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ABSTRACT

Prediction Intervals for future observations in serially

correlated samples from a normal distribution are derived.

The results are extended to predict a future observation in

a linear trend model. The properties of the prediction

intervals are examined.
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I. INTRODUCTION

A prediction interval is an interval that contains a

future observation with a pre-specified probability. The

limits of the interval are functions of known observations

from a family of known distributions with given parameters

.

Though prediction intervals resemble confidence intervals

,

they differ from the latter conceptually. A confidence

interval covers the value of a parameter of a distribution.

A prediction interval, on the other hand, encloses the value

of a random variable.

A prediction interval for a single future observation

and simultaneous intervals for independent and identically

distributed samples from N(]_i,a
2

) were derived by Hahn [2],

For correlated samples with a prescribed correlation struc-

ture, prediction intervals were developed by Choi [3]. It

was shown by him that many of Hahn ' s prediction intervals

are valid even for the case where the samples were correlated

with the specified correlation structure.

In this thesis, the observations are assumed to belong to

a multivariate normal family with mean vector

y = (y ,y , . . . ,y)
T

nxl

1 P
2

P
n-1

. . p

p 1 P
n-2

. • P

n-1
P

n-
P
2 n-3

P . . 1

(I'D





Let X (t=. .
. -2, -1,0, 1, 2. . . ) be a stationary Gaussian

markov process of order one with E(X ) y for all t and

2 k
the covariance between X and X ,, = a p for all t and k.

Stochastic processes of this type are used to model certain

types of oceanographic and metereological phenomena and

some aspects of the stock market. Any finite sub process

will then belong to the above multivariate normal family.

Chapter 2 deals with prediction intervals from a normal

distribution and contains a summary of known results and

a review of general linear hypothesis. In chapter 3 a

prediction interval for a future observation in a first order

markov process is derived and the properties of this interval

are examined. The effect of various parameters such as

variance, correlation and sample size on the prediction

interval are also discussed in this chapter. Chapter 4

contains a discussion of a simulation to generate serially

correlated random variables, which are used to empirically

verify the theoretical conclusions drawn. The results of

the simulation are presented in chapter 5. Extensions of

the results to a linear trend model are discussed in chapter 6





II. PREDICTION INTERVALS FOR NORMAL DISTRIBUTION

A. SUMMARY OF KNOWN RESULTS

Consider a random sample of size N=n.+n,- drawn from a

2normal distribution N(y,a ). The samples n. form the group

of initial samples and n^ form the group, called future
_ 2

samples. Based on the mean X and variance S of ther n. n.
1 - x

2initial samples, prediction intervals for X and S werev » r n n

obtained by Hickman [6]. Hahn [2] derived prediction

intervals for the mean and variance of the second sample

and also simultaneous prediction intervals for the variance

of each of k additional random samples of size n^ based on

the information obtained from the initial sample. Hahn's

[2] two sided 100 r % prediction interval to contain a

single additional observation X is given by

Y ± t[n-l;(l+r)/2] d+^) % S

_ 2
where Y is the sample mean, S is the sample variance and

t[n-l, (1+r) /2] is obtained from the tables of t distribution

with (n-1) degrees of freedom. A 100 r % simultaneous

prediction interval to contain X, , X« , . . . . , X, , k future

observations is given by

Y + R(k,n,r)S

where

R(k,n,r) = U(l+i-r2.1
l

n'

The value of the function U can be obtained from the special

tables given in reference 2

.
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A prediction interval for a single future observation as

well as simultaneous intervals for a specified number of

future observations have been derived by Choi [3] for the

case where the observations are correlated and belong to a

multivariate normal distribution with mean

T
y = (y ,p, . . . . ,y) ,

and covariance matrix

,

V - %< H + _H
T

) + a( I - E )

nxn nxn nxn nxn nxn

h
l

h
l

••• h
l

where H =
j

h
2

h« . . . h«
nxn

n n n

h. (i=l, 2 , . . .
,n) and a are positive constants. E is an nxn

matrix all of whose elements are unity.

B. DEFINITIONS, NOTATIONS AND REVIEW OF SIMPLE LINEAR
REGRESSION ANALYSIS

A brief review of the results and notation in a simple

linear regression model are presented below. These results

are used in chapter 3 in deriving prediction intervals for

a first order markov process. By way of notation, a

capital letter with an underbar represents a vector or a

matrix. Consider the simple linear regression model

Y = X B + e (2-1)
nxl nx2 2x1 nxl

2
where e ^ N(0,a I)

8





which in scalar notation can be written as

Y. = a + bX. + e.
1 11 i = 1,2, ...,n.

The least squares estimator for B is obtained by

that is

Min Q = (Y - XB)
x
(Y - XB)

,

B

-IT
B = S

x
X
i
Y

,

where S = XX
,

and B * N(B, a
2
S
_1

) (2-2)

B is the column vector (a,b)

It is well known that the random variable

Y ~ N(XB, a
2
I)

and
-1

n-SXX

EXT -EX.
l l

-EX n

where
n - 2

SXX = E (X. - X)
z

i=l
:L

"2 2
Let a be the usual unbiased estimator of a , given by

a
2 = (SYY - b

2SXX)/(n - 2) ,
(2-3)

n
r?s2where SYY = E (Y. - Y)

i-1
X





Let Y be the predicted value of the random variable at a

specified value of the independent variable x.

A 100(l-a)% prediction interval for the dependent vari-

able Y can be obtained from the relation

Y-Y

^ +
s
+ %#

< t = 1 - a (2-4)

Equation (2-4) will be used in deriving a prediction interval

for x in chapter 3

.

C. STATIONARY GAUSSIAN MARKOV PROCESSES

Let X
fc

(t = ...-2,-1,0,1,2,...) be a stationary gaussian

markov process, i.e., an autoregressive stochastic process,

of order one with E(X ) = m and covariance between X and

X
2 k

t+k " ° p '

To derive the prediction interval for a single future

observation X^k+i based on the observations up to X«k , the

results of Ogawara [1] will be used. He has shown that

when the values of X
?

, _- (k=l , 2 , . .
5
n+l) are fixed, X2k

(k=l,2, . .
.
,n) are mutually independent. The conditional

probability densities are given by

f(X2k

where

X
2k-1'

X
2k+1 )

fr
EXP

1

2a'

X
2k

(a+bX^)

(2-5)

a = m(l-p
2
)/(l+p

2
)

b = 2p/(l+p 2
)

10





a
2 = a

2
(l- p

2
)/(l+p

2
)

X
k

= (X
2k-l

+ X
2k+1> 7 2

A prediction interval for X^-^, % will be derived in chapter

3 based on this conditional distribution of the even numbered

observations conditioned on the odd numbered ones.

11





III. PREDICTION INTERVAL FOR A FUTURE
OBSERVATION IN SERIALLY CORRELATED NORMAL SAMPLES

A prediction interval to contain a single future obser-

vation for samples from a multivariate normal distribution

with a correlation matrix of the form defined in equation

(1-1), is derived in this chapter. In section A a conditional

prediction interval to contain a single additional observation

based on the conditional distribution of X2k is obtained.

Section B deals with the properties of the prediction interval

In section C the dependence of the prediction interval on

sample size, p and sigma are discussed.

A. DERIVATION OF THE PREDICTION INTERVAL

Assume a sample of observations, X,, X
2

, X~ , ..., X
2k-1'

X01 from a normal distribution with mean zero and covariance
2k

k
matrix V such that Cov (X , X +, ) = p .

The conditional probability densities, as indicated in

equation (2-5), are

f(X2kl
X
2k-1'

X
2k+1 } " nr— EXP

v ^ttc
o

with conditional mean

E(X2k X£) = a+bX£ ,

-^jx
2k

- (a+bX')

o

and X^= (X^ + X
2k_1)/2 . (3-1)

E(X
?

X!) considered as a function of X£ is callled the

regression function of X«
k

on X£. Graphically, it represents

12





the locus of the center of gravity of the conditional random

variables X^. XJ as a function of X/

.

As a result of Ogawara's Theorem the following conditional

simple linear regression model may be assumed,

X
2k

= a + bX' + ek , k = 1,2, ..., n (3-2)

2
where e, = N(0, a ) .

The maximum likelihood estimators of the parameters a, b

and a are given by

b = SXY/SXX

a " x
2k " b X

k

a
2 = (SYY - b

2 SXX)/(n-2) .

where

1 (
x
l
+x

3
X
3
+X

5 ,

x
2k-l

+x2k+l
x
k ~ n I ~T~ + ~2~ +

• • • •

+
2

E (
X
2
+ X

4
+

•

•

'

+ X
2k

)

x
2k

=
n

X
2
+ x

4
+

SXX=
Jl(

X2k f "
n X^ '

n _ _
SXY = E X£ X

2k
- n x£ x

2k ,

k=l

sYY =

ii( X2k
)

2
n ^ ' (3 ' 3)

At a known value of x/ the predictor x
2k

is given by

x 01 = a + b x/ (3-4)
2k k

13





A 100(l-a)% prediction interval for the dependent variable

x^, can be obtained from the relation

x
2k " x

2k

jr. i
,

(
x
k

-

V 1 +
n
+

SXX
-K'

< t = 1 - a . (3-5)

From the above relation a prediction interval for x«, ,, can

be obtained noting that xV is a linear function of x^,,-, .

The inequality inside the brackets can be written as

(x
2k ' x

2k } -< t a J 1 + - +
1

*k - S
k)

Z

SXX
(3-6)

Substituting for x^^ = (xvk ~ b x
k^

+ ^ x
k

and scluaring both

sides, the inequality (3-6) reduces to

<x2k " x
2k>

2 + £2(x
k " x

k>
2

"
2^x

2k"
x
2k>

(x
k -

x
k>

< t
2
S
2 d + 1) + t2 ^

2
(xk - x

k)
2

/ sxx

or

t
2
c
2

b
' "SXX"/ \*k ' 2^x

2k " x
2k><

x
k " *k>

+ (x
2k

- x
2k ) t

2
a
2
(l + |) < (3-7)

This is a quadratic equation of the form

A(x' - x
(

')
Z + B(x: - x') + C < (3-8)

14





where

A = b
g

~sxx~

B = -2b (x
2k

- x
2k ) ,

C = (x - x. )
2

- t
2
a
2 n+1

L U2k x2k; t °
n (3-9)

Thus, the probability statement in equation (3-5) is equiva-

lent to

-.n2P[A(x
k

" ^ + B(xk ~ xp + C < 0] = 1 - a . (3-10)

A prediction interval for xj can now be obtained in terms of

the roots of the quadratic equation (3*8) viz.,

K - *£>
t \ _ -B±/B 2 - 4AC

2A
(3-11)

the term under the radical sign simplifies to

2 ?~?
B
z

- 4AC = 4t a

x
2k] + n+1

(
£2 t

2
S
2

SXX n SXX

and hence

x,' = x,' +
k k

b(x
2k

- -A-x
2k
)±tay-^k"^^ + n+1 (^2_ t

2
S
2

SXX

t a

SXX

n SXX / (3-12)

Since x£ = (x2k_i
+ x

2k+l^ /2
'

The unknown future value ^-nv+l can ^ e WT ^-tten ^n terms of the

known value as

Xjv+i = D ± E where

15





2 t
2
a
2

D - 2x
k ~ x

2k-l
+ 2b <x2k " x

2k>/<b " W > < 3 ' 13 >

E = 2ta
l/

(x
2k

- x
2k )

2
/SXX + B±1

(S
2

- ^) /(b 2
- g

(3-14)

Thus a prediction interval for x«,,i is given by

D - E < x
2k+1

< D + E , (3-15)

where D and E are given by equations (3*13) and (3*14) respec-

tively. The properties of this interval are discussed in

section B.

B. PROPERTIES OF THE PREDICTION INTERVAL

The prediction interval in the previous section was

obtained by solving

A(X
k ' *k

)2 + B(X
k " K } + C = °

where the coefficients A, B and C are defined in (3-9). The

roots of the equation and hence the form of the prediction

interval will depend on the relative sizes of A, B and C.

The effect of these coefficients on the prediction

interval will now be examined breaking in to four all in-

clusive cases.

Case 1 . A > and B
2

- 4AC >

„2* 2
a2 t a

A > ° * b >
-sxx-

16





or
b
2
SXX s ,

~jr~i
> 1

t a

~2

Let ^S)K = p (3>16)
t a

2
B > 4AC implies that

t
2
a

2

4 b
2

(x
2k

- x
2k

)2 > 4 (b
2

- -^r)(x
2k

- x
2R )

2

„ 9 t
2
a

2
t
2
a

2

4
<
b

" SET* -n- <n+1 >

/ ^ 2\ 2" 2 2~ 2
~2 *- a

}
t cr t a

or V b
" "SIX-/ —ST" (n+1) >

- -SX3T (x
2k " x

2k>

b
2
SXX -, _n_ (

x
2k " x

2k^
2^2-

"
n+l ^T^

b
2
SXX s , n (x2k " X

2k )

or -
I^r- > i - -^ 2 *2

t a t a

2To satisfy the conditions A > and B > 4AC it is necessary

that

n 'X2k " X?k'
F > 1 and F > 1 - ^ L

\ ^ *
. (3- 16a)

t a

— 2 2~2
Since the quantity ^n\. - x 9],) /to is always positive the

conditions in equations (3- 16a) are equivalent to the condition

F > 1. In this case the prediction interval for x^,,-, will

17





be of the form

[(D - E) ,
(D + E)] .

This type of two-sided interval is referred to as TYPE 1,

where D and E are as defined in (3-13) and (3-14) respectively

Case 2 . B
2

- 4AC > and A <

/v« t a

A < ° * b
- -5sr < °

^ 2
/v« t a

or b < ~sxx-

"2
b^SXX „ nor
2
A 2

t a

i.e. , A < -> F < 1. (3-17)

B
2

- 4AC > * F > 1 - --ct
2k
^ 2

2k
. (3-18)

n
t a

n ^
X?k " X

2lP
Thus, if F < 1 and F > 1 - -~ —

2
A

2
—

t a

the resulting interval will be of the form,

(- oo, d + E] [D - E, - ) (3-19)

and will be called a TYPE 2 interval.

Case 3 . If B
2

- 4AC < and A % the interval is called

TYPE 3.

18





The roots of the quadratic are complex and the prediction

interval must be taken as (- », + «>) , This situation occurs

2
when B - 4AC < .

2 n ^
X?k~ X?k'

B - 4AC < =* F < 1 - -S_ £|- ^ (3-20)
t a

Thus a type 3 interval results when

F < l
n U2k " x

2k }

* L ~ n+i in
t a

CASE 4 . A =

"2

A = * ^1^ = 1 . (3.21)
t a

Thus, when F = 1, the interval is of type 4 and is of the

form [G,°° ) ,

where G - 2x7 - x 0l - - b SXX (—) + 2k
A—^ , (3-22)k 2k-l n i

To summarize the results, the quadratic equation that

leads to the required prediction interval is of the form

A(x^ - xp 2 + B(x£ - x£) + C = 0,

and four different types of intervals can result depending

on the value of

~2
„ b* SXX
F =

t a

The four cases are

19





i) when F > 1, the interval is of the form

C(D-E),(D+E)]. _ 2

ii) when F < 1 and F > 1-rxf — 2~2 —
'
the interval

n to
is of type 2 and is of the form (- «>, D+E] , [D-E ,°°)

n ' X?V " X9W
iii) when F < 1—^ — 2

A
2
— '

the interval is of
t a

type 3 and is of the form (-»,+«>)

iv) when F = 1, the interval is of type 4 i.e., [G,°°) .

At a given level of significance a, from the relation

(3-5) and the conclusions drawn in this section, the following

relation should hold:

4
Z Pr [occurrence of type i interval]

i-1 th
x Pr [i interval contains the predicted value]

= 1 - a (3-23)

The above conclusions are verified with simulated

samples in chapter 5.

Section C examines the distribution of the quantity F

defined in equation (3-16).

C. DISTRIBUTION OF *F'

The occurrence of any particular type of interval depends

on the value

b
2

SXX
F " 1*1

t a

The distribution of F can be shown to be a noncentral F

distribution as follows.

20





From (2-2), it can be shown that b is N(b,a /SXX;

or
(b±L * N(0,1)

,

a/ /SXX

or ibzbli „ x
2
(1)

a
z/SXX

"2

and b '

2
SXX

* x
2

(1, A) . (3-24)
a

where X = -—|^ ,

a

is the noncentrality parameter.

From (2-3) the distribution of

(n - 2
\° is x

2
Cn-2) . (3-25)

a

The ratio of (3-24) and (3-25) devided by their respective

degress of freedom results in a noncentral F [5] statistic

with degrees of freedom (1, n-2) and noncentrality parameter

A . That is

~2
b
'-f^ = t

2
F % F (1, n-2, A)

,
(3-26)

a

and the noncentrality parameter

, b
2

SXX
A

2
.

a

Substituting for b from equation (2-5), the noncentrality

parameter A can be written as

21





A = 4p^

(1+P
2

)
2

sxx~1 (3-27)

D. NUMERICAL EXAMPLE

The Model developed in section A is tested on the data

obtained from Dow-Jones monthly averages to predict a future

monthly average, based on the averages of the previous months

In most of the cases , the future value was contained in the

prediction interval. To illustrate an example the data for

the years 1966 and 67 are given below. The prediction

intervals are computed with the help of the APL program

PREDICT, whose listing is given on page 68.

1966 1967

Month Ended D - J Ind Month Ended D - J Ind

January 31 983.51 January 31 849. 87

February 28 951.89 February 28 839. 37

March 31 924.77 March 31 865 98

April 29 933.68 April 28 897 05

May 31 884.07 May 31 852 56

June 30 870.10 June 30 860 26

July 29 847.38 July 31 904 24

Augus t 31 788.41 August 31 901 29

Sept 30 774.22 Sept 29 926 .66

October 31 807.07 October 31 879 .74

November 30 791.59 November 30 875 81

December 30 785.69 December 29 905 .11

22





The above data are stored in the variable DMA. The pro-

gram Predict is run with different sample sizes and the out-

put is shown on pages 24 and 25.

Using 14 monthly averages from January '66 to February

'67, prediction intervals tor March '67 are computed and the

exact value of 865.98 is contained in the interval.

Using given values up to April '67, the prediction in-

tervals for May '67, also contain the true value. With a

sample of size 18, the prediction intervals for the nine-

teenth month i.e., July '67 are computed and they contain the

true value. Though the average of September '67 falls outside

the interval, the average of November '67 is contained within

the interval.

The reduction in the length of prediction interval with

increase in sample size, is supported by the above example.

The data are tested for the required correlation structure

and found to fulfill the requirements partially. The statistics

of the data are

Mean = 870.83

Standard deviation = 55.0

Corr. Coefficient p = 0.82

23





PREDICT 14+ DMA

THE F STATISTIC IS

THE LOWER PREDICTION LIMIT

THE UPPER PREDICTION LIMIT

THE LENGTH OF THE INTERVAL

TRUE VALUE OF THE AVERAGE

4.132073877

727.1128824

1080.631201

353.5183188

865.98

PREDICT 16+DMA

THE F STATISTIC IS

THE LOWER PREDICTION LIMIT

THE UPPER PREDICTION LIMIT

THE LENGTH OF THE INTERVAL

TRUE VALUE OF THE AVERAGE

5.489038103

598.3935849

900.5564036

302.1628187

852.56

PREDICT 18 + DMA

THE F STATISTIC IS

THE LOWER PREDICTION LIMIT

THE UPPER PREDICTION LIMIT

THE LENGTH OF THE INTERVAL

TRUE VALUE OF THE AVERAGE

5.130517543

708.7039

1009.101896

300.3979963

904.24

PREDICT 2 Of DMA

THE F STATISTIC IS

THE LOWER PREDICTION LIMIT

THE UPPER PREDICTION LIMIT

THE LENGTH OF THE INTERVAL

TRUE VALUE OF THE AVERAGE

5.777973921

573.5929826

864.8705316

291.277549

926.66
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PREDICT 22+DMA

THE F STATISTIC IS = 6.994239226

THE LOWER PREDICTION LIMIT - 633.1176654

THE UPPER PREDICTION LIMIT = 899.7280383

THE LENGTH OF THE INTERVAL = 266.6103729

TRUE VALUE OF THE AVERAGE = 875.81
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IV. SIMULATION OF SERIALLY CORRELATED SAMPLES

To study the effect of p , a and n on the type of pre-

diction interval obtained it is necessary to generate random

variables with the required variance covariance matrix.

These can be generated as linear combinations of standard

normal random variates.

A. SIMULATION FROM STANDARD NORMAL SAMPLES

Suppose Z-., Z« , . . . , Z are random samples from N(0, 1).

To get serially correlated random variates X-,, X«,...,X ,

let X
1

= Z
1

x - c"z-,+c<;z + +c*z . (4-i)
n 1 1 I I n n

The coefficients C, , ...,C are then determined by solving

equations of the form,

Gov (X , X +jj = p for all t and k from 1 to n.

Consider the first equation

X
l " Z

l

E(X
1

) = E(Z
X

) =

Var (X
1
)= Var (Z

1
) = 1 O' 2)
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From the second equation

E(X
2
) = ECC

1
Z
1
+C

2
Z
2 )

= C
1
E(Z

1
;+C

2
E(Z

2
) = (4-3)

since Z-, and Z« are independent;

Var (X
2

) = Var(C
1
Z
1
+ C

2
Z
2 )

2 2= C
l
Var Z

1
+ C

2
var Z

2 , i.e.

,

Cov(X
1

, X
2

) = E [(X
l

- E(X
1
))(X

2
- E(X

2))]

= E [X
1

- X
2 ]

= E [Z
1
-(C

1
Z
1
+C

2
Z
2
)]

2
= E [C]_Z]_ +C

2
Z-^Z

2 J
t

i.e,

C
1
E(Z

1

2
)+C

2
E(Z

1
Z
2

) = p .

Since Z
±

* N(0, 1; ,
Z-^ % X

2
(l)

;

also since Z-, and Z« are independent, the above equation can

be simplified to

C
1

= p (4-5)

1 From 4.4 by substitution we get C
2

= i 1
2

P

or X
2

= pZ
1
+ J 1 - p

2
Z
2

(4-6)

or X
2

= pX
1
+ J 1 - p

2
Z
2

(4-7)
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Similarly it can be shown that

X
3

= PX2 + y 1 - p
2

Z
3

(4-8)

The result can be generalised in the form

X
i

= pX
i-l

+ V l " p2 Z
i

(4 * 9)

i = 2, ..., n.

or X
± = p

1 " 1
Z
1 + P

1 " 2
^ 1 " P

2
Z
2
+ + V1 ' p2 Z

i
< 4 ' 10 )

i = 1, . .
.

, n.

The results obtained in (4*10) can be expressed in the follow-

ing matrix notation:

X = A Z , (4-11)
nxl nxn nxl

where X = (X, , X9 , . .
. , X )

T
,1J_ £m IT

nxl

and A is a nxn matrix of the form

1

p A - p
2

'(4-12)

A = \ p* p/L - p* /l - p"

n-1 n-2 Z 2" / Tf
p p /l - p /I - p

It a random variable Z is distributed normally with
nxl

mean y and covariance V and if A is an nxn matrix of rank n,

then the vector
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Y - A Z
nxl nxn nxl

is distributed as multivariate normal with mean vector A y_

and covariance A V A . As a result, the random variable X

(4-11) is distributed as multivariate normal with the re-

quired covariance matrix V. Here

Z * N(0, I)
,

where I is an nxn identity matrix.

Hence, X ^ N(0, A 1 AT ) .

T T
We now show that A I A = A A is a matrix of the required

form (for n = 4)

A =

4x4
p2 p

p /l-p
2

^7 ^?
p
3

p
2
/l-p

2 p/l-p
2

/l-p
:

1
2

P P
3

P

A
T

=
•x4

/l-p
2 p/l-p

2

/l-p
2

2 / 1
p /l-p

p/l-p

£? J
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A AT =

1 P

p p
2
+l-p

2

p
2

p
3
+p(l-p

2
)

p
J

p +p (1-p )

p
3
+p(l-p 2

)

p
4
+p

2
(l-p

2
)+(l- p

2
)

p
5
+p

3
(l-p

2
)+p(l-p 2

)

p +p (1-p )

p
5
+p

3
(l-p

2
)+p(l-p

2
)

p
6
+Cl-p

2
)(p

4
+p

2
+l)

which reduces to

A AT =

2 3
P P P

P 1

2

P P

P P

1
3 2

P P P

The above result can be generalized for any value of n.

B. TESTING FOR NORMALITY AND CORRELATION

The simulated samples are tested for normality and the

correlation structure. The simulated samples are tested by

standard Kolmogorov-Smirnov test. The results showed that

samples do appear to be from the specified normal distribution

The correlation between X. and X. is given by

R
Cov(X.,, X.)

VVar X. • Var X.
i 3

(4-13)

Confidence limits for correlation coefficient p are developed

using the approximation.
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Z - % m £§ * N(% la ££ , 5*5)

A 957o confidence interval for p is given by

(e
2a

-l)/( £
2a

+l) < P < ( £
2b
-D/( e

2b+l), (4-14)

where

a = z _ Li6 and b . z + 1^£
/rT3 /n-3

The simulated samples are also tested for the required

correlation structure by examining the confidence limits for

correlation between (X., X.) using equation (4-14). The

results showed that the samples do appear to have the pre-

scribed correlation structure.
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V. RESULTS OF SIMULATION

In this chapter, using simulated samples, the probabili-

ties of occurrence of various types of intervals and their

dependence on the value of p , n and a are studied. The pro-

gram PROBS FORTRAN, whose listing is given on pages 63-66

computes the probabilities for the four types of intervals.

For given values of p , n and a the program generates one

thousand samples and records the frequency of occurrence of

each type of interval. In each case the program tests whether

the predicted value is contained within the interval. Finally,

for a given level of significance a the relation (3-23) is

verified.

Choosing a level of significance a = 0.05, the simulation

was run for values of p ranging from 0.1 to 0.9, for sample

sizes from 10 to 50 and for sigma varying from 1 to 5 . For

a = 0.1 and 0.02 the program is executed to study the effect

of the level of significance on the results.

The computer output is shown on pages 43 to 57 . Tables

I to VI show the variation of probabilities of types of

intervals with change in a at different sample sizes, keeping

a and a constant. Tables VII to IX show the variation of

probabilities of types of intervals with a change in p at

values of a = 0.1. Tables X to XII show the variation of

probabilities of types of intervals with a- change in p

,

keeping a = 0.02.
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In Tables XIII to XV, the variation of the probabilities

of types of intervals are shown at a standard deviation (a)

of 3.0, whereas in Tables XVI to XVIII, the value of standard

deviation is altered to 5.0. Tables XIX to XXVII depict the

variation of the types of intervals with change in sample

sizes at different values of p and a, keeping a at 0.05.

Finally, Tables XXVIII to XXX show the variation of proba-

bility of types of intervals with change in sigma at different

values of p and n.

In all these tables the first column indicates the value

of the parameter. Columns 2, 3 and 4 give the probabilities

of occurrence of types of intervals. Columns 5 and 6 show the

probability that the predicted value is contained in the

interval. Since a type 3 interval is of the form (-£»,+«>)

the probability of x«, , -, to be contained in the interval is

one. Finally column 7 verifies the relation (3.23). The

attached graphs on pages 58 to 62 show the trend in the pro-

bability of occurence of the three types of intervals with

changes in parameters like p, a, n and a.

The outcome of the simulation confirmed the following

theoretical conclusions

:

i) The probability of type 1 interval increases with an

increase in correlation coefficient p, all other parameters

remaining constant.

ii) The probability of type 1 interval increases with an

increase in sample size, keeping all other parameters constant
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iii) The probabilities of types 2 and 3 decrease with

an increase in correlation coefficient or sample size.

iv) The probabilities for the four types of intervals

do not change significantly with change in sigma.

v) The probability of a type 1 interval increases with

an increase in level of significance a, all other parameters

remaining constant.

Section 6 deals with the application to linear trend

model

.
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VI. APPLICATION TO LINEAR TREND MODEL

In this chapter, the results of chapter 3 are extended

to stochastic processes that follow a linear trend model.

Let {X } be a discrete stochastic process satisfying

X = y + e , (6-1)
n n n

where y = a + 6n ,
(6-2)

n

and £ is a stationary process of normal variates that

satisfy the following:

EU
n

} =

Var{£ } = a
2

n

Cor{e
n ,£n+k } = a

2
p
k

, p < 1 . (6-3)

Such a process is called a model for linear trend. Krishnaih

and Murthy [7] showed that for the above model the conditional

distributions of X
2k

given X
2k_^

and X
2k+1

are independent

normal with

E [X
2k |

X
2k_r X2k+1 ] = 1+ S

2
K + B

3
X' ,

(6-4)

and Var [X
2k |

X
2k _r X

2k+1 ] = a
2
(l-p

2
) / (1+p

2
) ,

(6-5)

where X£ = (X
2k _ 1

+ x
2k+1)/2

.
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In section A, a prediction interval for X«,,, is

obtained knowing the values up to X«, for the above model

A. PREDICTION INTERVAL FOR X
2k+1

Using regression analysis, a prediction interval for

X,,, ,-] can be obtained for the linear trend model, knowing

the values up to X«, . Equation (6-4) can be written as

X
2k

= S
l
+ 8

2
k + 6

3
X
k
+ e

k'
k = 1,2i •'" n '

or in matrix notation,

- 2k
nxl

X B + e , e ^ N(0 , a I)

nx3 3x1 nxl
(6-6)

The design matrix X is of the form
nx3

1 1 (X
1
+X

3
)/2

1 2 (X
3
+X

5
)/2

1 3 (X
5
+X

?
)/2

1 n (X
2n . 1

+X2n+1 )/2

and B is the column vector (3-^, 8
2 » ^3)

3x1

The estimator B can be obtained from the normal equations
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T
— —2k3xn nx3 3x1 3xn nxl

X
x

X B =

or B =

where S =

rh%k

X x
X =

3xn nx3

EX'
n

n En

En En
2

EX' EnX' EX'
2

n n n

EnX'
n

(6-7)

Since S can be shown to be nonsmgular and of rank 3, S

exists and

-1

B * N (B, a
2
S
-1

) . (6-8)

For a given value of X',
1x3

K
- El k x^ ] ,

the predicted value H 2k.
~ —

'k
B

lxl' 1x3" 3x1

and X
2k

* N {X^ B , a
2
(X£ )S

_1
(X^ )

T
}

It can be shown that the residual

x
2k " *2k * N{0

'
a2(^

1+ s
2
)> p

(6-9)

where

s
2

= x' s^c x' )

T

lxl lx3
K 3x3 3xl

K

As an example, let X = (x-^, x
2

, ... >
x
]_(p

Here K = 5 and n = 4

The vector X
2k

4x1
(x

2
, X^, Xg, Xg)
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and the design matrix X =

4x3

1 1

1 2

1 3

1 4

(X;L+x3
)/2

(x
3
+x

5
)/2

(x
5
+x

?
)/2

(x
y
+x

9
)/2

X£ =[15 (x
9
+xu )/2] .

The value of x,^ is unknown. A prediction interval for x..

can be developed as shown below.

From equation (6-9)

X
2k " x

2k

/\T7
^ N (0, 1) (6-10)

and
x
2k ' x

2k
R

/ 1 + s'
/~n-3

= t (6-11)

The quantity t has a student's t distribution with (n-3)

2
degrees of freedom, where R is the usual unbiased estimatorb o

of a
2

.

At a given level of significance a ,

U2k
- x

2k ) /SO

/R / 1 + s'
o

"a/2
- 1 - a (6-12)

The term in the brackets of the left hand side of equa-

tion (6-12) can be written as,

38





x
2k " x

2k « Va/2 ^Vv/^1^ (6-13)

and

l + s
2

= l + [l k x^Es- 1]^ k x^]
T

.

The expression on the right hand side can be simplified to

the form

Y o
+ Y

l
x
k
+ Y

2
x
k
2

•

The coefficients y , y-i a^d y ,. can be computed since k and

S are known.

Squaring both sides of equation (6-13) and substituting for

2
x , and s , it can be simplified to,

2 2

(x
2k-~8 I B>-6

3
x
k>

2
« ^fr2 ^ +Y 1xi+Y2

xi
2
)

or

/o 2 a/2 Ov iZ ,n/„ q a mq ot/ZOii t

(6 3
" Y 2 n^T* *k

+ (2(x
2k

-6
1
-3

2
k)6

3
- —^ ) ^

2 2

// o n i \ 2 a/2oo\. n

The above inequality reduces to

A x^
2 + Bx^ + C < , (6-14)

where

A= h - Y 2
t
a/2

R
o
/(n " 3)

2 2

B = 2(x2k
-6

1
-6

2
k)8

3
-

a/
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2 2
- - o tr /0 R Y

C = (x^-^-B^) 2
-

a^3° 9 (6-15)

The quadratic equation (6*14) can be solved for x,' using
ko to

the formula.

-B±/b2-4AC .. A v nx
k - ja if A ^

Since x£ = %(x2k-l
+x2k+P '

the Prediction interval for

x2ih-i can be written as

D - E < x
2k+1

< D + E (6-16)

where

D = -x
2k-1

- B/A

E = /(B
2
-4AC)/A (6-17)

o
Note: If A=0, then no interval exists; also when B < 4AC

E becomes imaginary and the interval is taken to be (-«,+<») .

In section A, a numerical example is given to verify the

model developed here, with the help of simulated samples.

B. NUMERICAL EXAMPLE

In order to compute the prediction intervals for a future

value for samples satisfying a linear trend model an APL

program LINTREND has been developed. The listing of this

program is given on page 67. Error terms having the correla-

tion structure (6-3) are given as input and for given values

of a and 6, the program develops the vectors X
2k

and X/.
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For a sample of size 18, the output of the above program is

given below.

a=1.0, 3=0. 5, p=0.2, N=18,n=8.

X£ = (2.094, 3.37, 4.056, 3.7595, 5.984, 7.848,
8x1

7.821, 8,388)
T

X 2k
= (2.94, 3.983, 4.913, 2.685, 5.376, 7.849, 9.017,

8x1 *

8.416) T

The design matrix X =

8x3

1 1 2.094

1 2 3.37

1 3 4.056

1 4 3.759

1 5 5.984

1 6 7.848

1 7 7.821

1 8 8.388

For the model (6-4),

B=(-0.147, -0.597, 1.566)
3x1

The coefficients of the quadratic equation (6-14)

A(X£)
2 + B(X£) + C =

,

are given by
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A = 1.443

B = 35.801

C = -72.382

and the values of D and E are

D = 15.955

E - 28.561

from the equation (6-17) ,

the lower limit = - 12.606

the upper limit = 44.516

The true value of X, « (10.515) is contained in the

interval

.
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I. VARIATION OF TYPES CF INTERVALS WITH ROW

SAMPLE SIZE =14
SIG^A = 1.0

LEVEL OF SIGNIFICANCE = 0.05

ROW TYPE 1 TYPE 2 TYPE 3 PRCB 1 PR03 2 CCN REG

0.100 0.193 .066 0.741 0.917 C.576 0. ^56

G.2GC C.342 0.080 0. 578 0. 915 C.775 0. 953

0.50C C. 269 0. C98 C.633 0. 883 0.736 .949

0.700 0.369 0.119 0.512 0.902 .374 0.949

0.90 0.539 .128 0.333 0.939 0.930 0. «5£

li. VARIATION HF r YPES OF INTERVALS WITH QOW

SAMPLE SIZE = 22

SIGMi. =1.0

LEVEL CF SI3NIFICANCE = 0.05

ROU ~YPE 1 TYPE 2 TY°E 3 °R08 1 PR38 2 CON REG

0.100 C.492 0.048 C. 46C 0. 935 C.438 0.941

C.30C C.516 0. C77 0.407 0.924 0.714 0.939

0.500 0.483 0.110 0.407 0.909 0.318 0.936

0.70 0.791 .071 0.138 0.934 C.873 0. ^39

0.90G C.902 0.C5C G.048 0. 9^7 C. 920 0.C4 8

CON REG = CONFIDENCE REGION
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III. VARIATION OF T YPES CF INTERVALS WITH ROW

SAMPLE SIZE = 30

SIGMA = 1.0

LEVEL OF SIGNIFICANCE = 0.05

ROW TYPE 1 TYPE 2 TYPE 3 PROB 1 FROB 2 CCN REG

0.100 0.554 0.036 0.410 0.960 0.722 C. 968

0.30C C. £61 0.033 C. 106 0. 940 C.758 C.940

C.500 C. 874 C. C44 0.082 0.952 0.341 0.951

0.700 0.914 0.029 0.058 0.951 0.9 29 0.953

0.900 0.979 .003 0.013 0.952 1.000 0. 953

IV. VARIATION 3F r YPES OF INTERVALS WITH ROW

SANFLE SIZE = 3 4

SIGMA =1.0

LEVEL OF SISNIFICANCE = 0.05

ROW 'YPE 1 YPE 2 TYDE 3 PROB 1 PROB 2 COM REG

0.100 C.5 85 0.041 0. 374 0. 959 C. 610 C. 96

0.30C C. 68 3 0. C66 0.251 0. 943 0.773 0.946

0.500 0.718 0.077 0.205 0.937 0.766 0.937

0.700 0.950 0.013 0.037 0.942 0. 846 0. 943

0.900 C.992 0.004 0. 004 0. 94 8 1.000 C. 94 8
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V. VARIATION Or TYPES OF INTERVALS WI T H ROW

SAMPLE SIZE = 38

SIG^IA =1.0
LEVEL OF SI3NIFICANCE = 0.05

ROW TYPE 1
T YFE 2 TYPE 3 PROB 1 PROB 2 CON REG

0.100 C.705 0.030 0. 267 0. 949 C.467 0. 94 8

0.30C C. 809 0. C36 0.155 0. 954 0.806 .956

0.500 0.847 0.041 0.112 0.956 0.854 0.957

0.700 0.96 6 0.015 0.019 0.959 0.933 C. 959

0.900 C.994 0.C04 0.002 0. 957 1.000 C.957

VI. VARIATION OF TYPES OF INTERVALS WITH ROW

SAMPLE SIZE = *2

SIGMA =1.0
LEVEL CF SIGNIFICANCE = 0.05

ROW TYPE 1 TYPE 2 TYPE 3 PROB 1 PROB 2 CON REG

C.10C C. 573 0. C47 C.38C 0.932 0.723 0.948

0.300 0.719 0.044 0.237 0.947 0.773 0.952

0.500 0.85 3 0.047 0.10 0.943 0.894 0. 946

0.700 C.980 0.G07 0.0 13 0. 948 C. 857 C. c4 8

C.90C C.998 0. C01 0.001 0. 947 1.000 0.94 7

45





VII. VARIATION OF TYPES OF INTERVALS WITH ROW

SAMPLE SIZE = 14

SIGMA =1.0
LEVEL CF SIGNIFICANCE = 0.10

ROW TYPE 1 TYPE 2 TY°E 3 PROB 1 PROB 2 CON REG

C.10C C. 269 0. Ill 0.62C 0. 87 0.468 0.90 6

0.300 0.441 0. 108 0.451 0.846 0.667 0.89 6

0.500 C.380 0.138 0.482 0.853 C.732 o. sec

0.700 0.501 0. 138 C. 361 0. 858 C.790 C.90C

C.90C C.666 0. 114 C.22C 0. 883 0.868 0.907

VII I .VARIATI ON 0= TYPES CF INTERVALS UITH RCW

SAMPLE SIZE = 22

SIGVA =1.0

LEVEL QF SIGNIFICANCE = 0.10

ROW TYPE 1 TYPE 2 TY°E 3 PROB 1 FRCB 2 CON REG

0. 100 0.52 4 0.077 0.399 0.876 0.468 0.894

0.300 0.599 0.101 0.300 0.373 0. 564 0. 68C

0.50 0.617 0.122 0.261 0. 861 C.754 0. 884

0.70C C.853 0. C66 0.081 0. 885 0.773 0.837

0.900 0.941 0. 023 0.031 0.391 0.786 0.89 1

46





IX. VARIATION 0= TYPES CF INTERVALS WITH Q CW

SAMPLE SIZE = 30

SIGMA =1.0

LEVEL 3F SIGNIFICANCE = 0.10

ROW TYPE 1 TY^E 2 TYPE 3 PR08 1 FROB 2 CON REG

0.10 0.595 C.070 0.335 0.899 0.571 0.910

0.300 0.906 .025 0.069 0.891 0. 560 C. £9C

0.500 C.933 0.C24 0.043 0. 902 C.875 C.906

C.70C C.951 0. C22 0.027 0.902 0.909 0.905

0.900 0.989 0.006 0.005 0.89 7 1.000 0.898

X. VARIATICN OF TYPES OF INTERVALS WITH ROW

SAMPLE SIZE = 1 4

SIG^A = 1 .0

LEVEL OF SIGNIFICANCE = 0.02

ROW TYPE 1 TYPE 2 TYPE 3 PRCB 1 PROS 2 CON REG

0.100 0.160 0.028 0.812 0.969 0.571 0. 983

0.30 0.254 0.C42 0.704 0. 949 C.738 C.976

C.50C C. 169 0. C63 C. 76 8 0.929 0.825 0.977

0.70 0.209 0.088 0.703 0.933 0.932 0.980

0.900 0.3 81 0.121 0.498 0.961 C.975 C. 982
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XI. VARIA7ICN CF ^YDES OF INTERVALS WITH R nw

SAMPLE SIZE = 22

SIGMA = 1 .0

LEVEL OF SIGNIFICANCE = 0.02

ROW TYPE 1 TYPE 2 TYPE 3 PRQB 1 FROB 2 CON REG

0.100 0.4-64 0.026 0.510 0.970 0.731 0. S7<:

0.300 C.427 0.054 0.519 0. 96 7 C.870 0. <=79

G.50C C.338 0. C76 0.586 0. 938 0.987 0.978

0.700 0.691 0.073 0.236 0.965 0.973 0.974

0.900 0.82 5 0.073 0.10 2 0.979 0.986 0. S82

XII. VARIATION HF TY^ES OF IMTERVALS WITH ROW

SAVPLE SIZE =30

SIG*n =1.0
LEVEL OF SIGNIFICANCE = 0.02

ROW ^YPE 1
TYFE 2 TY°E 3 PR03 1 PR08 2 CON REG

0.100 0.525 0.C19 0.456 0. 983 C.737 C.986

C.30C C.830 0. C22 0.148 0. 972 0.773 0.972

0.500 0.810 0.03? 0.158 0.978 0.938 0.98

0.70 0.846 0.051 0.10 3 0.979 C.961 C. 980

0.90C C.961 0.015 0.0 24 0. 9 77 1.000 0. 978
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X III .VARIATION 0= T YPES OF INTERVALS WITH ROW

SAMPLE SIZE = I Z

S IG^A = 3.0

LEVEL OF SIGNIFICANCE = 0.05

ROW TYPE I T YPE 2 TY°E 3 PROS 1 PROS 2 CON REG

0.100 0.06 7 O.C78 C.855 0. 851 C.500 0.951

C.30C C. 179 0. 125 C.696 0. 855 C.704 0.93 7

0.500 0.445 0.117 0.438 0.899 .829 0.93 5

0.700 0.736 0.083 0.176 0.938 C.398 C. 945

0.90C C.901 0.051 0.048 0. 948 C.941 C.950

XIV. VARIATION OF TYPES OF INTERVALS bITH ROW

SAMPLE S IZE = 26

SIGMA =3.0

LEVEL CF SIGNIFICANCE = 0.05

ROW TY°E 1 TYPE 2 TYPE 3 PR08 1 PROS 2 CON REG

C. 1QC C.652 0. C43 0.305 0.936 0.651 0.943

0.300 0.255 0.106 0.639 0.929 0.698 C.950

0.50 0.561 0.110 0.329 0.938 C.855 C. 949

0.70C C.841 0. 062 0.09 7 0. 941 C.903 0. 944

0.90C C. 962 0. C16 0.022 0. 946 0.938 0.947

49





XV.VARIATION :
< TYPES OF INTERVALS kITH ROW

SAMPLE S IZE = 33

SIGMA =3.0
LEVEL CF SIGNIFICANCE = 0.05

ROW TY D E 1 TYPE 2 TY°E 3 PROB 1 PROB 2 CON REG

C. IOC C.075 C. C71 C.854 0.883 C.620 0.964

3.300 0.3 74 0.111 0.515 3.922 .721 0.940

0.50 0,674 .091 0.235 0.942 C.857 C. 946

0.70C C. 897 0.034 C.069 0. 95C C.912 0. 952

0.90C C.979 0. C07 C.014 0.952 1.000 0.953

XVI .VARIATION OF TYPES CF INTERVALS WI T H QOW

SAMPLE SIZE = 22

SIGNA =5.0

LEVEL CF SIGNIFICANCE = 0.05

ROW TY°E 1 TYPE 2 TY°E 3 PROB 1 PROB 2 COM REG

0. 100 0.067 3.378 3.855 3.851 3.500 0.951

0.300 0.182 3 .127 0.691 3.863 C.717 C. 939

0.500 C.444 0. 115 0. 441 0. 901 C.317 3. 935

0.70C C.716 0. 102 0.182 0.936 3.892 0.943

0. 900 3.901 0.352 0.347 3.948 0.942 0.950
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XVI I .VARI ATI ON OF TYPES CF INTERVALS M T H ROW

SAMPLE SIZE = 26

SIGVA =5.0

LEVEL OF SIGNIFICANCE = 0.05

ROW TYPE 1 TYPE 2 TYPE 3 PROS 1 PRGB 2 CON REG

0. 100 0.193 0.097 0.710 0.896 0.619 0.943

0.30 0.25 5 0.107 0.638 0.929 C.701 C. C5C

G.50C C.56 0. Ill G. 329 0. 938 C.856 0.949

0.70C C. 841 0. C62 G.097 0.941 0.903 .944

0. 900 0.962 0.015 0.022 0.947 0.938 0.948

XVIII .VARIATION OF TYPES IF INTERVALS WITH ROW

SAMPLE SIZE = 30

SIGVA = 5 .0

LEVEL OF SIGNIFICANCE = 0.05

ROW TYPE 1 TYPE 2 TYPE 3 PRCB 1 CP03 2 CCN REG

0.100 0.075 0.075 0.850 0.393 C.640 C. 965

0.30C G.350 0. 110 C. 540 0. 920 C.709 C.940

0.50C C.664 0. C97 C.239 0.950 0.845 0.952

0.700 0.897 0.034 0.069 0.950 0.912 0.952

0.900 0.979 .007 0.014 0.952 1.000 0. c,52
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XIX.VARIA_
ION GF ^YPES CF INTERVALS WITH N

CORR.COEFF. = 0. 300

SIGMA = 1.0

LEVEL OF SIGNIFICANCE = 0.05

N TYPE 1 TYPE 2 TYPE 3 PRC8 1 FRG8 2 CCN REG

4 0,300 0.040 0.660 0. 867 C.600 0. C44

6 C.342 0. C80 0.578 0. 915 C.775 0.953

a C. 587 0. 057 C.356 0.942 0.737 0.951

10 0.516 0.077 0.407 0.92<+ 0.714 0.939

12 0.259 .106 0.635 0.946 0.698 0. 954

14 C.861 0.C33 0. 106 0. 940 C. 758 C.C4C

XX. VARIATION OF TYPES OF INTERVALS WITH N

C3RR. CGEFF. = 3 .500

SIGMA =1.0

LEVEL CF SIGNIFICANCE = 0.05

N 'Y°E 1 TYPE 2 TYPE 3 PRG8 1 PR33 2 CON REG

4 C.232 0. C49 0.719 0.853 0.694 0.951

6 0.269 0.098 0.633 0.388 0.786 0.949

8 0.540 .083 0.377 0.935 C.819 C. 95C

10 C.^83 0. 110 C.407 0. 909 C. 818 C.93 6

12 C. 561 0. 109 C.33C 0. 941 0.853 0.951

14 0.874 0. 04^ 0.082 0.952 0.841 0.951
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XXI .VARI ATI ON Q= TYPES CF INTERVALS M T H M

C3RR .COEFF. = 0. 700

SIGMA = L .0

LEVEL CF SIGNIFICANCE = 0,05

N TYPE 1 TYPE 2 TYPE 3 PROB 1 PROB 2 CON REG

4 0,308 0.07? 0.620 0.396 0.861 0.958

6 0,36 9 0.119 0.512 0.90 2 C.874 C. S49

a C.5 86 0.095 C. 319 0. 920 C.884 C. 942

10 C.791 0. C71 C.138 0.934 0.373 0.939

12 0.840 0.065 0.095 0.940 0.908 0.944

14 C.914 .028 0.058 0.951 G.9 29 C. 953

XXIJ.VARIATION OF T Y^ES OF INTERVALS WITH N

COFR.CCEFF. = 0.300

SIGMA = 3.

LEVEL CF SIGNIFICANCE = 0.05

N "YPc L
T YPE 2 TY°E 3 D R08 1 PROB 2 CON REG

4 C.067 0.050 0. 883 0. 642 C.580 0.955

6 C. 090 0. C93 C.817 0.689 0.710 0.945

8 0.262 0.085 0.653 0.924 0.718 0.956

10 0.179 .125 0.696 0.855 C.704 C. 937

12 C.255 0. 106 C.639 0. 929 C. 698 C. 950

14 C.374 0. Ill 0.515 0.922 0.721 0.94
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XXIII. VARIATION OF TYPES OF INTERVALS WITH N

CORR.CCEFF. = 0.500

SIG^A =3.0
LEVEL CF SIGNIFICANCE = 0.05

N TYPE 1 TY^E 2 TY°E 3 PROB 1 PROB 2 CON REG

4 C.108 0. C68 C.824 0.713 0.750 0.95 2

6 0.226 0.105 0.669 0.863 0.781 0.946

3 0.376 0.113 0.506 0.923 C.822 C. 95C

10 C.445 0. 117 0. 438 0. £99 C.829 C.93 5

12 C.561 0. 110 C.329 0. 938 0.355 0.949

14 0.674 0.091 0.2 3 5 0.942 0.857 0.94S

XXIV. VARIAT IQN OF T YPES CF INTERVALS WITH N

C3RR.C0EFF. = 0. 70C

SiGMA = 3 .0

LEVEL OF SIGNIFICANCE = 0.05

N TYPE 1 TYPE 2 TYPE 3 PRGB 1 PROB 2 CCN %EG

4 0.216 0.077 0.707 0.829 C.870 C. 952

6 C.354 0. 122 0. 524 0. 898 C.885 C. 950

8 C.557 0. 118 C.325 0.926 0.364 0.94 3

10 0.736 0.088 0.176 0.93 8 0.898 0.945

12 0.841 0.062 0.097 0.941 C.903 0. 944

14 0.397 0.C34 C. 069 0. 950 C.912 C. 952
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XXV. VARIATION OF TYPES OF INTERVALS WITH N

CORR.CCEFF. = 3.300

SIGMA =5.0
LEVEL OF SIGNIFICANCE = 0.05

N TYPE 1 TYPE 2 -Y°E 3 PROB 1 PROB 2 CON REG

4 C.06 8 0.C51 0.881 0. 632 C. 588 C. 954

6 C.088 0. C94 C.818 0.682 0.713 0.945

8 0.138 0. 093 0.769 0.884 0.710 0.957

10 0.182 0.127 0.691 0. 863 C.717 C. 939

12 C.255 0. 107 0. 638 0. 929 C.701 C. 950

14 C.350 0. no C.5^0 0. 92 0.709 0.940

XXVI. VARIATION OF TYPES CF INTERVALS WITH N

C03R .COEFF. = 0. 50C

SIGMA =5.0

LEVEL CF SIGNIFICANCE = 0.05

N TYD E 1 TYPE 2 TYPE 3 PROB 1 PROB 2 CON REG

4 0.107 0.C69 0.824 .701 0.739 0.950

6 0.215 0.109 0.676 0.860 C.761 C. 944

a C.363 0. 126 0. 511 0. 928 C.810 C. 95C

10 C. 444 0. 115 C.441 0. 90i 0.817 0.935

12 C.560 0.111 0.329 0.938 0.856 0.949

14 0*664 .097 0.239 0. 950 C.845 C. 952
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XXVII .VARI ATI CN CF TY FES OF INTERVALS WITH N

CORR.COEFF. = 0.900

SIGMA = 5 .0

LEVEL OF SIGNIFICANCE = 0.05

N TYPE 1 TYPE 2 TYPE 3 PRQB 1 FR08 2 CON REG

4 0.237 0.103 0.66 C 0.873 0.922 0. S62

6 0.537 0. 129 C.334 0. 93 7 C.930 C.C57

8 C.777 C. C80 0.143 0.943 0.888 0.947

10 0.901 0.052 0.047 0.948 0.942 0.950

12 C.962 0.016 0.022 0.947 C.938 C. 946

14 C.979 0.007 0.014 0. 952 1.000 0. 953

XXVIII .VARIATION OF INTERVALS WITH SIG^A

SAMOLE SIZE = 14

CORR.COEFF. = 0.700

LEVEL CF SIGNIFICANCE = 0.05

SIGMA TYPE 1 TYPE 2 TYPE 3 PR OB 1 PROS 2 CON 5EG

1 C.369 0. 119 C.512 0.902 0.374 0.949

2 0.352 0.123 0.525 0.901 0.886 0.951

3 0.354 0.122 0.524 0.898 C.885 C. 950

4 C.354 0. 121 0. 525 0. 898 C.884 C. 950

5 C. 353 0. 122 0.525 0. 398 0.885 0.950
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XXIX. VARIATION OF INTERVALS WITH S IGVA

SAMPLE SIZE =18
CORR.CCEFF. = 0.500

LEVEL CF SIGNIFICAMCE = 0.05

SIGMA TYPE 1 TYPE 2 TYPE 3 PROB 1 PPG8 2 CCN REG

1 C.540 0.083 0.37 7 0.935 C.819 C. 95C

2 C.3 96 0. 116 0.488 0. 919 C. 819 0. 94 7

3 C.376 0. 118 C.506 0.923 0.322 0.950

4 0.372 0.118 0.510 0.922 0.822 0.950

5 0.363 0.126 0.511 0.928 C.810 C.95C

XXX.VARIATI1N 3F INTE D VAL3 WITH SIGMA

SAVPIE SIZE =21

C9RR .CGEFF. = 0. 50C

LEVEL OF SIGNIFICANCE = 0.05

SIGMA TYPE 1 TYPE 2 TYPE 3 °RT8 1 PROS 2 CCN REG

1 C.483 0. 110 0. 40 7 0. 909 C.818 C. 936

2 C.446 0. 115 C.439 0.901 0.826 0.936

3 0.445 0.117 0.43 8 0.899 0.828 0.935

4 0.446 0.115 0.439 0.899 0.326 0. c.35

5 0.444 Q. 115 0.441 0. 901 C.817 C. c35
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TYPES OF INTERVALS VS N
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5. PROB. OF TYPE 1 INT. VS N

(VARIATION WITH a)

N

CORR. COEFF

SIGMA

= 0.9

= 1.0
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C PROGRAM TO CALCULATE PROBABILITY CF TYPE 1, TYPE 2,TY°E

C 3, T YPE 4 INTERVALS F^P SIMULATED SAMPLES.

C PROGRAMMER T S MURTHY SEP 1979.

Q *******************************£****$**********$$******

CI MENS ION Z(55),X(55),V(100,55},XI(50),YI(50),S<55),

1IC ( 5), IP ( 5),IPC( 5), STATdO, 7) ,VS(10,10,7),IVS(1C)

CALL OVFLOW

INDEX =1

SIGMA=1.0

1 READ(5,2) K,T

WRI T E (6,2)K,T

2 FDR^ATl IX, 12, 2X =F 5.3)

IF{ K .EO. ) GO TO 460

R3W=0.10

DO 300 18=1, 5

DO 10 J = l ,5

8 = (1-R0W**2 )**.5

C SIMULATI1N OF SAMPLES

ISEED=12345

10 IPC(J)=0

CO 250 14=1, 10

DO 5C M=l,100

CALL SNORM(ISEED,Z,K)

X(1)=^IGMA*Z(1)

CO 30 J=2,K

30 X(J)=ROW*X( J-1)*3*SIGMA*ZU)

DO 40 L=l ,K

40 V(M,L)=X ( L)

50 CONTINUE

DD 60 II =1,5

6 I R ( 1 1 ) =0

CO 200 1=1, IOC

DO 70 J = l ,K

70 S(J)=V(I,J)

K=K-5

KK=K/2
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03 8C L=1,KK

80 YI(L)=S(2*L)

N=KK-1

03 90 LL=1,N

90 XI(LU=<${2*LL-U+S(2*LL+in/2.0
XSUN=0.0

YSUM=0.0

SXX=C.

SXY=0.0

SYY=C.O

03 1G0 KL-lt

5

100 IC(KU=0

03 110 M=1,M

YSUM=YSUM+YI

(

V)

XSUM=XSUM+XI(MJ

110 CONTINUE

XB = >SUM/N

Y3=YSUM/N

03 120 M=1,N

SXX=SXX+( XI IM)-XB)**2

SYY=SYY+{YI (M)-y 3)**2

SXV=SXY+( XI (M )-X3)*< YI( M)-Y3)

120 CONTINUE

VRES=(SYY-( (SXY**2 J/SXX ) )/ (N-2 )

EH=SXY/SXX

AH = YB-BH*XB

SS=(7**2 )*VRES

/=<EH**2 )-SS/S<X

°=S(2*KK)-YB

B=-( 2*3 H*P)

C= (d**2 )-(SS*(N+1 ) J/N

F=(BF**2 )*SXX/SS

$3Q = 1.0-N*( P**2) /(SS*(N+1)J

IF (F .L" . SS C) GH T3 150

IF if •EO.l .0 ) GD tq 500

0={ 2.*XB)-S(K-1) +2. *BH*P/A
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E«( 2./A)*(( (SS*( P**2) /SXX)+ (N+1)*A*S3/N)**.5 )

FIL=D-E

PJR=D+E

D VAL=S( K+l)

IF(F .GT . 1.0) JO tc 130

IC(2 J= IC ( 2 J +1

IF(PVAL.LE.PIR .OR. PVAL.GE.PIL) I C ( 5 ) =IC (5 ) + 1

Go T C 160

130 IC(1 )=IC<1)+1

IF(dil.LE.PVAL.ANJD.PIR.GE.PVAU IC ( 4J-IC (4) +1

GO TO 160

150 iC(3 J=IC(3 J+l

160 01 170 J=l, 5

170 IR( J)=IR( J)+I C(J)

K=K + 5

200 CONTINUE

CI 220 J = l,5

22C IPC( J)=IPCU)+IR( J)

250 CONTINUE

C PRINT STATISTICS

STAT( IB,1)-R0h

STAT( IB ,2)=I PCUJ /1CC0. C

STA'(IB,3) = IPC(2)/1000.0

ST^T( IB,4)= IPC(3 )/ 1000.0

IF( STAT( IB, 2) .EQ.O. C) GC TO 275

STAT< IB ,5)=IPC(4) /( STAT ( I B,

2

) *1 00 0.0

)

GO TC 280

275 ST IT ( IB, 5 ) = I
DC(4 )

280 IF( ST*T( IB,3) .EQ. 0.0) GO TO 285

STAT ( I 3, 6) =1 PC (5) /( STAT ( I B, 3 ) *1 000 .C J

GG T C 290

285 ST4T(IB,6 )= PC(5 )

290 SIG=STAT( IB ,2 )*ST4 T ( IB , 5) + STAT ( I 8 , 3) * STAT ( I B , 6 )

1 +STAT( IB ,4)

S'/S T (IB,7 )=S IG

ROW=ROW+0 .2
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300 CONTINUE

DO 305 IQ=1 ,5

CD 305 J0=l,7

VS( INDEX, 10 ,JQ) = ST4T( IQ,JQ)

305 CONTINUE

IVS( INDEX )=N

INDEX=INDEX-H

ISZ=K-5

WRITE(6,310)ISZ, =SIGM4,N

WR ITE ( 6,325)

WU 7E( 6,3 50) ( (STA T < K,L) ,L=1 ,7) ,K = 1 ,5

J

310 FORMATUX,' SAMPLE SIZE = ',15,' SIGMA = SF5.0, •

IN = » ,15, /J

325 FDRMATtlX,' 10W TYPE 1
T YPE 2 "Y^E 3

1FRGE.1 PRCB.2 CGN.&EG •,/,70( , -»))

350 FDR "AT ( 7(F3 .3, 2X ),/ )

WRITE! 6, 485)

GJ TO 1

460 CCRR=0.1

INCEX=INDEX-1

CD 470 J = l,5

WRITE (6,472) CORR, SIGMA

WRI~E(6 ,475

)

OG 471 1=1, INDEX

VsRI 7E( fc,480) ( IVSd ) ,(VS(I ,J ,KJ ,K = 2 ,7))

471 CONTINUE

CORF=CORR+0 .2

470 CONTINUE

472 FORMAT* ' CORR.COEFF. = ' , F5 .3 ,
' SIGMA = «,F5.0,//)

475 FCR.V AT(« SAMPLE SIZE T YPE 1 TY^E 2 TY^E 3 D[?J

1E.1 PR0B.2 COM .PEG 1 ,f f 70i ,' t ))

480 FDRMATU 5 , 5X , 6( F 8. 3 ,2 X) ,/)

500 S T OF

ENC
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APL PROGRAM LINTREND

V LZHTREND X
Lll «4-l+(!<+0.5X < lN<-f X) )

£411 ><<-<fX>x0.5

C7I1 -»llx \ k <m<-m+i

C8D «1«-<«C< (2xM)-3)3+>{C( (2xM)-i > } > x0.5

CIO!] -»7

C 1 13 ti <-;(C2x\k3

CI23 h«-k-1

CI 3 3 YX«-N+YX

C143 ' THE VECTOR XI IS 'JXI
C15J ' THE VECTOR Y I IS «}TI
C16D ' THE VALUE OF XF IS ' } XP
C173 CK-Wfi
C183 C2<-\N

C19U C3<-wx

C20D DMT«-(3,M)fCi,C2,C3
C21D DMfUDMT
C22D SfDMT+,xDM
C23D sn-gs
£243 BH«.(5I+, XE'HT) + , x T I

C253 SHSf(+/( (YI ) *2) )-( ($YI+, XDM) + , XBH)

C263 AO<-si[ifi]+(N+l)x( (2xsxni;2D)+(N+l)xSiC2?23)
C273 «0<-«0+l
C283 Ai<-<2xsiciJ33)+2xsic2»3:x<N+l)
C293 «2<-siC3J3D
C303 CF<-4xSHS^.(N-3)
C313 a<-(*hc33*2)-<«2xcf)
C323 B <-(2xBHr33xw<-<KC2xi<D-E,Hrii-BH[:23xi< ) )-aixcp
C333 c«-<w*2)-«0xcf
C343 4iMx

\

(b*2)14xaxc
C353 e<-< (£«*2)-4xAxC)*o»5
C363 e<-e^a

C373 f<--lxXC(2xK)-i3-B-«
C383 ' THE LEFT LIMIT IS ' J D-E

C393 ' THE RIGHT LIMIT IS » JI'+E

C403 -»0

C413 IMJ' NO INTERVAL. EXISTS '
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APL PROGRAM PREDICT

v p p: e t> x c r k j a j k p c j jd j i::: j f ; g ; n j p ;s5«;ss;;;s;:i:; sxy ; s r i;;i i:< j y &

CI J ft
:•' IS ASSUMED TO XNIi." ft VECTOR OF EVEN NO OF ENTRIES

C2J K<-(f'-') xo, 5
c 3

:

« i <- \ o
C4H m<-1

C53 *9X l K (MfM+l
C6H «1<-<«C< (2xM)-3)T+K[:< (2xM)-i)T)xO*5
C7D xii-xi,xi
C83 -»5

ClOU w«-k-i

CI 11 'r'lfHffl

C123 Y»f(+/YI)*N
CI 3D xi«.(+/xi)j.h
CI 43 s::t>+/( (Xi-XB) x (Yi-YS) )

CI 53 s;:;:<-+/((:a-:;B)*2)

C163 SYYf+/( (YI-YB) *2)
C173 BHfSXYASXX
C183 AHfYB-BHxXB
C19 3 VRE5f(SYY+(-lx ( (SHY*2)*SMK) ) ) +N~2
C203 g<- 12*706 4*303 3,182 2*776 2*571 2.447 2*365 2.306
C213 g<-g, 2*201 2*179 2*16 2*145 2*131 2.12 2,11 2*101 2*09
C223 g«-g, 2*08 2*074 2.069 2.064 2.06 2.056 2.052 2.043 2
C233 g«-g, 2.041 2*04 2*04 2*04 2.035 2.03 2*03 2*03
C24U QfG, 2.025 2.025 2.02 2*02 2.02 2.02 2.015 2.01 2.01
C253 t«.gcn-23
C263 a<-(bh*2)-( (tSXX) xSf( <t*2) xvres) >

C273 B<-""ix (2xbhxf>(v:[2xi<]-tB) )

C283 c<-(P»2)-5x( (h + 1)tH)
C293 f<-<bh*2) xsx«tS
C303 ' THE F STATISTIC IS

'
JF

C31D SSQ<-l-(N^(N+l ) ) x <p*2)ts
C323 -tTix\F>i
C333 ^T2x\f=i
C343 -*T3x\F<ssa

C353 ' THE INTERVAL. IS OF TYPE 2 '

C363 -»0

C373 tij^xo
C383 ^<-(2x::b)-x[ (2xk )-1]+2xbhxPt«
C39 3 Ef(rA)x2x(5x(( (F-»2)rS;:;:) + ( (N+i>aN)xa) )*0.5
C403 ' THE LEFT LIMIT IS

'
J D-E

C413 ' THE RIGHT LIMIT IS • JB+E
C423 ' YHE LENGTH OP" INT IS ' ?|(2XE)

C433 -»0

C443 T 2t' THE XHT IS OF type 4 1

C453 ->0

C463 T 3 i
' THE IWT IS 0,r type 3

'
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