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ABSTRACT

The in-line and lateral forces acting on cylinders and

the in-line force acting on spheres placed in an harmonically

oscillating flow have been measured. The periodic flow has

been generated in a U-shaped channel through the use of a

pneumatic oscillator.

The drag, inertia and the lift coefficients as well as

the total force coefficient have been determined through the

use of Fourier analysis and found to depend on a period pa-

rameter.

The results have shown that the transverse force acting

on a cylinder in a periodic flow with zero mean velocity is

as large as the in-line force. The frequency of the alter-

nating transverse force depends on a period parameter and

several frequencies may occur during a given period of oscil-

lation of the flow.

It is recommended that the experiments be extended to

Reynolds numbers as large as 10 G in a similar but larger

apparatus.
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NOMENCLATURE

A amplitude of the motion

Cn " average drag coefficient

C., average inertia coefficient
M

C-„ A „ maximum lift coefficient
LMAX

C, ,,
rcaxinum total force coefficient

d diameter of test cylinder

F instantaneous total force acting on the test cylinder

P drag force acting on the test cylinder

F_ lift force acting on the test cylinder

F „. maximum lift force acting on the test cylinder

1 length of test cylinder

Re Reynolds number (Re = Vd/v)

T period of oscillation

t time

V instantaneous velocity

V maximum velocitym

A percent error

A* percent error based on maximum forces

v fluid kinematic viscosity

p fluid density

4> phase angle
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I. INTRODUCTION

A. EXPERIMENTAL JUSTIFICATION

The subject of forces acting on bluff bodies immersed in

time-dependent flows has been and will continue to be of in-

terest to fluid dynamicists, aerodynamicists , and practicing

engineers for the special reason that in nature neither the

body nor the fluid which surrounds the body is ever in a

state of steady motion. Even the flow behind a bluff body

moving steadily through a fluid is accompanied by large scale

unsteadiness. Thus, any type of unsteadiness of the ambient

flow and/or the motion of the body introduces additional

changes in the characteristics of the flow and its analysis.

The drag and inertial forces are interdependent as well

as time dependent, and the resistance coefficients obtained

in unseparated flows are not applicable to separated cases.

Although indirect, the role of viscosity is paramount in that

its consequences are separation, vortex formation and shed-

ding, and resultant alternations in the virtual mass. It is

thus clear that it is necessary to determine the relation-

ships between various resistance components in terms of the

unsteadiness of the ambient flow and/or body motion, geometry

of the body, the degree of upstream turbulence, past history

of the flow, etc. [Ref. 1].

However, the understanding of the behavior of time-depen-

dent flows about bluff bodies may be advanced only by consid-

ering the relatively more manageable cases and gradually
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integrating the information so obtained. This led to the

present experimental investigation of the harmonically oscil-

lating flow about circular cylinders and spheres.

B. SURVEY OF THE PREVIOUS INVESTIGATIONS

A review of some of the previous investigations on time-

dependent flows may best be presented by dividing the motions

under consideration into various but admittedly arbitrary

categories.

1. Theoretical Analysis of Unseparated Time-Dependent
Laminar Flows

The study of the theory of separation-free time-de-

pendent laminar flows has enjoyed particular attention,

partly due to its practical significance and partly due to

its relative mathematical simplicity. Surveys by Stewartson

[Ref. 2], Stuart [Ref. 3], and Rott [Ref. 4] reflect the cur-

rent level of understanding.

The unseparated class of unsteady flows, most of

which results from the unidirectional or periodic accelera-

tion of bodies in an infinite or bounded fluid medium, gives

rise to an induced mass which must be added to the real mass

of the body. In general, the virtual inertia tensor depends

on the shape of the body, the nature of the fluid medium,

the orientation of the moving object with respect to the di-

rection of motion, and the depth of relative submergence

from a free surface and/or solid boundary.

The effects of viscosity and separation on added

mass or the dependence of added mass of a given body on the

11





characteristics of the time-dependent separated flow cannot

yet be theoretically evaluated nor can it be experimentally

separated from the total resistance experienced by the body.

2 .• Small Amplitude Vibration of Bodies in a Liquid
Otherwise at Rest and the Initial Instants of Accel -

eration of Bodies from a State of Uniform Velocity

Vibratory motion has often been used [Refs. 5-8] as

one of the experimental means to determine the virtual mass

coefficients. The technique has been restricted to ampli-

tudes of motion which are so small that either separation

does not occur or the characteristics of separation do not

change due to the imposed, high-frequency vibration. Thus,

the results obtained are not applicable to occurrences in

which the duration of unsteady flow in one direction is long

enough for separation to occur.

It is not necessary that the body be initially at

rest to determine the added mass provided that one starts

with a steady ambient flow about the body or with the body

moving at constant velocity in a fluid otherwise at rest.

Hamilton and Lindell [Ref. 9] have shown that the added-mass

coefficient of a sphere determined by imposing a uniform

acceleration onto its steady state motion is equal to its

theoretically determined value as well as to its experimen-

tally determined value obtained by small-amplitude, high-

frequency oscillations.

Rayleigh [Ref. 10] has shown that if the accelera-

tion continues, i.e. V = V + kt , both the drag and the

added-mass coefficients change with time.

12





The foregoing arguments suggest that the force ex-

erted by the fluid on a body immersed in a time-dependent

flow might be expressed as

F *=
-|-C pA|V|V + Cm dV/dt + history-dependent (1)

drag and inertia forces

in which A is the projected area of the body and m
f

the mass

of the fluid displaced by the body. The drag coefficient CL

is to be taken equal to the quasi-steady state resistance

coefficient and CM to be taken equal to that measured or cal-

culated from the potential theory when the value of the his-

tory-dependent force is zero [Ref. 9].

3. Bodies Subjected to Large Amplitude Harmonic
Oscillations in a Fluid Otherwise at Rest

A number of significant studies [Rets. 11-16] were

made to determine the forces acting on bluff bodies under-

going harmonic, large-amplitude oscillations in a liquid

otherwise at rest.

Odar and Hamilton [Ref. 11] measured the force act-

ing on a sphere subjected to harmonic oscillations and pro-

posed a force equation comprised of three parts: a steady

drag component where the drag coefficient is the well-estab-

lished coefficient for steady translation of a sphere; an

inertial component whose coefficient is determined experi-

mentally as a function of V 2 /ad (a: acceleration; d: diameter

of sphere); and a history-dependent component whose coeffi-

cient also is a function of V 2 /ad.

13





4. Bodies Subjected to Wave Motion with Zero Mean
Velocity

Considerable work [Refs. 17-23] has been done on this

type of time-dependent flow in an attempt to predict the wave

forces on piles and other submerged structures. In general,

the total force acting on the body is assumed to be composed

of a velocity-dependent and an acceleration-dependent force.

The resulting equation, known as the Mori son equation [Ref.

16] , is given by

F = iCD
pA|V|V + C

M
m
f

dV/dt (2)

where C„ = 1+C, C being the added mass coefficient. Experi-

ments show that C„ and C„ depend on time and show consider-
D M

able scatter about their assumed mean values [Refs. 18, 21]

over a cycle.

5

.

Bodies Subjected to Unidirectional Acceleration in a
Fluid Otherwise at Rest or Unidirectional Unsteady
Flow About Bodies Held at Rest

Substantial effort has been made to determine the

components of force acting on a body accelerating unidirec-

tionally in a fluid otherwise at rest. Iverson and Balent

[Ref. 24] and Keim [Ref. 25] towed spheres, disks, and cylin-

ders in unsteady motion through still water. It was con-

cluded that the total instantaneous force on these objects

could be described by a single coefficient of the form

C = 2F/pAV 2 and that this coefficient was a function only of

a so-called acceleration modulus, ad/V 2
. Keim, however, de-

tected an apparent Reynolds number effect for cylinders.

14





Laird et . al. [Ref. 26] measured the forces acting

on accelerating cylinders and found strong evidence of devia-

tion of the drag coefficient from the accepted values for

uniform motion. They further found that the acceleration

modulus did not correlate the resistance coefficient near

boundary-layer transition.

Sarpkaya and Garrison [Ref. 27] working with unidi-

rectional flow with constant acceleration about cylinders

and plates have found that both CL and Cw depend on the his-
D M

tory of motion, that the Morison equation (Eq. 2) is valid

only for flows with constant acceleration, and that the

acceleration modulus can correlate the data only if the ac-

celeration is kept constant.

6. Forced or Self-Induced Transverse Oscillations of a
Body in a Fluid in Steady Motion

Experiments have been directed to the effects that

attend the oscillations of a body in the plane of the lift

force. This type of interaction becomes particularly impor-

tant when the oscillation of the structure is the necessary

condition for the generation of the exciting forces. The

most pertinent information from these experiments is that

the lift and drag forces act on the oscillating cylinder at

the vortex shedding frequency and twice the shedding fre-

quency, respectively, provided that the driving frequency on

the cylinder is appreciably different from the shedding fre-

quency. When the forcing frequency of the cylinder approaches

the shedding frequency, the natural shedding frequency is

15





lost and it "locks-in" to the forcing frequency. This syn-

chronization persists over a range of frequencies which may

be termed the "range of synchronization" [Ref. 28].

7 . • Unidirectional Oscillatory Flow About Bodies at Rest
and Steady Uniform Flow About Bodies Subjected to
Streamwise Oscillations

Relatively few studies have been conducted in this

category. Chan and Ballengee [Ref. 29] examined the vortex

shedding from circular cylinders in an oscillating free

stream. Their results suggested that "in an oscillatory

freestream of 3 HZ and Reynolds number up to 40,000, the

vortex shedding from a circular cylinder responds instantan-

eously to the freestream variations" and that "the instan-

taneous Strouhal number stays sensibly constant at 0.2 ± 0.01."

Hatfield and Morkovin LRef. 30] studied the effect of

an oscillating freestream on the unsteady pressure on a cir-

cular cylinder. They have found that there is no significant

coupling between the small-amplitude freestream oscillations

and the vortex shedding. Their results would suggest that

the drag coefficient associated with the mean flow would es-

sentially remain constant at its steady state value. On the

other hand, Mercier [Ref. 31] who subjected cylinders to

large streamwise oscillations found that the average drag

coefficient significantly increases with fd/V and that the

rate of increase depends on the amplitude to diameter ratio.

Combined, these results would suggest that the degree of

coupling between the frequency of oscillation and the vortex-

shedding frequency and hence the forces acting on the body

strongly depend on the amplitude of oscillation.

16





Davenport [Ref. 32] subjected bluff bodies to small

amplitude oscillations in a water flume and evaluated the

drag and inertia coefficients through the measurement of the

rate of damping of the amplitude of oscillations of the bod-

ies, i.e. without measuring the forces acting on the bodies.

Using the frequency parameter fd/V to correlate the data, he

found large variations in Cn and C...

C. SCOPE OF THE PRESENT STUDY

The present investigation is limited to an experimental

investigation of the drag, inertia, and lift forces acting

on circular cylinders and the drag and inertia forces acting

on spheres immersed in a periodically oscillating fluid with

zero mean velocity. The fluid motion is characterized by

V = -V cos ~ t (3)m T v y

where V is the maximum velocity, T the period of the oscil-m j > r

lation, and V the instantaneous velocity.

As noted earlier, this type of fluid motion about cylin-

ders and plates has been studied by Keulegan and Carpenter

[Ref. 18] through the use of standing waves in a rectangular

basin. The characteristics of the ambient fluid motion have

been determined through the use of the appropriate standing-

wave equations and the measured amplitude of the waves.

Keulegan and Carpenter determined the drag and inertia coef-

ficients and correlated them with the so-called period pa-

rameter V T/d. They have found that the Fourier-averaged
m ' J

values of the inertia and drag coefficients over a wave

17





cycle show considerable variations with V T/d. For cylinders

V T/d equalling 15 was found to be a critical condition
m '

yielding the lowest value of the inertia coefficient and the

largest value of the drag coefficient. For the plates the

higher values of the drag coefficient are associated with

the smaller values of V T/d and the higher values of the in-

ertia coefficient with the larger values of V T/d. It was

suggested by Keulegan and Carpenter that the parameter V T/d,

or equivalently , the relative fluid displacement A/d was the

parameter of primary importance and the effect of Reynolds

number was assumed to be of little importance on the values

of the drag and inertia coefficients. It is noted, however,

that the test method used by Keulegan and Carpenter allowed

no control over the Reynolds number so that they had no con-

venient method of testing this influence. Finally, it should

also be noted that Keulegan and Carpenter did not measure

the lift forces acting on cylinders.

Driscoll [Ref. 16] oscillated circular. cylinders in sim-

ple harmonic motion in water otherwise at rest and found

that the inertia coefficient is almost independent of the

Reynolds number and highly dependent upon A/d and that the

drag coefficient is strongly affected by the Reynolds number

and generally it decreases with increasing Reynolds number.

Driscoll' s [Ref. 16] C„, and C rx values are in error
M D

since the length of the test cylinder was inadvertantly
taken as unity in the calculations instead of its actual
length of 1.375 inches.

18





The lift force averaged over the length of a circular

pile was measured by Bidde [Ref. 33]. He found that the max-

imum values of the lift coefficient expressed by

FLMAX
4pV

m
dpC

LMAX < 4 >

reaches 60% of the longitudinal force for the rigid pile

used and that C
T
.,. Y has a maximum average value of about 1.5.

His data showed considerable scatter over the range of V T/d

values encountered in the experiments. Nevertheless, C T ...„LMAX

showed a better correlation with V T/d than with the Reynolds
m '

number. This study does not shed much light on the under-

standing of the variation of the lift coefficient with either

parameter since the lift varies along the pile in accordance

with the characteristics of the wave motion.

Ranee [Ref. 34] investigated the drag, inertia and lift

forces acting on cylinders placed in an oscillating-f low

water tunnel and found that the lift coefficient may reach

values as high as 2.0. He did not attempt to correlate his

results with the period parameter. Ranee concluded that the

lift force appeared to be significant compared with the sum

of the drag and inertia forces and that a combination of all

the forces should be used in a practical design.

Relatively few studies have been carried out on wave

forces on submerged spheres. Grace and Casciano [Ref. 35]

measured wave forces on a subsurface sphere and was able to

evaluate only the drag coefficient which ranged from 0.3 to

1.05. The data and the method of calculation did not allow

19





them to obtain either a systematic variation of C~ with the

period parameter or to evaluate C...

It is evident from the foregoing summary of the previous

studies on unsteady flows in general and of the simple har-

monic motions about cylinders in particular that the questions

regarding the determination of the lift, drag, and inertial

forces for various types of bluff bodies immersed in periodic

flows remain largely unresolved. There are several reasons

for the difficulties encountered. Theoretically, the prob-

lem is not manageable because of the unsteadiness of the

flow and the indeterminate nature of the separation points.

Experimentally the difficulties stem from various sources in

experiments. With oscillating bodies, the force resulting

from the acceleration of the body must be separated by cal-

culations. In the case of body immersed in an oscillating

fluid, the characteristics of the fluid motion have often

been evaluated through the use of approximate wave equations

rather than measuring them directly. Furthermore, either in

the case of body oscillations or in the case of fluid oscil-

lations, the motion was not entirely harmonic. This, as

well as the ever present ocean currents, may have led to

large scatter in the data presented in the references cited.

Thus the values of C,, and C~ so derived are associated
M D

uniquely with the particular wave theory used to determine

their numerical values. In general, attempts to use these

values with other wave theories may result in large errors.

Finally, it should be mentioned that the values of C„ and CL

20





which have been derived for cylinders placed horizontally in

an oscillating fluid has often been identified in engineer-

ing usage with similar coefficients obtained from tests re-

lating to vertical cylinders. Obviously, the characteristics

of the wave motion as well as the bottom- and free-surface

effects will significantly affect the variation of these co-

efficients with the significant parameters of the phenomenon.

The foregoing reasons, along with related aspects of the

problem gave rise to questions concerning the validity of

the methods for the prediction of forces acting on bluff

bodies immersed in periodic flows. The present investiga-

tion is undertaken for the purpose of clarifying some of

these problems through the use of a truly harmonic motion

and to determine the drag, inertia, and the lift forces act-

ing on cylinders and the drag, and inertia forces acting on

spheres.
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II. METHOD OF ANALYSIS

The total force acting on cylinders and spheres in the

direction of the ambient fluid motion is assumed to be com-

prised of a drag force and an inertial force in the manner

similar to that first suggested by Morison et . al. [Ref. 17],

For a cylinder it may be written as

F = 4C
D
pdil|V|V + C

M
2|1 p£ || (5)

where F is the force for the length £, d the diameter of the

body, p the density of fluid, and V is the instantaneous

velocity of the fluid. The C„ and C„ represent respectively

the drag and inertia coefficients.

The corresponding equation for the sphere may be written

as

F = *CD p
—

l

V
l

V + C
M -6" P dt (6)

in which F is the total force acting on the sphere.

The velocity of the ambient flow is represented by

V = -V cos at (7)m

where V denotes the maximum velocity, T the period, and
m J

'
l

o = 2tt/T. The total force acting on the cylinder per unit

length is in general given by

F = f(t,T,Vm
,d,p,v) (8)
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Grouping the variables on the basis of dimensional rea-

soning and introducing a = 27Tt/T gives

v V T V d
F _ .., m m x /0 .

v*d ~ f(a
' "d"'

~
} (9)

m

where V d/v is a Reynolds number and V T/d, which can also

be expressed as 27TA/d, will be termed the relative displace-

ment .

Because of flow symmetry and the periodic nature of the

force

F(a) = -F(a+TT) (10)

it is possible to express the force coefficient in a Fourier

series.

F
Trr-r = Ajsin a + A 3 sin 3a + A 5 sin 5a + ...
ma (11)

+ Bicos a + B 3 cos 3a + B 5 cos 5a + ...

where the coefficients A„, B are independent of 0C and at

most functions of Reynolds number and relative displacement.

Fourier analysis may be used to determine the coefficients

as:

a - 1 r
F sin Not , MO nA

N - ¥ { Iv^d da (12)
m

and

D _ 1 r F cos Na , / 1 oxB„ = — J
—TTT—i—— da (13)

N it _ pV d
m

Once obtained, the dependence of these coefficients on Rey-

nolds number and relative displacement may be established

provided the data are sufficient.
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The general formulation, equation (11), may be reconciled

with Morison's equation (5). Introducing V from equation

(7) into equation (5)

QF 7T„da. D,
i /-,„s

^Td
=

4
C
M dS

Sln a ~ 2~\ cos a
l

cos a < 14 >

m

By the rule of Fourier

I I cos a I cos a cos Nada
00 I I

I

cos a
|
cos a = Y,

N=0 , ___ 2
27T

/ cos 2 Nada

= a + ajcos a + a 2 cos 2a + a 3 cos 3a + ...

where

N+l

a = 0, a . . = (-1)
2

M/ .
T

8
. . (15)even ' odd v ' N(N -4)tt v '

The first three non-zero coefficients would then be:

a x
= 8/3tt, a 3

= 8/15ir, a 5 = 8/105tt (16)

Introducing equation (16) into equation (11) with

b[ = Bi/aj

B 3 = B3Ta 3 /ai(Bi)

B5 = Bs-as/ajCBj) (17)

yields

Y
v 2 (i

= Ajsin a + A 3 sin 3a + A 5 sin 5a + ...
P m , ,

+ B^cos a
I
cos a + B 3 |cos 3a

|
cos 3a

!

+ B 5 |cos 5a j cos 5a (18)

Equations (18) and (11) may be compared. Writing

J (L |2 = A, + A 3

^j5L3a + A
sin_5a + _ (19)4MV 3 sin a sin a

m
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and

C ' '

D _ _B
' B 3 cos 3a B 5 cos 5a (oq\

2
l

I
cos a

I

cos a | cos a | cos a *
'

' ^
'

Thus, if the coefficients A 3 , A5 and B 3 , B5 vanish, the

values of C„ and C_ remain constant for all phases of the
M D

cylinder motion

9 V T
C„ = ^r -^- Ai (21)M it d

Substituting Ai from equation (12) yields

V T 2tt

C„ = K ~- /
F Sin ada

(22)M « d pV 2 d
m

C
D

= -2Bi (23)

substituting from equations (13) and (17) yields

C = -| V F sin adct
(24)D 4

pV 2 d
m

If the coefficients do vary with the phase a, the values

given by equations (22) and (24) are weighted averages. With

this possibility in mind it is preferable to adopt

F '
1 1--

2 ,
= Aisin a + Bi cos a cos a + error (25)

pV d xii
m

or

F tt „ da
CD

—rprr = -r C rr- sin a - 77-
I

cos a
I
cos a + error (26)

m m
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where Ai , Bi , C„ and C„ are constant and error has the value
M D

error = A3 sin 3a + As sin 5a

+ B 3 cos 3a + B 5 cos 5a

This error may be obtained by subtracting the computed value
1

1 1 2of Ai sin a and Bi cos a cos a from the observed F/pV d.

The foregoing formulation was developed by Keulegan and

Carpenter [Ref. 18] and equations (22) and (24) were the

basis for the computer data reduction programs.

For this purpose equations (22) and (24) were written as

follows

cm = t*¥wi l F sin (^> 6 <!> (27 >

and

C
D " S^TOF E F COS <™> 6 <!> < 2S >

The corresponding coefficients for the sphere may be ob-

tained through the use of equation (6) and through the use

of a similar Fourier analysis. The results are given by

c
m " ¥W E F sin C

2?' {(f > (29)

and

C
D " 2^W l F C°S (^ ) 6(f>

(30)
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The error in force predictions or the difference between

the measured and the calculated forces acting on cylinders

and spheres have been calculated not through the use of equa-

tion (26) but rather through the use of the following expres-

sion :

F - F .

•^ 4 -n mes cal / o-i \Percent Error = -7= c (31)
mes max

in which F is the measured force and F -. is the calcu-mes cal

lated force. It is thought that the percent error calculated

in this manner will be physically more meaningful than the

predicted error given by equation (26).

Computer programs have been devised for the evaluation

of the coefficients given by equations (27), (28), (29), and

(30). These programs are presented in Appendix A.

Finally the maximum lift coefficient for each V T/d hasJ m '

been calculated through the use of

F
r LMAX ,„ .

^LMAX " IpdTv 2
"

K }

* m

in which F
T
„ . „ is the maximum lift force in a given cycle

for a given V T/d. The corresponding computer program for

^1 MAX is a -'- so given in Appendix A. No attempt was made to

separately analyze the amplitudes of the harmonics of the

lift force.
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III. EXPERIMENTAL EQUIPMENT AND PROCEDURE

A. EQUIPMENT

The basic oscillating flow system consisted of a U-shaped

vertical water channel. The cross-section of the test sec-

tion was 18 by 20 inches. A photograph of the equipment and

a schematic drawing of the channel are shown in figures 1

and 2. The test bodies were mounted 2.5 feet below the free

surface of the still water level. The fluid in the U-channel

was oscillated pneumatically through the use of a slider-

crank mechanism which has periodically opened and closed the

air supply line and also a large exit hole at the top of one

of the legs of the channel. A photograph of the oscillating

mechanism is shown in fig. 3.

The frequency of oscillation of the slider-crank mechan-

ism was matched to the natural frequency of oscillation of

the water column in the channel by means of reduction gears

and through the use of a variable speed DC motor. The maxi-

mum half-amplitude of oscillation of water column was 11

inches and the natural damping of the oscillations was in

the order of 1/8 inch per cycle without the use of the pneu-

matic pulsating system. The water level at its minimum

height in the test section was about 20 inches above the

test body. The cylinders were manufactured out of plexiglass

tubes or rods at desired diameters and at lengths approxi-

mately 1/16 inch under the width of the test section. Self-

aligning bearings were imbedded at each end of the cylinders.
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Figure 1. U-Channel
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oscillating mechanism
is placed here

Figure 2. Schematic drawing of the U-channel
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Figure 3. Oscillating mechanism
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The lateral and in-line force measuring devices consisted

of various cantilever beams mounted to the outer surfaces of

the test section. Eight piezoresistive strain gages were

mounted on each cantilever beam and properly waterproofed.

The drawing of one of the many such force transducers is

shown in figure 4. The end of each beam firmly fitted into

the self aligning bearings placed at each end of the cylin-

der .

These transducers were repeatedly calibrated by hanging

loads at the mid section of the cylinders in the vertical

and horizontal directions. Some of the force transducers

were comprised of two pieces of thin cantilever beams cut

orthogonal to each other. Thus they were capable of simul-

taneously measuring both the lateral and in-line forces.

Some transducers were capable of measuring only the lateral

or the in-line force. The one shown in figure 4 is of that

type. It should be noted, however, that this particular

transducer was rotatable ± 90 degrees. This enabled one to

measure first the in-line force and then, after a 90 degree

rotation, the lateral force. In all cases both the in-line

and lateral forces were measured at both ends of the cylin-

der and compared with each other. In no case, did force

curves deviate from each other, indicating a fairly uniform

response along the cylinder as far as the resultant forces

are concerned. The size of the cylinders varied from 1.0

inch to 2.5 inches. The spheres which were manufactured out

of aluminum, or hard plastics with diameters ranging from
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1.125 to 3.975 inches were hung with thin fish line from the

force transducer placed at the top of the channel at the

center of the test section. Attempts to prevent the spheres

from swinging have resulted in the creation of undesirable

oscillations in the force curves. Consequently, the spheres

were allowed to hang freely and to respond to lateral forces.

The amplitude of the swing naturally depended on the weight

of the sphere. The maximum amplitude was approximately 0.25

inch. As noted earlier, the fish line was connected to an-

other force transducer, similar to the one shown in figure

4, placed at the top of the channel.

Throughout the investigation the monitoring of the char-

acteristics of the oscillations in the U-channel was of

prime importance. As discussed in the introduction, most of

the difficulties in the past in the determination of C,,, C_
,^ M D

and CTMA„ resulted from the difficulty of creating a purely

harmonic motion or from determining indirectly the character-

istics of the oscillatory motion. Even though the U-channel

has provided, by its very nature, a perfectly sinusoidal os-

cillation, both the instantaneous displacement and the accel-

eration were continuously monitored. The instantaneous

elevation in one leg of the channel was determined through

the use of a capacitance wire connected to an amplifier-

recorder system. Such wires have been used in the past to

measure wave heights in open channels. The response of the

wire was found, through calibrations, to be perfectly linear

within the range of oscillations encountered.
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The instantaneous acceleration was measured by means of

a differential-pressure transducer connected to two pressure

taps placed vertically two feet apart at the mid-section of

one of the walls of the U-channel. The instantaneous accel-

eration was then calculated from

AP = p£a (33)

where AP is the differential pressure, p the density of fluid,

Z the distance between the pressure taps, and a the instan-

taneous acceleration of the fluid. The effect of the pres-

sure drop due to the viscous forces over the length I was

found to be negligible.

Evidently, the displacement and acceleration traces are

in phase and may be used independently to calculate the ve-

locity and the -displacement of the fluid. In fact such cal-

culations have shown that the velocities and displacements

calculated through the use of either traces did not differ

more than 4%. Finally, it was gratifying to note that both

the acceleration and displacement traces were nearly perfect

sine curves. Figures 5, 6 and 7 show the representative dis-

placement, acceleration, in-line force and lateral force

traces for the cylinders and figures 8 and 9, the displace-

ment, acceleration, and in-line force traces for spheres.

These traces which were obtained without any damping of the

disturbances show the smoothness of the variation of the var-

ious quantities and the degree of success achieved in obtain-

ing a purely harmonic motion. It is also noted, from a

brief perusal of the displacement and acceleration traces
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that the damping of the oscillations over a cycle is imper-

ceptibly small when the fluid is let to freely oscillate in

the channel.

B. PROCEDURE

From the traces similar to those described above, the

amplitude of oscillation and the maximum velocity were cal-

culated. Then the in-line force from the force traces was

read and punched on cards for every 2 . 5 mm (this corresponded

to At/T = 0.039645 for the period of T = 2.86 seconds). Then

the drag and inertia coefficients were calculated through

the computer programs given in Appendix A. This part of the

procedure was identical for both cylinders and spheres.

The calculation of the maximum lift coefficient consis-

ted of the determination of the maximum amplitude of "lift"

or lateral force for a given V T/d through the use of equa-

tion (32).

It was realized before the start of investigation that

not only the magnitude but also the frequency of the oscilla-

tions of the lateral force is of major importance as far as

the design of bodies subjected to harmonic fluid motions is

concerned. With this idea in mind, the frequency or frequen-

cies occurring in lateral forces in each cycle were deter-

mined for each V T/d.
m '

The maximum lift force in each cycle was also compared

with the maximum value of the in-line force, as will be dis-

cussed later.
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Finally the phase angle between the occurrence of the

maximum force and the maximum velocity was determined from

the recorder traces for both the cylinder and sphere.
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IV. DISCUSSION OF RESULTS

A. CYLINDER DATA

The primary purpose of this investigation was the deter-

mination of the forces exerted on cylinders and spheres in

harmonically oscillating fluids. The secondary purposes

were the re-examination of the data obtained by Keulegan and

Carpenter [Ref. 18] and, whenever possible, the evaluation

of the secondary effects such as non-harmonic oscillations,

viscous forces, etc. on the forces obtained with harmonic

oscillations.

The drag and inertia coefficients for cylinders are

shown in figures 10 and 11 as a function of the period param-

eter V T/d. The data follow in general the same trend ofm

that obtained by Keulegan and Carpenter for very small values

of V T/d, C., is equal to about 2.0 and C„ is nearly zero.

For V T/d equal to about 11.0, C„ reaches its maximum value
m ' ^ D

of about 2.1 and C„ reaches its minimum value of about 0.8.
M

Considering the fact that C„ = 1.0+k where k is the added
M

mass coefficient, it is apparent that for some values of

V T/d the added mass coefficient may become negative. A
m ' j &

similar result has also been obtained by Keulegan and Carpen-

ter. For larger values of V T/d, C., is nearly equal to 1.2

and C„ approaches 1.4, within the range of V T/d values en-
D ^^ ' to m '

countered in the present investigation.

Mean lines have been passed through the data shown in

figures 12 and 13 and these mean values are compared in
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figures 14 and 15 with the corresponding mean lines obtained

by Keulegan and Carpenter. Evidently, for smaller values of

V T/d the results of the two independent studies are compar-

able. For larger values of V T/d, however, the Keulegan and
m ' '

Carpenter study shows relatively larger values for C„. Even

though it is not easy to explain the difference, it may be

conjectured that the relatively few data points obtained by

Keulegan and Carpenter through the use of a 0.5 inch diameter

cylinder may have been in error or the standing waves corres-

ponding to the large values of V T/d may not have followed

the particular analysis used in the prediction of their char-

acteristics. Furthermore, in this range of V T/d values, the
m '

inertial force is small relative to the drag force. This in

turn leads to an unstable determinant in the equations yield-

ing C
M

and C
D

.

It has been conjectured first by McNown and Keulegan

[Ref. 21] and later by Sarpkaya and Garrison [Ref. 27] that

there should be a unique relationship between CM and C~ if

each of these coefficients are dependent only on V T/d. To

explore this matter further, a plot has been prepared as

shown in figure 16. The numbers on this figure give the

corresponding V T/d values. Even though of no particular

practical significance, the variation of C„ with C~ is indic-

ative of the existence of a complex relationship between the

two coefficients. The data points are a step further re-

moved from the actual fluid motion through the elimination

of V T/d. Thus, such a plot may be of some significance if
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and when the problem could be analyzed numerically or other-

wise.

The phase angle between the occurrence of maximum in-line

force and maximum velocity which is also a measure of the

ratio of the relative magnitudes of the inertia and drag

forces, is evaluated from the traces and is shown in figure

17. Evidently for V T/d values less than about 8 or 10m '

V

there is a large phase difference between the occurrence of

the maximum force and the maximum velocity. In this range,

the maximum velocity leads the maximum force. For V T/dJ m '

values larger than about 20, there is a very small phase dif-

ference between the two quantities cited. For very large

values of V T/d, the phase angle drops nearly to zero. It

may thus be concluded that the inertial forces dominate the

motion for V T/d values less than about 8. For larger valuesm

of V T/d, the drag force is dominant. Thus for structures

subjected to wave forces with V T/d values less than about 8,m '

the drag forces may be ignored. The alternate is true for

V T/d larger than about 10.

The maximum lift coefficient, defined by equation (32),

is shown in figure 18 again as a function of V T/d. Such

data, which are presented herein for the first time, have

several significant features. Firstly, the maximum lift co-

efficient may reach a value as high as 3.0. Secondly the

lift coefficient has several maxima and minima dependent on

V T/d. The lift traces show that the lift force does not
m '

begin to develop for V T/d less than about 4.0. Then the
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lift coefficient increases rapidly reaching its first maxi-

mum value of about 2.85 at V T/d - 10.0. The significancem ' b

of the existence of large lift forces between 10 > V T/d > 4
m '

lies in the fact that even when the forces in line with the

fluid motion are essentially of inertial nature (V T/d < 8),

there is still a region, (4 < V T/d < 8) in which consider-
m '

able lateral forces may act upon the cylinder. . Thus, if one

were to ignore separation and vortex shedding and determine

through the use of inviscid fluid flow analysis the forces

acting on the cylinders, the results should not be extrapo-

lated beyond V T/d > 4.J m '

The lift coefficient sharply decreases in the range

10 < V T/d < 15 and then increases again to a value of about

3.0. Subsequently, CTMAv gradually decreases to about unity.

It is apparent from the data shown in figure 18 that there

is considerable scatter in the range of V T/d from about 18
m '

to 25. The reasons neither for this scatter nor for the rap-

id drop and rise for V T/d from 10 to 18 can be explained in

simple terms. They can, however, be attributed to the com-

plex interaction of the shed vortices aft and fore of the

cylinder and to the fact that we have not decomposed the lift

force into its harmonics.

Several attempts have been made to visualize the flow

with various dyes and particles and to obtain motion pic-

tures. These efforts were only partially successful in iden-

tifying the instantaneous positions of the vortices. Efforts

were also made to visualize the flow pattern in a water
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table with a free surface. The strong effects of the surface

tension have prevented the identification of the vortices.

At small values of V T/d beautiful patterns of acoustic

streaming have been observed.

As cited in the development of the so-called Morison's

equation, the coefficients C„ and C„ are Fourier averaged

and thus assumed constant over a cycle. In reality, the un-

steady nature of the flow renders these coefficients time

dependent and thus gives rise to some differences between the

measured and calculated forces. This difference, called er-

ror or remainder force, could be estimated either through

the use of the additional terms appearing in equation (11)

or through the evaluation of the percent difference between

the measured and calculated forces. The former technique

which was used by Keulegan and Carpenter [Ref. 18] may still

differ from the actual error between the measured and calcu-

lated forces. With this view in mind it was preferred to

calculate the actual error in each cycle for representative

values of V T/d as well as the error corresponding only to

the maximum force for all values of V T/d. For this purpose

the percent error was written as

F - F .,

x = _|es___cal
(34)

mes max

and

F - F
,. mes(max) cal(max)

C35")

mes(max)
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The values of A for representative values of V T/d are pre-
m ' ^

sented in Appendix B. The variation of X* with V T/d is

shown in figure 19. Evidently the maximum value of X* occurs

at V T/d - 12 and is in the order of 15%. Thus, the designer

must multiply the calculated values with X* in determining

the maximum actual force acting on the cylinders.

So far attention has been paid to the calculation of the

lift, drag, and inertia forces and nothing has been said

either on the frequency of the lateral or lift forces or on

the ratio of the maximum lift force to the maximum in-line

force.

As cited earlier, the frequencies of lateral forces in

each cycle for each V T/d have been evaluated for all cylin-

ders tested and plotted in figure 20. Such a plot which has

never been presented in the literature before, shows several

interesting features. Firstly the vortex shedding frequency

is not a constant fraction of the oscillation frequency

(f = 1/T) and that several frequencies may occur during a

given cycle. This may appear to be a priori evident consid-

ering the fact that in an oscillating flow the instantaneous

velocity of fluid varies from zero to V and that there can-J m

not be a single Strouhal frequency. Secondly, there does

not seem to be any lateral force for V T/d less than aboutJ m '

4.0. Considering the fact that V T/d may also be regarded

as a measure of the relative displacement of a fluid particle,

for small relative displacements vortices are shed at two

distinct frequencies: one at the oscillating flow frequency,
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i.e. f, and the other at 2f. For some values of V T/d, the

vortices may be shed at as many as three or four different

frequencies, namely, at f = f, 2f, 4f, etc. For V T/d lar-
v ' ' m '

ger than about 35 the vortex shedding frequency is limited

to a single frequency of 2f.

The significance of the existence of multiple frequencies

in periodic flows stems from the fact that a structure may,

under certain circumstances, come into resonance with the

frequency of the exciting lateral forces acting on it. For

waves of large periods this frequency may be sufficiently

small to match the natural frequency of highly elastic thin

members. It is not expected that highly stiff and large

cylindrical structures would be excited by long waves. Thus

a cylindrical pile may go into resonant motion at relatively

smaller wave periods at or near the frequencies twice the

frequency of waves. The subject of vortex-synchronization will

not be discussed here further since the cylinders were held

almost rigidly at rest in the pulsating flow.

As to the magnitude of the lateral force relative to the

maximum in-line force, a plot has been prepared representing

this ratio in terms of V T/d. The purpose of this effort

was to emphasize the fact that the lateral forces could, un-

der certain circumstances, be considerably larger than the

in-line forces. In fact in the range 5 < V T/d < 15, the
m '

said ratio is as large as 1.5. Thus in calculating the max-

imum total force acting on the cylinder one must consider

the vectorial sum of the lateral and in-line forces. With
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this view in mind a total force coefficient defined by

_V*E + F 2

c _ . u Vmax) L(max) (IP}
T

JpU 2 dH
m

was calculated for two representative cylinders and the re-

sults were plotted in figure 21. Evidently, C„ may reach

values as high as 4.0 in the vicinity of V T/d = 10. It
m '

should be noted that the total force coefficient calculated

in this manner is somewhat larger than the actual total force

coefficient since the maximum lift force does not necessarily

occur at the same instant as the maximum in-line force. How-

ever, considering the complexity of the lift force and the

possibility of the simultaneous occurrence of the maximums

of the two forces it was preferred to calculate the total

force coefficient as given above. No attempt was made to

analyze in detail the phase angle between the first and high-

er harmonics of the lift force and the maximum in-line force.

A perusal of the data has shown that there are many instances

where the two forces occur almost simultaneously. It is evi-

dent from the foregoing discussion that what is most impor-

tant for the design of structures in such flows is not the

drag and inertia coefficients for the in-line force but

rather a total force coefficient which fully accounts for

both the in-line and the transverse forces.

The dependence of C„ and C„ on the Reynolds number was

investigated by plotting both coefficients as a function of

Reynolds number for various values of V T/d. As seen fromJ m '

figures 22 and 23 neither of the two coefficients depend
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upon Reynolds number within the range of Reynolds numbers

investigated.

B. SPHERE DATA

The inertia and drag coefficients calculated through the

use of equations (29) and (30) are presented in figures 24

and 25. The inertia coefficient starts at its theoretical

value of 1.5 and gradually drops to about unity for V T/d-15.

The sphere data show considerably less scatter than those

for the cylinder. Apparently, the added mass coefficient of

a sphere in periodic flow could drop below its theoretical

value of 0.5 for V T/d larger than 15.
m '

The drag coefficient shown in figure 25 gradually rises

to about 0.8 at V T/d - 18 and then decreases very slowlv

with increasing values of the period parameter. Comparison

of the C„ and C„ values with those obtained with the cylinder
M D

shows that whereas in the case of cylinder C., exhibits a min-

imum at about V T/d =12, in the case of spheres, it de-

creases gradually, as noted above. On the other hand, CL

values follow similar trends.

The dependence of C,. and C„ on the Reynolds number was

investigated by plotting both coefficients as a function of

the Reynolds number for various values of V T/d. (See fig-

ures 26 and 27). Apparently, neither of the two coefficients

depend upon the Reynolds number within the range of Reynolds

numbers investigated.

The percent error X* given by equation (35) was calcu-

lated for the sphere and is presented in figure 28.
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Evidently the maximum value of A* may be as high as 15% at

V T/d values of about 12 and 22. The reasons for the occur-m '

rence of the maximum errors at the particular V T/d valuesr m

is not easy to explain. The first maximum takes place at

the V T/d value where both the drag and inertial forces are

quite significant and the maximum force is nearly 100 degrees

out of phase with the maximum velocity as seen in figure 29.

The second absolute maximum of X* occurs at a V T/d value
m

where the maximum force and the maximum velocity are nearly

in phase.

Finally, the variation of C_ with C„ is shown in figure
u M

30. The data show a trend similar to that presented for the

cylinder. Although, these coefficients are averaged over a

cycle and thus do not represent their instantaneous varia-

tions over a cycle, the existence of a unique relationship

between them is evidenced by figure 30.
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V. CONCLUSIONS

The data presented herein warrant the following conclu-

sions :

1) A U-shaped channel is ideally suited for the genera-

tion of perfectly harmonic flow oscillations about bluff

bodies. Even though the period of the oscillations must be

kept constant, the variability of the amplitude of oscilla-

tions and the size of the test bodies enable one to vary the

basic parameters of the investigation. Furthermore, some of

the difficulties (e.g. undesirable vibrations, the separa-

tion of the inertia of the test body, etc.) encountered in

the experiments conducted by oscillating the test bodies are

completely eliminated.

2) The drag and the inertia coefficients obtained for

the circular cylinder follow in essence those obtained by

Keulegan and Carpenter. The present data are considered to

be more accurate and reliable, particularly for the inertia

coefficient, than those obtained by Keulegan and Carpenter.

3) The finding that there is no noticeable correlation

between the Reynolds number and the drag and inertia coeffi-

cients confirms the similar conclusion reached by Keulegan

and Carpenter within the range of Reynolds numbers encoun-

tered.

4) The above conclusions which mainly concern the con-

firmation of Keulegan and Carpenter's historic data raise

the important question that the scatter noted in the C.. and
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C„ values obtained from the experiments conducted in ocean

and noted by Wiegel [Ref. 36] may not be entirely due to the

difficulty of the experimentation or due to the experimental

errors. The scatter may rather be due to an additional fac-

tor not present either in Keulegan and Carpenter's work or

in the present work. It may be conjectured that the effect

of the ever present ocean currents on wave-generated oscil-

latory flow and possibly very large Reynolds numbers, for

which the flow may become critical and the boundary layer

about the body turbulent, may be responsible for the observed

scatter. This aspect of the problem is currently being in-

vestigated through the use of an oscillating flow water tun-

nel.

5) The most important and previously unexplored finding

of the present investigation is that the lift or the trans-

verse force is as large as the in-line force. The frequency

of the alternating force depends on V T/d and various fre-

quencies may occur in a given cycle. These frequencies may

occur at the frequency of the flow oscillations and at two,

three or four times the flow oscillations. It is also pos-

sible that additional harmonics may be superimposed on these

oscillations. These findings make it mandatory that the

forces acting on cylinders be calculated by considering the

vectorial sum of the in-line and transverse forces. One

must also consider various frequencies of oscillation in

assessing the fatigue characteristics and the structural in-

tegrity of piles.

75





6) In view of the significant contribution of the lift

forces to the total force one must also raise the question

as to whether undue amount of effort and attention have been

given in the past to the determination of the components of

the in-line force and to the use of the Morison equation for

the prediction of the forces acting on cylinders when the

transverse force is as much as or larger than the in-line

force. It appears from the discussion of the total force

coefficient that there is a fairly good correlation between

the total force coefficient and V T/d. It also appears that

the largest value of the said coefficient occurs at V T/d-10,
m

The use of such a coefficient together with a knowledge of

the frequency of lateral oscillations may be more meaningful

than the use of the Morison equation which deals only with

the prediction of the in-line forces.

7) The force coefficients for the sphere follow in gen-

eral the same trends as noted for those for the in-line

force acting on cylinders. No attempt was made to measure

the lateral forces acting on spheres. Apparently, these are

more random in nature and thus more difficult to couple with

the in-line forces to determine a total force coefficient in

terms of V T/d. The sphere data, like the cylinder data,

show that there is no correlation between the force coeffi-

cients and the Reynolds number within the range of Reynolds

numbers investigated.
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VI. RECOMMENDATIONS FOR FURTHER STUDIES

In view of the success achieved with the oscillatory flow

channel used in the present investigation it is recommended

that the experiments by extended to higher Reynolds numbers

(approximately 10 6
) in a similar but larger channel and the

in-line and transverse forces be measured and analyzed in

the same manner for cylinders, spheres and plates placed not

only in the middle of the test section but also close to one

of the walls of test section. The latter type of experiments

will increase our understanding of the forces acting on

large pipe lines, placed on or near the ocean bottom.

77





APPENDIX A

Computer Programs

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C AVERAGE CD AND CM CALCULATIONS FCK CYLINDERS C
C C
C TIME=DIMENSICNLES TIME (TIME/PERIOD) C
C BETA=DIMENS1GNLES DISPLACEMENT ( Uf^AX*PER/DI A ) C
C CL=CYLINDER LENGTH IN FEET C
C DIA=DIAMETER CF CYLINDER IN FEET C
C AMP=AMPLITUDE OF MOTION IN FEET C
C PER=PERIGD IN SECS (CHART PERIOD/CHARTSPEED

)

C
C ZI = FORCE COEFFICIENTS C
C CM=INERTIA COEFFICIENT C
C CD=DRAG COEFFICIENT C
C PEMF=REMAINDER FUNCTION C
C AI,BI=FGUR1ER COEFFICIENTS C
C N=NUMBER OF DATA SETS C
C CN=CONVERTION FACTOR C
c c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

G=32.174
RhC=62.4/G
PI=3. 14159
CNU=0. 0000105
CL=1.4946

C
C INITIATE DATA SETS
C

N = l
DO 100 1=1,

N

C
C READ IN PARAMETERS WHICH CHARACTERIZE THE DATA SET
C

READ(5, 10)DIA,AMP,PER,NCARD,UMX,CN
C
C COMPUTE FORCE COEFFICIENTS
C

Z1=2*PER**2/(PI**3*DIA**2*CL*RHC*AMP)
Z2=-3*PER**2/(8*RH0*DIA*PI*CL*AMP**2)

C
C COMPUTE BETA
C

BETA=2*PI*AMP/DIA
C
C COMPUTE REYNOLDS NUMBER
C

REYNO=(UMX*DIA)/CNU
C
C PRINT OUT PARAMETERS AND COEFFICIENTS
C

WRITE(6,15)DIA,AMP,PER,Z1,Z2,UMX,CN
WRITE(6,20)
TIME=0.0
CM=0.0
CD=0.0
DELTAT=0. 034965

C
C START DATA REDUCTION
C

DO 200 J=1,NCARQ
READ(5»25IF
F=CN*F
ALPHA=2*PI*TIME
SINA=SIN( ALPHA)
COSA=COS( ALPHA)
FSINA-DELTAT*F*SINA
FCGSA=DfcLTAT*F*COSA
CM=FS1NA+CM
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c
c
c

200

c
c
c

00
00
10
15

CD=FCOSA+CD

PRINT CUT COMPONENTS FOR DRAG ANC INERTIA COEFFICIENT

WRITE (6,30) TIME, ALPHA, COSA, SINA, F, FCOSA , FS I NA
TIME=TIME+DELTAT
CONTINUE
CM=Z1*CM
CD=Z2*CD
WRITE(6,35)
WRITE(6,40)CM,CD,BETA,REYN0

COMPUTE REMAINDER FUNC

.

ANGLE=0.0
WRJTE(6,45)
T1ME=0.0
DO 300 K=1,NCARD
READ(5,55)F
F=CN*F
THETA1=( (2.0*PI)/36G)*ANGLE
C1=(ABS(C0S(THETA1)J }*CQS< THETA1)
C2=RH0*((UMX**2.0)/2.0)*DIA*CL
C 3= (( PI **2)*D I A* SIN (THE TAD )/(UMX*PER)
F1=(CM*C3-CD*CU
F=F/C2
REMF=F-F1
WRITE.(6,50)TIME,F,F1,REMF
ANGLE =12. 12938+ ANGLE
TIME=TIME+DELTAT
CONTINUE
CONTINUE
F0RMAT(2F10.4,I10,F10.4,F10.6)
FORMAT (

• 1* ,iOX, DIA= {
, FS.4, 5X,

1F8.4,5X,'Z1=»
2 , CN=« »F10.6)

20 FORMAT CO' ,3X

• AMP=«
,F8.4,5X,«Z2= f ,F9.4,5X, •UMX=* , F8.4, 5X,

25
30
35
40
45
50
55

3* fSXt'F' ,11X,«FC0SA«
FCPMAT(F10.4)

TI ME/PER • ,7X,» ALPHA', 7X, ' COSA* , 8X, • SI NA
SXj'FSINA'

)

FORMAT ( '0' ,7F12.4)
FORMAT ( '0» ,7X, CM* • ,7X, «CD=' ,7X, •6ETA=' ,7X, •REYNO= l

)

FCRMATC J 0» ,4F12.4)
FORMAT t»0' ^Xj'TIME' , SXt'F* ^Xt'Fl 1 ,9Xr-' KEMF« )

FORMAT( 'O* ,4F12.4J
FGRMAT(F10.4)
STOP
END
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C AVERAGE CD AND CM CALCULATIONS FCR SPHERES C
C C
C TIME=DIMENSIONLES TIME (TIME/PERIOD) C
C BETA=DIMENSIGNLES DISPLACEMENT UMAX*PER/DI A ) C
C DIA=DIAMETER OF SPHERE IN FEET C
C AMP=AMPLITUDE OF MOTION IN FEET C
C PER=PERIOD IN SECS (CHART PERIOD/CHARTSPEED

J

C
C ZI=FCRCE -COEFFICIENTS C
C CM=INERTIA COEFFICIENT C
C CC=DRAG COEFFICIENT C
C REMF=REMAINDER FUNCTION C
C AI,BI=FOURIER COEFFICIENTS C
C N=NUMBER OF DATA SETS C
C CN=CGNVERTION FACTOR C
c c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

G=32.174
RH0=62.4/6
Pl=3. 14159
CNU=0.0O0OlG5

C
C INITIATE DATA SETS
C

N = l
C
C READ IN PARAMETERS WHICH CHARACTERIZE THE DATA SET
r

DO 100 1=1,

N

RE ADC 5, 10)DIA,AMP,PER,NCARD,UMX,CN
C
C CCMPUTE FORCE COEFFICIENTS
C

Z1=3*PER**2/ ( ( PI**3 )*{ DIA**3) *RHG*AMP)
Z2=-3*PER**2/(2*RH0*(PI**2)*(DIA**2)*(AMP**2I I

C
C CCMPUTE BETA
C

BETA=2*PI*AMH/DIA
C
C COMPUTE REYNOLDS NUMBER
C

REVNO=(UMX*GIA)/CNU
C
C PRINT OUT PARAMETERS AND COEFFICIENTS
C

WRITE(6,15)DIA*AMPiPERtZlfZ2iUMX fCN
WRITE(6,2G)
TIME=0.0
CM=0.0
CD=0.0
DELTAT=0. 034965

C
C START DATA REDUCTION
C

DO 200 J=1,NCARD
READ(5,25) F
F=CN*F
ALPHA=2*PI*TIME
SINA=SIN(ALPHA)
COSA=COS( ALPHA)
FSINA=DELTAT*F*SINA
FCOSA=DELTAT*F*COSA
CM=FSINA+CM
CD=FCOSA+CD

C
C PRINT OUT COMPONENTS FOR DRAG AND INERTIA COEFFICIENT
C

WRITE <6 f 30 JTIME, ALPHA, COSA,SINAf F, FCOSA, FSINA
TIME=TIME+DELTAT
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200 CONTINUE
CM*Z1*CM
CO=Z2*CD
WRITE(6,35)
WRITEf6,40)CMtCDtBETA»REYNO

100 CONTINUE
10 FORMAT (3F1 0.4, I10,F10.4,F10.6)
15 FORMAT (

• 1« ,10X,«DIA=* , F8„4,5X, • AMP=' , F8 .4, 5X,

«

PER = •

,

1F8.4,5X ? «Z1=* ,F8.4 ? 5X, , Z2=« ,F9 .4 , 5X, UMX=' , F8.4,5X,
2«CN=' .F10.61

20 FCPMAT (' Ci
1 ,3X, 'TIME/PER 1

, 7X,« ALPHA* ,7X, 'COS/*' ,8X, «SINA
3' ,5X, 'FM1X, 'FCQSA' ,8Xt«FSINA« J

25 FCRMATCF10.4)
30 FORMAT( '0« , 7F12.4)
3 5 FORMAT { «0« ,7X, 'CM^ 1 ,7X, , CO=',7X, 'BETA=» , 7X, «REYNO='

)

40 FCRMATl'O* ,4F12.4)
STOP
END
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ccccc cccccccccccccccr.ee ccccccccccccccccccccccccccccccccccccc
C MAX. LIFT COEFFICIENT CALCULATION C
C FOR CYLINDERS C
C c
C CMLC= MAX. LIFT COEFFICIENT C
C UMX= MAX. VELOCITY C
C F=MEASURED LIFT FORCE C
C CF= CALIBRATION FACTCR FOR FORCE C
C Z = ELEVATION C
C CZ = CALIBRATION FACTOR FOR ELEVATION C
C CL= LENGTH OF THE CYLINDER C
C OIA= DIAMETER OF THE CYLINDER C
C BETA-MAX. VELOCITY*PERIOD/DIAMETER C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCC

PFC=1.9394
CL-1.4946
PI=3. 1415926
K = 2
DO 200 J=1,K
READC5fl) DIA,CF,CZ,N
WRITE<6,50)
WRITE(6,10) DIA,CF,CZ,N
WRITE(6,30)
l*RITE(6,40)
DO 100 1 = 1,

N

READ(5,2) ZtF
F=F*CF
Z=(Z*CZ)/12.0
UMX=2. 1969179*Z
8ETA=UMX*2.86/DIA
UMXSQ=<UMX**2)/2.0
CMLC=F/ (RHO-UMXSw^DIA^CLi
WRITE(6,20) BETA,F,CMLCfUMX,Z

100 CONTINUE
200 CONTINUE

1 F0RMAT(3F12.6,I4)
10 FORMAT ( 'O 1 ,10X, ' DIA=' , F8.6,5X, 'CF=' , F8. 6 , 5X , ' CZ= • ,F8.6

1,5X, , N=», 12)
2 F0RMATC2F12.6)

20 FORMAT ( 'O* , 10X , F6. 2 , 10X

,

F8. 6, 10X , F6.3 , 25 X, F6. 4, 10X

,

2F6.4)
30 FORMAT ( 'O*

)

40 FORMAT ( «0« il2X, 'BETA' ,13X,«FL» t 14 X, CMLC , 2 7X, » UMX '

,

SlAXt'Z 1
)

50 FCRMAK'O 1
)

STOP
END
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APPENDIX B

Error Results

V T/d =7.21

t/T

0.0

0.0350

0.0699

0.1049

0.1399

0.1748

0.2098

0.2448

0.2797

0.3147

0.3496

0.3846

0.4196

0.4545

0.4895

0.5245

0.5594

0.5944

0.6294

0.6643

0.6993

0.7343

0.7692

0.8042

0.8392

0.8741

0.9091

0.9441

0.9790

0.1808

0.0802

-0.0007

-0.0063

-0.0085

0.0376

-0.0204

-0.0871

-0.1508

-0.1075

0.0438

0.2024

0.3429

0.3841

0.2742

0.1152

0.1090

0.1184

0.1612

0.1261

0.1282

0.1590

0.2415

0.1864

0.1375

-0.0165

-0.0540

0.0508

0.1626

83





V T/d = 11.79m '

t/T

0.0

0.0350

0.0699

0.1049

0.1399

0.1748

0.2098

0.2448

0.2797

0.3147

0.3496

0.3846

0.4196

0.4545

0.4895

0.5245

0.5594

0.5944

0.6294

0.6643

0.6993

0.7343

0.7692

0.8042

0.8392

0.8741

0.9091

0.9441

0.9790

0.1416

0.1392

0.0897

0.0292

-0.0146

-0.0463

-0.0687

-0.1056

-0.1725

-0.1604

-0.0407

0.1512

0.2489

0.1882

0.0412

0.0215

0.0408

0.0813

0.0798

0.1240

0.1042

0.1653

0.1867

0.2226

0.1327

-0.0216

-0.1294

-0.0124

0.1133
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V T/d = 17.26

t/T

0.0

0.0350

0.0699

0.1049

0.1399

0.1748

0.2098

0.2448

0.2797

0.3147

0.3496

0.3846

0.4196

0.4545

0.4895

0.5245

0.5594

0.5944

0.6294

0.6643

0.6993

0.7343

0.7692

0.8042

0.8392

0.8741

0.9091

0.9441

0.9790

0.0120

0.0258

-0.0174

-0.1117

-0.0922

-0.0531

-0.0383

0.0406

0.1073

0.0754

-0.0553

-0.0829

0.0692

0.0745

-0.0306

-0.1331

-0.2217

-0.3000

-0.2443

-0.1767

-0.1346

-0.1083

-0.1230

-0.1435

-0.0751

-0.0519

-0.1982

-0.0822

0.0441
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V T/d = 28.0

t/T

0.0

0.0350

0.0699

0.1049

0.1399

0.1748

0.2098

0.2448

0.2797

0.3147

0.3496

0.3846

0.4196

0.4545

0.4895

0.5245

0.5594

0.5944

0.6294

0.6643

0.6993

0.7343

0.7692

0.8042

0.8392

0.8741

0.9091

0.9441

0.9790

0.0336

-0.0117

-0.0259

-0.0188

-0.0499

-0.0632

-0.0646

-0.0259

0.0370

-0.0047

0.0201

0.0968

0.0642

-0.0421

-0.0211

-0.1366

-0.2056

-0.2148

-0.1989

-0.1850

-0.1611

-0.1286

-0.1396

-0.1824

-0.1464

-0.1637

-0.1100

-0.0640

0.0247
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V T/d = 42.69

t/T

0.0

0.0350

0.0699

0.1049

0.1399

0.1748

0.2098

0.2448

0.2797

0.3147

0.3496

0.3846

0.4196

0.4545

0.4895

0.5245

0.5594

0.5944

0.6294

0.6643

0.6993

0.7343

0.7692

0.8042

0.8392

0.8741

0.9091

0.9441

0.9790

0.0453

-0.0276

0.0294

0.0178

0.0138

0.0120

-0.0094

-0.0234

0.0405

0.0150

0.0503

0.1239

0.0555

-0.0130

0.0188

-0.0454

-0.1663

-0.2912

-0.1382

-0.1558

-0.1100

-0.0568

-0.0571

-0.0893

-0.0884

-0.2306

-0.1519

-0.0727

0.1086
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