the tool,

perceived high risk of failure, management coercion, and

lack of time to experiment with the tool due to schedule

pressures

.

The first step in gaining acceptance of a tool or

methodology is in total management support. Though

management obviously cannot issue an edict mandating its

immediate use with the expectation of immediate results, it

can, nonetheless, provide firm guidance in its assimilation

into the overall design process.

74

The training of the ultimate end-users should not only

provide a thorough understanding of the tool or methodology,

hut should also he directed towards instilling confidence in

the user as to his or her ahility to use the tool or

methodology

.

Time is rarely in the favor of any project; therefore,

the initial use of such a tool or methodology should he on a

project which does not have great pressures of time and

money. Through a systematic introduction, the tool or

methodology will he afforded a "better chance to succeed or

fail on its own merits, not the perceptions of the users.

E. OTHER CONSIDERATIONS

The adoption of a tool or methodology for application in

a particular area will certainly raise a myriad of questions

that cannot he dealt with in this thesis, hut as an example,

take the hypothetical case that SREM is adopted as the

standard automated tool for weapon sytems software

development. Should this standard he imposed on contractors

who wish to hid on future contracts in this area? If not,

should the Navy train personnel in the various techniques

used in industry so as to facilitate the liason hetween

project office and contractor? Can the documentation and

specification standards he modified so as to allow RSL

generated specifications to he suhmitted in their structured

form? These and other questions may have to he dealt with as

the state of the art in software technology advances.

75

IX. CONCLUSIONS

This thesis has discussed some of the problems inherent

in requirements specifications as they currently are

developed and has looked at an evolving, disciplined

approach to the problem in the form of requirement statement

languages and systems. The promising, if not proven,

automated tools utilizing requirement statement languages,

SREM and PSL/PSA, have been shown to have capabilities that

ray prove to be of great value in systems acquisition. They

have also been shown to have some drawbacks as well.

Also discussed in this thesis are some suggestions as to

how the Navy should approach this technology, such as

evaluation of these and other tools and methodologies, their

incorporation into projects where the benefit would be

greatest, and gaining the acceptance of those who would

actually be required to use such systems.

Above all, this thesis has stressed that these types of

tools and methodologies need to be seriously considered by

the Navy as a possible solution to some of its problems in

systems acquisition.

76

APPENDIX A - MILITARY STANDARD 16 7 9

4 •

5.1 Program performance requirements . The contractor shall determine

Che detailed program performance requirements for the weapon system soft-

ware. The contractor shall utilize the basic descriptive requirements and

design information provided by the procuring agency to create the program

performance requirements. This information may be augmented by studies,

analysis, visits to operational units, and surveys as necessary. The

program performance requirements are subject to the approval of the pro-

curing agent.

5.1.1 Supporting information . The contractor shall utilize, as a minimum,

that of the following supporting information which is available to deter-

mine the program performance requirements:

a. System-level performance requirements.

b. System-level design specifications.

e. Equipment design specifications.

d. Interface design specifications.

e. Operational standards, doctrine and tactics.

£. System design standards.

5.1.2 Analysis . In determining the performance requirements, the contractor

shall investigate and analyze in detail all areas relating to the perform-

ance requirements of the weapon system software.

^
77

(

5.1.2.1 Mission areas . The contractor shall Investigate the mission areas,

primary and secondary, and supporting tasks of the operational user or

platform for the weapon system.

5.1.2.2 Functions . The contractor shall define the major functions or

groupings of the program necessary to meet the system performance require-

ments.

5.1.2.3 Applicable documentation . The contractor shall identify all docu-

ments which define or constrain the program performance requirements.

Definitions of applicable terms and abbreviations not consistent with or not

Included in reference document 2.1.C shall be indicated and defined by

the contractor.

5.1.2.4 Weapon system description . The contractor shall examine the

relationship of all components in the weapon system which affect the program

performance requirements or the computer program. Re shall determine how

the computer program interfaces with other components to perform required

functions.

a. Peripheral equipment identification . The contractor shall identify

all equipment with which the program will interface.

b. Interface identification . The contractor shall identify all other

digital programs or systems with which the program will interface.

7.8
. / •

—
\

3.1.2.5 Functional description . The contractor shall analyze the major

functions and the functional relationships of the program with interfacing

equipments and other programs.

a. Equipment descriptions. The contractor shall identify the require-

aents imposed on the program by each interfacing equipment, the

purpose cf the equipment, and the use of options and controls.

b. Block dic.grams . The contractor shall generate diagrams of equip-

nent/program relationships with internal ar.d external data flov.

c. Intersystem interface . The contractor shalT. determine the inter-

faces wich other systems and shall be cognizant of the performance

requirements and design specifications of all systems which will

interface with the system under development. Each contractor shall

be aware of the purpose of the Interface and the data to be exchanged.

Data quantity, frequency, rate, format, content, scaling requirements

and conventions shall be developed. In fulfilling this assignment,

the contractor may be tasked to participate with other development

contractors as a team to design the inter-system interfaces so that

the performance requirements of all systems are met. If interface

conflicts are uncovered such that an individual system's ability

to perform in accordance with its requirements is adversely affected,

the interface design team shall recommend to the procuring agency the

necessary modifications to the systems or their interface to overcome

)

O

o

1 b. 1 r

79- • •
. : n \ \

o

the deficiency. If no solution can be agreed upon, Che team shall

recommend modification of Che system performance requirements to

the procuring agent.

d. Function description . The contractor shall establish the performance

of each function supported by the program, its purpose, and

tuncclonal design.

5-1.2.6 I'etailed functional requirement . The contractor shall delineate the

performance of each function by detailing its narrative, logical, and mathe-

matical descriptions.

a. inputs . The contractor shall define all inputs (external and

internal) Including their sources, sethod of insertion, quantity,

timing, range and scaling.

b. Processing . The contractor shall generate textual and, as- appropriate,

mathematical descriptions of the processing requirements of each

function, including functional parameters and geometric diagrams.

c. Outputs . The contractor shall define all outputs (internal and

external) including their method and ciming, meaning, format,

destinations, range and scaling.

d. Special requirements . The contractor shall identify all require-

ments imposed by higher-level constraints or by exigencies of the

function.

8Q

\

5.1-2.7 Adapclve parameters . The contractor shall identify those parameters

which reflect the system environment, system parameters, and system capa-

cities, and which can be modified without altering the logic of the

operational function.

5.1.3 System resources . The contractor shall define the computer memory

computer processing time and input and output resource budgets and the

projected utilization for the weapon system. If the weapon system under

development has more than one digital processor, the contractor shall

define these resource values for each digital processor.

5.2 Program design requirements . The computer profram design shall be

developed frau the program performance specification, and shall comply

with other design constraints and standards as specified by the procuring

agency. The software development shall be a top-down process. The design

shall be a hierarchical structure of identifiable programs, subprograms,

modules, procedures and routines. The highest level of control logic resides

at the top of the hierarchy; the computational or algorithmic functions

reside at the Lower levels. The contractor shall define the assumptions,

the programming approach for implementing the computer program and shall

define the program architecture. The program design shall be subject to

review by the procuring agency.

5.2.1 Supporting information . The contractor shall utilize, as a minimum,

that of the following supporting information which is available to determine

the program design:

o

a. System operational design documents.

b. Program performance specification.

c. Interface design specifications.

d. Programming reference manuals.

«. Equipment technical manuals.

f. .Specified programming standards and conventions.

g. .'specified utility/ support software.

5.2.2 Q-.mputer program design analysis . In determining the detailed com-

puter program design, the contractor shall investigate and analyze in detail

the following areas relating to the computer program.

5.2.2.1 Applicable documentation . All documents which constrain, define, or

influence the program design shall be analyzed. The contractor shall define

all design terms and abbreviations used to describe the program design.

5.2.2.2 Functional allocation . The allocation of functions and tasks to

be performed by the subprograms and a functional description of items,

Inputs, outputs, and processing to be performed shall be considered and

subsequently defined. All performance requirements shall be satisfied in

their entirety in this allocation.

5.2.2.3 Resource allocation and reserves . Memory storage and processing

time for each subprogram shall be determined. Total system memory and

processing time reserves of at least 20 percent shall exist at the time of

program acceptance by the procuring agency.

82 ?•

3.2.2.4 Program functional flow . The flow of program daca and control in

all required modes of program operation shall be determined.

*• Program .Interrupt control . The source, purpose, type, predicted

rate of occurrence, and required control response for each ex-

ternal and internal interrupt shall be determined from the analysis.

b. Subprogram reference control . The control Logic, assignment of

priorities, and permissible cycle times for each subprogram shall

be deterti ined from the analysis.

C. Special i:ontrol features . Unique control requirements which affect

Che design of the control logic shall be identified.

5.2.2.5 Design constraints . The constraints of the specific programming

language to be used; the constraints of the specific compiler, monitor,

loader, librarian to be used; the capabilities of specific debug and utility

aids tor the program production; and tha mcemoiic labeling conventions re-

quired shall be defined by the contractor.

5.2.2.6 Data base design. All data used by two or more subprograms shall

be taken into account during the computer program design.

1

33

n

O
' "V,

»

o

3.2.3 Intersystem tncerface . The contractor shall determine the inter-

faces with other systems and shall be cognizant of the performance require-

ments and design specifications of all systems which will interface

with the system under development. Each contractor shall be aware of the

purpose of the interface and the data to be exchanged. Data quantity,

frequency, rate, format, content, scaling requirements and conventions

shall be developed. In fulfilling this assignment, the contractor may be

tasked to participate with other development contractors as a teas to

design the inter-system interfaces so that the performance requirements

of all systems are met. If interface conflicts are uncovered such that

an individual system's ability to perform in accordance with its require-

ments is adversely affected, the interface design team shall recommend

to the procuring agency the necessary moc ifications to the systems or their

Interface to overcome the deficiency. If no solution can be agreed upon,

the team shall recommend modification of the system performance require-

ments to the procuring agent.

5.3 Programming standards . The following coding and logic standards

Shall apply to the implementation of subprograms.

84

"W

:t

3.3.1 Concrol structures . Programs shall be designed using only the five

basic control structures presented in figure 1. They are: The SEQUENCE

Of operations (assignment, add,...). IF THEN ELSE (conditional branch to

one of two operations and return) , WHILE DO (operation repeated while a

condition is true) , DO UNTIL (operation repeated until a condition is

true) and CASE (operation which provides the transfer of program control

to a specific loc ition within a corapile-time system)

.

5.3.2 Entry-exit structure . Each module, subprogram, routine, or procedure

•hall have a sing Le entry and single exit structure. (See figure 2.)

5.3.3 Source coda segment includes/copy . When repetitive

segments of source code are required in the program being developed, they

shall be coded only once as a structural source code block, thereafter being

referenced/utilized upon each occurrence by appropriate INCLUDES or COPY

features, or constructs of the source HOL compiler. These included/copied

segments shall be written in HOL only. Any program logic within a given

structural segment shall utilize only those control structures specified in

paragraph 5.3.1. For maximum memory efficiency, common routines or pro-

cedures should be used instead of included/copied source code blocks

whenever practicable.

")

85

1 YS \

T

o

Figure 1A.

SEQUENCE.

Control flovs from process A Co Che next In sequence, process B.

Figure IB.

IF THEN JXSE.

The flow of control will return Co a common point after execucing eicher

process B or C. A predicates the conditional execution. If control is to

skip a process pending the condition of A, then the flow chart can be

modified thusly: (See next page)

FIGURE 1. Concrol Structures.

86

*\\

|- J.4

FIGURE IB. (Continued)

}

"^~

FIGURE 1C. WHILE DO.

The WHILE DO structure is a loop, in which the condition A is evaluated.

If found to be true, Chen control is passed to process B, and then condition

A Is evaluated again. If condition A is false then control is passed out of

-the loop.

O

87

id)
••

.
i

I

FIGURE ID. DO UNTIL.

The DO UNTIL structure is similar to the WHILE DO — except that the test

of condit Lon A is performed after process B has executed. Thus the DO

UNTIL loc? will be performed once regardless of the value of condition A.

O

FIGURE IE.

CASE.

i-k

Control is passed to process 'K' based on the value of 1. Structured

programs of any degree of complexity can be built up, if they can be

broken down into individual components.

83

•»

T

— _-..
i

^ WHILE

— -

DO
. ..

^>

o

EXIT

FIGURE 2. Nesting of Concrol Structures.

O

89

T

5.3.4 Program craceabllity . Programs shall be designed and constructed

such that upon interrupt or termination, the values of the various para-

meters, indices, and other local variables as of the last usage are recover-

able.

5.3.5 Self-modification. Program self-modification of instructions during

execution shall be prohibited.

5.3.6 Recursive programs . Recursive procedures or programs shall not be

used unless the target computer has a stack oriented architecture.

5.3.7 Size . The procedures or routines which make up a module or sub-

program shall not exceed an average of fifty executable HOL statements per

procedure or routine. Each independently executable HOL statement , whether

free-standing or included within a complex statement, counts as one of the

fifty.

5.3.8 Branching . Branching statements (GO TO's) are to be avoided if

possible, and used only with the approval of the procuring agency. Branching

statements, if approved, shall only pass control to a statement that is in

the same procedure or routine. Each GO TO must pass control only forward of

its point of occurrence. Backward jumps generated by the compiler are per-

mitted. Transfers from a procedure or routine shall only be to the entry

point of another procedure or routine.

5.3.9 Relocatability . The software shall be built in the form of relo-

catable object modules.

:a
90

3.4 Programming conventions . The following programming conventions shall

be utilized in all weapon system software.

5.4.1 Symbolic parameterization . All values used in the weapon system soft-

ware which are constant throughout the weapon system design but which may be

affected by environment changes (e.g., sensor output limits, maximum range

of weapons, maxiiium number of targets handled, data storage limits) shall

be created as symbolic parameters in the design. Duplication of symbolic

parameters shall be minimized through use of common source of values. When

duplication is necessary, common symbolic parameter identification nomen-

clature shall be used and comments will point to location of duplicates.

Symbolic parametr-rs shall be grouped at the beginning of each program. Comments

shall provide a e'efinition and the location of all parameters. Special symbolic

parametric definition features of the high level language and compiler shall

be used.

")

-J

5.4.2 Naming . Naming conventions shall be uniform throughout the weapon

system software.

5.4.2.1 Modules . Module names shall be uniquely chosen to identify the

applicable function performed and the hierarchical logic structure in relation

to other modules in the system being developed.

5.4.2.2 Data . Data names shall indicate the function of the data item.

5.4.3 Numerical conventions . Numerical conventions shall be established

by the contractor so that they are uniform throughout the program.

91
!

jr-4

o

5.4.3.1 Symbolic constants and variables . Constants and variables entering

into numerical computations shall follow thu constraints set forth in para-

graph 5.4.1.

3.4.3.2 Mixed mode expression . Mixed-mode numerical operations shall be

avoided whenever possible, but when determined to be necessary, they shall

be completely described in comments.

5.4.3.3 Grouping . Parentheses or other subexpression delimiters shall be

used whcra necessary to clarify the order of evaluation of compound expres-

sions.

5.4.3.4 Significant digits . The number of significant digits- as output shall

not bey-eater than the number of significant digits as input. The effect

of truncation performed shall be considered in applying this convention.

Sufficient significant digits shall be used in calculations to yield a

minimum of computational error, and rounding by the programmer shall not

occut until the final computational step. The degree of computational error

shall be analyzed to determine if systems accuracy requirements are fulfilled.

5.4.4 Narrative description . A narrative description shall describe the

history and identify the functions of procedures and routines.

5.4.4.1 Abstracts . Each procedure and routine shall include at the beginning

of the executable coding a textual description of its inputs, outputs,

function or task, and algorithms; list other procedures or routines called;

and list all calling procedures or routines. In addition to general

92

}

-explanations, to assist understanding, precise references to the appro-

priate statement labels and data-names shall be included in each descriptive

•bstract. Local, previously undefined data-names shall be described. The

descriptive abstract shall define the allowed and tolerable range of values

for all inputs ar d shall define the allowed and expected range of values

for all outputs.

5.4.4.2 Identification . Each procedure and routine shall carry an identi-

fying label-name indicating function and hierarchical structure. A history

of the original and updating programmer names, the activity or commercial

.company name and the activity or company division rode or billet identifier

-with dates completed shall be included.

5*4.4.3 Statement comments . In order to facilitate program comprehension,

comment statements shall be used throughout the program code. Comment

statements are non-executable (i.e., those which have no effect on computer

operations) ai.d are ured to provide documentation and clarification of the

logic, data, variables, and algorithms. Each source statement shall be self-

defined or defined by a comment phrase to a level understandable by a person

not associated with the original development effort. Logical groups of

comment phrases may be included in a single comment statement. General com-

-ments on groups of source statements performing logical functions shall be

Included on separate comment statements.

"5.4.5 Source record format.

)

93

3.4.5.1 Execution efftelency . Subject only to the Interest of readability,

clarity and maintainability, source statenieuts shall be coded to optiaize

object code execution.

5.4.5.2 Indentation . Program structural indentation shall be used to im-

prove readability end clarity.

5.4.5.3 Source statement . A source statement shall not be compound or

complex in structure except as necessary to support the control structures

defined In paragraph 5.3.1. .

5.4. 5.

4

Sequence numbering . Each source record shall contain a sequence

number prior to delivery as a configuration, item. Sequence numbers within

a procedure or routine shall be in sequentially increasing order beginning

with and differing by some multiple of ten.

5.4.6 Listings. Listings related to the program shall meet the standards

specified herein.

5.4.6.1 Content . For acceptance as a deliverable configuration item, the

listing of a compiled program shall include source language statements and

comments with resulting object machine instructions interspersed appro-

priately (together with actual or equivalent assembler statements, if avail-

able). Relative location of instructions and operands shall be exhibited

together vlth statement labels, identification numbers, and card identifiers.

All descriptions of referenced routines, functions, tables, variables, con-

stants, files, indices, etc., shall be included in conjunction with this

listing and arranged for convenient access.

--*

94

>

r

5*4.6.2 Cross-reference listing . A cross-reference listing shall be pro-

duced relating each data name to the address of every other statement refer-

ring to it, and relating each routine and the address of other routines

calling upon it. The list shall be exhibited as a sequential table in

alphanumeric order.

5.4.7 Flow charts . There is no requirement that flow charts be a deli-

verable item.

5.5 Program production . The contractor shall genjrate the program in an

orderly and well-controlled manner. The requirements shall be translated

into program design in a systematic top-down method. The system shall be

divided into constituent parts and then these parts broken down into their

constituents. Each level of design development (or break down) is con- /

\^

tinued until a level is reached wherein no other function is subservient to

the function. Levels shall be structured so that a lower level function

does not call on a higher level function. Program coding shall follow the

•ame structure as the design, which allows identifiable division of the pro-

gramming task. Programming shall commence with the highest levels which shall

Chen be tested extensively and placed under configuration/library control

before descending downward in the design to the programming of any subordinate

levels. Efficient and effective control of the program during coding and test

.la required.

5.5.1 Organization. The contractor shall implement a program production

organization that facilitates the top-down design, coding, and test of the

program. o

95

r

•

o

\

3.5.2 Timing and memory management . The contractor shall be responsible

for management of computer system resources (e.g., mala memory, mass

storage, processor time, Input/output controller(s) , and input/output

channel (s)) . He shall determine the original assignment of system resources

through analysis and modeling. The contractor shall monitor the utilization

of the assigned resources as program development progresses. A minimum

reserve)f 20 percent capacity shall exist Ln each resource area at the

time of program acceptance by the procuring agency.

5.5.3 Library usage and control . The contractor shall establish procedures

for producing, updating, and controlling source and object libraries of

the software under development. All initial programs and development changes

shall be maintained in both source and object format. All program patches

shall be maintained in maintenance/patch legs and on patch tapes until

Incorporated in the patch-free source program. Program patches shall, as

s minimum, be identified by: patch production date, programmer producing the

patch, the program segment that the patch is applicable to, the corresponding

problem number or identification, the test that revealed the problem, the

testing that certifies the integrity of the patch and the problem that

necessitated the patch.

5.5.4 Load maps . The contractor shall describe the format, method and

location in which the various portions of the program are loaded and stored

ln the weapon system computers and, if applicable, disks or other storage

devices. This mapping shall include delineating all of the portions of the

program that are to be concurrently resident in the device in question and

'.*

96

the location and size of each portion of the program. If the system has

sore Chan one defined configuration or mode of operation for the software,

Che contractor shall describe this information for each configuration or mode.

5.6 Program generation . >

5.6.1 Language. Weapon system software shall be coded in one of the high

order programming languages (HOLs) approved by the Department of Defense

unless a specific waiver has been previously granted to the procuring agency

by proper authority.

5.6.2 Program regeneration . All weapon system software delivered by the

contractor shall be capable of being regenerated from Government owned and

the delivered support software.

5.7 Program operation . The contractor shall determine the procedures for

Che operation of the weapon system software. Procedures shall be described

in terms undsrstandable to operational personnel. Program operation procedures

shall be subject to the approval of the procuring agency.

5.7.1 Analysis . In determining program operation procedures, the contractor

shall investigate and define in detail the following areas.

5.7.1.1 Non- functional operation . Minimal processor and peripheral equip-

ment requirements, equipment set-up for system operation, program set-up,

special parameter entering requirements, standby/operate procedures, moni-

toring procedures, and recovery procedures shall be defined.

o

o

97 *
\

\-

5.7.1.2 Functional operation . Individual operator and station functions;

coordinated station procedures; all human factor aspects, modes and pro-

cedures necessary for each console or station operator to perform his

function In support of system operation; the function of every control

button, switch, readout and display affected by or affecting the system;

all constraints Imposed on operator actions shall be defined.

5.8 Quality assurance . The contractor shaU implement quality assurance

procedure? to verify in each stage of the development that the product

program will meet the current performance specifications approved by the

procuring agency. The contractor shall Implement quality assurance pro-

cedures to validate the accuracy, correctness and performance of the

product programs, to verify the accuracy anc ; conformance of program documen-

() Cation to the requirements of this Military Standard and to ensure that all

procedures incumbent on the development activity are properly and completely

followed. The procedures shall be open to review by the procuring agency

or its authorized representative. The implementation and functioning of

the procedures shall also be open to inspection by the procuring agency or its

authorized representative.

5.8.1 Organization . The quality assurance organization shall include

provisions for addressing all the following facets of quality assurance.

5.8.1.1 Reporting level . The contractor's quality assurance organization

shall have a corporate reporting responsibility external to the developing/

. engineering group to assure an objective evaluation of conformity and progress.

98

3.8.1.2 Participation In audita . The contractor's quality assurance organi-

zation shall present and shall conform with procedures for independent

quality audits that should take place throughout the development phase

starting with design development and ending with test, certification,

delivery and acceptance which measure system conformance with technical and

management requii ements and standards.

5.8.1.3 Design -eviews . The contractor's quality assurance organization

shall participate in design reviews and walk throughs utilizing procedures

to assure completeness and accuracy of presented materials and to assure

timely and correct completion of action assignments.

5.8.1.4 Tests . The contractor's quality assurance organization shall witness

tests to assure conformance with approved procedures. Quality assurance
j

activities shall include record-keeping, maintenance, control of test materials,

and conflict/discrepancy resolution.

5.8.1.3 Deliverable items . The contractor's quality assurance organization

shall provide and shall conform to procedures to assure contractual correctness

of all deliverable items.

5.8.1.6 Reporting . The contractor's quality assurance organization shall

utilize both interdepartmental and intradepartmental reporting chains to

assure prompt reporting of the results of quality assurance activities.

Quality assurance shall follow-up any noted discrepancy/action assignment

to assure timely and complete correction of the problem.

3

99

"'••.»

*
\

f-

o

\

5.8.1.? Authority . When conflict exists between quality assurance and

other contractor functions at a specific task/management level, the

conflict shall be resolved successively at the next higher level.

5.8.2 Program design . The detailed performance requirements for the

weapon system software shall be audited and verified as being able to

satisfy the requirements of operational requirements, operational standards

and system performance specifications, as may be provided by the procuring

agency.

As early as possible in the design phase, t.ie proposed program archi-

tecture shall be verified as to its capability to support the computa-

tional 1 sad imposed by maximum operation of all functions required to be

simultaneously serviced. This verification may require extensive modeling

and simulation and shall, in all cases, be compleced prior to design

Implementation and coding.

The detailed design of the weapon system software shall be verified

against the performance requirements specified by the procuring agency.

The detailed performance requirements, the program architecture and

the detailed program design will be subject to review by the procuring

agency at scheduled milestones in the program development cycle. Prior

to submission of the detailed design to the procuring agency for review,

a design walk-through shall be conducted. This design walk-through shall

be accomplished by one or more technically qualified persons in conjunction

with the originator or originators of the detailed design.

5.8.3 Program production . Programming conventions, program design rules

and programming standards shall be promulgated to and followed by all

levels of program production personnel. The contractor shall insure pro-

grammers are skilled in the use of the specified language and compiler

capabilities. Standard procedures shall be developed for programmers to

100 *\
!••

follow in use of coding forms, submission of compile requests, reports of "^

progress and associated listings.

A code walk- through review of each program segment shall be conducted

prior to submission of the program for compile. This review shall be con-

ducted by one or more technically qualified persons in conjunction with the

originator of the code being reviewed. Coding shall be verified for com-

plete compliance with detailed program design. Coiing shall' be validated

for compliance with specified programming conventions and standards.

Listings for developmental segments of the progran shall be thoroughly

desk-checked before computer-run testing.

5.9 Program test . The contractor shall determine the scope of tests re-

quired to ensure that the program being developed meets all specified tech-

nical and operational performance requirements anc. the acceptance criteria.

The contractor t hall be responsible for accomplishing all development test-

ing. Test plam.ing shall include development of:

o
*. Progran acceptance criteria. '

b. Levels of testing to verify performance.

c. Internal procedures for scheduling and conducting tests.

d. Detailed procedures for testing at each level.

e. Reporting procedures of test results.

All test plans, specifications and procedures shall be subject to review

and approval by the procuring agency. The procuring agency shall be kept

advised of all test schedules and shall be permitted to witness all tests

with designated Government or contractor representatives. The contractor

shall provide all supporting software necessary to conduct, control and

record tests. The contractor shall define any special support software

necessary to satisfactorily test the software being developed. The con-

tractor shall identify to the procuring agency any GTE or GFI required to

support the test program early enough to allow the procuring agency to

obtain and deliver any such requirements without impacting the development

and testing schedule. y

101
?-A

\

The contractor shall provide or Insure che availability of adequate

facilities for conducting all required tests. The procuring agency shall

have the option of specifying the facility that should be used to conduct

any portion of the test program.

The contractor shall prepare test reports shoving quantitative results

of all tests. Such reports shall be signed by a representative of the

contractor. Any formal or informal approval of the testing results by

the procuring agency representative during che course of software pro-

duction shall not be construed as a guarantee of the acceptance of the

finished product. Testing shall consist of the following:

a. Subprogram/module tests

b. Function tests

c. System performance tests

d. Systems integration tests

5.9.1 Subprogram module tests . Each subprogram/module shall be subjected

to developmental testing. Such tests shall be adequate to determine compli-

ance with the applicable technical, operational, and performance specifica-

tions. As a minimum, each subprogram/module shall pass the following tests:

a. Verification of the coded subprogram/module to ensure that it

fully satisfies the performance and design specification require-

ments and that all code to be delivered has been exercised.

b. Error-free compile/assembly of the coded subprogram/module.

c. Exercise of the subprogram/module in terms of input/output

performance with the results satisfying the applicable performance

and design specification requirements.

5.9.2 Function tests . Subprograms/modules shall have passed the subpro-

gram/module tests prior to being subjected to functional testing. The sub-

program/modules shall be integrated individually into particular subsystem

!*\i

102

r

)
programs. Function tests shall be adequate Co determine compliance with

the applicable technical, operational, and performance specifications.

5.9.3 System performance tests . All subsystem programs shall have passed

the function tests prior to system performance testing. The subsystem

programs shall be integrated individually until all subsystem programs

have been integrated into the system program. These tests shall be

adequate to determine compliance with the applicable technical, operational,

and performance specifications. As a minimum, systems performance testing

shall be performed to:

a. Verify' i.he total man-machine interface.

b. Validate system initiation, data entries "ia peripheral devices,

program loading, restarting, and the monitoring and controlling

of system operation from display consoles and other control

station r. as applicable.

c. Verify system integration of equipment and subsystems.

d. Verify the capability of the' system to satisfy all applicable

performance and system level specification requirements.

a. Via the deliberate insertion of erroneous inputs, verify the

capability of the system to properly handle and survive erroneous

inputs and proper inputs entered in improper format or sequence.

5.9.4 Systems integration test . In instances where the developed pro-

gram is a component of a larger system involving the integration of two

or more programs developed as separate projects, the individual contractor

.ahall be required to participate in total system integration testing.

Integration testing may be conducted at facilities other than the develop-

ment facility, such as a Land-Based Test Site. Each contractor shall

provide technical support to the integration testing as required.

o

103

3

\
• «

3.9.5 Soitware trouble reporting . The contractor shall develop and im-

plement internal procedures for handling and reporting all software or

software related problems identified. In addition to the categories

and priorities described below, a code shall be utilized to indicate the

Status of each Software Trouble Report (STR) as it progresses through

the correction cycle. All STRs shall be verified for accuracy and cor-

rectness .ind submitted on standard forms.

The contractor shall maintain a complete sec of software problem data

files thrjughout the duration of the contract and make this information

available to the procuring agency or his authorized representative upon

request.

5.9.5.1 Software trouble report category . Software problems shall be

classified by category as follows:

a. Program trouble (?) . The program ioes not operate according to

Supporting documentation and the documentation is correct.

b. Documentation trouble (D) . The program does not operate according

to supporting documentation but the program operation is correct.

C. Design trouble (E) . The program operates according to supporting

documentation but a design deficiency exists.

d. Logic trouble (L) . The program has a logical error with no directly

observable operational symptom but with the potential of creating

trouble.

' 5.9.5.2 Software trouble report priority . Software problems shall be classified

by priority as follows:

a. Priority 1 - a major malfunction rendering the entire program

or a major functional area unusable or unreliable. All problems

of a major nature which are unpredictable, that is, cannot be

reproduced at will, shall be classified as priority 1.

104
•

""!• V

b. Priority 2 - a serious malfunction which limits the program from

performing its full capability and for which there is no alternative

procedure available.

e. Priority 3 - a malfunction which presents an erroneous result but

for which the program provides an alternative permitting full

capability operation.

d. Priority 4 - a minor error or operator annoyance which has no

effect on the operational capability of the system.

e. Priority 5 - an insignificant error or no error.

5.10 Program acceptance .

NOTE: This section is presented here to show the intended

subject matter. The content of section 5.10 will be modified,

as necissary, to be in conformance with the final version of

TADSTAND X (Software Quality Assurance Testing Criteria).

Incrementally d :ring development and prior to acceptance by the procuring

agency, the contractor shall demonstrate the complete capabilities of the

program. This demonstration shall take the form of meeting the incremental

program performance criteria by formal testing and auditing.

Program performance criteria shall be measured by: the number of existing

patch words, the priority and number of outstarding and unresolved Soft-

ware Trouble Reports (STRs), the endurance run time without system failure,

the core memory requirements, and the timing requirements of the operating

program. These criteria shall be met incrementally, during development,

prior to operational employment and throughout the software life cycle.

The specific criteria and their relative times of compliance are specified

in Figure 3.

These performance criteria are binding on all software program types

specified in this standard.

o

*.i

105 '

\

. f it

o

SYSTEM INTEGRATION

TEST

(SIT)

NO

MODULE

HAS

A

NUM-

BER

OF

PATCH

WORDS

GREATER

THAN

2%

OF

MODULE

SIZE.

OVERALL

PATCH

WORDS

NOT

TO

EXCEED

1%

OF

PROGRAM

SIZE.

V*
ec

o
oci

ec
UJ

>

<X

O
E
a.

oomo

ff
a
o
o

a
Ui
N
E
o
x

<
in
<

a
Ui

E
O
X
H»
3
<

<

Q
UI

O
-j
_i

<
UJ

Z
o
z

PROGRAM
ACCEPTANCE

TEST

(PAT)

NO

MODULE

HAS

A

NUM-

BER

OF

PATCH

WORDS

GREATER

THAN

2%

OF

MODULE

SIZE.

OVERALL

PATCH

WORDS

NOT

TO

EXCEED

1%

OF

PROGRAM

SIZE.

NOTE:

IF

TIME

PERMITS.

THE

PATCHES

SHOULD

UE

COM-

PILED

IN

AND

RETESTED

PRIOR

TO

SIT

>
t—

E
c

c.

oooo

vt
DC

3
g

<N

a
Ui '

N
E
g

3
<
to
<

a
Ui

E
g

3
<
v%
<

NONE

ALLOWED

FUNCTION TEST

DELIVER

PATCH

FREE
FOR

PAT.

•

<Z.

o
a;
a.
UJ

>
E
g
E

OlflOO

CC

O
X

<
o
o
ml
-J

<
CC
UJ -,
°-^

Z
a
C/l

Ui
Q
CC
Ui
a.

a
Ui

2
O
-I
mi

<
Ui

2
3
Z

MODULE

TEST

UJ
UJ
<r
u.

X
u-
<
0>

ft

O
cr
ec
IXU

>
ec

o
E
OJ

Ovifllfl

<
z

<
O
o
mi
ml
<
CC
1X1 -.
°- s
«>2

Z
a
</>

Ui
a
CC
UJ
a.

a
•XI

O
_»
-i

<
Ui

Z
a
z

e
Ui

5
PATCH

CRITERIA

(NO.

OF

ALLOWABLE

PATCH

WORDS)

ALLOWABLE

PROGRAM

ERRORS

(STRi)BY

PRIORITY

z
CC

Ui
u
z
<
CC

a
z
Ui

Ui
CC
Oo

O
z
I

COMPILER

ERRORS

AND

WARNINGS

r

.

FIGURE 3. Program performance criteria .

"\;

106

J

a. Formal Qualification Testing (FQT) shall demonstrate the appli-

cable performance requirements. The tesc environment shall con-

sist of actual operational and interfacing equipment to the

extent practicable. Data inputs shall be operational scenarios

designed to demonstrate the correct response of the computer •

program to stimulation actions through man-machine, or other

external, interfaces. The operating procedures for the program,

as deteimined by the contractor, shall be used to exercise the

program in FQT.

b. Auditing shall verify the correspondence and correlation between

•all deliverable items which are associated with and support each

computer program entity which the contractor has been tasked to

produce. This auditing shall include but is not limited to the

following items:

(1) Review of program documentation for format, completeness,

correspondence and correlation.

(2) Review program listings for compliance with applicable pro-

gramming standards and conventions.

(3) Verify operator/user manuals as complete and accurate.

The contractor shall prepare all materials for the audit, provide

npace for tte cudit group, and provide technical assii,tauc». The

procuring agency or designated representative will direct and

control the audit.

5.11 Configuration management . The contractor shall develop and implement

procedures to ensure the positive identification, control, status accounting

and authentication of the configuration of the weapon system software, the

detailed performance requirements and the detailed program design during

all phases of the development effort. The contractor shall insure that

•uch procedures are integrated with the configuration management procedures

addressing the total system when the software is only one element of the

weapon system being developed. Procedures shall provide:

o

10 7-

I

i *. Positive idencif icacion of all program elements.
•t

I
b. Rapid, comprehensive and accurate treatment of proposed changes

''

to elements under configuration control.

> c. Comprehensive implementation of approved changes and dissemina-

i tlon of corrected documentation and program changes.

•' d. Accurate records of status of all proposed changes.

c. Verifications of change control, identification and status

accounting of the software products.

3.11.1 Configuration identification .

5.11.1.1 Baselines . The contractor shall establish internal baselines

representing the approved description of the configuration of the weapon

system software under development.

• 5.11.1.2 Documentation identification . Thi contractor shall establish

CiCling, labeling, numbering and cataloging procedures for all descriptive

documentation and program material which sitisfy the following criteria:

a. Denotes the program to which it applies

b. Describes the purpose of the document

c. Defines the baseline which it is a part of, or in support of

d. Denotes the serial, edition and change status of the document

The date of program compilation shall be indicated as part of the identifier

for each delivered program. Sequence numbering of a program shall be

structured so future changes to the program can be properly noted.

5.11.2 Configuration control . The contractor shall establish procedures

for the formal control of all documents, program materials and the develop-

ment support library. Procedures shall include the establishment and

functioning a software configuration control board, the methods and formats

for submission and acting on Software Change Proposals, Software Enhancement

Proposals, Software Trouble Reports and Specification Change Notices.

.. o

108 1

3. 11. 2.1 Softwrre configuration control boards (SCCB) . Each baseline shall

be under the formal control o£ a responsible board. The board shall identify

*ad maintain the complete and current description of each element of the

baseline. The board shall consider all proposed changes to the baseline

and take appropriate action on each proposal. Each proposal shall be

analyzed and evaluated in the following areas:

a. Operational impact

b. Technical design impact

c. Resource requirements (e.g., cost, personnel, time)

For all approve i changes, the board shall ensure Implemented changes are

reflected in all baseline documentation under the control of the procuring

agency.

Changes which require the approval of the procuring agency shall be for-

warded by the contractor with complete analysis, evaluation, and recommen-

dations.

5.11.2.2 Software changes . MIL-STD-1679 shall be used during software

development to communicate changes among the software community. Changes

to the software proposed by the contractor (including descriptive documen-

tation) which is under configuration control by the contractor or the

government or both, shall be submitted to the appropriate software con-

figuration control board (s) as either Software Change Proposals (SCP)

or Software Enhancement Proposals (SEP) depending on the classification

of the changes. An SC? or SEP which has cost or schedule impact shall be

attached to a form DD1692 (Engineering Change Proposal, page 1) completed

and numbered in accordance with reference 2.1. a.

5.11.2.3 Documentation changes . Procedures for controlling the preparation

and dissemination of changes to documentation to reflect approved and

implemented SCPs, SEPs, and STRs shall be developed. Such procedures shall

be designed to insure the simultaneous promulgation of the documentation

and program change.

}

CJ

D

-\\

109 '
' TJ '

1'!

5.11.3 Configuration status accounting . The contractor shall establish

procedures to enable the generation of periodic status reports on all

elements under configuration management. Procedures shall identify all

SCPs, SE?3, and STRs in preparation, in review, and in the current stage

of implementation. Procedures shall identify all disapproved and deferred

SCPs, SEP;., and STRs.

5.11.4 Configuration authentication . The contractor shall utilize con-

figuration authentication techniques which, as a minimum, include the

following

:

a. k review process that reconciles deliverable software products

to their approved documentation.

b. ?rocedures to assure that the software products are identified as

•Cated in the applicable contract requirements and the approved

project configuration management plan.

c. Procedures to be used by the change control authority to con-

firm incorporation of the approved configuration changes.

d. Procedures for the reconciliation of configuration status

accounting reports and status (version) of the software pro-

ducts to the approved baseline (s) and its approved changes.

5.12 Management control . The contractor shall determine and implement a

management system for the development effort which is acceptable to the

procuring agency. The management of the development shall emphasize

efficiency and economy. Clear lines of authority and responsibility shall

be established. The management system shall provide for the coordination

of all facets of the development under a master schedule of events and

milestones. Milestone dates shall be established for demonstrations of

evolving software capabilities. Such demonstrations are intended to pro-

vide the necessary visibility for project management and meaningful out-

put for product validation. The management system shall provide a capability

110 \

•)

Co monitor Che progress of Che development by mean? of regular scacus

reports, reviews and audics. The managemenc syscetn, including planning

and procedural guidance for Che developmenc efforc, shall be compiled in

an overall plan for visibilicy, forraalizacion, concrol, and coordinacion

of Che development.

5.12.1 Organizacion . The concracCor may use an incernal organizacion of

his own choice, subject only Co Che requirements from this standard

which are invoked by Che procuring agency. The concracCor shall designace

an overall manager for Che developmenc efforc. Th > functions of design,

produccion and cesc shall be given organizacional 'risibility. The relacion-

ship of all supporc funccions, both full-cime and parc-cime, required Co

SupporC Che developmenc efforc shall be clearly defined. The responsi-

bilicies of all sub-concraccors, if used, shall be clearly visible co Che

procuring agency.

5.12.2 Resource management . The concracCor shall deceraine his resource

requirements in Che three areas of personnel, facilities, and equipment.

Planning shall be compleced early enough Co permit orderly acquisicion,

inscallacion and Graining (if applicable) , of resources on an opeimura

schedule to prevent delay and Co avoid dead-time. Planning shall be

rer.ponsivn to schedule changes. The contractor shall avoid sharp fluc-

tuations in personnel requirements by judicious shifting of personnel as

developmenc Casks change.

ReusabiliCy, permanency or length of projecc and convenience of locacion

shall be weighed. The procuring agency may direcc Che use of governmenc

or ocher facilities.

The concraccor shall consider Che cosc-effectiveness of commercial equip-

ment Co assise in the developmenc where appropriate. Where weapon system

equipraenC is Governmenc- furnished or Governmenc-specif ied, the concracCor

•hall be responsible only for Che cosc-effectiveness of its use and

maintenance, noc its acquisicion. The possibility of continuing use of

111

u

o

."*••',

' T u

o

Che equipmenc by the Governraenc during Che operational support phase of

the software life-cycle shall be a consideration. The contractor shall

implement a system of management monitoring of utilization in the areas

of personnel, facilities, and equipment considering both quantity and cost.

Actual utilization races shall be compared to predicted rates at least

monthly. The procuring agency may specify more frequent comparison.

Variations shall be expeditiously investigated and corrective action

Initiated. Personnel stability and productivity shall be measured

regularly.

5.12.3 Status reviews . Status reviews may te requested by the procuring

agency at regular intervals during the development effort. The contractor

•hall be able to provide information at Chese reviews Co apprise Che

procuring agency of currenC scacus, progresss, problems, and cricical items

occurring in the development efforc wichin the purview of the contractor.

5.12.3.1 SCatus review subjects . The contractor shall address Che following

subjects, as appropriate co Che stage of Che development effort, in each

status review:

Organizational changes, managerial personnel changes

Program design status

Development schedule status (milestone prognosis)

Coding status

Software Trouble Report (STR) status

Software Change Proposal (SCP) status

Software Enhancemenc Proposal (SEP) scatus

Integration schedule status

Testing status

Deliverables

Progress on previous problems

New accion ic ems /problems

112

r ^

B. Delinquencies: governmental , outside contractor, subcontractor,

and internal

n. Manpower utilization

o. Facilities utilization

p. Computer system resource utilization (see 5.S.2)

q. Financial summary

3.12.3.2 Status review subject items . Within eacn subject area , the con-

tractor shall :over the following items, as applicable:

a. The program schedule updated to the end of this reporting period.

b. Majoi difficulties encountered and plans to overcome them,

including: Tasks/units that are currently behind schedule (or

have anticipated schedule changes), their effects on completion

of the project, and steps being taken tc remedy schedule delays.

e. Othei information which defines cause and effect of significant

chanf.es on the contract schedule. ;*~\

d. Problems which actually or potentially will cause deviation from

contractual requirements.

C. Summary of meetings and conferences held during the reporting

period including action items with due dates for both the con-

tractor and the procuring agency. Current status of action items

shall be included until reported closed.

5.12.3.3 Documentation reviews . Documents and programming materials as

specified, shall be scheduled for detailed review prior to approval or

acceptance. The purpose of the review shall be to:

a. Verify that the subject documents and programming materials

comply completely and accurately with the performance require-

ments or design specifications of the previous documents and

programming materials and all other standards and constraints

imposed by the procuring agency.

O

1.13

o

cj

'

i

b. Validate che accuracy and completeness of the documents and

programming materials by checking for all components, their

correct cross-reference and editorial accuracy.

The reviews shall be in two stages; a preliminary working-level review,

followed by a formal (or critical) review after changes resulting from

the preliminary review have been entered. Reviews shall be scheduled by

the contractor, with the concurrence of the procuring agency, and in

accordan :e with milestones in the software development plan. The procuring

agency nay designate other activities to participate in the review. The

contractor shall distribute drafts of review documents and programming

material:! to each designated activity sufficiently in advance of the

scheduled preliminary review to allow adequate internal review by each

activity. The contractor shall distribute a corrected version of the

review documents and programming materials i-fter completion of the pre-

liminary review. The critical review for the acceptance or approval of

the docuuents and programming materials shall expeditiously follow the

distribution of the corrected version.

5.12.3.4 Special reviews . Special reviews may be scheduled by the pro-

curing agency at major milestones or events in the development effort

not covered by Baseline Reviews or Status Reviews. A special review of

the test program as developed shall be conducted. The contractor shall

furnish the same support for special reviews as for baseline reviews.

5.12.4 Inspections and audits . The procuring agency may employ a physical

Inspection to determine the contractor's conformace with contractual

requirements. As a minimum, areas of interest include development facilities,

documentation controls, deliverable data item3, Government-imposed stan-

dards, and contractor internal standards.

114
?

I

a. Facilities . The development and cesc facilities may be inspected

for contractual conformity at any time during the life of a

software system development contract.

b. Configuration management . Contractor conformance with the

approved Configuration Management Plan may be audited through

examination of records and attendance at change control Board

meetings

.

e. Internal standards . The procuring agency may audit the con-

tractor's conformance with internal standards of software develop-

ment and control.

d. Qualir.y assurance . The procuring agency may audit and inspect the

contractor's conformance with the approved Software Quality

Assurance Plan.

o

o

1J.5-

!

APPENDIX B --MILITARY STANDARD 490

60.1 Section 1, Scope. The content of Section I

at a computer program development specification

dull be as defined in the following example:

Example:

t. SCOPE

1.1 Idenufication. This paragraph shall contain

the approve I identification, nomenclature, and

authorized abb eviation for the computer program.

1.2 Flint Uonal aimrruiy. This paragraph shall

contain a brie*' description of the overall computer

program by rrujor functions (tasks). It shall further

identify and summarize the specification content,

composition, &.d intent.

60.2 Sectioa 2, Applicable documents. The con-

tent of this Sertion 2 shall be in accordance with 4 2.

60J SccrJoj 3, Requirements. This is the major

section of the computer program development speci-

fication. It shall consist of a series of paragraphs that

specify in detail the performance requirements of the

computer program. This section shall define and

specify all functional performance requirements, de-

sign constraints, and standards necessary to ensure

proper development of the computer program. This

paragraph shall contain a brief general discussion of

the overall system within which the program will

operate. It shall show the relationships of each sub-

system with the computer program portion of the

system. In particular, the role assigned to the com-

puter program should be stressed to delineate the

functions it must accomplish for the system. As the

introductory segment of the specification, this para-

graph shall:

g. Provide a brief general discussion of the

overall system and make reference to other system or

subsystem performance specifications that will

further clarify the performance requirements of the

subject system.

•(Omit if aot applicable)

b. Provide a general description of the periph-

eral equipment with which the specified program will

interface.

e Provide a general description' of any pro-

grams with which the specified program will inter-

face-.

d. Provide a general description of the major

functions of the computer program relative to the

manner in which they will be subsequently treated.

60J. 1 Paragraph 3.1. Program definition. This

paragraph shall provide a detailed description of the

major functions of the computer program. This

paragraph shall:

«. Detail the requirements imposed an the

computet program by each interfacing equipment and

shall include purpose of equipment, computer inter-

face description, equipment options and controls, and

timing and accuracy limitations.

b. Provide timing and sequencing interface re-

quirements imposed by other computer programs or

by equipment or operational limitations.

c. Describe the major functions of the com-

puter program including their interaction, sequencing

and timing requirements. Block diagrams of the inter-

faces shall be provided to facilitate presentation of

the material.

60.3.2 Paragraph 3.2. Detailed functional require-

ments. The subparagraphs under this paragraph shall

contain the necessary detailed text and mathematical

descriptions for each of the required computer pro-

gram functions. A set of subparagraphs shall be

prepared for each major function or subfunction,

whichever is required for clarity. Descriptive and

introductory material for each function shall be in-

cluded as necessary in this paragraph.

60.3.2.1 Paragraph 3.21. Inputs. This paragraph

shall provide a detailed description of ail input data.

Source of the input, method of insertion, and validity

checks shall be defined. Quantity and timing of the

116

¥

input data and associated limits shall be specified..

Operator control requirements shall be detailed, in-

cluding names and descriptions of operator actions,

consoles or operator positions where applicable, and

the required programmed restrictions.

60.3.2.2 Paragraph 3.Z2, Processing. This para-

graph shall provide a textual and mathematical de-

scription of each of the processing requirements of

each function. Presentation of the mathematical

descriptions under each function shall include:

A Purpose - This area shall describe the exact

intent of the mathematical operation(s). This involves

l definition of the specific input and output param-

eters and the proce sing required.

& Approach — This area shall contain a textual

description of each mathematical operation specified.

The accompanying narrative shall identify accuracies

required, sequence md timing of events, and relevant

restrictions or limitations. Derived equations shall be

shown with appropriate mathematical and control

symbols adequately defined.

c Diagrams of Geometry - Suitable diagrams

shall be included in the text produced under the

preceding paragrap.is where applicable.

60J. 2.3 Paragraph 3.2.3. Outputs. This paragraph

shall provide a detailed description of all output data,

control parameters, and displays. Method and timing

of outputs shall be described completely. Operator

output requirements (e.g., hard copy, CRT displays)

oust include name, content, timing, format and

routing of the information.

60.3.2.4 Paragraph 3.2.4, Special requirements.

This paragraph shall contain detailed descriptions of

special data processing requirements or instructions

for special formats to accommodate testing, re-

cording, simulation, necessary procedures, system

growth requirements, recovery requirements, and
special personnel requirements.

60.3J Paragraph 3.3. Adaptation. These para-

graphs shall contain a description of the data require-

ments with respect to system environment, system

parameters, and system capacities. Adaptation data is

that data that can be centrally modified as needed to

define the scope of operational functions within

prescribed limits. These data are divided into three

classes and presented as follows.

60.3.3.1 Paragraph 3.3.1, General environment.

This paragraph shall contain a description of environ-

mental data detailing the characteristics anticipated

for all particular installations. Each installation will

select and set the required data and value for opera-

tional use. Examples of such data are: grid limits,

radar ranges and areas of coverage, prescribed safety

limits, etc.

60.33.2 Paragraph 3.3.2, System parameters. This

paragraph shall contain a description of constants re-

quired by one or more subprograms that may change

from time to time incrementally within a specified

range according to operational needs. Such data con-

sists of allowable trajectory deviations, missile per-

formance cha/acteristics, etc

60.3.3.3 Paragraph 3.3.3, System capacities. This

paragraph shall contain a description of the capacity

requirements for the computer program. Items such

as compatibility for total simultaneous target hand-

ling, total number of simultaneous missile trajectory

controls, total number of simultaneous displays and

operator station requests, etc., shall be described. The

system capacities are directly related to computer

storage capacities, interfacing subsystem timing rates,

and interfacing equipment capacities.

60.4 Section 4, Quality assurance provisions. This

section shall specify test/verification requirements,

methods of verification, and the necessary test tools

and facilities to conduct the required tests/verifica-

tions. This section shall establish the requirements for

the test plans and procedures that must be formu-

lated for verification of the program. The intent of

the test effort is to verify that the performance re-

quirements as stated in Section 3, of the specification

have been met. The following paragraphs shall be

included.

60.4.1 Paragraph 4.1, Introduction. This para-

graph shall establish the requirement for development

of a test plan and test procedures for the subject

program. It shall specify the following levels of test-

ing:

a. Computer subprogram testing

b. Computerprogram testing

1

117

V

. t

c Computerprogram acceptance testing

d System integration testing

60.4.2 Paragraph 4.2. Test requirements. This

paragraph shall specify the requirements for each

level of testing except the acceptance test level. For

each level, the test tools and facilities required shall

be specified. The requirements shall include test

formulas, algorithms, techniques and acceptable tol-

erance limits, as applicable.

60.43 Paragraph 4.3, Acceptance test require-

ments. This paragraph shall establish the means by

which the procuring agency may formally accept the

computer program as fulfilling the 'performance re-

quirements.

NOTE: Since the depth of coverage possible in

this section depends upon the type of program to be

tested, the minin um essential content of this section

shall include the establishment of the levels of tests

required and the requirement for production of test

plan and test procedures documents.

60.5 Section 5, Preparation for delivery. This sec-

tion is normally not applicable.

60-6 Section 6, Notes. This section shall include

information that is stated for administrative con-

venience only, and is not a part of the specification in

the contractual sense, e.g., it shall not include require-

ments that constrain design or development, or qual-

ify the performance requirements. This section shall

include a list of all documents, specifications, etc,

that are necessary for program development and that

are not included with this specification.

60.7 Section 10, Appendix I. This section of the

specification shall contain requirements which are

contractual!:' a part of the specification but which,

for convenience in specification maintenance, are in-

corporated terein, e.g., requirements of a temporary

nature or fcr limited effectivity. Appendixes may be

bound as jparate documents for convenience in

handling, e.g., when only a few parameters of the

program arc classified, an appendix containing only

the classify 1 material may be established. Where

parameters are placed in an appendix, the paragraph

of Section * shall be referenced in the main body of

the program specification in the place where the

parameter would normally have been specified.

Typical da .a that may be included in computer

program cevelopment specification appendixes

include:

a. Mathematical derivations

b. Alternate method

c. Summary of equations

d. Definitions of terms

118 f

LIST OF REFERENCES

[ll Davis, C.G. a^d Vick, C.R.,"The Software Development
System," IEEE Transactions on Software Engineering ,

pp. 69-84, January 1977.

[2] Willis, R.H. and Jensen, E.P., "Computer Aided Design of
Software Systems," 4th International Conference on
Software Engi neerlng . pp. 116-125, 1979.

[3] Mullery, G.P., "CORE—A Method for Controlled
Requirement Specification," 4th International
Confer°nce on Software Engineering , vv . 126-135,
197P.

[4] Hammond, L.S., Murphy, D.L. and Smith, M.K.,"A System
for Analysis and Verification of Software resign,"
COMPS^C 78 . pp. 42-47, November 1978.

[5] Munson, J.B., "Software Maintainability: A Practical
Concern for Life Cycle Costs," CQMPS^C 78 , p. 54,
November 1978.

[6] "Ralzer, F. and Goldman, M ., "Principles of Good Software
Specification and Their Implications for
Specifications Languages," 1979 IEEE Specif cat ions
of Reliable Software , ps . 58-67, September 1979.

[7] Eeninger, K., "Specifying Software Requirements for
Complex Systems: New Techniques and Their
Application," 1979 IEEE Specifications of Reliable
Software , pp. 1-14, September 1979.

[8] Merten, A. and Teichreow, "The Impact of Problem
Statement Languages on ^Evaluating and Improving
Software Performance," f^IPS Conference
Proceedings , pp. 849-857, 1972.

119

[91 Jones, C., "a Survey of Programming Design and
Specifications Technioues," 1979 IEEE
Specifications of Reliable Software , pp. 91-103,
September 1979.

[IP] Teichreow, D., "A Survey of Languages for Stating
Requirements for Corrputer-^ased Information
Systems

,

"

AFIPS Conference Proceedings ,

pp. 1203-1224, 1972.

[11] TRW Defense and Space Systems Group, Software
Requirements Engineering Methodology, SPFP Final
Report - Volurre 1., August 1977.

[12] Bell,T. f Mxler, D. and Dyer, M., "An Extendable
Approach to

t!
Computer-Aided Software Requirements

Engineering," IEEE Transactions on Software
Engineering , pp. 49-59, January 1977.

[13] Alford, M., "Software Reauirements Engineering
Methodology (SREK) at the*Age of Two," COMPSAC 78 ,

xi-p, 332-339, November 1978.

[14] Alford, K. f "a Requirements Engineering Methodology for
Real-Time Processing Requirements," TRW Software
Series, September 1975.

[15] Teichreow, D. and Hershey, E., "PSL/PSA: A

Computer-Aided Technique for Structured
Documentation and Analysis of Information
Processing Systems," IEEE Transactions on Software
Engineering , pp. 41-49, January 1977.

[16] Krohn, M. and Williamson, R., "Towards an Automatic
System Generator," Software 72 , Dp. 72-76, 197?.

[17] Furia, N., "A Comparative Evaluation of RSI/REVS and
PSL/PSA Applied to Digital Flight Control System,"
AIAA Conference Proceedings , pp. 330-337, December
1979.

[l£] Heninger, K. and others, Software Reauirements for the
A-7E Aircraft , Naval Research Laboratory ,

Washington, D.C. 22375, Memorandum Report 3876,
27 November 1978.

120

[IP] Office of Management and Budget, Circular No. A-109,
5 Aoril 1976.

[20] Department of Defense Directive 5000.1, Major Systems
Acquisition , 18 January 1977.

[21] Department of Defense Directive 5000.2, vajor System
Acquisition Process , 18 January 1977.

[22] Department of Defense Directive 5000.29, Management of
Computer Resources in Major Defense Systems ,

26 April 1976.

[2?] Department of Defense Instruction 5010.21,
Configuration Management Implementation Guidance ,

6 August 1968.

[24] Department of Defense Military Standard 1679 (NAVY),
Weapon System Software Development , 1 December
1978.

[25] Secretary of the Navy Instruction 3560.1, Navy Tactical
Digital Systems Documentation Standards , 8 August
1974.

[26] Department of Defense Military Standard 490,
Specification Practices , 30 October 19^8.

[27] De Roze, B. and Nyman , T., "The Software Life Cycle —
A Management and Technological Challenge in the
Department of Defense," IEEE Transactions on
Software Engineering , pp. 339-318, July 1978.

[28] Wolverton, P.., "Software Life Cycle Management —
Dynamics Practice," Second Software Life Cycle
Management Workshop , Atlanta, Georgia, 21-28 August
1978.

121

INITIAL DISTRIBUTION LIST

Mo. C c d i e s

1. Defense Documentation Certer 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Professor N.F. Schneidewind , Code 52Ss
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

5. LT Frederic A. Petrie III, TTSN

217 Riverside Drive
Morganton, North Carolina 28655

122

Thesis
P453
c.l

187983
Petrie

The uti 1 ization of

requirement statement
methodologies in the

United States Navy and

their impact on

systems acquisition.

27 7 10;
27 MAY 82
do AU&62
8 S£P 67

2 6598
2 7243
31546

Thesis
P*f5S

C.l

187983
Petrie

The uti I ization of
requirement statement
methodologies in the
United States Navy and
their impact on

systems acquisition.

The utilization of requirement statement

3 2768 001 97840 6
DUDLEY KNOX LIBRARY

