
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1979-06

The design and implementation of an inexpensive

microprocessor development system for the Z-80 microprocessor

Corteville, Douglas Floyd

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/18669

•"''

-:':
:

;:;>/;
:

KISS • ;•"

''•'•;:.'•'''.•:

Biftffi

i " .:

*8I

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
THE DESIGN AMP IMPLEMENTATION

OF AN INEXPENSIVE
MICROPROCESSOR DEVELOPMENT SYSTEM

FOR THE Z-80 MICROPROCESSOR

bv

Douglas Floyd Corteville

June 1979

Thes i s Adv i sor R . Panhol zer

Approved for public release; distribution unlimited.

T189168

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entarad)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO I. RECIPIENT^ CATALOG NUMBER

4. TITLE (and Subtltla)

The Design and Implementation of an
Inexpensive Microprocessor Development
System for the Z-80 Microprocessor

5. TYPE OF REPORT ft PERIOO COVERE:

•"aster's Thes i s ; June
8. PERFORMING ORG. REPORT NUMBER

7. AUTHOR^ 8. CONTRACT OR GRANT NUMBER*-

*;

Douglas Floyd Corteville

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJEC* 'ASK
AREA 4 WORK 'JNIT NUMBERS

I I. CONTROLLING OFFICE NAME ANO AODRESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT OATE

June 1°7 Q
13. NUMBER OF PAGES

101
TS" MONITORING AGENCY NAME 4 AOORESSf// dltlarant tnm Controlling Oftlea)

Naval Postgraduate School
Monterey, California 93940

15. SECURITY CLASS. lot thla raport)

Unc 1 ass i f i ed

15a. DECLASSIFICATION' DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thla Raport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ot (ha abatrmet antarad In Block 30, It dltlarant from Raport)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continua on ravaraa aida It nacaaaary and Idantlty oy block numbar)

Z-80, microprocessor development system.

20. ABSTRACT Continua on ravaraa ttda It nacaaaary and Idantity by block numbar)

The Radio Shack home computer system, TPS-80, configured
with Level II Basic ROM's, 16K of PAM, its expansion interface,
a single disk drive, and a line printer interface to the
TELETYPE model 40 line printer is being used as a microprocessor

development aid for the Z-80 microprocessor. Basic language
programs are resident on the mini-disk and are used to load,

DO
(Page 1)

FORM
1 JAN 73 1473 EDITION OF 1 MOV 88 IS OBSOLETE

S/N 0102-014- 6601 |
-,

SECURITY CLASSIFICATION OF THIS PAGE 'Whan Data Kntat

$UCUt*lTY C LASSIFICATION OF THIS P>GEf^»" D-'« Enfrid ——
-

to store, to dump, and to execute assembled assembly language

programs

.

DD Form 1473
1 Jan 73

S/N 0102-014-6601 2 SECURITY CLASSIFICATION OF THIS »»CE,'Wi«n Omtm En(»r»<3)

Approved for public release; distribution unlimited

THE DESIGN AMD IMPLEMENTATION OF AN INEXPENSIVE
MICROPROCESSOR DEVELOPMENT SYSTEM FO^ THE Z-80

MICROPROCESSOR

by

Douglas Floyd Corteville
Lieutenant, United States Navy

B.S., Michigan State University, June 1972

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 1979

ABSTRACT

The Radio Shack home computer systen, rRS-80,

configured witti Level II Basic ROtf' s, 16K of B&S, its

expansion interface, a single disk, drive, ani a line

printer interface to the Teletype model 43 line

printer is being used as a microprocessor development

aid for tha Z-30 nicropcocessoc . Basic language

programs are resident on the mini-disk, and are used to

load, to store, to dump, and to execute assembled

assembly language programs.

TABLE OF CONTENTS

I. INTRODUCTION 3

II. CONVERSION TO LEVEL II BASIC 10

III. LINE PRINTER INTERFACE 12

A. OPERATION OF THE LINE PRINTER INTERFACE 12

B. INSIDE THE LINE PRINTER INTERFACE 13

1. Transmit 14

2. Receive 14

3. Control 17

4. Power 20

C. CONSTRUCTION OP THE LINE PRINTER INTERFACE... 20

IV. MICROPROCESSOR DEVELOPMENT AID 23

A. THE SYSTEM 23

B. THE BASIO PR03RAMS 24

1. Monitor Program 26

2 . Dump Mode 2 7

3. Load Mode 23

4. Exacution 3ode 23

5 . Single Stap Execution Mode 29

6. Disk Stonge Moda 35

7. Disk. Recall Mode 37

3. Tape Storage Moda 37

9. Tape Recall Mode 37

C. SPECIAL CONSIDERATIONS FOR MACHINE LANGUAGE

PROGRAMMING 38

D. USING THE DEVELOPMENT SYSTEM 4j

1. Lab 1 40

2. Lab 2 »1

3. Lab 3 42

V. CONCLUSIONS AND RECOMMENDATIONS 43

A. FUTURE SOFTWARE 43

B. FUTURE HARDWARE 44

Appendix A: THE PROCEDJRE FOR THE CONVERSION TO LEVEL II

BASIC FROM LEVEL I BASIC 45

Appendix B: THE 3748 PROGRAM TO GENERATE A LINE FEED... 47

Appendix C: MONITOR PROGRAM 52

Appendix D: DUMP PROGRAM 54

Appendix E: LOAD PROGRAM do

Appendix F: EXECUTION PROGRAM 56

Appendix G: SINGLE STEP EXECUTION PROGRAM 57

Appendix H: SINGLE STEP EXECUTION PROGRAM 1 59

Appendix I: SINGLE STEP EXECUTION PROGRAM 2 50

Appendix J: SINGLE STEP EXECUTION PROGRAM 3 63

Appendix K: SINGLE STEP EXECUTION PROGRAM 4 55

Appendix L: SINGLE STEP EXECUTION PROGRAM 5 53

Appendix M; SINGLE STEP EXECUTION PROGRAM 6 71

Appendix N: SINGLE STEP EXECUTION PROGRAM 7 72

Appendix 0: SINGLE STEP EXECUTION MACHINE LANGUAGE PROGBAH.

74

Appendix P: DSTORE PROGRAM 75

Appendix Q: DRECALL PROGRAM 77

Appendix R: TSTCRE PROGRAM 73

Appendix S: TRECALL PROGRAM 79

Appendix T: SUBROUTINE 10 DECIMAL TO HEX CONVERSION.... 30

Appendix U: SUBROUTINE 100 DECIMAL TO HEX CONVERSION... 31

Appendix V: SUBROUTINE 230 HEX TO DECIMAL CONVERSION... S3

Appendix if: SINGLE STEP EXECUTION MEMORY MAP 35

Appendix X: LAB 1 37

Appendix I: LAB 2 92

Appendix Z: LAB 3 95

LIST OF REFERENCES 1 00

INITIAL DISTRIBUTION LIST 101

LIST OF FIGURES

1. Transmit, 15

2. Receive 16

3. Control 18

4. Power. 21

5. Single Step Execution Flow Char- 35

I. INTRODUCTION

The inital condition of the Naval Postgraduat a School's

Radio Shack tome coaputer was a Laval I basic system with

16K of RAM. This beginning system was added to and modified

to form a microprocessor developaant aid foe the Z-30

microprocessor.

Chapter II will discuss the conversion of the Level I

basic to Laval II basic. This being complicatad by Radio

Shack's lack of documentation and instructions was

accomplished within ona afternoon. With instructions it

would take about fifteen ainutes

Chapter III will discuss the operation and construction

of the lina printer interface. This intarfaca is controlled

oy an INTEL 3748 microprocessor and is set to operate at

2400 baud. X significant aaount of time was spant on -his

due to a standacd line faed character not being ganeratad by

the TRS-80.

In chapter IV the microprocessor developaant aid is

discussed with application to sampla prooleas. The use of a

system of basic language programs resident on tha mini-disK

allows tha operator to load, to dump, to stora, and to

execute assembled assembly language programs. The outputs

of these operations are either directed to the video display

or the line printer. Jse of the system's single step

execution program alLows the operator to trace the

operations on each register as the operations are

accoaplished

.

The conclusions and recommendations of chapter 7 include

ideas for furthering the usefulness of the PRS-30 as a

development tool. The prospects of increasing the variety

of microprocessors serviced by this inexpensive system :_s

very exciting.

II. CONVERSION TO LEVEL II BASIC

The conversion to Level II basic from Level I basic was

the first hardware change made to ttie Naval Postgraduate

School's TRS-80. This changes tha 4tC of ROM asad for Level

I oasic to 1 2K of ROM usad for Level II basic. An increased

instruction set and the software to support a lina printer

are tha motivating factors for this alteration. Normally a

Radio Shack, service center would ins-call and test the

conversion kit. Sinca this is an alactricai engineering

thesis, it was decided chat I would do the conversion and

thus have an opportunity to study tha CPU board.

The use of Ref. 1 during the Laval II basic conversion

is useful and the only available rafacence. All of the "Z "

numbers are on the CPU ooard and tharefore cheic locations

ara relatively aasy to find. A new X3 is provided with tae

conversion kit and is usad as is (DO NOT break anv of the X3

connectors). Tha kit also has a 100 ohm 1/4 watt resistor.

This rasistor is used to Load the recorder input but is not

necessary; therefore, it is not used

The Level II basic ROM's are on a small 4-chi? ROM

board. This ROM board is attached with double-siiad tape co

the etched side of the 3PU board. The ROM board has a flac

ribbon cable used to connect it to the CPU board at Z33 or

Z34

There are four lose wires coming from the ROM board

which must be connectel to the CPU board: A yellow wire co

oe connected co address line 11 (A11) ; A red wire to oe

connected to address line 12 (A12) ; An orange wire to oe

10

connected to adirsss lias 13 (A13); A green *ire to be

connected to something called ROM*. One mast oe careful for

the color coding may change with different ROM boards.

ROM* is not definel in Raf. 1. ROM* mast os high whan

A14 or A15 is high and is low otherwise, in orier to support

the memory map. Knowing what maos up ROM* leais to where

it connects on the CPU board. Dn IRS-80 schematic (sheet 1)

of reference 1, there is the DIP shunt X3. This DIP shunt is

a shorting bar array. By breaking some bars aid leaving

others intact, the address decoder is programmed to reflect

the amount of ROM and RA.1 on the CPU ooard. For a Level II

basic ROM and 1 6 S of RA.1 none of the bars of X3 are broken.

ROM* is now found on pin 7 or 8 of X3 with an unbroken DIP

is installed

The wires connecting to A11, A12, A13 must all be

connected to the output of the tri-state buffers whica

isolate the CPU. Connect the yellow wire (A11) to pin 5 of

Z37 , the rad wire (A12) to pin 13 of Z21, the orange wire

(A13) to pin 3 of Z21, and the green wire (ROM*) to pin 3 of

X3.

Appendix A coatains a step-by-step procedure for the

above conversion.

11

Ill LINE PRINTER INTERFACE

To obtain hard copy of output data, and program listings

is an important part of any computer system. The TRS-30

expansion interface has two printer ports. One port is a

screen printer port md interfaces with the Radio Shack

screen printer. This poet is a pin for pin copy of the

40-pin edge connactor waioh connects the CPU ooard with the

expansion interface. The other port is a line printer port

which interfaces with the Radio Shack line printer. This

port is a 32-pin port. It sends TTL data lines lq parallel

and receives four handshaking signals.

Given the need for hard copy output and the existence of

a line printer rfhich receives RS-232 signals, an interface

was constructed to convert the TRS-30* s expansion interface

and the Teletype model 40 line printer.

A. OPERATION OF THE LINE PRINTER INTERFACE

The line printer interface must interface between the

TTL parallel output and handshaking signals of ths expansion

interface and the RS-232, at 2400 baud, signals of the

Teletype model 40 Line printer. A universal asynchronous

receiver/transmiter (JAR/I) the AI-5-1013 is used with a

quad MDTL line driver the ?1C1438 bo convert the parallel

output of the expansion interface to 2400 oaud RS-232

signals. A handshaking signal from the line printer is

converted to TTL logic in a quad HDTL line receiver the

J1C14 89.

12

The TRS-30 software does not generate an ASCII Line feed

character at the end of a line. This requires a smart line

printer interface. An INTEL 87'43 is used to control the

handshaking signals, moiitor the parallel output from the

TRS-80, and when require! take control of the printer to

generate a line feed character. A line feel is generated

after the TRS-80 transmits a carriage return.

Whenever the line printer interface and the disk drive

are connected to the expansion interface, the line printer

interface must oe turned on. Ins lack of the proper

handshaking signals, when the line printer interface is off,

will prevent disk operation on start up and Lock up tne

system during operation. Before tne first use of the line

printer interface after a shut down the RESET button must oe

pressed on the line printer interface to insure proper

restart of the 8748.

B. INSIDE THE LINE PRINTER INTERFACE

Inside the line printer interface is divided into four

parts. The transmit data path is discussed first. This is

the pata from the TRS-80 through the line printer interface

to the line printer. The second part is the received data

path which is the handshake signal from the line printer to

the TRS-80. The control signals are generated next and pull

together both transmit and receive signals along with tae

necessary clock pulses. The power supply of the line

printer interface is examined for possible trouble shooting

at a later date.

The line printer interface is made from three LSI and

five SSI building blocks. One 3748 nicroprocessor, one

AY-5-1013 OAR/T, :ne 3212 eight-bit input/output port, one

13

74126 tri-state quad uffer, one 3C1488 giiai MDTL Line

driver, one MC1439 guad UDTL line caceirer, and two 7492

divide-by-12 counters are the integrated circuit components

of the line printer interface. There are an additional six

SSI building blocks on tne expansion interface which support

the line printer. These circuits decode the line printer

driver address, store tha output data cnaracter, ceceive the

handshaking signals, and produce a 1/2 microsecond negative

going data strobe to signal when lata is present. Detailed

data on the operation of ill the components of the line

printer interface appear in Refs. 2, 3 and 4.

1 . Transmit

The transmit data path through the line printer

interface is shown in figure 1. Parallel data is latched on

the expansion interface. This data is passed through the

8212 configured as an output port to the UAR/T. The 8743

can read the data which is passed to the QAR/T or, as will be

seen during the control iiscussion, the 3748 can *rite data

to the UAR/T. The UAR/T changes tne data from parallel to

serial at the baud rate maintained oy tne control signals.

The TTL serial output of the JAR/T is changed to RS-232

logic in the MC1488 and sent to the line printer through pin

3 of an RS-232 connector.

2 . Receive

The receive data path from the line printer to the

expansion interface is shown in figure 2. Pin 14 of tne

RS-232 connector is the ceceive next character (RNC) signal

of the line printer. When this signal is low, the line

printer is not ready to receive the next cnaracter. Likewise

when this signal is high, the printer is ready to receive a

14

LP3

LP5 (dT>

LP7 [d2J>

LP9 ID3v>

LP11 E>
LP13 [d5^>

LP15

3

5

7

9

16

20

10

15

17

19

3212

25

27

23

29

2Q

32

25

UAR/T

12 13 14 15 IS l 7 13

8748

1433

To pin 3 ::"

RS-232 connectrr

Figics 1 - TBANSdll

15

LP23O
39

3748

1489
]

N
'

To pin 14 of
RS-232 connector

Figare 2 - RECEIVE

16

character. Tha RS-232 Logic of tha printer is changed to

TTL logic by tha 3C1489. k low on LP-23 of the axpansion

interface causes the IR5-80 to halt until LP-23 goes high*

This is also connected to n of the 3743 for use in the

control sequence. The timing is suca that this signal will

not slow down the process unless a line feed or a form feed

is being executed.

3 . Contro l

The control of the line printer interface is shown

in figure 3. The 3743 performs two control functions. it

monitors the transmitted characters and inserts i line feed

character after each carriage return character. Ihe clock

for tha UkR/T, a clock at sixteen times the iasired baud

rate, originates from tha 8748.

The control of the line feed character generation

works as follows. Three of the data lines of poet P1 and

one of the data lines of port P2 of the 3748 are used for

control. Initially, the 3US port, which is monicoring the

transmitted character, is in a high impedance stata. P12 is

high, enabling the 8212 through one of the 74126' s buffers

used as a driver. P11 is low, anaoling the IR5-30 througn

LP-21 and a tri-state buffer on tha axpansion interfaca

which leads to D7 of the CPU. P13 is low, disabling the

74126»s tri-state buffer *hich driwas P23. P23 is high, but

disconnected from the data strone of the U&R/r (DS(not)).

LP-26 is a clear Line foe the D flip-flops on tha axpansion

interface which stores the transmittad charactar; it is

wired high to disable the clear. The interrupt is enabled.

The transmit saguence follows. A character is

latched to the D flip-flops on the expansion interface.

This character passes through the 82 12 and appears on the

17

LP1 l"^>-

LP2l[Z^

11 1 3

74126 12

40

UAR/T

23

24

LP26

Fijire 3 - CONTROL

data lines of the UAR/T and the BUS of the 8743. A negative

going pulse of about 1/2 nicrosecond is generated on tne

expansion interface and is passed from L?-1 through the 8212

to DS (not) of the UAR/T. The end of character Line (EOC) of

the UAR/T goes low, interrupting the 3748, and tas character

is transmited by the UAR/T. The interrupted 8743 stops the

TRS-80 by sending P11 high. It then inputs on the B US the

character and checks it to see if it is a carriage return

(ODH) . If a carriage return character is not being

transmitted, then the 8748 starts its end of interrupt

sequence (to be described later) . If a carriage return is

being transmitted, then the 8743 waits for the SOS to go

high. At that time, P12 goes low to disable the 3212

(places it in a high impedance state) and P10 goes hign

enabling tne 74126's buffer to connect ?20 to D5 (not) of the

UAR/T. A line feed character (OAH) is places on the 8748's

BUS. P20 goes low , then high, thus generating a lata strobe

for the UAR/T. A line feed character is now being

transmitted. The 8748 starts its end of interrupt sequence.

During the end of interrupt sequence, the 3748 waits

for the EOC to go high, then it waits for 11 to go high.

This means tne 8748 waits for the UAR/T to finish

transmitting, then it waits for the printer to say it is

ready. When these things are true, a return from interrupt

is executed. After the interrupt is reenabled, the initial

conditions are reestaolished and the transmission of the

next character is started.

Appendix B is a complete listing of the program

resident on the 3748. Along with supporting the above, tne

8748 also generates the oLock for tne UAR/T. The clock is

generated by the 8748' s instruction ENTO CLK rfaich places

1/3 the 8748's clock on the test line 10. This clock is

divided by twelve and two by 7492 di/ ide-by-twel ve counters

before tne clock goes to the UAR/T at sixteen times the baud

19

rate. The variable inductor is used 10 fine tune the 3748*

s

clock., thus fine tuning tha 2400 baui of the JAR/T. To

change to 4800 baud, disconnect the divide-by-two counter.

Similarly to change to 9600 baud, disconnect the

divide-by-two counter and rewire the divide- by-twelve

counter to make a divide-by-six counter.

The reset button wiring is shown as part of control,

figure 3. Before one tries to disassemble the line printer

interface case, the reset button must be disconnected first.

f* . Power

The power supply for the line printer iaterface is

provided by a surplus radio telegraph power supply. It is

rated at .5 amp at 5 voLts, 125 ma at +12 volts, and 125 ma

at -12 volts. Figure 4 shows the power supplies needed for

the line printer interface. Pins 34-39 of the 0AR/T set up

the tikR/T for one stop bit, seven bits per character, and

even parity. Pins 13 and 4 are high on tie 74126 to

permanently enable two of the 74126' s tri-state buffers as

drivers.

C. CONSTRUCTION OF THE LINE PRINTER INTERFACE

The line printer iaterface is constructed on a

six-by-four inch perforated board using wire wrap sockets.

The use of the wire wrap technique is a very significant

contribution to the success of the line printer interface.

The autnor has used wire wrapping on two other projects and

never experienced a short or an open. He strongly

recommends this technique for any pcototype project.

20

LP2

+ 5V

-12V

+5V + 5VHi
14 13

74126
4

X~T

0+ 5 V

fr+ 5 •;

+127 -12V

it
1 u

5 6 7

7492 .

10

~x

—

f T t
5 6

7M-9 2

10

lug
14

3

7

V I
+ 5V

r
Figure 4 - P0W2R

21

The forty pin edge connecting cable froa the line

printer interface to the expansion interface is identical to

the cable from the CPU board to the expansion interface.

There are two plastic lags on each side of the edge

connector going to the 32 pin line printer poet on the

expansion interface. This caole cannot be connected

backwards, bat it can be connected apside down. The cable

shoald be connected as all the other cables entering the

expansion interface.

22

17. MICROPROCESSOR DE72LJPMENT AID

The major :oq tribution :> f this thesis is a disk

operating microprocessor development aid for the Z-30

microprocessor. Since the INTEL 8030 language is a subset

of the Z-80 language, this development aid is, in all

respects, an 8080 microprocessor development aid as well.

Since the Naval Postgraduate School nas other and mote

sophisticated development aids for the 3080, the use of this

system will find its most pratical use with the Z-30.

The cost of the TRS-80, as presently configured,

compares favorably with the pcompt-30/35 . The system of

basic language programs which operates the ZRS-80 as a

microprocessor development aid performs all of the functions

of the prompt-80/85 with the exception of the PROM

operations. Consideration will be given to extending this

Z-80 development aid to include PROM operations. In

addition to the prompt-8D/35 functions, this systen has a

single step execution operation which allows eitasr hardcopy

or video display of the registers after each step.

THE SYSTEM

The entire basic program to support the microprocessor

development aid takes less then 11K oc RAM. In a IRS-80 with

16K of RAM that would leave about 5K of RAM for the machine

language programs. To facilitate the use of the system and

memory usage, the TRS-30 disk operating system (IRSDOS) is

used.

23

The software to support the TRSDOS uses aooiit 10K of

RAM, leaving less than 6S of RAM for the systaa programs.

The basic programs are segmented into functiDnal groups

using less than 2K of RAM aaoh. Each of these small

programs which are resident on the disk are called from the

disk by the monitor program. Each of the program segments

calls another segment is its last step, thus ths system of

programs loop from one to another.

With 10K of RAM used by TRSDOS and about 2K 3f RAM used

by the basic programs, this leaves a little more than 3K of

RAM for the assembled assembly language programs. Any time

an assembly language program of greatsr than 3K is being

developed, the developer should think about a higher level

language to produce his software. tfhen the Naval

Postgraduate School's IR5-80 RAM is expanded to U8K, the

same restriction should oe followed.

On system start up, the number of files question should

be answered by pressing SNTER; this defaults with three

files. Since each file requires about 235 bytes of RAM, any

answer other than the default will rob the system of the BA3

required for executing its program. The memory size

question saould be answered with 29630 SMTEE. This protects

3K of RAM for the user's assembly language programs.

The use of this systen is very much dependent upon a

strong background in 3080 and Z-SO assembly language.

References 7, 8, 9, and 10 are recommended for tha beginner

in that order. An understanding of tha assembly language and

how it operates within the microprocessor cannot oe replaced

by this system of basic language programs.

B. THE BASIC PROGRAMS

24

The programs used to support the microprocessor

development aid are written in TRS-80 Disk 3a3io, reference

5 and 6 apply. Their execution is slower than that of

similar operating systems which are assembly Language based.

An asserted attempt has been made to nave the inputs and the

outputs cioseLy resemble their counterparts in T-3U5 and the

TEKTRONIX 8002 systems. The programs are interactive in

nature and require a developer's response at appropriate

times during execution.

Exampies of the use of these programs ace given as

sampie labs in Appendices X, Y, and Z. Use of these Laos

will be discussed later in this chapter.

All of the basic programs, but one, are protective files

as defined in Ref. 6. They cannot be loaded, altered or

executed without the use of their password. The password

used by all the programs is DFC, the initals of the author.

The disk's master password is the same as given in Ref. 6.

It is not necessary to use or even know either password when

using this microprocessor development aid.

The basic programs of Appendices C through y, and ?

through S are identical in content to those resident on the

disk. However, to save memory locations, unnecessary spaces

have been deleted for the programs on the disk. Since this

entire thesis is being generated Dy tne IPS program, on. the

IBM 360, tne appendices have additional spaces generated oy

TPS to make them more pleasing to the eye. Additionally tne

subroutine calls, which appear in most of the programs, call

line numbers not present in Appendices C througn N", and P

through S. These subroutines appear in Appendices r, rJ, and

V, but are resident on the disk in the basic program when

required.

25

1 . Monitor Progra

m

Tha monitor program, Appendix C, functions as its

name implies. It establishes a starting position for tne

microprocessor development aid and allows the operator to

chose the type of operation which he rfants to accomplish. To

start the monitor and, therefore, start the microprocessor

development aid, type RUN"S" and than press ENTER. This will

load and run tha aonitor program. "S" is a program which is

one line long; that line is SUN "MONIIOR/BAS. DEC : 0" which

could be entered directly. What occurs on RUN "3" is that

the monitor program is found on disk drive and loaded into

the RAM and then executed.

The first reguested input from the monitor program

is a reguest for one of two letters S or L. These stand for

a short (very short) or long explanation of the commands

which are recognized 3y the monitor program. If the

operator enters some character, group of characters, or the

null character (by just pressing ENTER), tne program

defaults by responding with the short explanation.

After the operator responds to and receives his

explanation, the program asks for a mode of operation. The

operator must then respond with one of a set of characters

used in the explanation. If the operator enters a different

string of characters, then what appears in the explanation

(spaces count), the program defaults with tne short

explanation. It will continue giving the short explanation

until a proper string of characters is entered.

Upon receiving a proper string of characters the

monitor program directs tne locating, loading and execution

of a new program. At the end of this, the monitor program is

26

no longer in tha RAM. The monitor program is raLoaded as a

final step to each of the other modes of operation. Thus,

the microprocessor development aid is self perpetuating.

If, for any reason, the operacor reguires to get to

the monitor program at some other time, press BREAK then

type RUN "S" and press ENTER.

2 . Dum_£ Mod e

To start the dump mode program, Appendix D, from tha

monitor program type DUMP, then prsss ENTER when the mode is

reguested. This program will provide, either in hard copy or

on the video display, tha contents (in hexadecimal code) of

any memory location or string of memory locations up to and

including the entire 64K of RAM addressaole by tie Z.-30.

The operator must provide, when asked, a starting

memory location in decimal, the number of memory locations

in decimal and an indication of video or line printer

output. There is no default on the type of output, so if the

operator enters something other than a single letcer 7 for

video or the two letter string LP for the line printer,

there will be no output. The data is outputted in the

following format per Una: starting memory location of the

line in decimal; starting memory location of tha line in

hexadecimal; followed with sixteen bytes of data from the

next sixteen memory locations.

After the reguested lata is outputted, the program

gives the operator an opportunity to start the dump program

again. The program defaults on any character string other

than IES to the monitor program.

27

3. Load Mode

The load anode program. Appendix E, is antered oy

typing LOAD and pressing ENTER when the mode is requested

during the monitor progrim. This program operates almost

identically to the "eicam" command of the TEKTRONIX 3002.

The operator will be required to antar a starting memory

location in decimal. Tha location should be, but is not

limited to, the reserved RAH locations 7400 to 7??F (29696

to 32767 decimal) which are protected on startup. Since this

program changes the contaats of RAM locations, to use it at

RAM location other than 7400 to 7FFF Hex invites disaster,

for the operator can end up changing something that should

not be changed.

The program outputs the hexadacimal memory location

and its current contents. When a question mark (?) appears,

the operator can change tha memory location by typing a two

digit hexadecimal code and pressing ENTER. The program

defaults using only tha first two characters of any

multi-character string. If no characters are typai and ENTER

is pressed, the memory location is unchanged and the program

proceeds to the next mamory location. The memory location

always increases and never decraases.

To stop the loading process type .}0II and press

ENTER. This will start taa monitor program.

4

.

Execution Mode

The execution moia program, Appendix F, is entered

by typing EXEC and pressing ENTER rfaen tne moda request is

made during the monitor program. This program caquiras a

decimal number which is ased as a starring memory location.

28

The program traasfers control so that the machine language

code is executed starting at chat memory Location. This

execution is similar to the GO command of the pronpt 80/35.

The execution is stopped and control transferred back to tae

basic language program upon execution of a return which was

not proceeded by a calL in the assembly language program.

The USRO instruction is used to transfer control. See Refs.

5 and 6.

When execution is complete, the operator is asked if

further execution is reguired. If so, a YES is typed and

ENTER pressed, then the basic language execution mode

program is restarted asking for a starting memory location

in decimal. The program defaults on any other character

string than YES to the monitor program.

The use of this mode should be limited to assembly

language programs which have already been debugged. Since

the execution is very rapid, at the Z-30 clock rate, any

attempt to see single steps would be useless. Techniques

for writing Z-30 assembly language programs for this system

are discussed later.

5- Single 5te£ Execution ^gde

The single step sxecution mode is a system of eigat

basic language programs, Appendices 3 through N, and one

machine language program, Appendix 3. The system of

programs is started by typing S3 EXEC and pressing ENTER in

response to the mode question of the monitor program.

Single step execution will provide, either in hardcopy or on

the video display, the program counter of the step being

executed. The contents of each working register and the

stack pointer, after the step is executed, is also

outputted. The pcimary asa of this sat of progcans is as a

29

debugging aid. For loig machine language programs the

hardcopy output is essential, since the video display will

contain no more than twelve lines of output. What follows is

a functional explanation for each of the nine separate

programs which make up the single step execution node.

Single step execution program, Appendix 3, is the

executive prograa of the single step execution aode. It is

run only once during the single step procedure, and this

does the preliminary accounting procedures required for

execution. It first loads the machine language program,

appendix 0, into memory. The question of output is then

addressed. The operator responds with a V or LP for either

video or line printer output. The type of output is stored

in the least significant bit of memory location 73D0 Hex.

There is no default for output; a zero in this location

causes video output and a one causes line printer output.

If some other string of characters is used to answer tne

output question, the contents of this bit remains unchanged

and the output is either video or line printer. The last

entry by the operator in this mode is a starting memory

location in decimal. This location is now used by the system

of programs as the program counter and is stored in memory

location 73D2 and 73D3. Since the single step aoie is using

several programs, any information to be passed between the

programs must be stored in the protected part of the RkA.

Appendix W shows a memory map of tne protected portion of

the RAM used by the single step execution mode.

The Appendix 3 program, as a final step, loads and

executes single step execution program 1, Appendix 9. This,

as well as the renaining single step execution programs, has

no interactions with the operator. The program sets memory

location 73D 1 to zero. Memory location 73D1 is called K

throughout this set of programs. Ihe output bit from memory

location 73D0 is checked and a header is outputted as

30

required. This healer labels each of the coLamns of tha

output. The single step execution program 1 is returned to,

after ten machine language program steps are accomplished.

This process would be accomplished as a do-LoDp if the

single step execution mode was one, not eight basic

programs.

The Appendix H program, as a final step, loads and

executes single step execution program 2, Appendix I. This

program performs a very fundamental function :> f a single

step routine; it translates the hexadecimal code of the

contents of the program counter's memory location into the

length in bytes of the instruction to be executed. The

variable N2 is used to store the number of bytes per current

instruction, see Appendix W. Instead of using this variable

in single step execution program 2, the program loads, then

executes one of the four programs, Appendices J through 3,

depending on the number of bytes.

If single step execution program 3 is executed next,

then the instruction to be executed is one byte in length.

There are four distinct cLasses of one byte instructions in

the Z-80 language. There is a class which does not change

the program counter except to move it down to the next

instruction. Niaty percent of the single byte iastructions

are like this. Another class is one that only changes the

program counter. The only single byte instruction of this

class is the JP(HL) instruction. The third class may change

the program counter and the stack pointer. These are the

return and conditional return instructions. The last class

are the restart instructions. The single step execution

program 3 separates these four classes of single byte

instructions and set control codes to insure taeir proper

execution within the single step framework. An instruction

which does not change the program counter will set H5 to 1

and 86 to 3. An instruction to jump to HL will set M5 to 1,

31

Mb to 1, and places the new pcogram counts: in memory

locations 73E8 and 73E9. The returns check, to sae if the

return has had a corresponding call. The conditional

returns are checked for the truth of the condition. If tae

return has a corr espondin g call, the returning program

counter is placed in memory locations 73E8 and 73E9; the

stack pointer is caused to increment twice; 35 is set to 1

and M6 is set to 1 . If the return is a conditional return

failing its condition, M5 is set to 1 and M6 is set to 2.

If the return does not have a corresponding call, then it is

an end of program return; M5 is set to 2 and M6 is set to 1.

A restart instruction is not executed since its execution

would transfer control to a Level II basic ROM memory

location. A restart sets M5 to 1, tf6 to 2 r and prints a

diagnostic on the video display. M5 and H6 ire control

variables which are stored in memory location 73D0, prior to

the loading and execution of single step execution program

7, Appendix N, as a last step of this program.

Single step execution 4, Appendix K, is executed

next, if tne instruction being executed is two bytes long.

There are four classes of the two byte instructions. One

type is executed directly and does not change tie program

counter. These instructions set 35 to 1 and M6 to 3.

Another class are the jumps. The JP (IX) and JP(Ilf)

instructions each set M5 to 1 and Mo to 1, then place a new

program counter in memory locations 73E3 and 73E9. Ihe

relative jump instruction decodes the new program counter

and then does the same as JP (IX) . The conditional relative

jumps with a true condition act as a relative jump. If i

false condition exists, then M5 is set to 1 and 15 is set zz

2. If the special decr^aent relative jump (DJNZa) is being

executed, then, in addition to the conditional relative jump

procedure, the B register must be decremented. The third

class is the return from interrupt and return froa

nonmaskable interrupt. This class sets M5 to 1 and M6 to 2,

32

and then outputs a diagnostic to the video display. Tna

instructions RETI and RETN are emulated with no operations

(NOP). The last class of two bytes instructions are the

iterative load, compare, input and output instructions

(LDIR, LDDR, CPIR, CPDR, INIR, INDR r 3TIR, and OIDR) . They

set 35 to 1 and 36 to 3 which allows their execution to

completion. A diagnosic is outputted to the video which

explains that these instructions are executed directly with

only one line of output. The control variables 35 and 86

are then stored in memory Location 73D0; and the single step

program 7 , Appendix M, is loaded and executed.

Single step execution program 5, Appendix L, is

executed if the instruction being executed is three bytes in

length. There are three classes of three byte instructions.

The ones which do not change the program counter are

executed directly. The control variables 35 is set to 1 and

36 is set to 3. The second class is the jump and

conditional jumps. The jump will set 35 to 1 and 36 to 1,

and store the new prograa counter in memory locations 73£8

and 73S9. A conditional jump is checked for tne truth of

the condition. If the condition is true, then it is treated

like a jump. If the condition is false, then 35 is set to 1

and £16 is set to 2. The third class is the call and

conditional calls. These act lijce jumps and conditional

jumps with additional actions. The current program pins

three must appear to be pushed on tae stack; the stacx

pointer decreased by two; and 34 which is stored at 73D4 is

decreased oy one. The control variables 35 and 35 are stored

at 73D0; then single step execution program 7, Appendix N,

is loaded and executed.

Single step execition program 5, Appendix 3, is

executed if the instruction being executed is four bytes

long. The Z-30 language does not have any four byte

instruction which changes the program counter. This program

33

sets the control yariablas M5 to 1 and H6 to 3, and then

stores them in memory location 73D0. The single step

execution program 7, Appendix 8, is then Loaded and

executed.

Single step execution program 7, Appendix 8, is the

ending executive program for each machine language program

step. The program decodes K which is the number of lines

that this program has printed since the last register header

of single step execution program 2 was printed. LP is

decoded. If LP is oae, then output goes to the line

printer. If LP is zero, then output goes to the video

display. 83 is decoded as the current program counter. If a

jump, call or return is to be executed, then N1 is decoded

as the new program counter. M5 is decoded as 1 or 2. 16 is

decoded as 1, 2 or 3. N2 is decoded as the byte length of

the machine language instruction being executed. If .16 is

1, then the new program counter, 81, is stored in 73D2 and

73D3 and the machine language program of appendix is

executed. If M6 is 2, then N1 is set to 82 plus N3 (i.e.,

the new program counter is the old program counter plus the

number of bytes of the executing instruction) ; and the steps

done for 16 egual to 1 are carried oat- For bora 16 set to

1 or 2, the contents of 73E3 to 73HB are either no

operations (NOP) or previously set in single step execution

programs 3, 4 or 5. If .16 is 3, then the instruction being

executed is placed in 73E8 to 73E3 (whith NOP's in empty

locations) ; and the steps used when 15 is 2 are carried out.

Upon returning from the aachine language program of appendix

0, the program counter, registers and stack pointer are

assembled and outputted as the variaole LP dictates. If H5

is 2, then the machine laigaage program is over (one more

return than calls) . An end of execution messaga is printed

on the video display and the monitor program is loaded and

executed. If 15 is 1, then one is added to \. If K is

greater than 9 (i.e. ten lines of output has been

3H

generated), then the program loops to single step execution

program 1. If K is less than or egual to 9, then tas

program loops to single step execution program 2.

Figure 5 shows a flow chart of the single step

execution programs. The nested operation of these programs

takes twenty seconds of real time to execute one step. This

gives the operator plenty of time to anticipate the changes

which each step will aake to the registers. For an

experienced operator, it is far too long to wait for the

next step. For that case using a hardcopy output is

suggested.

6- Disk Storage Mode

To start the disk storage mode program, Appendix ?,

from the monitor program type DSTORE, then press ENTER when

the mode is requested. This program will store a machine

language program on the disk.. Even more generally, it will

store any portion of aemory on any disk., if aore than one

disk is connected to the system.

The operator must provide a starting memory address

in decimal, an ending memory address in decimal, and a

filename. Reference 5 is the source for information on the

optional parameters for filenames. The simplest filename is

a name of no more than eight alpha-numeric characters. The

data is stored under the filename, tnerefore an easily

remembered filename should be used. The program stores tae

data, reminds the operator of the filename in use, and then

loads and executes the monitor program.

35

Ivery 10th SteD

Single Step
Execution Program

9 of 10 Steps

1
Single Step
Execution Program 1

1
Single Step
Lxecution Program 2

1 Byte
Instruction

2 Byte

Eytf

SS EXEC SS EXEC SS EXEC

i_i

SS EXEC
7

Machine Language
Appendix

** Byte

SS EXEC

Figure 5 - SIN3LE STEP EXECUTION FLOW ~3AHT

36

7 • Disk Recall Mode

To start the disk recall mode ..program, Appendix 2,

from the monitor program type DRECALL, then press ENTER when

the mode is reguested. This program will load a machine

language program into namory from a data file do the disk

created by the DSTORE program.

The operator must provide a starting memory address

in decimal, an eading memory address in decimal, and the

filename of the data file used during DSTORE to create the

file. After the machine language program is loaded, the

operator is reminded which memory locations have been

loaded. The monitor program is now loaded and axacuted.

9 • Ta£e Storage, ttoda

To start the tape storage moda program, Appendix 3,

from the monitor program type TSTORE, taen press ENTER when

the mode is reguested. This program will store a machine

language program on the tape recorder.

The operator must provide a starting and ending

memory address in decimal. The tape recorder mast oe en and

set to record. There is no filename for the tapa recorder

storage in this application, so ranember the starting and

ending rape countar. The data is stored on tae rape,

sixteen bytes at a time. After the data is transfered to the

tape, the monitor program is loaded and executed.

9 • Tape Recall Mode

37

To start tha taps recall mode program. Appendix S,

from the monitor program type TRSCALL, then press ENTER when

the mode is requested. This program will load Lata the RAM

memory a machine language program which has been stored on

the tape using TSIORE mode.

The operator must provide a starting and ending

memory address. The program expects the operator to place

the tape recorder in play at about tha starting tape counter

used in the TSTORE mode. After the data is loaded in tha

RAM, the monitor program is loaded and executed.

C. SPECIAL CONSIDERATIONS FOR MACHINE LANGUAGE PROGRAMMING

Most systems, which support machine language

programming, have peculiarities of which a programmer can

take advantage. As presently configurad, this

microprocessor development system has several paculia rties.

There is only 3K of protected RAM for machine language

usage. Ihere is a 1S video RAM which might b2 utilized.

There is an expansion port to which hardware may be added.

There is a memory mapped keyboard which can be used. There

is the possibility of usiag the suoroatines of tha level II

basic ROM as macro instructions.

The 3K of protective RAM, memory addresses 7430 to 7?FF,

is available for nachine Language programs, a stack, and, as

required, for storage of lata. The machine language program

resident in this portion of RAM is not relocatable -o

another section of the RAM. If a larga amount of stack

space is required, a program's integrity may oe in jeopardy.

When the RAM is expanded to 48K, none of the currant

software will support the use of taa additional 32K of RAM.

The PEEK and POKE instructions require a differsnt syntax in

38

the supporting basic programs. The PE2K syntax lq the first

16K of RAM is PEEK (address) . The PEEK syntax for tha RAM in

the expansion intarface, at memory addresses abova 32767, is

PEEK (-1*address-32676) . ro PEEK at address 40000 the

instruction would be PEEK (- 1*7233) . this limitation in the

support software will not prevent tha programmer from using

this additional memory as a stack or data storage by a

machine language program.

There is 1K of video RAM, memory locations 3C30 to 3FFF,

which can be used for several purposes. It is used in the

example labs as a indicator light. By loading 3Fhex into a

video address the video location is waited out. This can

take the place of a single hardware LED. The ASCII

character codes and video codes which are a/ailable are

given in appendix C of Ref. 5. The video HAM aay be used

for the stack if required. Use of tha video HAM is limited

to applications which will not interfere with tie TRS-80's

use of the video RAM. Foe example, the programmer would not

find the video HAM useful for a stack during a single step

execution with output to the video display. However, tae

stack could use the video RAM during single step execution

if output was to the printer. The second example lab does

use the video RAM during a single step execution with output

to the video display.

The use of the expansion port r cailed the scraen printer

port on the expansion interface, will be useful far hardware

projects which would otherwise raquira a dedicated Z-80 CPU".

Figure 22 of Ref. 1 is a detailed description of the

expansion port edge connecter. In ganeral, each line oz

this edge connector wiLL drive only one TIL load.

Therefore, drivers or tri-state buffecs will oe raguired for

an external hardware project. The five volt power supply,

pin 39, has been modified to show a ground.

39

The use of the keyboard and other ROM subroutines will

add a considerable dimension to machine language

programming. At present, Ref. 9 is the sole source for ROM

subroutine memory locations. In tae future, the Naval

Postgraduate School will have a complete listing of ROM

subroutines for the programmer to utilize.

D. USING THE DEVELOPMENT SYSTEM

The learning curve is a substantial barrier to the use

of any new product or de/ice. The same is true for any Z-80

based system or project oc the development systea used to

create the required software. To have a system of basic

language programs which are described as a microprocessor

development aid for the Z-30 is not enough. & developer

must have confidence in the system ani must be neLped to get

past the largest part of the learning curve. Appendices X,

Y, and Z are designed as training sessions to help a new

developer to learn tne system, to develop confidence in the

system's ability to solve his problem, and to start with

small successes on which larger projects can be built.

1. Lab J

Appendix X, lab 1, first contains a very detailed

power up procedure. The system has six power coeds, three

edge connector cables, three connecting cables, and one

RS-232 connecting cable. The sequence of powering up is

important and should be followed eacn time by the operator.

There are many other capabilities of the T3S-60

microcomputer system. The operator should refer to Refs. 5

and 6 when these other capabilities are required.

40

The operator is then lad through a sequence of

operations which will retrieve a machine language program

resident on the mini disk and places it in tne protective

portion of the RAM using the disk recall mode. The contents

of the RAM is verified using the dump mode. This program is

modified by the load mods and executed by the execute mode.

The program uses the video RAM as an output and whitens the

first 256 video RAM locations.

The return at the end of the program which exists

without a call is a signal to the rfiS-30 to exit this

machine language program and return to the basic language

program. All programs written for this system must use an

ending return. This return should be removed when the

program is used in a stand alone Z-80 system.

At the end of lab 1, the operator is expected to

understand the start up procedure, what is done by the

monitor program, and how some of the modes work. He should

examine the machine language program at the end of this lab

to gain an appreciation for what the program is

accomplishing.

2. Lab 2

Lab 2, Appendix 1, builds on the experience of laD

1. A more complicated machine language program is used to

demonstrate the use of the single step execution mode.

There are four levels of calls daring this program . The

video memory location 3?F9 is used as an I2D and follows the

line of registers, which produced it, up the video display

as the video display scroLls. When the machine language

program of lab 2 is single step executed using line printer

output, the video memory location is lit, but not scrolled.

41

The operator is to obtain aa appreciation for the

debugging potential of the single step execution mode of

operation. He should aLso notice the absence of the prise

registers from the single step execution printout. If the

programmer reguires the jse of both sets of Z-33 registers,

then he must change the program for it will not execute

properly using the single step execution mode.

3. Lab 3

Lab 3, Appendix Z, is a structured exaiiple of tae

system* s use. The operator should begin this Lab with %

machine language program to debug. If the operator fails to

write his own program, then a short program can be found at

the end of the lab for this purpose. At the end of this ian

the operator will have operated all of the microprocessor

development system. He has passed the largest portion of

the system's training curve and is ready to use the system

for his own software development.

H2

v - CONCLUSIONS AND BECOMMS MD ATIOMS

What was demonstrated with the preceeding is that aa

inexpensive microcomputer system can be programmed to

perform many of the functions of a dedicated microprocessor

development system costing up to tea times as much. Speed

of operation was sacrificed for the ease of programming.

The use of Radio Shack's disk basic language is more than

adequate to support this Z-80 software development system.

The housekeeping operations, which are common to development

systems, are general enough to support my other

microprocessor development system.

A. FUTURE SOFTWARE

The software future of the TRS-80 microcomputer system

is limited only by the ideas implemented with it. To

support the Z-80 Radio Snack has distributed two software

packages. T-3U3, Ref. 9, is a machine language program that

will load, store on tape, dump, and execute with or without

breakpoints. The TRS-30 Editor/Assemoler , Ref. 10, is a

machine language progria that will edit and assemble

assembly language Z-80 programs. These machine language

programs both take advantage of the basic ROM's subroutines.

A major disadvantage of these programs is that they cannot

be used with the TRS-80 disk basic language. To improve

this Z-80 micr ocompiter development aid, a nasic language

program to relocate the P-BUG and Editor/Assembler machine

language programs to a portion of memory which Ls not used

by disk basic is necessary to allow the use of these

43

programs with disk basic.

A List of basic ROM subroutines which could be used as

macro instructions in other machine language programs would

add a new dimension to programmiag. To ODtain these

subroutines will require a disassembler program and a lot of

bookkeeping.

To expand the TEKrRDNIX 8002 to include additional

microprocessors will cost about two thousand dollars per

additional microprocessor. The software required for the

TRS-80 to support. additional microprocessors will have

little direct cost. To expand the TRS-80 to include

development systems for microprocessors already supported oy

the TEKTRONIX 8002 is not a time affective proposal. Tae

software for the TRS-80 should be expanded to include

INTEL'S 8748 microprocessor family. The 8748 microprocessor

has the greatest potential for class project work. A

development system for this family of microprocessors vill

go a long way to ease the burden of software development for

the 3748.

FUTURE HARDWARE

There are several cost effective aardware adiitions to

the TRS-80 microcomputer which will support a microprocessor

development system. An Laterface betweea the TR5-30 and the

TEKTRONIX 3002 will provide an expanded disk capability, the

sharing of an additional 54K of RAM, and the use of a PROS

programmer. An interface between the TRS-33 and t.ie

prompt-48 will provide additional hardware for a 3743

microprocessor development system. The ase of the

prompt-48's PROM programmer and execution with or without

breaKpoints will relieve some of taa hardware requirements

44

for such a system. kn iaterface between the TRS-30 and the

IBM 360 will add mass storage capability -co any system.

There are several new PROMs and at least one old PROM

which are not supported by the equipment available in the

microcomputer lab. The TRS-80 with its basic; language

capability would be a logical choice of systems to expand to

support these PROMs. A class project could be directed

toward one PROM or a family of PROMs.

45

APPENDIX A

THE PROCEDURE FOR THE CONVERSION TO LEVEL II BASIC PROS

LEVEL I BASIC

1. Open CPU/kayboard cabinet.

2. Remove Level I basic ROM's from sockets Z33 and/or

Z34.

3. Plug in tha 24 pia header of the ROM board to Z33 or

Z34 (Z33 is recommended) .

4. Attach the ROM board to the etched side of the CPU

board

.

5. Replace DIP shut 13 with the new DIP shut.

6. Check the color cole: yellow (A11), red (A12), orange

(A13) , green (ROM*) .

a. Soldec the yellow wire to pin 5 of Z37.

b. Solder the red wire to pia 13 of Z21.

c. Solder the ociage wire to pin 3 of Z21.

d. Solder the graen wire to pin 3 of 13.

7. Close CPU/keyboard cabinst.

46

APPENDIX 3

THE 9748 PROGRAM TO GENERATE A LINE FE2D

MEM LOC HEX CODE MNEMONIC COMMENTS

000 04 JMP Power Op Restart

001 05

002 00 NOP

003 04 JMP

004 28

005 B8 MOV R0,44

006 44

007 B9 MOV 81 , 7F

008 7F

009 3A MOV R2,0D

00A OD

00B BB MOV R3,0A

OOC OA

00D 00 NOP

OOE 00 NOP

OOF 00 NOP

Interrupt Vector

47

MEM LOC HEX CODE MNEIONIC COMMENTS

010 23 MOV A, 1

01 1 01

012 3A OUTL P2,

013 00 NOP

014 23 MOV A,FF

015 FF

016 39 OUTL P1 ,

OUTL P2,A Hi-Z 3ii OS (not) from 8748

OUTL P1,A Enables P1 for OR's and

AND 1 s (not necessary in this

Application)

017 00 NOP

018 81

019 00

01A 75

MOVX A,R1 Places BUS in Hi-Z State

NOP

ENT3 CLK Makes TO a cloclc at 1/3

The 8748 Cloclc

01B 05 EN I

01C 00 NOP

01D 00 NOP

01E 00 NOP

01F 00 NOP

Enable Interrupt

MEM LOC HEX CODE MNEMONIC COMMENTS

020 00 NOP

021 F8 MOV A,R0

48

022 39 OUTL P1,A EnaDla 3212 and EiaDle

IRS-30

023

024

025

026

027

028

029

02A

02B

2C

2D

02E

02F

04

20

00

00

00

23

66

39

08

59

DA

00

00

JMP Loop to 020 Until

Interrupted

NOP

NOP

NOP

MOV k,S6 An Interrupt has Occurred

OUTL P1,A Stop TRS-80

INS &,BUS Input Last Character

ANL &,R1 Insure Character is 7 Bits

X3L k,R2 Cheoc Last Character

for Carriage Return

NOP

NOP

MEM LOC HEX CODS MNEMONIC COMMENTS

030

031

032

033

96

41

00

86

JNZ

NOP

JNI

If No Carriage Rsturn Start

End Interrupt Sequence

Loop to 032 Until E0C=1

49

From UART

034 32

035 00 NOP

036 23 MOV A, 33

037 33

038 39 OUTL P1,

039 FB MOV A,R3

03A 02 OUTL BUS

032

03F

23

11

OUTL BUS, A Place OA on BUS tor

A Line Feed

03B 23 MOV &,0

03C 00

03D 3A OUTL P2 fOUTL P2 f A P2 is Low to Start

The Strobe to UART

MOV A, 1

1

MEM LOC HEX CODE MNEMONIC COMMENTS

040 3A

041 81

042 00

043 86

044 42

045 00

046 46

OUTL P2 f A End of Strobe to JAR'

MOVX A,R1 Place BUS in Hi-Z State

NOP

JNI

NOP

JT1

Loop to 042 Until E0C=1

Jump to 34 A if hen Printer

50

047

048

049

04A

4A

04

45

93

Is Ready

J MP LoDpto045 Bntil Printer

Is Ready

SETS Return from Interrupt

51

APPENDIX C

MONITOR PROORAM

500 ' MONITOR: A Z-80 MICROPROCESSOR DEVELOPMENT AID FOR

DISK BASIC ON THE TRS-30 31 DP CORTEVILLE APR 79

501 DEFSTR A-B

502 PRINT "MONITOR PROGRAM"

504 PRINT "A Z-30 MICROPROCESSOR DEVELOPMENT AID"

506 INPUT "SHORT OR LONG EXPLANATION? INPUT S OR L";A

508 IF A="S" PRINT " DUMP , LOAD , EXEC , 5S EXEC

,

TSIORE , TR ECALL,

DSTORE, D RECALL, END, L"

510 IF A="S" INPUT "MODE";

3

512 IF A="S" GOTO 534

514 PRINT "INPUT: DUMP, TO EXAMINE MEMORY LOCATIONS"

516 PRINT "INPUT: LOAD, 10 ENTER PROGRAM INTO MEMORY"

518 PRINT "INPUT: EXEC, TO RUN A PROGRAM"

520 PRINT "INPUT: SS EXEC, TO SINGLE STEP THROU3H A PROGRAM"

522 PRINT "INPUT: DSTORE, TO STORE A PROGRAM ON I3S DISK"

524 PRINT "INPUT: DRECALL, TO RETRIEVE A PROGRAM STORED ON

THE DISK"

526 PRINT "INPUT: TSTORE, TO STORE A PROGRAM DM THE TAPE

RECORDER"

523 PRINT "INPUT: TRECALL, TO RETRIEVE A PROGRAM STORED ON

52

THE TAPE RECORDED"

530 PRINT "INPUT: END, TO EXIT THIS DEVELOPMENT AID"

532 INPUT B

534 IF B = "DUJ1P" RUN "DUMP/B AS. DFC: 0"

536 IF B=

538 IF B=

540 IF B=

542 IF B=

544 IF B=

546 IF B=

548 IF 3=

550 IF B=

552 IF B="END" END

LOAD" RUN "LOAD/BAS.DFC:0"

EXEC" RUN "EXEC/BAS.DFC:0"

SS EXEC" RUN "55EXEC/3AS.DFC:0"

DSTORE" RUN "DSIOR E/3AS. DFC :
"

DRECALL" RUN "DR EC ALL/3AS . DFC :
"

TSTORE" RUN "TS TORE/B AS. DEC: "

TRECALL" RUN "T REC ALL/3AS. DFC :0"

L" GOTO 514

554 A="S":GOTO 503

53

APPENDIX D

DUMP PROGRAM

5 'DUMP: A PART OF A Z-83 MICROPROCESSOR DEVELOPMENT AID FOR

DISK BASIC ON THE TRS-80 BT DF CORTEVILLE APR 79

10 CLEAR 300:DEFSTR A-B:DEFINT I -N

15 PRINT "DUMP MODE"

20 INPUT "INPUT STARTING MEMORY LOCATION IN DECIMAL"; N1

25 INPUT "INPUT NUMBER OF MEMORY LOCATION IN DECIMAL" ;N2

30 PRINT "IS OUTPUT 7IDE0 OR FOR THE LINE PRINTER?"

35 INPUT "INPUT V OR LP";

&

40 N3=N1

44 B1 = STR$(N1)

45 N=N1:0=4:G0SUB 100:31=81+" "+B

50 FOR K=1 TO 16

55 N=PEEK (N1) :0 = 2:GOSUB 100 : B1=B1+" " + B:N1 = N1+1

65 NEXT K

70 IF A="V" PRINT B1

75 IF A="LP" LPRINT B1

80 IF NKN3+N2 GOTO 44

85 INPUT"CONTINUE DUMPING (YES OR ND)";3

90 IF B="YES" THEN 20 ELSE RUN "MONII3 E/BA5 . DFC: 3

"

54

APPENDIX S

LOAD PROGRAM

5 'LOAD: A PART OF A Z-80 MICROPROCESSOR DEVELOPMENT AID FOR

DISK BASIC ON THE TRS-80 3Y DF CORTE7ILLE APR 79

6 GOTO 3 00

300 DEFINT I-0:DEFSTR A-B

305 PRINT "LOAD MODE"

310 INPUT "INPUT STARTING MEMORY LOCATION IN DECIMAL"; N1

315 PRINT "OUTPUT IS VIDEO - USE QUIT TO STOP LOADING"

320 N=N1 :O=4:G0SUB 100:B1=B

325 N=PEEK(N1) :0=2:GOSUB 100:B2=B

330 B3=B1+" "+B2;PRINT B3:INPUT B

335 IF 3="QUIT" GOTO 3 50

336 IF B="" GOTO 345

340 GOSUB 200:POKE N1,N

345 N1=N1+1:GOTO 320

350 RUN "MONITOR/3AS. DFC:3"

55

APPENDIX F

EXECUTION PROGRAM

6 GOTO 600

600 'EXECUTION: A PART OF A Z-80 MICROPROCESSOR DEVELOPMENT

AID FOR DISK BASIC ON THE TRS-80 BY DF CCRTEVILLS APR 79

605 DEFSTR A-B:DEFINT 1-0

610 PRINT "EXECUTION MODE"

615 INPUT "INPUT STARTING MEMORY LOCATION IN DECIMAL"; N1

620 N=N1:0=4;G0SUB 100:PRINT "EXECUTION BEGINS AI ",3

625 DEFUSR0=N1

630 PRINT USRO(O)' " END EXECUTION"

635 INPUT "CONTINUE EXECUTION MODE (YES OR NO) " ;

3

640 IF B="YES" THEN 61

645 RUN "MONITOR/BAS. DFC:D"

56

APPENDIX G

SINGLE STEP EXECUTION PROGRAM

1300 'SS EXEC: A PART OF A Z-80 MICROPROCESSOR DEVELOPMENT

AID FOR DISK BASI3 ON THE IRS-30 BY DF CORTEVILLS APR 79

1305 DEFINT I-N:DIM I(19}:DEFSIR A-B

1310 1(0)= HED: 1(1)= H73: I (2) = HCO : I (3) = H73: 1(4) =

1(5)= HC2: 1(6)= H73: I (7) = HC1: I (3) = HD1: 1(9) =

1(10) = BET: 1(11)= HDD: 1(12)= HE1 : 1(13) = HFD: 1(14) =

1(15)= HED: 1(16)= H7B: 1(17)= HCE: 1(18)= H73:N =

1315 FOR N2=29653 TO 29671

1320 POKE N2,I(N) : N=N+1

1325 NEXT N2

1330 1(2)= HCE: I (5) = HCE: I (7) = HFD: I (8) = HE5: 1(9) =

1(10)= HE5: 1(11) = HF5: 1(12)= HE5: 1(13) = HD5: I(1<*) =

1(17)= HCO: 1(19)= HC9: * =

1335 FOR N2=29676 TO 29695

1340 POKE N2,I(N) : N=N+1

1345 NEXT N2

1350 PRINT "IS DUIPUT FOR VIDEO OR LINE PRINTER"

1355 INPUT "INPUT V OR LP"; A

1360 IF A="V" POKE 29648,0

1365 IF A="LP" POKE 29648,1

H3 1

HE1

HE1

HDD

HC5

57

1370 INPUT "STARTING MEMORY LOCATION IN DECIMAL"; 8

1375 N1=N/256:N=N-N1*256

1380 POKE 29650, N:POKE 29651, N1 :POKE 29652,127

1385 RUN "SSEXEC1/3AS. DFC:0"

58

APPENDIX H

SINGLE STEP EXECUTION PROGRAM 1

1 'SSEXEC1/BAS.DFC:0

1400 DEFSTR A-B:DSFINT 1-3

1405 POKE 29649,0

1410 K1=(PEEK(H73D0) AND H01)

1415 A="PC SP IX IT'

1420 IF K1=0 PRINT A

1425 IF K1=1 LPRINT A

1430 RUN "SSSXEC2/BAS.DFC:0"

59

APPENDIX I

SINGLE STEP EXECUTION PROGRAM 2

1 'SSEXEC2/BAS.DFC:0

2 DEFSTR A-B:DEFINT I-Q

6 FOR K1= 29672 TO 29675

7 POKE K1,0

8 NEXT K1

9 N1 = 256*PSEK(29651) +PE£K(29650) :GOTO 27

27 M=PEEK (N1) :N=M/16 :GOS(JB 10:31=B

28 N=H-N*16:GOSOB 10:B2=B

29 IF (31="4" OR 31="5" OR 31="S" OR 31="7" 03 31="S" OR

B1="9" OR 31=" A" OR B1="B") GOTO 70

30 IF B2 = "6" OR 32="E" GOTO 71

31 IF B2="1" AND 31=0" GOTO 72

32 IF B1="0" GOTO 70

33 IF B1="1" AND B2="0* , 30TO 71

34 IF B1="1" AND B2="1" GOTO 72

35 IF 31="1" AND B2="8" GOTO 71

36 IF B1="1" GOTO 70

37 IF B1="2" AND (B2="1" OR B2="2") 00TO 72

38 IF B2="2" GOTO 72

60

39 IF B1="2" AND B2="8" 33TO 71

40 IF B2="A" GOTO 72

41 IF B1="2" AND B2="0" SOTO 71

42 IF B1="2" GOTO 70

43 IF B1="3" AND B2="0" 3310 71

44 IF B1="3 M AND B2="1" SOTO 72

45 IF B1="3" AND 82="8 M SOTO 71

46 IF B1="3" GOTO 70

47 IF B2="4" OR B2=' , C" GDTD 72

48 IF B1="C" AND B2="3" 3DTO 72

49 IF B1="C" AND B2 = ,, B" SOTO 71

50 IF B1="C" AND B2 = »'D" 3DT0 72

51 IF B1="D" AND B2="3" GOTO 71

52 IF B1="D" AND B2="B" GOTO 71

53 IF B2="D" THEN 54 ELSE 70

54 M=PEEK(N1+1) : N-M/16;G05aB 10:B3=8

55 N=U*16:GOSaB 10:34=3

56 IF B1="D" GOTO 59

57 IF B1="E" GOTO 66

58 IF 31="F" THEN 59 ELSE STOP

59 IF B3 = ,,C" OR 34= ,, A , » GOTO 73

60 IF (B3="2" AND (B4= rt 1» OR B4 = "2")) GOTO 73

62 IF B3 = "3" AND B4 = '•6«, 30TO 73

63 IF B3="E" OR B4="9" GOTO 71

61

64 IF B3="2 M AND B4="3" 3DT0 71

65 IF B3="2" AND B4="3" SOTO 72

66 IF B3 = "A" OR B3 = "3" GOTO 71

68 IF B4="B" GOTO 73

69 IF B4="3" THEN 73 ELSE 71

70 RUN "SSEXEC3/BAS.DFC:0"

71 RUN "SSEX2C4/BAS. DFC:3"

72 RUN "SSEXEC5/BAS. DFCzD"

73 RUN "SSEXECe/BAS.DFCcO"

62

APPENDIX J

SINGLE STEP EXECUTION PROGRAM 3

1 'SSEXEC3/3AS.DF3:0

2 DEFSTR A-B:DEFINT I-Q

3 M4 =PEEK (29652) :GOSUB 33:POKE 29652,84

4 N3=PEEK (29648) AND 1

5 I? M5=2 N3 = N3 OR 8

6 IF H6=2 N3=N3 OR 16

7 IF 116 = 3 N3=N3 OR 32

8 POKE 29648, N3

9 RUN "SSEXEC7/BAS .DFC:0"

30 N1=256*PEEK (29551) +PEEK (29650) : M = PEEK(N1): N = .1/15: GOSJ3

10: B1=B: N=M-N*16: GOSUB 10: 32 = B: N= PEEK (29640)

31 IF B1="E" AND 82="9" 3DTO 45

32 IF B1="C" AND B2="9" GOTO 46

33 IF B2<> ,, 7" OR BK>"F" SOTO 36

34 IF R1»"C" OR B1="D" OR B1="S" OR 31="F" GOTO 49

36 IF BI^'C" AND B2="0" SOTO 51

37 IF 31^'D" AND B2="0" GOTO 52

38 IF B1="E" AND B2="0" SOTO 53

39 IF B1='«F" AND B2="0" GOTO 54

63

40 IF B1="C M AND 32="8" 33TO 55

41 IF B1="D" AND B2="8" SOTO 56

42 IF B1="E" AND 32="8" 33T0 57

43 IF B1="F" AND B2="8" 3310 58

44 115=1: «6=3:RETURN

45 815=1: 616=1: P0K2 29672, PEEK (29639) : POK2

29673, PEEK(29638) : RETURN

46 M4=M4+1:IF M4>127 THE* 47 ELSE 48

47 115=2: M6=1 :RETURN

48 115 = 1: H6*1: »=256*PEEK (29647) + PEEK (29546) : POKE

29672, PEEK (M+1) : POKE 29 673 , PEEK (M) : POKE 29674,51: POKE

29675,51: RETURN

49 PRINT "YOU HAVE USED A RST ??? EMULATED WITH A S3P"

50 U5=1:tt6=2:RETURN

51 IF (N AND 64) =64 THES 50 ELSE 46

52 IF (N AND 1)=1 THEN 50 ELSE 46

53 IF (N AND 4) =4 THEN 53 ELSE 46

54 IF (N AND 128) =128 THEN 50 ELSE 46

55 IF (N AND 64) =0 THEN 50 ELSE 46

56 IF (N AND 1) =0 THEN 50 ELSE 46

57 IF (N AND 4) =0 THEN 50 ELSE 46

58 IF (N AND 128) =0 THEN 50 ELSE 46

64

APPENDIX K

SINGLE STEP EXECUTION PROGRAM 4

1 'SSEXEC4/BAS.DFC:0

2 DEFSTR A-B:D2FINT I-Q

3 tf4=PEEK (29652) :30SUB 30:POKE 29652,14

4 N3= (PEEK(29648) AND 1) DR 2

5 IF H5=2:N3=N3 OR 8

6 IF M6=2:N3=N3 OR 16

7 IF M6=3:N3=N3 OR 32

8 POKE 29648, N3

9 RUN "SSEXEC7/BAS.DFC:0'»

30 N1=256*PE£K (29651) +PEEK (29650) : K = PEEK(N1): N=.1/16: GCSU3

10: B1=B: N=M-N*16: GOSUB 10: B2=B

31 H=PEEK(H1+1) : N=M/16 :G05UB 10 : B3 = 3: N=M-N* 1 6 : 335U3 10:34=3

32 A1 = "Y0U ARE USING " :A2=" THIS WILL BE EXECUTED UNTIL

":=PEEK(29640)

33 IF B1="1" AND B2= ,f 3" 33T3 53

34 IF B1="3" AND B2="3" UOTO 56

35 IF 31="3" AND 32="0" 30TO 57

36 IF 31="2" AND B2="8" 3310 53

37 IF B1="2" aND B2="0" 33T0 59

65

38 IF B1="D" AND 82="D" AND B3="E M AND 34="9" 30TD 50

39 IF B1="F" AND B2="D" AND B3 = "E AND B4="9" GOTO 51

40 IF B1="1" AND B2="0" GOTO 52

41 IF B1="E" AND B2="D" TiEN 42 ELSE 75

42 IF B3="4" AND B2="D" 3DTO 55

43 IF B3="4» AND B2="5" G3IO 66

44 IF B3<>"B" GOTO 75

45 IF 34 = ,l 0" GOTO 67

46 IF B4="8" GOTO 68

47 IF B4="1" GOTO 69

48 IF B4="9" GOTO 70

49 IF B4= M 2" GOTO 71

50 IF B4="A" GOTO 72

51 IF 34 = ,, 3" GOTO 73

52 IF B4 = "B ,t THEN 74 ELSE 75

53 IF PEEK(N1 + 1) >127 GOTO 55

54 N1=N1+PEEK(N1 + 1) +2: N=N1 /2 56: POKE 29672, N: N=N 1 - N*256: POKE

29673 r N; H5=1 : 116=1: RET'JBN

55 N=256-PEEK(NH-1) :

N

1=N1-N+2 : H 5= 1 : S6=1 : N=N 1 /25 6 : POKE

29672, N: N = N 1-N*256: POKE 29673, N: RETURN

56 IF (I AND 1) =0 THEN 76 ELSE 53

57 IF (I AND 1) =1 THEN 75 ELSE 53

58 IF (I AND 64) =0 THEN 75 ELSE 53

59 IF (I AND 64) =64 THEN 75 ELSE 53

60 115 = 1: S6=1: POKE 29672, ?SSK (29543) : POKE

66

29673, PEEK(29642) : RETURN

60 B5=1: M6=1: POKE

29673, P£EK(296424: RETURN

29672, PEEK (296'45) : POKE

62 IF (PEEK(29635) -1) =0 T3EN 63 ELSE 54

63 POKE 29674, 5:M5=1 :M6=2: RETURN

64 POKE 29674, 5:IF (PEEK(NI-M) AND 1 23) =128 THEN 55 ELSE 54

65 PRINT A1,"A RETI ??? EMULATED WITH NOP": GOTO 76

66 PRINT A1," A RSTN ??? EMULATED HUH NOP": GOTO 76

67 PRINT A1," LDIR ",A2,

68 PRINT A1," LDDR ",A2,

69 PRINT A1 ," CPIR " ,12,

70 PRINT A1," CPDR ",A2,

71 PRINT A1," INIR ",A2,

72 PRINT A1," INDR ",A2,

73 PRINT A1 ," OTIR ",A2,

BC=0": GOTO 7 5

BC=0":GOT0 75

BC=0":GOTD 75

BC=0":GOTO 75

B=0":GOTO 75

B=0":GOTD 75

B=0":GOTO 75

74 PRINT A1," OTDR ",A2," 3=0":GOTO 75

75 M5=1;M6=3:RETURN

76 M5=1;M6=2:RETURN

67

APPENDIX L

SINGLE STEP EXECUTION PROGRAtt 5

1 • SSEXEC5/BAS.DFC:0

2 DEFSTR A-B:DEFINT I-Q

3 M4=PEEK (29652) : GOSUB 30:POKE 29652,114

4 N3=(PEEK(29648) AND 1) OR 4

5 IF M5=2 N3=N3 OR 8

6 IF M6=2 N3=N3 OR 16

7 IF M6=3 N3 = N3 OR 32

8 POKE 29648, N3

9 RUN "SSEXEC7/BA5.DFC:0 ,,

30 N1=256*PEEK (29651) +PEEK (29650) : H=P3EK(N1)

10: B1=B: N=H-N*16: GOSUB 10: 32=B

31 I=PEEK (29640)

32 IF B2="3" GOTO 50

N=3/16: G0SJ3

33 IF B1="C

34 IF 31^'C

35 IF 31 ^'D 1

36 IF B1="S'

37 IF 31="F'

AND B2="

AND B2 = »

AND B2="

AND 32 = '»

AND 32 = "

iMn R? = »

D" 3010 51

2" 3DTO 52

2" 30T0 53

2" GOTO 54

2" GOTO 55

38 IF BI^'C" AND B2="A" 3010 56

68

39 IF B1 =

40 IF 31 =

41 IF B1 =

42 IF B1=

43 IF B1=

44 IF B1 =

45 IF B1 =

46 IF B1=

47 IF B1=

48 IF B1 =

i pi

ir-M

mi

i pi

IDI

tri

ipi

AND B2=''A"

AND B2=»•A"

AND B2 = »•A"

AND B2=»'4"

AND B2 = »'4"

AND B2=«•4"

AND B2 = «•4"

AND B2 = « iC ii

AND B2=»•C '•

AND

am n

B2='»C"

5310 57

30T0 53

GOTO 59

33T0 60

33T0 61

33T0 62

33TO 63

3310 64

33T0 65

33T0 66

49 IF B1="F" AND B2="C" THEN 67 ELSE 70

50 M5=1: M6=1: POKE 29672 , PEEK (N 1 + 2) : POKE 29673 , PEEK (N1 + 1

RETURN

51 M4=M4-1: N=«H-3: a=N/256:

M1=25 6*PEEK (2964 7) +PEEK (2 9 64 6) : POKE 81-1,3:

POKE 29674,59: POKE 29675,59: GOTO 50

52 IF (I AND 64) =64 IHEN 71 ELSE 50

53 IF (I AND 1) =1 THEN 71 ELSE 50

54 IF (I AND 4) =4 THEN 71 ELSE 50

55 IF (I AND 128) =129 THEN 71 ELSE 53

56 IF (I AND 64) =0 THEN 71 ELSE 50

57 IF (I AND 1) =0 THEN 71 ELSE 50

58 IF (I AND 4) =0 THEN 71 ELSE 50

59 IF (I AND 123) =0 IHEN 71 ELSE 53

60 IF (I AND 64) =64 THE* 71 ELSE 51

N = N-M*255.

P3SS M1-2,N

69

61 IF (I AND 1)=1 THEM 71 ELSE 51

62 IF (I AND 4
}
-% THEN 71 ELSE 51

63 IF (I AND 128) =128 THEN 71 ELSE 51

64 IF (I AND 64) =0 THEN 71 ELSE 51

65 IF (I AND 1) =0 THEN 71 ELSE 51

66 IF (I AND 4 | =0 THEN 71 ELSE 51

67 IF (I AND 128) =0 THEN 71 ELSE 51

70 M5=1:H6=3:RET08N

71 H5=TlH6=2: RETURN

70

APPENDIX a

SINGLE STEP EXECUTION PORGRA21 5

1 SSEXEC6/BAS.DFC:0

2 DEFINT N

3 N3=((PEEK (29648) AND 1) OR 6) OR 32

4 POKE 29648, N3

5 RUN "SSEXEC7/BA5 .D?C:0 ,,

71

APPENDIX N

SINGLE SIEP EXECUTION PROGRAM 7

1 »S3EXSC7/BAS.DFC:0

2 CLEAR 300:DEFINT I-Q:DEF5TR A-B:DIH 1(16)

4 K=PEEK (29649)

5 LP =PEEK (29648) AND 1

6 N3=256*PEEK(2965T) +PEEK(29650)

8 IF PEEK (29672) <>0 THEN N 1 = 256*PEEK (29672) + PEEK (29673

ELSE N1=N3

10 I=PEEK(29648)

l * if c i and a ># s then ms*2 else m5 #*

16 IF (I AND 48) =0 THEN 15=1

18 IF (I AND 48) =16 THEN 16=2

20 IF (I AND 48) =32 THEN .16 = 3

22 IF (I AND 6) =0 THEN N2=1

24 IF (I AND 6) =2 THEN N2=2

26 IF (I AND 6) =4 THEN N2=3

28 IF (I AND 6) =6 THEN N2=4

30 POKE 29672, 0:POKE 29673,0

32 ON M6 GOTO 41,40,34

34 FOR K1=29672 10 29671+N2

72

36 POKE K1,PEEK (N1) : N1=N1 +1

38 NEXT K1

40 N1=N3+N2

41 N=N1/256: POKE 29651, N: N=N1-N*256: POKE 29653, N

42 DEFUSRO=29653:X =USR0p)

44 N=N3:0=4:GOSUB 100:A(15)=B

46 FOR K1=0 TO 13

48 N=PEEK(29634+K1) :0=2:30SUB 1 00: A (K1 +2) =8

50 NEXT K1

52 FOE K 1=0 TO 13

54 A(K1) = A(K1+2)

56 NEXT K1

58 A (13) =A(13) +A (12) :A (9| = A (9) +A(8) : A(11) =A (11) *A(10)

60 B=A(16)+" " + A(5)+" "+A(7)+" "+A(1)+" "+A(0)+" " + A(3)+"

"+A(2)+" " + A(5)+" "A^)*'' "+A (1 3) +" "A(9)+" " + A(11)

62 IP LP=0 PRINT B

64 IE LP=1 LPRINT B

66 IF a5v2 GOTO 70

68 K=K+1: POKE 29649 r K: IF K>9 THEN RUN "SSSXEC1 /BAS . DFC: 0"

ELSE RUN "SSEXEC2/BAS. DFC:0"

70 PRINT "END OF EXECUTION"

72 RUN "MONITOR/BAS. DFC: J"

73

APPENDIX 3

SINGLE STEP EXECUTION MACHINE LANGUAGE PROGRAM

LOC LOC

DEC HEX

29653 73D5

HEX CODE

ED73C073

MNEMONIC Comments

LD(nn),SP Save the basic

language sp

29657 73D9 313273 LD SP,nn Set stack

pointer

29660 73DC C1 POP BC

29661 73DD D1 POP DE

29662 73DE E1 POP HL

29663 73DF F1 POP A?

29664 73E0 DDE1 POP IX

29666 73E2 FDE1 POP II

29668 73E4

73E8

73E9

73EA

73EB

ED7BCE73 LD SP (an)

29676 73EC ED73CE73 LD (nn) , SP

7U

LOC LOC HEiC CODE MNEMONIC Comments

DEC HEX

29680 73F0 31CE73 LD SP,nn

29683 73F3 FDE5 PUSH II

29635 73F5 DDES PUSH IX

29687 73F7 F5 PUSH AF

29688 73F8 E5 POSH HL

29689 73F9 D5 P rJSH DE

29690 73*? A C5 PU3H 3C

2969 1 73FB ED7BC073 LD SP (nn)

29695 73FF C9 RET

75

APPENDIX P

OSTORE PROGRAM

700 'DSTORE: A PART OF A 2-80 MICROPROCESSOR DEVELOPMENT AID

FOR DISK BASIC ON THE TR5-80 BY DF CORIEVILLE APR 79

701 DEFSTR A-B:DEFINT 1-0

705 PRINT "DSTORE MODE - TO STORE A PBOGRAM ON THE DISK"

710 INPUT "STARTING MEMORY LOCATION IN DECIMAL" ; S

1

715 INPUT "ENDING MEMORY LOCATION IN DECIMAL"; M2

720 INPUT "INPUT FILENAME {NO MORE THAN 3 ALPHA-NUMERIC

CHARACTERS AND ANY OPTIONAL PAR AMETERS) " ;

A

725 OPEN "0",1,A

730 FOR N=N1 TO N2

735 PRINT#1,PEEK(N)

740 NEXT N

745 CLOSE 1

750 PRINT "PROGRAM DATA IS STORED IN ",A," NOTE THAI"

755 RUN "MONITOfi/BAS.DFC:0"

75

APPENDIX a

DRECALL PROGRAM

800 'DRECALL; A PART OF A Z-80 MICROPROCESSOR DEVELOPMENT

AID FOR DISK BASH ON THE TRS-80 BY DF CORTEVILLE APR 79

805 DEFSTR A-B:DEFINT N

810 PRINT "DRECALL MODE - TO RECALL A PROGRAM FROM THE DISK"

815 INPUT "STARTING MEMORY LOCATION IN DECIMAL" ;N1

820 INPUT "ENDING MEMORY LOCATION IN DECIMAL" ;N2

825 INPUT "FILENAME AS U5ED DURING DSTORE";A

830 OPEN "I",1,A

835 FOR N=N1 TO N2

840 INPUT#1,N3

845 POKE N r N3

850 NEXT N

855 CLOSE 1

860 PRINT "THE PROGRAM HAS BEEN LOADED INTO MEMORY LOCATIONS

",N1," TO ",N2

865 RUN "MONITOR/BAS. DFC:0"

77

APPENDIX R

TSTORE PROGRAM

700' TSTORE: A PART OP A 2-80 MICROPROCESSOR DEVELOPMENT AID

FOR DISK BASIC ON THE TRS-80 BY DF CORTEVILLE APR 79

710 DEFSTR A-B:DEFINT I-N:DIM 1(15)

720 PRINT "TSTORE MODE TD STORE A PROGRAM ON TAPS RECORDER

#1"

730 INPUT "STARTING MEMORY LOCATION IN DECIMAL"; N1

740 INPUT "ENDING MEMORY LOCATION IN DECIMAL";N2

745 PRINT "NOTE STARTING TAPE COUNTER AND TURN ON THE

RECORDER TO RECORD"

750 FOR J=0 TO 15

755 I(J) = PEEK(N1) : N1=NH-1

760 NEXT J

765 PRINTt- 1,1(0) rI(1) ,r(2),I(3),I(4),I(5) ,1(6) ,1(7) ,1 (3) ,

1(9) ,1(10) ,1(11) ,1(12) ,1(13) ,1(14) ,1(15)

770 IF NKN2 GOTO 750

775 PRINT "NOTE ENDING TAPE COUNTER"

780 INPUT "CONTINUE TSTORE MODE (YES OR NO)";3

785 IF B="YES" THEN 720 ELSE RUN "MONI TOR/BA5. DFO :
"

78

APPENDIX S

TRECALL PROGRAM

800 'TRECALL: A PART OF A Z-80 MICROPROCESSOR DEVELOPMENT

AID FOR DISK BASIC ON THE TRS-80 BY DF CORTEVILLE APR 79

805 DEFSTR A-B:DEFINI I-N:DIM 1(15)

810 PRINT "TRECALL MODE TD RECALL A PROGRAM FROM THE TAPE

RECORDER"

815 INPUT "STARTING MEMORY LOCATION IN DECINAL";N1

820 INPUT "ENDING MEMORY LOCATION IN DECIMAL";N2

825 PRINT "TURN ON THE TAPE RECORDER (PLAY) AT IHESTARTING

COUNTER"

830 INPUT "WHEN TAPE IS READY PRESS ENTER";

A

850 INPUT*- 1,1(0) ,1(1) ,1(2) ,1 (3) ,1 (4) ,1 (5) ,1(6) ,1(7) ,1 (8) ,

1(9) ,1(10) ,1(11) ,1(12) ,1(13) ,1(14) ,1(15)

855 FOR J=0 TO 15

860 IF N 1>N2 GOTO 870

865 POKE N1,I (J) :N1 = N1 *1

370 NEXT J

875 IF N1>N2 THEN 850 ELSE RUN "MONIT0R/3AS . DFC: "

79

APPENDIX r

SUBROUTINE 10 DECIMAL 10 3EX CONVERSION

10 IF N = B="0'

11 IF N=1 B=

12 IF N=2 B =

13 IF N = 3 B=

14 IF N=4 B=

15 IF N= 5 B=

16 IF N=6 B=

17 IF N=7 B=

18 IF N=8 3=

19 IF N=9 B="9

• ?«

»^»

•4

6'

•a

20 IF N=10 B="A"

21 IF N=11 B="B"

22 IF N=12 B = '»C"

23 IF N=13 B="D"

24 IF N=14 B="E"

25 IF N=15 B = "F M

26 RETURN

80

appendix a

SUBROUTINE 100 DECIMAL TO HEX CONVERSION

110 i!l=16:M1=256:M2=4Q96:IF 0=4 GOTO 115

105 IF = 2 GOTO 120

115 I (0) =N/M2:N=N-I (0)*H2:I(1)=S/511:N = N-I(1)*M1:I (2)=M/H

1(3) = N-I (2) *M:GOTO 130

120 I (0) =N/W:I (1) =N-I (0) *M

130 FOR J=0 TO 0-1

140 IF I (J

141 IF I (J

142 IF I (J

143 IF I (J

144 IF I (J

145 IF I (J

146 IF I (J

147 IF I (J

148 IF I (J

149 IF I (J

150 IF I (J

151 IF I (J

152 IF I (J

= A (J) ="0'

= 1 A(J) ="1»

= 2 A(J) ="2'

= 3 A (J) ="3'

= 4 A (J) ="4'

= 5 A(J) ="5'

= 6 A(J) ="6«

= 7 A (J) ="7'

= 3 A (J) ="8«

= 9 A (J) ="9'

= 10 A(J)="A"

= 11 A(J)="B"

= 12 A(J)= ,, C'»

81

153 IF I (J) =13 A (J)="D"

154 IF I (J) =14 A(J) = "E"

155 IF I (J) =15 A (J) = "F"

156 NEXT

170 IF = 2 THEN B=A(0)+A(1)

180 IF 0=4 THEN B=A (0) *A (1) +A (2) +A (3)

190 RETURN

82

APPENDIX V

SOBROOriNE 200 HEX TO DECIMAL CONVERSION

22 A(0) =LEFT$ (B r 1) Ik (1) =»ID$ (B r 2, 1) :33=16

210 FOR J=0 TO 1

220 IF A (J

221 IF A (J

222 IF A (J

223 IF A (J

224 IF A (J

225 IF A (J

226 IF A (J

227 IF A (J

228 IF A (J

228 IF A (J

229 IF A (J

230 IF A (J

231 IF A (J

232 IF A (J

233 IF A (J

234 IF A (J

= ••0" I (J

="1» I(J

= "2" I (J

="3" I(J

= "4» I (J

="5" I(J

= "6» I (J

= ««7" I(J

= ••8" I(J

="8" I(J

="9" I (J

= "A" I(J

= "B" I (J

="C" I (J

= "D'» I (J

= "E" I(J

=

= 1

= 2

= 3

= 4

= 5

=6

=7

= 8

= 8

=9

= 10

= 1 1

= 12

= 13

= 14

33

235 IF A (J) ="F" I (J) =15

236 IF k (J) =" " I (J) =0

240 NEXT

250 N=M3*I(0) +1(1)

260 RETURN

84

DEC

APPENDIX W

SINGLE STEP EXECUTION MEMORY MAP

HEX Contents

29632 73C0 Basic language stack pointer

29634 73C2

29635 7333

29636 73C4

29637 73C5

29638 73C6

29639 7337

29640 73C8

29642 73CA

29644 733C

29646 73CE

29648 73D0

C register

B register

E register

D register

L register

H register

F register

29641 73C9 A register

IX register

II register

Stack pointer

DO is LP

D1 and D2 are N2

D3 is M5

D4 and D5 are MS

29649 73D1 K

35

DEC HEX Coitants

29650 73D2 N1 (PClow)

29651 73D3 N1 (PChigh)

29652 73D4 M

29653 73D5 Machine language program

to to

29671 73E7 Appendix 3

29672 73E8 Four bytes for

to to

29675 73EB Execrated step

29676 73EC Machine language program

to to

29695 73FF Appendix 3

86

APPENDIX X

LAB 1

1. Place a chair in front of the IRS-80.

2. Check six 60hz AC power cords (two from the expansion

interface, one from video display, one fcsm the tape

recorder, one from the mini disk drive, and one from

the line printer interface)

.

3. Check that the video display is connected to the micro

computer system (keyboard) in the plug narked video

(center plug) .

4. Check that the tape recorder plug is connected to the

keyboard at the plug marked tape; and to the tape

recorder as follows: black to EAR, large gray to AUX,

and small gray to RE33TE.

5. Check that the keyboard is connected to tha expansion

interface with a forty pin edge connector and a power

cord -co tha plug marked power on the keyboard.

6. Check that the line printer interface is connected to

the expansion interface with a forty pin edge

connector.

7. Check that the mini disk drive is connected to the

expansion interface.

8. Place the line printer interface on/off switch -co Da

then press the reset push button. (note: If the line

printer interface is off, then the mini disk drive and

expansion interface will not work.)

87

9. Turn on the video display. Prass the power switch in.

10. Place the operating system mini disk, a Z-30

microprocessor development aid, in the mini iisk drive.

The catalog number should be showing on the bottom

right. Close the mini disk drive door.

11. Turn on the mini diss drive. On is up on the switch on

the back of the mini disk drive.

12. Turn on the expansion interface. Push in the button

switch on the center front of the expansion interface.

13. Turn on the keyboard. Push in the button swicoh on the

rear eight of the keyboard. The mini disk drive should

turn on thus loading the IRSDDS (TRS disk operating

system) into the 3&M. The following appears on the

video display

:

TRSDOS - DISK 0PERTIN3 SYSTEM - 7 ER 2.1

DOS READY

14. Type BASIC and push ENTER.

15. For the question, HD* MANY FILES?, press ENTER. This

defaults on three files.

16. For the question, MEMORY SIZE?, type 29630 and press

ENTER.

17. RADIO SHACK DISK BASIC VERSION 1.1

READY

Appears on the video display, type RUN "S" and press

ENTER.

18. MONITOR PROGRAM

A Z-30 MICROPROCESSOR DEVELOPMENT AID

88

SHORT OR LON3 EXPLANATION? INPUT S OR L?

Appears on the video display, type L and press BNTEB.

19. The long explanation for each mole appears 01 the vid^o

display, type S and press ENTER.

20. The short explanation appears on the video display,

type DRECALL and press ENTER.

21. The disk recall program is now asking for a beginning

memory location to load a program into BAH from the

disk, type 29696 and press ENTER.

22. The ending nemory location is raguired, type 29710 and

press ENTER.

23. A filename is required, type IESI?R#1 and prsss ENTER.

24. Steps 22 to 24 are unique for this lab and are

dependent on the program to be loaded. The monitor

program is requesting a long or short explanation. Type

1 and press ENTER

.

25. Examine the program just entered into the R&M, type

DUMP and press ENTE8.

26. For starting memory location, type 29696 and press

ENTER.

27. For the number of memory locations, type 15 and press

ENTER.

28. For video output type V and press ENTER. This shows

the neginning decimal memory Location, tae beginning

hexadecimal memory Location and the contents of tae

following 15 memory Locations.

29696 7400 21 00 3C 3E BF 06 02 77 23 05 C8 C3 07 74 FF FF

29. Type NO and press ENTER. This returns to the lonitor

program.

89

30. Type S and press ENTER.

31. The LOAD mode will be used to change location 7406 from

02 to FF. Type LOAD and prass ENTER.

32. Type 29702 and press ENTER.

33. Type FF and press ENTER.

34. Exit the LOAD mode, type QUIT acid press ENTER. This

returns to the monitor program.

35. Type S and press ENTER.

36. Repeat steps 26 to 29. The 02 in memory location 7405

is now FF.

37. Press ENTER (no is the default) . This returns to the

monitor program.

38. Type S and press ENTER.

39. Type EXEC and press ENTER to execute the test program.

40. Type 29696 and press ENTER for the starting memory

location.

41. The top four lines of the video display are whitened

out, 256 video memory locations.

42. Press ENTER (no is the default). This returns to the

monitor program.

43. Type S and press ENTER.

44. Type END and press ENTER. Secure all power supplies.

This ends lab 1

.

TESTPR#1

HEM LOC OPCODE MNEMONIC

7400 21003C LD 1L, 3C00

90

7403 3EBF LD k, 3F

7405 06FF LD B,FF

7407 77 LD (HL) ,A

7408 23 INC HL

7409 05 DEC B

740A C8 REr z

740B C30774 JP 7 '4 7

91

APPENDIX If

LAB 2

1 .

2.

3.

6.

7.

8.

9.

10.

11.

12.

Power up the system by completing steps 1 through 18 of

lab 1.

Type S and press ENTER.

Recall test program number 4 from the disk: type

DRECALL and press ENTER.

Type 29696 and pirass ENTER for the starting memory

location.

Type 29770 and press ENTER for the ailing memory

location.

Type TESTPR34 and pcass ENTER for the filenama.

Type S and press ENTER.

Type DOMP and press ENTER.

Type 29696 and press ENTER for the starting

location.

memory

Type 74 and press ENTER for the number of memory

locations.

Connect the cable from the line printer interface to

the line printer and turn on the printer.

Type LP and press ENTER to mafca a hardcopy of the

program. Thara is a 20 second delay betwean pressing

ENTER and the first output which will look Like this:

92

29696 7400 AP 31 00 75 32 BF 21 F8 3F 77 CD 10 74 77 C9 00

29712 7410 06 02 05 00 Z\ 00 74 05 77 £Z 20 74 77 C9 00 00

29728 7420 06 02 77 05 23 FD CD 30 74 77 C9 00 03 00 00 00

29744 7430 DD 21 3F 74 FD 21 47 74 77 DO E9 77 00 FD E9 06

29760 7440 03 77 10 F7 C3 33 74 77 C9 00 00 00 03 00 00 00

13. Press ENTER, NO is the default.

14. Type S and press ENTER.

15. Type SS EXEC and press ENTER. This starts the single

step execution mode.

16. Type V and press ENTER.

17. Type 29696 and pcess ENTER for starting memory

location.

18. Single step execution requires about 23 seconds foe

each step. Ose this time to anticipate the next step.

The printout: produced in step 12 or the program at the

end of this lab should be used.

19. Note the four levels of calls and the use of the video

RAM location 3FF8 as a LED.

20. After end of execution, type S and press ENTER.

21. Type END and press ENTER.

22. This ends lab 2. If the student needs mora practice,

then redo lab 2 using LP instead of V in step 16 to

obtain a hard copy of the execution.

TEST PROGRAM #4

MEM LOC OPCODE MNEMONIC

7400 AF XRA A

93

7401

7404

7406

7409

740A

740D

740E

740F

MEM LOC

7410

7412

7413

7414

7417

7413

7419

741C

741D

741E

741P

MEM LOC

7420

7422

7423

310075 LD SP, 7500

3EBF LD i,BF

21F83F LD HL, 3FF8

LD (HL) , A

CD1074 CALL 7410

77

C9

00

OPCODE

0602

05

00

CA0074

05

77

CC2074

77

C9

00

00

OPCODE

0602

77

05

LD (HL) ,A

RET

NOP

BNEHONIC

LD B, 02

DEC B

NOP

JPZ 7400

DEC B

LD (HL) ,A

CZ 7'420

LD (HL) ,A

RET

NOP

NOP

MNEMONIC

LD B, 02

LD (HL) , \

DEC B

94

7424 20FD JRNZ FD

7426 CD3074 CALL 7430

7429 77 LD (HL) , A

742A C9 RET

742B 00 NOP

742C 00 NOP

742D 00 NOP

742E 00 NOP

742F 00 NOP

MEM LOC OPCODE MNEMONIC

7430 DD213F74 LD IX, 743F

7434 FD214774 LD 11 7447

7438 77 LD (HL) , A

743A DDE9 JP(EX)

743B 77 LD (HL) ,A

743C 00 NOP

743D FDE9 JP(ET)

743F 0603 LD B,03

CIEH LOC OPCODE MNE33NIC

7441 77 LD (1L) , A

7442 10F7 DJNZ F7

7444 C33B74 JP 743B

7447 77 LD (HL) , A

7448 C9 RET

95

APPENDIX Z

LAB 3

1. Power up the system by completing steps 1 thcough 18 of

lab 1.

2. Type S and press ENTER.

3. Type LOAD and press ENTER to load your machine language

program into the RA.1.

4. Type the starting aanory location in decimal and press

ENTER. Protected memory locations are 29695 to 33777.

Use the machine language program at the end of this lab

if you did not write one prior to this lab session.

5. Type the opcode one aemory location at a time and press

ENTER. For each memory location the systea displays

the memory address nd the previous contents. If ENTER

is pressed without data, then the memory content is not

changed.

6. Type QUIT and press ENTER when the complete program is

entered

.

7. Type S and press ENTER.

8. Type DUMP and press ENTER.

9. Type the starting memory location in decimal, and press

ENTER.

10. Type the number of memory locations in decimal and

press ENTER.

96

11. Type V or LP for viieo or lineprinter and press ENTER.

12. Compare the output with the desired program.

13. Debug the program using the execution mode as used in

lab 1 and the single step execution mode as used in lao

2.

14. (Jse the load and dump modes to change and ?erify the

program if necessary.

15. Save the machine language program on the disk drive.

From the monitor program type DSTORE and press ENTER.

16. Type the starting memory location in decimal and press

ENTER.

17. Type the ending memory location in decimal and press

ENTER.

18. Type a filename (your initals will be fine and easy to

remember) and press ENTER.

19. Type S and press ENTER.

20. Save the machine language program on the tape recorder.

Place a tape in the tape recorder, remember the tape

counter number, and press the record and play buttons

simultaneously.

21. Type TSTORE and press ENTER.

22. Type the starting memory location in decimal and press

ENTER.

23. Type the ending caemory location in decimal and press

ENTER.

24. Note the ending tape counter number. Press ENTER, NO

is the default.

25. Press the stop button on the tape recorder.

26. Type 3 and press ENTER.

27. Retrieve the machine language program from the tape

recorder. Rewind the tape recorder to the starting

tape counter number. Place the tape recorder in play.

28. Type TRECALL and press ENTER.

29. Pick a new starting nemory location. Type the new

starting memory location and press ENTER.

30. Type the new ending memory location and press ENTER.

31. The tape recorder should be ready so prsss ESTER.

32.* Type 5 and press ENTER.

33. Use the dump mode to verify the machine language

program retrieved from the tape recorder.

34. Secure the system from the monitor program. Type END

and press ENTER.

35. This ends lab 3. The student tias operated every mode

of the Z-80 microprocessor development ail. For a

discussion of the system read The 2§§l3Ii and

Imp lementation of an l£§.£pens.Lve microprocessor

Develop ment System for the Z^iLO Microprocessor , a

thesis, by D. P. Cortevilie June 1979.

SAMPLE PROGRAM

MEM LOC OPCODE MNEMONIC

7400 1802 JR 32

7402 00 NOP

7403 00 NOP

7404 3EAA LD A, AA

7406 1805 JR 05

7408 00 NOP

7409 00 NOP

740A 6BB LD B, BB

740C 00 NOP

740D 00 NOP

740E 00 NOP

740P C9 RET

99

LI3T OF REFERENCES

1. Radio Shack, TRS-3_0 Microcomputer .Technical. Reg grgncg

Handbook, 1978.

2. Jim-pak, Miccop.ro cess or /LED Data Boojc.

3. Jim-pak, 7*QQ/74L S Oat a Book.

4. Jim-pak, CMOS/Linear Data Book.

5. Radio Shack, Level ET Basic Reference Manual, TR5- 3

Micro Computer System, 1973.

6. Radio Shack, Pr eliminary Instruction Manual 2l§Ji Basic

Version Tj.T TRSDOS Version 2..1, 1978.

7. David L. Cohn and James L. Malas, A Steo b_7_ Step

Introduction to 803 M icroprocessor Systems, Di lithium

Press, 1977.

3. William Barien, Jr, The Z-80 microcomputer han dboo k,

Sams Publication, 1978.

9. Radio Shack,]Lr,BU3 Z-80 Monitor and Debugging Rid ,

1978.

10. Radio Shack, TRS^JO Eli tor^Assembler, 1973.

100

INITIAL DISTRIBUTIDN LIST

No. Copies

1. Defence Docua entatioa Center 2

Cameron Station

Alexandria, '/irginia 22314

2. Library, Coda 0142 2

Naval Postgraduate School

Monterey, California 93 940

3. Department Chairman, Code 62 2

Department of Electrical Engineering

Naval Postgraduate School

Monterey, California 93940

4. Professor H. Panholzar, Code 62Pz 2

Department of Electrical Engineering

Naval Postgraduate School

Monterey, California 93940

5. Associate Professor 3. L. Cotton, Code 62Co 1

Department of Electrical Engineering

Naval Postgraduate Sohool

Monterey, California 93 940

6. LT Douglas F. Corteville, 0SN 1

2215 Fairplain Avenue

Benton Harbor, Michigan 49022

101

Thesis
CT5573
c.l

Thesj

s

CT55T3
c.l

183324
Corteville

The design and im-
plementation of an in-
expensive microproces-
sor development system
for the Z-80 micropro-
cessor.

Corteville ' ° ^ * C- 4
The design and im-

plementation of an in-

expensive microproces-
sor development system
for the Z-80 micropro-
cessor.

