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ABSTRACT

A technique for the use of semi-infinite planes to

approximate the log magnitude versus log frequency charac-

teristics of two-dimensional filters is presented (Extended

Bode approach) . This technique is applied to quarter plane

filters and works well for separable transfer functions.

Other non-separable canonic (basic) transfer functions are

also studied in terms of their planar approximation. The

general technique is shown to be useful for the insight it

provides as well as being a simple approach to design. The

double bilinear z-transform is studied for use with the

two-dimensional analog transfer functions to convert them

to the digital domain.
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I. INTRODUCTION

A. DIGITAL SIGNAL PROCESSING

Digital signal processing has its roots in 16th century

mathematics, especially in the fields of astronomy and the

compilation of mathematical tables. Today it has become

a powerful tool in a multitude of diverse fields of science

and technology. The applications of digital signal pro-

cessing varies from low-frequency spectrum seismology

through spectral analysis of speech and sonar into the

video spectrum of radar systems [1]

.

In their book, Theory and Applications of Digital

Signal Processing [2] , Rabiner and Gold have combined digi-

tal signal processing theory, with a variety of applications

ranging from sonar, radar, communication, music, seismic

and medical signal processing, with digital component

technology. This technology is the main driving force for

progress in this field as well as the general area of com-

puter design. It was also observed by them, that, although

the formulation of engineering problems is often as vague

as those of the "softer" sciences (such as anthropology,

psychology, etc.), the execution of these problems appears

to depend on greater and greater accuracy and reproducibility

The capability of digital systems to achieve a guaranteed

accuracy and essentially perfect reproducibility is very

appealing to engineers.





A digital filter is defined in [3] to be a computa-

tional process in which a sequence of numbers acting as

input, is transformed into a second sequence of numbers,

or output digital signal; where the term "digital" implies

that both time (the independent variable) and amplitude are

quantized.

The field of one-dimensional digital filtering, which

is outlined in figure 1.1, encompasses recursive, non-

recursive and Fast-Fourier Transform processing. The terms

recursive and nonrecursive, instead of IIR (Infinite Impulse

Response) and FIR (Finite Impulse Response) are preferred

in this thesis. It is shown that recursive processing is

much more efficient than nonrecursive processing. Stockham's

method [4] to perform fast convolution, which later became

known as the FFT method, improved the efficiency of non-

recursive techniques, so that comparisons in one-dimension

are no longer strongly biased toward recursive methods [2]

.

One-dimensional recursive digital filter design depends

strongly on the effective and well developed continuous

filter design theory. Moreover, the stability analysis of

higher order one-dimensional recursive realizations can be

solved by investigation of the root distribution of its

factored form representation. It is important to realize

that continuous domain design techniques and factorization

property (the fundamental theorem of algebra) exists only

in one-dimension.
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Areas of application of one-dimensional digital signal

processing are listed in figure 1.1. There are important

military and specifically naval applications in addition

to those listed, such as missile and torpedo guidance,

launcher control system, fire control, combat information

collection, dissemination and display.

Digital filtering in several dimensions, which is over-

viewed in figure 1.2, has gained considerable importance,

especially for the two-dimensional case. Figure 1.3 presents

an example of two-dimensional low-pass and high-pass filtering

Until 196 6, two-dimensional digital filtering was implemented

by nonrecursive or convolutional techniques. In this method

the output is the weighted sum of unit sample responses of

all past input values. The serious disadvantage of the

convolutional method is the requirements of a very large

number of arithmetic operations.

The development of the Fast Fourier Transform (FFT) in

1966, reduced the number of arithmetic operations consider-

ably and is used extensively today. Filtering via FFT is

accomplished by computing the transform of the input func-

tion, multiplying by the frequency response of the filter,

and inverse transforming the result. The recursive

algorithm, which has in general an infinite impulse response

[3] , constitutes another technique for the realization of

two-dimensional digital filters.

Hall [5] compares the amount of computation required for

the three filtering techniques. He shows that, in general,

the FFT and recursive algorithms are preferable to the

11
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Fig. 1.3. a. An example of two-dimensional filtering
(An original photograph) [2]

13





Fig. 1.3.b. An example of two-dimensional filtering
(Low pass filtered version of Fig. 1.3a)
[2]
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Fig. 1 . 3c. An example of two-dimensional filtering
(High pass filtered version of Fig. 1.3a)
[2]
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nonrecursive one in number of computations and storage

requirements. Hall demonstrates that the recursive filter

algorithm constitutes the best method for large data, i.e.,

it is the fastest and cheapest.

When processing two-dimensional data by recursive filters

a fundamental problem exists due to inherent feedback, namely,

the problem of numerical stability. Since, in general, two

variable polynomials cannot be factored into a product of

first and second order real coefficient polynomials in each

of the variables, it is difficult to solve the stability

problem for two-dimensional recursive filtering. Conse-

quently, the majority of papers published in two-dimensional

digital filtering deal with the design of nonrecursive

filters which are inherently stable [6-10].

There are several papers discussing two-dimensional

recursive digital filters. For example [11] and [12]

formulate two-dimensional recursive filters by the z-

transform and linear difference equations, and although

they investigate problem areas related to stability and

realization, the majority of problems remain to be solved.

The most important applications of two-dimensional

digital filtering of digital data are in picture processing

and geophysical data analysis. Picture processing can be

categorized into:

a) Digital image restoration and enhancement,

b) Computer pictorial pattern recognition.

16





The methods of image restoration and enhancement are

applied to invert degradations, such as aberrations,

atmospheric effect, scanning, motion, and to manipulate

images to improve viewing phenomena experienced by the human

eye. Image restoration and enhancement has been used with

great success in biomedicine, i.e., in extraction of quan-

titative information from x-ray films, chromosome counting,

measuring the extent of arteriosclerosis from arteriograms,

in forensic sciences application, i.e., fingerprint image

enhancement for automatic classification, and in astronomy,

i.e., removal of turbulence from astronomical photography

[13].

Pictoral pattern recognition by digital computer has

gained great importance in satellite surveillance and mili-

tary reconnaissance. The application of two-dimensional

digital filters permits the separation of different horizontal

scans on magnetic and gravity maps in geophysics and can

be used equally well for structural and topographic maps

or for any other type of factor which is available in the

format of a planar grid [14] . Although digital filtering

in several dimensions is gaining importance in medicine,

i.e., heart volume measurements, in fire control problems,

and to analyze complex electronic circuitry, there exists

no general theory concerning structures, analysis and

design.

These considerations can be summarized as follows.

Since one-dimensional recursive digital analysis and design

17





techniques depend strongly on the fundamental theorem of

algebra and on extensive utilization of continuous design

theory, it represents a special, i.e., a non-generalizable

field in the area of N-dimensional recursive digital filtering.

Multi-dimensional digital filtering is well developed in two-

dimensions but is based, due to the absence of recursive theory

analysis and design tools, predominantly on nonrecursive

filtering schemes. Because of their inherent advantages, much

of the current research is directed towards recursive filtering

algorithms and techniques.

B. AREA OF INVESTIGATION AND OBJECTIVES

One area of investigation of this thesis is to see how the

semi-infinite straight line approximation technique of one-

dimensional filters (based upon the log modulus/log frequency

or decibel vs. log- frequency plots) can be extended to two

(or higher) dimensional recursive filters. The advantages of

log-modulus approach is that a transfer function in factored

form becomes a linear sum of terms when the logarithm of its

magnitude is taken, and each of these terms can be approxi-

mated by semi-infinite straight line segments in the one-

dimensional case, and semi-infinite planes in the multi-

dimensional case, when expressed in terms of log-frequency.

The following are specific objectives:

1. To postulate typical (canonic) factors for

two-dimensional filters and to investigate their properties

in the log-modulus/log frequency domain.

18





2. To develop an approximation technique for the

design of two-dimensional recursive filters to meet given

specifications in the frequency domain.

The frequency response of two dimensional filters is

inherently a volume in the space of magnitude, log cj, and

log CO2 • This volume is the given or desired specification

of the filter, which in the separable case can be approxi-

mated by the combination of semi-infinite planes.

In this thesis we investigate how we can approximate

this volume by semi-infinite planes as an extension of

the approximation used in one dimension, i.e., by semi-

infinite lines. After determining the planar equations

which perform the given specification of the filter, we

investigate ways to get a transfer function; first, in the

continuous frequency domain and second for two-dimensional

recursive equations in the discrete variable domain.

The results of this study will classify those charac-

teristics that can be achieved by cascading simple canonic

factors, and indicate limitations that are imposed by

trying to achieve a particular frequency characteristic

(such as the fan filter) in as simple form as possible.

The approach taken here is to investigate the problem

in the continuous domain first, and then study the trans-

formation from continuous frequency (differential equation)

domain to discrete time (sampled data) domain.

19





C. PREVIEW OF RESULTS

We have proposed a geometric method to design two-

dimensional recursive digital filters. This is a new

method which is relatively simple and easy with respect to

other design methods. We have investigated properties of

some typical (canonic) factors and considered their stability

properties. In Chapter II we go through the basic properties

of two-dimensional filtering. In Chapter III we provide

background in terms of planar geometry for the discussion

in subsequent chapters. In Chapter IV we investigate the

properties of typical factors and their stability in continu-

ous variable domain. The new design technique, including

stability considerations, starting with the continuous

frequency domain and extending to two-dimensional recursive

filters in the discrete domain, is presented in Chapter V.

The results are summarized and some comments for further

study are made in Chapter VI. It should be noted that the

results presented apply to quarter plane filters, as defined

in Chapter V.

20





II. FUNDAMENTALS OF TWO-DIMENSIONAL RECURSIVE FILTERING

A. INTRODUCTION

There are many signals that are inherently two-dimensional

for which two-dimensional signal processing techniques are

required. The most common examples are, of course, images

in which the two variables are the spatial coordinates.

Image processing [15], [16] plays an important role in many

areas of scientific and technical research. Some examples

are satellite imagery radiography, radar, and biomedical

images such as acoustical holograms, medical x-rays, and

electron micrographs [2]. Not all two-dimensional data

come from an image. In prospecting for gas and oil, a

common procedure is to monitor the seismic signals produced

by detonating an explosive charge [17] . An array of geo-

phones situated along a line radiating in a vertical or

horizontal direction from the point of explosion is used

to record these signals. In this case, the two variables

are distance (from the point of explosion measured along

the line) and time (the time at which the seismic signal

reaches a given geophone or, equivalently , a given distance

from the explosion)

.

Although two-dimensional signals may be processed by

one-dimensional systems, it is generally preferable to con-

sider using two-dimensional systems. Many of the basic

ideas of one-dimensional signal processing may be readily

21





extended to the two-dimensional case. There are some

very important concepts of one-dimensional systems, however,

that are not directly extentable to two dimensions. It

is the goal of this chapter to discuss the basic ideas and

techniques of two-dimensional signal processing and to

illustrate them into the context of two-dimensional filter

design. A more detailed discussion of this theory plus

an overview of recent work in two-dimensional filtering is

contained in the excellent survey paper by Mersereau and

Dudgeon [18] , and H. Chang and J.K. Aggarwal [19] . Other

useful references are the first few chapters of [1] and

chapter 7 of [2]

.

B. DEFINITIONS

1. Two-Dimensional Signals

One-dimensional signals are functions of a single

variable and two-dimensional signals are functions of two

integer variables. Consider the two-dimensional sequence

x(m,n) where m and n are integer variables, shown in figure

2.1. As in the one-dimensional case, the notation x(m,n)

is often short hand for a sampled version of a continuous

two-dimensional signal x(s,t): i.e.,

x(m,n) = x(mT,,nT
2

) = x(s,t) (2.Ds=mT
1
,t=nT

2

One interpretation of x is a function which assigns a

(generally complex) number to each integer ordered pair

22
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(m,n) . The function x is not defined when either or both

of its arguments (m,n) is not an integer. Such a signal

will be interchangeably referred to as either a two-dimensional

array, a two-dimensional sequence or simply as a two-dimensional

signal

.

Some useful two-dimensional sequences are defined

below and shown in figures 2.2 to 2.4. These include:

1. Digital Impulse or Unit Sample

1 m = n =

u (m,n) =
\

(2.2)
elsewhere

2. Digital Step

(

I 1 m,n >_

u ,(m,n) =
\

(2.3)
elsewhere

3. Exponential

m n . n
a, a~ m,n

x(m,n) =
X (2.4)

otherwise

4. Sinusoid (Complex)

j ((jo^m+oj^n)

x(m,n) = e -°° < m,n < +=° (2.5)

As seen above, the two-dimensional step is related to the

two-dimensional impulse by

24
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m n

u_
1
(m,n) =11 u

o
(m

1
,n

1
) (2.5a)

m, =-<» m, =-oo

2 . Two-Dimensional Systems

A two-dimensional discrete system is defined as

the unique transformation T that maps an input sequence

(x(m,n)} and the initial condition sequence {s(m,n)} into

an output sequence {y(m,n)}

y(m,n) = T[{x(m,n) },{s(m,n) }] (2.6)

In signal processing applications, we assume zero initial

conditions. With this assumption, the above relation may

be shortened to

y(m,n) = T[{x(m,n)}] (2.7)

The system characterized by T is

(a) linear if

T[{ax
1
(m,n) + bx

2
(m,n) }] = aT [ {x

1
(m,n) } ] + bT [ {x

2
(m,n) }]

(2.8)

for arbitrary constants a and b.

(b) shift invariant if

y(m-m
1
,n-n

1
) = T [ {x (m-ir^ , n-n

1
) } ] (2.9)

for all m, and n,

.
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A hardware and software system which is equivalent to the

transformation T of (2.6) is called a digital filter. The

class of complex-valued sequences which are square summable

will play the role of input and output signals of the

digital filter. Linearity and shift-invariance are indepen-

dent properties of a system in that neither property implies

the other. Thus the system

T[x(m,n)] = h(m,n) x(m,n)

is linear but not shift invariant and the system

2
T[x(m,n)] = x (m,n)

is shift invariant but not linear

For two-dimensional discrete linear systems, the

impulse response is defined as the response of the system

at (m,n) to a two-dimensional digital impulse input at

(m, /n,) with zero initial conditions, i.e.,

h(m,n;m,,n, ) = T

[

{u
q
(m-m

1
,n-n1 ) } ] (2.10)

where u (m,n) denotes the digital impulse. In particular,

the impulse response of a two-dimensional discrete LSI

(Linear Shift Invariant) system is

29





h (m,n;m, ,n, ) = h (m-m, ,n-n,

)

or

h(m,n) = T[{u
o
(m,n) }] (2.11)

The response of a two-dimensional LSI* system with zero

initial conditions is completely characterized by its

impulse response. In fact using the identity

x(m,n) = I x(m, ,n , ) u (m-m, ,n-n
1

)l'"l'"o % V "1'

m
1
,n

1
=-«

I x(m-m
1
,n-n

1
)u (m

1
,n

1
)

m^n^- 00

we get

y(m,n) = T[{ x (m, ,n
1

) u (m-m, ,n-n, ) }

]

rar nr
l x(m

1
,n

1
)T[{u (m-m

1
,n-n

1
) }]

m
1
/n

1
=-c

x (m, ,n, ) h (m-m, ,n-n^)

m
l'

n
l
= ~°° '

*LSI = Linear Shift Invariance
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y(m,n) = £ x (m-m^n-r^) h (m, ,n,)

m1/ n1
=-<

= x(m,n) * h(m,n) (2.12)

where "*" denotes two-dimensional convolution. In other words,

for LSI systems the basic convolution theorem is valid.

3. Causality, Separability, Stability

In discussing various features of two-dimensional

discrete systems, it is convenient to have spectral nota-

tion [19] to represent certain regions of the spatial domain.

1. Let S(a,3) denote a sector with the angular

interval (a, 3). In polar form S(a,3) may be described by

S(a,3) = ( (r,6) |r > 0,a < 9 < 3) (2.13)

where (a, 3) are measured in radians. In particular, we

give the following notation for the sectors frequently

encountered:

S++ = S[0,tt/2]; S-+ = S[Tr/2,ir]

S— = S[-tt,-tt/2] ; S+- = S[-tt/2,0] (2.14)

S*+ = S[0,tt) ; S*- = S[-tt,0)

where "[" and "]" imply including the boundary and ")" implies

X

not including the boundary.
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Notice that S++, S-+, S— , and S+- represent first, second,

third, and fourth quadrants, respectively, and S*+ and S*-

represent half-planes which are symmetric to each other with

respect to the origin. (See fig. 2.5.)

2. For a two-dimensional sequence (x(m,n)}, the

set

Ev = { (m,n) |x(m,n) ? 0} (2.15)

is called the support of (x(m,n)}.

3. Let {h(m,n)} be the impulse response of a two-

dimensional discrete LSI system, and let E, be the support

of (h(m,n) }.

Then, a two-dimensional LSI system is said to be

causal if E, is the set S++, and semi-causal if E, is the

set S* + . They are shown in Fig. 2.5.

A two-dimensional discrete LSI system is said

to be separable if its impulse response can be factored into

a product of one-dimensional responses (Fig. 2.6); i.e.,

h(m,n) = h
x
(m) h

2
(n) (2.16)

If the equation (2.16) is not satisfied, the filter is said

to be nonseparable. The advantages of separable filters is

that two dimensional convolution (2.12) may be carried out

as a sequence of one-dimensional convolutions. This can be

seen by rewriting (2.16) as follows.
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fcm

Fig. 2.5. Support Area of Impulse Response
(a) Causal
(b) Semi-causal S.

(c) Semi-causal S*_
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Fig. 2.6. Separable Digital Systems
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y(m,n) = j» h
1
(m^) h

2
(r^) x (m-m-^n-n-^ (2.17a)

m, ,n =-<»

I h
1
(m

1
) [ I h

2
(n

1
)x(m-m1/ n-n 1

) ] (2.17b)

m =-oo n,=-oo

I h
1
(m

1
) a(m-m.,n) (2.17c)

m
l
=_c

where a (m-m, , n) is a sequence of one-dimensional convolutions

(obtained by evaluating the terms inside the bracket of

(2.17b) for each fixed value of m, ) . Equation (2.17c) shows

that y(m,n) may be obtained by a second sequence one-dimensional

convolution.

If both the input sequence x(m,n) and the filter

impulse response h(m,n) are separable, then it is readily

seen that the output sequence y(m,n) is also separable.

In this case we obtain the result [using (2.12) and (2.16)]

00 00

y(m,n) = [ I h
±
Cm^b (m-m

1 ) J I I h
2
(n

1
) c (n-i^) ] (2.18a)

m =-« n =-oo

= a(m)3(n) (2.18b)

where

x(m,n) = b(m) c(n)
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V

A two-dimensional LSI system is said to be (BIBO)

stable if every bounded input sequence produces a bounded

output sequence. This condition is satisfied if and only

if the two-dimensional impulse response of the system is

absolutely summable, i.e.,

00

I |h(m,n)
|

< c° (2.19)

m, n=-°°

As in the one-dimensional case, (2.19) can be shown to be a <e-

necessary and sufficient condition for stability [20]. One

problem with (2.19) is that it can be quite difficult to

evaluate for an arbitrary h(m,n).

4 . Two-dimensional Difference Equations

As in the one-dimensional case, two-dimensional LSI

systems can often be described by a two-dimensional linear

constant-coefficient difference equation relating the output

y(m,n) of the filter to its input x(m,n). The most general

form for such a difference equation is shown by

I a(k
1
,k

2
)x(m-k

1
,n-k

2
)

-
I b (^^ y (m-Jl^n-j^) =

(k
1
,k

2
)eR

a
(i

1
,l

2
)eR

h

(2.20)

where R and R are finite sets of spatial grid points,

called the input and output mask, respectively, and {a(k
1
,k

2
)}

and (bUwJU)} are the set of constant coefficients that
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characterize the particular filter. Generally, a difference

equation has a family of solutions as is the case with a

differential equation. The difference equation is said to

be recursive if there exists a sequence of computations which

yields the output sequence serially from the input sequence

and that portion of the output sequence which is already

computed/ including the initial condition. An implicit

ordering of grid points in the spatial domain is assumed for

the serial computation of the output sequence.

There are two cases of (2.20):

1. R , K in the S++ (first quadrant), b(0,0) ^

and y(m,n) = for outside of S++ (zero initial conditions),

then (2.20) represents a causal system.

2. If R , R. in S*+, b(0,0) ? and y(m,n) = for
a o

outside of S*+ (zero initial conditions), then (2.20)

represents a semi-causal system.

In both cases we may assume b(0,0) = 1 without loss of

generality and write (2.20) as

y(m,n) = £ a (k-^k^ x (m-k-^n-k^

(kr k
2
)£R

a

I b(l
1

,!L
2
)Y(m-l

1
,n-l

2
)

(2.21)

(l lf l
2

) eRb
-(0,0)

It is clear that (2.21) is a recursive equation, and the

implicit ordering, for example may be given as
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{(0,0); (1,0), (0,1), (1,1); (2,0) ,(2,1) , (0,2) ,(1,2); (2,2);...}

for a causal system, and

{(0,0), (0,1) , (0,2) ,...; (-1,1) , (0,1) , (1,1) ;...;...

... (-1,2) , (0,2) , (1,2) ,.. .; . ..}

for a semi-causal system.

If {b(£
1
,£

2
)} = {u

Q (£
1
,£

2
)} the equation (2.21)

becomes

y(m,n) = I a(k
1
,k

2
)x(m-k

1
,n-k

2
) (2.22)

(k
1
,k

2
) £R

a

so that the output sequence is a weighted moving average of

the input sequence. The impulse response of (2.22) is

unique and is obviously {a(k,,k
2
)}. Such filters are called

finite extent impulse filters (FIR) because the impulse

response has only finitely many nonzero terms. FIR filters

obviously are always BIBO stable because a(k,,k
2

) is always

absolutely summable. (It has only finitely many nonzero

terms .

)

If, on the other hand, the sequence (b(£,,£
2
)}

has several nonzero terms, then the impulse response will

generally have infinitely many terms. We will say that such

filters are infinite-extent impulse response filters (IIR) .
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Such filters may be BIBO unstable, and so it is necessary

to devise a stability test for such filters.

FIR filters have the advantages that they are

easier to design, that controlling the phase response is

easier (in particular, it is easy to produce filters which

have a linear phase response) , and that since the input-

output relationship is a finite-extent convolution, Fast

Fourier Transform (FFT) techniques can be used to speed the

computation of the output sequence. On the other hand,

recursive (IIR) filters generally require less high speed

storage and usually require less computation time than FIR

filters. Comparison of FIR and IIR filters is contained

in [5].

5 . Two-dimensional z-tranform

A useful mathematical tool for representation of a

sequence x(m,n) is its two-dimensional z-transform. Given

a sequence x(m,n), the z-transform of this sequence is

defined to be:

<

CO oo

Z[{x(m,n)}] 4 X(z
1
,z

2 ) = I £ x (m,n) z^ (2.23)

m=-°° n=-°°

where z, and z
2

are independent complex variables. The most

useful property of the z-transform is the fact that the z-

transform of the convolution of two sequences is the product

of their z-transforms , i.e.:
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Z[{x(m,n) }*{h(m,n) }] = X(z
1
,z

2
)H(z

1
,z

2 ) (2.24)

Therefore, the input-output relationship of an LSI filter

may be expressed in the z-transform domain as:

Y(z
1
,z

2
) = H(z

1
,z

2
)X(z

1
,z

2
) (2.25)

where H(z-,,z
2
), the z-transform of the impulse response

is called the transfer function.

A two-dimensional transfer function evaluated on

the unit circle is called the frequency response of the

system, i.e.,

jw, jco 9 ju>, jo> 9 jui, joo
9

Y(e ,e *) = H(e x
,e )X(e

x
,e

z
) (2.26)

when a two-dimensional LSI system is describable by the

difference equation of (2.20), and we take a z-transform >'

of this, it follows that

-k -k
2

[ I a(k
1
,k

2
)z

1
z
2

]X(.z
1
,z

2
)

(k
x
,k

2
) eRa

-
[ I b(£

1
,£

2
)z

1
z
2

Z
]Y(z

L
,z

2 ) =

(i lf l
2

) el^
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or

H(z
1
,z

2
) = Y(z

1
,z

2
)/X(z

1
,z

2
)

'k
l

~k
2

I a(k
1
,k

2
)z

1
z
2

(k
l'

k
2
)eR

a
-A, -l

I b(£
1
,£

2
)z

1

x
z
2

z

( * -i / & ^ ) s^j-.

= A(z
1
,z

2
)/B(z

1
,z

2
) (2.27)

where A and B are the z-transforms of (a(k,,k
2
)} and

{b (£•* &
2 ) } respectively. In particular when (2.27) repre-

sents a causal or semi-causal system, i.e., (2.27) is the

z-transform of (2.21), we can give explicit descriptions for

R and R, in each case. For the causal case we define
a d

(Fig. 2.5a)

R
a

=
* ( k

i'
k 2> I ° i k

l i Ml' °i k
2 - M

2
}

(2.28)

Rj^ = ( (l lf i
2

)
|

<_l
1
<_N lf 0£^

2 - N2^

For the semi-causal case we define (Fig. 2.5b)

R
a

=
{ (k

i'
k
2

} 1° i kl- rV k
2
= ° ;

"M
ct i kliM6'° < k

2 -M2
}

(2.29)

R
b

= {(£
1
,£

2
)|0<^ll N

3
,£

2
= 0;-Nal £

1
<N

a
,Q<£2l N

2 }
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and in both cases b(0,0) = 1 is assumed. The inverse

z-transform is defined as

x(m,n) = j j / X(z,,z ) z™
1

z^ dz,dz„ (2.30)
(2njr n „

12 12 12
C
l

c
2

where c^ and c
2

are suitable closed contours in the z, and

z
2

planes.

The two-dimensional Fourier transform of a sequence

is defined as

DO)., 3u
?

X(e ,e *) = F[x(m,n)]

X(z
1
,z

2
)

2
(z

1
,z

2
) eF

- j ( co-j m+cu^n)

£ x(m,n)e x *
(2.32)

m r n=-°°

For any given sequence the set of (z,,z
2

) for which the

z-transform converges is called the region of convergence.

Uniform convergence of the z-transform requires that the

sequence be absolutely summable, i.e.

oo

I |x(m,n)
|

iz
1
|"m |z

2
|" n < =o (2.32a)

m, n=-°°
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Similarly, the Fourier transform X(e ,e ) converges

uniformly to a continuous function of co, and w_ if

I |x(m,n)
|

< oo . (2.32)

m,n=-°°

A power series of the form of (2.23) is known as a two-

dimensional Laurent series in the theory of complex functions

in two variables

.

6 . Two-dimensional DFT

Let {x(m,n)} be a finite support sequence of the

size MxN. Then the two-dimensional discrete Fourier

transform (DFT) of (x(m,n)} is defined as

M~1N~ X -^ (Rk i
+
£k 2>

X(k1# k2 ) =11 x(m,n)e
M L N z

(2.33)

m=0 n=0

for <_ k. < M-l and <_ k
p

< N-l. Similarly, the inverse

discrete Fourier transform (IDFT) is given by
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X(m,n)

M-l

- IMN
k,=0

N-l

I

k
2
=o

x(k lf k 2 )e

k, k
2

+:2TT(
ir m

+
ir n)

(2.34)

Note that the DFT corresponds to sampling the Fourier trans-

form of MxN points, i.e.,

X(k
x
,k

2
)

= x (e
Ua>i 300.

/e k
l

k
2

a)
l
=27T

lT'
a)
2
=27T

-N-
(2.35)

]W. 30).

More generally, if X(e ,e ) is the Fourier transform

of (x(m,n)} whose size is greater than MxN, then the

IDFT of {X(k
1
,k )} will result in aliasing. In other words,

the IDFT of (X(k,,k
2
)} will yield one period of (x(m,n)}

where

x(m,n) =

m
1
,n

1
=-<»

x (m+m,M,n+n,N) (2.36)
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C. STRUCTURES OF TWO-DIMENSIONAL FILTERS

1. One-dimensional Digital Filter Realization

One-dimensional digital filters, in general, can

be shown in the z-transform domain as follows:
y

1=0 Y(z
i

)

H < z
l> =~ = xuJt

(2 ' 37)

1 - I am
Z
l

m=l

or , in the time domain

M L

y(n) I a y(n-m) + J b x(n-l) (2.38)
m

m=l 1=0

The realization implementing equation (2.38) directly, is

known as the direct form 1 and shown in Figure 2.7.

Equation (2.37) can be rewritten in a slightly

different form by introducing a new variable, W(z
1 ) , such

that

W(z,) Y(z,)
H / z ) = L_ . .

x
s

(2.39)H(Z
1

J X(z
x

) W z
1

The corresponding set of difference equations consists of:
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M

w(n) = x(.n) + I a
m w(n-m) (2.40)

m=l

and

L

y(n) I b
£
w(n-£) (2.41)

1=0

Equations (2.40) and (2.41) are realized in the

direct form 2 as shown in Figure 2.8 which can be visualized

as a cascade realization of two digital filters, realizing

the denominator and numerator polynomials, respectively.

Figure 2.8 can be redrawn as shown in Figure 2.9. The

resulting realization is called direct form 3 or canonic

form, since it represents a structure with the number of

delays equal to the order.

At this point, an additional realization will be

introduced, the direct form 4, which combines the charac-

teristics of the direct forms 1 and 2 having only two

entries in each summer, which corresponds directly to

hardware implementation and by realizing the numerator and

denominator polynomials separately in cascaded form

(Figure 2. 10)

.

There are several other methods to realize a one-

dimensional M order digital filter. For example, the

cascade form of first and second order sections H(z,), as

shown in Figure 2.11, where
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H(z X )

2
b
£

Z
l

£=0

-£

M

1 " I a z.L ml
m=l

-m

X(n) W(n)

I
«—

2

H

«, rH

rf

1

^
3

V
7-1

Fig. 2.8. Direct Form 2
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H(z
1

)

£=0 *
L

M

i - y a z"L ml
m=0

-m

Y(-)

Fig. 2.9. Direct Form 3

(Canonic)
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H(z
1 ) = a

Q
n H

i
(z

1 ),
* = ^ (2.42)

i=l

Each component H^(z^) can be realized in one of the above

outlined forms.

Partial fraction expansion methods applied to

equation (2.37) lead to a parallel form realization of

first and second order sections (Figure 2.12), i.e.,

k

H(z
1

) - c+ J H
i
(z

1
), k= [^+1] (2.43)

i=l

Other forms of realization include hybrid structures,

i.e., parallel-cascade forms, the transpose configuration,

which can be obtained for all previously outlined structures

by reversing the direction of signal flow and by interchanging

all branch and summing modes, wave-digital and continued

fraction expansion filters.

The direct forms discussed above and the series/parallel

arrangement of lower order sections are by far the most

often used ones in computer simulation and in digital

hardware.

2. Two-dimensional Digital Filter Realization

Two-dimensional Quarter plane digital filters, in

general form, can be shown as
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HW = C+2H
}
U,)

Fig. 2.12. Parallel Form
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£ =0 £ =0 X Z

H(z,,z ) = —

-

(2.44)
M
l

M
2

-m.. -m
1 ~ I I amm z, zL *< m.iru 1 2

m
l
=0 m

2
= °

The numerator of the two-dimensional transfer function (2.44)

can be written as a one-variable polynomial in z~, weighted

by coefficients which are functions in z,, i.e.,

L
2

L
l

I ( I

«,,=0 J..=0

L
2

'SV

£
1

_il
2

z
2

(2.45)

" £
2

:„ (2.46)

The same reasoning applied to the denominator polynomials

leads to

M M
-m, -itu

D ( zr z
2

} =
1 - ^

( l ^2 Zl )Z2

m,=0 m.=0

(2.47)

M
2

= 1-1 (V. < z l»»
Z
2

m
(2 - 48)

m
2
=0

56





To obtain the direct form 3 representation, a new function,

W(z
1
z
2

) is introduced:

W(z,,z
9 ) Y(z,,z

9 )

H(z
i
z
2> - xi^Tzf) w(^fr (2 - 49)

where each factor can be written using equation (2.46) as

W(z
x
,z

2
) =

*2

£
2
-0/

N
I
1 £

2

(Z
1
))Z

2 *<V*2 J

(2.50)

and equation (2.48) as

M
2 -m

2Y(z
1
,z

2
) = W(z

1
,z

2
) + I (DM m (z

1
))z

2

Z
Y(z

1
z
2

)

m
2
=0 ^ 2

(2.51)

The realization of equations (2.50) and (2.51) is shown in

Figure 2.13 using compact notation, and Figure 2.14 where

NL l
( z l^

anc^ DM m ^ z
l^

are ^mPlemented f°r each (L-,^ 2 )

and (nunu) by one-dimensional direct form 4 realizations.

The general form of two-dimensional causal digital

filter (2.44) can be rewritten by introducing a new variable,

W(z-,z
2

) or in the previous function, then,

W ( z , z « ) Y ( z , , z 9 )

H <V Z
2> " X( Zl ,z

2 )
• W(z',z

2
)

(2 " 52 '
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Each factor can be written as

:

L
l

L
2

-I -I
Y(l

l'»2 J = I I W Z
l

1
z
2

2
WCzr z

2
)

£
1
=0 £

2
=0

(2.53)

and

M M
-m -m«

W(zr z
2

) =- XCV z
2

) + I I a z
x

z
2

W(zr z
2

)

m
1
=0 m

2
=0 -

1-

(m1+m2
)^0) (2<54)

The equations (2.53) and (2.54) can be written as a differ-

ence equation as follows,

L
l

L
2

y(m,n) = I I b
z z

W(m-2.
1
,n-£

2
) (2.55)

l
l
=0 £

2
=0 1 2

and

M
l

M
2

w(m,n) = x(m,n) + I I am m w ^m"m2

'

n~m2 * (2.56)

m
1
=0 m

2
=0

m
1
,m

2
^
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Without loss of generality, L. is chosen equal to M. for

all i. The structure realizing equation (2.55) and (2.56)

is shown in Figure 2.15. It is noted that the number of

delays in Figure 2.15 equals the order of H(z..,z ). The

structure is, therefore, by definition, canonic.

The direct form 4 (Fig. 2.10) realization of H(z.,z
2

)

is shown in Figures 2.16 and 2.17, using compact notation and

one-dimensional direct form 4 (Fig. 2.10) implementation of

each N « and D , respectively.
L1^2 M

l
m
2

D. STABILITY

Two major problems in the design of a recursive filter

are approximation and stability. Since the output values

are used through feedback by the recursive algorithm, it is

possible for the output values to become arbitrarily large

independent of the input. A filter of this kind is said to

be unstable, which is an undesirable condition. Thus we

need to know what constraints to put on the recursive filter

coefficients, so 'that the filtering operation will be stable.

This problem is similar to the stability problem for the one-

dimensional case, except that the added dimension inherently

increases the complexity of the analysis. The major diffi-

culty is that the concept of zeros and poles does not hold

in multi-dimensional systems so that simple algebraic systems

extrapolation of one-dimensional results is not obvious.

• Stability Theorems :

Theorem 1 (Shank's theorem): A causal recursive filter

with the z-transform H(ZwZ
2

) = A(z
1

, z
2

) /B (z
1

, z
2

) , where A

61





(Q*—I

—

hQ

m

(hh—I
—©
M

Qk
4

©

t-j

TCNJ

c

c

U

Q
CN

CO

e

o

-U
u
CD

U
•H
Q

U")

CN

•H
fa

62





rc\j
Tsl

og

—@*—

M rsj +

i

x

c
o
H
+J

id

-u

c

+J

o
td

cu
2
o

Q

u
o

4J

o
0)

S-l

•H
Q

^o

CN

Cn
H

63





rsj

H
%
J5'

Q
CM

6
S-i

o
fa

u
0)

CM

t7>

iH
fa





and B are polynomials in z, and z
2

, is stable if and only

if there are no values of z, and z such that B(z ,z„) =

for all z. _> 1 and z« >^ 1. (In general we assume

B(Z 1' Z
2

}
= b

00
+ ^O 2 !"

1
+ b

01
Z 2"

1
+ ^l 2 !*

1^" 1
••"

that is an expression in increasing powers of z. and z
9 .)

In other words, the theorem says that if there are any

values (real or complex) of z, and z
2

for which B(z,,z
? )

is zero for z. and z
2
simultaneously greater than or equal

to unity in magnitude, then the filter will be unstable.

It is much more difficult to determine the stability of

two-dimensional filters than of one-dimensional filters.

In the one-dimensional case, it is only necessary to locate

finite set of roots in the z-plane. In order to mechanize

the theorem, we must, in general, find the values of z. and

z_ for which B(z,,z~) = 0. There is no technique for locating

the zeros of a general two-dimensional polynomial in (z,,z_).

Shanks, Tretial and Justice, in their paper [11] proposed a

technique to apply theorem 1 to determine the stability of

a two-dimensional recursive filter, H(z,,z
2
), by which the

unit disk in the z, plane must be mapped into the z^ plane

by solving the implicit two-variable denominator polynomial

of H(z,,z
2
). A necessary and sufficient condition for

stability is determined if the map of the unit disk

d, = (z-,z_ _> 1) does not overlap the unit disk

d
2

E (z
?
,z > 1) in the z plane. This method requires an

infinite number of mappings and, therefore, can not be

applied exactly.
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Huang [20] simplified Shank's stability theorem

considerably by stating the stability theorem as follows

Theorem 2: A causal filter with a z-transform

A(z, ,z.J
H(zw z n ) =

'l'"2' B(z
1
,z

2
)

where A and B are two-variable polynomials in z,,z , is

stable if and only if:

1) the map of the unit circle 6d = (z
, | z, | =1 )

,

according to B(z ,z
2

) = 0, lies outside of the unit disk

d_ = (z ,|z |_>1) in the z -plane, and

2) no point in the unit disk d.. = (

z ^ , |
z ,

|

_> 1

)

maps into the point z = by the relation B(z..,z
2

) = 0.

In order to apply this theorem as a stability test, we

have to map the unit disk 5d, = (z
,
|z

1
|=1) into the z

?

plane according to B(z, ,z
2 ) = or z

2
= f (z,)

|
i i-, and

to see whether the contour in the z^ plane lies inside the

unit disk d
2

= (z- , |
z
2 |<_1) . Also, it is necessary to solve

B(z,,0) = to see whether there are any roots with magnitude

greater than 1.

Although theorem 2 is much simpler than using Shank's

original theorem, the procedure is still infinite in the

sense that, in principle, we have to map the unit circle

5d, into the z
?
-plane.

Ansell [21] , whose main contribution is to couple the use

of a Hermite test for checking stability with a series of
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Sturm tests checking positivity, has reduced theorem 2.

Although Ans ell's results enable us to test stabilty in a

finite number of steps, it still is, unfortunately, very

tedious.

Make the change of variables:

and,

1 - Z
2

1 + z
2

and let

E(p, /P?)
H(ZwZ ) =

l'~2 fcp
1
,p

2
;

where E and F are polynomials in p, and p~. We can restate

Theorem 2 as follows.

Theorem 3 (Ansell's theorem): The causal recursive

filter H(z,,z
2

) is stable if and only if:

1) for all real finite w , the complex polynomial

in p„, F(joj,p
2

) has no zeros in ReP 2
> 0, and

2) the real polynomial in p-,, F(p,,l) has no

zeros in Rep, 0.

This theorem is essentially the same as Theorem 2, but

an advantage of Theorem 3 is that condition 1) can be

tested using standard techniques of circuit theory.
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Anderson and Jury [22] modified Huang's method by out-

lining a procedure which replaces the bilinear transforma-

tions by the construction of a Schur-Cohn matrix and checking

for positivity of a set of self-inversive polynomials. It

also replaces the Hermite test by a Schur-Cohn matrix test

and requires a series of Sturm tests or equivalently , a

system of tests establishing the roots distribution of a

polynomial. These modifications represent a substantial

reduction in computations as compared to Huang's method. We

will discuss stability considerations which are related to

our design technique in Chapter IV and Chapter V in detail.

In this chapter, basic properties of two-dimensional

digital filters have been reviewed and summarized including

semi-causality to establish a fundamental theory of two-

dimensional digital filters.
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III. MATHEMATICAL BACKGROUND FROM ANALYTIC PLANAR GEOMETRY

In this study, we propose using semi-infinite planes to

approximate a given frequency response of a two-dimensional

analog filters by extending one-dimensional semi-infinite

straight line approximation to two-dimensional cases. For

example, as we will see, the frequency response (dB vs. log-

frequency) of the separable canonic factor

H(ja)
1
,j(u

2 ) =
cl+jUiTi ) (l+ja)

2
T
2

)

can be approximated by a collection of planes. This is

discussed in Chapter IV in detail.

To prepare for the discussions in the next chapters,

it is worthwhile to review and develop useful equations

from analytic planar geometry which are going to be used

throughout this study with some examples of how to use them.

The properties of the analytic planar geometry can be

summarized as follows:

1. The general equations for a plane are given by

Ax+By+Cz+D=0 (3.1)

where A, B and C are the direction numbers of the normal

to the plane. The equation of a plane passing through the

point (xwy^z,) and perpendicular to the line which has

direction numbers of A, B and C is given by:
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A(x-x
1 ) + B(y-y

1
) + CU-z^ = (3.2)

2. The direction cosines of the normal to the plane

are given by-

cos a = —

^

= T-TTo (3.3a)
(A

Z +B Z +C )

1/Z

cos 6 = —
? ^

—

TT7T (3.3b)
(A

z +B +C )

±/Z

cos y =

{A
2
+ B

2
+ C

2
)

l/2

where a, 8/ and y are the angles that the normal makes with

the x, y, z axes respectively.

The relationship between direction cosines is given by

2 2
Cos a + Cos 3 + Cos y = 1 (3.3d)

3. For a line joining points (x, ,y^/Z-^) and (x
2 ,y2> z 2)

the equation is given by

Cos a _ Cos 3 _ Cos y ,^ ^,
x
2
-x

x y 2
-y! z

2
-z

1

4. The equation of a straight line with the direction

numbers a, b, c and passing through the point (x^y^z^ is

given by





x- Xl y-y
1

z- Zl
a ~ b

=
n
— (3.5)

5. The angle 6, between two intersecting lines with

direction numbers a, b, c and a', b f

, c' respectively is

given by:

Cos = Cos a Cos a 1 + Cos 6 Cos 3' + Cos y Cos y
1

(3.6a)

or

Cos 9 = aa '
+ bb ' + cc '

- (3.6b)

Va2 +b 2
+ c

2
Va ,2 +b ,2 + c'2

6. For parallel lines, the relationship between

direction numbers is given by

a' b^ c* U * /J

7. For perpendicular lines:

aa' + bb' + cc ' = (3.8)

8. The direction numbers of the line of the intersection

between two given intersecting planes, with direction numbers

A, B, C and A' , B', C respectively, is given by
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a =

b =

B

B* C

A

C A'

(3.9a)

(3.9b)

c =

B

A' B'

(3.9c)

The angle 6 between these two planes is given by

Cos
AA' + BB 1 + CC*

VA2
+B' + C VA '

(3.10)
2 2 2

9. The equation for a plane in terms of its slope can

be calculated as follows:

As seen from Fig. 3.1, the slope, m, of the normal

line is given by

m = tan
h

g ^hFW
(3.11)

m = slope of the plane

M = tan (90° - 9) = - 2. = . 1

h m (3.12)
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normal to olane

normal to nlane

plane

Fig. 3.1. A General Plane Configuration
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The equation of the plane is given by one of the

following:

A(x-x
1

) +By + Cz = (3.13a)

Ax + B(y-y,) + Cz = (3.13b)

and

Ax + By + C(z-z
1

) = (3.13c)

A*l = By
±

= Cz
1

= -D (3.13d)

The intersection of the plane with the z-x plane

is given by

A(x -x
1

) + Cz = (3.14)

and the slope, nu, of this line is

»i = a§ = -§ (3 - 14a)

Similarly, the intersection of the plane with the

z-y plane is given by

B(y -y, ) + Cz = (3.15)
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and the slope of this line, nu , is

m
2 ~ "

dy~
" " C

(3.15a,

Substituting (3.15a) and (3.14a) into (3.13)

yields the following alternate equations for the plane.

-m(x-x-j) - m
2
y + z = (3.16a)

-m,x - m
2
(y-y

2
) + z = (3.16b)

-itux - m
2
y + Cz - Zj) = (3.16c)

The direction cosines of the normal in terms of

m-, / m
2

are

-m,
Cos a = (3.17a)

Vm^
2 2

-m~
Cos 6 = (3.17b)

v^7m
2

2
+ l

Cos Y =

Vm-L
2
+ m

2
2 +1

(3.17c)

Substituting (3.14a) and (3.15a) into (3.11) and

(3.12) yields

m = i- ( 3 - 18a)

m
2
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and

M = -V m
i

+m
2 (3.18b)
2

The angle, 8, between two intersecting planes from

(3.10), (3.14a) and (3.15a), is given by

m,m, * + irunu ' + 1 ,- ,„,
Cos 9 = LJ: Li (3.19)

ymj 2
+ m

2

2
+ 1 Vmp+mp + 1

The direction numbers of the line of intersection,

from (3.9), (3.14a) and (3.15a) are given by

a = (m£ - m
2

) CC (3.20a)

b = (m£ - m
1 ) CC* (3.20b)

c = (m|m
2

- m^ir^) CC * (3.20c)

The direction cosines of this intersection line

are given by

m
2 ~ m

2 (3.21a)
Cos a =

V2 2
(ml - nu) + (m| - m, ) + (m-jnu - mlm^)

2

m' - m,
Cos 6 = (3.21b)

V2 2
(mi -nu) + ^mi

~ mi) + (m^m
2
-m^ir^)
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m
l
m
2 " m

2
m
l ,, ,.

,Cos y = (3.21c)

V^7
2 2 2

m
2

) + (m* -m,) + (m|m - m'm,

)

10. When two planes are added in one dimension to form

a new plane, the following results. Given two planes

-m,x - nuy + z - z, =

-m,'x - mly + z
1 - z' =

Their sum in the z-direction with z" = z* + z is

given by

-(m
1
+m')x - (m

2
+m

2
')y + z" - ^ + z£) =

The slopes of the intercepts with the zx and zy planes

m
1

" = -(m
1

+ m|)

m
2
" = -(m

2
+ m

2
')

The slope of the normal is given by

2
, ,_ , .,2,-1/2

m " = [ (m, +m[) + (m
2
+m

2
) ]

(3.22

77





To aid in comprehension, two examples follow:

Example (1) : Given m, (slope in z,x plane), m,

(slope in x,y plane) , and x, (the point at which x-axis goes

through the plane). Find the equation of the plane.

The general plane equation (3.1) is given by

Ax + By + Cz + D =

When z =

B D
x A Y " A

m
3

=
If

= " I (given)

and

When y =

and

x, = -
j (given)

A D
" " C

x " C

l - E - "I (given)

D
Z
l C
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If we substitute these into the general equation, the result is

or

A
Ax - Am-,y - —z - Ax, =

3 J m, 1

x - nuy - —z - x, =
3 m, 1

or

z = nux - nunuy - x
i
m

i (3.23)

As shown here, we can derive the plane equation easily

from the given specification. After finding this equation,

we can find the canonic factor by simply letting

x = log go.

y = log a)-

i i
2

z = 10 log |T|

Alternately, we can go from the canonic factor to equations.

Thus equation (3.23) can be written as

2
10 log |T(joo

1
, joo

2
) |

= m
1

log oj

1
- m^ log oj

2
- 10 log K

(3.24)

where

10 log K = ^i
x
i
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This result assumes that

i i2
w
l|T(ju>,,ju>

2 )
|

= (3.24a;

Taking the logarithm of (3.24a) yields

2
10 log |T| = 10 p log u^ - 10 q log oj

2
- 10 log K

(3.25)

By equating (3.25) and (3.24), we get

10 p = m
1

(3.26a)

10 q = m
1
m
3

(3.26b]

It follows from (3.26a) and (3.26b) that

m
3

= q/p .

Thus the transfer function of (3.24a) has a logarithmic

characteristic as sketched in Fig. 3.2.

The previous result can be extended to the following

transfer function

(1 + j Wl )

p/2

T(j<D, / ja> 9 ) = —t-t? 7TT?
(3.27)

1 Z
K
±/Z

(l + jw
2 )

q/

By substituting (3.26a) and (3.26c) into (3.27), then
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Z=io 1^1T|

s loovJ

*=: looi*/|

Fig. 3.2. The logarithmic characteristic of
P

T(jgo
1

, jo)
2

)

jj-

Kcu.

20 log |t| = m, log co, - m, m log aj_ - 10 log K
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nu/20
(1 + jco,)

L

T( >l' jw
2

)
—

Hu/20 (3 * 28)

K
1/Z

(l + ja)
2

)

Z

When w, << 1 and oj
2

<< 1 , region I

T(joJl /jco
2

) = K~
1/2

and

20 log |T| = - 10 log K

When co, << 1 and oj- >> 1* region II

T(j Ul ,ja>
2 ) = — ^-720

K1/2 (jaJ2 )

A

and

20 log |T| = - 10 log K - nu log cj.

When oj
2

<< 1 and oj, >> 1, region III

111,720

(j«2.)
T(ju)

1
,jo)

2
) = -j/2

K

and

20 log |T| = - 10 log K + m, log 0).
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When u>, >> 1 and oo- >> 1, region IV

nu/20
j OJ-

T(ju), ,jw~) = ,

1 2. . nu/20
KX/ 2 H 1

2
'

and

20 log |T| = - 10 logK + m
1
log oj, - m, log to,.

The resulting planar approximation for the logarithmic

transfer function is shown in Figure 3.3

Example 2 ;

In this example, we derive planar equations from the

given transfer function.

Given a separable two-dimensional transfer function:

T(jw, , ju 9 ) = = (3.29)
(1 + JU)

1
T
1

)

P (1+ JU)
2
T
2

)

H

The magnitude square of the transfer function (3.29) is

given by

K
2

|T(ja)
1
,ja)

2 )| =
2

2~p" 2 2~q < 3 - 3 °)
1 A

(1 + oJi
Z
t
1

Z
)

P
(1 + ^

2
T 2 }

Take the logarithm of both sides of (3.30),

10 log |T|
2

= -10p log(l+co
1

2
x
1

2
) - 10 q log(l+u>

2
x
2

) + 20 log K

(3.31)

when w,!, << 1 and co
2
x
2

<< 1, the equation (3.31) becomes
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A fcrtoUjITl

t 7^ta>W

IE Br

3- l°j^

> TUlaj^l

Fig. 3.3. The logarithmic characteristic of
(1 + jo)) Mi/20

X Z
K
±/Z

(l + jco
2

)

il2/ zu

20 log |t
I

= -10 log K + m, log u>, - m- log go-
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2
10 log |T| = 20 log K = C

where C is some constant.

When w^t^ >> 1 and oj
2
t
2

>> 1,

or

10 log |T| = -20p log u^ - 20q log a, T

+ 20 log K

i i
2

10 log |T| = -20p log o^ - 20q log a>
2

- 20p log t.

Let

-20q log x
2

+ 20 log K

2
z = 10 log |t|

x = log to.

y = log a).

and we get the planar equation,

Z = -20px - 20qy - 20p log t, - 20q log t
2

+ 20 log K

or
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p q
T T

(-20p)x + (-20q)y - z = 20 log (-± ?
)K

or

n^x + m
2
y - z - v

where

m^ = slope of the line (x,z) plane

= -20 p db/decade.

m
2

= slope of the line (y,z) plane

= -2 0q db/decade.

In a similar manner the regions (co, t, << 1;

CJ

2
T
2

>> "^ an<^ ^l 1
!

>> ^' (J°2 T
2

<<c ^ can ^e invest:'- <?ate(i'

The planar approximation for the logarithmic transfer function

is sketched in Fig. 4.1 where q = p = 1.

In this chapter we have developed some useful planar

geometry formulas and shown how they can be used to determine

a planar approximation for the two-dimensional logarithmic

transfer function for separable cases. Some non-separable

factors are discussed in the next chapter in which experimental

verification of this approximation technique is also presented.
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IV. CANONIC FACTORS IN CONTINUOUS FREQUENCY DOMAIN

In Chapter III, we discussed some equations of planar geo-

metry and showed how to use them for approximating separable two-

dimensional transfer functions. In order to improve the scope

of the proposed design technique, we now consider the behavior

of other separable and non-separable factors insofar as

their planar geometry approximation is concerned. This will

provide insight into the frequency response characteristics

of two-dimensional systems and indicate what can be expected

by cascading these canonic factors, knowing their individual

behavior. The logarithmic characteristic of cascaded factor

is simply the sum of their individual logarithmic character-

istics. This approach parallels the semi-infinite line

approximation (dB vs. log w ) technique which has been used

so successfully in one-dimensional design.

A. SEPARABLE FACTORS

The following several separable canonic factors are now

considered.

(1) (1 + jaj
1
T
1

)
P (l + jt

2
u3

2
)
q (4. a)

i

(2) (1 + jaJ
1
T
1

)
P (l + ju)

2
T
2

)

q (l + joo
2
T
3

)

q (4.b)

(3) [1 + (jaJl T
1

)

P
]

a
•

(4.c)

where p, q and a are integers.
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(1) First, as an example of the technique, consider

the following analog separable transfer function, the first

separable canonic factor with p = q = -1;

H(ju> ,ju> ) = ,-, 7 w-i • r (4.1)
1 2 (1 + joj

1
t
1

) (1 + joo
2
t
2

)

The logarithm of magnitude-square of this function

is given by

*> *j _

10 log |H(co
1

,oo
2

) |
= -10 logd+u^ t^

2
)

- 10 log(l+co
2

t
2

)

(4.2)

Let us define the following for simplicity of notation.

z = 10 log |H(oo
1

,o)
2 )

I

= 20 log |H(o)
1

,a)
2

)
|

(dB)

(4.3a)

x = 20 log oo-l
(4.3b)

y = 20 log w
2

(4.3c)

Consider the regions in the (gj, ,u)
2

) plane (as seen

in Figure 4.2) as follows:

Region I, when oo,x, < 1 and ^
2
x
2

< 1,

then z = db (4.4a)

Region II, when co^t -^ > 1 and co
2
t
2

< 1

z = -20 log (w
1
t
1

) db (4.4b)
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Region III, when ^^l < 1 and W
2
T 2 > 1

z = -20 log(co
2
T
2

) db (4.4c)

and

Region IV, when ou^ > 1 and u t~ > 1

z == -20 log (oj
1
t
1

) - 20 log (oj
2
t
2

) (4.4d)

The above equations (4.4a), (4.4b), (4.4c) and (4.4d)

can be expressed as

Region I, z = (4.5a)

Region II, z = -x - 20 log t-, (4.5b)

Region III, z = -y - 20 log t
2

(4.5c)

Region IV, z = -x - y - 20 log t
2

- 20 log x,

(4.5d)

These equations describe four intersecting planes in

x,y,z space as shown in Figure 4.1.

Plane I is the horizontal plane at zero db. Plane II

and Plane III have slopes of -20 db/decade passing through

the corner lines as indicated in Figure 4.1. These lines

are analogous to the break point frequencies of one-dimensional
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Z = 20 I o g |H( wr w 2
) I

og w

slope —-20 d B

- 20dB

Fig. 4.1. Planar Approximation for

1
H (co, ,u>~)

1+J0J
1
T
1

) (1 + J00 2
T
2

)

2 2
20 log

I
H (oi

1
,co

2
) |

= -10 log (1+w, T,

-10 log (1+co
2

2
t
2

2
)
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*2* 1/^

Y = I O g w

IT W

I
X = °g w.

Fig. 4.2. The regions of

H(j<VJ0) 2 ) " (1+ J03 1
T
1

) (1+ J0) 2
T
2

)

2 2
20 log |H(o)

1
,o)

2
) |

= -10 log (1+u^ Tj )

2

2
T
2

2 2
-10 log (1+oj„ t 9 )

in (log u), , log co
9 ) plane
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log-modulus plots. Several properties of this plane are

summarized. Pertinent equations from analytic geometry are

given in Chapter III.

The actual frequency response of this separable

canonic factor with t, = t, = 1 is shown in Figure 4.3a

(dB vs. log w,, log oj
2

) which fits the planar approximation

,

In Fig. 4.3b/ the contour plot of the frequency response is

given, which verifies the regions in log uj-, / log u>- plane

shown in Fig. 4.2. The logarithmic plots versus linear

frequency are given in Fig. 4.3c and Fig. 4.3d. It is

apparent that the approximation regions are well defined

when logarithmic frequency is used.

The frequency response of this separable canonic

factor with t, = 1, t- = 2 is given in Figures 4.4. These

results again confirm the logarithmic approximation.

(2) Next consider the canonic form

H(j Ml ,ja>2 ) = (1 + j^tjj (1 + ju)
2
x
2

) (1 + ja>
2
T
3

)

where we have two separable factors of oj
2

. The frequency

response of this factor with t, * 1, x
2

= 2 and x^ = 4 is

shown in Figures 4.5. As seen from this figure, we have

-40 dB/decade slope in the direction of u
2

, as expected

from the one-dimensional case. The regions are shown in

the contour plot with dotted line (Fig. 4.5c)

.
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In a similar manner we can analyze these regions as

follows: The logarithm of magnitude square of this function

is given by

10 log |H(u)
1

,u)
2

)
|

2
= - 10 log(l + oj

1

2
t
1

2
) - 10 log (1 + w

2

2
x
2

2
)

- 10 log(l + w
2

2
t

2
)

Consider the following regions in (to, ,

w

2 ) plane (as

seen in Fig. 4.5a) as follows:

Region I, when u-,t-, << 1 and co
2
x
2

< ^
2
t
3

<< 1

then z = dB.

Region II, when u,t, >> 1 and o)
2
t
2

< ^t-d <k 1

z = - 20 log (oj-
l
t
1

) dB

Region II, when co-,t-, << 1 and oj
2
t
2

< ^2 T
3

<<; 1

z = -20 log (co
2
x
2

)
- 20 log(oj

2
x
3

) dB

Region IV, when m,T, >> 1, ^2 T 3
> C0

2
T 2

>:> ^

z = -20 log u,t, - 20 log ^
2
T
2

" 20 l0g W
2
T
3
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Region V, when co^ << 1, ^^^ >> 1, ^ T >>o)
2
t
2

>> 1

Z = -20 logU
2
T
3

) - 20 log(o,
2
T
2

)

Region VI, when ^^l >> ^' W
2
T 3

> T
2

(J°2 >:> 1

Z = - 20 log a)

1
T
t

- 20 log oo
2
t
2

- 20 log oj

3
t
3

where

Z = 20 log |H(u)
1
,t

2
) |

.

(3) Consider the separable canonic factor now,

H(a)
1
,o)

2
) = [1 + (jw

1
T
1

)

P
]

a

We can show that the following regions occur by

using the notation of (4.3a) and (4.3b) for simplicity:
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Fig. 4.3a. The frequency response of

. 1
H(jo)

1
,:o)

2
) - (i+jWi ) (l+jo)

2
)

2

z = 2Q log|H(o) 1/ o)
2

) |
= -10 logd+u^ )

(dB vs. log bu,log o>

2
)

-10 log (l+w
2

)
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X-SCflLE=l .OOE+00 UNITS INCH
T-SCRLE=I . OOE+00 UNITS INCH

•ig. 4.3b. The contour plot of H^,^) =
(1+j ) ( i +j(0 )

z = 20 log |H| = -10 log (l+o^
2

) - 10 log (l+io
2

2
)
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Fig. 4.3c. The frequency response of

H(joJ
1
,jco

2
)

(l+jai
1

) (l+jo)
2

)

z = 20 log|H| = -10 log(l+oj
1

2
) -10 logd+o^ 2

)

(dB vs. 03, ,0)-) (linear frequency)
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10.

>",
a-,

3.

I

T

Fig. 4.3d. The contour plot of H(oo..,go_) =
. .

,
. , . =

,
. rr 1 2 (1+]U)

1
) (l+:co

2
)

z = 20 log|H| = -10 logd+u^ 2
)

- 10 log(l+w
2

2
)

(linear frequency)
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Fig. 4.4a. The frequency response of

H(do)
1
,do)

2
) (l+joa

1
) (l+j2co

2
)

2 2
= 20 log|H| = -10 log(l+oj

1
) - 10 log(l+4co

2
)

(dB vs. log co, , log co
2

)
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X-SCRLE-1 .OOE+00 UNITS INCH.
T-SCflLE=l

.

OOE+00 UNITS INCH.

Fig. 4.4b. The contour plot of the frequency response of

H(o3
1
w
2

) =
(l+ja)

1
) (l+j2u)

2
)

z = 20 log|H| = -10 log(l+co
1

2
) - 10 log(l+4to

2

2
)

in (log to, , log to
2

) plane
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Fig. 4.4c. The frequency response of

1
H ( j co , , j co -, ) = ,-, ,

• -J 1 2' (l+jco,) (1 + j2co
2

)

z = 10 log|H| = -10 logd+co,
2

) - 10 log(l+4co
2

2

(dB vs. co, ,co_) (linear frequency ccale)
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Fig. 4.4d. The contour plot of the frequency response of

H(jo)
1
,joj

2
)

=
(1+w, ) (l+4oo

2
)

z = 20 log|H| = -10 log(l+oo
1

2
) - 10 log(l+4aj

2 )

(dB vs. o)
1

,o)
2

)
(linear frequency scale)
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^ '
o g w 2

«H
"2 YE

nr 12
0)i*Tx

i I
UH-i

- !og w
1

Fig. 4.5a. The region of

H(j(D
1
,ju)

2 )
=

(l+jo)
1
T
1

) (1+joo t ) (l+jco
2
x
3

)

in (log a), /log co„) plane

103





Fig. 4.5b. The frequency response of

1
H(jo)

1
,jo)

2 ) - (i+j 0Jl ) (l+j2co
2

) (l+34w
2

;

z = 20 log|H| = -10 log(l+03
1

2
) - 10 log(l+4w

2 )

2
-10 log(l+16u>

2
)

(dB vs. log o) lf log w
2

)
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X-SCRLE=1 . OOE+00 UNITS INCH.
Y-SCRLE=I . OOE+00 UNITS INCH.

Fig. 4.5c. The contour plot of the frequency response of

H(ju lf ju 2 ) =
( i+j Ul ) (l+j2oo

2
) (l+34co

2
;

2 2

z = 20 log|H| = -10 log(l+a)
1

) - 10 log (1+4^ )

2
-10 log(l+16oj

2
)

(log oo-L vs. log co
2

)
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Fig. 4.5d.

z =

The frequency response of

H(joJ
1
,jOi

2 ) =
(1+j(Ui) (i+j 2co

2
) (l+j4oo

2
)

20 log|H| = -10 log(l+ca
1

2
) - 10 log(l + 2aj

2

2
)

-10 log(l+16oo
2

2
)

(dB vs. (ji-.,uiy) (linear frequency scale)
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10,

0.

-

X-

/«u

Fig. 4.5e. The contour plot of the frequency response of

. 1
H(D(o

1
,30)

2
J -

(1+jc0i ) (l+j2oa
2

) (l + j4co
2

)

? 2
z = 20 log|H| = -10 log (1+w^) - 10 log(l + 4aj

1
)

-10 log (l+16oo
2

2
)

(linear frequency scale)

107





Region I, when go, > 1/t, ,

z = apx + 20ap log t-, dB

Region II, when to, < 1/t-,

z = dB

These separable canonic factors are identical to

the canonic factors of a one-dimensional transfer function.

They are just an extension to the two-dimensional case.

Therefore, they need not be discussed further.

B. NON-SEPARABLE FACTORS

The following non-separable canonic factors are now

considered.

(1) [1+ (jaj
1
x
1 )

P
(joj

2
T
2

)

q
]

a
(4.d)

(2) [1 + (ju
1
T
1
+ joo

2
T
2

)

P
]

a
(4.e)

where p, q and a are integers.

(1) First, consider the non-separable canonic

factor of the form:

H(oJ
1

,aj
2 )

= [1 + (jaj-
L
T
1

)

P
(joJ

2
T
2

) ]
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Region I, when

P q 1
1 2

T
P

T
q

z = dB

Region II, when

P q
1 2

T p , q
T
l

T
2

z = apx + aqy + 20ap log t, + 20 ay log t- dB

The cornerline between the two regions is given by the

equation

or

p q p qu
l

w
2

T
l

T
2

px + qy + 20p log t, + 20q log t
2

=

The cornerline is sketched in Figure 4.6.

The slope of the plane in region II is given by

-4 2
'p + q . Direction numbers of the normal are given

by -ap, -aq and -1.
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2
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I

T
M±)H^

y -lo g

Fig. 4.6. The regions of non-separable case in
log to, , log co^ plane
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Depending upon the sign of p and q and the magnitude of

t, and x
2

several different orientations of the corner line

are possible.

Example (1)

Discuss this canonic form in the special case with

p = q = 1, a=+l, x, =0.5, and x
2

= 1. The transfer

function gets the following form:

H(o),,a)
2

) = [1 + (.5jw,) ( ja)
2

) ]

Take the logarithm of the magnitude square.

i

2 | i+2

z = +20 log|l - .5(jj,co
2 |

In region I, w,t, <<: ^ an<^ aj
?
T
2

<<: "*"

z = dB.

In region II, id,t, >> 1 and w
2
t
2

>> 1

z=x + y+20 log (0.5)

where

x = 20 log co

1 , y = 20 log cu
2

and z = 20 log |H(oj
1
,u

2 )

The actual frequency response of this factor is shown in

Fig. 4.7 including a contour plot.
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Fig. 4.7a. The frequency response of

H( joo
1

, joo
2

) = 1 + ( ja>,) ( jO. 5o3
2

)

z = 20 log|H| = 20 log (1 - 0.5oj,oj
2

)

(dB vs. log go,, log oo^)
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Fig. 4.7b. The contour plot of the frequency response of

H(jco
L
,ja>

2
) = 1 + ( jco 1

) (j0.5oj
2

)

z = 20 log|H| = 20 log (1 - O.Su^u^)

in (log co, , log ai
2

) plane
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When a = -1 we have a stability problem in this example

The denominator of this transfer function becomes zero

when

or

1 — . 5o)-j 0)2
=

o)-| cop — 2

This is the singularity of the transfer function in (w,,^)

plane- It can be called a singular line of the system. It

is a curve in the (ui,,to
2 ) plane to be compared with a pole

in a one-dimensional transfer function.

Example #2 ;

In this example, we discuss the same canonic form

with different coefficients, i.e.,

p = l, q = -1 , a = +l,

x, = 0.5, x 2 = 1

Then the transfer gets the form of

* 5uj
l +1

H( Ul ,«
2

) = (1 + ~— >
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Taking the logarithm of its magnitude squared

|H(a), ,u 9 ) = ll + ±\
Z

. 5(jd,

z = +20 log ll +
w
2

. 5a)..

In Region I when - << 1
a)

2

z = dB.

• 5ai,

In Region II, when >> 1
w 9

z = 20x - 20y + 20 log (.5)

where x = log u^, y = log u
2

and z = 20 log |h(u>,/u>
2

) |. The

boundary between these regions is given by the equation

. 5oi-| = oi~

We also have a stability problem for this canonic factor when

u>2 s 0. This is also a singularity in (u), ,w
2 ) plane in the

form of a straight line. This type of factor is unstable.

(2) Now, consider the non-separable canonic factor

H(o),,a>
2

) = [1 + (ju),w, + ju^oO ]

We have two regions again, as follows:

Region I, when w,t, + w
2
t
2

< 1

z = dB
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Region II, when u),x, + w-x- > 1

z = ap log (oa
1
x
1
+ aj

2
T
2

) •

The separation line between the two regions is

given by the equation:

U1T 1
+ 0)

2
T
2

= 1

or

log (10, x, + o)
2
t
2

) = . (4.6)

The locus of points of (4.6) is shown in Figure 4.8,

For region II, we have to think of two conditions,

as follows:

a) When w,x, > oo
2
x
2

z = apx + ap20 log x,

b) When oj,t, < ^
2
x
2

z = aqy + ap20 log x
2

.

Thus, region II is split into two areas with the separation

line given by

W
1
T
1

= W
2
T
2

'
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Fig. 4.8. Locus points of logC^T^ + w
2
x
2

) -
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Frequency, response of this non-separable transfer function

is shown in Fig. 4.9 with p - 1, a = -1, x = x = l.

C. CONCLUSIONS

In this chapter, we discussed the properties of the

separable and non-separable two-dimensional properties of

canonic factors in the analog domain (co,,^ plane). We can

conclude that these canonic factors can be approximated by

planes in the log magnitude versus log co, and log oj^ space.

As a design technique we can obtain any given frequency

specification by proper combinations of planar approximation

of canonic factors. It is obvious that only certain special

cases and symmetries can be obtained using the factors dis-

cussed in this thesis. For example, a wedge-shaped character-

istic in frequency domain could not be synthesized by means

of the factors we have considered.

The other result of this study is the stability problem

which arises in certain transfer functions, that is, the

singularity curve or line. For a separable case, we don't

have a stability problem; but in non-separable cases we may

have stability problems.
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Fig. 4.9a. The frequency response of

J 1 J 2 1 + joo, + jog.

z = 20 log|H| = 10 log
1

1+ (oj, +oj
2

)

(dB vs. log to, /log co
2 )

-, 2
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Fig. 4.9b. The contour plot of the frequency response of

H(ju>, ,jw ) = .
—-.

z = 20 log|H| = 10 log |l + (u^+u^)
2

!

in (log co, , log co-) plane
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Fig. 4.9c. The frequency response of

1
H(3oa

1
,:a)

2
)

=
1 + ju). JO).

z = 20 log|H| = 10 log |l + (u^+a^)
|

(dB vs. a)
1

,oo
2

) (linear frequency scale)
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v - TWO-DIMENSIONAL DIGITAL FILTER DESIGN TECHNIQUE

A. INTRODUCTION

The design of two and multi-dimensional recursive digital

filters is difficult due to the absence of the Fundamental

Theorem of Algebra in two or more dimensions [15]. That is,

polynomials in two variables may not, in general, be factored

into lower order polynomials. For this reason, several design

procedures for two-dimensional recursive filters have been

proposed in the literature. We then consider the use of the

double bilinear z-transfer with the semi-infinite plane

approximation in the previous chapters. These are briefly

discussed in the following.

Shank et al suggested three design techniques in their

paper [11]

.

1. The use of a series of stability-preserving transforma-

tions to produce a stable two-dimensional recursive discrete

filters from a stable one-dimensional continuous filter.

2. A space domain design technique in which the unit

sample response of the filter being designed is made to

approximate a given desired unit sample response.

3. A stabilization technique in which the denominator

polynomial is replaced by its double planar least-squares

inverse. Planar least-squares can be defined as follows:

We have some given array C. We would like to find

an array P such that C convolved with P approximates the

unit pulse array U. That is,

C * P « U
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where the symbol * denotes two-dimensional convolution. In

general it will not be possible to make C * P exactly equal

to U. In actuality, C * P will be equal to some other

array, G. If we choose P such that the sum of the squares

of the elements of U-G is minimized, P is called a planar

least square inverse of C. Planar least square inverse of

P is called double planar least square inverse [11] . This

new polynomial is conjuctured to have no zeros on
-2 A ,

,
,

,

u - {z^z^:
| ZjJ ^_, |z

2 | >_ 1} and to have a frequency

response which closely approximates that of the original

transfer function.

The first technique is known as a filter design with

rotating axes and these filters are called rotated filters.

This design procedure consists in considering a transfer

function in the analog frequency domain, rotating the axes,

and applying the bilinear transformation to obtain a two-

dimensional recursive filter. In general, the starting

point is a separable filter and stability of the resulting

filter is not guaranteed even if the prototype filter is

stable. This technique was used by Costa and Venetsanopoulus

[23] to design low-pass filters having circular symmetry,

and also they proved that rotated filters are stable if the

angle of rotation is between 270° and 360°. A technique

similar in character but rotated axes in digital frequency

domain ((z,,z
2

) domain) has been given by Chang and Aggarwal

[24]. Hirona and Aggarwal [25] have accomplished the rota-

tion through the introduction of rational powers of z^ and
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z
2 , and the interpolation of input and output sequences.

They have proved that, in this technique, the resulting

filter is stable if the prototype filter is stable. Further,

the distortion, a consequence of the bilinear transformation,

is absent in the resulting filter when compared with Shank's

et al. 's filter.

The authors of [11] were unable to prove that the new

denominator polynomial produced by the third technique,

which is an extension of the one-dimensional case, was

stable in the two-dimensional case. Nonetheless, several

hundred filters have been designed using this technique

without a counter example appearing [18]; furthermore, Jury,

Kolavennu and Anderson [26] have shown it to be valid for

certain low order cases. However, Genin and Kamp [27] have

recently shown that counter-examples do, in fact, exist.

Spectral factorization is another technique which can be

used to produce a stable filter from an unstable one. By

spectral factorization we mean a complex map that carries a

stable rational transfer function into another stable transfer

function exhibiting a different frequency response, at the

same time maintaining some desirable characteristic [29]

.

Pendergrass, Mitra and Jury [28] used stability-preserving

spectral transformations to modify the frequency response of

quarter-plane filters.

Mitra and Chakrabarti [29] extended this work. Read

and Treitel [30] suggested a two-dimensional Hilbert trans-

form to perform the spectral factorization, while Pister
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[31] and Ekstrom and Woods [32] made use of the two-

dimensional cepstrum. Ekstrom and Woods also suggested ways

that the factors could be truncated and smoothed to preserve

stability. They also showed that the usual quarter-plane

filter is not the most general two-dimensional recursive

filter. It is instead possible to have a recursive filter

which in the limit has a unit sample response with support

on an asymmetric half-plane, and also they developed

stability conditions for this new class of filters.

B. TWO-DIMENSIONAL DIGITAL FILTER DESIGN PROCEDURE BY
DOUBLE Z-TRANSFORM

1. Double Z-transform

In the one-dimensional recursive digital filter

design, the bilinear z-transform is often applied to an

analog filter transfer function. We proposed that this one-

dimensional design approach can be extended to the two-

dimensional case. Before going into the design procedure,

two-dimensional recursive filter design via the double

bilinear z-transform, it is better to prove that we can

use double z-transform for two-dimensional systems.

Each of the canonic factors, proposed in Chapter

IV, either separable or non-separable, can be converted

into discrete equations by the double z-transform, as

follows:

2
1 - Z

I'
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2
X " z

2

1 + z
2

The single z-transform is equivalent to trapezoidal

integration which can be shown as follows:

X(s) = S Y(s) (5.2)

.<*> = &J§i.

or

n

Yn
~ yn_ x = / x(t) dt

n-1

?(x + x .) (5.4)
2 n n-1

where T is the sampling period.

We write (5.4) in the z transform domain as

(1 - z
1
)Y(z) = |d + z

X )X(z)

Hence

X(z) = §(
1 " \[ ) Y(z) (5.5)

1 + z
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Comparing (5.5) with (5.2), it is seen that

2 1 - z"
1

S = J(i ^-
T ) (5.6)

1 + 2

Equation (5.6) is known as a trapezoidal bilinear z -trans form,

We can drive the double z-transform in a similar

way, as follows:

or

Then

,2
W(x,y) = 33^ Z(x,y) (5.7a)

W(s,,s
2

) = s
i
s 2 z ( s

]_'
s 2^ (5.7b)

/ /d Z(x,y) = / /W(.x,y) dx, dy (5.8)

by a discrete approximation, the left-hand side of (5.8)

becomes (see Fig. 5.1)

/ /d
2

Z(x,y) = [Z(xn ,yn " z ( xn' yn-l )]

" ^V-l'V " Z(x
n-l' Yn-l

)]

-1 -1
.

-1 -1,
(1 - z

x
- z

2
+ z

1
z
2

)Z(.z
1
,z

2
) (5.9)
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and the right-hand side of (5.8) is approximated as follows:

//W(x,y)dxdy = A^£ [w(Xn ,yn
) + W(x

n ,yn-1 )

+ "(Vl'V + W(xn-l'*n-l )]

AXAVr, -1
,

-1 , "I -1, TT/ V= —-^- [1 + z, + z
2

+ z
i

z
2

]W(z
1
,z

2
)

(5.10)

By equation (5.10) and (5.9) we have

W(z
1
,z

2
) 1 - z"

1 - z"
1

+ z~ z
2

Z(z,,z ) . -1 -1 -1 -1 AxAy
1 2 1 + z, + z

2
+ z, z

2
2

(5.11)

or

-1
i -1

2
1 " Z

l 2
X ~ Z

2

= ^ (T—*^ ) ^ (TT7^ ) (5 * 12)

1 + z,
J 1 + z

2

By comparing (5.1a) and (5.2b) it is seen that

2
1 " z

l

1 " Z
2

Q.E.D.

Thus, this is called a double z-transform. The

double z-transform seems to be a reasonable substitution
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y(t) x (O

— n-1 n
t

(a) One-dimensional case

Z(*,y) w(x,y)

>W(x,y)

(b) Two-dimensional case

Fig. 5-1- Two-dimensional extension of the
Bilinear Transformation
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for each canonic factor. However, each factor must be

checked for stability, which is discussed in detail later in

this chapter. If each transformed factor is BIBO stable the

overall transfer function will be BIBO stable. But sometimes the

double z-transform may in certain cases lead to unstable

solutions [33] . Finally, it is noted that the double z-transform

results in a quarter-plane symmetry which is a severe limitation.

2 . Design Procedure

The two-dimensional recursive digital filter design

investigated in this thesis is the double bilinear z-transform.

Proceed as follows:

1. Determine a two-dimensional analog transfer

function,

A(s
1
,s 9 )

hi«i'-2> = niTTifr
(5 - 12>

where A(s,,s
2

) and B(s,,s
2

) are mutually prime two-dimensional

polynomials and B(s
1
,s

2
) satisfies

B(s
1
,s

2
) f

(5.13)

V(s 1
,s

2
) z r = {( Sl ,s

2
): Re (s

1
) >_0,Re(s

2
) >_ }

in such a way that, the frequency response of G(s
1
,s

2
)

meets the given specifications (for example as discussed

in Chapters III and IV)

.
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2. Apply the double bilinear z-transform

2
1 " z

l

1

5
1

=
A

{ ^T } (5.14a)
1 + z,

2
1 " z

l
5
2

= -(- ij) (5.14b)
1 + z

2

where A is the sampling period, which is assumed the same in both

directions. This yields the two-dimensional digital transfer

function

2
1 -z, 1-2, C(z,,z )

H(f ( TI ) 'f ( =T)} = T^V Z
2

] ~ D(z z )

(5 ' 15)
A

1 + z
2

X A
1 + Z2

1 X 2 D( Z;l ,z 2
j

where C(z,,z
2

) and D(z,,z
2

) are mutually prime two-dimensional

polynomials in z, and z
2

. (5.15) will have the desired

frequency response with proper sampling time without

aliasing effect. Since

, 1 - z?1

si = !< *r1 A
1 + z.

maps the closed unit disc onto the closed right half

plane, one would expect (5.15) to satisfy the following

sufficient stability conditions [11], [20].

D(z
1
,z

2
) ?
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\AW £ u2 - {(.zv z
2
):

| Zl | >_ 1, z
2 | >_ 1} (5.16)

Unfortunately, however, the conditions (5.13) and (5.16)

as we will show later in this chapter, are not always

satisfied.

In summary, we have two conditions to be satisfied

for stability.

I. B(s lf s
2

) ? o

\/(s
1
,s

2
) E r = {(s

1
,s

2
): R

e
s
1

>_ 0,R
e
s
2

> 0} (5.17)

II. D(2
1
,z

2
) ?

Y(z 1
,z

2
) £ u = {(z

1
,z

2
): Iz-J > l/|z

2
| >_ 1}

(5.18)

where V stands for "for each", and u is the closed unit bidisc

C. DIGITAL CANONIC FACTORS AND STABILITY CONSIDERATIONS

1 . Introduction

Certain properties of two variable polynomials and

rational functions which will be needed later will now

be discussed. It is well known that a two variable polynomial

is not, in general, factorable into first-order polynomials;

but, a two variable polynomial can be factored into irreduci-

ble factors which are themselves two variable polynomials

but which cannot be further factored. Of course a given
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polynomial may itself be irreducible. These irreducible

polynomials are unique up to multiplicative constants [33]

.

Two polynomials which have no irreducible factors in common

are said to be mutually prime. Consider two variable

rational functions, in general,

P (z, ,z 9
G(z, ,z ) =

l'"2' Q(z
1
,z

2
)

where P(z^,z
2

) and Q(z,,z
2

) are mutually prime. Using

terminology of [34], a point (zj,zl) making Q(z|,z
2

) =

but P(z',z') ^ is called a pole or a nonessential singu-

larity of the first kind (such a point is analogous to a

pole in the one variable case). A point (z£,z£) making

P(zV,z~) = Q(zV,z
2

) = is called a nonessential singu-

larity of the second kind (such a point has no analogue in

the one variable case). Clearly, if (zi,zl) is a pole,

G(z,',z') = °°, but if (zV,z") is a nonessential singularity

of the second kind, then G(zV,z") is undefined.

2. Separable Factors

The most common canonic separable factor in Chapter

IV is

H(<jj,,u) ) — "7t
——j, \

1 1 . a r (5.19a)
1 2 (1 + Joj, x,) (1 + 3oj

2
t
2

)

assuming x = x_ = 1. Substituting

jw-L - S
1

,
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ju>
2

= S
2

We get

H(s
i'

s 2» " (TTT[flTTip < 5 - 19b >

Substituting equations (5.1a and 5.1b) into (5.19b),

performs the double z-transformation. Thus,

8(1 + z"
1

) (1 + z"
1

)

T(zr z
2

) = i- £_ (5.20)
(a + z

1
) (a + z

2
)

where

A
2

(A -2) 2

a = a + 2

a - 2

A = sampling period

This separable canonic form obviously satisfies the condition

of (5.17). We should be careful about the second condition

of (5.18)

.

When z, = z
2

= -1, we have a nonessential singularity

of the second kind if a = 1, but a = 1 never occurs.

Therefore, there is no nonessential singularity of the second

kind. Thus, this separable case is stable by satisfying
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two essential necessities (5.17) and (5.18). The frequency

response of this separable case is plotted in Fig. 5.2, with

sampling time A = 0.08 which fits that of the analog frequency

response.

The double z-transform for equation (5.19a) is

A
2 (l + z

1

1
) (l + z^

1
)

T(Z
1
/Z

2
)

=
Ta-2 T;l ) (A-2t

2
) A+2 T;l

~ aT2~^
~

( A^2T7 +Z 1
)(

A^2TJ
+Z

2 >

(5.21)

and this general case for the two-dimensional separable

factor is stable by satisfying the stability necessities

of (5.17) and (5.18)

The second analog canonic factor in Chapter IV is

H(j Ul rJ0.2 )
(1 + jo)

1
T
1

) (1 + JW
2
T
2

) (1 + j w
2

T
3

)
'

When we perform the double bilinear transform for

this, we get

3 -1 -12
A
J
(1 + z/) (1 + z 9

xr
T(z n ,z„) =

1' 2' A+2t, , A+2T- , A+2t-. ,

(A-2x
1
)(A-2x

2
)(A-2x

3)[^ + z-
i
][I=2^ + z

2
HI=ni+«; ]

(5.22)

The frequency response of (5.22) for t, = 1, t
2

= 2, t^ = 4

is shown in Fig. 5.3 which almost fits the analog case.
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Fig. 5.2a. The frequency response of

T(z
1
,z

2
)

=

where 3 =

e(l+z
1

" 1
) (l+z

2

1
)

(a+z^ ) (a+z~ )

A
2

A+2
~ , a =

(A-2)"

(dB vs. log a), , log u}~)

A-2
= 0.08

136





Fig. 5.2b. The frequency response of

T(z
1
,z

2
)

=
6(l+z

1

~ 1
) (l+z

2

1
)

(a+z
1

" 1
) (a+z

2

-1
)

3 = A'

(A-2)
2 ' a = |i|

, A = 0.08

(dB vs. a). ,0)-) (linear frequency scale)
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*4

10.-,

Fig. 5.2c. The contour plot of the frequency response of

3(l+z
1

" 1
) (l+z

2

_1
)

T(z
x
,z

2
)

6 =
2

'

(a+z
1
~

) (a+z
2

)

a = f±§, A= O.OB

where

(A-2)

(linear frequency scale)
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We can summarize the m xn analog separable factor as

M N
H(ju> ,ju, ) = [ IT ,

.-*•
] [ n ,

, / ] (5.23)

After performing double z-transform, (5.23) becomes

M -1 N -1
M a (1 + z, ) N A (1 + z,)

T(z,,z ) = [ n —=i ][ n —|
]

(A-2t.) (-—ii+zT 1
)

3 L
(A-2x.) (_-^J-+z: 1

)

1 A-2x-1 3 A-2t 2.

15.24)

Equations (5.23) and (5.24) satisfy the conditions

of (5.17) and (5.18). As a result, a separable filter

results in separable filters in digital domain and they are

stable.

3. Non-separable Factors

The first non-separable factor in Chapter IV is

4.d with a = -1, p = q = t, = t
2

= 1 as given below

1
H ( joj, t j oj ) - j—-

-1 1 2 1 + 3oj-i](jo~
(5.25a)

or

«<V S
2> TTT^ (5 - 25b:
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Fig. 5.3a. The frequency response

A
3
(l+z

1

" 1
) d+z^ 1

)

T(z 1/ z
2

)
=

(A-2) (A-4) (A-S,
(f±|

.z,-
1

) (f±| .zf
1

) <£±f +z
2
-h

where A = 0.0 8

(dB vs. log co, , log u^)
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Fig. 5.3b. The frequency response of

T(
2l

,z
2

)
=

A
3
(l+z

1

" 1
) U+z^ 1

)

(A-2) (A-4) (A-8) (|±| +z
1

" 1
)
(|±i +z

x

X
) (f±f

+ z
2

1
)

where A = 0.08

(dB vs. u.,ii)J
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!S.u

Fig. 5.3c. The contour plot of the frequency response of

T(z
1
,z

2
)

=
A
3
(l + z

1

" 1
) (l+z^

1
)

(A-2) (A-4) (A-8) (|±| +z
1

-1
) (|±J

+a
1

"1
) <£±§ -hz^ 1

)

where A = 0.0 8

(linear frequency scale)
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and by the double 2-trans form, we get

A
2
(l +Z,

1
) (1 + Z'

1
)

T(Z 1' Z
2

)
= — 2 =T TT T Tt-ZT (5 ' 26)

(A +4) (A -4) (z
L
+ z

l
) + (A +4)z 1

z
X

In the analog domain (5.25b) does not satisfy the

condition (5.17). We have a singularity at

Ul u)

2
= 1

For the second condition, we have a nonessential

singularity of the second kind at z, = -1, z_ = -1. This

does not tell us whether it is stable or not, When we

check the frequency response, it is seen that this factor

is unstable.

The second non-separable canonic factor can be

derived from (4.d) with a = q = -1 and T-,=T
2

= las

follows.

H(ju)i ,jui ) = 3 (5.27a)

1 +
2 tu.

or

H < s i<
s 2> - —4r = sr^r < 5 - 27b >

1 +
ITs
2
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Then, (5.27b) becomes after performing the double z-transform,

as follows:

(l + zT
1

) (1 -z' 1
)

T(z ,z ) = _
2

( 5.28)
2U-«

1
r
«
2

I
)

This canonic factor does not satisfy either

stability condition. Hence it is unstable.

The other series of canonic factors can be derived

from (4.e)

.

For example, with a = -1, t
1
= t- « p » 1, we

get

HtjoiwjwJ = -,
,

-

1
, (5.29a;

-L ^ 1 + 3 co, +3 u^

or

H(S 1' S
2» = l + s^ + s

2
( 5 - 29b>

or in the digital domain

A(l + z"
1

) (1 + z"
1

)

T(z,,z ) = — —, _ (5.30)
(A+4) +A(z

x

x
+ z

2
) + (A-4)z

1
z
2

This canonic factor satisfies the first condition but

it has a nonessential singularity of the second kind, at

z, = z~ = -1 and so we should check the frequency
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response. We see that there is a singularity at

(u)
1

,o)
2 ) = (it, it). Thus this non-separable canonic factor

is unstable.

4 . Conclusions

All of the canonic factors discussed in this

chapter are collected in Table I. By comparing the results

shown in this table, we can say that separable stable canonic

factors result in stable separable filters. As seen from

Table I, the separable transfer functions 1, 2 and 3 which

start with stable separable ones in the two-dimensional

continuous frequency domain end up as stable separable trans-

fer functions in the two-dimensional discrete domain. This

is also true for the mxn separable canonic factor 4.

Non-separable canonic factors have very different

characteristics. The unstable non-separable case ends up

with a non-separable case in the discrete domain, which is

also unstable. Although we could not prove this result

generally, we also could not find any counter example to

exist. The transfer functions of 5, and 6 start in the

unstable case, and end up with the unstable case in the

discrete domain. The transfer functions of 7 starts with

the stable case in the continuous frequency domain, ends up

with the unstable case in the discrete domain. Thus we

have to be very careful with the double z-transform since it

does not yield stable results every time. It may yield

unstable results even if it starts from the stable case.
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VI. CONCLUSIONS

A technique for the use of semi-infinite planes to

approximate the log magnitude versus log frequency charac-

teristics of two-dimensional filters is presented. This

technique is applied to quarter plane filters and works

well for separable transfer functions. Other non-

separable canonic (basic) transfer functions are also

studied in terms of their planar approximation.

The following separable and nonseparable canonic factors

have been studied.

(1) (1 + jo)
1
x
1

)
p (l + jw

2
T
2

)

q

(2) (1 + oo
1
x
1

)
P (l + jco

2
T
2

)
q (l + joj

2
T
3

)
q

'

(3) [1 + (jco
1
t
1

)

P
]

a

q,a
(4) [1 + (joo

1
T
1
)^(l + ja>

2
T
2
)*]

p,a
(5) [1 + (ja)

1
T
1

+ jco
2
T
2
)^]

The properties and stability of these canonic factors

are investigated first in the continuous variable domain

and then after the double bilinear z-transform is applied

to extend them to two-dimensional recursive digital filters

These are all summarized in Table I in Chapter V. An

important result is that although the double bilinear

z-transform works well for separable factors, it does not
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always lead to a stable digital realization starting with a

stable analog transfer function.

The following are suggested for further research:

1. Other types of canonic factors need to be considered.

For example, the general form:

H(j»lf jw2 ) = [1 + (ja3
1
T
1

)
P+(jaJ2 T

2
)
q+(jco

1
T
3

)

r
(jw

2
T
4

)

t
]

a

2. The work should be extended to non-causal (half-

plane) filters.

3. Transfer functions which have circular symmetry in

the discrete domain need to be investigated.

4. Another approach is to consider half-plane

recursive algorithms, by working backwards from the discrete

domain (z, ,zj to continuous domain (s,,s
2
).

5. Stability of canonic factors needs to be investigated

in detail

.

6. The use of predistortion should also be considered.
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