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ABSTRACT

A microcomputer program to solve the complex task of

air-borne navigation was developed to demonstrate the

practicality of replacing costly general purpose digital

computers with relatively inexpensive dedicated micro-

computers on-board naval aircraft. The microcomputer

program showed that microcomputers have sufficient speed

and accuracy to solve the navigation problem. In order

to overcome the microcomputer's major deficiencies, speed

and accuracy, special arithmetic subprograms based on

table look-up were developed to trade inexpensive memory

for more speed. An application of graph theory in the form

of process graphs was made to facilitate the development

and documentation of the navigation program. To aid in

the testing of the microcomputer program, a Fortran simu-

lation program was developed to confirm the results of an

error bound analysis of the navigation program.
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I. INTRODUCTION

Current naval aircraft are depending more and more on

airborne digital computers. The digital computer has proven

to be a great aid, providing the precision and speed required

to perform many calculations. The digital computer is very

versatile, because the same computer can be programmed to

perform new or different tasks. The only limitations to

the use of digital computers are those of cost and

maintenance requirements.

The digital computers currently used by such naval

aircarft as the P3C, A6E, A7E, and S3A are all large general

purpose computers. These computers are very fast, flexible,

but expensive. The large size, large power requirements,

and great cost has limited each aircraft to one such com-

puter. The complexity of these computers has made main-

tenance difficult. The large cost of each unit makes spares

prohibitive, therefore one computer going down results in

the operational loss of one aircraft.

It is advantageous to utilize several small distributed

computers to meet all of the systems requirements. In

order to minimize the probability of the entire system

failing due to the failure of a single component in a cri-

tical computer circuit, completely separate computers could

be used for the various system requirements with back up

computers ready to fill in when needed. In addition to

in





reliability Improvements, a distributed approach offers

the possibility of using less complex equipment, flexibility

in matching equipment to system requirements, and increased

standardization. The limitation of this approach is the

increased cost, weight, size and the complexity of system

interconnections

.

The creation of the microcomputer, using new developments

in the Large Scale Integration (LSI) technology, has made

the distributed computer system possible. The microcomputer

is a complete general purpose computer on a set of four

standard LSI chips. The LSI chip measures 200 mils by 200

mils, requires less than one watt of power and costs about

$30. The processors Central Processing Unit (CPU), constructed

on a single chip, is designed to be used in a multiprocessor

environment. The limitations of a microcomputer are a

limited instruction set and slow speed.

This thesis is a design study of the possibility of

using the MCS-^I microcomputer as the Avionics Navigation

Computer in a complex navigation system. Section II dis-

cusses what a microcomputer is, v/hat microcomputers are

currently available, and what is the system makeup of the

MCS-'l microcomputer used in this report. Section III des-

cribes the navigatin systems currently available, what their

advantages and limitations are, and the navigation system

chosen for this report. The navigation equations used to

compute the current position of the system's carrier are

discussed in Section IV. The actual programming of the

15





microcomputer is discussed in detail in Section V. This

includes the programming aids developed in this report, a

program analysis of the requirements of this system, a

detailed discussion of the executive routine and the sub-

routines used in this program, and an error bound analysis

of the final program. Section VI describes the FORTRAN

simulation program written to aid in the writing, debugging,

and testing of the final navigation program. The conclusions

of this report are summed up in Section VII. The listing

of both the MCS-JJ microcomputer navigation program and the

FORTRAN simulation program' are included in the Appendices.

16





II. MICROCOMPUTER

A microcomputer is a general-purpose digital computer

constructed from a set of LSI chips. It has a complete

Instruction set and is capable of addressing sizeable memo-

ries. It can interface with a full complement of input and

output devices.

The main component of a microcomputer is the micro-

processor. The microprocessor is a CPU on a chip that

Interprets and executes instructions in a bit-parallel

fashion. Included on the CPU chip are the Index registers.

Arithmetic unit and Input/Output control logic.

The main feature that distinguishes a microprocessor

from a general purpose or minicomputer CPU is that the

entire CPU is on one chip. This has been made possibly by

Large Scale Integration, where over 14,000 Metal-Oxide Semi-

conductor transistors can be put on one chip. A minicomputer

CPU v/ith the capability of one microprocessor would require

over 100 TTL packages. The major advantages of micropro-

cessors are low cost, low power requirement, and less com-

plexity in system design. Figure 1 is a photomicrograph

of the 4004 CPU chip used in the MCS-4 Microcomputer.

The microprocessor becomes a microcomputer when a con-

trol program, memory, and input/output circuits are added

to the system. The control program is usually Metal-Masked

on a Read-Only Memory (ROM) chip, however, a Programmable

17





Figure 1. Photomicrograph of '4004 CPU
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Read-Only Memory (PROM) may be used for initial system

development. The storing of data or variables in a program

is handled by the Random Access Memory (RAM) chip which is

a read/write type memory. The input/output ports are incor-

porated on the RAM, ROM, or CPU chip or any combination

of these chips. The total chip area of a typical micro-

computer is 200 mils by 200 mils and costs less than $200.

Microcomputers have been used in specialized, single

user data processing systems and as components in digital

products. Microcomputers are currently being used in cal-

culators, special purpose terminals, measurement systems,

Intelligent traffic controls, small business computers, and

digital cash registers. Research is in progress to use

microcomputers in intelligent peripherals, multiplexors

and communications controllers, automotive control systems,

and educational systems. Microcomputers can also be used

in large computer systems to relieve the large central

processor of much of the overhead associated with scheduling,

text editing, and file management.

Microcomputers major application will be in the area of

dedicated computations. They provide all the data processing

power needed for these applications. These areas include

computational tasks required by NTDS , TSC , and most current

naval aircraft.

The following is a list of advantages of microcomputers:

1. Reduced costs due to reduction in number of logic

card types.

19





2. Self test capability.

3. Equipment modularity.

4. Equipment commonality.

5. Ease in design changes through microprogram.

6. Reduced logistic support.

7. Standardization of peripheral interfaces.

8. Multiprocessor capability.

The total savings in cost, power required, and size,

together with the flexibility inherent in the system, make

the microcomputer a powerful tool for system design of

dedicated computational tasks.

A. COMPARISON OF MICROCOMPUTER WITH GENERAL PURPOSE COMPUTER

The general purpose computer and microcomputer represent

the two extremes on the computer scale. The general purpose

computer is large in size, very expensive, requires much

power, and is very fast. The microcomputer is small, inex-

pensive, requires little power, and is relatively slow in

comparison. The general purpose computer is built using

Integrated Circuits (I.C. Technology), while the microcom-

puter is built from Large Scale Integration Techniques (LSI

Technology). The great cost savings of LSI Technology in

computer design can best be shown by comparing the cost of

designing and manufacturing a 3000 gate logic unit using

I.C. techniques versus the LSI techniques.

The cost of manufacturing a computer system can be

expressed by the following formula:

20





CS = Z [(CM(i) + CT(i))V(i) + CG(i)]
i=l

where

CS E Cost of System

CM(i) = Cost of Manufacturing the i-th Replaceable
Module

CT(i) e Cost of Testing the i-th Replaceable
Module

V(i) e Number of Modules used in the system of

the i-th type

CG(i) e Cost of generating the i-th Replaceable
Module, including design, layout, test
condition generation, etc.

The cost of manufacturing the computer system from I.C.

circuits was estimated using figures from people knowledgeable

in this area, however, documentation of these figures was

not available.

The cost of manufacturing and the cost of testing an

individual I.C. module was assumed to be independent of the

type of I.C. module because of standard means of manufac-

turing and testing these units. This assumption simplifies

the "cost of system" equation as follows:

CM(i) = CM

CT(i) = CT

21





n
CS = (CM + CT) V + E CG(i),

i=l

where

n
V = I V(i).

i=l

I.C. technology does not permit highly complex functional

circuitry to be placed on one module. The typical module

consisting of sixteen pins contains eight gates. A 3000

gate logic pattern would therefore require V = 360 modules.

The technology typically used by computer manufacturers

permits 60 modules to be assembled on one panel which pro-

vides all the interconnections between the modules. The

system would then require six panels at an estimated cost

of $100 per panel.

In determining the number of distinct modules used, it

was assumed that about one-half of the modules used in the

system are duplicates of previously designed modules, n = 180

The cost of designing one nev; module was estimated to be

$250. The total cost of one system was computed as follows:

CM = $20

CT = $ 5

v = 360

CG(i) = $250

22





n = 180

CS = (CM + CT) + CG(i) + 600

CS = 9,000 + 45,000 + 600 = 5^,600

To produce this unit in large numbers, the cost of manu-

facturing and testing the modules and panels is multiplied

by the number of units produced while the cost of designing

remains unchanged. The cost of 1000 units could be predicted

as follows:

cs(iooo) = 9000(1000) + 45,000 + 600(1000)

Total Cost of 1000 units =$9,645,000

Next the cost of developing and manufacturing a 3000

gate logic unit using LSI technology was investigated. The

cost estimates for this analysis were obtained from a trip

to Intel Corp., Santa Clara, California. The LSI design

cost of the 8008 CPU chip used in the MCS-8 Microcomputer

was used as an indication of the cost associated with manu-

facturing the required logic unit by LSI technology.

The entire design and layout of the 8008 CPU was done

exclusively by hand and took a total of four man-years.

The approximate cost of developing this chip is estimated

at $100,000. The total manufacturing and testing costs of

23





the chip is $15. Since all the logic gates are on one chip,

there are no other costs associated with the unit. The

cost of one system is therefore:

CS = (15) (1) + 100,000 +

CS = $100,015

Again, the cost of producing the system in large quan-

tities, the design cost remains fixed v/hile the manufacturing

and testing costs are multiplied by the number of units.

The cost of 1000 units using LSI technology is as follows:

CS(1000) = (15)(1000) + 100,000

Total cost of 1000 units = $115,000

It was concluded from these calculations that LSI

technology could produce the system in quantity about 80

times cheaper than by I.C. technology.

It was concluded from this analysis that the microcom-

puter has a tremendous cost advantage over general purpose

computers in systems produced in large quantities with a

need for a dedicated computer. The object of this thesis

is to demonstrate that the microcomputer also has the speed

and computational power to handle complex tasks.
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B. COMPARISON OF MICROCOMPUTER WITH MINICOMPUTER

The minicomputer was developed to meet the need for

dedicated systems to handle data processing requirements

such as communications control, data acquisition, and small

business accounting. The microcomputer is proving itself

capable of handling these tasks with improved price/perfor-

mance, compactness,__and_reliability

.

The greatest advantage the minicomputer has over the

microcomputer is speed. The LSI chips used for microcom-

puters are made using Metal Oxide Semiconductor, MOS
,
tech-

nology. MOS technology allows smaller size of individual

transistors, and logical circuits together with low power

consumption. The electrical properties of MOS circuitry,

however, make it slower than the Bipolar circuitry used in

minicomputers. In order to increase thejtomput atlonal speed

of microcomputers, many microcomputer—makers are switching

from the slower P-channel MOS devices to the much faster

N-charmeT~MOS devices. By using microprogramming techniques

such as pipelining, the computational speed of microcomputers

can become as fast or faster than minicomputers.

The next advantage the minicomputer has over the micro-

computer is in the instruction set size. The first genera-

tion microcomputers were limited to between 10 to 60 instruc-

tions while the minicomputers had instruction sets in the

100-120 range. The gap here is also closing with the. second

generation microcomputers having instruction sets of 50-100

instructions.

25





The last major advantage of the minicomputer is the

existing software developed over the past several years to

assist program development. T£Lfch__the development of high

level programming languages (PL/M for the Intel 8008 and

8080), the microcomputers are quickly eliminating this

advantage of the minicomputers

The microcomputer offers better price/performance,

lower power consumption, smaller size and higher reliabil-

ity than minicomputers. Although a single microcomputer

can not match the power of a minicomputer, several micro-

computers can be combined to share the workload at a cost

still less than a minicomputer. An added advantage of

multi-microcomputers is processor reliability which can be

increased through the use of back-up processors, providing

a self-test and repair capability.

Table I is a summary of the comparison of microcomputers

and minicomputers.

C. CURRENTLY AVAILABLE MICROCOMPUTERS

The number of microcomputers being designed and currently

available is increasing rapidly. This section covers eight

microcomputers that are currently available or will be in

the near future. Table II is a summation of the capabilities

and support available for each microcomputer.
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MINICOMPUTER MICROCOMPUTER

CPU Cost

Instruction Speed

Execution Speed
(Memory to Memory Add)

Instruction Set

Price/Instruction Ratio

Registers

Price/Register Ratio

Memory Size

Performance /Price
Word Length .

( )v Add Time x Price

Pov;er Consumption

Reliability (CPU)

$1500 $30

2-5 msec 10-20 msec

5-20 msec 15-60 msec

100-150 50-100

$80-$300 $40

1-30 16-100

$300 $15

64K 64K

200 (Bits
Sec-Dollar)

100 (Bits
Sec-Dollar)

H Watts 1 Watt

Less (Due to
100 TTL Packages)

Greater (Due to
One LSI Chip)

TABLE I. MICROCOMPUTER VERSUS MINICOMPUTER

27
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1. Intel MCS-4

The MCS-4 is a four-bit parallel processor with a

fixed instruction set. The 4004 CPU is a P-Channel MOS LSI

chip mounted on a l6-pin package. A four-bit data bus

connects the CPU with up to 16 ROMs and 16 RAMS. The

instruction cycle is 10.8 microseconds.

The instruction set used by the MCS-4 consits of

45 instructions grouped into three categories: Machine,

Input/output, and accumulator. System development aids

include a cross assembler available on the IBM 360/67 located

at the Naval Postgraduate School. The SIMQ4-02 Hardware

Prototyping System with Assembling, Programmable-ROM

Programming, and Debugging capability is also available

at the NPS microcomputer lab.

The MCS-4 Microcomputer was chosen as the navigation

microcomputer in this thesis. The MCS-4 is covered in more

depth in Section II. D.

2. Intel MCS-8

The MCS-8 uses the 8008 single CPU chip. The 8008

is an eight-bit fixed instruction set parallel processor

mounted in an 18-pin package. The 8008 executes a single

instruction in 20 microseconds. The 8008 is capable of

addressing 16K bytes of memory. An eight-bit data bus

interfaces the processor with memory. A total of 48 instruc-

tions are available broken into four groups: Instruction
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Register, Accumulator, Program Counter and stack control,

and Input/Output.

System Development aids include a cross assembler

available on the IBM 360/67 at the Naval Postgraduate School.

The SIM8-01 Prototyping System with programmable and erasable

ROMs is available in the NPS microcomputer lab for develop-

ment and check-out of microprograms. The development of

the PL/M Higher Level Language patterned after PL/I for

the MCS-8 greatly facilitates the programming task. The

PL/M compiler is also available on the IBM 36O/67 at NPS.

Lastly the INTELLEC-8 system, available in the NPS micro-

computer lab, makes available to the programmer a resident

software monitor, assembler, PROM programmer, and text

editing capability to aid in the development of micropro-

grams for the MCS-8.

3. Intel 8080 —
The Intel 8080 is the first of the second generation

microcomputers. The 808O derives more speed and capability

by using the more efficient N-Channel MOS . The 8080 CPU

is a single-chip eight-bit parallel processor in a ^0 pin

package. The 8080 contains six eight-bit data registers,

an eight-bit accumulator, three eight-bit temporary regis-

ters, four testable flags, and an eight-bit arithmetic/logic

unit. The execution time for one instruction is 2 micro-

seconds.

The 8080 can directly access 6'!K bytes of memory.

A separate lC-bit address bus is provided as well as ten
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control lines that indicate CPU and I/O bus status. Up to

256 I/O devices can be directly addressed. Multiprocessor

capability is designed into the MCS-808O.

The 8080 is software compatible with the 8008 micro-

processor. The 8080 instruction set contains the 48 instruc-

tions of the 8008 plus 26 new instructions for a total of "Jk.

The 8080 is capable of unlimited subroutine nesting.

System development aids include a cross assembler,

INTELLEC 8080 simulator, and the PL/M higher level program-

ming language.

4. AMI 7300

The AMI 7300 is an eight-bit fully parallel, bus-

oriented processor. The processor consists of two chips,

the Micro instruction ROM chip (MIR) and the registers-

adder logic unit chip (RALU) . Both chips are P-Channel MOS

and each is packaged in a 40-pin dual-inline package (DIP).

The MIR contains a mask-programmable 512 word x

22 bit microinstruction ROM and a programmable instruction

mapping array, allowing up to 50 microprogram locations to

be predefined for macroinstruction decoding. This allows

the instruction set to be tailored to suit a particular

application. A hardware address stack and loop counter

allows subroutine nesting to seven levels.

The RALU contains 'l 8 registers which may be utilized

as one or two first-in/last-out stacks or as one or two

files of general registers. The eight-bit adder/subtractor

performs over 30 arithmetic and logical operations. The
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instruction set consists of three basic formats: Register

control, literal and branching. The processor can address

up to 64 K of memory.

Software development aids include a cross assembler

and instruction simulator.

5. Fairchild PPS-25

The PPS-25 is a BCD oriented 25-digit serial/parallel

processor. The system is best suited to decimal applications

such as calculators, keyboard/printer interface, and vending

machines. Four level subroutine nesting and three way condi-

tional branching are provided. The system can be micro-

programmed with a custom instruction set to best meet the

needs of the user.

Program storage consists of up to 26 ROMs, each

capable of storing 256 twelve-bit words. Seven general

purpose 25-digit registers are provided and an external

interrupt capability is included.

The 3805 Arithmetic Chip includes the Adder/Subtractor

plus a 25-digit register. The instructions are located in

the 3810 ROM. A total of 30 arithmetic/logic and 16 I/O

instructions are available with the standard set. The I/O

format permits expansion to 63 I/O instructions.

Software development aids include a cross assembler

and instruction simulator.

6. National Semiconductor GPCP/IMP-]

6

The GPCP sixteen-bit microcomputer processor consists

of five MOS LSI chips, each mounted in a ^0-pin DIP. The
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five chips consist of four RALU chips and one CROM (Control

Read Only Memory). Each RALU chip is a four-bit slice of

CPU with its own registers, ALU logic, and I/O data lines.

Multiple CROMs may be used to increase the size of the

Instruction set.

The RALU consists of a four-bit program counter,

four-bit memory data register, four-bit memory address

register, four-bit accumulator, a pushdown stack, data

multiplexer, and four-bit arithmetic and logic unit. The

system may be expanded to 32 bits by adding four more RALU

chips.

The CROM contains the control instructions for the

RALU chips. The CROM is broken into two parts, an instruc-

tion ROM containing 100 twenty-three-bit words and an address

control ROM consisting of 12 programmable ten-bit words.

The IMP-16 is a sixteen-bit microcomputer developed

to use the GPCP microprocessor. The CROM provided with the

system contain a 4 3 word instruction set. The instruction

set may be expanded to meet the system designer's specific

needs. Communication between the RALU chips and the CROM

chip is over a sixteen-bit data bus and a four-bit control

bus. This requires sixteen extra TTL packages excluding

memory and timing.

Software development aids include a cross assembler

and prototyping system with resident monitor, assemblers,

and linking loader.
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7. North American Rockwell PPS-4

The PPS-4 microcomputer consists of a set of six

MOS LSI chips. The CPU is a four-bit single chip processor

mounted in a 42-pin package. The other five chips support

the CPU and consist of: A 256 x 4-bit RAM, 1024 x 8-bit

RAM, an I/O buffer, and a two-phase clock generator.

The CPU can drive up to 4K bytes of ROM and 4K

bytes of RAM over its 12-bit parallel address bus. The

basic instruction set contains 50 instructions with an

execution time of five microseconds.

Twenty-one multiplexed lines interconnect the CPU

with ROM, RAM, and I/O circuits. These lines are func-

tionally grouped into twelve parallel address lines, eight

parallel data lines, and one write command and I/O enable

line. The ROM has two chip-select inputs and the RAM has

one chip-select input, which may be directly controlled by

discrete outputs from the CPU or I/O circuits to expand on

memory without the need for auxiliary circuits. Each I/O

chip can handle up to 12 inputs and 12 outputs with a total

system capability of 16 I/O chips.

Software development aids include a cross assembler

and simulator available on a national time-sharing network.

8. Signetics PIP

The programmable integrated processor (PIP) is a

single-chip eight-bit CPU made with N-channel MOS technology,

This second generation CPU is packaged In a 40-pin DIP. The
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address logic, control memory, and ALU are organized around

an eight-bit bidirectional data bus. There are fifteen

address lines for handling external memory and I/O circuitry.

The PIP instruction set contains over 64 instructions with

an execute time of less than ten microseconds for the most

complex instruction.

The PIP chip can be broken into four parts, the

address logic, the RALU, and the control section. The

address logic section handles all instructions and includes

a return address stack that allows subroutine nesting to

eight levels. The RALU section contains four 8-bit general

purpose registers and executes all arithmetic, boolean,

compare, and rotate operations. The control section manages

operation of all external control lines, decodes all instruc-

tions, and coordinates the activities of all other internal

circuitry.

Software development aids include a cross assembler

and instruction simulator.

9. Summary

Microcomputers have the capability of replacing

both special function logic modules and large computational

machines. Certain microcomputers are more suited for one

application than for others. In selecting a microcomputer,

such parameters as data word length and type, instruction

power, and interface structure must be considered. Table II

is a summary of the microcomputers discussed In the section.
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The rapid developments in the LSI technology should

bring about many new improvements in microcomputers such as

wider word lengths, larger memory capacity, and more flexi-

ble and convenient I/O interfacing. Improvements in LSI

structure will make possible single chip microcomputers with

the CPU, I/O, and memory all on one chip. Work on a Bipolar

LSI processor could develop into a microcomputer with more

speed and memory than most present minicomputers.

D. THE MCS-4 MICROCOMPUTER

The MCS-^ was the first microcomputer made. Compared

to other microcomputers, it is slow with a limited instruc-

tion set. The most complex function available on the MCS-4

is a four-bit add. The MCS-^I is also the least expensive

microcomputer. The structure of the MCS-*J is similar to a

general purpose computer, making it compatible with the

requirements of a navigation computer.

The MCS-4 was chosen as the microcomputer in this design

study for two major reasons. The first reason is that the

MCS-JJ is the least powerful and hence serves as a lower

bound of the microcomputers. To prove that the MCS-4 is

capable of handling the required navigational computations,

would in itself prove microcomputers capable of handling

complex tasks. The second major reason for choosing the

MCS-*4 microcomputer is that it is available, has been tested,

and has the required software aids to complete a design study
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1. MCS-lJ System Description

The MCS-4 microcomputer is built up from a standard

set of off-the-shelf chips. The only custom part is the

ROM chip which stores the specific program defined by the

user and requires a metal mask option for each new program.

The MCS-iJ consists of four chip types, each packaged

in a conventional 16-pin DIP:

(1.) A Central Processor Unit Chip-CPU~^004

(2.) A Read Only Memory Chip-ROM- 4001

(3.) A Random Access Memory Chip-RAM- ^002

(4.) A Shift Register Chip-SR-^003

The CPU contains the control unit and the arithmetic

unit. The ROM stores the program and data tables, the RAM

stores input data and variables, and the Shift Register is

used in conjunction with I/O devices to effectively increase

the number of I/O lines.

A complete microcomputer can be built using only

a single CPU chip and a single ROM, and the only external

circuitry required is a two phase clock. The CPU is capable

of driving a system up to 16 ROMs (1»K bytes), 16 RAMs (6*10

bytes) and 128 I/O lines, with no additional interfacing

circuitry. The CPU communicates with the RAM's and ROM's

by means of a four-line data bus. This single data bus is

used for all information flow between the chips except for

control signals which are sent to RAM and ROM over five

additional lines. Figure 2 shows the MCS-'I System Inter-

connection.
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The MCS-4 uses a 10.8 microsecond instruction cycle.

The cycle is broken into eight steps. In the first three

steps, the CPU sends the memory address to the ROM in three

4-bit nibbles. The ROM then sends back 8 bits of instruction

in two 4-bit nibbles during steps 4 and 5. The instruction

is then interpreted and executed by the CPU during the last

three steps.

a. 4004 CPU

The heart of the MCS-4 microcomputer is the 4004

CPU. The 4004 CPU contains the following functional blocks:

(1.) Address Register and Address Incrementer

(2.) Index Register

(3. ) 4-bit adder

(4.) Instruction Register, Decoder and Control

(5.) Peripheral Circuitry

The Address Register is a RAM array of 4 x 12

bits. One level is used to store the current instruction

address, leaving three levels to store the addresses of

nested subroutines. As each byte of address is sent onto

the data bus, the address is incremented by a 4-bit carry

look-ahead circuit. The incremented address is then trans-

ferred back into the address register.

The Index Register is a RAM array of 16 x 4

bits and has two modes of operation. In one mode of opera-

tion the index register provides sixteen directly addressable

storage locations. In the second mode, the index registers

--•
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provide eight pairs of addressable storage locations for

addressing RAM and ROM as well as for storing data fetched

from ROM. The index registers can thus provide 64 bits of

RAM to a minimum MCS-4 system of one CPU and one ROM.

The 4-bit Adder is of the ripple-through carry

type. The output of the adder is transferred to the accumu-

lator and carry flip-flop. The accumulator is provided with

a shifter to implement rotate right and rotate left instruc-

tions. The accumulator also communicates with the command

control register, the condition flip-flop and the 4-bit

internal data bus. The condition logic allows the execution

of conditional instructions based on the contents of the

accumulator, index registers 3
or the status of the control

lines.

The Instruction Register is an 8-bit register

which is loaded with the two 4-bit nibbles of instruction

read from the ROM. The instructions are decoded in the

instruction decoder and appropriately gated with timing

signals to provide the control signals for the various

functional blocks.

The peripheral circuitry consists of the 4-bit

internal data bus, the timing and SYNC generator, one ROM

command control and the four RAM command control output

buffers, and the reset flip-flop.
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b. 4001 ROM

The 4001 is a 204 8-bit metal mask programmable

ROM. The 4001 performs two functions. As a ROM, its first

function is to store 256 x 8-bit words of program or data

tables. The second function of the 4001 is to act as a

vehicle of communication between the data bus lines and

peripheral devices through the 4-bit input-output port

located on each chip.

c. 4002 RAM

The 4002 also performs two functions. As a

RAM it stores 320 bits arranged as four registers of twenty

4-bit characters each. As a vehicle of communication with

peripheral devices, it is provided with 4 output lines and

associated control logic to perform output operations.

d. 4003-SR

The 4003 is a 10-bit serial-in/parallel-out

serial-out shift register. Its function is to increase the

number of output lines to interface with I/O devices.

2. Instruction Set

The MCS-4 Instruction Set consists of a total of

45 instructions grouped into three sets: Machine Instruc-

tions, Input/Output and RAM Instructions, and Accumulator

Group Instructions.

The Machine Instructions are the Housekeeping

instructions of the MCS-4. They consist of two types of

instructions: one-word instructions which are 8-bits wide
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and require one instruction cycle, and two-word instructions

which are l6-bits wide and require two instruction cycles.

Table III is a list of the Machine Instructions.

The Input/Output Instructions are used to transfer

data between the Accumulator and RAM. These instructions

are also used to transfer data between the Accumulator and

the I/O ports located on the ROMs and RAMs . Table IV is

a list of the Input/Output Instructions.

The Accumulator Instructions are used to perform

bit-by-bit manipulation of the data in the Accumulator.

Table V is a list of the Accumulator Instructions.

3. System Development Aids

The program written for the MCS-4 is metal-masked

into the ROMs. Before doing this, the program needs to be

tested to insure that it functions correctly in all situa-

tions. To aid in testing programs written for the MCS-4,

there are available three system development aids. These

aids include an assembler and interpreter, a complete hardware

prototyping system, and a resident software monitor.

The MCS-JJ Assembler and Interpreter is an ALGOL-W

program which can be used to test and debug programs for

the MCS- 1
! microcomputer. The system consists of an assem-

bler which allows symbolic programming of the MCS-^I ROM

and an interpreter which simulates the actions of the MCS-4.

The program provides extensive diagnostic facilities for

monitoring the actions of the MGS-'» program.
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[Those instructions preceded by an asterisk C) are 2 word instructions that occupy 2 successive locations in ROM]
MACHINE INSTRUCTIONS [Log.c 1 = Low Voltage - Negative Voltage. Logic = High Voltage = Ground I

OPR
°3°2 O

l
D

0010
D
2 0jD2 D 2

A, A, A, A,

111
A
2 A 2

A
2
A^

10 10

OPA
°3 D2 D 1

D

A, A. A, A.

A
3 A 3 A3 A

3
AjAjA, A,

A
3
A
3
A
3 *3

R R R B
A, A, A, A,

DESCRIPTION OF OPERATION

No operation.

Jump to ROM address A 2 A 2 A 2 A 2 . A, A, A, A, (within the same
ROM that contains this JCN instruction) if condition Ci C2 C3C4

,1 I

is true, otherwise skip (go to the next Instruction In seauencel.

Fetch Immediate Idirect) Irom ROM Data D 2 , D, to Index register pair
location RRR, 12)

Send register control. Send the address (contents of index register pair RRR)
to ROM and RAM at X 2 and X 3 time in the Instruction Cycle.

Fetch mdirect from ROM. Send contents of index register pair location
out as an address. Data fetched is placed into register pair location RRR.

Jump indirect. Send contents of register pair RRR out as an addrest
at At and A 2 time In the Instruction Cycle.

ftxl ufiromfitiijnal 10 huM address A3, A2 . Aj.

Jump to subroutine ROM address A3. A2 , A . , saye old address (Up 1 leyi
In stack.

I

Increment contents of register RRRR. ' 31

Increment contents of register RRRR. Go to ROM address A 2 A,
(within the same ROM that contains this ISZ instruction! if result i
otherwise skip (go to the next Instruction in sequence).

Add contents of register RRRR to accumulator with carry.

Subtract contents of register RRRR to accumulator with borro

Load contents of register RRRR to accumulator.

Exchange contents of index register RRRR and accumulator.

Branch back (down 1 leyel in stack) and load data DDDD to accumulator.

Load data OODD to accumulator.

Table III. KiCS-M Machine Instructions
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INPUT/OUTPUT AND RAM
(The HAM'i and ROMs operated on >n

INSTRUCTIONS
Ihe I'O and HAM instructions have been previously selected bv the last SRC Instruction executed.}

MNEMONIC
OPR OPA

03020,0,, DESCRIPTION OF OPERATION

WRM 1 1 t

Wnie the contents ot the accumulator into the previously selected

RAM mam memory character

WMP 1110 1

Write the contents ol the accumulator Into the previously selected

RAM output port [Output Lines)

WRR 1110 10 Write the contents of the accumulator into the previously selected

ROM output port. II /O Linesl

WPM 1110 11 Write the contents ol the accumulator into the previously selected

hal' byte ol read/write program memory llor use with 4008/4009 onlyl

WR0 14 ' 1110 10 Write the contents of the accumulator into the previously selected

RAM status character

WR1 14 ' 1110 10 1

Write the contents ol the accumulator into the previously selected

RAM status character 1

WR2 141 1110 110 Write the contents ol the accumulator into the previously selected

RAM status character 2

WR3 14 ' 1110 111 Write the contents ol the accumulator into the previously selected

SBM 1110 10 Suhtract the previously selected RAM main memory character Irom
accumulator with borrow

RDM 1110 10 1

Read the previously selected RAM main memory character

into the accumulator

RDR 1110 10 10 Read the contents ol the previously selected ROM input port

into the accumulator. (I/O Lines)

ADM 1110 10 11 Add the previously selected RAM main memory character to

accumulator with carry

RD* 141 1110 110 Read the previously selected RAM status character Into accumulator.

ROI 141 1110 110 1 Read the previously selected RAM status character 1 into accumulator.

RD2 141 1110 1110 Read the previously selected RAM status character 2 into accumulator.

R03 141 1110 1111 Read the p'evlously selected RAM status character 3 into accumulator.

Table IV. MCS-H Input/Output Instructions
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ACCUMULATOR^R£UMN|™y2I!2Ni

1111
1111

Home Ml. (Accu mulator and carry!

R0.31e.l9M. [Accumulator .no carry)

Transmit carry to accumulator and clear carry.

Transfer carry subtract and clear carry.

KBP

OCL

Decimal adiust accumulator.

Se^r^r^TTCoT^^^o^ .1 the accumulator -on,

one out ol lour code lo a binary code.

Designate command line.

N0TES UlTh. «*.*..«.«—".»**• «'•"«»»
Jump „,ecumu,a.o,„,e.o C4

- <

C,.1 invert lump COndMlon Cj ^ ^ ^ (

C- - Not Invert lump cond-t.on 03

<2>RRR „ .K. add'"' «< ' •' 8 '"*" """" """ '" ,h
*
CPU

I3>RRRR „ th. add.... .M.H6 ind" '•«'««" '" "* Cf>U
'

character, and 4 ...tu.MM
*« RAM .,0 .a, ,„ -JJl^SSSSSSS^S^lS f 0rS—-- »*-"

'

Table V. MCS-lJ Accumulator Instructions
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There are two hardware prototyping systems avail-

able. Each system uses the electrically programmable and

erasable ROM (PROM). The 1701 or 1702 PROM is programmed on

the prototyping system and simulates the exact action of

a programmed ROM. The SIM4-02 prototyping board consists

of a CPU and is capable of programming and testing up to

sixteen 1701 or 1702 PROMs. The 400^4 CPU also controls

sixteen RAMs together with TTL simulations of eight ROM

output ports and eight ROM input ports. The SIM^-01 is

designed as a prototype for small systems. This board

contains provisions for up to four 1701s or four 1702s.

It also provides up to four RAM output ports, four ROM

ourput ports and four ROM input ports. For small quantity

systems where the cost of designing a metal-masked ROM can

not be justified, the 1701 or 1702 PROM can be used instead.

The recently announced INTELLECT system makes avail-

able to the programmer a resident software monitor, assem-

bler, PROM programming, and text editing capability.

4. Costs

The cost of developing a system that uses the MCS-4

Microcomputer can be divided into two areas: Hardware and

software. The hardware costs have been shown to be small

for the microcomputer. This is a list of the MCS-1) hardware

costs

:
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(1)

CPU $60

ROM $60

RAM $30

(over 100) (over 1000)

$30 each $15 each

$15 each $ 5 each

$15 each $ 5 each

The software costs of programming the microcomputer

are not really known. The assembler type language used to

program the MCS-'J requires the programmer to keep track of

the contents of all registers as the program steps through

its set of instructions. Even one bit, such as the carry

bit, can cause large errors to be produced if not accounted

for. All indexing and transferring of data between the

processor and the assigned locations in memory must be

written into the program.

The task of writing a small program on the MCS-4

is fairly straight forward, however, as the computational

complexity grows, the task of writing the program increases

rapidly.

The sections following this discuss the problems

encountered in programming the MCS-H to handle the computa-

tional tasks of a large navigation system. Aids in software

development were investigated and are also covered.
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III. NAVIGATION SYSTEM

Air Navigation is the process of directing the movement

of an aircraft from an initial point to a desired final

point. A coordinate reference frame must be established

and the initial point and the final point must be located

in the reference coordinates. A Navigation System must

provide timely coordinate measurement and computation of

desired aircraft position.

The prime navigation problem years ago was to reach the

desired destination. Today many aircraft wish to use the

same airspace at the same time. This problem has required

separation standards to be put into enect . nircrun/ arc

assigned a block of space, measured by lateral, longitudinal,

and vertical dimensions, which moves at the speed indicated

in the pilot's flight plan. It is the pilot's responsibility

to remain within this block of space. As more aircraft

wish to use the same airspace, the separation standards will

have to be reduced. The desired navigation system is one

that gives a continuous, real time indication of where the

aircraft Is located. Navigation systems must be required

to have greater accuracy, greater automation, and simplicity

in operation and display.

The need for a navigation system to be reliable is a

necessity. Equipment failure must not endanger the aircraft.
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The reliability of a navigation system can not be measured

solely by the fault-free operation of one piece of equipment.

Reliability is a function of the operation of the total navi-

gation system. In case of partial equipment failure, the

navigation system must automatically switch to an alternate

source of information. Therefore, decision making circuitry

must also be a part of the navigation system to insure a

continuous flew of accurate navigation information.

The following is a review of current navigation systems

available. From this information, the possibility of inte-

grating the MCS-4 microcomputer into a total navigation

system will be investigated.

A. SELF-CONTAINED NAVIGATION SYSTEM

Only automated navigation systems can satisfy the require-

ment for continuous and accurate navigation information.

The need is for a pictorial type of display which will give

the pilot an accurate and immediate indication of the air-

craft's present position. Economic constraints have en-

couraged that this navigation system be standard throughout

the military and have a close commonality with civil aviation

needs. Many of the military and civil aircraft in use today

have space provided for this type of system.

The navigation systems in greatest use today are radio

navigation systems. In order to keep the cost and complexity

of airborne radio navigation equipment down, a comprehensive

system of large and costly radio stations must be kept on
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the ground. Some of the major systems in use today are

listed in Table VI. When such a system is created, it Is

almost impossible to abolish it. The high initial cost of

setting up a new system and the large number of aircraft

equipped for and dependent on the system in use, make it

hard for new systems based on new technology to become

established.

Radio navigation systems have many limitations. Some

of these limitations are due to the short distance of ground

wave propagation, sky wave contamination, atmospheric noise,

multipath effects, and site error which can result in ambi-

guous position fixes. Errors in radio navigation signals

can not be predicted because they are a function of daily

and seasonal changes in environment, temperature, ionosphere

location, and local weather. Even the placement and type

of radio used in the system is affected by political factors

These limitations, together with frequency interference

between radio stations and the susceptability of radio

navigation systems to Jamming, all support the desirability

of aircraft to have a self-contained navigation system.

Military aircraft navigation systems require world-wide

flexibility with the ability to navigate without reliance

on ground-based aids or the use of equipment susceptible

to jamming. Civil aircraft that fly over oceanic or desert

routes require a self-contained navigation system as its

primary source of position fixing. The development of
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hovercraft that must cross large bodies of water without

land based navigation aids and the need for cruise missiles

that can independently maneuver over hostile territor all

point to the need for self-contained navigation systems.

B. AIR DATA SYSTEM

An air-data system consists of aerodynamic and thermo-

dynamic sensors inputting to a central air-data computer.

The sensors measure the characteristics of the air surrounding

the vehicle and input them to the computer. The computer

calculates flight parameters such as true airspeed, free-

stream outside-air temperature, and Mach number. The sensors

required in this system are angle-of-attack vane, static

pressure source, pitot tube, and total temperature probe.

In order to use the air-data computations for dead-

reckoning, the attitude and heading of the vehicle must be

supplied from some external source onboard. This can be in

the form of a simple directional and vertical gyroscope or

a stable-platform configuration such as an Inertial Navigation

System. This information together with information on the

velocity and direction of the wind allows the navigator to

determine the position of the vehicle by extrapolating from

a previously known fixed position.

C. DOPPLER NAVIGATION SYSTEM

A Doppler Navigation system radiates a pattern of beams

to the surface of the earth and receives the reflection of
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this energy back. The difference between the frequency of

the signals transmitted and the frequency of the signals

received is called the Doppler Effect and can be used to

compute the vehicle's velocity along each beam. The

frequency shift in each of the beams is detected and used

by the system computer to calculate the distance traveled

along and across the vehicle's true heading.

The advantages of the Doppler Navigation System, as

listed by Kayton and Fried [Ref. 21], are as follows:

1.) It provides continuous velocity and position with
respect to the ground.

2.) It is completely self contained.

3.) Its average-velocity information is extremely
accurate

.

Doppler-Radar information is obtainable anywhere
on earth, including over oceans.

5.) It is an all-weather system.

6.) Doppler Radars are amenable to high-reliability
all-solid-state design because of their low
radiated power.

The Doppler Navigator does not require preflight
alignment or warmup

.

It radiates at microwave frequencies.

The disadvantages of the Doppler Navigation System are:

1

2

It is dependent on an external direction sensor
for azimuth information.

The position information derived from a Doppler
Navigator degrades as the distance traveled
increases

.

The short-term or instantaneous velocity information
is not as accurate as the average velocity.
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D. INERTIAL NAVIGATION SYSTEM

Airborne inertial navigation systems, hereafter re-

ferred to as INS, operate on the principle that every time

the vehicle changes speed or direction it is said to experi-

ence an acceleration. By measuring this acceleration, the

velocity and distance traveled by the aircraft can be found

by integrations.

The INS is a gyro-stabilized platform with accelerometers

mounted so that accelerations of the vehicle are measured

in the north/south, east/west and vertical directions. The

total system is mounted on gimbals to allow the vehicle to

rotate without disturbing the attitude of the stable platform.

The INS must be kep tangent to the earth's surface at

all times or the accelerometers will experience an accelera-

tion error due to gravity. This problem is solved by con-

structing a theoretical pendulum in the system with its

bob at the center of the earth and its other end on the

surface of the earth. The aligning of the INS before flight

will bring this pendulum to rest making it impossible to

be set in motion by any force at the surface of the earth.

Any small error in the alignment causes a sinusoidal error,

called the Schuler Pendulum effect to be introduced in all

inertials. This effect is periodic with a period of &k

minutes.

The Inertial Navigation System has the following advan-

tages as listed by Kayton and Fried [Ref. 21]:

c
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1.) Its indications of position and velocity are
instantaneous and continuous.

2.) It is completely self-contained.

3.) It Is nonradiating and nonjammable

.

4.) Navigation information is obtainable anywhere on
the earth.

5. ) It Is an all-weather system.

6.) Navigation information is independent of the
vehicle's maneuvers.

7.) It directly provides outputs of position, ground-
speed, and vertical position.

8.) It is the most accurate source of roll, pitch,
and attitude of the vehicle.

The Inertial has the following disadvantages

1.) The position and velocity information degrades
with time.

2.) The equipment is expensive and relatively difficult
to maintain and service.

3.) The INS must be initially aligned.

E. POSITION FIXING SYSTEMS

Position fixing is the determination of the vehicle's

position without reference to any former position. Short

range radio systems such as ADF, TACAN, DECCA, YOR, and

LORAN A are not considered applicable for long range

navigation.

1 . Long Range Radio Navigation Systems

The two primary long range Radio Navigation Systems

in use today are LORAN C and OMEGA. LORAN C and OMEGA are
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both hyperbolic fixing systems. The vehicle's fix position

is obtained by measuring the relative distance from two or

more stations of known location.
L

a. The LORAN C Network

The LORAN C network is comprised of master ground

station and at least two associated slave ground stations.

Pulsed transmissions radiated from the master station are

received at the slave stations; each slave station then

transmits similar groups of pulses, synchronized accurately

with the signals received from the master station. Receivers

on-board the vehicle measure the time differences between

the master and slave's transmissions which allows an automatic

fix computation.

The following are advantages and capabilities

of LORAN C:

1.) Currently operational with minaturized receivers
developed.

2.) Range up to 1500 nm.

3.) Continuous fixing provided.

k.) Passive at the receivers.

5.) All weather capability

6.) Accurate position fix to 200 ft.

7.) Total cost of on-board receiving equipment
approximately $10,000.

The disadvantages of LORAN C are:

1.) Position fix In hyperbolic coordinates.

2.) Dependent on fixed ground stations.
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3. ) Susceptible to atmospheric noise and sky-wave
contamination

.

4.) Susceptible to jamming.

5.) Total world coverage not available.

b. The OMEGA System

OMEGA is an earth reference hyperbolic phase-

matching navigation system operating at 10.2, 11.33, and

13.6 kHz. The system is designed to provide world-wide

coverage with accuracies better than one nautical mile.

The position of the vehicle is determined by measuring the

relative phase of the signals transmitted from two or more

stations.

OMEGA has the following advantages:

1. ) Range 8000 nm.

2.) Coverage is global with just eight stations.

3.) Continuous fixing available.

4.) Passive receiver on the vehicle.

5.) All weather capability.

The disadvantages of OMEGA are:

1.) Position fix is in hyperbolic coordinates.

2.) Dependent on fixed ground stations.

3.) Susceptible to Ionospheric disturbances.

4.) Susceptible to Jamming.

2. The Satellite Navigation System

Satellite Navigation is a method of fixing the

vehicle's position from data obtained from an artificial
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earth satellite. The position of an artificial satellite

can be predicted by the orbit it is traveling. A relative

fix can be made from the satellite by measuring the elevation

angle, the azimuth angle, range to the satellite, or the

rate of change of altitude, azimuth or range. If a single

variable is measured, successive measurements are required.

There are three basic types of satellite navigation:

Doppler Systems, which measure rate of change of slant range;

angle measuring systems, which measure elevation angle; and

ranging systems, which measure the slant range.

Satellite Navigation Systems have the following

advantages

:

1.) All-weather position fixing.

2.) Communication service to the vehicle while in flight,

3.) Worldwide service.

k,) Capable of accuracies up to 200 ft.

5.) Can provide vehicle with velocity and heading
information as well as position information.

6.) Passive at the receiver.

The disadvantages of a Satellite Navigation System

are as follows:

1.) Special receiving equipment required including
antennas with vertical patterns.

2.) The satellite orbit must be predicted and
continuously up-dated.

3.) The satellite's signal may be susceptible to
jamming.

H.) The satellite signal is susceptible to Ionospheric
refraction.
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5.) Navigation errors are introduced by drifts in the
frequencies of the satellite transmitters.

3. The Terrain Mapping System

A Terrain Mapping System operates on the principle

that the geographic location of any place on the land surface

of the earth is uniquely defined by the vertical contours

or topography of the surrounding area. The Terrain Mapping

System measured the vertical contour of the terrain along

its flight path, using a radar altimeter to measure clearance

above the terrain and a reference altitude of the vehicle.

By subtracting instantaneous radar measured altitude from

the reference altitude, the Terrain Mapping System determines

the terrain contour. The system then searches its computer

memory to find a stored terrain contour, whose coordinates

are known, which closely matches the measured one. This

serves to fix the vehicle's position.

The advantages of the Terrain Mapping System are

as follows:

1.) It is an all-weather system.

2.) It is completely self-contained.

3. ) It is inherently resistant to jamming.

k.) It is accurate up to 50 ft.

5.) Accuracy demands imposed on the radar altimeter are
not excessive.

6.) It is unaffected by man-made changes in topography.
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The Terrain Mapping System has the following

disadvantages

:

1.) The terrain contour to be flown over must be
previously mapped.

2.) To increase the accuracy of the system, there must
be an increase in the computer memory capacity.

3.) A dead-reckoning system must also be carried so the
Terrain Mapping System knows where to search for a

contour match.

A.) It can not be used to obtain position fixes over
the ocean or large bodies of water.

F. THE INTEGRATED SYSTEM

The basic parameters of the navigation systems currently

available have been reviewed. In order to select the proper

long range navigation system for military use, a minimum

set of system requirements was established:

Range 3000 nm.
Accuracy 5 nm.
Velocity - 2000 kts.
Coverage Worldwide
Weather Restriction All-weather capability
Flexibility Capable of self-testing and

switching mode when needed
Equipment Non-jammable , completely

self-contained

A review of the previously mentioned navigation systems

indicates that no single system available is capable or

flexible enough to meet the system requirements. The Doppler

Navigation System is self-contained and provides very accu-

rate average velocity measurements, however, the system can

not sense short term velocity fluctuations and must depend

on an external heading source. The Inertia! Navigation
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System is self-contained and provides excellent short-

term position, velocity, and heading information. The

Inertial Navigation System, however, has a long-term error

build-up due to the inherent Schuler Cycle in the system.

In order to meet the system requirements, an integrated-

navigation-system was chosen. An integrated-navigation-

system feeds the outputs of several navigation systems into

a central computer which then provides a single more accu-

rate output. The central computer provides decision making

ability to test the accuracy of the individual navigation

systems. By inputting fixed positions to the central com-

puter at regular intervals, the computer can determine

system drift parameters and provide the proper system bias

velocity.

The navigation system developed in this paper is an

Inertial/Doppler system integrated by an KCS-^ microcomputer.

The microcomputer combines the short-term accuracy of the

Inertial with the long-term accuracy of the Doppler to

obtain the most probable position of the vehicle. The

micro-computer is programmed to provide decision making

flexibility to ensure the outputs remain accurate during

partial system failure. The wind influencing the vehicle

is continually computed and updated in the MCS-4 memory so

that the computer can automatically switch to an air-data

mode of operation in case of Inertial and Doppler failure.
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The navigation equations used to compute the vehicle's

position from the inputted data are covered In the next

section.
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IV. NAVIGATION EQUATIONS

The navigation equations necessary to calculate the

position of the vehicle relative to the earth are presented

in this section. The mathematical model presented takes

the dead-reckoning outputs of the Inertial, Doppler, and

Air-Mass Systems and extrapolates the present position of

the vehicle from the last known position. Direct position

data can be inputted into the algorithm and is used to update

the position of the vehicle. The system drift error is

computed by comparing the known position with the dead-

reckoned computed position.

In describing the equations in detail, a graphical pic-

ture of each equation's function is included. The graphical

picture represents each equation as a black box with speci-

fied inputs which produce the desired outputs. A complete

description of graph theory as applied to this paper is

given in Section V-A.

A. THE EARTH MODEL AND THE COORDINATE REFERENCE FRAME

The first step in developing the Navigation equations

is to prepare a mathematical model of the earth. The earth

can be approximated as a sphere of radius R, the nominal

equatorial radius. However, this approximation would produce

an unacceptable error as great as 3 miles for every 1,000

nm. traveled. This is due to the flattening of the earth

at the poles and the bulging of the earth at the equator.
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A more exact model of the earth is the reference

spheroid where the earth is assumed to be an ellipsoid

of revolution with the semi-major axis R, the nominal

equatorial radius, and the semi-minor axis of radius P,

the polar radius. Accuracy to within 30 ft. for every

1,000 nm. traveled is possible with this model. The

determination of angels, however, in this system is very

difficult.

The model chosen in this system is a combination of the

two previously stated models. All angles are determined

from the spherical model thus allowing the convenient lati-

tude/longitude coordinate reference frame to be used to

map each point on the real earth to the earth model. The

reference spheroid is then used to determine arc lengths

that more closely represent the actual shape of the earth.

The arc lengths are applied to the determined latitude and

longitude in the form of conversion constants. This method

of computation is very simple and has a maximum error of

300 ft. for every 1000 nm. traveled.

B. DERIVATION OP CONVERSION CONSTANTS

The international nautical mile equals 6076.IO33 ft.

One minute of arc length measured at the equator equals

6087.08 ft. The longitude conversion constant, KLO, is used

to relate nautical measurement to the actual geographical

measurement

:
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KL0 _ feet/degree
feet/nautical mile

KT0 _ 6087.08 feet per minute/60 minutes per degree
6076.1033 feet/1 nautical mile

KLO = 60.108') nautical miles/degree

The average length of a minute of arc length on a

meridian is 6076.82 ft. To determine the latitude conver-

sion constant, KLA, which is also used to relate nautical

measurement to the actual geographical measurement, the

following equation is used:

KLA

KLA

feet/degree
feet/nautical mile

6076.82 feet per minute/60 minutes per degree
6076. 1033 feet/1 nautical mile

KLA = 60.0071 nautical miles/degree

The distance traveled in nautical miles, east-west and

north-south, is divided by the conversion constants resulting

in distance traveled measurements in degrees, longitude and

latitude

.

C. WIIID CALCULATIONS

The wind effecting the motion of the vehicle can be

obtained by comparing the north-south and east-west vector
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components of the true airspeed, as computed by the air-

mass system, with the vector components of ground speed, as

computed by the inertial system. The calculated wind com-

ponents must be continually updated so the current wind

components stored in the computers memory are the most cur-

rent. In case of failure of the Inertial and Doppler Sys-

tems, the computer will be capable of computing the dead-

reckoning position from the outputs of the air-mass system

and the last stored wind components.

The wind velocity components are computed from the

following equations:

TAS

Components

INERTIAL

VAX

VAY

VGXI-
VGYI-

WIND

VELOCITY

COMPUTATION

-VWXR *-

VWYR >-

VWXR = VGXI - VAX

VWYR = VGYI - VAY

The wind velocity components computed are subject to

gusts, maneuvers, and other short term disturbances. In

order to decrease the effects of random fluctuations in the

wind velocity, the new computed wind velocity is averaged

with the previously computed wind velocity in a smoothing
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routine. The smooth wind velocity is derived from the

following equations:

•VWXR

•VWYR
•vwxi-1

•VWY
i-1

-X SMOOTH

WIND

VELOCITY

COMPUTATION

-VWX,

— VWY.-

VWX = G VWX + (1-G) VWXR

VWY = G VWY + (1-G) VWYR

D. DEAD-RECKONING CALCULATION

Dead-reckoning is a means of navigation in the absence

of position fixes. The vehicle's position can be estimated

by measurements of the groundspeed components. The ground-

speed components are integrated over a given time interval

to give the distance traveled in that time interval. The

estimated position of the vehicle is the summation of the

distance increments traveled from the last known fixed

position.

1 . Air Mass Mode

The air mass mode of operation is a back up for the

two primary dead-reckoning navigation systems, the Inertaal

and Doppler. The components of airspeed, true heading, and

stored wind information are combined to output distance

increments in the north-south and east-west directions.
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The true air-speed Inputs are influenced by random

fluctuations in the Pitot-Static System. In order not to

influence the navigation cycle by these fluctuations, the

inputted true air-speed is averaged with the previously

stored true air-speed. The smooth true air-speed is derived

from the following equation:

TASR

TAS.
i-1

SMOOTH TRUE
AIR-SPEED
CALCULATION

TAS

TAS
TAS + TASR

The north-south and east-west components of air-speed

are calculated using the previously calculated true-air-speed

and the true heading inputted from the INS. In case of INS

failure, magnetic heading may be inputted from the flux

valve together with the magnetic variations applicable set

in by hand. The air-speed components are calculated as

follows

:

TH •

TAJ

COMPONENT
AIR-SPEED

CALCULATION

VAX

VAY'

VAX = TAS SIN (Til)

VAY = TAS COS (TH)
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The air-speed components represent the velocity and

direction of the vehicle through the air-mass. The ground

track of the vehicle can be found by adding vectorally the

motion of the air-mass, wind velocity, to the air-speed as

shown in Figure 3. The equations for the ground velocity

in the air-mass mode are as follows:

VAX

VAY.

•vwx

VWY-

GROUND

VELOCITY

IN AIR-MASS

MODE

VGXW >-

. VGYW »-

VGXW = VWY + VAX

VGYW = VWY + VAY

Lastly, the ground distance traveled by the vehicle

during one navigation cycle of the computer can be determined

by integrating the ground velocity over the time interval of

the navigation cycle.

VGXW

VGYW

DISTANCE

CALCULATION

AIR-MASS MODE

DXW-

DYW-

"





AIR DATA MODE *<-

\CCUMULATED
DISTANCE ALOj
READING

DOPPLER MODE

IMERTIAL MODE

GROUND TRACK

COMPUTED
WIND

VELOCITY

TRUE AIRSPEED

— — "GROUND SPEED

GROUND SPEED

GROUND SPEED

VELOCITY E/W

TRUE
iNORTH

ACCUMULATED
DISTANCE ACROSS
HEADING

VELOCITY N/S

HEADING
OF A/C

Figure 3. NAVIGATION VECTOR DIAGRAM
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2. Doppler-Mode

The Doppler System obtains very accurate average

velocity measurements and converts them to distance measure-

ments along and across the vehicle's true heading. These

measurements along with true heading, from an external

source, can be used to calculate the distance traveled by

the vehicle as shown in Figure 3.

The dead reckoning position increments computed from

the doppler are derived from the following equations:

Doppler

Inertial

SDD
SHD
TH-

Doppler
Distance
Computation

•DXD
•DYD

DXD - SDD x COS (TH) + SHD x (TH)

DYD = SHD x COS (TH) - SDD x SIN (TH)

3. Inertial Mode

The Inertial Navigation System, (INS), provides

excellent short-term velocity and heading information. The

outputs of the INS are the velocity components of the vehicle

north-south and east-west. The ground track of the vehicle

can be determined as shown in Figure 3-

The dead reckoning position increments computed

from the inertial are derived from the following equations:

70





Inertial
•VGXI-
VGYI-

Inertial
Distance
Computation

DXI

DYI

T • VGXI

T • VGYI

DXI-
DYI

4 . Integrated System Mode

To take advantage of the extremely accurate average-

distance measurement of the Doppler and the precise short-

term distance measurement of the Inertial, the distances

measurement by each is averaged in a smoothing routine to

give the most accurate dead-reckoning distance measurements

possible. The smoothing factor, G, used in the smoothing

equation is set depending on the accuracy of each system.

DXI-
DYI.
DXD-
DYD

Distance

Smoothing

Routine

DX = G x DXI + (1-G) • DXD

DY = G x DYI + (1-G) • DYD

DY

DY
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E. POSITION CALCULATION

1. Geographic Fix Position

Any time the vehicle's position is fixed, the updated

fixed position will be loaded into the computer's memory

along with the time the fix was taken. The dead-reckoning

position coordinates at the time of the fix will be up-dated

to the new position coordinates and the computer will continue

to dead-reckon the vehicle's position from the last inputted

fix.

LOF
LAF

Update
Nav
Position LON

LAT

LON LOF

LAT = LAF

2 . Up-Date Geographic Position

The initial position of the vehicle is loaded into

the computer memory before launch. The geographic position

is up-dated each time a fix is taken. The geographic posi-

tion between fixes is updated by dead-reckoning distance

computations from the Doppler and Inertial. The zero sub-

script indicates the vehicle's previous geographic position.

The computed system drift increments are also inputted to

account for system drift errors in the dead-reckoninr

computation

.
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DX-
DY-
SDX-
SDY-

Up-Date
Geographic
Position

LAT = LAT +
o

DY+SDY
KLA

•LON-

LAT

L0N " L0N
o

+
K£o x ggg(LAT)

3. System Drift Error

Each time a new position fix is taken, the fixed

position is compared with the calculated dead-reckoned

position. From this information, the amount of drift in

the dead-reckoning computations between fixes is determined.

•LOF
LAF<
LON
LAT.

System

Drift
SDXC
SDYC.

SDXC = (LOF-LON) x KLO x COS (LAT)'

SDYC = (LAF-LAT) x KLA

^. System Bias Velocity

The system drift error computed from the previous

fix is used to update the system bias velocity. The system

bias velocity is used to cancel the system drift error.
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SDXC-
SDYC-

System
Bias

Velocity
• VSDX -
VSDY >-

VSDX = VSDX + (SDXC x TF)

VSDY = VSDY + (SDYC x TF)

5 . System Bias Distance

The system bias distance is computed by integrating

the system bias velocity over the time of one nav cycle.

The system bias distance is applied to the up-date geographic

position to cancel the effects of the system drift.

VSDX
VSDY

System
Bias
Distance

SDX-
SDY

SDX = VSDX x T

SDY = VSDY x T

The navigation program combines these equations as

described in the Navigation Functional Flow Chart, Figure 5
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V. PROGRAMMING THE MICROCOMPUTER FOR NAVIGATION

The Navigation equations discussed in Section IV des-

cribed how to process the outputs of the Inertial, Doppler,

and Air-Mass Systems in order to calculate the current

position of the vehicle. In order to make a working system,

the Navigation equations had to be programmed into the

software of the MCS-4 microcomputer.

The program was designed to incorporate the following

principles and requirements:

1.) The total program had to be written in the assembly
language of the MCS-^ microcomputer.

2.) The total run time of one navigation cycle could
not qx^g ^ 200 milliseconds

3. ) The design of the program should be modular to
facilitate the addition or deletion of new code.

k.) The program should consist of an executive routine
that calls upon various subroutines as indicated
on a process graph of the navigation program.

5. ) The design allows for substitution or addition
of new functions, routines, and/or programs in
a straight forward manner.

6.) For each built-in function, a single subroutine
is called to perform the calculation.

The instruction set of the MCS-'l microcomputer, as des-

cribed in Section II. C., contains only addition and subtrac-

tion of two four digit binary numbers as the fundamental

arithmetic operation. In order to make the detailed pro-

gramming easier, a so-called "process graph" method was

used to develop the program.
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A. GRAPH THEORY

Programming the navigation equations would be an easy

task in a higher level language such as FORTRAN. To program

the same equations in an assembly language requires a detailed

knowledge of the current contents of all index registers

and memory locations. The status of even one single bit

such as the carry bit can net be left unaccounted. The

requirements of keeping minute details in mind led to the

development of a graphical means of representing the

microcomputer program.

Graph theory provides a simple and powerful tool for

constructing mathematical models of discrete arrangements

of objects. The process graph consists of vertices which

are pairwise connected by a directed line.

The best means to Illustrate the concept of graph theory

applied to microprogramming is through an example. Consider

the problem of adding two numbers together which reside at

given locations in memory and whose sum is to be located

in a specified location in memory depending on its sign.

This process can be described by the following flowchart:

.

Z = X+Y

No

Yes y-

This notation does not give much Information about how the

processor is to accomplish this process, how much memory .is
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required by the program, the input and output variables,

and how much time is needed to carry out the process.

The same example written as a process graph could be

as follows:

Y-

The process graph indicates that the variables X and Y are

inputs to the function add and Z is the output of that func-

tion. A test is made of the output, Z, to decide where Z

will be located. The amount cf time and memory involved in

this computation can be easily established by referencing

the known memory space and time required for each operation

involved. The depth to which the programmer draws the re-

quired graph for his computation is a function of the capa-

bility of the operations he has available to him together

with his own preferences. The same example discussed could

be graphed in more depth, as follows:

—

>

y ,
ACC

+
/.

*

ACC ,

v.

'~ACCT

ACC

RAM

RAM

20

30
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Another programmer reading this graph only needs to know

the following in order to write the required program:

ACC Load the variable X
into the accumulator

ACC

Y -
4 •ACC Add the variable Y to

the contents of the
accumulator

ACC

Test the sign of the
contents of the
accumulator

ACC

RAM
20

If the sign of the
accumulator is positive,
store the contents of
the accumulator into
RAM location (2,0)

ACC

RAM
If the sign of the
accumulator is negative,
store the contents of
the accumulator into
RAM location (3,0)

.

The detailed process graphs used in developing the navi-

gation program were a great aid in the design, analysis and

documentation of the program. The following is a list of
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the problems that could be analysed directly from the

process graph:

1.) What portions of the problem are sequential.

2.) What portions of the problem may be processed in

parallel by independently operating processors.

3.) Where and how intercommunication may take place

when a multiplicity of processors is used.

i\.) What capacity must the processor possess before it

can be successfully used to solve the problem.

5.) What is the maximum allowable time for the operation

of each subprogram.

6.) What is the memory space requirement for each
subroutine.

B. DEVELOPMENT OF NAVIGATION PROCESS GRAPHS

The MCS-4 microcomputer was first thought of as a black

box taking inputs from the Inertial, Doppler, Air-Mass, and

Position Fixing Systems and outputting the vehicles current

position in latitude and longitude. The graphical represen-

tation of this system is shown in Figure 4.

Figure ^ represents the total navigation system. The

Inertial, Doppler, Air-Mass, and Position Fixing Systems

provide input to the system as described in Section IV.

The microcomputer program was required to complete the sys-

tem. The programming was accomplished by continually break-

ing down the functional operations into smaller and smaller

parts until the operations were simple enough to be directly

written in the MCS-iJ machine language. The functional process
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graph, Figure 5, represents how the microcomputer program

was initially broken down into the fundamental navigation

equations as described in Section V.

The functional process graph was analyzed to define the

flow of the input variables and to determine the feasibility

of a multi-processor system in order to shorten the required

computational time. It was noted that the program could be

broken into two parts, the calculation of the distance in-

crements, and the calculation of the latitude and longitude

from the distance increments. The analysis demonstrated

that the computation time could be nearly halved by having

two microcomputers working simultaneously to produce the

desired outputs. The system was designed to have one micro-

computer receive the given inputs and compute the distance

increments traveled, while at the same time, the second

microcomputer computes the latitude and longitude from the

previously calculated distance increments.

The functional process graph was then broken down into

the operational process graphs for each microcomputer,

Figure 6, and Figure 7. The operational process graphs

represented the desired program for each microcomputer.

The program described by the operational process graph,

Figure 6, was written to investigate the time and effort

required to develop the required software.

The program was written in a modular form as required.

Each operation represented in the operational process graph.
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was written as a separate subroutine. An executive routine

was then developed to call each subroutine in the proper

order and account for each variable as required by the

operational process graph.

C. PROGRAM ANALYSIS

A program analysis was developed to define those pro-

blem areas that had to be solved before programming the

microcomputer. The areas that were investigated were com-

putational speed, memory space available, and accuracy

required.

The operational process graph, Figure 6, represented

the tasks to be accomplished. The type of operations and

number of operations that were required are listed as follows

Operations Times Called

Multiply 12
Cosine 1

Sine 1

Addition 12
Subtraction 3

Division by two 7

Total 36

The operational process graph was used to determine the

speed limitations on each operation programmed. The total

navigation cycle was limited to 200 milliseconds. Since the

number of operations required to be performed differed depen-

ding on what sensors were operational, the critical path of
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the operational process graph was determined. The critical

path occurred when the Inertial and Doppler were both opera-

tional, Figure 8. The operations involved in the critical

path were ten multiplies. Cosine and Sine calculations, ten

additions, three subtractions, and seven divisions by two.

The total computational time for the critical path was

limited to 200 milliseconds.

The critical operations which had to be developed were

the Multiply, Cosine, and Sine subroutines. Investigating

previous work on the MCS-4 indicated that previously pro-

grammed multiply, Cosine, and Sine routines were requiring

50 msec, 650 msec, and 750 msec, respectively. In order

to program the microcomputer for navigation, the development

of the following routines were required with the following

constraints

:

Multiply less than 200 msec
Cosine less than 200 msec.
Sine less than 200 msec

The time used by each of these subroutines determined the

number of processors required to meet the 200 millisecond

time constraint.

The amount of memory available to program the navigation

routine was a function of the ^00^ CPU and the number of

microprocessors used. One 4004 CPU can directly drive six-

teen PiOMs and sixteen RAMs . The number of instructions in
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the navigation routine was limited by the space available

in the ROMs. Since each ROM could hold 256 instructions,

the program was limited to 4,096 instructions per micro-

processor.

The time required to sequentially execute every instruc-

tion in the sixteen ROMs would be 44 mlliseconds. Since the

program was required to be written with an executive routine

and a set of subroutines that would repeat the same set of

instructions several times, the limiting time constraint

would be reached before using up the available ROM space

in one microprocessor. It was determined from this analysis

that ROM space would not be a limiting factor in writing

the navigation program.

The amount of memory space available to store the values

of each variable was determined by the space available in

the RAMs. Since one 4004 CPU could drive 5120 bits of RAM,

the navigation program was limited to 320 variables of 16

bits for each microprocessor. The number of variables re-

quired was determined from the operational process graph,

Figure 6, where each line connecting a pair of vertices

represents one variable. There were 54 lines indicating

that a maximum of 54 variables were required plus those

variables used in any single operation. By overlaying

variables in the same RAM memory space, the memory space

requirement was reduced. It was determined from this analysis

that RAM space available would not be a limiting factor.
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The required accuracy of the navigation program was a

function of the accuracy of the input variables. The accu-

racies of Inertial, Doppler, and Air-Mass systems used on-

board the P3C aircraft were used in this analysis as repre-

senting the state-of-the-art systems in naval aircraft today.

The specifications for these systems are as follows:

System Designation Accuracy

Inertial ASN-84 ±1.5 knots RMS
True Heading ASN-84 ± 9 ARC-MIN RMS
Doppler APN-I87 ± 1.0 knots RMS
True Air Speed Pitot-Static ±2.0 knots RMS

The accuracy of the navigation program was a function

of the accuracy cf input data as well as the bit si?e

assigned to each variable. The limited accuracy of the

input data permitted each variable to be no greater than

16 bits. This allowed each variable to be represented by

four hexadecimal-digits with the first bit assigned as the

sign bit. The hexadecimal point for speed measurements was

fixed so that there is one hexadecimal digit to the right

of the decimal point. This allowed the accuracy of the

speed inputs to be within ± .0625 knots. The range on the

inputs due to a 16 bit variable limitation was ± 20^7 • 99

knots. The accuracy requirement was not considered a major

limitation in the program analysis.

The program analysis pointed out the major areas that

had to be demonstrated feasible before programming of the
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microcomputer for navigation was initiated. The program

analysis was used to set the design goals at each step and

the process graph proved to be a major tool in performing

the program analysis.

D. SUBROUTINES

A large number of the mathematical operations required

In the navigation program are repeated many times. In order

to decrease the total programming effort and also decrease

the memory-capacity requirements, many of the operations

required were written as subroutines. These routines con-

sist of a series of instructions dedicated to a specific

task. The subroutines developed for the navigation program

were divided into two groups, these involving complex mathe-

matical operations and those involving more common func-

tional operations. Each subroutine was written in a general

form to permit its recurring use by the executive program.

1. The Multiplication Routine

The major limitations of the MCS-4 microcomputer to

be overcome were the limited instruction set and slow speed

of calculation. The most powerful arithmetic instruction

available was the single addition two hex-digits. The mul-

tiplication routine was written to increase the capability

of the MCS-4 microcomputer in order to satisfy the require-

ments of the navigation program.

A multiplication routine had been written involving

multiplication by a series of additions. The program required
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only fifty instructions, however, the computational time

was ^0 milliseconds. Since the navigation program required

a minimum of ten multiplications, this method was unsatisfactory.

One of the advantages the MCS-4 microcomputer has

is its inexpensive memory. It was decided to investigate

a different way of programming the microcomputer that would

take advantage of available memory. It was discovered that

memory space could be traded for speed by a table look-up.

The multiplication subroutine was written using a table

look-up scheme.

a. Capability of Subroutine

The multiplication subroutine was designed to

take a four hex-digit number, X, and multiply it by a four

hex-digit number, Y, resulting in a four hex-digit chopped

number. The input X is loaded in Index Registers R8 -* RB

with the least significant digit, Xo , loaded in R8. The

Input Y is loaded in Index Registers RC + RF with the least

significant digit, Yo, loaded in RC. The product will appear

in Index Registers RC + RF with the least significant digit

located in RC

.

b. Description of the Routine

The process was done by a table look-up scheme

similar to longhand multiplication. An example of this

method follows:
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\ X_ Xp X, ^n

TIMES ( Y Y
2

Y Y )

X
3
Y X

2
Y X

1
Y X Y

X
3
Y
1

X
2
Y
1

X
1
Y
1

X
o
Y
l

AqJLq AqI rj A^X„ Aft J-q

Jlfti ft Aftift A-Xft Aftift

The table of values used in the multiplication routine con-

sits of a 16 x 16 matrix of product values. Each product

value is an exact value of a multiplication of two single

hex-digit numbers. The row that would normally contain the

products of a zero multiplication is used for instructions

within the ROM containing the table. A test for a zero input

is made in the body of the subroutine. Each product value

within the table consists of a two hex-digit number with

the second value being the least significant digit. During

the execution of the program, each digit in the two hex-

digit number is loaded in a separate index register. In

this write up, an "M" stands for the most significant digit,

an "L" stands for the least significant digit, and a "CY"

stands for a carry. The longhand multiplication with the

portion chopped in this program can be shown as follows:
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X
3

x
2

X
l

X

Y
3

Y
2

V
l

y
o

M
30 —

M
31

L
31

M
21

M
32

L
32

MH
22

L
22

M
12

M
33

L
33

M
23

L
2 3

M
13

L
13

M
3

CY
4

CY
3

CY
2

CY
1

Z
2

Z
l

Z

A numerical example of this procedure in decimal is as follows

7

2
ii r

U
o

_
5t 4 _

36 28 2 _
18

10

10 —

6 13

c. Development of the Program

The method used in this procedure becomes very

complex because of the large number of separate hex-digits

involved and the small number of index registers available

to store each digit. This problem becomes more complex

since each addition of two hex-dig.its creates a possible

carry. A solution to this problem is to make a process graph

that simulates the multiplication process.
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The process graph for the multiplication routine

is shown in Figure 9. The symbols used have the following

meaning:

Y
3

X
M
L

table value of product of the
digits X

Q
times Y~

hex-digit
+

cy

hex-digit sum
addition

The following examples is used to show the flow

of the hex-digits throughout the routine.

Input: X = 1 2 3 4 Hex
Y = 5 6 7 8 Hex

Calculation by hand:

05
06
0A

07
OC
OF

5 6 7 8

1 2 3 J
)

8

E
1 2

1 l\

1

CY
2

CY
2

CY
CY

Figure 10 shows the complete flow of the numbers throughout

the routine. The value obtained agress with that computed

by hand and can be used as a check of the process graph.
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d. Constructing the Program

The process graph was used to assign and keep

track of the Index Registers being used (Fig. 11).

The subroutine first stores all the values in

the Index Registers into RAM, R2 and R3 are used to address

values in the RAM. RO and Rl are used to fetch values from

the multiplication table. R^ > RF are the working registers

and are assigned as shown in Figure 11.

e. Expansion of Multiplication Routine

The multiplication routine was written to give

a truncated product of two positive numbers accurate to

four significant digits. The multiplication routine which

handles both positive and negative numbers is shown in the

process graph. Figure 12.

Each number inputted into the multiplication is

tested for its sign. The sign bit is then shifted out to

normalize the number to four significant digits. The pre-

viously described multiplication routine is then executed.

The resulting number is shifted back to its proper form

and the required sign bit is set

.

f. Summary

The multiplication routine developed required

the memory space of three ROMs and computed its result in

five milliseconds. A complete listing of the multiplication

routine is found in Appendix C.
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2. The Cosine Routine

The development of a Cosine routine for the micro-

computer which could compute sufficiently fast was one of

the major programming tasks. Cosine Routines written for

general purpose computers are usually written as series

approximations in order to save memory space. The object

of the routine written for this program was to increase

the speed of calculation.

Two Cosine routines previously programmed on the

MCS-4 Microcomputer were investigated. The first was a

Chebyshev approximation routine which required 750 milli-

seconds to compute the Cosine. The second routine investi-

gated was a Cordic approximation which required 350 milli-

seconds. Both methods were too time consuming for this

project

.

The procedure developed in this project was a table

look-up, linear interpolation routine. The Newton Divided-

Difference Interpolating Polynomial was used because of its

simplicity. The size of the table required and the accuracy

of the results are both functions of the degree of the

Polynomial used. For simplicity and speed, a first-order

divided-difference table was used which resulted in a linear

interpolation of the form:

F(X) = F(X
Q

) + (X - X
Q

) F[X
1
,X ]
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where

X = e

f(x) = cos e

P(X
1

) - F(X
Q

)

F[X
l'

X
c

]
=

X
x

- X
Q

The table consisted of all values of F(X.) and

PCX.., X.] for F(X) = COS 8. < 8 < 1.88 radians in hexa-

decimal. The increment used for each value in the table

was .0.8 radians hexadecimal. The table was constructed

from a Fortran program which used a decimal increment of

n
_-, pt- , equivalent to .08 hexadecimal, and outputted the

desire table values in hexadecimal.

a. Table Length

The size of the table loaded into the program

was a function of the required accuracy of the Cosine rou-

tine. The data supplied to the program from the navigation

devices was accurate to three significant figures.

Different size tables were constructed and

tested for accuracy. Since the interpolation was linear,

the largest error occurred at the mid-point between each

table value.
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Maximum Error

Linear Approx

The table size was adjusted until the maximum

error was within three units in the fourth significant

figure, thus guaranteeing three significant figure accuracy.

The table values were loaded sequentially into

ROM number three. The first entry was the value of F(X n )

followed in order by FU-^Xq) , F(X
1
), . .., F(X

r ) >F(Xn+1
,X
n

) .

The remaining part of the ROM was used for the interpolating

routine.

b. Description of the Program

The Cosine routine was designed to be called

from outside of the ROM. The input registers RC , RD, RE,

RF with RF the least significant figure.

Examples

:

6 = 1.520

6 = 0.7^8

would be loaded

would be loaded

RC

8

RD
2

RE
5

RF
1

10.?





The description of the programs function is best shown by

an example. Let the input be 8 = 0.7*1. Therefore

RD RD RE RF
0000 0100 0111 0000

4 7

The first object of the program was to find the

required values (F(X
± ) ,F(Xi+1 ,X

±
) ) in the table. The ROM

can be thought of as a 16 by 16 matrix of 8 bit words. Each

byte therefore will hold two significant figures of each

table value. Since each table value has four significant

figures and two table values were required for each compu-

tation, only four bytes needed to be retrieved from the

table. If the four required bytes for each computation are

thought of as a unit, the table could be thought of as rows

of units with four units in each row. The increment in

radian value therefore between each row is .20 radians hexa-

decimal. The required row in the table is easily found by

dividing the inputted angle by two.

^^ = 03A0 (hexadecimal)

The required row in this example is row three. To find the

required unit in row three, the remainder of the inputted

angle is divided by four.
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POAO = 0Q28

The required unit in this example is unit two. The final

remainder of the inputted angle, 0008, is equal to the

difference (X - X
±

) .

In summation, the location of F[X
i+1

,X
1

] in

the table was found by simple divisions by two and four

performed on the input and the difference. Divisions by

powers of two can be obtained by shifting operations.

After the desired table values and difference

were found, the multiplication routine was called which

multiplied (X - X
±

) times F[X1+1 ,X
± ] and stored the result

in index registers RC to RF. The final computation took

the value in RC to RF and subtracted it from F(X
1

) and stored

the result in index register RC , RD, RE, and RF to be re-

turned to the executive program. The step by step procedure

of the Cosine routine is shown in the Cosine process graph,

Figure 13-

c. Expansion of Routine

The table used in the Cosine Routine was also

the table required by a Sine routine. It was noted that

this routine could also be used to find the sin for

< 6 < 90 by subtracting the input G from 90 (1.88 rads-0

rads) and using the same routine since cos(90 - G) = sin(O).
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d . Summary

The memory space required by the Cosine routine

was one ROM plus the space taken up by the subroutines called

by the Cosine routine. The main part of the Cosine routine

contains only ^6 instructions. The time required to execute

the Cosine routine was basically the time required to execute

the multiplication. The Cosine routine required only a

total of 5.17 milliseconds. This computational speed repre-

sents a 70 fold decrease in the computational time to com-

pute the Cosine by previously available routine. By table

look-up schemes, it was proven that the computational speed

of the microcomputer could be competitive with that of a

general purpose computer. The feasibility of using the

MCS-1| as a navigation computer was also proven by demonstra-

ting its ability to find the Cosine and Sine at competitive

speeds and within the memory limits and accuracy limits

required.

3. Common Routines

The common subroutines were written to do the basic

housekeeping operations such as storing data, simple arith-

metic, shift operations, and transfer of data between RAM

and IR. These subroutines were called by the executive

routine and the multiply and Cosines routines to aid in the

data handling. The functions handled by the common subrou-

tines were those best suited for the MC3-14 and therefore

could be written in a straight forward way requiring little
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speed or memory space. The functions of the common routines

were broken into three groups: Arithmetic, Shifting, and

Data Handling.

a. Arithmetic

The arithmetic routines handled the simple addi-

tions and subtractions required in the navigation program.

These routines were handled well in the MCS-4 by the 4-bit

ripple-through carry type adder incorporated in the 4004

CPU. This allowed direct addition or subtraction of two

hexdigits in either the accumulator or RAM. There were

two addition routines, two subtraction routines, and two

special purpose arithmetic routines written.

The two addition routines written were ADDRAM

and ADDRAMIR. ADDRAM adds the contents of the RAM addressed

by IRO and IR1 to the contents of the RAM addressed by IR2

and IR3 and stores the results in the RAM addressed by IR2

and IR3. The contents of the RAM addressed by IRO and IR1

remains unchanged.

RAM (IRO, IR1)
>|

J

I
>RAM (IR2, IR3)

RAM (IR2, IR3) H

ADDRAM occupies 12 words of ROM and takes 288.8 microseconds

of computation time.

ADDRAMIR adds the contents of the RAM addressed

by IRO and IR1 to the contents of IRC thru IRF and stores
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the results in IRC thru IRP. The contents of the RAM

addressed by IRQ and IR1 remains unchanged.

RAM (IRO, IR1)

IR(C * F)
-»IR(C -* P)

ADDRAMIR occupies 22 words of ROM and takes 237.6 micro-

seconds of computation time.

The two subtraction routines written for the

navigation program are SUBIR and SUBRAMIR.

SUBIR subtracts the contents of IRC thru IRF

from the contents of IR4 thru IR7 and stores the result in

IRC thru IRF. The contents of IRk thru IR7 remains unchanged,

IR(lJ -> 7)

IR(C * F)
->IR(C + F)

SUBIR occupies 17 words of ROM and takes 182.6

microseconds of computational time.

SUBRAMIR subtracts the contents of IRC thru IRF

from the contents of the RAM addressed by IR2 and 1R3 and

stores the result in the RAM addressed by IR2 and IR3. The

contents of IRC thru IRF remains unchanged.

RAM(IR2, T.R3)

IR(C - P)
->RAM(IR2, IR3)
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SUBRAMIR occupies 32 bytes of ROM and takes

3^5-6 microseconds of computational time.

The two special arithmetic routines written for

the navigation program are COMPLEMENT and COMANGLE.

COMPLEMENT takes a four character hex number

addressed by IR2 and IR3 in RAM, takes the ones complement

of that number, and stores the result back into the location

in RAM addressed by IR2 and IR3.

RAM(IR2, IR3)- > V/A ->RAM(IR2, IR3)

COMPLEMENT occupies 28 bytes of ROM and takes 302.4 micro-

seconds of computational time.

COMANGLE takes the angle loaded in IRC thru

IRF, subtracts it from 90 in hex radians, and stores the

result back into IRC thru IRF.

IRC(C + P)- *IR(C + F)

COMANGLE occupies 18 bytes of ROM and takes 19^1.4 micro-

seconds of computational time,

b. Shifting

Multiplication and division of hex-digits by a

multiple of two v/as accomplished by shifting the variable

either left or right the required number of bits. To take
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advantage of this capability, two subroutines were written

for the navigation program, DIV2IR and DIV2

.

DIV2IR divides the contents of IRC thru IRF by

two and stores the result in the RAM addressed by IRO and

IR1. The division is accomplished by shifting the variable

right one bit. The original contents of IRC thru IRF are

unaffected.

IR(C + F) ->RAM(IR0, IR1)

DIV2IR occupies 2k bytes of ROM and takes 259.2 microseconds

of computational time.

DIV2 divides the contents of the RAM addressed

by IR2 and IR3 by two and stores the result in the RAM

addressed by IR2 and IR3.

-^RAM(IR2, IR3)RAM(IR2, IR3)

DIV2 occupies 33 bytes of ROM and takes 35G . ^ microseconds

of computational time.

c. Data Handling

The transfer of data within the navigation pro-

gram was accomplished by the data handling routines. These

routines saved much memory space in the Executive Routine

and the Multiply and Cosine Routines by grouping these tasks
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into separate subroutine calls. There were five data handling

routines written for the Navigation program. Three routines,

RAMIRC, RAMIR8, and IRRAMC , were written to transfer data

between the IRs and RAM. TRANRAM was written to transfer

data between different locations in RAM. TIME was a special

routine written to load the proper time interval of one navi-

gation cycle into the IRs. All five routines were written

to handle data of four hex-digit size.

RAMIRC transfers the contents of the RAM addressed

by IR2 and IR3 into IRC thru IRF. The original contents

of RAM are unaffected.

RAM(IR2, IR3)- > -»IR(C + P)

RAMIRC occupies 16 bytes of ROM and takes 172.8 microseconds

of computational time.

RAMIR8 transfers the contents of the RAM addressed

by IRO and IR1 into IR8 thru IRB. The original contents

of RAM are unaffected.

->(IR(8 * B)RAM (IRQ, IR1)

RAMIR8 occupies 16 bytes of ROM and takes 172. 8 microseconds

of computational time.
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IRRAMC transfers the contents of the IRC thru

IRF into the RAM addressed by IR2 and IR3. The original

contents of IRC thru IRF are unaffected.

IR(C »• F). -»RAM(IR2, IR3)

IRRAMC occupies 16 bytes of ROM and takes 172.8 microseconds

of computational time.

TRANRAM transfers the contents of RAM addressed

by IR2 and IR3 into RAM addressed by IRO and IR1. The

original contents of RAM addressed by IR2 and IR3 are

unaffected.

RAM(IR2
S

IR3)- ^ ^RAM(IR0
5
IR1)

TRANRAM occupies 8 bytes of ROM and takes 86.^ microseconds

of computational time.

TIME is a special subroutine written to load

the time interval of one navigation cycle into IR8 thru IRB,

The time interval used in this program was 200 milliseconds,

To input a different time interval into the navigation pro-

gram, a new TIME routine is substituted into the program.

->IR(8 + D)

n?





TIME occupies 9 bytes of ROM and takes 97-2 microseconds

of computational time.

c. Summary

Thirteen Common Subroutines were written for

the Navigation program. Each routine was designed to

handle the particular needs of the Navigation program.

All thirteen routines fit in one ROM. A complete listing

of the Common Subroutines is in Appendix A.

4. Summary of Subroutines

Each operation defined in the operational process

graph, Figure 6, was successfully programmed within the

memory and time constraint of the program analysis. Each

subroutine was written in a modular form allowing for easy

addition or subtraction of new code. The memory size,

computational time, and capability of each subroutine is

listed in Table VII.

E. EXECUTIVE ROUTINE

The Executive Routine was written to call up the sub-

routines in the order described by the operational process

graph, Figure 6. The Executive Routine established the

priorities of each function and was designed to make all

the decisions in the execution of the Navigation program.

The variables used by the Executive Routine were all stored

in RAM. The designated location of each variable in RAM

is shown in Table VIII.
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Subroutine

MULT

COS

ADDRAM

ADDRAMIR

SUBIR

SUBRAMIR

COMPLEMENT

COMANGLE

DIV2IR

DIV2

RAMIRC

RAMIR8

IRRAMC

TRANRAM

TIME

Length
(8-bit
words)

255

12

22

17

32

28

24

33

16

16

16

8

9

Time
(usee) Purpose

5000 [IR(8->B)].[IR(C+F)]+IR(C+F)

5170 C0S[IR(C+F)j + IR(C-*F)

289 RAM(0
5 1) + RAM(2,3)-*RAM(2,3)

238 RAM(0,1) + IR(C+F)+IR(C->F)

I83 IR(4-7)-IR(C-*F)+IR(C-*F)

3^6 RAM(2,3)-IR(C-»-P)+RAM(2,3)

302 ~[RAM(2,3)]-»-RAM(2,3)

19^ (90°)-IR(C-F)-*-IR(C-*-F)

259 [IR(C->-F)]/2-*RAM(0,l)

356 [RAM(2,3)]/2->RAM(2,3)

173 RAM(2,3) + IR(C->F)

173 RAM(0,1) + IR(8+B)

173 IR(C+F) -> RAM(2,3)

86 RAM (2 ,3) + RAM (0,1)

97 (Nav Cycle Time)->IR(8-»-B)

Table VII NAVIGATION SUBROUTI NES
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The first operation of the Executive Routine was to

compute the proper Cosine and Sine of the current true

heading. Before calling the COSINE subroutine, the Execu-

tive Routine determined which quadrant the true heading was

in and set up the input angle in the proper form so that the

Sine or Cosine could be computed by the COSINE subroutine.

After calling the COSINE subroutine, the Executive Routine

stored the output with the proper sign in its location in

RAM. A graphical display of the decisions made by the Execu-

tive Routine in computing the Cosine and Sine of the true

heading is illustrated in Figure 1*1.

Next the Executive Routine smoothed the current TAS

indication with the previous TAS computed. The smoothed

TAS was then used to compute VAX and VAY as described in

the Navigation equations and illustrated by the operational

process graph.

After computing VAX and VAY, the Executive Routine tested

to see if the IMS was good. If the INS was good, the Execu-

tive Routine computed the wind acting on the vehicle and

the distance increments traveled as measured by the INS.

If the INS was down, the Executive Routine computed the dis-

tance increments traveled as measured by the AIR-MASS system

using the last computed v/ind components. Next the Doppler

System was tested to see if it was up or down . If the

Doppler was up, the distance increments as measured by

the Doppler were computed.
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The distance increments outputted from the Navigation

Program were selected by the Executive Routine in the

following priority according to the following conditions:

2.

3.

Priority

INS and Doppler
Smoothed
INS
Doppler
Air-Mass

Conditions

INS up and Doppler Up

INS up and Doppler down
INS down and Doppler up
INS down and Doppler down

The Executive Routine was loaded into two ROMs with

space left for addition of new code. A complete listing

of the Exeuctive Routine is in Appendix B.

F. ERROR ANALYSIS

Microcomputers have a limited arithmetic capability.

The basic arithmetic operation of the MCS-JJ is a four bit

addition. More complex arithmetic processes had to be

reduced to this basic operation. It was therefore very

important to avoid unnecessary precision throughout the

calculations. Since the inputs into the Navigation program

came from instruments whose precision is limited to three

hexadecimal digits, the choice of four hexadecimal arith-

metic was considered to be sufficiently accurate. The

following error bound analysis was performed to show that

the input errors dominate the total error.

The starting point for the error analysis Is the opera-

tional process graph, Figure 6. It was apparent from the
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operational process graph that the outputs DX and DY are

symmetric, therefore an analysis of only the computations

for DX were made. A process graph that involved only the

operations which have an influence on DX was constructed,

as shown in Figure 15, from the operational process graph,

Figure 6.

The errors corresponding to each operation in Figure

were designated e , e
2

, e,, ..., eg. The initial errors of

the inputted data were expressed as e(TH), e(VGXI), e(SDD),

and e(SHD). Due to the smallness of the errors, the products

of errors were considered negligible when compared to the

linear terms. The propagation error was derived as discussed

in Chapter 2 of Reference 28 in the Bibliography.

There were two means by which each operation contributed

to the error propagation.

1.) Transmitting the errors which were inputted into
the operation.

2.) Adding an error of its own , which is due to the
rounding or truncating process which limits the
number of digits carried to the next operation.

The transmitted errors were calculated by calculating

the differentials of the expression.

d(x+y) = dx + dy

d(xy) = y dx + x dy

Af*<\ y dx - x dy
d(-)

2
* y
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d(sin x) = cos x dx

d(cos x) = - sin x dx

The rounding or truncating errors were simply added to

the transmitted error and thereafter propagated through the

remainder of the calculation.

The error after the first operation in Figure 15 is

given by:

e(cos(TH)) = - (sin(TH)e(TH) + e

This error is further transmitted by operation three

e(cos(TH)SDD) = SDD(-sin (TH)e (TH) + e,) + cos (TH)e (SDD)

+ e
3

Similarly, the error after the second and fourth operation

is given by:

e(sin(TH)SHD) = SHD(cos (TH)c (TH) + e
2

) + sin (TH)e (SHD)

+ G
H

This gives the total error after operation six as:
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e(cos(TH)SDD) + e (sin(TH)SHD) + e
g

In a similar fashion, the error after operation five is

e(T-VGXI) = VGXI-e(T) + T-e(VGXI) + e,

Combining the above, the total error is expressed as:

e(DX) = |{e(T-VGXI) + [e (cos(TH)SDD)+e(sin(TH) )SHD + e
6
]+e }+e

g

The following is obtained by expanding the expression for

e(Dx)

:

e(Dx) = i{VGXI«e(T)+e(VGXI)-T+e c+SDD(-sin(TH)e(TH)+e n )
I 5 1

+ cos(TH) -e(SDD)+e +SHD(cos(TH)e(TH)+e
2 )

+ sin(TH)e(SHD)+e
i|
+e

6
+e

7
}e

8

The error bound for e(Dx) is computed by using the triangular

inequalities.

|e(Dx)| < |{|VGXl|-|e(T)| +
|
T|

|
e (VGXI)

|

+ |SDD| [ |
sin(TH)| |e(TH)|

+ |e,|] + |cos(TH)| |e(SDD)|+ |SHD| [| cos(TH)
|
|e(TH)

|

+ |e
2 |] + |sin(TH)||e(SHD)| + |e^| + |e,| + |e

4 |

+ |e
6 |

+
I

o
y

|
} + |e

8 |

1??





The time increment T is controlled by the programmer

and hence may be chosen to be a power of sixteen, therefore

the inherent error e(T) = 0. The addition process carried

out in operations six and seven is carried out exactly in

the range of values permitted, therefore e. = and e
?

= 0.

This reduces the error bound expression for the total

propagated error to:

e(Dx) < |{|T| • |e(VGXI)
|

+
|
SDD

| [ |
sin(TH)

|
|
e (TH)

|
+ lej]

+ |cos(TH)
|

|e(SDD) |+ | SHD| [ | cos (TH)
|

| e (TH) | + |e
2 |]

+ |sin(TH)| |e(SHD)|+ |e
5

|
+ |«

3
|

+ le^} + |e
g |

The error bound for each operation in Figure 15 due to

roundoff and truncation was found to be:

Operation

Cosine
Sine
Multiplication
Division
Subtraction
Addition

Error Bound (Decimal)

3 x 10
3 x 10

30

j

-5
-5

3 x j.u_
68x10

8 x 10" b

Corres. Error

• lejjl ,|e
5

e
l

°?
e
3

e
8

The error bound for the inputs was obtained from published

sources. Since an actual maximum error for each system could

not be found, the (3a) value, 99.72 CEP, was used. The
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systems onboard the P3C naval aircraft were used as repre-

senting the current "state-of-the-art" systems in operational

use today.

System

Inertial Navigation
System

Inertial True Heading

Doppler Along Heading

Doppler Across Heading

Error (30)

5.4 NM/HR

. 5 degrees

1.8

3.6

Corresponding Error

|e(VGXI)|

|e(TH)

|

|e(SHD)|

|e(SDD)|

The error bound for the Doppler is a function of velocity,

In order to compute the error bound for the system, an exam-

ple was used. The error bound analysis was calculated for

an aircraft with a velocity of 4 00 knots along the true

heading and a velocity of 50 knots across the true heading.

The navigation cycle time used was 150 milliseconds. The

true heading of the vehicle was 045 degrees. The inputs

and error bounds inputted into the system were calculated

as follows

:

TH = 045 degrees = 0.785*1 radians

e(TH) - .5 degrees = 0.0087266

VGXI = 3-8.2 knots

e(VGXI) = 5.4 knots

TIME = .15 sec = .00004 If HP
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SHD = (400 knots) (.0000416 HR) = .01664 nm.

e(SHD) = (.01664 nm)(.0l8) = .0002995 nm.

SDD = (50 knots) (. 0000416 HR) = .00208 nm.

e(SDD) = (.00208 nin)(.036) = .0000748 nm.

Although the values calculated above are dimensionally

correct, they are not In the proper form for inserting into

the computer. The MCS-4 microcomputer used in this system

works with a 16-bit fixed point variable. In order not to

lose significant digits in each number, the inputs are all

normalized. The fixed point number used in the calculation

is in the form of (._ ..._), therefore the value of VGXI

used In the computations is .3182. The time variable is

normalized to . 4l60 which results in SHD equalling .1664.

Now that the inputs are dimensionally correct and in the

proper format, they can be substituted into the error bound

equation as follows:

|e(Dx)| < |{(.4l6)(.0054) + (. 0208) [(SIN( . 785'D )(. 0087266)

+ .00003] + (COS(.785 J0)(. 000748) + (.1664)

[(COS(.7854))(. 0087266) + .00003] + (SIN(.785l))

(.002995) + .00003 + .00003 + .00003} + .000008

e(Dx)| < .0030798
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This is the maximum error bound for the total naviga-

tion system. The maximum error bound equation was broken

into two parts, one part indicated the maximum propagated

errors due to the inputs and the other indicated the maximum

error developed by the navigation program.

The error bound for the inputs alone is -calculated as

follows

:

e(Dx)|
input

< |{|T| |e(VGXI)| + |SDD|[|SIN (TH)
|

| e (TH) |

]

+ |COS (TH)
|

|e(SDD) | + | SHD
| [ | COS (TH)

|

| e (TH) |

]

+ | SIN (TH)| |e(SHD) |

}

e(Dx)|. < -k(.ill6)(.005 JO + (.208)(.707H)(. 0087266)
1 II ]y U. L> C-

+ 707H)(. 0007^8) + ( .166^4) (.70 711) ( .00 87266)

+ (.7071DC. 002995))

e(Dx)knput
= •° 0302Z)

.nput

Next the maximum error due to the calculations in the

navigation program alone were computed.
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e(Dx)| < |{(.0208)(. 00003) + (. 1661) (. 00003) + .00003

+ .00003 + .00003) + .000008

e(Dx)| prog < .0000557

The results of the error bound analysis indicated that

the maximum error created in the navigation microcomputers

computations was only 1.8 per cent of the total maximum

error. It was concluded from this analysis that the accu-

racy of the MCS-4 navigation program using a 16-bit fixed

word data length was well within the limits required for

the navigation problem.

The best way to check the results of this error bound

analysis would be to fly the system in an actual aircraft.

Since an aircraft was not available for this purpose, a

detailed FORTRAN simulation program was written to test

the functions of the navigation program. Section VI dis-

cusses the FORTRAN simulation program and the results

obtained from examples tested on this program.

G. SUMMARY OF PROGRAM

The navigation program written in this thesis for the

MCS-I microcomputer takes the outputs of the Inertial navi-

gation system, Doppler navigation system, and Air-Data
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system and computes the vehicle's distance traveled in the

east/west and north/south directions. The total program

consists of 1768 instruction words on seven 4001 ROM chips

broken into an executive routine and fifteen subroutines.

Two 4002 RAM chips are required to store the data and varia-

bles used in this program. The total computational time

required for one navigational cycle is between 36 and 80

milliseconds depending on the navigational mode used. The

computational error developed by the navigation program from

error bound analysis represents only .1 per cent of the

total error. The program uses a sixteen bit fixed point

variable which allows it to accept inputs up to 20^7-99

knots with an accuracy of ± .0625 kts. The total cost of

the one CPU chip, seven ROMs, and two RAMs used by the system

is $95.00.

A complete listing of the navigation program written

in the KCS-4 assembler language is found in Appendices A,

B, and C.
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VI. FORTRAN SIMULATION PROGRAM

The development of the MCS-1 Microcomputer navigation

program was a very time-consuming process that involved the

construction and testing of many subroutines. The testing

of the total program in its final form was limited by the

capability of modeling the inputs to the navigation program

in a machine level language. Hand calculated examples were

tested and used to debug the completed program, it was de-

cided to write a detailed bit-by-bit digital simulation of

the navigation program in FORTRAN on the IBM 360/67 compu-

ter. The FORTRAN simulation was written so that major

changes in word length and scaling could be tested without

requiring major rewriting of the microcomputer program.

Parameter changes were made to the Inertial, Doppler,

and Air-Mass inputs without incurring the added cost and

time of developing an actual system. The FORTRAN simulation

was a comprehensive and flexible means of testing the micro-

computer program through a series of realistic and unrealis-

tic tasks. A complete listing of the FORTRAN simulation

program is found in Appendix D.

A. DEVELOPMENT

The FORTRAN simulation program was developed as an exact

simulation of the navigation program developed for the MCS-4

microcomputer. The program was written by utilizing the
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process graphs developed in Section V. The program includes

a parallel solution of the navigation equations utilizing

the FORTRAN routines available on the IBM 360/67 computer.

The results of the solution by the MCS-4 simulation and the

FORTRAN solution provided a comparison of the 16-bit fixed

point solution of the MCS- J
I microcomputer program and the

24-bit floating point routines on the IBM general purpose

computer.

The FORTRAN Simulation provided the programmer with the

ability to input many variables. The outputs of the Iner-

tial, Doppler, and Air-Mass systems were modeled to include

system failures and input errors. The outputs of the simu-

lation indicated how well the programmed microcomputer could

handle changing variables as compared to a programmed

general purpose computer.

The main body of the simulation program was written as

a subroutine in order that systems programmed or simulated

in FORTRAN could easily be tested with the navigation routine

The main body of the simulation program declares the index

registers, random access memory locations, and read only

memory locations as dimensioned arrays. The numbering and

size of each array corresponds exactly with the addressing

and size of these areas within the MCS-4. The main body of

the simulation program prepares the Inputs and Initial con-

ditions for the execution of a simulated navigation cycle.

The hexadecimal Cosine table stored In the MCS-'l ROM is
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computed and stored in the ROM array by the main body of

the simulation program. The simulation begins when the

subroutine NAV is called with the initial inputs.

Subroutine NAV is a FORTRAN simulation of the MCS-4

navigation executive program. The inputted variables to

NAV are 32-bit floating point decimal numbers. Each varia-

ble is converted to a 16 bit fixed point hexadecimal number

by the subroutine CONVRT, Appendix D. After each input is

in the proper form, subroutine NAV stores each variable in

the RAM array at the same location corresponding to the RAM

addresses in the MCS-4, Table VIII. After the inputs have

been stored in the proper locations and in the proper format,

subroutine NAV calls a FORTRAN simulation of each subroutine

called by the MCS-iJ navigation executive routine. Each

subroutine is executed in the same order as in the MCS-4

executive program. The 16-bit hexadecimal results are

printed to provide a check with the results of the actual

MCS-4 microcomputer navigation program. The NAV subroutine

lastly calls subroutine CONVD, Appendix D, which converts

the 16 bit hexadecimal results into floating point decimal

results which are then compared with the solution of the

navigation equations by floating point FORTRAN calculations.

A complete listing of subroutine NAV is found in Appendix D.

Each common subroutine programmed on the MCS-'l micro-

computer was duplicated in the FORTRAN simulation. A com-

plete description of each subroutine and its graphical
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representation can be found in Section V.D.3- A complete

listing of the FORTRAN simulation of each of the common

subroutines is found in Appendix D.

The multiplication and Cosine subroutines used in the

FORTRAN simulation were developed from the multiplication

process graph, Figure 9, and the Cosine Process graph,

Figure 13. The Cosine routine uses the Cosine table stored

by the main body of the simulation program. The multiplica-

tion table used by the simulated multiply routine was com-

puted individually for each pair of hexadecimal digits

called by the multiply routine.

The last subroutine written for the simulation program,

subroutine PRINT, was written to incorporate some of the

features of the MCS-4 Assembler and Interpreter. Subroutine

PRINT, Appendix D, was developed to allow the programmer to

dump the contents of the index registers and RAM locations

at any point during the execution of the simulation.

A complete listing of the FORTRAN simulation program

is in Appendix D.

B. APPLICATION

The FORTRAN simulation was first used to optimize the

navigation program. The first navigation program written

on the MCS-'J had been designed to handle only positive

numbers within the true heading limitations of zero to ninety

degrees. Before expanding the program to handle all quadrants
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and both positive and negative inputs, different ways to

implement these changes were investigated. The Fortran

simulation allowed numerous techniques to be attempted with

the advantages and limitations of each readily apparent

in the output. The Fortran simulation program was easy to

change, whereas the MCS- 1
! program would have required major

program changes to implement each technique. After the

Fortran program had been modified to do the required tasks,

the MCS-4 navigation program was modified to incorporate

these required changes. The true heading was used in four

separate quadrants of ninety degrees each with the Execu-

tive routine testing the true heading input and computing

the Cosine and Sine as required. The sign of each variable

was incorporated into the program by using a ones complement

scheme with the first bit of the 16-bit word becoming the

sign bit. The required changes to each subroutine was first

tested in the simulation program before being programmed

into the navigation routine.

The second use of the simulation program was to debug

the MCS-4 program in its final form. The simulation program

was run through a series of examples. The simulated MCS-4

program results were compared with the Fortran computed

results to insure the correctness of the simulation program.

After the simulation program had been completely debugged,

the actual MCS-1< program was run with the same inputs as the

simulation program. By dumping the contents of the registers
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and RAM memory at key points in the actual program and

comparing these values with those computed and printed out

by the simulation program, the sections of the actual pro-

gram in error were easily identified. After changing a

section in error, the actual program and simulation pro-

gram were run to see if the correction was correct and also

see if it affected any of the other sections. This method

of checking and rechecking proved to be an excellent tool

for debugging microcomputer programs. The only problem

encountered in this method was the required time for outputs

to be printed from the IBM 360/67.

The third use of the simulation program was to check

the results of the error bound analysis. The same inputs

used in the error analysis were inputted into the simulation.

Simulation runs were made using correct inputs in order to

compare the results of the MCS-^ calculation with those of

the Fortran program in order to determine the errors due to

the navigation program. Simulation runs were made for each

navigation mode of operation and for each true heading quad-

rant. Next the same runs were made with the inputs at

maximum errors. The results of these runs and the comparison

of the errors developed are summarized in Table IX.

The results, summarized in Table IX, confirmed the re-

sults of the error bound analysis. It was noted that the

greatest computational error occurred when the vehicle tra-

veled a direct path with constant inputs. Thir; was due to
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the linear addition of the truncation error when the inputs

remain constant. It was also noted that the computational

error was zero when the vehicle returned to the departing

position indicating that the truncation error cancelled in

the opposite direction.
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VII. CONCLUSIONS

The results of this design study indicated that a micro-

computer is both fast enough and powerful enough to handle

the complex task of navigation. The total computational

time of the navigational cycle, 80 milliseconds, is well

below the 200 millisecond cycle time used in current naviga-

tion computers. Table look-up routines for such complex

tasks as multiply, Cosine, and Sine proved an effective

means of trading inexpensive memory for computational speed.

The total hardware cost of the ten LSI cips, excluding a

board to hold the DIP packages, was $95-00.

The software aids investigated in this study were very

effective in decreasing programming and debugging time.

Graph Theory, in the form of process graphs, was an excellent

means of visualizing the actual flow of the data throughout

the computations. The initial problem was successively

broken into smaller and smaller discrete parts until each

operation could be programmed easily in the assembly language

of the MCS-JJ. The operational process graph was then used

to combine the programmed discrete operations into the re-

quired navigation computations. The actual writing of the

program was greatly simplified by this method.

The error bound analysis of the microprogram was greatly

simplified by the use of process graphs. The maximum error

in each of the discrete operations was initially computed.
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The summing of these errors as they propagated throughout

the program was easily identified with the aid of the opera-

tional process graph. The testing of actual erros in the

computation, however, proved very difficult. Sample problems

were hand calculated with the aid of the process graphs and

the results were compared with the results computed by the

actual program. When these results did not agree, both the

hand calculated procedure and the computer program had to

be debugged. This procedure was very time consuming with

only a limited number of tests being made. The FORTRAN

simulation program was written to aid in testing and debugging

the navigation program.

The FORTRAN simulation program proved to be an effective

aid in testing the navigation program. The set up of the

simulation program allowed the results of the navigation

program to be compared at different points in the computa-

tions with a FORTRAN solution of the same required equations.

With the aid of the IBM 360/67 computer, many tests were run

on the FORTRAN simulation program. The results of these

runs identified those areas in the navigation program that

needed rewriting. Before expanding the navigation program

to include negative inputs from different true heading quad-

rants, the FORTRAN simulation program was changed to incor-

porate the required changes. After all the changes had been

tested and optimized on the simulation program, the MCS-'i

navigation program was rewritten to incorporate those changes,
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The simulation program proved very effective in optimizing,

expanding, debugging, and testing the navigation program.

It is concluded from this design study that many of

the dedicated computational tasks being done by large

general purpose computers on board naval ships and aircraft

can be done by microcomputers. It is recommended that

research and development of a multi-microcomputer system be

begun to replace one or more of the costly general purpose

computer systems currently being used. The development of

the MCS-808O microcomputer with its increased computational

speed and power over the MCS-iJ will make this task easier.

It is also recommended that before programming a micro-

computer, the desired program should be written in a higher

level language simulation program before investing in the

software costs of a microprogram. The development of PL/M,

derived from PL/I, a high level language for the MCS-8 and

MCS-808O greatly increases the ease of programming and

testing programs for the microcomputer.

The rapid improvements being made in microcomputers,

and the current availability of inexpensive microcomputers,

make it imperative that the Navy begin now in the development

of systems utilizing this technology.
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APPENDIX A
******* ft**** *************** **************** ***********
THIS IS THE MCS-4 MICROCOMPUTER NAVIGATION PROGRAM
USEO TO COMPUTE THE PRESENT POSITION OF AN AIRCRAFT
FPOM DISTANCEt VELOCITY, ANO AIRSPEED INPUTS FROM
INERTIAL, DOPPLER, ANO/OR AIR MASS SYSTEMS;
******************************************************

******************************************************
THIS SECTION CONSISTS OF THE COMMON SUBROUTINES
USED BY THE NAVIGATION PROGRAM AND THE MULTIPLY
AND COSINE SUBROUTINES;
******************* a* ********************* ************

J.- •'r *•.* -r ^i* -i- ^ *** ^* *\* -. »*- t* «v t- •»* i* 'f -c t*- •.- t* -r> *^ ^ -»- -r- i» *.- %* t -v -i* *r *>* 'i> 'T' -i» *.- -t^ *? n* -r- 'r -.
^, .u ,', .'. j, ..*, j .t.

-i" **- *i- T" T,^*

THIS SUBROUTINE ADDS THE CONTENTS OF THE RAM MEMORY
ADDRESSED BY INDEX REGISTERS AND 1 TO THE CONTENTS
OF INDEX REGISTERS "C" THRU "F" AND STORES THE RESULT
INTO THE INDEX REGISTERS "C" THRU "F";
*-J- .'- J- J, „'- .'. .'. .'.,'- -u .'.- .V ,'. -o .', . , JW -». JU J* .' -V .<-. O. J. - '.. ^ ..',.'...,. i., ,, .J, -< - O. .'„ ,>... o, ^' . O • »'.. ->., .1, -V .'- -•- ^r *'. * J- . I,

,,..,-.,--,--,,-,-.,,-,.-,- •,• v T T V 1* *l' 'i* "f '•- *f *¥* "" "V* *V* I1 *Y" V '•
' *«* T T T T 1* T T'C T 'i' "T T T "V" I* *T "T •** n1,

"T* «T Hi* "V" ***

RC
RC
Rl
RO

ADDRAMIR:
CLC;
SRC RO
RDM
ADD
XCH
INC
SRC
RDM.
ADD RD
XCH RD
INC Hi
SRC RO
RDM;
ADD RE
XCH RE
INC Rl
SRC RO
RDM;
ADD
XCH
CLC
BBL

RF
RF

OJ

******** t : * ft * .:- * * *. *************:»:*********************** *
THIS SUBROUTINE TAKES A FOUR CHAR HEX NUMBER ADDRESSED
BY THh CONTENTS OF INDEX REGISTERS AND 1, AND ADDS
IT TO 4 FOU^' CHAR HEX NUMBER ADDRESSED BY INDEX RFGS
2 AND '; , AND LOADS THE RESULT INTO RAM MEMORY ADDRESS
BY INDEX REGISTERS 2 AND 3;
*********** ^ ********************************** ********

ADDOAM

AD

CLC",
LDM
XCH

i

:

SRC
RDM;
SRC
ADM;
WRM;
INC
INC
TSZ
BPL

12
R5

RO

R2

Rl
R3
R5
o;

AD

l'lO





*
T
L
T
*

DIV2IR

*****************************************************
HIS SUBROUTINE TAKES A FOUR CHARACTER HEX NUMBER
OCATED IN INDEX REGISTERS "C" THRU "F", DIVIDES
HIS NUMBER BY TWO ANO STORES THE RESULT IN RAM;
************************** *********A**********:*******

CLC;
SRC RO;
LD RF;
PAR;
WRM;
LDM 14;
XCH Rl

;

SRC RO;
LD RE;
rar;.
wrm;
ldm- 13;
XCH Rl;
SRC RO;
LD rd;
RAR;
wrm;
LDM 12;
XCH pi ;

SRC RO;
LD RC;
par;
wrm;
BBL 0;

THIS SUBROUTINE DIVIDES THE CONTENTS OF
ADDRESSED BY INDEX REGISTERS 2 AND 3 BY

RAM MEMORY
TWO;

*v- Jr+eiXtJ* -•- - --<-.'- ^
.

- -- o» J* ^- -'* -v J- j- & v- •*• -*» »*- •^ -4' »"- »*' >** *•- -1- *' j *- -** V- -1- "V -f* *'- »V •J- * aS- i s'c
""-

-, .,.,,..
L
- -, -,..-.-.-,.-,. J,- ,,, Jf. ,f. ,f. *r ,,, If. J,* ,,» ,r .y. -yv jf. ^ ,,- „,. .p *,„ »,-. ^,, n. S,~ -r ,,\ ^. .^ i,i. *,. ^,S *,» f >,*. -r

D1V2:
CLC;
SRC R2J
RDM;
RALJ
JCN 2CY PDIV;
CLC;
rar;
STC *

JUN ndiv;
PDIV:

RAR;
NDIV:

RAR;
WRM;
LDM H;
XCH F3;
SRC P. 2;
PDM;
RAP;
wrm;
LDM 13;
XCH R3;
SRC R2;
RDM;
FAR;
wrm;
L DM 1 ? ;

XCH P3;
SRC R2;
RDM;
RAF ;

WRM;
RBL o;

l'l]





.^

******************************************************
THIS SUBROUTINE LOADS THE DESIRED TIME CYCLE FOR THE
NAVIGATION ROUTINE INTO INDEX REGISTERS "8" THRU "B";
******************************************************

TIME:
LDM 0;
XCH R8
LDM 0;
XCH R9
LDM 0;
XCH RA
LDM 4;
XCH RB
BBL 0;

*,'.-.-»•- -J. ~i- ^ »', o. . ', *'- -
wfi «y* "t* "r* *i* *v n* *

t
* -v **" "

j- a. »V st .'. u. u.x «l a. a. u. a, >u v
•v i* *i

v Jr 'i- *v* ^ -v -v i- "V- *r~ *** *» 'i *********************
THIS SUBROUTINE LOADS A FOUR CHAR HEX NUMBER FROM
INDEX REGISTERS "C" T HRU "F" INTO RAM MEMORY ADDRESS
BY INDEX REGISTERS 2 AND 3;
•A* VU »J --,<--'- -i- °- ""'--- »r -'--'- -1- l'- -1 - -'- - - V --'•-'--' -V -'--'>--'-- - vU«l.><. sU.if ^ v- - -' - - >- - - -'- -'- '- - ; . .O >' v'. »., „'„ -'--'- -' - -'- - ;- -u .' - . L
1- V *r* 'ft *m* *v a*- ~i- *n t* "f "i- ** nr* *** i* *»* t- tt- •r -i- *»- n* '^ t "f f* rc- 'v tt *r *r "V *f i* "i* *v *»•» *v ^r if *i- "n "**• -nr *** *P *i~ *is -T" -r-

IRRAMC
SRC R2;
LD PC;
WRM;
INC R3 ;

SRC R2;
LD rd;
WRM;
INC R3;
r- r. f r- n •

LD RE;
WRM;
IMC R3;
SRC R2 ;

LD RF;
WRM;
BBL 0;

HIS SUBROUTINES LCAOS A FOUR CHAR HEX NUMBER JNTC
NDEX REGISTERS "C" THRU "F" FROM RAM MEMORY LOCATION
ADDRESSED BY THE CONTENTS OF INDEX REGISTERS 2 AND 3;
* V ** * v ********* * * * * * * * *************************** * ** *

RAM IRC
SRC
RDM;
XCH
INC
SPr
RDM;
XCH
INC
SRC
RDM;
XCH
INC
SRC
RDM;
XCH
RBL

R2;

RC;
R3;
R2;

rd;
R3;
R2 ;

F E ;

R3;
R2;

RF;
0;
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*******:£$:«:** *****####*--t££ *:#*#££;;;;;;* #$£:;:****************
THIS SUBROUTINE LOADS A FOUR CHAP HEX NUMBER INTO
INDEX REGISTERS 8 THRU "6" FROM A RAM MEMORY LOCATION
ADDRESSED BY INDEX REGISTERS AND 1;
****^4C***5^*^^ *****************************************

RAMIR8
SRC
RDM;
XCH
INC
SRC
RDM;
XCH
INC
SRC
RDM;
XCH
INC
SRC
RDM;
XCH
BBL

RO

R8
Rl
RO

R9
Rl
RO

RA
Rl
RO

RB
0;

sic #s)e#5ts# ^t; :$$ . ..I-.A. „L. »V A. Jm -J- .'- .*- «l- .'* J- -J, J^ O- -t- »'.
Jg* *^ *^< *,V r|« MA /,* rf> *jk -,-* *X *,*

**f*
PM -^* >,* ?,*

-•- *l, J» »', V- J* -J

-i- t ^r -»* -r -f* "
V- ~T* JU ."- O-O- V- * »*- l1- -'* *V -V * -J1- * -'- •*' - trT •»* -i* i* ^p -v* *r np ^p T* V" nr f -i*

THIS SUBROUTINE SUBTRACTS THE CONTENTS OF INDEX
REGISTERS "C" THRU "F" FROM THE CONTENTS OF INDEX
REGISTERS 4 THRU 7 AND STORES THE RESULTS IN INDEX
REGISTE C S "C" TH^U "F";
-»* -7 *v -•- t* *? *v -.- T *r V -v -r ~ ->* '>c -.* -»( '? -i* -.- '? ->' *<- 'f -1? ''* T5 V -5 i* V -.• 'c 3? -«- i- -r -? V " i* '' -i

1 -*c -«- -? -i- «v ^S

SUB1R:
LD R4;
SUB RC;
XCH RC

;

CMC;
LD R5;
SUB RD;
XCH rd;
CMC;
LD R6;
sub re;
XCH re;
CMC;
LD R7;
SUB RF

;

XCH RF;
CMC;
BeL 0;

l'»3





******************************************************
THIS SUBROUTINE SUBTRACTS THE CONTENTS OF INDEX REGS
"C" THRU »F" FROM THE CONTENTS OF RAM MEMORY ADDRESSED
BY INDEX REGS 2 AND 3 WITH THE RESULT LOADED INTO RAM
MEMORY ADDRESSED BY INDEX REGISTERS AND lj
*****:?********************************* ***************

SUBRAMIP:
CLC;
SRC R2;
RDM;
SU3 P.C ;

SRC RO;
WRM;
CMC;
INC R3;
INC Rl

;

SRC R2;
RDM;
sub pd;
SRC RO;
WRM;
CMC;
INC P3;
INC Rl;
SRC R2;
RDM;
SUB RE

;

SRC RO;
WRM;
CMC;
INC R35
INC Rl

;

SRC R2 ;

RDM;
SU3 RF

;

SRC RO;
WRM;
CMC;
bbl 0;

* *****************************************************
THIS SUBROUTINE TRANSFERS THE CONTENTS OF THE RAM
MEMORY ADDRESSED BY INDEX REGISTERS 2 AND 3 INTO
RAM MEMORY ADDRESSED BY INDEX REGISTERS AND 1;
******************************************************

TRANRAM:
SRC R2;
RDM;

1

SRC RO;
WRM;

1

INC Rl;
ISZ R3 TRANRAM
seL 0;
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******************************************************
THIS SUBROUTINE TAKES A POUR CHARACTER HEX NUMBER THAT
IS LOADED IN CAM MEMORY, TAKES THE COMPLEMENT OF THAT
NUMBER AND RETURNS IT BACK TO RAM MEMORY;
******************************************************

COMPLEMENT:
CLB;
SRC R2?
ROM;
CMA;
IAC;
wrm;
INC R3;
SRC P2;
ldm 0;
XCH RO;
RDM;
CMA;
ADD RO;
WRM;
INC R3;
SRC R2;
RDM;
CMA;
ADD RO;
WRM?
INC R3;
SRC R2;
RDM;
CMA;
ADD RO;
WRM;
CLB;
BBL 0;

««<* »i» «*» «fc> V" V» -*-' ** Vr *&? •*> *** »'* •* *** *** V* 4t *V •** >V *'• '^ **" •*£ *V sB* *** **- »V sfe *
** -v «r v- ^* s-* *t* *v t *i"* *>" *r '" *•* ~r -v- J.* t- -t- ',- *r * *>* *i- *r ¥ *i- -r -,» *^ V -

- ^» »i* »o »•* v- »t* -v ju *»*«*.»«,»<* J* j# a- j-
* *,» -", • *Tfi *^W -,- *f« *,^ ^-* ^|< #

(
-k *

(
* --,- *f,

•ij*
>f* *^

THIS SUBROUTINE
LOADED IN INDEX

FINDS THE
REGISTERS

COMPLEMENT
"C" THRU '

OF
F";

AN ANGLE
^u „», y, ^ ^ «.(* ,i. Jb ^, J, ,i, _«, J, a, .1, J, J, .J* O, ,1, . '. - 1 . »• .

.'.'' N ' v'- .' - .'- JL .•- -•- JL .J. .' .<, .i_ ,', j. . , JL .' ,
• *»» -,» ->< "V -i- ^ V -f *p *tT *i- t- -r -*s 'i* *£ V -i" *v ^ -i6 -i* V *

COMANGLE:
CLC;
LDM 2;
SUB RC ;

XCH rc;
CMC;
LDM 2;
SUB pd;
xch rd;
CMC;
LDM 9;
SUB RE;
XCH RE;
CMC;
LDM 1 ;

SUB rf;
xch rf ;

CLB;
BBL 0;

ENDSUB: NOP;
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APPENDIX B
****************************************##************
THIS SECTIGN IS THE EXECUTIVE PART OF THE
NAVIGATION PROGRAM;
*********** * «* ^ **; % * -if* ## #*** * * * * *** * *** * * * ************ *

PROG:
CLC;
LDM 2;

Q3

XCH
LDM
XCH
LDM
XCH
LDM
XCH
FIM
FIM
JMS
FIM

FIM
JMS
JCH
FIM
FIM
JMS
JCN
FIM
FIM
JMS
JCN

RC
2;
RD
9;
RE
l;
RF
P. 2
RO

92;
72;

T RAN RAM:
RO 56;

R2 72;
SU BR AMIR:
NZCY QO;
RO 72;
R2 56;
SUBRAMIR
NZCY Ql;
RO 56;
R2 72;
SUBRAMIR
NZCY 02;

ril-i <\<l jo
JMS
JMS
FIM
JMS
FIM
JMS
JMS
JMS
F I M
JMS
JUN

RAMIRC;
COSINE;
RO 79:
DI V2IR;
R2 56;
RAMIkC;
CO MANGLE;
COSINE;
R 31;
01 V2IP;
THSET;

Q2

01

CLC;
FIM
JMS
F I M
JMS
JMS
FIM
JMS
FIM.
JMS
JMS
FIM
JMS
FIM
JMS
JUN

CLC;
FIM
JMS
I I

''

JMS

R2 56;
COMPLEMENT;
R2 50 ;

RAMIRC;
COSINE;
PO 79 j
DIV2IR;
R2 72;
RAMIRC;
COSINE;
PO 31 ;

01 V2IR;
R2 28;
COMPLEMENT ;

THSET;

R2 72;
CI KP\ EMI NT ;

R2 72 j
RAMI RC;

REM
REM
REM

BEGIN NAV CYCLE:
CLEAR CARRY;
LOAD INDEX REGISTERS
90 DEG AND TEST THE
TH QUADRANT;

REM
REM
REM
REM

REM
RFM
REM
REM

REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
R E M

REM

TRUE HEAD;
TH WORK SPC
TO WORK SPC
SECOND

LOCATION OF
LOCATION OF
TRANSFER TH
LOCATION OF
WORK SPACE;
TH INPUT;
TH-90DEG LOADED IN RAM
JU^P IF TH IN QUAD 0;
TEST IF TH IN QUAD 1;

TH-90DEG;
JUMP IF QUAD
NOW TEST FOR

Li
QUAD 2

SUB ANOTHER 90DEG;
JUMP IF QUAD 2;
TH IN QUAD 3;

LOAD IR«S WITH TH-270;
COS (TH-270)

;

MEMORY SPACE FOR SINE;
SHIFT FOR SIGN BIT;

LOAD IR WITH TH-270;
COMPLEMENT TH;
COS OF TH IN QUAD 3;
MEMORY LOCATION FOR COS;
SHIFT FOR SIGN BIT;
QUAD 3 TH SET
JUMP TO MAIN PROGRAM;
FIND COS AND SINE FOR TH
IN QUAD 2;

REM SHIFT TH INTO 0-90DEG ;

REM FIND SIN(TH) ;

REM SHIFT FOP SIGN BIT;

REM COS(TH);

REM SHIFT FOR SIGN BIT;

REM COS NEGATIVE IN QUAD 2;
REM JUMP TO MAIN PROGRAM;
REM COS AND SIN IN QUAD 1

;

PEM SI. If! TH INTO 0-90DEG ;
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JMS COSINE; REM FIND COS(TH)

;

FIM RO 31 ;

J MS DIV2IR; REM SHIFT FOR SIGN BIT;
FIM R2 28;
JMS COMPLEMENT; REM COS(TH) NEG IN QUAD 1

;

FIM R2 56;
JMS RAMIRC;
JMS COSINE; REM FIND SIN(TH)

;

FIM PO 79;
JMS DIV2IR; REM SHIFT FOR SIGN BIT;
FIM R2 76;
JMS COMPLEMENT; REM SIN(TH) NEG IN QUAD 1;
J UN THSET; REM JUMP TO MAIN PROGRAM;

COS AND SIN IN QUAD 0;QO: REM
CLC; i

FIM R2 56;
JMS COMPLEMENT; REM SHIFT TH INTO 0-90DEG

;

FIM R2 56;
JMS RAMIRC;
JMS COSINE; REM SIN(TH);
FIM RO "?g;

JMS DIV2IR; • REM SHIFT FOR SIGN;
FIM R2 76;
JMS COMPLEMENT; REM SIN(TH) NEG IN QUAD 0;
FIM R2 72;
JMS RAMI RC;
JMS COSINE; REM COS(TH);
FIM RO 31;
JMS ni V2IR;

iSEH REM START MAIN PROGRAM;
CLB; REM CLEAR AC AND CY;
FIM RO 32; REM MEM LOC OF INPUT TAS;
FIM R2 12; REM MEM LOC OF SMOOTH TAS;
JMS addram; REM INPUT TAS ADDED TOCHOOTU T A C •

FIM R2 15; REM MEM LOC OF' SUM;
JMS DIV2; REM DI V SUM BY 2;
FIM RO 12; REM MEM LOC NEW SMOOTH TAS;
JMS RAMI P. 8; REM LOAD TAS INTO IR8-IRB;
F I

M

R2 28; REM MEM LOC OF COS(TH)

;

JMS RAMIRC; REM LOAD COS(TH)

;

JMS MULT; REM MULT TAS*COS(TH)=VAY;
DYINS: REM TEST IF INS GOOD;

FIM R2 0; REM MEM LOC INS FLAG;
SRC R2;
RDM;

i
REM LOAD FLAG INTO AC;

JCN 7 AC OMIY; REM JUMP IF INS DOWN;
IN SUP: P. F M INS UP COMPUTE WIND;

FIM R2 60; REM ME M LOC VAY;
JMS IKRAMC; REM LOAD VAY INTO RAM MEM;
F I

M

P2 60; REM MEM LOC CT VAY;
JMS COMPLEMENT; REM NEG OF VAY;
F i M RO 68; REM MEM LOC OF VGYI

;

FIM P2 60; REM SLT WIND SMOOTHING ROUT;
JMS ADDRAM; REM (VGYI-VAY)=VWYR;
F I

M

R2 60; REM MEM IOC VWYR;
F I M RO 52; REM MFM LOC VWY;
JMS ADDRAM; REM Vv.YR+VWY;
FIM c 2 cO; REM Ml M LOC ( VWYR + VWY) ;

FIM PO 52; REM MEM LOC VWY;
JMS ADDRAM; REM ( vwyp+vwyj+vwy;
FIM P.2 60; REM MEM ( VWYP+VWY+VWY) ;

F I

M

PO 52; P.EM MFM VWY;
JMS ADDRAM; REM ( Vr:Y^*VWY<-VWY)+VWY:
r im P.2 63; REM MEM ( VWYR+3VWY)
JM J

: o I V2

;

REM (VWYP+3VWY) /25
F I M P2 63;
JMS u i v;

;

REM (VWYF OVWY) /4;
i IM R o 5 2 ; R I-' M MEI l 1 vwy;
FIM R2 60; "

1 (,'t ( v..Vi' + ?VJY)/'V

;

JMS TRANRAM; REM VWY= (VwY< +3VWY)M;
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DYI:
FIM R2 68;
JMS RAMIRC;
JMS time;
JMS MULT;
FIM P2 24;
JMS IRPAMC;
JUN UPIY;

ONIY:
FIM RO 52;
JMS adoramir;
JMS TIME;
JMS MULT;
FIM R2 24;
JMS IRRAMC;

UPIY:
FIM R2 76;
JMS RAMIRC;
F I M RO 12;
JMS PAMIRS;
JMS MULT;

DXINS:
F I

M

R2 0;
SRC R2;
RDM;
JCN ZAC DNIX;
FIM R2 44;
JMS IRRAMC;
FIM. R2 44;
JMS COMPLEMENT;
FIM R2 44;
FIM RO 64;
JMS A DDR AM;
F I

M

R2 44;
F I

H

RO 4 S ;

JMS ADDPAMS
FIM P2 44;
FIM RO 46;
JMS ADORAM;
FIM R2 44;
FIM RO 48;
JMS ADDPAM;
F I H R2 47;
JMS DI V2;

R2 47;F I

M

JMS DI V2;
F I M PO 48;
FIM R2 44;
JMS TRANP.AM;

DXI :

FIM R2 64;
JMS RAMIRC;
JMS time;
JMS MULT;
F 1 M R2 8;
JMS JRRAMC;
JUN up ix;

DN I X :

FIM RO 48;
JMS ADD D AMIP ;

JMS time;
JMS MULT;
FIM F.2 6;
JMS IRRAMC;

UP IX:
r im R 2 l;
SKC R2;
RDM
JCN ZAC DOWNDJ
FIM R? 76;
JMS RAMIRC;

REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
P E M
REM
REM
REM
REM
R E M
REM
REM
R E M
REM
REM
PEM
REM
P. E M
I- i.

",

REM
REM
REM
"! V
REM

COMPUTE
MEM LOC
VGYI LOA
TIME INC
(VGYI )*(
MEM LCC
DY = DYI ;

JUMP TC
VWX AMD
COMPUTE
MEM LOC
( VAY+VWY
LOAD TIM
(VGYW1*(
MEM LOC
DY=DYW;
COMPUTE
MEM LOC
LOAD SIN
MEM LOC
LOAD TAS
(TAS)*(S
TEST IF
INERTIAL

DYI ;

VGYI ;

DED IPC-IRF;
IR8-IRB;

TIME)=DYI;
DY;

COMPUTE
DXI ;

DYW;
vwy;
)=VGYW;
E I NCR;
TIME)=DYW;
DY;

VWX AND
SIN(TH)

:

(TH)

;

TAS;

DXI

IN(TH) |=VAX;
INERTIAL GOOD
FLAG;

REA
JUM
MEM
STO
MEM
NEG
(-V
(VG
(VG
(VW
/ W i.

I \ i*

(VW
( VW
(VW
(VW
(VW
( V W
(VW
(VW
(VW
( ( V
((V
( V w
( (V
VWX
COM
(VG
LOA
LOA
(VG
nx;
ox =

COM
COM
(VW
(VW
LOA
( VG
(DX
DX =

COM
(DO

LAG INTO AC;
F INERTIAL DOWN;
C VAX;
VAX;
C VAX;
VAX;

D F
P I

LO
RE
LO

ATE
AX)
XI)*
XI )+(-VAX)=VWXR?
X)

;

XP
XR
X)
XR
XR
X)
XF
XR
X^
WX
WX
X)
WX
= (

PU
XI
D
D
XI

DX
PI)
D J
X)
X)
D
xw
)

;

oy
PU
i'p

l-MVWX) ;

+vwx)

;

+vwx)+(vwx»;
+2VWX)

;

+2VWX)+(VWX)

;

3VWXJ

;

+3VWX) /2?
R+3VWXI /?. ) ;

P.+3V*X)/2)/2;

R+3VWX) /4) ;

(VWXR+3VWXJ/4J

;

TE DXI

;

);
vgxi ;

TIME I NCR;
l*(TIME)=DXI ;

I

;

TE DYD AND DXD;
TE DXW IF INS DOWN;

+(VAX) =VGXW;
TIME I NCR;
)*(TIME) = DXW;

W

"

TE DYD AND DXD;
LER FLAG) ;

REM LOAD DOPP FLAG INTO
Rl M JUMP IF DOPP DCWNJ
REM ( SIN(TM) )

;

REM LOAD SIN(TH)

;

AC
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FIM RO 84;
JMS PA MIR 8;
JMS MULT;
FIM R2 96;
JMS IPRAM.C;
FIM R2 96;
JMS COMPLEMENT
FIM P2 28;
JMS RAMIRC;
FIM RO 80;
JMS RAMI R 8;
JMS MULT;
FIM RO 96;
JMS ADDRAMIR;

FIM R2 140;
JMS IRRAMC;
FIM R2 28;
JMS RAMIRC;
FIM RO 84;
JMS RAMIR8;
JMS MULT;
FIM R2 100;
JMS IRRAMCJ
FIM R2 76;
JMS RAMIRC;
FIM RO 80;
JMS PAMIRS;
JMS MULT;
F I M RO 100:
JMS ADDRAMIR;

FIM P-2 0;
SRC R2;
RDM; 1

JCN ZAC DOWN I;
FIM RO 8;
JMS ADDRAMIR;
FIM RO 127;
JMS DI V2I C

;

FIM R2 124;
FIM RO 8;
JMS tranra.m;
FIM RO 24:
FIM R2 140;
JMS ADDPAM;
JMS oi V2;
F I M RO 24;
JMS TRAMP A'*;
JUN downd;

DOWNI;l

FIM R2 8;
JMS I RRAMC!
F I M P2 140;
FIM RO 24;
JMS TRAMP AM;

DOWNDi 1

JUN PRCG;

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
PEM
REM
PEM
REM

REM
REM
REM
P.EM
REM
REM
PEM
REM
REM
REM
REM
REM
PEM
REM
REM
REM

REM

(SDO)

;

LGAD S
(SOD)*
(SDD*S
STORE
(SOD-S
MEG SO
(COS(T
LOAD C
(SHD)

;

LOAD S
(SHD)*
-< SDD*
SHD*CO
= OYD;
(OYD)

;

STORE
(COS(T
LOAD C
(SDD)

;

LOAD S
(SDD)
WORK A
STORE
(SIN(T
LOAD S
(SHD)

;

LOAD S
(SHD)*
(SDD*C
SHD*SI
= dxd;
TEST I

dd;
(SINCTHJ )

;

IN(TH) );
SDD*SIN(TH)

;

IN(th) );
D*SINI(TH) ;

H) ) ;

OS(TH) ;

HD;
(COS( TH) ) ;

S I N ( T H ) ) :

S(TH)-SDD*SIN(TH)

DYD;
H)) ;

OS(TH)

;

DD;
CQS(TH) ;

REA;
SDD-COS(TH)

;

H) ) ;

IN(TH)

;

HD;
(SIN(TH) )

;

OS(TH) )

;

N(TH)+SDD*CCS(TH)

NERTIAL FLAG;

REM LOAD INS FLAG INTO AC;
REM JUMP IF INS DOWN;
REM (DX)

;

REM (DX)+(DXD);
REM (DX WORK APEA) ;

REM LOAD (DX+-DXD1/2;
REM (DX+DXDJ/2;
REM (DX) ;

PEM OX=(DX+DXD) /2;
REM (DY);
REM (DYD);
REM (DYJ+lDYDJ

;

REM (DY+LYD)/2;
PEM (DY);
PFM DY=(DY+DYD»/2;
REM JUMP TO END OF CYCLE;
REM IF INS DOWN USE DXD

AND DYD;
PEM (DX);
REM DX=DXD;
PEM (DYD);
REM (DY);
REM DY=DYD;

REM LND OF NAV CYCLE;
PEM RETURN AND START

NEXT NAV CYCLE;
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APPENDIX C

******************************************************
THIS SECTION CONTAINS THE NAVIGATION SUBROUTINES
************ ********* ***************** ****************

**************** ***** ***************** ****************
THIS IS THE TABLE OF VALUES USED BY THE COSINE ROUTINE
THE FIRST COLUMN CONSISTS OF THE VALUE OF THE COSINE
FROM TO 90 DEGREES IN INCREMENTS OF .08 HEX RADIANS;
THE SECOND COLUMN CONSISTS OF VALUES USED TO
INTERPOLATE BETWEEN VALUES IN THE FIRST COLUMN;

,,- -,-

,

r v -,n ,,-. ... . ,. - . -, ^. ,,- ,,, ^ ^ ,,. .,- -^ -,t -y- ,,. -,.. -^ .,. *,*. ,,, -,, ;f ,, . ,,-. -^ -,-. ,,- -,- -,- -,. -,-. j,. . yp, -,- j,, ,r ^- ^ »,- -^ -,. -^ -,. ^ ^ ,,..

CON
CON
CON
CON
CON
CON
CON
CON
CON
CON
CON
CON
CON
CON
CON
CCNCn l> tUN
CON
CON
CON
CON
CON
CON
cor;
CON
CON
CON
CON
CON
cor;
CON
CON
CON
CON
CON
CCN
CON
CON
CCN
CON
CON
CON
CON
CuN
CCN
CCN
CON
CON
CCN
CON

•FFFF"
'OEFF"
<08FF"
•OEEF"
•10EF"
'2ECF"
•38BF"
'6E9F"
'B08F"
«1F5F"
'A93F"
•601F"
•63EE"
'A26E"
•3E7E"
'3 64E"
•9A0E"
'7 BCD"
! F88D"
•F24D"
'B9rC"
'3DAC"
'9[ > 5 r "

•CAOC"
'05BB"
' 5C 5B "
•CO OB"
«8?A£"
»614A"
CED9"
1379"
•BF09"
•15A8"
•5838"
•89C7"
•8657"
•26C6"
•CI 76"
'DBFS"
•6485"
•9B05"
'6194"
4614"
•0A93"
•EC 13"
• 0F92"
6022"
•4 ] A] "

'C121"
F1A0"

CON "0040"
CON "FFBO"
CON "BF31"
CON "2F31"
CON "1E32"
CON "8C32"
CON "4A33"
CON "37B3"
CON "3334"
CON "3EA4"
CON "F7 2 5"
CON "70A5"
COM "9716"
CON "2D86"
CON "1107"
CON "4377"
C N 1103 P 7"
CON "F158"
CON "3EB8"
CON "48 29"
CON "109 9"
CON "85F9"
CON "685A"
CON "C8BA"
CON "661B"
CON "41 7B"
CON "49CB"
CON "5E1C"
CON "607C"
CON " 5 F B C "

CON "1B00"
CON "8350"
CON "B890"
CON "7ADD"
CON "C81E"
CON "835E"
CON "BA8F"
CON "4EBE"
CON "2EEE"
CON "4A1F"
CON "924F"
CON "276F"
CON "D78F"
CGN "A4AF"
CON "90 BF"
CON "820F"
CON "83FF"
C< N "90FF"
CON "/.9FF"
CCN "BEFF"
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***************** ********** *********£*****************
THIS SUBROUTINE COMPUTES THE COSINE OR SINE OF A VALUE
INPUTTED IN HEX RADIANS USING A SECOND ORDER NEWTON
DIVIDED-DIFFERENCE INTERPOLATING ROUTINE WITH TABLE
LOOKUP;
******************************************************

COSINE:CLB;
FIM F.O 2;
SPC RO;
LDM 1;
WRM;
LDM 0;
XCH RF;
RAR;
xch re;
RAR;
XCH RO ;

JCN NZCY CR;
LDM 0;
XCH Rl

;

NCR:
LD RD;
ral;
jcn nzcy acr;
JUN OUT;

CR:
LDM 8;
XCH R] ;

JUN NCR;
ACR:

CLC;
PAR;
XCH RD;
LDM 4;
ADD Rl

;

XCH Rl

;

OUT:
FIN R4;
INC Rl;
FIN R6;
INC Rl

;

FIN R8;
INC Rl;
FIN RA;
LD RD;
XCH RE

;

LDM 0;
XCH RC

;

XCH PD;
JMS MULT;
JMS SUBIR;
FIM RO 2;
SRC RO;
LDM 0;
WRM;
BBL 0;
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£#£*~##£;;: £:£**#£##£:(; ££#****************#***************
THIS ROM CONTAINS A 16-X16 HEX MULTIPLICATION TABLE.
EACH VALUE REPRESENTS A MULTIPLICATION OF TWO SINGLE
HEX-DIGIT NUMBERS. THE ZERO ROW IS USED FOR TABLE
INSTRUCTIONS;
*^«****************** ****************** ***************

TABLE;

ROWl:

RCW2:

R0W3

ROW 4:

ROW 5:

ROW 6 :

ROW 7

ROW8

ROW 9:

ROW A :

ROWB:

RCWC :

ROWD:

ROWF

POWF

FIN ROj BBL 0; nop; nop;
NOP; NOP; nop; nop;
NOP; NOP; mop; NOP;
NOP; NOP; nop; NOP;
CCN ''00"; CON "01"; CCN "02"

;

CON 11 ?, 11

CON '•04"; CON "05"; CON "06"; CCN "0 7"
CON '•08"; CON "09"; CON "OA"; CCN "OB"
CCN ' ( 0C"; CON "OD"; CON "OE" ; CON "OF"
CON •00"; CON "02"; CON "04"

;

CON "06"
CON 'OS"; CON "OA"

;

CON "OC"; CON "OE"
CON ''10"

;

CON "12"
; COM "14"

; CON "16"
CON •18"

i CON "1A"; CON "IC"; CON "IE"
CON '00", CON "03" CON "06"; CON "09"
CON 'oc"; C3N "OF" ; CON "12"; CON "15"
CON ''18"; CON "13"; CON "IE"; CON "21"
CON '19411 < CON "27"; CON "2 A" ; CON "2D"
CON '•00"; CON "04"; CON "08"

;

CCN "OC"
CCN ''10"; CON "14" CCN "18"; CON "IC"
CON "ZO"; CON "24"; CON "28"

; CON "2C"
CON •30"; CON "34"; CCN "38"

;

CON 113 Cii

CON '•00": CON "05"; CON "OA"; CON 11 OF"
CON 'ii4"

i CON "19"
; CON "IE" ; CCN "2 3"

CCN '•26"; CON "2D"; CON "32"; CCN "3 7"
CON •*3C"; CON " 41"

;

CON "46"; CCN n 4 b »

CON i•00"; CCN "06"' CON "OC" j CON. "12"
CON ''18"; CON "IE" CON "24"; CON "2 A"
CON ''30"; CON ii36"; CON "3C" ; CON "4 2"
roM 4 1 / r> || , CON II f

{

C tl . row 115411 C0 W 11 s t\ «

CON ''00 ,:
; CON "07" CON "6d" ; CON "15"

CON ••10"; CON "23"; CON "2 A" ; CON "3 1"
CON ' •38". CON "3F"" CCN "46" " CON "4D"
CCN '54": CON "5B"' CON "62"; CON "69"
CON '00" CON "08" CCN II 10 II

.

CCN "18"
CON •20" CON "28" CCN "30" CON 11 3 3 11

CON ''40" CON "4 8" CON "50"; CON "5 8"
CON '60'" CCN "63"" CON ••70"; CON "7 8"
CON «'00" CON "09" CON "12" CON "IB"
CON •24"

! COM "2D" CON "3b" CON "3F"
CCN '•48" CON "51" CCN "5A" ; CON "63"
CON '•6C" CON "75" CON "7E" CON "87"
CCN ' •00" CON "OA" . CON "14"

, CON "IE"
CON ' •2 8" CON "32"

; CON »3C" ! CON 11 4 6 "

CON ''50" CON "5 A" CON "64" CCN " 6 E "

CON ''78" CON "82" CON "8C" CON 11 9 5 11

CCN •00" CON "OB" ; CON 11
j 6 1«

; COM "2 1"
CON '2C" , CON "37"

; con "42"
; CON "4D"

CON •58" CCN "63"
; con "6E" , CON nycjn

CCN 84" COM »8F" ; CON "9A" ; CON 11 A 5 11

CON •GO" , CON "OC" ; CCN 11
{ 9 11

; CON "24"
CON '30"

; CON 1.3 C ii
; CCN "48 "

; CON "54"
CON •60"

; CON "6C" ; con "76"
; con 11 g 4 11

CCN •90"
; CON "9C" ; COM "A8" i

CON " P;4 "

CON •00"
; CON "OD" ; CON "1A" ; CON "2 7"

CON '34"
; CON "41"

; CON "4 1"
; CCN "5 8"

CON '68"
; C

r
>\ "75"

; C^N "8 2"
; CON "8F"

CON I,
(
H

; COM "A9" ; con ; C^N "C3"
COM •00" ; COM "Ofc" ; CON ii

j r ii
; con II ; „

CCN 33"
; CON "46" ; CON 11 c/

f
it

; con "62"
CON •70" ; CON ../;

; CON "
1

"
; con "9 A"

CON »A8" ; CON "'"."
:

11 r /
f

11
; CON "''."

(
"00"

; C 1

"
; CON 11

j C 1.
; con "?D"

CON II .
;

II
; r i

11 .-

f
.-11

i

11 -,.
.

11

CON i
i

"
:

r '• ..
: ( 1 N "A5"

CON n&i «
; CON "C3" i

,., 11
; 1 N

102





*:£********#***:{;;$:**£******** ************ ***************
THIS SUBROUTINE MULTIPLIES A FOUR HEX-DIGIT NUMBER
BY A HEX-DIGIT NUMBER RESULTING IN A FOUR HEX-DIGIT
CHOPPED NUMBER

;

******************************************************

MULT:

XCH
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC

CLC;
FIM
SRC
LDM
wrm;
LDM

R2
R2
o;

4;

160;

R3
R3
R3
R3
R3
R3
R3
R3
R3
P3
R3
R3

SRC
SRC
SRC
SRC
SRC
SRC
SRC
SRC
SRC
SRC
SRC
SRC

P2
R2
R2
R2
R2
R2
R2
P2
R2
R2
R2
P2

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

REM ZERO SIGN COUNTER

REM STORE CONTENTS OF INDEX
REGISTERS INTO MEMORY;

R4-: WRM;
R5: wrm;
R6 WRM

;

R7 WRM;
P8 WRM*,
R9; WRM;
RA WRM;
RB , wrm;
RC wrm;
RD WRM;
RE , wrm;
PF

i
WRM;

REM THIS SECTICN OF THE H
TESTS THE TYPE AND SI
FIM RO 2 5

SRC RO;

ULTIPLY SUBROUTINE
GN OF THE INPUT VALUES,
REM LOAD COS FLAG;

PM

NM:

RDM;
JCN NZAC
LDM 15;
XCH R3;
SRC R2;
r- r^ • • •

ral;
JCN ZCY

COS;

LDM
XCH
JMS
LDM
XCH
SRC
LDM
WRM;

PM;
12;
R3;
COMPLEMENT!
0;
R3;
R2;
8;

LDM 11

;

XCH R3 ;

SRC R2 5

RDM?
ral;
JCN ZCY
LDM
XCH
JMS
LDM
XCH
SRC
LDM
ADM;
wrm;

nm;
a;
R 3 "

COMPLEMENT;
0;
R3;
R2;
8;

REM JUMP IF COS;
REM TEST SIGN OF FIRST INPUT;

REM JUMP IF POSITIVE;
REM COMPLEMENT NEGATIVE;

REM SET SIGN COUNTER;

REM TEST SIGN OF SECOND INPUT;

REM JUMP IF POSIT I VE;
REM COMPLEMENT NEG INPUT;

REM SET SIGN COUNTER;

REM NORMAL I ZE INPUTS;
LDM 8;
XCH R3;
CLC;

MULT2:
SRC P2 ;

RDM;
RAL;
WRM!
ISZ R3

153





REM THIS BEGINS THE MAIN PORTION OF MULTIPLY SUBROUTINE.
INDEX REGISTERS AND 1 ARE USED TO FETCH VALUES FROM
MULTIPLICATION TABLE. THE TABLE VALUES ARE ADDED £S IN
LONG-HAND MULTIPLICATION;

POSl:
LOCI:

POS2
L0C2

POS3

LLC3

P0S4

L0C4:

COS:
LDM
JCN
XCH
LDM
XCH
J MS
XCH
XCH
JUN
XCH
LDM
JCN
XCH
LDM
XCH
JMS
XCH
XCH
JUN
XCH
LD R
ADD
XCH
TCC;
XCH
LDM
JCN
XCH
LDM
XCH
JMS
XCH
XCH
XCH
XCH
JUN
XCH
LDM
XCH
LD R
ADD
XCH
TCC;
XCH
LDM
JCN
XCH
LDM
XCH
JMS
XCH
XCH
XCH
XCH
JUN
XCH
LDM
XCH
LD R
ADD
ADD
XCh
TCC;
XCH

15 jZAC
SRC R2; RDM

XCH R3; SRC R2; RDM:

XCH R3
POSl]

RO
8

TABLE;
RO;
pa;
LOCI;
R4;

XCH R3
POS2;

XCH R3; SPC R2; RDM;

14;
ZAC
RO;
9;

Rl;
TABLE
RO;
R5;
LOC2;
R5;
4;
R5;
R4;

R7;
15; XCH R3;
ZAC POS3;
RO

;

9; XCH »3;
Rl

;

TABLE;
Rl

;

R5;
RO;
R6;
LCC3;
R5;
0;
R6;
4;
R5;
R4;

R 5 *

14; XCH R3
ZAC P0S4;
RO;
10; XCH R3
pi ;

TABLE;
Rl

;

R8 ;

RO;
R9;
LGC4;
R8;
o;
R9

;

6:
R7 ;

P9 ;

P6 ;

R7;

SRC R2; RDM:

SRC R2! RDM:

SRC R2; RDM

SRC R2; RDM

SRC R2; RDM;

1^





P0S5:

L0C5:

PDS6:

L0C6:

P0S7:

L0C7;

LDM 15; XCH R3; SRC R2; RDM
JCN ZAC P0S5>;

XCH ro;
LDM 10; XCH R3; SRC R2; RDM
XCH Rl

;

JMS TABLE;
XCH Rl

;

XCH R9;
XCH RO;
XCH ra;
J UN L0C5i;

XCH R9;
LDM 0;
XCH RA;
LD Ft.5;

ADD R6;
XCH R5;
TCC;

t

XCH R6;
LD R5;
ADD P9;
XCH R5;
TCC;

i

ADD R6 ;

XCH R6;
LDM 14; XCH R3; SRC R2; RDM
JCN ZAC P0S6 • ;

XCH ro ;

LDM 11 ; XCH R3; SRC R2; RDM
XCH Rl

;

JMS TABLE;
XCH Pi

;

XCH PB;
XCH RO;
XCH R9:
J UN L C e>;

XCH RB;
LDM 0;
XCH P9;
LD R7;
ADD R9;
ADD ra;
XCH R7;
TCC; 1

XCH R9;
LDM 15; XCH R3; SRC R2; RDM
JCN ZAC P0S1 ' •

XCH PO;
LDM 11; XCH R3; SRC R2; RDM
XCH Rl;
JMS TABLE;
XCH pi ;

XCH pa ;

XCH RO;
XCH RC;
JUN LDCl ' .

XCH P A

;

LDM 0;
XCH PC ;

LD R9;
ADD PC ;

XCH R9 ;

LD R6;
ADD P. 7;
XCH P6;
TCC; i

XCH R7;
LD P.6;
ADD
XCH R6 ;

TCC; I

ADD P7;

155





ADD R9

;

XCH RF;
LDM 13; XCH R3; SRC R2; RDM;
JCN ZAC POSEi;

XCH RO

;

LDM 10; XCH R3; SRC R2; RDM;
XCH Pi;
JMS TABLE;
XCH RO

;

XCH R7;
JUN Lccei;

P0S8: XCH R7;
L0C8: LD R4;

ADD R7;
XCH P.4;
TCC;
XCH R7;
LD P4;
ADD R8;
XCH R4;
TCC;
XCH R8;
LDM 13; XCH R3; SRC R2J RDM;
JCN ZAC POSSi;

XCH RO;
LDM u ; XCH R3; SRC R2; RDM;
XCH pi;
JMS TABLE;
XCH Ri

;

XCH P9;
XCH RO;
XCH RAj
JUN LOCc»;

PCS9: XCH
LDM
XCK

R9;
0;

*

L0C9: LD F

ADD
ADD
XCH
TCC;
ADD
XCH
TCC;
XCH

A;
R7!
R5;
R5;

R6;
R6;

RA ;

LDM 12; XCH R 3; SRC R2; RDM;
JCN ZAC POS*ii

XCH R ;

LDM n ; XCH R3; SRC R2; RDM;
XCH pi ;

JMS TABL c;
XCH RO?
XCH R7:

LCC/)J UN >;

POSA: XCH R7;
LCCA: LD R7;

ADD R9S
XCH P.7;
TCC; i

ADD R 5;
XCH R5;
TCC; i

XCH f-E;
LD r•5;
ADO R^ ;

XCH R5;
TCC;

i

ADD r. t i

ADD Rb ;

XCH RE;
TCC: i

ADD kE;
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XCH RF
LD R4;
ADD R7
XCH
TCC;
ADD
ADD
XCH
TCC;
ADD
XCH
TCC;
ADD
ADD
XCH

RC

R8
R5
RD

RE
RE

PA
RF
RF

REM END TABLE LOOKUP MULT, PRODUCT
LOCATED IN IR'S "C" THRU "F";

CLB;
FIM RO 2;
SRC RO;
RDM;
JCN NZAC CSIN;
FIM RO 111;
JMS DIV2IR;
FIM R2 108;
F I

M

RO 168;
JMS T RAN RAM;
CLB;
F I

M

R2 160;
SRC R2;
RDM;
RAL;
JCfJ ZCY^ PPRCD;
F I M R 2 16 8»
JMS COMPLEMENT

PPPOD:
FIM R2 168;
JMS RAMIRC;
J UN ENDMULT;

REM TEST COS FLAG;

REM JUMP IF COS;
REM SHIFT FOR SIGN BIT;

REM TEST SIGN OF PRODUCT;

PEM JUMP IF POSIT I VE;nru r-r->iin< r* i * r~ m t nn nru irT .
rs c im lui'if lC'':li^i rKUuUt I »

REM LOAD PRODUCT INTO IRC TO IRF;

CSIN:

END

LDM 4
XCH R4
I NC R3
SRC R2
RDM;
XCH R5
INC R3
SRC R2
POM;
XCH R6
INC R3
SRC P. 2
RDM;
XCH R7

NDKULT:

XCH R3

REM LOAD INDEX REGISTERS 4 THRU 7
WITH INITIAL VALUE SEFORF
MULT ROUTINE CALLED;

SRC R2; RDM;

BBL
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APPENDIX D

******************************************* ***********
THIS PROGRAM SIMULATES THE MICROCOMPUTER
IN THE NAVIGATIONAL PROGRAM TO COMPUTE
THE PRESENT POSITION OF THE AIRCRAFT
******************************************************

IMPLICIT INTEGER (A-B,D-V)
DIMENSION FU16 ) ,RAM( 16,16) , ROM( 16 , 32 ) , Y ( 53 ) , Z ( 52 J , T{ 4)
DATA XTAS/O. 4007, XVGYI /-.27 74/

,

XVGXI/O . 3 236/, XVWY/00.0
1/, IF/0/,DF/0/,XTASR/0.400/ t XTH/0.7854/ t XSDD/.018lO/,XS
2HD/.1418/, XT/0. 347/
DO 1 1=1,16
R II I =
DO 1 J = l, 16

1 RAM(I,J)=0
1=2
Y(l)=. 99999
X=. 03125

30 Yd ) = Cns(X)
X=X+. 03125
1 = 1 + 1
I FIX. GT. 1.6325) GO TO 40
GO TO 30

J=l, 52
(Y(J)-Y(J+1) )/. 03125

J = l, i:

40 DO 60
60 Z(J) =

L = l

DC 63
DO 63

3
K = l,7,2

FIX1=YCU*65536. 0*16.0
FIX2 = Z( U*65536. 0*16.0
REM=FIXl-< FIX1/16)*16
r iAJ- r i a i / IOtKlm/ o
REM=FIX2-( FIX2/16)*16
FIX2=FIX2/16+REM/8
DO 64 1=1,4
RCM(J f 4*(K-l)+I >=FIXl-(riXl/16 )*16
FIX1=FIX1/16
ROM<J,4*K*I)=FIX2-(FIX2/16)*16

64 FIX2=FIX2/16
L=L + 1

63 CONTINUE
DO 1001 IF=1,2 , I

DO 1002 DF=1,2
XTH= 3.1415/4.0
XTH= XTH+ 0.0067266
XVGXI=-XVGXI
XVGYI=-XVGYI
XLCCF =0.0
YLCCF = 0.0
XLOCM = 0.0
YLOCM = 0.0
DC 100 M=l ,10
CALL I1AV(R,FAM,PGM, T, TE , XT AS , X VGY I , XVC X I , X VWY , XV WX , IF

1 XTASP ,XTH,XSDD,XSHD,XT , XL OCF, YLOC F, XLOCM , YLOCM)
100 CONTINUE

XTH=3.1415 + XTH
XVGY! = -XVGYI
XVGX! = -XVGXI
DO 110 N=l,10
CALL NAV(R ,RAM t ROM, T,TE,XTASi XVGY I, XVGX I , XVWY, XVWX,I( :

1 XT AS R , XT H , X S DO , X SHU , X T , XL CC F , Y L C C F , X L DC M , Y I OCM

)

110 CON! 1NUE
1002 CONTIMUF
10 01 CONTINUE

RETURN
END
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******************************************************
THIS SUBROUTINE SIMULATES THE FUNCTION
OF THE MICROCOMPUTER EXECUTIVE ROUTINE
****** ********************* ************ ***************

SUBROUTINE NAV I R , RAM, ROM.T , TE , XT AS, XVGYI

,

1XVGXI tXVWYtXVWXt IF,DF,XTASR,
2XTH,XSDD,XSHDtXT,XL0CF,YL0CF f XL0CMfYL0CMl
IMPLICIT INTEGER (A-B,D-V)
DIMENSION R(16), RAM(16,16), RDM(16,32), T(4), TE(4)
CALL CONVRTt 1 , 13, XTASP ,PAM, R,0

)

CALL CONVRTt 1, 5 , XT , R AM , R, )

CALL CONVRTOi 1 , XTAS , RAM, R , 0)
CALL C0NVRT(3,5,XTH,RAM,R, 1)
CALL CONVRTt 4i 1 , XVWX,

R

AM, R , 0)
CALL C0NVD(4,l,PAM,F,XVA,0j
WRITE (6,103) XVA

103 FORMAT< 10X, 'VKX^« ,F15.6)
CALL CCNVRT(4,5,XVWY,PAM,P,0)
CALL CONVRTt S, 1,XVGX1 , RAM,R,0)
CALL CONVRTt 5, 5t XVGYI t RAM »R,0

J

CALL C0NVRT(6. 1, XSHD,RAM,R, 0)
CALL CGNVRT(6, 5, XSDD, R AM , R , )

XSIN=-COS ( 3.1415/2 .O-XTH)
XCOS=C0S(XTH)
WRITE (6, 2 00) XSINtXCOS

200 FORMAT! 10X,«XSIM=« , F10 . 6, 2X ,
' XCOS= ' , F10 . 6

)

CALL CGSPL(P,RCM,RAM)

SIN AND COS HAVE JUST BEEN CALCULATED

CALL C0NVD(5 t 13,RAM,R, XVALltOJ
CALL CONVD(2,13,RAM,R,XVAL2,0)
WPITE(6 1 200) XVAL1,XVAL2
X I AS= i X i aSR+XTAS i 12. .G
xv/:y=xtas*xccs
xvax=x t as*xsjn
write(6,201) xtas, xvay,xvax

201 FORMAT ( 10X ,
« XTAS= « , Fl 0.3 , 2X ,

' X VAY= • , Fl . 3 ,
« XV AX= , Fl 0.

13)
DO THE ABOVE CALCULATIONS WITH MCS-4
R ( 3 ) = 3
R (4) = 1
CALL DIV2(R,RAM)
R(3)=l
R<4)=13
CALL DIV2(R f RAMJ
F (1)=3
R < 2 ) = 1

R(3)=l
R ( 4 ) = 1

3

CALL ADDRAM(R, RAM)
R ( 3 ) = 1
R(4)=13
CALL RAMIRC(RtRAMJ
R (1) = 1

R { 2 ) = 1 3
R(3)-2
P. ( 4 ) = 1 3
CALL MULT PN(R, RAM)
R(3)=A
R ( 4 ) = 9
CALL IRPAMCIR, RAM)
P (3)=5
R ( 4 ) = 1 3
CALL MULTPNU-., D AM )

R ( 3 ) = 5
R(4) = S
CALL IRPAMCCRtRAMI
CALL COhVOC f 9fRAMtRf XVALltOl
CALL C0NVD(5t9|RAM,Ri XVAL 2,0)
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WRITE (6,201) XTAS, XVAL1.XVAL2

C WE HAVE JUST COMPARED OUTPUTS VAY AND VAX
IF(DF.NE.O) GO TO 600
XDXD=XSDD*XCOS+XSHD*XSIN
XDYD=XSHD*XCOS-XSDD*XSIN
WRITE (6,202) XDXD,XDYD

202 FORMAT ( 1 OX, « XDXD= • , F 10 . 4, 2X, « XDYD= ' , Fl « 4

)

C DO THE ABOVE STATEMENTS ON THE MICROCOMPUTER

R(l)=6
R ( 2 ) = 5
R(3)=2
R(4)=13
CALL MULTPNIRt RAMJ
R(3) = 7
R{4)=5
CALL IRRAMC(R, RAM)
R(l)=6
R(2)=l
R(3)=2
R{4)=13
CALL MULTPNtR.RAMJ
R (3) = 7
R(4)=l
CALL IRRAMC(R,RAM)
R<3)=5
R ( 4 ) = 1 3
CALL MULT PNC R, RAM)
R ( 1 ) = 7
P (2)=5
CALL ADRM'R(R t RAMJ
R<3)=6
P(4>=9Cu | Tnr-*»*r-/f^ DAM*
R(l)=6
R(2)=5
R(3)=5
R ( 4 1 - 1

3

C£LL MULTPN(RtRAM)
R(l)=7
R(2)=l
CALL COMPLC(R,P.AM)
CALL ADRMIR(R,RAM)
R(3)=3
R (4)=9
CALL IRRAMC(R,RAM)
CALL C0NVD(o,9,RAM,R,XVALl, 0)
CALL C0NVI)(3,9,R/ ,

'M,R, XVAL2, 0)
WRI7E(6,203) XVAL1.XVAL2

2 03 FORMAT ( 10X, , DXD= 1
, F10.4,2X, 'DYD=' , FlO.'i )

C WE HAVE JUST COMPLETED THE CALCULATIONS WHICH
C MAKE USE OF THE DOPPLER RADAR

600 IFUF.NE.O) GC TO 300
XVWY»<3.0*XVWY+( XVAY-XVGYI

)

>/4.0
XVWX= l3.0*XVWX+( XVAX-XVGXI

)

)/4.0
WRITE (<,, GO 1) XVWY,XVWX

601 f ORMATi lOXt'XVWYs' ,F10.4 f 2Xt •XVWX= ,
t F10.4J

C WE APE GOING TO PROCEED WITH MCS 4

P<3)=5
R(4) = i>

CALL RAMlRC(RtRAM)
CALL COMPLCC ,

P

AM)
* (1 ) = 4
P(2)=9
CALL ADKM!R(R,P.AM)
R ( 1 ) 4
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R(2)=5
CALL ADRMIRCR, RAM)
CALL ADRMlR(R t RAM)
CALL ADRMIRCR, RAM)
R(3)=4
R ( 4 ) = 5
CALL IPRAMC(R,RAM)
CALL DIV2(R,RAM)
CALL DIV2(R,RAM)
R<3)=5
R(4)=l
CALL RAMIRURi RAM)
CALL COMPLC(RtRAM)
R ( 1 ) = 5
R(2)=9
CALL ADRMIRCR, RAM)
R < 1 ) = 4
R(2)=l
CALL AL'RMIR{p, RAM)
CALL ADRMIR(R, RAM)
CALL ADRMIRCR, RAM)
R(3)=4
P(4)=l
CALL IRRAMCCRtRAM)
CALL DIV2(R,RAM)
CALL DIV2(R,RAM)
CALL C0NVD(4,5,RAM,
CALL C0NVDC4,1,RAM,

R,XVAL1,0)
R,XVAL2t OJ

303 FORMAT* 10X, 'VWY=« ,F10.4,2X, ' VWX =

'

T F10.4)

30i

WE HAVE COMPLETED CALCULATING VWY, VWX

XDY=XT*XVGYI
XDX=XT-XVGXI
WRI7E(6,301J
i-GRi-iAT ( 10X»'

XDX,XDY
10.

REPEAT THE ABOVE CALCULATIONS ON MCS-4

R(l)=l
R (2) = 5
R<3)~5
R (4) = 5
CALL MULT PN(R f RAMI
R ( 1 ) = 2
R ( 2 ) = 9
CALL 01 V2 IRCR,RAMi
R ( 1 ) = 1

R(2)=5
R(3)=5
R ( 4 ) = 1

CALL MULT PN(R, RAM)
R ( 1 ! 1
R ( 2 ) = 9
CALL DIV2 IR(Rt
CALL C0NV0Q,9,

RAM)
RAM, R,XVAL1

CCNVDC2,9,RAM, R,XVAL2CALL
WRITL'( 6,304) XVAL1,XVAL2

,0)
,0)

3 04 FORMAT { 10X,'DX^' , F 10 . 4 , 2X, ' DY= ' , F10.4)

; WE HAVE COMPLETED CALCULATING OY, DX

300 IFC.NOT.CCIF.EQ.O) . AND. (OF. EQ.O > )) GO TO 400
XDY=( XDY+XDYr.) /2 .0
XCX=( XDX+XDXDJ /2 . ^
WRITL(6,30l) XDX.XDY

; REPEAT THE ABOVE SEQUENCE WITH MCS-4

R C 1 ) =

3

R ( 2 ) = 9
R C 3 ) = 2
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500

R(4)=9
CALL ADDRANUR, RAM)
CALL DIV2<R f RAMI
R(l)=6
R(2)=9
R(3)=l
R<4)=9
CALL A0DRAM(R,RAM1
CALL DIV2(R,RAM)
CALL C0NVD(2 t 9,RAM
CALL CONVDtlf 9, RAM.

R,XVAL2,
RtXVALl,

WRITE<6,304) XVAL1,XVAL2

0)
0)

; DY AND DX HAVE JUST BEEN CALCULATED

GO TO 540
400 IF(.NOT.< (IF.EQ.l). AND. ( D F. EO .0 ) J ) GO TO 500

XDY=XDYD
XDX=XDXD
WRITE(6,301) XDX,XDY

; REPEAT THE ABOVE SEQUENCE WITH MCS-4

R(3)=3
R(t)=9
R(.\) = 2
R(2)=9
CALL TRANRM(RtRAM)
R(3)=6
R(4)=9
R 1 1 ) = 1
R ( 2 ) = 9
CALL TRANRMlRfRAMJ
CALL C0NVD(2,9,RAM,R,XVAL2
CALL CONVDd i9,RAM,R t XVALl

C I U]JU 4)

0)
0)

DY AND DX HAVI JUST BEEN CALCULATED

GO TO 5<tO
IF( ( IF. ME. 1). OR. (0F.NE.1J ) GO TO 540
XDY=XT*(XVWY+XVAY)
XOX=XT*(XVWX+XVAXJ
WRITE(6,30l) XDX,XDY

REPEAT THE ABOVE CALCULATION WITH MCS-4

R(l)=4
P. { 2 ) = 5
R(3)=4
R(4)=9
CALL ADDRAMCRi RAM)
R(l)=i
R ( 2 ) = 5
CALL MULTPN(R,RAM)
R I 3 ) = 2
R{4)=9
CALL IPRAMC(RtP.AM)
R ( 1 )

-- 4
P. < 2 ) = 1
R<3)=5
R ( 4 ) - 9
CtLL AODRAM(RrRAM)
R(l)=l
R ( 2 ) = 5
CALL MULTPM(R, RAMJ
R t 3 ) * 1
R<4)=9
TALL IP.PAKMP, RAV)
CALI C VD(2,9,RAM,R, XVAL2»0)
CALL C0NVD(l,9,RAM,i ,XVAL1,0)
WRITf":(6,304) XVAL1.XVAL2

162





; CALCULATIONS ARE NOW COMPLETE FOR OX AND DY

540 XLOCF = XLOCF + XDX
XLOCM = XLOCM + XVAL1
YLCCF = YLOCF + XOY
YLOCM = YLOCM + XVAL2
WRITE(6,550) XLOCF, YLOCF
WRITE(6,560) XLOCM, YLOCM

550 FORMAT (3X, 'XLOCF = » , F10.5,4X, » YLOCF = »,F10.5)
560 FORMAT (8X, 'XLOCM = • , F 10 . 5 , 4X ,

• YLOCM = ',F10.5,//)
RETURN
END
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THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE COSINE
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SUBROUTINE COS I NE ( I R, RAM

)

IMPLICIT INTEGER (A-ZJ
DIMENSION 1R(16) ,RAM( 16 , 32 J , T ( 4 ) , TE ( 4)
I=IR(lo)*8+IF (15)/2
J=(IR(15)-(IR(15)/2)*2»*16+IR(14} /8*8
DO 1 K=5,12

1 IR(K)=RAM( HI, J+K-4)
IRU5I = IR(14) - IR(14}/8*8
IR(14) =IR(13J
I
c (13)=0
IRC16I-0
DO 2 K = l,4
T(K)=IR(12+K)

2 TE(KJ=IR(8+K)
CALL MULT(T,TE, IR)
ACC=( IP(8)-IR(16) )*16**3-K I R( 7 J -IRC 15 J »*16**2+( IRC6J-I

1R(14) )*16+( IR(5)-IR(13J )

ACC=ACC/2
DO 3 K=l,4
IR(12+K)=ACC-( AC C/ 16)* 16

3 ACC = ;CC/lo
RETURN
END

THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-A SUBROUTINE ADDRAM

SUBFOUT INE ADDP AM 1 1 R, R A f
'

)

IMPLICIT INTEGER (A-V)
DIMENSION IR (16) ,RAM( 16,16)
SUM=0
DO 1 J=l T 4

1 SUM=-SU1*-(RAM( IR(l),I«M2)«-J-lHRAM<IR(;>) f I«M4)+J-]))-."16
1**(J-1

)

DO 2 J=l,4
RAMI IP (3) , IH4)+J-l) = r,UM-( SUM/1 ',)»].6

2 SUM; SUM/16
RETU IN

END
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******************* ** *********** * *********************
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE SUBIR
******************************************************

SUBROUTINE SUBR I R ( I R, RAM

)

IMPLICIT INTEGER (A-V)
DIMENSION IRC16),RAMC 16,16)
SUM=0
M=IR(3)
N = IR(4)
DO 1 J=l,4
TERM=CRAMCM,N+J-1)-IRC 12+J I >*16**C J-l

)

1 SUM=SUM+TERM
DO 2 J=l,4
RAM( IR( i) , IR(2)+J-1)=SUM-(SUM/16)*16

2 SUM=SUM/16
RETURN
END

******************************************************
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE DIV2IR
*r TP T" 1* T V V v*r T •* 1»T TT '(* T *r T fT ^^^T^^ T* "T^^ *t* ^ "^~ "»* *r« *V" IT -V* *N* 'i~ *l*- -T*- *T* *P T" "i* *** "T- *T* \» •*!* -*)1 T" "P

SUBROUTINE D I V2 I R ( I R, R AM

)

IMPLICIT INTEGER (A-V)
DIMENSION IR(lb) ,RAM{ 16 T 16)
SUM =
F1 =
IF< 1P( 16) .LT.8) GO TO 3
Fl=l
CALL COMPLCC IR»RAM)

3 DO 1 J=l,

4

TERM=C IR( 12-t-J) )*16**C J-l)
1 SUM=SUM+TERM

SUM=SUM/2
DO 2 J = l»4
IRC J+12)=SUM-CSUM/16)*16

2 SUM=SUM/16
IrCFl. EQ.O) GO TO 5
CALL COMPLC(IRrRAM)

5 DO 6 J=l,4
6 RAM(IR(1),IR(2)+J-1)=IR(J+12)

RETURN
END

*)}:*** rt**** ** **ic* ********************************* *****
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE ADDRAMIP
*************** * ********* ****** * * * ******************* *

SUBROUTINE ADRMIRC IRiRAM)
IMPLICIT INTEGER (A-V)
DIMENSIGN IRC 16 ) ,RAM( 16,161
SUM^O
K = I P ( 1 )

L=IP(2)
DO 1 J=l,4
TERM=CRAMCK,L+J-1)+IR(12+J) )*16**CJ-11

1 SUM=SUM+TERM
DO 2 J = 1,

4

IR( 12 + J ) = SUM-CSUM/16)*16
2 SUM=SUM/16

RETURN
END
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*************!?****************************************
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE RAMIR8
* ******** V *^c****-t* ********* ********^t* ****** ***********

SUBROUTINE RAMIR8 ( IR,RAMI
IMPLICIT INTEGER (A-V)
DIMENSION Ik (16) , RAMI 16,16)
DO 1 J = l,4
IR(8+J) =RAM( IR(1 )

,

IR(2)+J-1 )

RETURN
END

******* ******************************** ***************
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE IRRAMC

j3? *y yz >,x .,-. j£. -,» ~f. ;,..;.» ;" .,'--,» 7~ ',- -r* rr. »?»,- ;,t rfi ;,; },t -^ ^
t
» ^ »,s ;,",;:,; ',• ¥ -,' V »,' V- 'i' v t V ^t- *? *i* *i* »(S »/- Vi** 'i *? "fC ^i JyC

SUBROUTINE IRR AMC ( I R, R AM )

IMPLICIT INTEGER (A-V)
DIMENSION IR( 16) ,RAM( 16,16)
DO 1 J = l,4
RAM(IR(3) , IR(4)+J-1)=IR(12+J)
RETURN
END

******** ************* ********** ***********************
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE RAM IRC
* ***************************** * ******** ***************

SUBROUTINE RAMIRC( IR,RAM)
IMPLICIT INTEGER (A-V)
DIMENSION IR ( 16) , RAM

(

16,16)
DO 1 J=l,4
IR( 12*J)=RAM< IRC 3 J

,

IR(4 ) + J-l)
RETURN
END

******************************************************
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE TRANRAM
************ * * * * * * * ****************** * ****************

SUBPOUT INE TRANRMC IR, RAM)
IMPLICIT INTEGER (A-V)
DIMENSION IR( 16) ,RA'-U 16,16)
DO 1 J =1,4

1 RAM( IR(l),IM2H-J-l) = RAM(IR(3)flP(4) + J-l)
RETURN
END
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********************************* *************** ******
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE 01 V2
******************************************************

SUBROUTINE 0IV2(IR,RAM)
IMPLICIT INTEGER (A-Z)
01 MENS I ON IR< 16 ), RAMI 16,16)
SUM=0
K=IR(3)
L=IR(4)
F1 =

DO 1 J = l,4
1 Ift{J+12)=RAM(K,L+J-l)

IF(IR(16) .LT.8) GO TO 3
Fl=l
CALL COMPLC( IR, RAM)

3 DO 4 J = l,4
4 SUM=SUM+IR( J+12j*16**( J-l)

SUM=SUM/2
DC 2 J = l,4
IRC J + 12) = SUM- (SUM/ 16}* 16

2 SUM=SUM/16
IF(Fl.EQ.O) GO TO 5
CALL COMPLCC I P., RAM)

5 DO 6 J=l,4
6 RAM(K,L+J-1)=IR( J + 12)

RETURN
END

y~ -jl -J, a- ->- *', J, *v •** ~"e -J- -a, „', Ju -j* j. .'--.'
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THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF the MCS-4 MULTIPLICATION TABLE
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SUBROUTINE TABLE C At B,C » D)
IMPLICIT INTEGER (A-Z)
D=(A*B) /16
C=A*B-D*16
RETURN
END

***** *********** ***** **** ** ****** ****** ***************
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE AOORAM
******************************************************

SUBROUTINE ADD(A,B,CtO)
IMPLICIT INTEGER (A-Z)
D=(A+B) /16
OCA4-B)-D*16
RETURN
END
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***#*******;;:**$*************#********#*************#**
T HIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE MULT
******************************************************

12

145

21

38

SUBROUTINE MULTC
IMPLICIT INTEGER
DIMENSION X(4),Y
DO 1 1=1,16
TEMPC I )=R( I)
CALL TABLE (X(l)

TABLE (X( 2)

•

AOD(R<5) ,R(
TABLE(X(2J

,

ADD(R(6) ,R(
TA3LE(X(3) ,

A D D ( R ( 7 ) , K (

ADQ(R(8) ,P(
TABLE (X(3) ,

ADD(R(6) ,R(
A D D ( R ( 1 ) i R
ADD(CY,R (7)
TABLE(X(4)

r

ADD(R(8) ,P(
AOD(R(Si ,BL

X,Y,R)
(A-Z)

(4),R( 16),TEMP(16)

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
C^LL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
DO 2

Y(
5)
Y(
8)

ADD(R(8),R(
TABLE( X(4)
ADD(R(13),R
ADD ( R

(

i

i

, R (

ADD(R(11 ) ,R
ADD(CY,R(8)
ADO(ACC,R( 1

TABLE(X(3) ,

A D D ( R ( 3 ) , R (

ADD(R(9) ,R(
TAELE(X(4) ,

ADO(R(ll),R
ADD(ACC,R(6
ADD(CY,R(7)
TABLE(XK),
ADD(R(10) ,

D

ADlKCY,'"7 (6)
ADD* R(6J ,R(
ADD.(CY,R( 15
ADD( ACC,R(7
ADO(CY,R( 16
AOD(R(S) r R<
AOD(CY,P (9)

BL,R(
L , R ( 6
) , R ( 8
(6) ,R
),R(6
(9) ,R
),BL)
7 1 , R (

(10) ,

) , R < 7
6),CY
BL)
( 12) ,

8), BL
3D
8 ) , R {

P ( 1 1 )

( 10),P(10) ,

,Y(4),
Y ( 3 ) ,B
6) ,R(5

4),c
,R(5
3),R
,R(8

10) ,R(
Y(4) ,R
7 ) , R ( 6

(6) ,R(
, R ( 7 ) ,

Y(3),R
10), R(
, R ( 3 ) ,

11 ),R(
,Y(4)

,

5))
))
) )

(7) )

))
(10)

8)
R(
))
)

)

11 ))

R(10) J

)

10) )

,R( 13)

)

BL)

(7) ,R(
,ACC,B

) , R ( 1

Y(2),
R(
R(

5)

t

it
51
,P

AD0(R(6) ,P.(9)
Y,
)

;

5
5

Y ( 2 ) , R
(8) -AC
) , R ( 6 J

, R ( 7 ) ,

V ( 1 ) , B
( 8) ,R(
, R ( 6 ) ,

12) ,~

(

) , ACC,
) , R ( 1 5

P( 16
,R( 1

(9),
r R < 1

R(15
ACC,

ADO(R( 15 ) ,C
ADD(CY,R(11
AOD(ACC+CY,R( 16)
1 = 1, 12

R(I)=TEMP( I

)

RETURN
END

7),CY
L)
6) ,BL
L , P ( 8
) , R ( 8
) , R ( 9
(10) ,

CBL)
,CY)
R(U)
L , R ( 8
8),CY
P ( 1 5 )

6)
T
CY

3L)
),CY)
),BL)
3 ) , C Y
BL)
4),CY
) ,CY)
CY)
R ( 1 6 )

)

)

))
) )

))
R(ll ))

)

) )

)

)

)

)

)

,BL)
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******************************************************
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 ASSEMBLER DUMP AND TRACE
*************************** ***************************

SUBROUTINE PRINT (N, IR , RAM , P OM , K , L

)

IMPLICIT INTEGER (A-Z)
DIMENSION IR (16)

i

RAM< 16,16) t ROM! 16,32)
IF(N.NE.l) GO TO 5
WRITE(6,101)IR

101 F0RMATC5X, « IR" ,2X, ' 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 1

19X,9I2,7I3,/)
RETURN

5 IF(N.NE.2) GO TO 10
WRITE* 6, 102) K,L, ( RAM ( K, L+ 1-1 ) , 1= 1, 4)

102 FORMAT C5X,» RAM LOC • , 12 , 13, 4 13 , /

)

RFTURN
10 IF(N.NE.3) RETURN

WRITE (6, 103) K,L, ( ROM ( K , L+ I -1 ) ,1=1,8)
103 FORMAT ( 5X, 'ROM LOC • , 12 , I 3, 8 I 3, /

)

RETURN
END

****** ******************************** ****************
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 SUBROUTINE COMPLEMENT
*************:?* ************************ ***************

SUBROUTINE COMPLC C R,RAMJ
IMPLICIT INTEGER (A-Z)
DIMENSION R( 16)

,

RAM (16, 16)
I Ft (R (16) .LT.O) .OR.(P (15J.LT.0) .PR.(P (14)

.

LT.Ol.OR. (R(
1G0 TO 5
L = l

DO 1 1-1,4
P (12+1 )=15-R( 12 + 1 )+L
IF(P( 12 + 1 ) .NE.16) GO TO 3
R(12+I ) =0
L = l

GO TO 1

3 L=0
1 CONTINUE

RETURN
5 DO 2 1=1,4
2 R(12 +1 )=-R( 12 + 1 )

RETURN
END
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********************* ***********&***£$***** ***#*******
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE MCS-4 EXPANDED MULTIPLY
*************************************** ********** *****

SUBROUTINE MULTPNIR.RAMl
IMPLICIT INTEGER(A-Z)
DIMENSION R(16)

,

RAM (16, 16) , T(4) ,TE(4)
F1 =
F2=0
DO 1 1=1,4

1 R(12+I

)

=RAM(R( 1) , R(2)+I-l)
IF(P( 16).LT.8) GO TO 2
Fl = l

. CALL COMPLC(R,RAM)
2 SUM=R(16)

DO 3 1=1,3
3 SUM^SUM*16+R(ib-I )

SUM=SUM*2
• DO 4 1=1,4
TU) = SUM-(SUM/161*16

4 SUM=SUM/16
DO 11 1=1,4

11 R(12+I )=RAM(R(3) ,R(4)+I-1)
IF(R( 16) .LT.8) GO TO 12
F2 = l
CtLL COMPLC(R,RAM)

12 SUM=R(16)
DO 13 1=1,3

13 SUM=SUM*16+R(16-I )

SUM=SUM*2
DO 14 1=1,4
TE(I)=SUM-(SUM/16)*16

14 SUM = SU:*,/16
mLL nuLif i f I CfKI

SUM=R{ 16)
DO 23 1=1,3

23 SUM = SUM^16 + :5(16-I )

SUM-- SUM/

2

SUM=SUM/2
DO 24 1=1,4
R(I+12)*SUM-(SUM/16)*16

?4 SUM=SUM/16
IF( (F1+F2) .NE.ll GO TO 30
CALL COMPLC(RtRAM)

3 RE TURN
ENO

******* ********** **** ***3;:**^: *********** * ** * * * * * * * * * ***
THIS SUBROUTINE SIMULATES THE FUNCTIONS
OF THE TH QUADRANT TEST IN THE
MCS-4 EXECUTIVE ROUTINE
*******v***************************************** *****

SUBROUTINE COS PL ( R , POM , RAM

)

I MPLK IT INTEGER < A-Z )

DIMFNSJ ON R( 16) ,ROM< 16,32) ,RAM( 16,16)
PLACE PI/2 INTO REGISTERS
R(13)=2
R( 14)=2
R (15)=9
P. ( 16) = 1

LOCATION OF TH AND INTERMEDIATE STORAGE
R ( 3 ) = 3
R<4)=5
R ( 1 ) = 1

R(2)-l
CAI L SUBRIR(RtRAM)
I K (RAM 10, i ) .L7 .0) .Of- . (RAM( 10, 2) .LT.O) .OP. (RAM( 10, 3) .
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1 (RAM( 10,4) .LT.O) I GO TO 1

R(3J=10
R<4)=1
R(2)=5
CALL SUBRIRf RtRAMI
IF ( (P AM (10,5) .LT.O) .OP. (RAM (10, 6) .LT.O) .OR. (RAM (10, 7)

1(RAM( 10,3) .LT.O) ) GO TO 2
R ( 4 ) = 5
R(2»=l
CALL SUBRIR(RiRAM)
I F( (RAM (10,1) .LT.O) .OR. (RAM (10, 2) .LT.O) .OR. (RAM( 10,3)

1 (RAM( 10,4) .LT.O) ) GO TO 3
TI-PI/2 IS NOW IN RAMUO.U
R(4)=5
TRANSFER PI/2 TO RAM(10,5)
CALL IRRAMC(R»RAM1
R<4)=1
CALL RAMIRC(R»RAM)
CALL CCSINE(R,ROM)
R(3)=5
R<4)=13
CALL IRRAMCCRiRAMJ
TRANSFER TH- PRIME TO R(13)
R ( 3 ) = 1

R(4)=l
CALL RAMIRC(R,RAM)
R(4)=5
R ( 1 ) = 1

R(2)=l
CALL SUBRIR(R,RAM)
COMPLEMENTARY ANGLE IS NOW IN RAM (1,10)
R(4)=l
CALL RAMI RCCRf RAM)
CALL COSINE (R,ROM)
R(3)=2
R (4) = 13
CALL IRRAMC(RfRAM)
COS(TH) HAS NOW BEEN STORED
RETURN
R(3)=10
R(4)=l
COMPLEMENT RAMdO.l)
CALL RAMIRClRtRAM)
CALL CQMPLC(RtRAM)
CALL COSINE(R,ROM)
R ( 3 ) = 5
R(4>=13
CALL iRRAMC(R, RAM)

SIM(TH) HAS BEEN FOUND
P (31=10
R < 4 ) = 5
CALL RAMIRC(R,RAM)
CALL COSINE(R,RQM)
CALL COMPLC(R,RAM)
R(3)=2
R(4)=15
Call irramc(r.ram)

cos(th) has been found
RETURN
R(3)=10
R(4)=5
CALL RAMIRC(R»RAMI
CALL COMPLC(F ,

- -"

)

CALL COSINE(R,ROMJ
CALL CHMPLC(R,RAM)
R ( 3 ) = 2
R(4)-13
CfLL IP«5AMC(p,PAf.)

COSINE HAS BEEN FOUNDM 3 ) = 1

P(4)^l
CALL RAfllP.CtRiVAM)
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CALL COSINElRtROM)
CALL COMPLCCRfRAMI
R(3)=5
R(4)=13
CALL IRRAMC(P , RAM)
SJN(TH) HAS BEEN FOUND

RETURN
R ( 3 ) = 1

R(4)=l
CALL RAMIRC(R,RAM)
CALL COMPLCCR,RAM)
CALL CCSINE(R, ROM)
CALL COMPLC(R»RAMl
R(3)=5
P <4)=13
CALL IRRAMC(R,RAM)

SIN(TH) HAS eEEN FOUND
R(3j=3
R<4)=5
CALL RAMIP.C(RtRAM)
CALL CCSINE (P., ROM)
P<3)=2
R ( 4 ) = 1 3
CALL IRRAMC(RtRAM)

COS(TH) HAS BEEN FOUND
RETURN
END

***************** ** ****** ** *** ********* ***************
THIS SUBROUTINE CONVERTS THE HEXIDECIMAL
OUTPUT CF THE MCS-4 PROGRAM TO DECIMAL
*i~ u- «#- »V -'- i"r *** »'* \V -*V -*- *** •>'- -** ^*r •Jr -^t V* **t J' •** •** 4t •«*- *- »'r -V tV *•'** '- - - 1 -'•-' -'-' -*- L

- -'- -'- JV -'-'- V- «.--.- o- -', -'.- u. dL ,,v „«, .A.
- v *f ^

(
* ^ . <^ ^

1

.. ^B ^p ^^ JB -,» *f* *-,x *^ #K i*i *f± Jp> *^ #|*fc ^^ ^* --p *^ ^g^ ^|\ -y* >jt ^\ *yi f^i *
x

r ^t *i
(̂

>^ ^
(
»h *^* *y* *,*, J^* *, - -,* ^|* Jj^ J,* -^«* r,* x-,L ^

(
V ^j^ *

(
* -^ *^s J^

S UDRCUT I NE CONVD ( N , M, R AM, R » XVAl , K

J

IMPLICIT INTEGER(A-V)
DIMENSION RAM( lb, 16), P( 16)
FLAG=0
R(3)=N
R(4)=M
CALL RAMIRC(R.RAM)
IF(P( 16 j .LT.8J GO TO 3
F L AG= 1

CALL CUMPLC(R,RAM)
3 K1 = K-1

IF(Ki) 8,9,10
8 XVAL=0.0

GO TO <*

9 XVAL = P.l 16)
GO TO 4

10 XVAL=R( 16)
DO 1 I=1,K1

1 XVAL=R( 16-1 )+XVAL*16.0
4 Kl=4-K

IF(Kl.LE.O) GO TO 6
DO 2 1=1, Kl

2 XVAL = XVAL + P( 13+K 1 - T ) * 1 6 .0** ( - I )

1KK.EO.O) XVAL=XVAL*2.G
IFU'LAG. EO.O) RETURN
XVAL=-XVAL
RETURN
END
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******************************************************
THIS SU5RCUTINE CONVERTS THE DECIMAL INPUT
INTO HEXADECIMAL FOR THE MCS-4 PROGRAM
********#******* ****************** *************** *****

SUBROUTINE CONVRT(N,M t XVAP,RAM,R t K)
IMPLICIT INTEGEP(A-V)
DIMENSION RAM(16,16),R(16)
FLAG=0
IF(XVAR .GE.O.OJ GO TO 3
XVAR=-XVAR
FLAG=1
VAR=XVAR
IF(K.LT.l) GO TO 5
DO 1 I =1,K
RAM(N,M-t-3-K+I ) =VAR-VAR/16*16
VAR=VAR/16
Kl=4-K
IF(Kl.LE.O) GO TO 10
FR = XVAF:
XFR=XVAR
DC 2 I=1,K1
XFR=(XFR-FR1*16
RAM(N,M+4-K-I )=XFR
FR=XFR
IF(FLAG.EQ.O) RETURN
XVAR=-XVAR
R(3»=N
R(4)=M
CALL RAMIRCCRfRAMJ
CALL C0MPLC<R,RAM1
CALL IRRAMC(R»RAM)
PCTMpM
END
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