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ABSTRACT

A magnetic tape transport system employing stepper motors has been

investigated and developed. Before the investigation of the system, a

mathematical model for a four-phase permanent magnet stepper motor was

developed and its behavior studied by computer simulation.

At the beginning, a system was proposed employing a single tension

spring between the take-up motor and its reel to maintain a tape tension.

From computer simiilation it was found that such a scheme does not regu-

late tape tension within acceptable limits. A new scheme was proposed

using two tension springs between the two motors and their reels. Prom

the simulation it was shown that this scheme is acceptable since the

tape tension is kept between the specified limits and the stepper motors

execute the tape transfer commands without any failure.
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I. EITRODUCTION

Variable reluctance and permanent magnet stepping motors are an im-

portant class of digital actuators which allov digital data to be converted

directly into mechanical displacement* The motor and drive system con-

verts each step command into a rotation or translation step of fixed

size. At high stepping rates or underload or for some step sequences,

the motor will fail to execute the step commands.

The limits on the motor response depend on: (1) load inertia, (2)

load damping, (3) motor characteristics, (4.) stator current, (5) load

torque, (6) stepping sequence, and (7) driver characteristics.

Analytical models have been developed which describe the effects of

stator winding self-inductance, mutual inductance and back EMF [l]-[2].

For a voltage source drive of the stator windings, the simplest model

is fourth order. In order to get high stepping rates, drive circuit

characteristics have approached those of an ideal current source. In

these drives, the effect of stator inductances and 3EI4F voltages are

minimized. Thus, these high-performance systems can be represented by

a mathematical model which assumes the stator landings are driven by a

current source. Such a model is a non-linear second order differential

equation.

More information on the physical construction and operation of the

stepping motors are included in References (3)- (6),





II. MATHEMATICAL MODEL OF STEPPING MOTOR

For a permanent magnet stepping motor with drive circuit charactei>-

istics approaching those of an ideal current source, the model is

J6 + DO + T(6) = \ (1)

where J = motor and load inertia, D = motor and load damping, 6 = angle

of the shaft, T(0) = motor torque, and T^ = load torque. The torque

of the motor depends on the angle of the shaft.

A torque angle T(9) relation can be obtained by applying a steady

torque to the motor and measuring the deflection of the rotor from its

equilibrium with the windings energized. The applied torque necessary

to deflect the motor to any given angle is a periodic function of the

angle of rotation. Very often the torque-angle curve is very nearly

sinusoidal. This is especially true for permanent magnet stepping motors

whereas the variable reluctance motors tend to have a torque-angle

characteristic which is much less sinusoidal but is, of course, periodic

[7], Thus

T(e) = TM sin(A9) (2)

The maximum applied torque, TM, is a linear function of the field

current (I) and the number of windings excited.

TM = K '(I) (3)

This relation applies for most motor designs until stator saturation

occurs. In this case, we assume no saturation, so equation (3) is valid.

Thus equation (1) becomes:

10





je + D6 + TM • sin(Ae) = T^ (^)

Normalizing (4-) we get

Im 9 -^

Im ^ * sin(A6) = \ (5)

where T^ is the ratio of load torque to the maximum available torque.

It is useful at this point to define a new angle variable which is

independent of the motor design. Allow it to be called the electrical

angle (2)

X = A'e (6)

By substituting this change in the variable into equation (5) we get

i^j 2 * 2_ X . sl.(X) = Tj_ (7)

It is clear that the equation (7) is a second order non-linear dif-

ferential equation with a natural frequency and damping ratio which can

be defined as

,, /ATMx^ V D fety\ = ("T^ J = 2(Aj™)i
^^^

equation (7) can now be written:

t
+ ^ X + sin(X) = T, (9)

W n
n

It is useful, at this point, to change the time scale in equation (9)

to make time dimensionless and so reduce the number of parameters associ-

ated with the motor. To do this, a new time, f, is defined which is

equal to real time multiplied by the system* s natural frequency as shown

in equation (10)

r= W^ t = ( ^)2 t (10)

By making this substitution in the system differential equation, eq. (11)

11





results which is now dimensionless in both magnitude and time.

J . 2^^ . .MX) = T^ (11)

From this equation it is seen that the form of the system response

depends on only two parameters- the dimensionless load torque, T, , and

the damping ratio, ^«

Equation (11) describes the behavior of the motor for a fixed winding

energization and load torque, for any given initial values of rotor angle

and velocity.

A. THE PEASE PLANE

It is useful in non-linear equations of the form of eq, (11) to plot

the normalized rotor velocity (dZ/df ) versus the normalized rotor pos-

ition, X, for a fixed load.

Such plots can be found in reference (7). A solution to eq. (11)

for a given set of initial conditions (dX/d "J*) and X will be a curve or

path in the (dX/df) versus X phase plane, li/hen stepping, as the motor

is subjected to a step command, which is a step change in the winding

excitation; the rotor may be at any angular position and travel at any

angular velocity. So, it is useful to look at the response of the motor

when it has any arbitrary rotor initial position or velocity.

In the phase plane plots for T^ equal to zero [Ref. 7], it can be seen

that the stable equilibrium points are located at X = i f y^ir and the

unstable equilibrium at X = ± >j ir. Also, it can be seen that since there

is a trajectory which goes through the point (dX/D 'f') = and X = -u and

another which goes through (dX/df) = 0, X = +Tt, these two trajectories

are known as separatrices. They enter the two unstable equilibrium

points. These separatrices are very critical to the behavior of the

12





stepping motor response. If the motor trajectory is forced (due to a

step command) to cross a separatrix, then motor failure occurs. This is

why it is necessary to be careful when stopping or starting the motor.

If after the last step command the motor response ever crosses a separ-

atrix, it will lose step.

It can be seen that changing the damping ^ and the load torque the

shape of the separatrix and the trajectories change. Also, it can be

seen that the stable equilibrium points are shifted to the right by

the load torque when it has positive value [7]

B. START-STOP PERPORMAITCE

\\lhen we investigate the start-stop performance of a motor, we are

really asking what happens when we subject the motor to a finite num-

ber of step commands applied at equal time intervals. We would like

the motor to execute this burst of pulses without losing step. For this

reason, we ask how short can the inter^/al between the applications be,

before the stepping motor will fail to execute these steps by losing or

gaining a step. This question can be answered from the phase plane

plots [Ref. 7] although in eq. (11) no stepping rate is implied.

I'/hen we give a step command to the motor, we want it to step through

a rotor angle, 6 , which is determined by the motor geometry and winding

energization. To this angle 6 corresponds an angle X equal to A6 due
s s s

to equation (6).

For a four-phase motor the step angle, X, is one-quarter the period

of the torque-angle characteristic curve; so that X is equal to ir/S.
s

Consider X to be a position error and especially an error of the

electrical angle. When a stepping command is applied due to the change
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of the winding excitation, the equilibrium point jumps X radians to the

right; so, the rotor will start rotating under the law of eq, (11) on a

trajectory of the phase plane with initial conditions the values of dX/

d T and X immediately after the change. Thus, at any moment the value of

X will indicate the electrical angle error. If after the application of

a number of steps the value of X is zero, that means that the motor has

executed the commands without failure.

Notice that in the case of a four^phase motor if the value of X is

n times 2 n that means that the motor has gained four times n steps of

physical angle. This is true because in a four-phase motor for a given

configuration of winding excitation, the equilibrium points are four

physical angle-steps apart,

A graphical method is described in Reference 7 that illustrates the

behavior of a four-phase stepping motor when six stepping commands are

applied with a period of one time unit. The parameters of the motor are

the damping factor ^ equals 0,125 and the load torque T- equals zero.

It is shown that the motor is able to execute this burst of commands

without any failure.

To verify the graphical method, a computer simulation was run.

Equation (11) was taken as the model of the stepping motor under all the

assumptions for which this equation is valid. It was assumed as before

that ^ equals 0,125, load torque, T- equals zero and the period of the

stepping commands equals one. The number of stepping commands was 2^.,

Figure 1 is the plot of the eiror of the electrical angle in radians

and the speed in radians/unit time. It can be seen that eventually the

average speed becomes 1,57 radians/unit time which corresponds to the

required speed for one pulse occurring every unit time. It can be seen

U
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also, that after the shut off of the motor, the speed and the error os-

cillate and eventually they become both zero, meaning that the motor

did not fail.

If the rate of the input step sequences is increased so that the

changes in step commands occur at time intervals of 0.8 time unit, then

a different situation occurs. The same graphical method again is applied

[Ref. 7] for this case and it can be seen that when the fourth step com-

mand is applied the error moves across a separatrix and now the motor

moves along the trajectoiy which will actually cause a decrease in speed

rather than an increase and so it fails to step. Notice that the motor

would slow down and begin to move to a new equilibrium point 2k radians

to the left. The application of another step would drive it further to

the left, so that the motor would tend to stop. Thus, for a stepping

period of 0.8 units, the motor cannot execute the burst of commands and

will therefore fail.

Figure 2 is the computer simulation of the execution of 2J+ step

commands 0.8 unit time apart. It can be seen that the speed during the

first and second step increases, but when the third and later fourth

step is applied, the speed decreases. After the fifth and until the last

step, the speed oscillates (without stopping) around its equilibrium po-

sition. After the application of the last step the rotor oscillates and

eventually stops. The value of the electrical angle error is -31.4-

which is -5 times 27i. That means that the motor lost 5 times 4-> 20 steps

and it executed only 4.«

The fact that the computer simulation gave the same resiolts as the

graphical investigation on the phase plane proved that eq. (11) is a

16
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valid model of the stepping motor under the assumptions that the drive

circuit approaches an ideal current source, which produces square wave

current pulses and also that stator saturation does not occur*

III. STATEI-IEITT OF THE PR0BLEI4

A transport system is to be developed for a magnetic tape memory.

The concept is new and is as follows:

a) The tape will be stored in a cassette from which it \dll be with-

drawn for recording.

b) In the memory system, the tape will be stationary and the heads

will be moved for both writing and reading. A rough approximation is

in Figure 3.

c) To advance the tape, each reel is to be driven by a stepper motor.

d) To maintain acceptable tape tension, the take-up reel will be

connected to the motor through a spring.

e) Pulses applied to a motor can be counted, pulses due to reel

motion can be counted by an optical sensor. The difference in count is

a measure of spring deflection and thereby of tension, if the radius of

the tape around the reel is known.

f) the desired tape tension limits are 0.2 to 0.6 pounds in order to

maintain an air cushion between tape and heads. It is not acceptable

that the tape tension ever be reduced to zero because the tape will be

injured and possible the magnetic heads also.

An algorithm should be found for the control of the motion of the

two reels, in order that the tape be transferred rapidly and smoothly.

Also, step sequences should be developed so that the stepping motors can

18





Geometry of the System

Read-Write Head

Figure 3
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start and stop without any failure. This way, the request file, which

will be located on a known portion of the tape, will be transferred

quickly and placed around the drum.

Data and Specifications <

Reel radius

Drum diameter

Drum speed

Optical encoder

Maximum reel start/stop rate

Maximum slew rate

Stepping motor

Moment of inertia of tension

spring and take-up reel (empty)

Moment of inertia of reel (full)

0,^61" (empty)

1.1825" (full)

A. 3"

3100 RPM

200 counts/revolution

110 steps/second

1000 steps/second

four-phase

200 steps/revolution

Maximum torque = 1#055 in/lb

Moment of inertia = 4-«9 3-5 in/lb/.

sec*

: 1,0/i B-4. in/lb/sec

: 1.34. E-4 in/lb/sec2

20





IV. DIVES TIGATION OF THE PROPOSED GOIIFIGURATION

The proposed scheme for the tape transport system is shown in Figure

four. For simplicity and because it is not important in the follovring

analysis, the drum and the optical encoder have not been included.

The main concept of the logic of the operation is that one motor

will be the master and the other will be the slave. In the forward di-

rection the master is the take-up motor. In rewind it is the supply

motor. The following is a description of the operation of the system

while in the forward direction.

liflien a command of a certain amount of steps has been applied, the

gate A opens and clock pulses are applied to the drive circuit of the

master (take-up). The gate A remains open until the number of applied

pulses is the number of steps that have been requested. When the ten-

sion of the tape, which in a real system will be monitored through the

optical encoder, exceeds a certain threshold, the gate B opens and

asynchronous pulses will be applied to the drive circuit of the slave

(supply motor) in order to relieve the tension. Gate B remains open

during the time that the value of the tape tension is greater than the

threshold. Since, in general, the radius of the tape on the supply and

on the take-up reel are not the same, the two pulse trains cannot have

the same frequency. Actually, the frequency of the pulse train applied

on the supply reel should be It./R2 times the frequency of the other

pulse train; where R^ and R2 are the radii of the tape around the supply

and take-up reels respectively,

C is the value of the spring constant for the tension spring, GT is

21





the value of the spring constant for the tape when we model it as a

spring. The model of each stepping motor has been taken as that of eq,

(11) under the same assumptions; therefore, the model of the system is:

(J + J^) e^ + D^h^ + T^sin (5O0-j_) - TF R^ = (12)

^2^*2 * °2^P "* '^(^2"^3^ + TF R2 = (13)

'^A^3
* V3 * ^^^3 "^2^ * T2sin(5O0^) = (U)

TF = CT {R^d^ - R^9^ ) (15)

where J. = moment of inertia of the motor, J-, = moment of inertia of the
A '1

supply reel, J^ = moment of inertia of the take-up reel, D^ = the damping

of the supply motor and its reel, D^ = the damping of the take-up reel,

D^ = the damping of the take-up motor, 6, = the physical angle of the

rotor of the supply motor, 6^ = the angle of the take-up reel, 9_ = the

physical angle of the rotor of the take-up motor, and TF = the tape tension.

If we call Z- = 50 9, and X« = 50 9. for the same reason as was done

in the modeling of the stepping motor, the model of the system becomes:

(J^ + J^) *ij_/50.0 + D^. ij_/50.0 + T^sin(X^) - TF*R^ = (16)

J^Q^ + 0^9^ + 0(9^ -9^) + TF-R2 = (17)

J^ L/50,0 + D^ L/50.0 + 0(9^-92) + T2Sin(X^) = (18)

TF = CT-(R292 - \Q-^) (19)

The above model of the system permits the tape tension (TF) to take

positive (stretch) and negative (compression) values. Actually, the

physical tape, of course, cannot take compression forces but since we

will not permit the tape to become loose this model is acceptable and

it is not wise to investigate a more realistic but more complicated model.
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Also, it has been assumed that the values of J,, J^, R-, , Rp do not

change with time, since the intention is to transfer a small amount of

tape from one reel to the other.

The simulation was run with all the tape on the supply reel. The

rate of the stepping commands applied to the take-up reel is 500 steps

per second. The threshold (TFL) for the tape-tension was set to the

value of 0,4. pounds, which is in the middle of the tension limits.

There was not any data for the values of D, , D^, D_. It is known that a

typical value of damping factors for the stepping motors is 0,125, so

from eq, (8) it was found that:

D^ = a^CAJ^T^)^ = (2) (0,125) (50 ^9 E - 5 1,055)^ = 0,0127

For the value of D^, two cases are simulated where D^ = 0,0 and Dp = 0,005*

The value of D, was taken again from eq, (8) so that:

D^ = 2/(A(J^ + J^) T-l)2 = (2)(0,125)(50(^.9 E - 5 + 1.3^ E - ^) 1,055)^

= 0,02^5

At the beginning it was thought that the main problem would be to keep the

take-up stepping motor from gaining or losing steps but simulation showed

that the real problem was to keep the tape tension in the acceptable

limits and non-negative.

The assumption was made that the tape can be considered a rigid ele-

ment meaning that CT is very large. From eq, (19)

R262 = Ri\ (21)

which means that all of the tape that comes out from the supply reel goes

to the take-up reel. But, due to eq, (17) and (21), at the moment of
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stepping command to the supply motor the angle acceleration exhibits a

discontinuity as does the tape-tension. Actually, when a stepping com-

mand was applied to motor number one (supply) the simulation showed that

the tension was jumping from positive to negative values which was totally

unacceptable,

A lot of attempts were made to solve this problem by increasing the

threshold (TFL) of the tape tension firom 0,4- to the upper bound 0,6 and

using different values for the spring constant C, In spite of all these

trials, the tension became negative when stepping commands were applied

to the supply motor.

Then it was assumed that CT was not large. It was found that for a

value of CT less than 10 pounds/inch the tape tension could be kept be-

tween the limits. In order to increase this limit of the 10 lb/in, the

drive scheme of the supply motor was changed and immediately when the

tension exceeded the threshold (TFL) a stepping command was applied to

the supply motor. So, the value of TFL was set to the upper limit of

0,6 lb. This new scheme did not improve significantly the value of CT.

Thus, the start-up problem appeared to be solved, (Note: independent

calculations for the spring constant of 3/8" Mylar tape in tension in-

dicates a spring constant of 9,7 lb/in, so the simulation value of 10

lb/in was considered close enough to demonstrate feasibility,)

However, the problem of stopping the system had not yet been con-

sidered. Simulation results showed that the tape tension dropped below

zero. This was caused by the stored energy in the supply reel inertia.

An attempt to solve the problem by having both motors shut off simul-

taneously was not a success. In figures 5 and 6 are seen plots of the
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error of the electrical angle of both motors and the tape tension, when

we shut off only the take-up motor and the supply motor is left to be

shut off by itself when the tension stops exceeding the threshold.

In Figures 6 and 8 there is damping on the take-up reel. It can be

seen that the tension fluctuates more in that case. Notice, that when

both motors are shut off and since all the tape is on the supply reel

the tape tension produces a moment high enough to drive the supply

motor and force it to gain steps. Since the main interest on these plots

is the fluctuations of the tape tension, it was preferred that a scale

show these fluctuations clearly but clips the error of electrical angle

of the supply motor.

In order to keep the tape tension in the limits during the shut off

period also, a spring was added between the supply motor and its reel,

V. DTVESTIGATION OF THE SYSTM IfLTR SPRDTGS ON BOTH MOTORS

In the investigation of the previous system it was shown that when

the stepping commands had been completed and the take-up motor was shut

off, the tape tension started to oscillate and to take negative values.

In a real system that means that the tape is getting loose and damage

would result.

In order to solve this problem, a spring with the same spring con-

stant was added between the supply motor and its reel. The system con-

figuration is shown in Figure 9» Notice that the only difference from

the previous scheme is the second tension spring.

The model, then, of this system is:

Vl* °1^1 * ^(^1 - ^2^ "* "^13^^(50 \) =0 (22)
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J^e^ + 0^92 - TF-I^ + 0(02 - 9^) = (23)

J^d^ + D^9^ + TF-R2 + C(9^ - 9^) = (24.)

"V^ ^
^A^A

^ ^^^^ " ^3^ ^ T2sin(50 9^) =0 (25)

TF = GT (R29^ - 11^62) (26)

where the J., J-, , J2, ft, > R2 ^^® "^^^ ^^™® ^^ before.

If the following new variables are added, then,

X^ = 50 9^ (28)

X3 = 50 9^ (29)

Then the equations of the model become:

^A V^°'° ^ Dii],/^°*° "^ T^sin(X^) + G(92 - 9^) = (30)

'^1®2 "^ °2^2 - TF'R^ + C(92 - 9^) = (31)

J293 + D^h^ + TF.R2 + 0(9^ - 9^) = (32)

J^X3/50.0 + D^xy50.0 + T2Sin(X3) + 0(9^ - 9^) = (33)

TF = GT-(R293 - R^92) {3A)

It was assumed, at the beginning, that all the tape is on the supply reel,

This was simulated and a few hundred steps were applied to the take-up

motor.

Because the amount of tape that is transfered is relatively small,

it was assumed again for simplicity that the inertias and radii of the

reels do not change with time.

It was found that, when there was no tension on the tape, it was

possible to apply a stepping command burst with a rate of 1000 steps per

second right from the beginning and the motor was able to execute them

32





without any failure. Then another test was executed.

One hundred steps were applied on the take-up reel in order to es-

tablish a pre-tension of a value of about 0,8 lb. After pausing a cer-

tain time in order for the system to settle down a few hundred steps

were applied. In this case, if they are applied at a rate of 1000 per

second, it was found that the talce-up motor fails and cannot execute them.

Instead, the first six steps were applied at a rate of 500 steps per

second and the following at a rate of 1000 per second. In this way, the

take-up motor executed them without any failure. Also, the effect of

slovdng down the take-up motor for 30 steps before its shut off was

studied. It was found that this procedure provides a smaller amplitude

of oscillation of the tension after the shut off. This is shown in

Figures 12 and 13, The last 30 steps were applied at a rate of 500

per second.

From Figures 10, 11, 12, and 13 it can be seen that the tape tension

is kept very well within the limits without any significant oscillations.

Except in the case where it was assumed that the damping D^ and D_ of

the supply and take-up reels were equal to zero. This is shown in

Figure 14-,

Then it was assumed that almost all the tape is on the take-up reel

and we want to transfer a few more. In this case, the supply motor must

have a speed of 2,565 times more than the take-up motor. It was found

that if we establish a tension on the tape and then apply stepping com-

mands at a rate of 500 per second then the supply motor fails to start

and that as a result, the take-up motor fails also.

Then the commands were applied at a rate of 357 per second and the
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supply motor was able to start. During the transient time, as is shown

in Figures 15 and 16, the supply motor loses 4- steps but this is not so

important since the tape tension is kept in the limits and the take-up

does not fail at all.

Figures 15 and 16 show two simulations with spring constant equal

to 0.2 and 0,4- respectively. Since the take-up motor turns at a low

speed, slow down was not applied before its shutting off. The two

springs were chosen to have to same spring constant in order that the

system would be symmetrical with respect to the direction of the tape

transfer. In this way, the same strategy of controlling the motors can

be used no matter if the tape is moved forward or in reverse. For this

reason, transport of the tape was investigated for one direction only.

In the system that had only one spring, it is easier to drive the

take-up motor than the supply motor since the load at the first is de-

coupled through the spring. So, two different strategies of sequence

of rates of command application should be developed, according to the

direction of the tape transport.

It was found that as far as the tape tension was concerned, the

value of the spring constant was not very critical. The tape tension

remained within the limits and with very small fluctuations, for values

of spring constants equal to 0.2 and 0,4. inches per pound per radian.
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VI, COMGLUSION MJD FUTURE STUDIES REGOMMEIIDATIOrJS

The investigation and the computer simulation of the magnetic tape

transport system employing two tension springs proved that such a scheme

fulfills the specifications that were set for a quick tape transfer and

the maintenance of the tape tension between desired limits.

The knowledge of the value of the tape tension at any instant of

time is essential for the algorithm of the operation and control of the

system. In a real system, an optical encoder is proposed to be used on

the take-up reel in order to measure the tape tension. Pulses applied to

the motor can be counted; pulses due to reel motion can be counted by

the optical sensor, so their difference is a measure of spring deflection

and thereby of tension if the radius of the tape is known. Thus, the

take-up reel should not vibrate too much because it will cause an in-

correct estimation of the value of the tension.

Fortunately, the vibration in front of the optical sensor will give

an estimation of less tension than its real value and the supply motor

will not turn so the tape is not going to get loose. However, accumu-

lative errors can cause the tape tension to maintain higher and higher

values until the tape is deformed.

The investigation of this problem is very critical, since the control

of the system is based on the assumption that the correct value of the

tension is known. Any accumulation of error more than 0.2 lb, if the

threshold is set to 0,4. lb, will cause the tension to exceed the upper

limit. This problem was not investigated due to lack of time.

When all the tape was on the supply reel, the take-up motor could be

A2





driven at a speed of 1000 steps per second without any failure. V/hen

all the tape was on the take-up reel, its maximum speed was found to be

357 steps per second. The optimum speed of the take-up motor between

the above two extreme cases should be investigated in order to have the

fastest tape transport.

It is recommended that the speed of the take-up reel should be 1000

steps per second until half of the amount of tape has been transferred

from the supply to the take-up reel. Then the speed of the take-up

motor should be reduced piece-wise from 1000 to 357 steps per second un-

til all the tape has been transferred to the take-up reel.

Other algorithms can be investigated if the motors are to be driven

at higher speeds and without restricting the non-negative tape tension

limits, as is the case for slewing.

An algorithm that can be investigated is that after pre-tension and

with and appropriate starting stepping sequence, both motors start

simultaneously.

When the tape tension exceeds an upper threshold, the supply motor

should be accelerated to relieve the tension, 17hen to tension exceeds

a lower threshold, the supply motor should be decelerated to build up

the tension again.
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