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ABSTRACT

A discrete state, discrete time Markov-type manpower flow

model having a two-dimensional state space (i.e., a two

characteristic model) is analyzed. The probabilistic proper-

ties of the model and the equations of stocks and flows are

developed. A new method of representing the stocks as a sum

of steady-state and transient components is presented. Two

specific applications of the model to multi-grade hierarchical

systems in which the dimensions of the state space are (grade,

length of service) and (grade, time in grade) are analyzed in

detail. The problem of combining states across the second

dimension of the state space is studied and methods are

derived for the (usual) case where the states are not lumpable.

Finally, some applications of the model with state space

(grade, skill group) to retraining problems between various

skill categories are presented.
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I. INTRODUCTION

This paper deals with manpower flow models, specifically

discrete state, discrete time Markov-type models in which

the states are described by two characteristics. This type

of manpower flow model will be referred to as a "two-

characteristic model" to distinguish it from the more common

model in which the states are described by one characteristic.

Markov-type flow models have been used for some years;

see for example Young and Almond (1961) , Blumen, Kogan and

McCarthy (1955), Marshall and Oliver (1970) and Rowland and

Sovereign (1969) . Theoretical properties of the model are

developed in Bartholomew (1967). Charnes, Cooper and Niehaus

(1972) use the Markov-type flow model as part of a larger

manpower planning model.

The latter application is typical in that the Markov-type

flow model is not used in isolation to project stocks and

flows of people, but rather it is used to provide information

to a more extensive model that deals with budgets, capital

investments and aggregate work planning. The simple mathe-

matical structure and the computational tractability of

Markov-type models make it practical to embed them in larger

models.

Early Markov-type models had one-characteristic states,

such as pay grade or status in a hierarchical system.

Geometric lifetimes in these states were thus implied by the

model structure and often could not be justified. However,

8





the one-characteristic model usually led to a small state

space which implied little computational difficulty. The

simple mathematical structure of these models was also

appealing, and analytical results were obtainable.

In an attempt to overcome the shortcomings of these

simple models subsequent models in manpower planning used

more than one characteristic to describe the states of the

system. See for example the U.S. Navy ADSTAP models (U.S.

Navy, 1973) and the U.S. Air Force TOPLINE model (RAND, 1973).

In the documentation we have seen these have not been formally

recognized as Markov-type models. Each model has been treated

as an individual case. By viewing these m.odels as special

cases of a more general two-characteristic Markov-type model,

we present in this thesis a unified treatment of such a model.

We are able to develop the theory of its structure and we use

this to analyze special cases frequently applied in military

manpower planning. Some new applications of the model to the

problem of retraining between skill groups in an organization

are presented.

A. GENERAL DESCRIPTION

A graded manpower system is one in which each person is

assigned a "grade," e.g., a pay grade, a rank or a status

label. Such a system may be analyzed using a Markov-type

model in which the states are defined to be the grades.

Thus a state is identified by a single characteristic and we

say the model has a one-dimensional state space. The analysis

of a graded manpower system by such models is often suspect





because the grades do not provide a state space within v;hich

the system is actually Markovian. For example those in a

given grade who progress rapidly through the lower grades may

have significantly different promotion prospects from those

in the same grade whose progress was less rapid. Thus the

future progress of an individual in a state depends on how

he reached the given state.

As is frequently the case in Markov models, expanding

the state space may lead to a model of the system in which

the Markov assumption is more realistic. In this paper the

state space of a Markov-type model of a graded manpower sys-

tem is expanded to one in which each state is identified by

a couple (i,j) where i represents a grade and j represents

a second characteristic. Examples of a second characteristic

are:

1) Length of service in the system (LOS)

2) Time in grade (TIG)

3) Skill category

4) Overall performance mark

5) Physical location.

In cases 1) and 2) the second characteristic is chosen

primarily to make the Markov assxamption more tenable. In the

other cases the appropriate second characteristic is chosen

to fit the problem at hand.

Expanding the state space of a Markov-type model presents

some difficulties, among which are:

1) There are more parameters (transition probabilities)

in the model to be estimated or controlled.

10





This paper does not deal with the problems of parameter

estimation. In practice the estimation of transition proba-

bilities in manpower systems is hindered more by lack of

data than by questions regarding appropriate statistical

techniques. More pertinent is the number of parameters to

be controlled, because the models analyzed here are intended

for planning rather than forecasting. That is, we are inter-

ested in comparing the results of alternative policies rather

than projecting the consequences of some "state of nature."

Increasing the number of parameters to be controlled in a

planning model can lead to practical difficulties. Such

difficulties are not investigated in a comprehensive fashion

in this paper; however, in Section D of Chapter IV and

Sections C and D of Chapter VII we demcnstrate methods which

effectively reduce the number of parameters the planner must

control.

2) Computations may be less tractable, if not completely

impractical.

The manpower flow model, is typically a component of a larger

planning model, so it is to be expected that a single run of

the planning model will require numerous calls for information

from the flow model. Consider a system in which two grades i

aiid k are important plateaus to be reached which affect an

individual's retirement benefits. A retirement policy planning

model might require information on the fraction of people who

will attain grade k given that grade i is attained as well as

the distribution of time required to reach grade k. Practical

methods for deriving this type of information from a

11





two-characteristic model are developed in Chapters II and III,

Although a two-characteristic model in a military manpower

application would have at least one hundred states, it is

shown that much information of interest can be derived by

calculations restricted to a smaller number of states.

3) Analytical results which yield insight into the

properties of the system may be more difficult to

obtain.

Certainly analytical results are more difficult to obtain in

a two-characteristic model than in a one-characteristic model,

Nevertheless, we obtain a number of results which include the

structure of the fundamental matrix (Chapter II), the equi-

librium distribution of people in the system under various

hiring policies (Chapter III) , the effect of average time

spent in a grade on the equilibrium distribution of people in

that grade (Chapter VI) and the relation between promotion

rates and the number in a grade (Chapter VII)

.

B. CONTENTS AND SUMMARY

Chapter II begins with the definition of basic notation

and the statement of assumptions. Probabilistic properties

of the transient matrix of the two-characteristic model, such

as the expected number of visits to a state and the expected

time spent in a grade are developed. A not uncommon property

of manpower flow models, the 0-1 visiting property" (i.e.,

each state can be visited no more than once) , is defined and

its implications discussed. The "no return property" (i.e.,

a transition into a state is impossible once a transition has

12





been made out of it) is defined. If the states in a grade

have the no return property then it may be assumed without

loss of generality that the fundamental matrix for that

grade is upper triangular and thus is relatively easy to

compute. Matrices of the probabilities of going from one

state to another in t steps (t-step transition matrices) are

defined and a recursive formula for their calculation is

shown. The t-step transition matrices are subsequently used

in Chapter III to represent the stocks as the sum of steady-

state and transient components. In the last section of

Chapter II is it shown how the basic probabilistic properties

of the transient matrix of the two-characteristic model are

developed when one conditions on the attainment of a higher

grade. The results of Chapter II follow closely the results

of Kemeny and Snell (1960) , but extend them to the two-

characteristic model. Thus Chapter II contains a compre-

hensive treatment of how probabilistic information may be

obtained from a two-characteristic model, and such a treat-

ment has not been previously published.

Chapter III begins with a definition of the timing

convention. In real systems people enter, leave and change

grades or skills continuously. In order to fit a Markov-

type model in discrete time the notion of a "period" must

be carefully defined and a consistent counting convention

used. Since planners almost invariably use discrete planning

periods, these conventions lead to useable results. We

assume time is divided into discrete periods (for example,

years) . Each period is denoted by the integer value of time

13





at the end of the period. People are counted only at the

last instant of a period. Various stock and flow vectors

are defined; the term stock refers to the number of people

in a state or set of states at the end of a period, the

term flow refers to the number of people who make transitions

from one state in one period to another state in the next

period. In Section B we develop equations for computing the

expected stocks at time t from the values of stocks and flows

prior to time t. Section C contains the development of a new

method for expressing the stock vector as a sum of a "steady-

state" component and a "transient" component. The steady-

state component of the stock vector is derived for the cases

where external flows are

1) Constant

2) Growing linearly,

3) Growing geometrically.

Chapter IV deals with the two-characteristic model where

length of service (LOS) is the second characteristic. This

model is called the (grade, LOS) model. The chapter begins

with background material showing how practical considerations

might lead the manpower planner to use the (grade, LOS) model.

In Section B we present definitions and display some of the

matrices associated with the (grade, LOS) model in order to

show their rather simple structure. The concept of a cohort

(a group of people who enter the system at the same time and

in the same state) is discussed. It is noted that when entry

to the system is restricted to a single state, the (grade,

LOS) model preserves cohorts in the sense that members of

14





different cohorts never simultaneously occupy the same state.

Section C discusses computationally efficient methods for

performing the matrix multiplications needed to derive

information from the (grade, LOS) model. The discussion in

this section depends on Appendix B which treats the multi-

plication of "diagonal matrices." Section D shows how the

structure of the (grade, LOS) model might be exploited in

solving a problem regarding the minimization of the costs of

reenlistraent (in a military organization) . In the last

section of Chapter III, Section E, we discuss how the

modeler may treat grade as the second characteristic and LOS

as the first characteristic. Such an interchanged model is

called the (LOS, grade) model. It is shown that the (LOS,

grade) model is more flexible than the (grade, LOS) model.

Chapter V deals with the two-characteristic model where

time in grade (TIG) is the second characteristic. This model

is called the (grade, TIG) model. The chapter begins with a

brief discussion of conditions under which the model might be

appropriate. In Section B the definitions are stated and the

structure of various matrices associated with the (grade,

TIG) model is displayed and discussed. It is noted that the

(grade, TIG) model is equivalent to a discrete semi-Markov

process. In Section C we discuss how the modeler may treat

grade as the second characteristic and .TIG as the first

characteristic. The resulting model, the (TIG, grade) model,

is different in structure from the two-characteristic models

previously studied. However it is briefly shown how one

might derive information from such a model.





Chapter VI treats the problem of combining states in a

two-characteristic model. The problem is of practical

importance because often there is more than one reasonable

choice of the second characteristic to consider, and these

would lead to higher dimensional state spaces. For example,

length of service, time in grade and skill group are three

reasonable choices of the second characteristic in military

manpower planning models. Only one of these can be chosen,

so it is useful to have some guidance regarding how one might

combine states across the characteristics that are not chosen

for inclusion in the two-characteristic model. In Section A

we investigate the condition under which the states in each

grade of a two-characteristic model are "lumpable" as defined

by Kemeny and Snell (1960) . In Section B we discuss how one

might combine states when the conditions for lumpability are

not satisfied.

In Chapter VII the problem of retraining people between

various skill groups is considered. Accordingly the second

characteristic of our model is taken to be the individual's

skill group. The retraining problem is formulated under a

condition of equilibrium stocks and flows; attrition rates

must be specified. The decision variables for the planner

are stocks, promotion rates and total retraining costs. Of

course these variables are interdependent. We treat stocks

as the independent variables and show the relation of promotion

rates to stocks when external flows are specified. Two methods

for varying the stocks to achieve desired promotion rates are

developed. Equations to compute the availabilities and

16





requirements for retrained people are shown. The total cost

of retraining is modeled using the classical transportation

problem. The foregoing availabilities and requirements are

treated as the supplies and demands in the problem; the unit

costs of retraining people are treated as the transportation

costs. The relation of the total cost of retraining to the

stocks (and promotion rates) is developed. We assume that

the planner wants to minimize the total cost of retraining,

however we do not assume that he can explicitly describe the

constraints on stocks and promotion rates that must be

observed in minimizing costs. We develop a technique in

which the planner can vary the stocks in two successively

indexed grades so as to reduce total retraining costs, while

holding the stocks and promotion rates in all other grades

unchanged. This technique is quite practical because the

planner needs only to be able to recognize combinations of

stocks and promotion rates that are acceptable rather than

having to formally specify a set of constraints. The practi-

cality of this technique is further enhanced by our demonstra-

tion tliat when hiring is restricted to the lowest pay grade

the total retraining cost is a convex function of the numbers

of people hired and promoted each period. Thus if the

collection of acceptable combinations of stocks and promotion

rates is a convex set any locally optimal solution to mini-

mizing total retraining costs is globally optimal.

17





II. PROBABILISTIC PROPERTIES OF THE TWO-CHARACTERISTIC xMODEL

In this chapter we develop various probabilistic proper-

ties of the two-characteristic model. One of our purposes

here is to present a unified, computationally tractable

approach to deriving probabilistic information from a two-

characteristic model.

Let Q be the transition matrix for the transient states

of a two-characteristic model. (The reader should see

Chapter 3 of Kemeny and Snell (1960) for a general treatment

of transient states in finite Markov chains.) For a typical

military manpower planning application Q has dimensions at

least 100 X 100. If the model were applied to the U.S. Navy

enlisted force "with nine pay grades as the first characteristic

and 88 skill groups as the second characteristic, then Q would

have dimensions 792 x 792. Military applications with even

larger state spaces are not uncommon.

Following Kemeny and Snell (1960) we define the "funda-

mental matrix," denoted N, to be (I-Q)~ . Many of the proba-

bilistic properties of interest can be obtained from a

knowledge of N. With large state spaces the computation of N

is non- trivial. By imposing reasonable restrictions on the

transitions between grades (no demotions and no multi-grade

promotions) we are able to define a fundamental matrix N^ for

each grade i, determine many probabilistic properties of the

overall system from these comparatively small matrices, and

show how these matrices are combined to form the fundamental

18





matrix N. In military manpower planning applications, the

number of states in any grade is typically one fifth to one

tenth of the total number of states in the system, so

computing the fundamental matrix for a grade is signifi-

cantly easier than computing the fundamental matrix for the

entire system. Usually only limited portions of the fundamental

matrix for the whole system are needed, and these may be

readily calculated using the techniques developed here based

on the fundamental matrices of the individual grades.

Certain matrix and vector notation used in this and

subsequent chapters is summarized in Appendix A.

A. DEFINITIONS AND ASSUMPTIONS

Each state in the system is identified by a couple (i,j);

a person is in state (i,j) if he is in grade i and has second

characteristic j. There are n consecutively numbered grades:

i=l,''-,n. Each grade i has a set of values of the second

characteristic, denoted J(i), so the state (i,j) is defined

for jeJ(i) but not otherwise. For example if the second

characteristic is length of service (LOS) , and a person in

grade 1 can be in this grade only when his LOS is between 1

and 3, then J(l) = {1,2,3}.

We assume that the second characteristic takes on consec-

utive integer values in each grade, so we define,

l(i) = smallest value of the second characteristic

associated with grade i,

u(i) = largest value of the second characteristic

associated with grade i.

19





Thus,

J(i) = {j: j = l(i),---,u(i)}.

Let w. be the number of elements in J(i). Then,

w^ = u{i) - l(i) + 1.

Denote the set of states associated with grade i by T.. Then,

T^ = {(i,j): jeJ(i)}, i=l,---,n.

Note that T. contains w. elements.

n
Let T = U T., the complete set of all transient states,

i=l ^

and let T- denote the single absorbing state "out of the

system."

Let,

1) Q. be a w. x w. matrix of one-step transition proba-

bilities q.(j,m), j,meJ(i), where q.(j,m) is the

probability of a transition from state (i,j)eT. to

state (i,m) eT .

.

2) P. be a w. x w. ,, matrix of one-step transition proba-
1 1 1+1 ^ ^

bilities p-(j,m), jeJ(i), meJ(i+l), where p-(j,m) is

the probability of a transition from state (i,j)eT.

to state (i+l,m)eT. ,.

3) A. be a w. x 1 matrix of one-step transition proba-

bilities a.(j), jeJ(i), where a.(j) is the probability

of a transition from state (i,j) to "out of the system,"

i.e., to T-

.
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The basic assumption in this thesis is

AO: Movement between states of the system follows the

stochastic laws of a stationary finite state Markov

chain.

The following restrictions on movements between grades are

assumed:

Al: From any state in T. it is possible to make a one-

step transition only to states in T., T. , or T-.

The practical significance of this assumption is that no

person is promoted more than one grade in a single period,

and no one is ever demoted. We have chosen for the sake of

definiteness to call the first characteristic "grade." Any

characteristic that satisfies Al can be used as a first

characteristic. Length of service is an example of a

characteristic that satisfies Al, and we take advantage of

this in Section E of Chapter IV.

We also assume:

A2 : Each matrix Q., i=l,---,n, is a transient matrix. The

The practical significance of this assumption is that no one

can stay in a grade forever. With Al this means that everyone

entering the system must (with probability 1) eventually

leave the system.

Under AO through A2 the one step stochastic transition

matrix for the entire system, denoted P, is

21





p =

Qi ^1

Q2 P2

\

\ \

\ n-1 ' n-1

(Recall from Appendix A that is a vector of zeroes.)

The transient matrix Q for the transient states T is then.

Qi ^1

Q =

^2 ^2

(1)

\
^3 \

\
Qn

The plan of this chapter is to develop the probabilistic

properties of:

1) any set of states T.

,

2) any union of consecutively indexed sets T.,

m
i.e. , (J "^i '

i=k

3) the union of all transient states, T.

One of the purposes of this development is to show that the

stochastic properties of Q, typically a large matrix, are

readily calculated in terms of the smaller matrices Q. and P. .
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The results of this chapter follow closely those in

Chapter 3 in Kemeny and Snell (1960) . The notation

(K&S,3._._) indicates that a result can be derived from

theorem 3._._ in Kemeny and Snell.

B. FIRST-ORDER PROPERTIES

The term "first-order properties" is used here as a general

terra for various probabilities and first moments, e.g., the

probability of visiting a state, the expected number of visits

to a state and the expected time spent in a grade.

Under A2 the overall transient matrix Q has a fundamental

matrix N = (I-Q) , and each element of N is the expected

number of visits to the column state starting from the row

state (K&S,3.2.4). Under Al , Q has the structure shown in

(1) . By direct methods it can be shown that

N =

^1 N1P1N2 N1P1N2P2N3

N. N2P2N3

N.

n-1
n (N.p.)N

i=l
1 1 n

n-1
n (N.p.)N

. „ 1 1 n1=2

n-1
n (N.p.)N

. _ 1 1 n

I

I

N
n

(2)

where N.=(I-Q.)~ / i=l,-'-/n, the fundamental matrix for grade

i. Note that the large matrix N is completely determined by

the matrices N. and P.. Thus the only matrix inversions

required to find (I-Q) are the inversions of (I-Q.
)

,
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i=l,***,n. This is of considerable computational significance

because as previously mentioned, Q is usually a large matrix.

Each matrix N. has a probabilistic interpretation.

We pursue this interpretation and show that these matrices

can be used to determine other probabilistic properties of

interest.

In this and subsequent sections we make numerous defini-

tions, the k definition is denoted by Dk.

Let us consider first the properties associated with a

single set of states T. and define:

Dl. V. ( j ,m) = expected number of visits to state {i,m)

given that grade i is entered in state (i,j)

D2. V. = a w. X w. matrix having v. (j,m) as the element

in row j-l(i)+l and column m-l(i)+l.

From (2) the element of N. in row j-l(i)+l and column

m-l(i)+l equals the expected number of visits to state (i,m)

given that grade i is entered in state (i,j). (K&S,3.2.4).

So, from definitions Dl and D2 , we have,

V^ = N^. (3)

Note that the rows and columns of N. and V. correspond to

states in grade i in the same way as the rows and columns

of Q^.

Now define:

D3. T. (j) = expected time in grade i given that grade i

is entered in state (i,j)

D4. T^ = [Tj^dd) ) ,
• • •

, T^(u(i))], a Wj^ x 1 vector.

The expected time spent in grade i equals the sum of the
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expected number of visits to the various states in grade i.

From (3) and D3,

Tj^(j) = component (j-l(i)+l) of N.Tf

and from D4

,

t. =N.i, aw. xl vector (4)

(Recall from Appendix A that 1 is a vector with all compo-

nents equal to one.)

We next turn our attention to where the process goes

when it leaves grade i. From assumption Al (no demotions,

no multi-grade promotions) the process upon leaving T. must

enter either T. , or T,.. Next define:

D5. b.(j,m) = probability of entering grade i+1 in state

(i+l,m) given that grade i is entered in

state (i,j)

D6. B. =aw. xw.,, matrix having b. (j,m) as the element
1 1 1+1 ^ 1 -" '

in row j-l(i)+l and column m-l(i+l)+l

t>^(j) = probability of ever entering T. , given that

grade i is entered in state (i,j)

D7

D8. b^ = [b^(l(i)) ,• ••,b^(u(i))] , a w^ X 1 vector

D9. b.^(j) = probability of never entering T. , given

that grade i is entered in state (i,j)

DIO. b^Q = [b^Q(l(i) )

, • •

• ,b^Q(u(i) ) ] , a w^ x 1 vector.

From these definitions it follows that

_

B. = N.P., a w.x w. matrix (K&S,3. 5.4), (5)11111 ' '

b. =B.l, aw. xl vector,111
and.
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= N.A., a w. X 1 vector.

The matrix B. is particularly useful in our analyses.

For example, let f . be a 1 x w. vector of the number of

people entering T.. Then f.B. is a 1 x w.^ vector of the

number of these people who v/ill eventually enter T. ^.

(K&S,3.3.6). This vector is used repeatedly in Chapter III.

Next we consider the first-order properties related to

grades i and k where i^k. Define:

Dll. b ( (i, j ) , (k,m) ) = probability of entering grade k in

state (k,m) given that grade i is

entered in state (i,j)

D12. B., = a w. x w, matrix having b ( (i , j ) , (k,m) ) as

the element in row j-l(i)+l and column m-l(k)+l-

From definitions D5 and Dll and a simple conditioning argument

we have

u(i)
b((i, j) , (i+2,m)) =

I b^
( j ,r) b^^^^ (r ,m) .

r=l(i)

So, from D12,

1,1+2 1 1+2

Notice from Dll that B. . is an identity matrix and from D5

that B. . ,=B.. More generally it can be shown that for i<k,

k-1
5 ra T.T V \^B., = )B,aw. xw, matrix,

ik ^
. r 1

r=i

Define:

D13. V ( (i, j ) , (k,m) ) = expected number of visits to state
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(k,m) given that grade i is entered

in state (i
, j )

.

D14. v., = a w. X w, matrix having v ( (i, j ) , (k,m) ) as the

element in row j-l(i)+l

Dl5. b., (j) = probability of ever entering grade k, given

that grade i is entered in state (i,j)

D16. h^^ = [b^j^(l(i) ) ,
• • • ,b^j^(u(i) ) ] , a w^^ x 1 vector.

Considering each row of B., as the part of an initial proba-

bility vector that applies to T, , we then have.

v., = B.,N, , a w. x w, matrix (K&S,3.5.4), (6)

and,

b., =B.,i, aw. xl vector,
ik ik ' X

Define:

Dl7. T., (j) = expected time in grade k given that grade i is

entered in state (i,j)

D18. Tj^j, = [T^j^(l(i) ) ,
• • • , T^j^(u(i))], a Wj^ X 1 vector.

The expected time in a grade is the sum of the expected number

of visits to states in that grade, so

T.,=V.,i, aw. xl vector.

This completes our study of the first-order properties

related to the various grades of the system. The foregoing

definitions by no means exhaust the first-order properties of

the two-characteristic model that might conceivably be of

interest. It is felt, however, that these properties will often

be of practical interest and that other first-order properties

may be readily derived from these.
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C. TWO SPECIAL CASES

The elements of the fundamental matrix for grade i, N.,

have a somewhat different interpretation when the states in

grade i have what we call the "0-1 visiting property." We

say that a state has the 0-1 visiting property if the state

can be visited no more than one time. Important examples of

two-characteristic models in which all transient states have

the 0-1 visiting property are the models in which the second

characteristic is either length of service (see Chapter IV) or

time in grade (see Chapter V)

.

If each state in T. has the 0-1 visiting property, then

the expected number of visits to a state in T. is equal to the

probability of visiting the state. The element of N . in row

j-l(i)+l and column m-l(i)+l may then be interpreted as the

probability of visiting state (i,m) given that grade i is

entered in state (i,j).

Another property of interest is the "no return property."

we say that a state has the no return property if it

is impossible to ever make a transition into the state after

a transition has been made out of the state. The 0-1 visiting

property implies the no return property, but they are not

equivalent. For example, in modeling manpower flows in the

U". S. Civil Service one might use "pay step" as a second

characteristic. Each state is then a couple (grade, pay step).

A person can stay in the same pay step for more than one

period, so if there are no demotions then each state would

havo the no return property but not the 0-1 visiting property.
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If the states in T. have the no return property then it

is possible to order the states in T . so that Q. is upper

triangular. When Q. is upper triangular so is I-Q. and the

computation of the inverse of I-Q., i.e., the fundamental

matrix for grade i, N., is considerably easier than in the

general case.

If the states in T. have the 0-1 visiting property, then

not only is N. upper triangular but also the elements of N.

on the main diagonal are all ones.

D. VARIANCES

The format in this section follows closely that of Section

B, but here we are concerned with various second moment

properties of the two-characteristic model.

Define:

D19. v„ . ( j ,m) = variance of the number of visits to
z , 1

state (i,m) given that grade i is entered

in state (i,j)

D20. V„ . = a w. X w. matrix having v^ . ( j ,m) as the element
2,1 1 1 ^ 2 ,x -'

'

in row j-l(i)+l and column m-l{i)+l.

Following (K&S,3.3.3),

V2,i - Ni(2(N.)^g - I) - (N.)^^.

(See Appendix A definitions of "dg" and "sq.")

Define:

D21. T . (j) = variance of the time spent in grade i given

that grade i is entered in state (i,j)

D22. T- . = [t„ . (l(i) )
, • •

•

,t .(u(i))], a w. x 1 vector.
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Following (K&S,3.3.5),

"2,i
= ^2N, - I)T. - (T.)^g.

Define:

D23. V2( (i/ j) / (k,m) ) = variance of the number of visits to

state (k,m) given that grade i is

entered in state (i,j)

D24. V2{i,k) = a w^ x Wj^ matrix having v^ ( (i , j ) , (k,m) ) as

the element in row j-l(i)+l and column

ra-l(k)+l.

Following (K&S,3.3.6),

V^(i,k) = v., (2(N,). - I) - (V.,)2^ ik k'dg ik'sq

Define:

D26. T2((i,j),k) = variance of time spent in grade k given

that grade i is entered in state (i,j)

D27. T2(i,k) = [T2((i,l(i)) ,k) ,•••, T2 ( (i ,u (i) ) ,k) ] .

a w. X 1 vector.

Following (K&S,3.3.6),

T2(i,k) = B.,^(2N3^ - I)
^k

- (^ik^sq-

If each state in T. has the 0-1 visiting property, then the

diagonal elements of N. are equal to one, and,

^^i^dg = ^'

^2,i = Ni - (N.)^g,

V2(i,k) = V.,^ - (V,,^),^.

E. MATRICES OF t-STEP TRANSITION PROBABILITIES

In this section we consider the probability of being in

state (k,m) t steps after being in state (i,j). The
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matrices of these probabilities are called the t-step transi-

tion matrices. They are used in Chapter III to represent the

stock vectors as a sum of steady-state and transient components.

In Chapter IV the t-step transition matrices are shown to

provide a description of how "cohorts" flow through the system.

Define:

D28. m(t : (i
, j ) , (k,m) ) = probability of being in state (k,m)

t steps after being in state (i,j),

t = 0,1,2, • •

•

D29. M., (t) = a w. x w, matrix having m (t : (i, j ) , (k,m)

)

as the element in row j-l(i)+l and

column m-l(k)+l.

The rov7s of M., (t) are associated with states in T . : the
ik 1'

columns of '-I^, (t) are associated with states in T, .

We have immediately that

M . . ( ) = I

.

11

From assumption Al (no dem.otions , no multi-grade promotions)

we have,

M., (t) = if i >k,
ik

M., (t) = B if t < k-i .

ik

(Recall from Appendix A that denotes a matrix of zeroes.)

If the process is to be in state (k,m) exactly t steps

after being in state (i,j), then it must be in some state in

grades k or k-1 exactly t-1 steps after being in state (i,j).

Conditioning on this fact leads to the recursive equation,

"ik^t^ = "ik(t-l)Qi ^ ^i,k-l(^-^-)Vl'
t ^ 1'2'---

.
(^^
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For any i and k the sum over t of the probability

matrices M., (t) gives the matrix of the expected number of

visits to states in grade k starting from states in grade i.

So we have,

00

I M (t) = V. , i<k, (8)
t=0

= , otherwise

By assumption A2 the Q. matrices are transient, so V., is a

matrix of finite elements. This implies that,

lim M (t) = 0. (9)
t-^=°

^^

From (7) it can be shown by an inductive argument that

^ik(^) = ^,^i,k-i(t-i-^)ViQk- (1°)
r=0

The t-step transition matrices provide a rather compre-

hensive picture of how people move through a two-characteristic

system.

F. CONDITIONING ON PROMOTION

In manpower planning one is often interested in conditional

probabilities, e.g., the probability of attaining grade k

given that grade i is attained. The stochastic properties

of the transient matrix Q under conditioning on promotion are

briefly developed in this section.

Define:

D30. (i,j:t) = the event "in state (i,j) at time t"

D31. T, = the event "a transition is made into T, before

leaving the system."
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Conditioning on the event T, is the same as conditioning on

promotion to grade k.

Define:

D32. q^(j,m) = Pr

[

(i,m; t+1

|

(i,

j

; t)

]

D33. q*(j,m) = Pr[(i,m;t+1)
I
(i,j;t), T*^^]

Provided that Pr [T*^,
|
(i

, j ; t) ] ^ 0, we have

q^(j,m) = Pr[(i,m;t+1)
i

(i,j;t), T*^^]

= Pr[(i,m;t+1)
|
(i, j;t)]

Pr[T*^^| (i,j;t) , (i,m;t+l)]
X

Pr[T*^^| (i,j;t)]

Pr[T*_^^| (i,m;t+l)]
= q. (j ,m) X

^ Pr[T*^^| (i,j;t)]

b^(m)
= qi(j,m) X

57|jy (11)

Define:

D34. C. = a w. X w. matrix having the elements of b.Ill ^ 1

(see D8) on its main diagonal and zeroes

elsewhere.

We will assume that promotion to grade i+1 is possible

from every state in T.. Under this assumption C. exists.

If promotion to grade i+1 is impossible from some state

(i,j) then we must avoid conditioning on an impossible event.

This is readily accomplished by temporarily treating state

(i,j) as part of T„ (out of the system) and redefining j(i),

Q
.

, P. and A. accordingly.

33





Define:

D35. Q. = a w. x w. matrix having q. (i ,m) as the element

in row j-l(i)+l and column m-l(i)+l.

Then from (11) and D34,

Q* = C,-1q,C, .

The matrix Q. is the matrix of within grade one-step transition

probabilities conditioned on the attainment of grade i+1.

Define:

D36. p^(j,m) = Pr[(i+l,m;t+l) I
(i,j;t)]

D37. p*(j,m) = Pr[(i+l,ra;t+l)
I
(i,j;t) , T*^^]

D3 8. P. =aw. xw-., matrix having P . (j ,m) as the
1 1 1+1 ^ 1 -^

element in row j-l(i)+l and column m-l(i+l)+l.

We then have

,

p*(j,m) = Pr[(i+l,m;t+l)
I
(i,j;t) , T*^-^]

= Pr[(i+l,m;t+l)
|
(i,j;t)]

Pr[T*^^| (i,j;t) , (i+l,m;t+l)]
X

Pr[T*_^j^| (i,j;t)]

= Pi(j,m) X ^-^.

Thus from D34 and D38,

P* = C "^P.
^i '-i ^1 •

The matrix P. is the matrix of one-step promotion probabili-

ties conditioned on the attainment of grade i+1.

Because (Q*)^ = C^~-^Q^^C^,

The fundamental matrix for grade i when v;e condition on

promotion to grade i+1 is
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* * -1
N^ = (l-Q^)

oo
*

= I (Qi)r=0 ^

r=0

= C.'-'-N.C. .
1 11

Define:

D39. v^(j,in) = expected number of visits to state (i,in)
.A.

given that grade i is entered in state

(i,j) and grade i+1 is attained.

D40. V. = a w. X w. matrix having v. (j,m) as the element
1 11 ^ 3^

vj , /

in row j-l(i)+l and column m-l(i)+l

D41. b.
( j ,m) = probability of entering grade (i+1) in

state (i+l,m) given that grade i is

entered in state (i,j) and grade i+1 is

attained

•

D42. B. = a w. x w. , matrix having b. (j,m) as the

element in row j-l(i)+l and column m-l(i+l)+l.

Then one may shov/ that,

* .*
V. = NT ,

and,

B* = N* P*
1 11

* . * .

Note that B. is simply B. with its rows normalized; Q. is not

simply a row normalized form of Q.

.
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As with the matrices B., products of matrices B. with

successive indices are well defined; their meaning is that

of a matrix B., as defined in Dll and D12 with conditioning

on attainment of grade k.

The conditioned and unconditioned matrices may be used

together. For example, the elements of B. B._|^, give the

probabilities of entering grade i+2 in the column state

conditioned on starting from the row state in T. and even-

tually attaining grade i+1.
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III. EQUATIONS OF STOCKS AND FLOWS

We begin by defining the terms "stocks" and "flows" and

then discuss v;hy stocks and flows are important in manpower

planning models. Next the relations between stocks and

flows in a two-characteristic model are developed. Finally

we show how the stocks can be represented as the sum of a

"steady-state" component and a "transient" component.

A. DEFINITIONS AND BACKGROUND

The following three definitions constitute a "timing

convention"; it is used in this and following chapters.

(1) A period is the interval of time from immediately after

an integer value of the time parameter t up to and including

the next integer value of t. A period is identified by the

value of the time parameter at the end of the period. Thus,

period t^^ = {t: t^ -1 < t < t }

where t, is an integer.

(2) The number of people in a state at the end of a period

is referred to as the "stock" in that state. Thus, stocks are

counted only at integer values of the time parameter, t.

(3) The number of people who change their status in the

system from one state to another during any period is referred

to as a "flow." Flov/s occur during a period, but we do not

specify the exact time at which they occur.

Stocks and flov;s are of primary importance in most man-

power planning models. The most obvious "reason for this is
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that costs are closely related to stocks and flows, e.g.,

total payroll depends on stocks, transportation costs or

retraining costs depend on flows. Recruiting policy and

promotion policy depend in the short term on present stocks

and in the long term on how we model future stocks and flows.

Determining the feasibility of a retirement plan and evaluating

the effects of a change in billet structure are other instances

in which the planner needs to be able to model stocks and

flows in a manpower system.

It should be noted that the Markov-type model is not the

only method that one might use to model stocks and flows. A

different method is the "cohort model." Marshall (197 3)

presents a comparison of the Markov-type and the cohort

models. Another method for modeling stocks and flows is the

"chain model" presented in Grinold and Marshall (to be pub-

lished) . A listing of various manpower flow models in U.S.

Navy (1973) indicates that the Markov-type model is by far

the most commonly used method in military applications.

We now define the variables that are used to model the

stocks and flows in the two-characteristic model. Recall that

T. is the set of states associated with grade i, w. is the

number of states in T
.

, and for convenience of notation we
1

'

assume the second characteristic takes on successive integer

values in grade i.
^

.

In a Markov model the stocks and flows are in general

random variables. In this thesis we deal only with the

expected values of stocks and flows. Such a model is called

a "fractional flow model" because the transition probabilities
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of the Markov model are in effect treated as fractions which

direct flows through the system in a deterministic manner.

Let,

s.
. (t) = expected stocks in state (i,j) at time t,

^i (^) = (=i,l(i)^^^'---'^i,u(i)(t^>'

a 1 X w. vector of expected stocks in T
.

,

s(t) = (Sj^(t) ,---,s^(t)),

n
a 1 X y w. vector of expected stocks in

i=l
^

the system.

By assumption Al, flows into any state in T. must come

from a state in either T. or T._, . We will also make

provision in our model for "external flows." The source

of such flows is unspecified. However, we may consider

external flows as consisting of people hired into the system.

The external flows may be deterministic or random, but we

deal only with their expected values.

Let,

d. . (t) = expected flow from states in T . to state

(i,j) during period t, a scalar:

d^(t) = (d^ l(i)^^^'"'' ^i,u(i)^^^^' ^ 1 ^
^^i

vector;

f..(t) = expected external flow into state (i,j) during

period t, a scalar;

f^(t) = (f^
i(i) ^^^ '•"' ^i,u(i) ^^^^ ' ^ 1 ^ "i vector;

g. . (t) = expected flov/ from states in T._, to state

(i,j) during period t, a scalar;
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g^Ct) =
(g^^ J ^^j

(t) , • • •
, g^ ^j^j (t) ) , a 1 X w^ vector.

When i = 1, g. .
(t) is defined to be zero.

The relation between the flow vectors and the stock vector

in grade i is depicted in Figure 1 where "T.;t" denotes the

states in grade i at time t.

Figure 1. Stocks and Flovs in Grade i in Period t.

B. BASIC STOCK EQUATION

By assumption Al and the interpretation of external flows:

s^(t) = d^(t) + f^(t) + g^(t) .

See Figure 1.

It will be convenient to define,

s„ (t) = 0, a vector of zeroes,

P_ = 0, a matrix of zeroes.

Using conditional expectation we then have

d^(t) = s^{t-l)Q^, i = I,--', n,

g^Ct) = s^_j^(t-l)P^_^, i = I,--', n.

The basic stock equation is then,

s^(t) = s.(t-l)Q^ + f^(t) + s^_^(t-l)P^_^, 1 < i < n. (1)

The basic stock equation for grade i can be written in

terms of the expected or actual stocks in grade i in previous
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periods. By recursively applying the basic stock equation

for Sj^(t), s.(t-l),-'-, s^(l) one obtains

t-1 t-1
s.(t) = s.(0)Q.^ + I f. (t-r)Q.'' + I s. (t-r-l)P. ,q5,

r=0 r=0 ^ -^ ^~-^ ^

t = 0,1,2,---, (2)

i = 1, • •
• ,n ,

which we will refer to as the cumulative stock equation .

Equations (1) and (2) are used frequently in the remain-

der of this report. Some manpower models used in the U.S.

military for short-range forecasting consist principally of

an application of an equation similar to (1)

.

C. TRANSIENT PROPERTIES OF THE STOCKS

in this section we develop a method for expressing the

stock vector as a sum of a "steady-state" component and a

"transient" component. This method helps one to understand

how the stock vectors will change in going from any present

stock vector to future stock vectors. This method also helps

one interpret the character of the limiting stock vector.

We do not want to restrict ourselves to cases in which

the stock vector converges (as t increases) to a finite

vector, so it is best to specify what is meant by a "steady-

state" component of the stock vector. We say that the vector

function s.(t) is the steady-state component of the stock

vector s
.
(t) if

,

lim (s^(t) - s^(t) ) = .

For any sequence of stock vectors <s.(t)> there is more than

one choice of the steady-state component. In applications
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one would prefer a steady state component having a relatively

simple mathematical form. We show that in some cases a

judicious choice of s.(0) makes this possible. The following

theorem shows the properties of a class of steady-state

components which can be quite useful.

Theorem . For any collection of 1 x w. vectors s. (0)

,

1=1, •••,n, let the vector functions s.(t) satisfy

s^(t) = s^(t-l)Q^ + f^(t) + s^_^(t-l)P^_j^, t=l,2,"-,

i=l, • •
• ,n.

'V'

I.e., the vector functions s.(t) satisfy the basic stock

equation (1) . Then.

(a) the actual stocks at time t are

s^(t) =,s^(t) + I (Sj^(0)-Sj^(0))M^^(t),
k=l

CO i

(b) I (s. (t)-s. (t)) = I (s, (0)-s, (0))B, .N. ,

t=0 ^ k=l ^ ^ ^^ ^

a 1 X w. vector having finite

components,

(c) s. (t) is a steady-state component of the stock

vector s.(t), i.e.,

lim (s. (t)-s. (t)) = 0.

Before proving the theorem it will be worthwhile explaining

why one might be interested in such a theorem. Part (c) of the

theorem says that s.(t) is a steady-state component of the

stock vector s.(t), and part (a) shows how the stock vector

s. (t) can be expressed as the sum of a steady-state component

and a transient component. Part (b) of the theorem says that
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the total over all periods of the difference between the stock

vector and its steady-state component is a readily calculated

finite vector.

Such information can be useful when long-range planning

has been done using an "equilibrium model," As an example

consider an organization which intends to change from its

present size of 250,000 to a size of 200,000. The manpower

planner may use an equilibrium model to develop policies

that are in some sense optimal, and these policies will main-

tain the size of the organization at 200,000 people once it

has been reduced to this size. So the equilibrium model tells

the planner what to do once the size of the organization

reaches the desired equilibrium level but it doesn't tell him

how to change the size of the organization from its present

level (250,000) to the desired equilibrium level (200,000).

This problem of finding an optimal transition policy to go

from present stock levels to a future equilibrium stock

distribution is a difficult one. One method for making the

transition is to immediately implement the hiring, promotion

and attrition policies that have been derived from the

equilibrium model. Because of the transient nature of the

system (see assumption A2) these policies will eventually

bring the stocks in the system to their equilibrium levels.

a.

In the theorem the vector functions s.(t) play the role

of what the stocks would be at time t if the system were in

equilibrium. The stock vectors s
•
(t) indicate what the

stocks will be at time t if we start with the present stocks

s. (0) and implement the policies of the equilibrium model
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(which are reflected in the external flows, f.(t), and the

transition matrices Q
.

, P. and A.). From part (a) of the

theorem we may readily calculate the difference between

actual stocks and equilibrium stocks in any grade and any

period. If there is a penalty associated with having more

people than the equilibrium stocks in the system, then part

(b) of the theorem may be used to calculate the total penalty,

Part (c) of the theorem assures the planner that the differ-

ence between the actual and equilibrium stocks does converge

to a zero vector as the time parameter t increases.

The proof of the theorem follows.

Proof. By hypothesis the vector functions s. (t) satisfy the

basic stock equation (1) , so they must also satisfy the

cumulative stock equation (2)

:

t-1 t-1.
. (t) = s (0)Q.^ + I f^(t-r)Q^^ + I s._^(t-r-l)P._^Q ""

.

r=0 r=0

Of course the stock vectors s. (t) also satisfy the cumulative

stock equation (2), so we have,

s^(t)-s^(t) = (s^(0)-s^(0))Q^^

+ ^ (s._^(t-r-l)-^._^(t-r-l))P._^Q.^ .

r=0

When i=l this implies,

Sj^(t) = s^(t) + {Sj^(0)-s^(0))Q^^

= s^(t) + (s^(0)-s^(0))M-Lj^(t) ,

so we have shown that part (a) of the theorem is true when

i=l. Suppose part (a) of the theorem is true for grade i-1,

i.e.,
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i-1

^i-l^^) = ^i-l^t^ ^ J^(^k(°)-^k(°))^k,i-l(t^ •

Then

i-1

K.— _L

and,

s^(t)-s^(t) = {s^(0)-s^(0))Q^^

t-1 i-1
+ I I (s (0)-s (0))R (t-r-l)P Q^

r=0 k=l ^ ^ ^'^ -^ ^ ^ ^

= (s^(0)-s^(0))Q^^

+ J (Bk(0)-sj^(0))^l M^^,_^ (t-r-l)P._^Oi^

From Equation (10) in Section E of Chapter II,

^A, i-1 (^-^-1)^-1 Qi""
= ^^ki(t) ,

r=0 '

so we have shown by induction that,

s.(t)-s.(t) = (s. (0)-s.(0))Q^^ + I (Sj^(0)-Sj^(0))Mj^(t) .

k=l

This proves part (a) of the theorem.

From part (a)

,

s^(t)-s^(t) = I (Sj^(0)-Sj^(0))Mj^^(t) ,

k=l

I (s. (t)-s. (t)) -
I I (s, (0)-s, (0))M, . (t)

t-0 "- "- t=o k=i ^
.

^'-

= I (s (0)-s (0) I M (t)

k=l ^ ^ t=0
^^

= J/^k('^^-\(°^^\i^i '

k=l

a 1 X w^ vector having finite components.
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The last step above follows from equations (6) and (8) of

Chapter II. This proves part (b) of the theorem.

Part (c) follows from the fact that the sum in part (b)

is finite. Q
The utility of this approach depends on our ability to

find vectors s.(0) such that the vector functions s.(t) are

simple and readily calculated. The following subsections

present examples.

1. Fixed External Flows

The equilibrium models previously mentioned enjoy some

popularity in military manpov/er planning in the United States.

The rationale underlying the use of such models is that one

should determine the organization structure and the policies

to maintain this structure which ere optimal. Among the

policies derived from an equilibrium model is the hiring

policy. This has the form,

fj^(t) = f^, t = 1,2, • • •, i = 1,- •• ,n ,

where the vector of the number of people to be hired into the

states in grade i each period, f., is specified from the

equilibrium model.

Define,

Sj^(O) = f^N^ .

Then using (1) it is easy to show that

s- (t) = f,N, for all t.

Thus, from the theorem

s^(t) = s^(t) + (s^(0)-s^(0))M^tl(^)

= f^Nj^ + (s^(0)-f^N^)Q^^ .
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Now recursively define,

^i " ^^i
"^ ^i-l^i-l^^i '

i = 2,---,n . (3)

It IS straightforward to verify that these s. satisfy the

basic stock equation (1) , so we have from the theorem, when

fi(t)=f,,

s^(t) = s^ + I (S]^(0)-Sj^)Mj^^(t) .

The steady-state component can also be written,

^i = J/Ai^i' i = 1. ••-.". (4)
k=l

i
Note that 1 ^ r,B, • is a nonnegative 1 x w. vector, so the

k=l ^ ^^ ^

limiting vector of stocks in grade i must be a nonnegative

combination of the rows of N.. In general, then, not all

nonnegative 1 x w. vectors are possible limiting stock

vectors under constant external flows.

2 . Linear Growth of External Flows

In this section we consider the case in which the

number of people hired into each state increases by the same

amount each period. Such a hiring policy may not be natural

over a long period of time, but it may provide a simple

approximation to planned hiring policies.

Let the 1 x w. vector f . be the amount that the number
1 1

hired into states in grade i increases each period. Then

the external flow vector for grade i is,

f^(t) = tf^, t = 1,2,---, i = l,---,n.
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Let,

Let the vector function s (t) satisfy the basic stock

equation (1)

,

Sj^(t) = Sj^(t-l)Qj^ + f^(t)

Using the identity N Q +I==N, one can show that

s^(t) = tf^N^ - Nj^Q^N^ .

Thus from the theorem,

s^(t) = tf^Nj^ - f^N^QiN^ + (s^(0) + fiN^Qj^Nj^)Q^*^
^

We note that s, (t) is of the form

s, (t) = tL, + C,

where L, = f,N, is a 1 x v.'. vector,

and C, = -f,N,Q,N-, is a 1 x w. vector.
1 1 11 1 1

Consider some grade ie{2,'-*,n}. Suppose that

^._^(t) = tL._^ + C._i,

where L. , and C -, are 1 x w. , vectors.1-1 1-1 1-1

Using the identify

(tf .N.-f. N.Q.N. )Q- + (t+l)f. = ( {t+l)f.N.-f .N.Q.N. ) ,111 11 11 1 111 11 1

one may show that if

^i(t) = tf.N.-f.N.Q.N,+^,_,(t-l)P._,N.-L._^P._,N.Q.N. ,

then s.(t) satisfies the basic stock equation (1). Note

a.

that s. (t) has the form.

s^(t) - tL^ + C^ f

48

(5)





where

,

L. = f .N. + L._^P,_^N.

= (f. + L,_,P,_,)N. , (6)

and

C = -(fi + Li-lPi-l)NiQiN. - (L._^ - C._,)P._^N.

Thus we have shown that when the external flows grov/ linearly

the steady-state component of the stocks also grows linearly.

By recursive substitution in (6) we have,

i

L. = y f, B, .N. .

1 , ^, k ki 1
k=l

Note that this vector gives the expected number of visits

to states in grade i of f , =f , (t+1) -f , (t) entrants in grade

k, k=l,-**,i. That is, the growth in the stocks in grade i

each period, L
.

, equals the expected number of visits to

grade i of the growth in the external flows each period in

the grades less than or equal to i.

Both L. and C have the fundamental matrix N. as a right

factor, so the steady state component of the stock vector,

'V

s. (t), must be a nonnegative combination of the rows of N..

This same result was observed in the case of constant

external flows.

In summary we have shown that by choosing

s. (t) = tL. + C.
1 1 1

where L. = f-,N, when i=l,ill
- (fi + Li_iPi-i)Ni, i=2,..-,n.

49





and C. = -fTN,Q,N, when i=l,
X 1 11 1

= -(<^i_i
- ^i-l^^i-l

"^ fiNiQi)N^ , i=2, •••,]!,

then from the theorem the stock equation may be written

i

s^(t) = s^(t) + I (Sj^(0)-Sj^(0))Mj^^(t) .

.3. Geometric Growth of External Flow s

In this subsection we will show that geometric growth

of external flows leads (eventually) to geometric growth of

the stocks. Geometric growth is a not uncommon phenomenon

both in natural and man-made systems. Geometric growth is

frequently a reasonable assumption for medium- to long-range

planning in manpower systems.

We consider the case in which the external flows

into the states in grade i are proportional to a known vector

f. and grow geometrically at a rate 6.. Thus,

f^{t) = Qi^fi, t = 1,2,---,

i = 1, • •
• ,n

e. > 0.
1

When <e. <1, the external flows contract rather than grow.
1

If 8, is not an eigenvalue of Q. for k £ i _< n we may

define,

Ni<V = (^ - t^i)''-k

If the states in grade i have the 0-1 visiting property then

all eigenvalues of Q. are zero and thus 9j^ > is never equal

to an eigenvalue of Q . in this case.
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The following identity will be useful:

From this it follows that

N.{e^)Q. . e,^{-i+N.(e^)).

Define,

Sj^(O) = fiN^CQi) •

Then it can be shown that if

s^(t) = e^^ f^N^(e^) .

a.

then s, (t) , t=0,l,'**, satisfies the basic stock equation,

and from the theorem,

S3^(t) = e^^ f3^N^(e^) + (Sj_(0)-f3^N^(e^))M^^(t).

Note that the steady state component of the grade 1 stock

vector grows geometrically at the same rate as the external

flows into grade 1.

Define,

m=k

Then it can be shown that if

^i(t) = J,^k"^'"^^Vki(V^i(V

then s.(t), t=0,l,''*, satisfies the basic stock equation (1)

Note that in the limit the stocks in grade i grow geomet-

rically at the rate of the largest 6, where k£i.

Define,

e„ = max {e, ; k=l, • • • ,i} .

M k
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The steady-state component of the stock vector is not in

general a nonnegative combination of the rows of N. (as was

the case with constant external flows and linear growth of

external flows) . Rather the steady-state stock distribution

is a nonnegative combination of the rows of N. (9.,) • The

rows of N.(9 ) need not be nonnegative combinations of the

rows of N
.

, so the limiting stock distributions that are

possible under geometric growth of external flows need not

be the same as the limiting stock distributions under constant

external flows and linear growth of external flows.
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IV. THE (GR7iDE, LOS) MODEL

The (grade, LOS) model is a model of a graded manpower

system in which the second characteristic is length of

service (LOS). By a person's length of service we mean

the number of periods that he has been in the system.

A. BACKGROUND

Various manpower planning models that account for both

grade and LOS are presently used by the United States military

services. The incorporation of length of service into

military manpower flow models is important in order to

realistically analyze the policies of enlisted contracts and

"retirement at 20."

A person enlisting in the military service "signs on"

for a number of years, usually two to five years. In the

past, approximately eighty percent of those entering enlisted

military service left the system upon expiration of their

initial contract. This high attrition at initial contract

expiration has had many effects, but two that are pertinent

here are:

1) There is a close relation between attrition and length

of service for men serving on their initial contract.

2) At least half the people in the "system are serving

under their initial contract, so it is generally quite impor-

tant that this group be modeled accurately.
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The inclination of the operations researcher may then be

to model manpower flows by a Markov-type model in which the

states are lengths of service. Such models are structurally

simple and computationally efficient. The author has worked

on interactive retraining models of this sort for the U.S.

Marine Corps. See also Grinold, Marshall and Oliver, 1973.

But in practice manpower flovi models are typically only part,

albeit a crucial part, of larger planning models. Budget

planners and operational planners usually demand manpower

projections aggregated by pay grade; the distribution of

people by their length of service is usually of secondary

interest.

Faced with the demand for a model that aggregates by

pay grade and knowing that a valid model must treat the

effects of length of service the operations researcher is

led to conclude that a (grade, LOS) type of model is

appropriate.

The foregoing discussion does not imply that the (grade,

LOS) model is appropriate only for military organizations.

Various members of the "English school" of manpower planning

have investigated the appropriate distribution function for

the length of time that a worker stays with a company

[Silcock, 1954; Lane and Andrew, 1955; Bartholomew, 1959].

The constant failure rate distributions (exponential/

geometric) were found to be quite inadequate, indicating that

attrition rate and length of service are indeed related.
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B. DEFINITIONS AND DESCRIPTION OF THE MODEL

Let a person's LOS be the number of times the person has

been counted in the system. Recall that under our timing

convention a person who enters the system during period t

is counted for the first time at the end of that period (at

time t) , and is assigned an LOS of 1 at that time. A

person's LOS increases by one for each successive end-of-

period that he is counted in the system.

It is assumed that once a person leaves the system he

never returns. It is possible to modify the (grade, LOS)

model to allow for departure and re-entry by assigning to

each grade dummy states in which the LOS remains constant

from one period to the next. In the model described here

the "out of the system" state is treated as absorbing.

The states of the system are defined by couples (i,j)

where :

(i,j) = the state corresponding to grade i and LOS j.

The notation and results for the general two-characteristic

model apply directly to the LOS model. In particular

l(i) and u(i) are the lower and upper lengths of service for

anyone in grade i.

By definition as long as a person remains in the system

his LOS must increase by one each period. (This is an

example of a model in which all transient states have the 0-1

visiting property.) Consequently, we need define only the

follov;ing transition probabilities:

q .
.. = probability a person in state (i,j) at the end
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of one period will be in state (i,j+l) at the

end of the next period,

p. . = probability a person in state (i,j) at the end

of one period will be in state (i+l,j+l) at the

end of the next period,

a. . = probability a person in state (i,j) at the end of

one period will be out of the system at the end

of the next period.

By assumption Al

:

q.. + p.. + a.. = 1.
13 ID ID

The transition matrix A. is a w. x 1 matrix:
1 1

^i = f^i,l(i)'-"'^i,u(i)^-

The transition matrix Q. is w. x w. and has non-zero

elements only immediately above the main diagonal:

° ^i,l(i)

° ^i,l(i)+l

\ . (1)
Qi

=

"\ ^i,u(i)-l

The transition matrix P. is w. x ^^^-^ ^"d has non-zero

elements only on a single diagonal band. If l(i+l) >^l(i)+l

and u(i+l) _> u(i)+l, then P. has the form shown belov;, where:

1) the first max { , 1 (i+1) -
( 1 (i) +1)) rows are zeroes

2) the last max { ,u (i+1) - (u (i) i-l) } columns are zeroes.
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Thus,

P. =
X

Pi,l(i+1)-1

° Pi,l(i+1)

_

^i,u(i) •••

If l(i+l) < l(i), the first 1 (i) +1-1 (i+1) columns of P.

are zeroes. If u(i+l)£u(i), the last u (i) +l-u (i+1) rows

of P. are zeroes. Under any circumstances P. is a
1 -^ 1

.(2)

"diagonal matrix," (see Appendix B)

Define,

r+k-1
q.(r,r+k) = I q

j=r
if k > 1,

ID

= 1 if k=0

= if k<0.

Then for k=0, 1, • •

•

,w. -1 we have

. . . q. (1,1+k)

°^

q. (1+1,1+1+k

q^ (u-k,u)
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where 1 = 1 (i)

,

u = u(i) ,

and the first k columns and the last k rows are zeroes,

V =
When k>^w^, Q. =0. Recalling that

Nj^ = (I - Q^)
-1

k=0 ^

we have in the LOS model,

w.-l

N, = f Q.^
^ k=0 ^

1 q^(l,l+l q^(l,l+2)

1 . q^(l+l,l+2)

qi(i,u)

q^d+lru)

q^(u-l,u)
(3)

The notation hides the rather simple structure of the

fundamental matrix N. in the (grade, LOS) model. Consider

the case where l(i)=l and u(i)=4. We then have for grade i.

N. =
1

^il ^il^i2 ^il^i2^i3

'i2 <3i2^i3

'i3

(4)

It is interesting to compare the structure of N. in the

(grade, LOS) model with the structure of a matrix, denoted

B, of the submatrices B., from the general two-characteristic
ik ^

model:

58





B
11

B
12

B
13

B
14

B
22

B =

B
23

B
33

B
24

B
34

B
44

From Section B of Chapter II,

k-1

^ik
"^ n B^, a w^ X Wj^ matrix ,

so the matrix B can be written.

B =

I B, ^1^2

B.

^1^2^3

^2^3

B-
(5)

Recall that each element of B. gives the probability of

entering grade i+1 in a particular state given the state in

which grade i was entered. Thus, the matrices B. summarize

information about transitions from one grade to the next

just as the q .

.

' s summarize information about transitions

from one LOS to the next. In Chapter VI we consider combining

states in a two-characteristic model; the foregoing discussion

indicates that if all states in a grade are combined then the

information originally summarized in the w. x w.,, matrix B.^ J 11+1 1

must now be summarized by a single number, i.e. a 1x1 matrix

B. in the model that results from combining states.

In manpower modeling the term cohort usually refers to a

group of people who enter the system at the same time and in
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the same state. For example the group of freshmen entering

a college in a particular year comprise a cohort. After

the cohort has entered the system we use the term cohort to

refer to the members who are still in the system.

Let us consider the movements of cohorts in the (grade,

LOS) model when entry to the system is restricted to state

(1,1). The cohort which enters during period t, must, at any

subsequent time t, + t, be in the set of states (i,j) such

that j = t+l. Furthermore any cohort which entered the system

during period t„ 7^ t, cannot at time t, + t be in any of the

states (i, t+1). Thus when entry to the system is restricted

to a particular state, e.g., state (1,1), the (grade, LOS)

model preserves cohorts in the sense that members of different

cohorts never simultaneously occupy the same state. The motion

of a cohort through the system is clearly described by the

t-step transition matrices.

Recall that the t-step transition matrix from states in

grade k to states in grade i, M, . (t) , has elements:

M(t; (k,m) , (i,j) = probability of being in state (i,j)

t steps after being in state (k,m)

.

The row index of M, . (t) is r = m - l(k) + 1; the column index

of M . (t) is c = j - l(i) +1. Because LOS increases by one
fZ J-

each period, if

M(t; (k,m) , (i,j) ) 7^ 0,

then j - m = t.

But j - m = t implies that

(c + l(i) -1) - (r +l(k) -1) - t, or

c - r = t + (l(k) - l(i)) .
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Thus the non-zero elements of M . are in row r and column c

such that

c - r = t + (l(k) - l(i)). (6)

so Mj^^(t) is a "diagonal matrix" with index t+ (1 (k) -1 (i) ) .

(See Appendix B.) Furthermore the non-zero diagonal of

M,
. (t+1) must be immediately above the non-zero diagonal of

M, .(t). Recalling that,

I M, .(t) = V, . , (see equation (8) of Chapter II),
t=0

we see that the non-zero diagonal of M . (t) must be the

set of elements of V, . in row r and column c satisfying (6)

.

Thus in the (grade, LOS) model all t-step transition matrices

can be readily derived from the matrices V,
ki'

C. COMPUTATIONAL CONSIDERATIONS

Because of the sparseness of the Q. and P. matrices it

would be most inefficient to store and manipulate the entire

matrices. In Appendix B the storage and multiplication of

"diagonal matrices" is discussed. A "diagonal matrix" is

defined as any matrix (not necessarily square) having the

property that for some k the element in rov/ i and column j

equals zero if i-jp^k. The matrices Q. and P. in the (grade,

LOS) model are diagonal matrices.

It is shown in Appendix B that the product of diagonal

matrices is a diagonal matrix. Only the elements of the non-

zero diagonal and four numbers describing the diagonal

matrix need be stored. To multiply an rxm diagonal matrix

by an raxc diagonal matrix requires min{r,m,c} multiplications
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as opposed to the product of r,m and c multiplications and

additions in the general case. Consequently, in the (grade,

LOS) model the fundamental matrix N. can be computed

efficiently by computing the non-zero diagonals of successive

powers of Q. and combining these with an identity matrix to

form the fundamental matrix N..

D. EXAMPLE: MINIMIZATION OF COSTS AT REENLISTMENT

In this section we consider an example in order to

illustrate how one might take advantage of the highly struc-

tured form of the (grade, LOS) model to solve a practical

problem.

The U.S. Navy has used various reenlistment bonus plans to

decrease the attrition rate at termination of the initial

enlistment contract. The amount and effectiveness of the

bonus depends on a number of factors; among them is pay grade

at contract termination.

V7e consider the case in which initial contracts are for m

periods, and a reenlistment bonus is used to control the

attrition rate a, for such grades k that a, is defined.
km ^ km

To simplify notation it is assumed that a, is defined for

k=l,'"*,n. The cost of changing a, is specified by a non-

negative quasi-convex function. Let c, (Aa, ) be the cost of

a Aa, decrease in a, from its base value, and let c, (0) = 0.
km km k

Decisions are constrained by the requirements that in

equilibrium the total stocks in each grade, s.l, must be no

smaller than a specified lower bound s. . All external flow

is into grade 1 and f, is specified.
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Because under Al,

Pkm
"

^km-' ^km = ^'

if aj^ is decreased then changes in either p, or q, must

occur.

Let,

Aq, = the increase in q, ,

Ap, = the increase in p, .

Then,

^'^jon + ^PkiP. = ^^km- <7>

The various transition matrices depend on the values of

the Aq, 's and Ap, ' s , and we denote this by Q, (Aq, ).

N, (Aq, ), P, (Ap, ) and B, (Aq, ). To simplify notation some-

what we define,

Qk = Qk(°)'

N3^ = Nj^(0),

P,, = Pj,(0),

^k
" %(o,o)

The parameters of the matrices Q, and P, are known, and N,

and B, are calculated from them,
k

From the results of Chapter III we have

i-1
s. = f, n B (Aq ,AP )N.(Aq. ). (8)
1 1 , r ^rm' rm i ^im

r=l

In the case Aq, = Ap, = Aa, = for all k we denote the
"km ' km km

stocks by s.„ and,

i-1
s.„ = f, n B N. . (9)
lO 1 , r 1

r=l
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To minimize the total costs of the reenlistment bonuses

while satisfying the constraint that total stocks in grade i

be no smaller than s . we must solve the following program

denoted PI

n
^ ''-1 V"ci,

k' km

n
PI] min I c^(Aa^^)

k=l

ST s^l >^ s. , i = 1, • • • ,n

i-1
s. = f^ n B (Aq , Ap )N.(Aq. ) , i = l,---,n
1 1 _, r ^rm ' '^rm i ' ^im '

Aq, + Ap, = Aa, , k = l,-'',n
^km ^]an km ' ' '

It will be shown that because of the structure of the

(grade, LOS) model the constraints imposed by equation (1)

are linear functions of the decision variables in program

PI. That is, program PI requires the minimization of a quasi-

convex function subject to linear constraints.

The linearity of the constraints is shown in two steps.

First, we show that they are linear when only one of the

decision variables is non-zero. Next, we show they are linear

for all feasible values of the decision variables.

V7hen Aq, =Ap, =Aa, =0 we denote the values of the
^km '^km km

parameters q, ,p, and a, with hats, i.e.,^ ^km'^km km

^km ~ *^km "^km
'

^km ~ *^km ^km '

a, = a, ~ Aa, ,km km km

The value of s. depends on q, only through Nj^(Aqj^^).

Let,

j = m - l(k) +1 .
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Then the only elements of N, (Aq, ) that are functions of

q, are those in row r and column c such that r £ j and

c > j. Each of these elements has q, as a factor. Letkm

N, be the w, x w, matrix that results from:

1) setting q, equal to one in those elements of N, in

which it is a factor,

2) setting all other elements of N, equal to zero.

For illustration let l(k)=l, u(k)=5 and m=3. Then,

j=3-l+l=3. The fundamental matrix is

\(^^km>
=

^ ^kl ^kl^k2 ,^kl^k2^k3

^ '3^2 I qk2^k3

L
k3

where qk3 ^k3 ^ ^^k3

^kl^k2^k3^k4

^k2^k3^k4

^k3^k4

^k4

The elements having q, _ as a factor are in the indicated

submatrix in the upper right corner of K, (Aq^^). Setting

q, ^ equal to one in these elements and setting the other

elements equal to zero we then have

N.
m

^kl^k2 ^kl^k2^k4

^k2 ^k2^k4

1 ^k4
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From this illustration we observe that

Note that N, is not a function of q,k ^km

Thus, if
^^im=^Plin='^^ljn=0 for i=l,---,n except that

Aq 5>^0, then the stocks in grade i are from (8) and (9)

^i^^^km) = ^1^ ^^^^V^^km^k^^^^k'^^/r^ir=l r=k+l

= ^10 ^ ^^km^l^ ^\)^'<Pk)'v^^r^i •

r=l r=k+l

Define,

k-1 i-1

*^ik
" ^1^ " \^ ^^k™^k^ " ^r^i^ ' ^ scalar. (10)

r=l r=k+l

Note that d., is not a function of q, or of any Aq,
ik ^kra ^ ^Im

or APi_. So we have shown that when all Aq^ 's and Ap, 's

except Aq are zero then the total stocks in grade i are a

linear function of Aq, :^km

s. (Aq, )1 = s.„ + d., Aq,
1 ^km lO ik ^km

We now show the total stocks in grade i are also linear

in Ap, when all other ^gini'^ ^^*^ ^Pi '^ ^^^ zero.

The value of s. depends on Ap, only through P, (Ap, ).

Let P, "^ be the matrix that results from setting p, equal

to one in P, (Ap, ) and setting all other elements of P. (Ap, )

equal to zero. Then

= P, + AP, P,
k kri k
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^1

Now if ^qin=^Pini=Aainj=0 for l=l,---,n except Pj^j„?-'0,

then the stocks in grade i are

r=l r=k+l

= ^iO " ^PkmflL^^r^NkPk^^^^.^rNi '

Define,

k-1 i-1

^ik = fi( " B )N P "* n B N.l . (11)
^ -^ r=l ^ ^ ^ r=k+l ^ ^

Note that e., is not a function of p, or of any Aq^ or

^Plm •

So we have shown that when all Aq, 's and Ap, 's except Ap,Im '^^Im ^ ^km

are zero then the total stocks in grade i are a linear

function of Ap, :

s . ( Ap, ) i = s . „ + e . , Ap,
1 ^km' lO ik ^km

We call N, the m-dif ferential matrix of N, and P. ' the

m-dif ferential matrix of P, .

k

The following lemma is used to show that when more than

one Aq, or Ap, (or both) are non-zero, the total stocks are
^km '^km

still linear functions of the Aq, 's and Ap, 's.^km '^km

i-1
Lemma. If in the product n B.N., where B, =N, P, , any

k=l

two (or more) distinct matrices are replaced by their m-

differential matrices, then the product is a zero matrix.

Proof. Because all states have the 0-1 visiting property

i-1
in the (grade, LOS) model, IT B, N . =V, ., the w, x w. matrix

k=l
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of probabilities of visiting a column state in grade i

starting from a row state in grade 1. Each of these proba-

bilities is the sum of the probabilities of all paths

through the state space which start in the row state and end

in the column state.

Replacing Q, by q, times its m-dif ferential matrix Q,

is equivalent to extracting all terms in V, . which have q,

as a factor. This in turn is equivalent to restricting the

paths from the row state to the column state to those which

pass through both states (k,m) and (k,m+l) . Similarly,

replacing P, by p, times its m-dif ferential matrix P, is

equivalent to restricting the paths from the row state to the

column state to those paths which pass through both states

{k,ra) and (k+l,m+l) . Consequently, replacing two or more

i-1
matrices in II B, N . =V, . by their m-dif ferential matrices

, , k 1 li -^

k=l

restricts the process to paths from the row state to the

column state that have probability zero. Q
Thus we have.

i-1
S. = f, n B (Aq ,Ap )N. (Aq. )

1 1 , r ^rm' "^rm i ^im
r=l

= f, n (N +Aq N ^) (P +Ap P "*) (N.+Aq. N."*) .

1 , r ^rm r r "^rm r i ^im i
r=l

From the lemma all of the "cross product" terms, i.e., terms

containing tv/o or more m-dif ferential matrices, are zero

matrices, so we have.
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i-1 i k-1 i-1
s = f n N P N + I Aq f ( n B )N "^ P ( H B )N
^ -^r-l ^ ^ ^ k=l^-^r=l^^ ^ r=k+l ^ ^

i-1 k-1 i-1
+ I Ap, f, ( n B )N,p,"^( n B )N.^, "^km 1' , r k k , ., r i

K=l r=l r=k+l

and using (9) , (10) and (11)

,

i i-1

^i^ = =io^ -^ J/^km^ik^ J/Pkm^ik-

This completes our demonstration that the constraints

are linear in the decision variables. Thus the following

program P2 is equivalent to the original program PI:

P2] minJ^Cj^(Aqj^+Apj^)

i i-1
ST y Aq, d., + y Ap, e., > s.~ - s.„i, i=l,-'*,n,

,
^, ^km ik ,^, '^km ik — i xOk=l 1=1

The constraints need not be of the exact form shown in

this example. The nature of the problem does not change if

the constraints are of the form

s.L. >s., i=l,-'',n11-1
where L. is a w. x c. matrix,

1 11
s. is a c. x L vector,11

and c. is the number of constraints on stocks in grade i.

The scalars d., and e., would in this case become 1 x c.
ik ik 1

vectors, and their defining equation would be modified by

replacing 1 with L. .

There are various efficient techniques for minimizing

a nonlinear objective function subject to linear constraints

which could be used to solve P2. The exact form of the
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objective function might indicate the most appropriate

technique, e.g., separable programming, quadratic programming

or gradient projection. The point of the example, however,

is to show that one may take advantage of the structure of

the (grade, LOS) model to solve problems that would be quite

difficult in a general two-characteristic model.

E. INTERCHANGING GRADE AND LOS

When studying manpower flows with a two-characteristic

model it is sometimes advantageous to interchange the first

characteristic, grade, and the secondary characteristic. The

feasibility of this depends to a great extent on whether the

interchanged characteristic model satisfies assumption Al

.

That is, in the original two-characteristic model, is the

value of the second characteristic restricted tc staying the

same or increasing by one in each period?

In the case of the (grade, LOS) model interchanging grade

and LOS does result in a model which satisfies assumption Al

.

We consider some of the properties of this interchanged model

which we call the (LOS, grade) model.

Before interchanging characteristics it is convenient to

expand the state space as necessary to insure that for each

value of grade i and each value of LOS j there is a state

(i,j). Recall that in the (grade, LOS) model we only define

a state (i,j) when 1 (i) <_ j £ u (i) . Let u be the largest of

the u(i)'s. Then in the expanded state space (i,j) is

defined for 1 < j < u for i-1, • •
• ,n .
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Now let us consider the structure of the submatrices

in the overall transition matrix for the (LOS, grade) model.

For any LOS j the n x n matrix Q. contains the transition

probabilities for going from one grade to another while

maintaining LOS constant at j . By the definition of LOS it

must increase by one each period, so such probabilities are

zero. Consequently, for j=l,*'-,u ,

Qj = ,

and,

Nj = (I-Qj)"-'- = I .

For any LOS j the n x n matrix P . contains the probabilities

of going from one pay grade to another (or the same pay grade)

while increasing LOS to j+1. It is here that we can see a

possible advantage of the (LOS, grade) model since we can

allow demotions and multi-grade promotions without violating

assumption Al . If there are no multi-grade promotions and

there are no demotions, then P. has non-zero entries only on

and immediately above the main diagonal. If demotions are

included in the model they cause non-zero entries below the

main diagonal of P . ; promotions of any type are reflected in

non-zero entries above the main diagonal of P . . Under any

circumstances

,

B . = N . P . = P . .

3 D D D

If demotions are not included in the model, then B. is upper

triangular and so is the product of successively indexed

matrices B .

.

1

71





For any LOS j the n x 1 matrix A. contains the proba-

bilities of leaving the system from the various pay grades

v;hen length of service is j

.

The overall transition matrix P for the (LOS, grade)

model has the same form as in any secondary characteristic

model. The important difference is that in the (LOS, grade)

model we have Q.=0. Thus,

1

P,

P =

\

u-1 ^u-1

u

1

To illustrate the effects of interchanging grade and LOS

consider an example from the U.S. Marine Corps. The enlisted

force of the Marine Corps has nine grades. The values of LOS

range from 1 to 30, So in the (grade, LOS) model v;e would

have nine 30x30 matrices Q. and eight 30x30 matrices P..

Of course each of these matrices would have at most 30 non-

zero elements. By interchanging characteristics, the (LOS,

grade) model has all matrices Q. equal to zero matrices, and

there are twenty-nine 9x9 matrices P.. Whether it is more

practical to use nine pairs of relatively large matrices or

twenty-nine relatively small matrices must depend on the

problem to be solved. This example does illustrate that the

modeler has a choice.
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The fundamental matrix for the transient part of the

process is,

N =

I P^ P^P^ n p.

u
P n p

j = 2 ^

I —
U
n p.

I

\

The expansion of the state space so that all states in

{ (i, j )
:
j=l , • •

• ,u , i=l,-'-,n} are defined is not always

necessary. In the (LOS, grade) model one may define,

l{j) = lowest grade that a person having LOS j may hold,

u(j) = highest grade that a person having LOS j may hold.

As before w .=u ( j
) -1 (j ) +1 . Then Q. is w. x w., P. is

w. X w.,, and A. is w. x 1. The nature of the model is not

substantially affected. Computer storage requirements may be

reduced but computer programming may be m.ore complex.

We note that the basic stock equation (see Chapter III,

equation (1)) in the (LOS, grade) model is

Sj(t+1) = fj(t+l) + Sj_3^(t)Pj_^ ,

reflecting the fact that the stocks of LOS j in the next

period do not depend on the stocks of LOS j in the present

period. The cumulative stock equation (equation (2) , Chapter

III) is the same as the basic stock equation. The following

equation is derived from the fundamental matrix N_ and gives
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the stocks in terms of the external flov/s in previous periods,

J-1

* in=l k=m

In summary the choice between the (grade, LOS) or the

(LOS, grade) model depends on the information that is to be

derived from the model. The (LOS, grade) model is more

flexible in that the promotion/demotion structure is not

restricted. The (grade, LOS) model might be more tractable

when used as part of a budget model since costs are usually

dependent on grade rather than on LOS. Under any circumstances

the two models must yield equivalent information.
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V. THE (GRADE, TIG) MODEL

The (grade, TIG) model is a model of a graded manpower

system in which the second characteristic is time in grade

(TIG) . By time in grade we mean the number of periods that

a person has been in his present grade.

A. BACKGROUND

There are occasions when it is desired to model the

flows of "career motivated" people in a manpower system.

The operational definition of a career motivated person

depends on the case at hand, but generally we expect such

people to have no predilection to leave the system at the

earliest convenient opportunity. Rather we expect the

decisions of career motivated people with respect to leaving

the system to be closely related to the recognition they

receive for their performance in the system. One measure of

recognition of performance is the combination of pay grade

and time since last promotion. Such considerations may make

a (grade, TIG) model appropriate.

A somewhat different context in which the (grade, TIG)

model may be appropriate is that in which the organization

has an "up or out"policy. Positions in an organization may

be (formally or informally) partitioned between those that

are on the "path towards the top" and those that are

terminal positions. The former group often has an up or out

policy where "out" means transfer to a terminal position; the
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(grade, TIG) model can be used to examine flows in positions

in this group.

B. DESCRIPTION

A person who enters grade i during period t is counted

for the first time in grade i at the end of the period (at

time t) and assigned a TIG of one at that time. The

person's TIG increases by one for each successive period that

he is counted in grade i.

The states of the system are defined by couples (i,j)

where:

(i,j) = the state corresponding to grade i and TIG j.

The notation and results for the two-characteristic model

apply directly to the (grade, TIG) model. In the (grade,

TIG) model. In the (grade, TIG) model the value of l(i) is

always one.

We need define only the following probabilities:

q. . = probability a person in state (i,j) at the end

of one period wll be in state (i,j+l) at the

end of the next period.

p. . = probability a person in state (i,j) at the end of

one period will be in state (i+1,1) at the end of

the next period.

a. . = probability a person in state (i, j) at the end of

one period will be out of the system at the end

of the next period.

Under assumption Al,

q.. + p.. + a.. = 1.
ij ID 13
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The transition matrix A. is a w. x 1 matrix:

A. = [a.^. / ^ / \ J •

The transition matrix Q. is w- x w. and has non-zero elements

only immediately above the main diagonal:

Qi
=

q^i

qi2

'i,u(i)-l

The transition matrix P. is w. x w. and has non-zero elements
1 11

only in the first column:

il

I

1
Pi,u(i)

I
•

I I

I
1

• • •

Thus, A. and Q. have the same form as in the (grade, LOS)

model. Each fundamental matris N. also has the same form
1

as in the (grade, LOS) model:

N.

1 q.^ q.^ql2

^12
-

u(i)-l
_ n q

j=l

u(i)-l
— n ^

j=2
I

I

I

ID

13
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The matrix B.=N.P. has non-zero elements only in the111 -^

first column because grade i+1 can only be entered in state

(i+1,1). Let the element in row j and column 1 of B. be

denoted b. .. Then,
ID

u(i) k-1
b. . = y ( n q. )p., .

-" k=j m=j

Recall that B.l is aw. x 1 vector, and its j component

is the probability of attaining grade i+1 starting from state

(i,j). In the (grade, TIG) model,

B.i = [b. ,
, • •

• ,b. , .] t1 il' i,u (i) '

so,

b.. = probability of attaining grade i+1 from state (i,j).

The product of successively indexed B. matrices has non-

zero elements only in the first column, and

k-1
n B

. mm=i

k-1
b.^ n b ,
il . , , ml

k-1
b.„ n b -
i2 . , - mlm=i+l

I

k-1
b. ,• V n b ,i,u (i) . , , ml

' m=i+l

k-1
n b , [B.l , 0]

.
, , ml 1 ' •

m=i+l

0- - -

1

1

1

1

1

1

0- - -

If q. .=0, then state (i,j+l) is unreachable (except

possibly through an external flow). If q-./^O, then,

b
i, j + 1

b. .-p. .

^ij
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This relation provides an efficient method for computing

the elements of the vector B.l recursively:

^i,u(i) " Pi,u(i) '

^j = Pij -^ ^ij^i,j+l' J=u(i)-1,--.,1.

The (grade, TIG) model is equivalent to a discrete semi-

Markov process. The states of the process are the n grades

and T„ (out of the system) . Upon entering state i the next

transition is to state i+1 with probability b., and to T„

with probability 1-b.,. The tail distribution of the time

spent in grade i is the first row of the fundamental matrix

N.. The results from the two-characteristic m.odel in

Chapter II, Section E can be used to find the distributions

of time spent in state i conditioned on either promotion

or leaving the system before promotion. Thus all the infor-

mation required to set up the (grade, TIG) model as a discrete

semi-Markov process is readily derived from the results

established here. The use of the discrete semi-Markov process

is covered in some detail in Howard, 1971. Because of

assumption Al there seems to be little advantage to treating

the (grade, TIG) model as a semi-Markov process. If it is

necessary that demotions and multi-step promotions be

included in a model based on grade and time in grade, then

the more general techniques of semi-Markov processes might be

of value. We show in the following section, however, that

interchanging characteristics in the (grade, TIG) model

leads to a Markov model which al]ows the inclusion of

demotions and multi-step promotions. This model is
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computationally practical, but violates assumption Al , and

thus is not in the class of models analyzed in Chapters II

and III.

C. INTERCHANGING GRADE AND TIG

Interchanging grade and time in grade results in a model

that does not satisfy assumption Al (the new first character-

istic, time in grade, decreases when the new second character-

istic, grade, changes). Nevertheless, the (TIG, grade) model

is not too difficult to analyze, and it enables the modeler to

provide for demotions and multi-grade promotions.

Let (j,i) denote the state in the (TIG, grade) model

corresponding to j periods in grade i. As before i is in the

set {l,*-',n}, and we will let j take any value from the set

{l,-'',m} where the value of m is specified. Let P. be an
D

n X n matrix of transition probabilities for transitions from

states in { ( j , i) : i=l, • •
• ,n} to states in { (1 ,k) : k=l , • •

• ,n}

.

That is, P. is the transition matrix for transitions from one

grade to a different grade when TIG is equal to j . Changing

grades, of course, causes the value of TIG to change to one.

The matrix P. has zeroes on its main diagonal. Let Q. be an

n X n matrix of transition probabilities for transitions from

states in { ( j , i) : i=l , • •
• ,n} to states in { ( j+1 , i) : i=l, • •

• ,n}

.

That is, Q. represents transitions in which grade is unchanged

and TIG increases from j to j+1. The matrix Q. has zeroes

everyv;here except possibly on its main diagonal. Let A. be

an n X 1 matrix of transition probabilities for transitions

from states in { ( j , i) : i=l , • •
• ,n} to out of the system. The
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overall transition matrix P for the (TIG, grade) model is

shown below:

P =

Q.

m-1

m

^m-1 m-1

m

The transient part of the process is represented by the

submatrices in the upper-left part of P. We call this (as

before) the transient matrix Q. By assumption A2 the

process is transient, so the fundamental matrix, N=(I-Q) ,

exists. Of particular interest is the nxn submatrix in

the upper-left corner of N which we will denote by N, , . The

rows and columns of N, , correspond to states in

{ (1, i) : i=l, • •
• ,n} . The basic theorem on the fundamental

matrix [Theorem 3.2.4, Kemeny and Snell, 1960] indicates that

the element in row i and column k of N, , equals the expected

number of visits to state (l,k) starting from state (l,j). If

the 0-1 visiting property holds (which in the (TIG, grade)

model means no demotions) , then the element in row i and

column k of N.. , equals the probability of attaining grade k

given that grade i has just been attained. The submatrix N,,

may be computed in the following manner.

Let,

F = P ,m m

F. = P. + Q.F.., , j = l,''*,m-l, an nxn matrix.
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The element in row i and column k of F. is the probability

of ever entering state (l,k) starting from state (j,i). It

can be shown that,

and that the first column of submatrices of N, an mn x n

matrix, is [N, , , F„N,-,,*'*,F N, , ] . Most of the first-order

information of interest from the (TIG, grade) model is either

contained in or readily derived from the first column of sub-

matrices of the fundamental matrix N.

In summary, interchanging characteristics in the (grade,

TIG) model leads to a model having a transient matrix struc-

ture quite different from that of the two-characteristic model

as developed in Chapter II. However, first-order properties

of the interchanged model are not too difficult to obtain.

The most obvious advantage of interchanging characteristics

is that demotions and multi-grade promotions may be included

in the model.
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VI . COMBINING STATES

In this chapter we consider some of the mathematical

properties of the two-characteristic model when the states

in each grade are combined into a single state. The ideas

discussed here are closely related to the concept of lumpa-

bility as presented in Burke and Rosenblatt, 1958, and

Kemeny and Snell, 1960. There is a difference between the

approach taken here and that of the foregoing authors. Burke,

et al. are primarily interested in establishing conditions

under which the combining of states in a stationary Markov

process leads to a process which is still Markov and sta-

tionary and has these properties for all (or at least some)

initial probability vectors. In Section A of this chapter

we briefly consider conditions under which the states of a

two-characteristic model are lumpable. In Section B of this

chapter we will consider combining states with the clear

understanding that the resulting process may not be Markov

or stationary for most initial probability vectors. Section

C contains an example which illustrates the results in

Section B.

We restrict our attention to the combining of all states

in each grade so that the "reduced state space" version of

the two-characteristic model will have one state for each

grade and a state for "out of the system." Obviously such a

combining of states leads to a one-characteristic model.
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A. LUMPABILITY

Let 4" (m) be the random function v;hich indicates the state

that a Markov process is in after m steps. Recall that T. is

the set of all states in grade i. Let it be an initial proba-

bility vector over all states in the system. Then let

(1) Pr [(}) (0) eT . ] = probability the process starts in T.

given the initial probability vector

IT,

(2) Pr^[(j)(m+l)eT^|(()(m)eTg,---,())(l)eT^, (l)(0)eT^]

= probability the process is in T. after m+1

steps, given the initial probability vector

T" and the events <f)(0)eT.,

<})(1) eT^, • • • ,({>(m)eTg.

The latter probability is not defined unless the given sequence

of events has positive probability under the initial proba-

bility vector IT.

Let T* denote the partition of the state space TUT- into

the sets of states, T_, T.,*-',T . The foregoing proba-

bilities (l)'and (2) define a stochastic process on T*, and we

call this a lumped process.

Definition . We say that the Markov chain in a two-

characteristic model is "lumpable" with respect to the

partition T* if for every starting vector it the lumped process

defined above is a Markov chain and the transition proba-

bilities do not depend on the choice of tt .

Theorem . A necessary and sufficient condition for the Markov

chain in a two-characteristic model to be lumpable with respect
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to T* is that for every pair of sets in T*, e.g., T. and T, ,

the probability of a one-step transition from any state

(i,j)ET. to some state in T, has the same value for every

state in T.. These common values, denoted by (p., }, form a
X XiC

transition matrix for the lumped chain.

The foregoing definition and theorem are taken from

Chapter VI of Kemeny and Snell, 1960, with paraphrasing

to suit the case at hand.

By assumption Al for any starting vector ,

Pr^[(})(m+l)eT. |(J)(m)eT^,- •• ,(t)(l)eT^, (j)(0)eT.]
II ^ o X X

can be non-zero only if t=s,s+l, or 0.

We define the w. x 3 matrix P. by.

[Q. 1, P.l, A.l] (1)

Corollary 1 . The Markov chain in a two-characteristic model

is lumpable with respect to T* if and only if for each grade

i=l,---,n the matrix P. has identical rows. If the chain
1

is lumpable, then the transition matrix for the chain is

P =

'11 '12

22

'10

23 '20

n-l,n

n ,n

Pn-1,0

Pn,0

where the vector (p.., p. .-..p-r,) is any one of the identical

rows of p .

.

^1
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Corollary 2 . A necessary condition for the Markov chain in

a (grade, LOS) model or a (grade, TIG) model to be lumpable

is that Q.=0, i=l,-:',n.

Proof. In the (grade, LOS) and (grade, TIG) models q.
i

• )~'^

by definition. So,

1) the last component of Q.l is a zero, implying

2) the rows of P. are not identical unless q.l=0, implying,

3) the rows of P. are not identical unless Q.=0, implying

by Corollary 1,

4) the chain is not lumpable with respect to T* unless

Q^=0, i=l,---,n. Q

In the (grade, LOS) and (grade, TIG) models if Q . =0

,

i=l, • •
• ,n, the lumped process is rather trivial because the

only sequences of events that have positive probability are

those of the form <{) (0) eT ., (1) eT .-,,•••, (m) eT . , or such a

sequence with events (}> (m+k) eT_ , k=l,*'-,r appended. If the

starting vector ir has positive probability only on T . or we

are given that (J)(0)eT., then the lumped process is Markovian

but the transition probabilities depend on the value of it, a

situation Kemeny and Snell call "weak lumpability .

"

B. LUMPING AN UNLU!4PABLE PROCESS

It may be necessary or advantageous in some circumstances

to use a one-characteristic model. If the system is more

accurately modeled by a particular two-characteristic model,

then we are faced with the problem of lumping a process which

may be mathematically unlumpable. In this section we develop
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methods for qualitatively judging what parameters might be

appropriate when lumping a two-characteristic model. It is

convenient to abandon the stochastic interpretation of the

model, and adopt a deterministic fractional flow viewpoint

of the process.

Recall equation (1), P. = [Q . 1 , P.l, A.l], aw. x 3

matrix. In this section we assume that the lumpability

condition is not met, i.e., the rows of P. are not identical.
1

We are interested in the following fractions for each grade

i=l, • •
• ,n:

1) the fraction of those in grade i at t who remain

in grade i for one more period,

2) the fraction of those in grade i at t who get promoted

to grade i+1 during period t+1,

3) the fraction of those in grade i at t who leave the

system during period t+1.

The values of these fractions depend on the distribution of

the stocks in grade i at time t.

For any stock vector s. (t) 7^ , v;e define,

s. (t)

s.(t) = , a 1 X w. distribution vector. (2)

s. (t)l
"-

Then,

_.,_,^-_ s.(t)P.l s.(t)A.l
s.(t)P. = / — — , — —, — ^1 , a 1 X 3 vector.

s^(t)l s^(t)l .s^(t)l

/s (t)Q.l

Define the follov;ing functions which map distribution vectors

into scalars:
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qi(s^(t)) = s^(t)Q^I,

Pi(s^(t)) = s^(t)P^l,

a^(s^(t)) = s^(t)A^l.

I)
If the vector of stocks in grade i at time t is s . (t) f^

and s.(t) is defined by equation (2), then,

a.

q.(s.(t)) = the fraction of those in grade i at t who

remain in grade i for one more period,

p. (s- (t)) = the fraction of those in grade i at t who

get promoted to grade i+1 during period t+1,

a.(s.(t)) = the fraction of those in grade i at t who

leave the system during period t+1.

V7e note that,

qi(s^(t))+p^(s^(t))+a^(s^(t)) = 1.

Define the following function which maps a 1 x w.

distribution vector into a 1 x 3 distribution vector:

P^(s^(t)) = s^(t)P^

= (qi(s^(t)), p^(s^(t)), a^(s^(t)). (3)

If the stock distribution vectors for grade i, s.{t), were

known for t-0,1,2,*'-, then one could combine the states in

^ 'X, oo
grade i and use the sequence <p

.
(s. (t) > „ to form a non-

stationary fractional flow model.

The more pertinent situation is that in which s. (0) is

known, but we do not know or do not vv'ant to compute s. (t)

and s. (t) for t> 1. Then in the absence of information about

future stock vectors we v/ant to choose the parameters of a

stationary lumped process in some reasonable fashion. That
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is, for each grade i=l,'**,n we want to select three numbers

(which we will denote q., p. and a.) to represent the

fractions of the people in grade i who stay in grade i, get

promoted and leave the system respectively each period. The

Itimped process would have a state for each grade and one state

for out of the system. The transition matrix would be.

P =

qi Pi

^2 P2

\

\ n-1

'n

'n-1

n

Under the assumption that the lumpability condition is

not met, there is no choice of parameters for P that will

in general be equivalent to the unlumped process. We may

begin, however, by eliminating choices for p that are

"obviously bad."

'X/

For any distribution vector s. (t) , the 1x3 vector

p. (s.(t)) IS a convex combination of the rows of p.. Let H.

be the set of all such vectors, i.e.,

H. = {h.eE-^ : h. = s.P., s. 0, s.l - 1}.11 1 1 i' 1 ' 1

In choosing parameters for the lumped process, any choice

(q . , p., a.) which is not in H . is "obviously bad" because^1 ^1 1 3.
-^

there is no stock vector for which this choice reflects the

behavior of the system.
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The set H. is a subset of the fundamental simplex in

3-space.

Clearly (from Corollary 2) the Markov chain of a two-

characteristic model is lumpable if and only if for each

grade i=l,--',n, H. is a single point. A plot of H. gives

some qualitative indication of just how unlumpable grade i

actually is.

Next we consider the behavior of the sequence <P . (s. (t) )

>

under various assumptions.

1. Constant Stocks

If the stock vector does not change with time, i.e.,

s.(t) = s
.

, t=0,l,2,'**, then the stock distribution vector

is constant,

s . „^ -. . 1 _ '^

s (t) = —- = s. ,

s. 1
1

and the logical choice of parameters for the lumped process is.

(q . , p. , a . ) = P . (s
.

)

^i' * i' 1 11
^i -

s . 1
1

because these parameters exactly reflect the deterministic

flow behavior of the system.

2 . Convergent Stock Distribution Vector

If the sequence of stock vectors, <s.(t)>, has the

property that the corresponding sequence of stock distribution

% ... "^
,

vectors, <s. (t)>, converges to a distribution vector s., then

the sequence of linear transformations of s.(t), <p-(s-(t))>,

converges to P. (s.). In this case it may be reasonable to
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choose the parameters of the lumped process by taking a

convex combination of P.(s.(0)) and P.(s.). For example,11 11 f '

(g^, p^, a^) = (i-e)p^(s^(O)) + ep^(s^), o<e < 1,

where small values of 6 are appropriate for short-range

planning and values of close to 1 are more appropriate for

long-range planning.

3 . Constant External Flows

It was shown in Chapter III that under constant

external flows, i.e.,

f.(t) = f , a Ixw. nonnegative vector,

the- limiting value of the stock vector is

^i = (J/k ^ki^^i-
k=l

V7e define

5i = J/k^ki' ^^)

k=l

a Ixw. vector of inputs into each state in grade i in

steady state. We assume g .. 7^ . Then,

s .
= s ./s .

1

1 11
= g^^N^/Cg^N^i)

= (^ N )/(-^ N.I , (5)

g.l g.l^1 ^1

so with respect to s . we may without loss of generally

assume that g. is a distribution vector.^1

Let

H* = (h.eE-^: h* =s.P., s . calculated from (4) and (5)}.
1 1 1 111
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That IS, H. IS the set of limit points of the sequence
/\ %

<p.(s.(t))> under constant external flows. We show that^1 1

(except for a special case) the set H. is a proper subset

of H. .

Let,

4- V*

N. . = j row of N. , a 1 X w. vector,
13 1 1

g. . = j element of g. , a scalar,

T. . = N. . 1, a scalar. (See equation (4) of
13 13 ' \ ^

Chapter II.) From Chapter II we have that x. . is the

average time spent in grade i starting from state

(i, j+l(i) - 1). Note that t. . > 1. Let D. be a w . x w.
' -^ 13 — 1 11

matrix having {t..; j=l,''',w.} on its main diagonal and

zeroes elsewhere. Then D. is defined.

For any 1 x w. nonnegative vector g., let

* 1
g. = (g.^T. ,,•••, g. t. ), a 1 x w. vector. (6)
" q.N.l ^^ ^^ ^'""i ^'"i

^
^1 1

Then it can be shown that g. is a distribution vector, and.

s. = g.N./(g-N.l)
1 ^1 1^ ^^1 1

= g* D. ^ N. . (7)^11 1

Let,

S(w.) = {all 1 X w. distribution vectors),
1 1

S(w.) = {all 1 X w. distribution vectors
x' 1

determined by (7) }'.

Clearly, S(w.) is a subset of S(w.); we now establish condi-

tions under v;hich it is a proper subset.

92





Equation (6) maps S(w.) into S(w.), and it can be

shown that the mapping is onto. That is, for every g. in

S(w.) there is a g. in S (w
.

) such that equation (6) maps

*
g. to g.. Thus, equation (7) may be viewed as a mapping

from S(w.) into S(w.)- We show, however, that the mapping

in equation (7) may not be onto; i.e., there may exist

distribution vectors in S(w.) which are not limiting stock

distributions for any choice of constant external flows

(recall that (4) gives g . as a function of the constant

external flows)

.

The w. x w. matrix (D. N.) is a non-singular linear11 11 ^

transformation from S(w.) into S(w.)- It is well-known (see,

for example, Halmos, 1956) that for any non-singular linear

transformation T having determinant d and any measurable set

E, with Lebesque measure m(E), m(E)/m(T E) - |d|. In the

present context this can be written,

m(S . (w. ) )

(s'(w')) = |det(D-V)|
1 1

But the matrix (D. N.) is nonnegative and its rows

all sum to one (i.e., it is a stochastic matrix). So its

eigenvalues are bounded in absolute value by +1. The deter-

minant of a matrix equals the product of its eigenvalues, so,

m(S, (w,))

(s'(w')) = Idet(D-V)|<l,
1 1

Furthermore, m(S.(w.)) = m(S.(w.)) if and only if the magnitude

of every eigenvalue of (D. N.) is 1. It can be shown (see

Karlin^ theorem 2.1, page 97), that this can only occur when
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the non-zero elements of Q. ar3 restricted to the main
1

diagonal. This would mean that a person entering grade i

in state (i,j) could not make a transition to any other state

in grade i.

-1 '^

If |det(D. N.)|<1, then S. (w.) is a proper subset of

S.(w.). The sets H. and H. are linear transformations of

'^ -1
S(w.) and S(v;.) respectively, so Idet(D. N.)I<1 implies that

H. is a proper subset of H..

When the set of states in grade i has the 0-1 visiting

property we may assume without loss of generality that N. is

upper triangular with ones on its main diagonal (see Chapter

II, Section C) . Then the determinant of N . is +1. The

determ.inant of the diagonal matrix D. is,

w.
1

det D. = n T . . .

^ 3=1 -^

But T . . > 1, so det D. - 1 if and only if all t..'s equal 1.
ij — ' 1 ^ ij ^

When the 0-1 visiting property holds this requires that Q.

be a zero matrix. Thus, if the 0-1 visiting property holds

and Q. is not a zero matrix, then
1

'^ wm(S.(w. )) 1 ,

,^ , = ( n T. .)" < 1.
m(S^(w^) \^^ xj'

Furthermore any change in Q. that increases the average time

spent in grade i, (t. .}, will decrease the size of S. (w.)

and thus decrease the size of H. .

1

In summary, it has been shown that under constant

external flows the vector of the fractions retained in grade,
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promoted and lost from the system converges to some point in

H. which is in most cases of interest a proper subset of H .

.

Thus, when the lumped process is to be used for long-range

projections, choosing the parameter vector (q., p., a.) from

H. would seem quite reasonable.

4 . Linear Growth of External Flows

The case of linear growth of the external flows leads

to results similar to those in the case of constant external

flows. It was shown in Section C of Chapter III that under

linear growth of external flows, f , (t) = tf . , the stock

vector in grade i is asymptotically linear and

s. (t) = tL. + C.
1 1 1

where

L. = (f . + L. ,P.
T )N.

,

1 1 1-1 1-1' i'

C. = -((L. , - C t)P. , + f.N.Q.)N. .

1 1-1 1-1 1-1 1 i^i' 1

The limiting stock distribution vector is

Jl im 'V £ im , . , / , . \ t.^ s.(t) =. s.(t)/s.(t)l
t-><» i t"*"°° i i

= [tl (tL. + C.)/(tL. + C.)l

= L ./L . i .

But,

i

^i = ^ ^k ^ki ^i •

k-1

So the limiting value of s. (t) is the same m the case of

linear-growth external flows as it was in the case of

constant external flows. Consequently the set of all possible
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limit points for the flow fractions, H. , is the same under

both constant and linear-growth external flows.

C. AN EXAMPLE

In this section we use an example to illustrate how the

planner might use the results of Section B to combine states

in a two-characteristic model.

Let,
•

.2

.5

.4

P. =
1

.7

.4

.0

.1

.1

.5

.9

Then,

P- = [Q-1, P-1, A.l]

2

5

4

.7

.4

.1

.1

.1

.1

.5

.9

Clearly, the rows of P. are not identical, so the condition

for lumpability is not satisfied. The rows of P. are the

extreme points of H., ahd H. is plotted in solid lines in

Figure 2. Any choice of parameters for the combined process

should be taken from this set H..

Let the initial stock vector be,

s. (0) - (20, 70, 10, 0)

.
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Figure 2. Plot of Points and Sets Used in

in Combining States.
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Then,

s^(0) = s^(0)/s^(0)l

= (0.2, 0.7, 0.1, 0)

,

and.

'X,

s^(0) P^ = (0.43, 0.43, 0.14).

That is,

q^ (s^(0)) = 0.43,

Pi (3^(0)) = 0.43,

a^^ (3^(0)) = 0.14.

The point (0.43, 0.43, 0.14) is denoted by a star in Figure 2

For a short-range projection (one or two periods) this point

would be a good choice for the grade i parameters of the

combined process.

Next let us consider what choices of parameters would be

appropriate for long-range planning under constant external

flov;s. From equation (7) of Section B.2 we know that the

distribution vector for the equilibrium stocks in grade i,

S., must satisfy,

s. = g. D. N. ,

*
where g. is a distribution vector. In the present

example.
p

1 0.2 0.1 0.04

1 0.5 0.2
N. =
1

1 0.4

1

and the diagonal elements of D. are 1.34, 1.7, 1.4 and 1,
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Thus,

D-1 N.

745 150 .075

590 .295

.715

030

115

285

1

In equilibrium under constant external flows the fractions

remaining in grade, promoted, and leaving the system are

given by s. P., and from the above we have,

s. P.
1 X

= g

= g.

*

^i D-^ N. P.
1

.755 .150 . 075 .030

*
.590 . 295 .115

i
715 .285

1

.255 .590 .155

* .403 .288 .309

i
.286 .100 714

.100 900

2

5

4

.7

.4

.1

.1

1

1

5

9

Because g. can be any Ixw. distribution vector, we see that

the parameters of the combined process in equilibrium under

constant external flows, s. P. , must be a convex combination
1 1 '

of the rows of the above matrix. The set of all such convex

*
combinations has been previously designated H. , and it is

plotted with dashed lines in Figure 2. For long-range

planning the planner should restrict his choice of parameters

*
for the combined process to this set H. .
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Next let us assume that the planner estimates that in

equilibrium the vector of the numbers entering the states

in grade i would be approximately,

g^^
= (30, 50, 20, 0). •

Then the equilibrium stocks would be

s . = g. N.

= (30, 60, 48, 19.2)

,

s^ = (.191, .382, .305, .122),

and

,

s. P. = (.351, .329, .320)

.

The latter point is denoted by a triangle in Figure 2. In

this case a convex combination of the points denoted by * and

A in Figure 2 would seem a reasonable choice of the parameters

of the combined process, i.e.,

(q^, p^, a^) = e(.351, .329, .320) + (1.9) (.43, .43, .14),

where < 6 < 1.

Small values of 9 are used for short-range planning, and larger

values of 9 are used for long-range planning.
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VII. AN APPLICATION TO RETRAINING PROBLEMS

A. INTRODUCTION

Consider an organization with people trained in various

skills. Each person with a given skill belongs to a "skill

group," which we will call "group" for simplicity. In this

chapter we assume that the second characteristic in the state

description is the group to which an individual belongs. V7e

also assume that a person cannot belong to more than one group

at a time.

Group membership may be quite explicit as in the case of

the U.S. Marine Corps system of occupational fields or it can

be implicit as in the case where group membership is determined

by the number of years of formal education completed. In any

case group membership defines a partition on the organization.

In many organizations retention and promotion vary con-

siderably from group to group. Because of this it is often

the case that people have to be retrained between groups in

order to prevent surpluses and deficiencies of people in

various skills. This is particularly true in the military

enlisted personnel system. These retraining problems are the

s.ubject of this chapter.

We assume that there is a nonnegative cost associated

with the retraining of a person from one group to another.

The meaning and the numerical value of a retraining cost is

left to the planner. For example, a planner may express his

opinion that people in group k are unsuited for retraining

101





into group m by assigning a prohibitively high cost to such

retraining.

Unlike the LOS or TIG models, in the retraining model we

are quite interested in how many people change their second

characteristic each period. We assume that assumptions AO,

Al and A2 of Chapter II still hold.

We are interested in long-range planning, so we begin

with an equilibrium model, i.e., a model in which we assume

that stocks and flows do not vary from one period to the

next. The equilibrium model is very useful in determining

achievable goals for an organization. Once determined, these

goals can be used to judge short-range manpower policies.

For example, use of the equilibrium model might show a long-

range requirement for retraining into the sonarman group,

and there might be a present surplus of sonarmen. The goals

from the equilibrium model would cause us in this case to

question a short-range recommendation to convert sonarmen

training facilities to some other use.

In a retraining problem the planner would ideally like

to specify the stocks and promotion rates for each grade/

group combination (state) and then minimize retraining costs.

Unfortunately, this is not generally possible, and the planner

must compromise or trade off between desired stocks, desired

promotion rates and minimal retraining costs. A major

purpose of our development of the retraining model will be

to show the close interaction between stocks, promotion rates

and retraining costs. Consequently, we take a descriptive
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rather than a prescriptive viewpoint of the retraining

problem. The prescriptive approach would require the planner

to specify a mathematical description of his preferences with

respect to tradeoffs between stocks, promotion rates and

retraining costs. Such a requirement is usually quite

impracticable.

In the following development of the retraining model the

attrition rates are treated as known and fixed. This may not

be entirely acceptable. Retraining can be used as a method

of reducing attrition. It can be used as an inducement to

people to remain in the organization. This problem has not

been treated here.

One purpose of the mathematical analysis of the retrain-

ing problem is to form the basis for an interactive computer

program. Such a program would assist the planner in finding

acceptable and feasible combinations of stocks, promotion

rates and retraining costs. A device to be used in the

interactive program, which is used in the mathematical

analysis below, is proportionate control of stocks and

promotion rates. For example, for a given grade the planner

is required to specify the proportionate promotion rates for

the various groups in that grade. This device may appear

artificial; however it has great practical advantages. The

U.S. Department of Defense is considering a promotion policy

in which promotion rates within any grade must be equal for

all groups. It is not our intention to join the debate over

the efficacy of such a policy, but our results are quite

useful in investigating the implications of such a policy,
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B. DEFINITIONS AND THE BALANCE EQUATION

The organization is partitioned into, states according to

grade and group. It is assumed that transitions between

states can be modeled by stationary fractional flows. The

organization is assumed to be in equilibrium; stocks and

flows do not change from one period to the next. One-period

transitions from any grade are restricted to the same grade,

the next higher grade or out of the system (see assumption Al)

There are K groups indexed by k=l,''-,K and n grades

indexed by i=l,**',n. State (i,k) corresponds to grade i

and group k. We define

s., = number of people in grade i and group k,

^i ^ ^°il' *

*
' '^iK^ ' ^ 1 ^ K vector,

f ., = number of people who enter the system in state

(i,k) each period,

f^ = (^ii'
'

*
*

'^iK^ '
a 1 X K vector,

a., = fraction of those in state (i,k) at the end of one
ik

period who leave the system during the next period,

a. =[a.,,-**,a.T^],aKxl vector,
1 il iK

q., = fraction of those in state (i,k) at the end of one

period who are still in grade i (in any group) at

the end of the next period,

p., = fraction of those in state (i,k) at the end of one

period who are promoted to grade i+1 during the

next period.

Pi ^ ^^il' *

*
' '^iK^ '

^ ^ ^ 1 vector.
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From assumption Al we have

^^ik
-^ Pik " ^ik = 1-

Nonnegative proportionality constants for the promotion

rates, {a . , : i=l, • •
• ,n, k=l,''',K}, are specified so that in

each grade i,

Pik " Pi °'ik'
k=l,"-,K, (1)

where p* is the maximum promotion rate over all groups in

grade i.

Let,

a. = [oc .,,••• ,a . ^.] , a K X 1 vector with maximum element
1 il' iK

equal to 1. Thus,

P. = P*a, , (2)

and V7e see that whatever the promotion rates for the various

groups in grade i may be, they will be proportioned according

to the components of a .

.

We begin by considering all K groups in some grade i.

The number of people entering grade i during any period is:

K K
No. into grade i = I f.j. + I s vPi.i

k=l ^^ j^^^ 1 1,JC 1 i,.

= f .1 + s._^p._^ . (3a)

The number of people leaving grade during any period is:

K K
No. out of grade i=

J^
s . ,a . , + Is., p.,

1 -I IK IK
-i T IK IK

k=l k=l

= s .a . + s .p

.

= s. (a. + p. )

.

(3b)
1 1 '^i
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Under the assumption that the system is in equilibrium, the

numbers entering and leaving a grade each period must be

equal. Thus

f.l + s. ,p. , = s.(a. + p.). (4)

The above equation will be referred to as the balance

equation for grade i.

C. PARAMETRIC CALCULATIONS FOR PROMOTION RATES

For specified stocks we use the proportionality constants

for the promotion rates to solve for the promotion rates one

grade at a time starting with grade 1.

f^I -= Sj^(a^ = p^)

= Sj^a^ + Sj^(p*a^)

* '

= s, a, + p, s, a,
X 1 '^l 1 1

*
(Recall the p.'s are scalars.)

Thus,

f , i - s, a,
* _ _1 1_ 1

^1
^l°'l

and

I

Pi = Pl^'l

For grades i=2,''«,n:

f.l + s. ,p. , = s.(a. + p.)

*
= s.a. + p.s.a.11 '^^i 1 1

Thus,
f.l+s. ,p. ,-s.a.

* 1 1-1*^1-1 1 1 ,1-,
p. = (5)^1 s.a.

1 1
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and,

*
p. = p .a . .

Note that when the stocks are specified we can solve for

all the promotion rates without explicitly considering the

retraining flows between groups.

We note that:

1) f .1 is the number of people who enter grade i each

period from outside the system,

2) s._-p._, is the number of people promoted into grade i

(from grade i-1) each period,

3) s.a. is the number of people who leave the system from

grade i each period. Thus p. >^ if and only if the total

number entering grade i each period is no smaller than the

number leaving the system from grade i each period.

Feasible promotion rates must satisfy Oj<p.,£l - a.,.

The values of p., computed above from the balance equations

may not satisfy these constraints. It may also be the case

that the promotion rates computed above are unacceptable for

practical reasons. We next consider hov; one may trade off

between stocks and promotion rates to obtain a satisfactory

feasible set of rates.

D. . PARAMETRIC CALCULATIONS FOR STOCKS

Let us suppose that the specified stocks yield infeasible

promotion rates in grade i, e.g., p. < 0. V7e might then

approach the problem from the opposite direction in grade

i by specifying the promotion rates and solving the balance

equations for the stocks. The difficulty is that the solution
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to such a problem is not unique. We will discuss two

parametric methods that lead to unique solutions for the

stocks in grade i when the values of the promotion rates

in grade i are specified.

In the context of interactive programming the parametric

calculation of stocks is used to make adjustments when the

initially specified stocks have led to infeasible or unaccept-

able promotion rates. In Method 1 a specified proportionality

between stocks in the various groups is maintained. In Method

2 we maintain a specified proportionality between the

deviations of the stocks from their desired levels.

1. Method 1

In this method we specify nonnegative proportionality

constants for the stocks in the various groups in grade i,

K
{y • v^^"^!' • • '^^ where T y., = 1. Then,iK

k=l
"-^

s . , = s .y . 1 .
• (6)ik 1 ' ik ^ '

where s. is the total number of people in grade i.

Let,

Then,

Y^ = (Y^j_, • • • /Y^j^) , a 1 X K vector.

s. = s*Y. • (7)

Let the promotion rate vector for grade i, p., be specified.

The balance equation (4) for grade i is

f.l+s. ,p. , =s.(a. +p.)

= s*Y
.
(a. + p. ) .
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Thus,

and.

<; = ^ 1-1^1-1 .

s., = s . Y -1 .

ik 1
' ik

To interpret these results note that,

s*Y. (a. + p.

)

1 'i 1 ^1
Y. (a . + p. )

=
*

s .

1

s . (a . + p • )

s.i
1

= fraction of those in grade i who

leave grade i (by attrition or

promotion) each period.

Method 2

In this method we specify proportionality constants

for the changes in the stocks in grade i, {"5., ; k=l,''',K}.

We suppose that the desired stocks in grade i, denoted by

{s., ; h=l,*-',K} lead to infeasible or unacceptable promotion

rates, and require that the stocks satisfy not only the

balance equation but also the parametric constraints,

^ik = (1 + <^i '^ik^^ik

where c. is a scalar to be determined.
X

Let,

^i = ^'^il''"'' ^iK^ ' ^ 1 ^ ^^ vector,

s. = (s.,,*'',s.,,), a 1 X K vector,
1 il ' iK

and define an operator (D such that E x E ^ E and

6^@s^ =
("^ii^^j^,

• • •
, <5^j^Sj^j^) . (See Appendix A.)
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We then have

s. = s. + c 6.@s. .

1 1 111
Using Method 2 parameterization the balance equation

(4) for grade i is

f.l + s. ,p. , = s.(a. + p.)
1 1-1^1-1 1 1 ^1

= (s. + c. 6. @s . ) (a . + p. ) .
1 1111 ^1

Thus,

c

.

1

.1 + s. ,p. , - s.(a. + p.)
1 1-1*^1-1 11 ^1

(6. @ s. ) (a. + p.

)

1 11 ^i'

and,

^ik = (1 + ^i ^k^^ik

One advantage of Method 2 is that the stock in some

group k can be held constant at the desired level s., by

assigning 6., a value of zero.

A significant difference between the two method of

parameterizing the stocks is that Method 1 always yields

nonnegative stocks while Method 2 may not. In the initial

stages of an investigation of retraining policies. Method 1

would seem more practical. After feasible and not-too-

unacceptable policies have been derived, then Method 2 could

be used to advantage. Only Method 1 will be used to para-

meterize stocks in subsequent sections.

E. RETRAINING FLOWS

Once we have arrived at a set of stocks and promotion

rates that are acceptable, we may compute the required

retraining flows. Let,
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r.. = number of people retrained out of (>0) or into

(<0) state (i,k) each period

r^ =
(^ii'

• *
• '^iK^ ' ^ 1 X K vector.

We derive an expression for the retraining flow r., by

considering the numbers of people that enter and leave

state (i,k) each period in the absence of retraining:

No. into state (i,k) = f
^y^

+ s^_^ k^i-l k

No. out of state (i,k) = s., (a., + p-,).
XK IK 1

K

Under the assumption that the system is in equilibrium, the

flows into and out of state (i,k) must be equal; we use the

retraining flow r., to bring about this equality:

^ik = (^ik -^ ^i-l,kPi-l,k^-^ik^^ik -^ Pik^ • (5)

The balance equation (4) ensures that

K

I r = 0,
k=l

^^

i.e., everyone retrained out of one group is retrained into

another group.

F. THE RETRAINING TRANSPORTATION PROBLEM

We assume there is a known cost c. (k,m) for retraining a

person in grade i from group k to group m. We assume that

all costs, including c. (k,k), are strictly positive.

For any set of stocks and px"omotion rates in grade i that

satisfy the balance equation, we may compute the retraining

flows, {r., }, and treat these as supplies of people for
X K

retraining (r.,. > 0) and demands for retrained people (r., < 0)
X K — X /k.

The balance equation ensures that total supply equals total

demand

.
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Let,

x.(k,in) = number of people retrained from state (i,k)

to state (i,m) each period.

In order to match supplies and demands at minimal cost, we

must solve the following linear program.

K K
PI] min I I c. (k,m) x- (k,m)

h=l m=l

K
ST I (x^(k,m) - x^(m,k)) = r^^^; k-l,---,K

m=l

X. (k,m) >_ 0; k=l,*--,K m=l,---,K.

The equality constraints in Pi ensure that for each state

(i,k) the net number of people retrained out of or into state

(i,k) matches the supply of or demand for retrained people

for that state.

We note that,

K K
I (x. (k,m) - X. (m,k)) = I (x. (k,m) - x. (m,k))

m=l ^ ^ m=l ^

is an identity. That is, x. (k,k) does not appear in the

equality constraints of PI. The nonnegativity constraints

do require x. (k,k) >^ 0. Because we assume c. (k,k) > 0, the

optimal solution to PI will always have x. (k,k) = 0.

The dual of PI is denoted Dl:

K
Dl] max J r .j^ v.,^

k=l

ST v., - V. < c.(k,m); k=l,*-*,K m=l,---,K.
ik im — 1 '

.

v., UNRESTRICTED, k=l,---,K.
ik
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It will be convenient to define the following vectors:

x^ = [x^(l,l),---,x^(l,K), x^(2,l),---,x^(K,l),---,x^(K,K)],

2
a K X 1 vector,

^i ^ ^^il'
' ' *

'^ik-' '
a K X 1 vector.

The linear program PI is quite similar to the classical

transportation problem. It becomes a transportation problem

if we make the following assumption.

Assumption A3. For any h,j,m e{l,''*,K},

Cj_(k,m) < c^(k,j) + c^(j,m).

The practical implication of this assumption is that it

must be cheaper to retrain a person from group k to group m

than it is to retrain one person from group k to group j

and retrain another person from group j to group m.

The theoretical implication of this assumption is that

the optimal values of some readily identified variables in

PI must be zero.

Let,

k"!" - {k: r., > 0),
1 ik —

kT = {k: r., < 0}.
1 ik

Consider the case in which j eK . , the optimal solution

to Dl is V. , and the optimal solution to PI is x . .

Suppose that x. (k, j) > 0. By complementary slackness it

must then be true that,

v9, - V?. = c. (k,j) . (10)
ik 1] 1 -^
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But jeK. , so there must be some m such that x. (j,m) > 0,

This implies by complementary slackness .that,

^?j - ^?m= ^i(3.m). (11)

Adding (10) and (11) and using assumption A3, we have

v., - V. = c.(k,j) + c.(j,m) > c.(k,m),

implying that the optimal solution to Dl , v., is not feas-

ible, a contradiction. Consequently, it cannot be true

that x.(k,j) > when j eK . . By a similar argument, we can

show that it cannot be true that x. (i,m) > when jeK. .

Thus assumption A3 implies that in the optimal primal

solution, if x.(k,m) > 0, thenkeK., m£K . . Removing the

variables which must be zero in any optimal solution from

PI loads to the primal and dual equivalents of PI and Dl

under assumption A3:

PRTP] min
y V ^ • (^/"^) ^- i^f"^)

keK. raeK.
1 1

ST y X . (k,m) = r
. , , keK

.

t„- 1 ik 1meK

.

1

y ,
- X. (k,m) = r. , meK.^+ X ' im' 1

keK^

K

X. (k,m) > 0,
1 —

DRTP] max y r., v.,
, ^, ik ikk=l

ST v., - V. < c.(k,m); keK., meK.
ik im — 1 1 1

v., UNRESTRICTED,
1

K
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The abbreviations PRTP and DRTP denote the primal and dual

retraining transportation problems respectively. The

programs PRTP and DRTP are in the form of the classical

transportation problem.

We should pause to note some of the assumptions inherent

in modeling retraining costs in this rather simple manner.

1) There is no provision for set up costs.

2) Each grade is treated as a separate problem.

3) Marginal retraining costs are assumed constant with

respect to the number retrained.

The computational tractability of the simple transportation

model is no small consideration, and one suspects that the

model is adequate for the purposes at hand, viz., long-range

planning.

Let the optimal value and the optimal solution to DRTP

be denoted d. and v? = [v .,,••• ,v.lj^] respectively. Then,

k=l

We note that the optimal solution to DRTP is unique only to

an additive constant.

G. RELATION OF RETRAINING COSTS TO STOCKS AND PROMOTION RATES

In this section we assume that the stocks and promotion

rates in grade i-1 have been determined, and we consider how

our choice of the stocks and promotion rates in grade i will

affect the optimal retraining costs in that grade.

We will parameterize both the stocks and tl\c promotion

rates in grade i using Method 1 for the parametric calculation
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of the stocks. Thus, we must specify two sets of propor-

tionality constants (see equations (2) and (7)):

1) ioL. , k=l,''-,K} for the promotion rates,

2) (y-v' k=l,---,K} for the stocks.

We consider the case in which the total number of people

entering grade i each period is known and fixed:

f. + s._^ @ Pi-1 ~ g-f a known 1 x K vector

f.i + s. ,p. , = g.i, a scalar.

The stocks and promotion rates for the various groups in

* *
grade i are determined by the choice of s . and p . :

*
s ., = s . Y-, /ik 1 ik '

Pik = Pj °'ik
•

The balance equation (4) places a constraint on the choice

* * *of s. and p. . We consider s. as the independent variable,

so the balance equation,

g.l = s.(a. +p.)

* *
= s.Y-(a-+P-a),1 'i 1 ^1 i'

'

*
leads to the relation of the dependent variable p. to the

*
independent variable s. :

gj - s* Yia^*
(13)

s . Y-Ot.Ill
This relation is sketched on the following page.
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Figure 2. Sketch of s. and p.

The curve is asymptotic to the lines s. = and

p. = -y .a./y .a . .

We must have p. ^0, which by (13) is equivalent to

* —
s.y.a. _<g.l, i.e., the total number leaving the system from

grade i each period must be no greater than the total number

entering grade i each period. It is only when the above

inequality is strict that we may (indeed must) promote people

out of grade i.

117





* *
Let us suppose that the couple (s., p.) satisfies (13).

We then use the retraining flow equation,

^ik
=

^ij,
- s* Yik(a.,^ + p* a.j^), (9)

to determine the RHS of the retraining transportation problem.

The value of r., depends on s. and p. . Because p. is

uniquely determined by s. from (13), we may consider r., a

function of s . . Substituting the expression for p. from

(13) into the equation for r . , we have,

g.I - s.Y-a.
, *, * / ,

/I 11 1% \

^ik(^i) = ^ik - Vik^^ik ^ ^—*
^''ik>

•

^i^i^i

After some manipulation this leads to,

, *. T , :i-^ 'ik ik, ,
* ,'ik ik 'ik iJc, ....

r., (s.) = g.l( ) + s.Y-a- ( ) • (14)
ik 1 ^1 T- Y-C- 11 1 Y-a- Y-a.

g.I 'i 1 'i 1 'i 1

We assume the vector of group-to-group retraining costs,

c
.

, is fixed and known, so the optimal value of the retrain-

ing transportation problem is a function of the vector of

retraining flows, r.. But we have shown that for fixed flow

into grade i, g., the retraining flows are a function of s . ,

so the optimal value of the retraining transportation problem

is a function of s . . We show this by rewriting the primal

and dual of the retraining transportation problem.

PRTP] min (^ . = I I c. (k,m)x. (k,ra)

-f _ '• 1
keK. meK.

1 1

ST y x. (k,m) =r.,(s*), keK"!"L 1 ik 1 ' 1

meK.
1

I x^(k,m) = -^im^^i)' "^^^i
keK^

1

X. (k,m) >^ 0,
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DRTP] max d.(s*) = J^r .

^^
(s*) v .

,^

ST v., - V. < C. (k,m); keK. , meK"
ik im - 1 1 ' 1

v., , V. UNRESTRICTED .

xk' im

The question that we address in this section is how the

optimal retraining costs vary with respect to the total

stocks s . .

* o *
For some specified values of s. let d. (s.) be the optimal

value of the retraining costs and let v. (s.) be the optimal

solution to the dual retraining transportation problem.

We then have,

8d°(s*) . K

1 1

f , o , ., '-^ik'^' ^ ,
. ^'<'

= ) (v., (s.) T + r., (s.) z •

, ^, ik 1 ^ * ik 1 ^ *
k=l 8s. 3s.

1

From (14) we have immediately,

*
9r . , (s

.

)

Y . , a . , y • i a •

i

ik ^ 1^ _ ' ik ik _ ' ik ik .

ds

.

' 1 1 ' 1 1
1

The question then is, how does the dual optimal solution

o * * . *
V. (s.) vary with s.. We note in the dual that varying s.11-^ 1 -^ ^ 1

does not alter the feasibility of v. (s.) . We note in the

primal that varying s. varies the RHS of the program, so the

primal optimal solution must vary with s . . But suppose that

the primal basis that was optimal at s . is still feasible at

s. + G for |el .sufficiently small. Then this primal basis
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is feasible, it satisfies the coiriplementary slackness

condition v/ith respect to v.(s.), and v.(s.) is feasible in

o *
the dual, so v.(s.) is still the dual optimal solution. In

summary, the dual optimal solution, v.(s.), does not change

* *
with s. so long as the primal basis which was optimal at s.

remains feasible. (See Dantzig, 1963.)

Consequently, if for some e>0 changing the stocks from

s. to s . + c does not cause a primal basis change, then,

as.
1

and

8d. (s.

)

K Y-i ot-i Y-i a-i11 r o , *> ,'ik ik 'ik ik, .,c\= Y-a- /v., (s.) ( ) (15)^* 'iii'-TikiY-ot- Y-a.
9s. k=l 'i 1 'i 1

1

We note that:

s . Y • a • s . a .

, , 111 11
1) Yia. = — = -j-

s. s.l

= fraction of those in grade i who leave

the system each period

*

ik ik _ 1 ik ik ^ ik ik
Y • a .

~ * s .a

.

11 s . Y a • 111
' 1 1

= fraction of those leaving system from

grade i who leave from state (i,k)

ic ic

Y.,ot., s.Y-iP'Ct., s.,p.,
' ik ik _ I'lk^i ik _ ik^ik
Y • a . * * s . p

.

' 1 1 s
.
Y -P • a

•

111
' I'^i 1

= fraction of those promoted from grade

i who are promoted from state (i,k).
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1. Special Case 1 — Costs Constant

Special case 1 is that in v/hich for some positive

constant c,

°^ik
= ^^ik' k=l,--.,K.

In this special case,

a . = ca

.

a
.

, ca
.

, a
.

,

ik ik ik
Y.a. CY.a. Y-a. '

Y.,a., Y.,a.,
' ik ik _ ' ik ik _ -

Y.a. Y.a. '

'i 1 ' 1 1

g . , Y . , a .

,

, *. -r , ik ' ik ik.

9d*(s*)

9s.

Thus, when promotion rates are proportional to attrition

rates, the retraining flows do not depend on the total

stocks s.. Consequently, the optimal retraining costs do

not depend on s . .

The sensitivity of retraining costs to the total

stocks depends in some sense on how promotion and attrition

rates depart from the foregoing special case.

2 . Special Case 2 -- Costs Increase with Stocks

A second special case is that- in which for each

ke{l, •••,!<}, either,

q., Y-iCt-i Y-i^.,
1 )

ik ^ '

i

k ik ^ ' ik ik

V — Y • a •
— y -a . '
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or,

2) ?J^ >
"^^^^^^

> ^ik^ik
r - y .a . - y .a. '

g. 1 ' 1 1 ' 1 1

We note that,

—— = fraction of those entering grade i who enter in
g.l ,^1 group k.

Thus, condition 1) above indicates that the fraction of grade

i "entrants" entering group k is smaller than the fraction of

grade i "promotees" promoted from group k which in turn is

smaller than the fraction of grade i "leavers" leaving from

group k. From equation (14), condition 1) implies that both

k ic

r., (s.) and its partial derivative with respect to s. are non-ik 1 '^ '^ 1

positive. That is, there is a demand for retrained people in

group k of grade i, and as the total stocks in grade i

increase so does this demand for retrained people in group

k.

Condition 2) is simply condition 1) with the inequalities

reversed. Condition 2) implies that both r.j^(s.) and its

partial derivative with respect to s. are nonnegative. So

there is an excess of people in group k of grade i, and as

the total stocks in grade i increase so does this excess of

people in group k.

In this special case increasing total stocks increases the

supplies in the groups that have people available for retrain-

ing and increases the requirements in the groups that have

a need for retrained people. Consequently, increasing total

it

stocks, s., increases the optimal retraining costs.
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3 . Special Case 3 -- Costs Decrease with Stocks

A third special case is that in which for some values

of s* we have for each kG{l,''-,K}, either,

,. / *\ ^ n J ik ik ^ ik ik
1) r., (s.) > and <

or.

iki' Y.a. — Y-a.
' 1 1 ' 1 1

*. ^ « , 'ik ik ^ 'ik ik
2) r., (s.) < and " ^'^

>
ik 1 Y • ct • — Y • a •

' 1 1 ' 1 1

Condition 1) above indicates that group k has people available

for retraining, and the fraction of grade i "promotees" promoted

from group k is smaller than the fraction of grade i "leavers"

*
leaving from group k. If the total stocks, s., are increased

then the number leaving the system from group k increases in

direct proportion to s . . However, increasing s. causes the

it

overall promotion rate p. to decrease, so the number promoted

from group k does not increase as rapidly as s . . Under

condition 1) we then have a decrease in the number to be

*
retrained when s. increases.

Condition 2) is simply condition 1) with the inequal-

ities reversed. Under condition 2) there is a requirement for

retrained people, but this requirement decreases as s.

increases.

In this special case increasing total stocks decreases

the supplies in the groups that have people available for

retraining and decreases the requirements in the groups that

have a need for retrained people. Consequently, increasing

•k

total stocks, s., decreases the optimal retraining costs.
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The rate of change of retraining costs with respect

to promotion rates may be computed from

1 I'll

and.

9p* Y- (a- + P*^,

)

3d? 3d° 3s*111
3p* 3s* 3p*^1 1 ^1

H. TWO-GRADE OPTIMIZATION OF RETRAINING COSTS

In this section we develop a technique for jointly

varying the stocks and promotion rates in tv/o grades, i and

i+1, in such a way that the stock and promotion rates in

grades below grade i and above grade i+1 need not be changed,

We then show how the retraining costs in grades i and i+1

respond to these stock and promotion rate changes.

Recall the balance equations (4) for grades i, i+1, and

i+2:

^ _ * * * * *
i) f.l + s. ,p. , =s.Y-{a.+p.a.) =s.(Y-a.) +s.p.{Y-oi.)

' 1 i-l'^i-l I'l 1 ^1 i' 1 'i i' 1^1 1 i'

i+1) f-.nl + s.p.Y-ct. = s.,,Y-,T(a-,i+ P-.tC-,t)X+1 1*^1 'l 1 1+1' 1+1' 1+1 '^l+l 1+1'

_ * *
i+2) f-.ol + s.j^,p.,,Y-,iOt-Li = s..-(a. ,o+p- ^^) .

1+2 i+Pi+l'i+l 1+1 1+2 1+2 ^^1+2

*
We consider s. , and p. , as fixed vectors. If s. is varied,1-1 ^1-1 1

then p. must also change in order to satisfy i) . Furthermore,

the product s*p* cannot remain constant as s . is varied.

This means that satisfying i+l) when s. is varied will require

if * i(

a change in s. , or P-,-, or both. Suppose that as s. is
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varied we change the value of s. , so that i+1) is satisfied

and the produce s. ,p. , is held constant. This is possible

and the values of s. , and P- .-i are uniquely determined. By

* *
holding s. ,p. , constant equation i+2) is satisfied without

changing stocks in grade i+2. Thus we have restricted the

*
effects of varying s. to grades i and i+l; all other grades

are unaffected.

A matter of interest is how the retraining costs vary as

a consequence of changing stocks by the foregoing technique.

We have shown in the previous section how retraining costs

in grade i respond to changes in stocks when the input flow

is fixed. We next consider how retraining costs in grade

*
i+l respond to changes in s . when the promotion flow from

* *
grade i+l, s ., p ., y •,•.« ,w is held constant.

We use three equations:

1) Balance equation

fi+l^ + ^iPi^i^i = =i+l^i+l(^i+l+Pi+l«i+l) <4'J

2) Retraining flow equation

^i+l,k = ^i+l,k -^ ^iPi^ik^ik

^i+l^i+l,k ^^i+l,k'^Pi+l"i+l,k^ (9")

3) Fixed promotion flow constraint

s..,p.,i = constant.1+1*^1+1

Taking the partial derivative of the balance equation with

*
respect to s. yields,

9s .^1 Y^a.

83* ^i+l^i+1
1
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The partial derivative of total stocks in grade i+1 with

respect to total stocks in grade i is negative when s. ^p. ,

and s.,,p.., are held constant. This may be explained in

terms of the promotion rate in grade i. Decreasing p.

causes an increase in s. but a decrease in s*p* . This in

*
turn causes a decrease in s. , . Taking the partial deriva-

tive of the retraining flow equation then leads to,

^^i+l,k /i+l,k ^i+l,k "^ik °'ik,— = Y-a. ( - ) .

3s. 'i+l 1+1 'i 1
1

We then have,

9d?,, K Y-xT 1 ^-.Li u Y-, CI •

,

1+1 _ ^, V o , i + l,k 1+1, k 'ik ik,

^
*

ds

.

1

V O ,
• 1 + 1, K 1+1, K 'IK IK

^

and,

3(d" + d"^,) K Y-u a-T, Y-u«-i1 1+1 , v r o ik ik
, , o o 'ik iJ:

i = Y -a . > [-V.

,

+ (v., -V.
, T , )

r. * 11,'', ik Y-a- ik 1+1, k y.a.
ds . k=l ' 1 1 ' 'i 1

1

+ v°
,
^

^i+l>k ^i+l,k
i+l,k Yi+i a.^^

This equation provides a rather practical means of guiding

the planner in his search for an acceptable combination of

stocks, promotion rates and retraining costs. The scalar

coefficients of the optimal dual variables in (16) are

readily computed, and they can be stored in a 3 x K matrix.

For the value of s. specified by the planner the optimal dual

variables for the corresponding retraining transportation

problem are found and (16) is computed using 3K multiplica-

tions and additions. The sign of the partial derivative in

(16) indicates to the planner how he might reduce retraining
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costs. Whether the planner chooses to make the indicated

change in total stocks to reduce costs will depend on hov/ he

perceives his constraints on stocks and promotion rates. At

any rate he may change the stocks in grades i and i+1 so as

to decrease retraining costs and confine the effects of the

stock changes to grades i and i+1.

A special case of some practical interest is that in

which retraining costs,

1) are the same in grades i and i+1, i.e.,

c^ (k,m) = c^^^ (k,m)

,

and,

2) depend only on the group retrained into, i.e.,

c^ (k,m) = c^ (m)

.

In this special case any primal feasible solution to the

retraining transportation problem is optimal, and an optimal

solution to the dual is,

V?, =0 if keKt
ik 1

= -c. (k) if kcK. .

1 1

One then has,

!ilj_^l^ V ,v. .
^ik ^i+1 ^i+l,k ^i+l,k

.

3s. kcK. 'x 1 - 'i+l 1+1
1 1

Roughly speaking, the above equation compares attrition rates

in grades i and i+1 weighted by retraining costs, and indi-

cates that costs will be reduced by reducing stocks in the

grade that has the greater weighted attrition rate.

I. THE RELATION OF TllAINING COSTS TO TOTAL FLOWS

In Sections G and H we studied the behavior of the optimal

if

retraining costs when the total stock in grade i, s., is the
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independent variable. This approach has definite practical

appeal because s. is likely to be of importance to the planner,

In this section we shall consider the behavior of the optimal

retraining costs when there are two independent variables:

the total number of people entering grade i each period and

the total number of people promoted out of grade i each

period. The two scalar variables will be referred to as the

"total flow into" and the "total flow out of" grade i. It

should be noted, that the "total flow out of" grade i does

not include the number of people that leave the system from

grade i each period.

We begin with an assumption about the external flows.

Assumption . For grades i=2,''',n the external flows are

zero vectors, i.e., f. - 0, i=2,''',n. There is a known

distribution vector f, such that the external flow for grade
a.

1 is always a scalar multiple of f , , i.e., f, always

f -I 'V

satisfies = f, .

The practical implications of this assumption are that

hiring is restricted to grade 1, and the vector of people

hired in grade 1 has a known distribution. The theoretical

implications of this assumption are that the total flow out

of grade i is the total flow into grade i+1 , and the distri-

bution of any total flov; is specified by f, or (y ^o. . ) /y .a. .

(The latter point will be explained.)
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Let us define a 1 x K vector g^ = (g •,/••• ,9; ,,) by
1 1 J. IK

g. = f, when i=l

= ^i-i^Pi-i' when i=2,---,n.

We may also write g. as the product of a total flow and a

distribution vector,

g^ = (fj^l) fj^, when i=l

= (Si_i Pi-iYi.iOCi.i) y a. ' "^^" 1=2, •••,n.
'i-l 1-1

where

,

f,l = total flow into grade 1, (a scalar)

s. ,p. , Y- T ot • 1 = total flow into grade i, i=2,*--,n,1-1^1-1 'i-l 1-1 ^ tit
(a scalar), and the vectors f, and Y •

_i
?« . _, /y • _-, ct . _, are

distribution vectors. Thus the vector of the numbers of

people entering the various groups in grade i, g., is always

equal to a scalar times a known distribution vector.

By our definitions of "total flov; into" and "total flow

out of" any grade we have,

g.I = total flow into grade i, i=l,''',n

= total flow out of grade i-l, i=2,'-',n.

Note that the total flow out of grade n must be zero, so we

define q ,
, = .

- n+1

Notation is simplified somewhat by defining,

I- = g-1, a scalar,

0. = g.,,1, a scalar.
1 1 + J.

The mnenomic I for "in" and for "- '•" is intended.
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We define the "flow plane" for grade i as the non-

2negative quadrant of E with points having coordinates {!., 0.)

That is, the total flow into grade i, I., and the total flow

out of grade i, 0., define a point in the flow plane for

grade i.

Lenuna 1. For any point (I., 0.) in the flow plane for

grade i the values of s. and p. that satisfy the balance

equation are unique. In particular,

I. - 0.

' 1 1

y.a. 0. 0.

'ii 1 1 s.y-ct.I'll

Proof. Recall that the balance equation (4) is,

f.i + s. ,p. , = s.(a. + p.).
1 1-1^1-1 1 1 '^i

But under the assumption on external flows,

f.l+s. ,p. , =1. ,

1 i-l'^i-l 1
'

so the balance equation can be written.

But,

I. = s.a. + s.p. .

1 11 I'^^i

s.p. = s . p . Y • ot

.

1^1 1*^1
' 1 1

and.

Thus,

= 0, ,

s.a. = s
.
Y .a

.

11 111

I
. = s*Y -^ + .

1 1
' 1 1 1
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Rearranging terms we have,

s? = (I. - 0. )/Y-a. .

The total flow out of grade i is

0. = s.p.

* *
= s . p. Y a

• /1 ^1 X X '

so.

0.
* X

P
^ s*Y.a.XX X

Y-a. 0.

W-a. I. - O.''
•

' X X X X

One may verify that substituting the above expressions for

s. and p. into the balance equation reduces it to an

identity. | |

Lemma 2. For any point (I., 0.) in the flow plane for

grade i the vector of retraining flows r. = (r.,,'*',r. )

is well defined, and the retraining flow for group k in

grade i, r., , is given by ,

Ym a-i Y-i ot., Y-i a-i
/T r, N X / ik jJc, „ ,'xk xk 'xk xk,

r.,{I., 0.)=gM -I- ( ) - . ( ) .

xk' x' X ^xk XY-a. i^ y.a. Y-a-
'x X 'x X X X

Proof. From Section G, equation (14) gives r., as a function
XK

of S . ,X

q., Y-i ct-i Y-i c-i Y-i a.,
, *, T/ ik ik xk,

,
* ,'xk xk xk ik,

r., (s.) = g.l( ) + s-Y-a. ( )

xk X ^x V Y'Ct. XX X Y-^- Y-a.
g.l 'x X • 'x X 'x X
'X

From Lemma 1 we have

s* Y.a. = I. - 0. .XXX X X
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Thus,

g., Y-iCt-i Y-,a-i, Y-,a.,
^ik ik ik, . ,^ _ , , ik ik ik ik.

r., I., 0. = I- i-^ -
) + I- - 0. (-

ik i' 1 1 I. YOt. 1 1 Y.a. Y-a-
1 'i 1 'i 1 'i 1

T ,'ik ik. - ,'ik ik 'ik ik.= g .
, - I . ( ) -

. ( )

.

^xk 1 Y-a- 1 Y-ct- Y-a.
'i 1 'i 1 'i 1

We must establish that g., is a well defined function of I..^ik 1

Let e, be a K X 1 vector having all zero components except

for a 1 in its k component. Let

g. = f , , when i=l,

^i-1 ^ ^i-1 ^ . ,= , when 1=2, •••,n.
'x-1 1-1

From the introductory discussion the distribution vector

g. is known.

Then g. = (g.l)g. = I.g. ,^1 ^1 ^1 1^1

and g . , = g . e,
^ik ^1 k

— 'V

= ^i^i^k •

*
Lemmas 1 and 2 demonstrate that total stock s. , overall

promotion rate p. and the retraining flows r. are uniquely

determined by the total flows I. and 0.. It follov/s that

the optimal retraining cost in grade i is also uniquely

determined by these flows.

The following notation is usefuD. in the proof of theorem

3 and in subsequent analysis:

1) g . , = g . e,^ik ^1 k

where g. and e, are as defined in the proof of Lemma 2,
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,v „ _ ik ik _ 'ik ik
' ^iK= Via, - Y.a. •

We note that g., , b., and &., are scalars; their values are
XK XK XiC

known and they do not depend on I. or 0..

We then have

Y-i a., Y., a., v., a.,
/T n.\ T /^ 'ik i-k

, ^ , 'ik ik 'ik ik.
r., (I.,0:) = I-(g-, +

. (
)

ik^ i' i' i^ik y.a. i y.a. y.a.11 11 11

= ^Uc^i ^ ^ik^i
• (^9)

Note that the retraining flows in grade i are linear functions

of the total flows into and out of grade i.

For any point (I., 0.) in the flow plane (excluding the

origin) define the ray througJi (I., 0.) as R(I., 0.), i.e.,

R(I., 0.) = { {x,y) : for some c>0, x=cl
• , y = cO . }

.

Theorem 3. For any point (I., 0.) in the flow plane for

grade i (excluding the origin)

,

1) the dual optimal solution to the retraining transportation

problem, v., is the same for all points in R(I.,0.)/

2) the value of the optimal retraining cost for any point

in R(I^,0^) is

d°(cl., cO.) = cd°(I., 0.), (c>0),
1 1 1 11 1

3) the value of p. is constant in R(T.,0.).

Proof. We begin by writing the dual retraining transportation

problem with the retraining flows as functions of the total

flows into and out of grade i.

133





K

DRTP] max d. (I., 0.) = I r.,^(I,^, 0^) v.j^

k=l

ST v., - V. <c.(k,m); keK., m K~
ik im— 1 ' i' k

v., , v^j^ UNRESTRICTED.

From Lemma 2 and equation (19)

,

r., (I. , 0. ) = b., I. + 6 0. .ik i' 1 ik 1 ik 1

The objective function in DRTP may then be written,

d.(I,, 0.) = J^(bij,Ii +
6i„ 0,)v,,^.

Let V. be a solution to DRTP at (I., 0.), i.e.,

d (I., 0.) = y (b., I. + B., 0.)v.. .

1 1 1 ,^, ik 1 ik 1 ik

At any other point in R(I., 0) the objective function in

DRTP is,

k
d.(cl., cO.) = I (h.^ CI. + &.^ cO,)v.,^

k=l

= %^/^ik ^i + ^ik °i)^ik
k=l

= cd . ( I . , . ) .

1 1 1

It is well-known that multiplying the objective function of

a linear program by a positive constant c,

1) does not change the value of the variables in the

optimal solution,

2) changes the optimal value of the objective function

by the factor c.
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Thus we have proven parts 1) and 2) of Theorem 3.

To prove part 3) we note that from Lemma 1 the value of

p* at any point in R(I-, 0-) is,

Y-a. cO

.

p* = (-^^-i)
(

^^
) , where c>0,^ ^i"i CI. - CO.

y.a. 0.

' 1 1 1 1

i.e., the value of p. is constant in R(I., 0.). \__j

The flow plane for grade i is sketched in Figure 3.

The constant-value curves for s. and p. are depicted by dashed

and solid lines respectively. Note that the ray on which

I. = 0. corresponds to p . = °° and s. = 0. The ray on

which 0. = corresponds to p. = 0.

We see from Theorem 3 that the optimal retraining cost

is linear on any ray in the flow plane. Next, we consider

the character of the optimal retraining cost in the region

bounded by two rays, i.e., a cone in the flov/ plane.

Lemma 4. If v. is the dual optimal solution to the retraining

transportation problem at two points in the flow plane,

(II , 0^) and (IV, 0!') , then v? is the dual optimal solution

at any point (I., 0.) such that for 5 6 < 1,

(I., 0.) = 6(1! , 0'.) + (1-6) (i:', 0!') .

1 1 i' 1 i' 1

Proof. If v. solves the dual retraining transportation

problem (DRTP) at (I', 0') and (I' ,
0'

) , then,
i i i i

1) V. is a feasible solution to DRTP everywhere in the

flow plane for grade i,
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0.
1

I

.

1

Figure 3. Constant-Value Curves for s. and p. in the

Flow Plane for Grade i.

K
2) d°(i:,o:) = I (b^j^il + B,, 0!)v°^

k=l

3

Let,

K
) d°(I", 0") = I (b., I" + 6., O") v°

i i k=i ^^ i 1^ 1 ^^

K

k=l
(20)
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We must show for £6£ 1/ and

(I^, 0^) = 6(1/ , 0^') + (1-9) (IV , OV ), (21)

that d°(I^, 0^) = d^(I^, 0^; v?)

.

By substituting (21) into (20) we find,

• d^(I., 0.; v°) = I (b^[6i: + (l-e)lV ] + 6^ [60. + (1-6)0!- ])v°j^

k=l

= ed?(ij , or, + (i-e)d°(i^, ov ).

Because the dual optimal solution implies a basis for the

primal optimal solution, it is readily verified that the sets

K. and K. cannot change unless the dual optimal solution

changes.

Let x! solve the primal retraining transportation problem

(PRTP) at (i:, O:), and let x '.' solve PRTP at (I!', O:'). Then11 1 1 ' 1

because the optimal values of the primal and dual linear

programs are equal, we have,

I I c^(k,m)x: (k,m) = d^(i:, 0!^), (22)

k£K. meK.
1 1

^ _ I c. (k,m)xl' (k,m) = d°(lV, OV) .

keK. meKT ^ ^ i i i

1 1

X. (k,m) = ex! (k,m) + (1-6 ) x !'(k,m) , keK^, meK^ .

By hypothesis {x!(k,m)} and {x!'(k,m)} are feasible in

PRTP. Thus

(23)
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I x^{k,in) = I (exj^(k,m) + (l-e)x|' (k,m)), kGK^

ineK~ meK
1

el x! (k,in) + (1-9) I xV(k,m)

meK. meK

er.,(i:, o:) + (i-e)r.. (i!', o:*)ik i' 1 ik i' 1

Using equations (19) and (21) we have,

I _x^(k,m) = r.j^d^, 0^), kcK^ .

meK.

Similarly it can be verified that

I X. (k,m) = -r. (I. , 0.) , meKT .

keKT ^ IK 1 1 1
1

Furthermore, x\ (k,m) > 0, x"(k,m) > and < 6 < 1 implies
1 - i - - -

that

ex' (k,m) + (l-e)x"(k,m) > ,

1 i ~

i.e., x. (k,m) > 0. We note that this is the only part of

the proof that uses the condition < < 1.

Thus we have shown that x. (k,m) is feasible in PRTP.

Using (20) , (22) and (23) we find that

I . I c. (k,m)x. (k,m) = ed°(i' , 0!) + (i-e)d°(i:', o:-)

keK"!" meK. "- ^ iii iii
1 1

= d. (I., 0., v°).

So we have found a primal feasible solution {x
.
(k,m)} and a

dual feasible solution v. and both give the same value of

the objective function, so they are optimal solutions. In

particular, v. is the dual optimal solution at (I-, 0.) as

was to be shown. Q]
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If solution of the retraining transportation at two

points in the flow plane results in the same dual optimal

solution V. , then the proof of Lemma 4 enables us to

determine the extent of the cone in the flow plane in which

the dual optimal solution does not change.

Corollary 5. If two points in the flow plane, (I!, 0!)

and (II', 01')/ have solutions to PRTP, x! and xl' respectively,11 11^ -''

and have the same solution to DRTP, v., then for any 9 such

that

ex! + (l-e)x'.' > 0,
1 1 -

the solutions to PRTP and DRTP at

(I. , 0. ) = e(i: , 01) + (1-9) (I!' ,
0".

)i' 1 i' 1 I'l
are,

Bxl + (l-e)x'.' ,1 1

and,

o

respectively.

Proof. Follows from the proof of Lemma 5. Q]

The foregoing results enable us to describe the optimal

retraining costs as a function of the total flows into and

out of grade i.

Theorem 6. The optimal retraining cost in grade i is a

piecewise linear convex function of the total flows into and

out of grade i.

Proof. The piecewise linearity of th optimal retraining

costs follows from equation (19), Lemma 4 and Corollary 5.
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To show the convexity of the optimal costs, it will

be convenient to use the original retraining cost minimization

program developed in Section F.

K K
PI] min I I c. (k,m)x. (k,m)

k=l m=l ^

K
ST I (x. (k,m) - x.(m,k)) = r.., k=l,---,K

1 jL X XK
m=l

X. (k,m) > .

Suppose x. solves PI at (I*, 0), and x. solves PI at

(I^, o"^) . Then,

K K
d°(l! 0'.) = I f c. (k,m)x! (k,m) , (25)
^ ^ ^ k=l m=l ^ ^

and

K K
d°(l" o") = I I c. (k,ra)x"(k,m) . (26)
^ ^ k=l m=l ^ ^

Let,
I n

X. = ex. + (i-e)x.
1 11

Then x . > , and

,

V K

y (X. (k,m)-x. (m,k)) = I [9 (x! (k,m)-x! (m,k) + (1-6) (x" (k,m) -x"(m,k))]
^.i XI 1 1 1 J. 1

m=l m=l

= 8 I (x!^(k,m)-x^(m,k)) + (1-9) I (x^(k,m)-x!^(m,k)

)

m=l ra=l

It II

= 6r,^(I. , 0.) + (l-e)r^(I,, 0,)

= r^(I., 0.).

So x. is a feasible solution to PI at (I., 0.). The value
1 i' 1

of the objective function with this solution is,
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K K K K
,

I ^ c^(k,m)x^(k,m) = I J c^(k,m) [ex^(k,m) + (l-e)x^(k,in)]

}c=l in=l k=l m=l

= ed°{l!, o') + (1-G)d°(l", o")
1 11 1 i' 1

from (25) and (26)

.

But the minimal value of the objective function can be

no greater than the value resulting from the feasible

solution X., i.e.,
1

d°(i^, 0^) < ed°(i^, o[) + (i-e)d°(i^, oj).

We use the assumption that 0. = -^--i' i=l»''"/ri"l to

combine the flow planes.

Let us define an (n+1) -dimensional "flow space" as the

nonnegative orthant of E , and let the i component of any

point in this space be the total flow into grade i, i=l,*'',n,

St
and the (n+1) component is identically zero. Let,

• ^°(Il''--'^n+l) = lA^^i' ^i+l)' f27]
1=1

where I
, , s 0.

n+1

Theorem 7. The function d (I,,""',! ,,) is convex. It is
1 n+1

linear on cones in which the optimal dual solutions do not

change.

Proof. The sum of convex functions is a convex function, so

Theorem 6 and the definition of d (!-,•••, I ,) indicate it

is convex.

We have from Corollary 6 that in each grade i, the

optimal retraining cost d.(I., I-.-i) is linear in any region

in which the dual optimal solution v. does not change.
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Theorem 3 and Lemma 4 indicate that such regions are two-

dimensional cones. The intersection of such two-dimensional

cones in the (n+1) -dimensional flow space defines a cone in

E . The sum of linear functions is linear, so the latter

part of the theorem follows. Q
It has been shown in this section that under the

assumption that external flows are restricted to the lowest

grade, the retraining costs are a convex function of the

total flows of people between grades. Consequently, in a

cost minimizing scheme such as that described in Section H,

any local optimum is also a global optimum provided the set

of solutions considered feasible is a convex set in the flow

space.
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APPENDIX A. SUr-U-lARY OF NOTATION

For the most part scalars and vectors are denoted by

lower case letters, and matrices are denoted by upper case

letters. There are exceptions.

The subscript i is used to denote the first character-

istic, grade. The subscript j is used to denote the second

characteristic.

A matrix of zeroes is denoted by . A vector of zeroes

is denoted by . A vector of ones is denoted by 1. The

dimensions of 0, and I are implied by the context in which

they are used. For any vector x we use xl to denote the sum

of the components of x.

Unless otherwise indicated the empty sum and the empty

product are defined as identity elements for the correspond-

ing operator. For example,, if B is a matrix then,

i-1 _

J]
B =0, the additive identity matrix, when k>l,

m=k

i-1

m

n B =1, the multiplicative identity matrix, when k> i.
m=k m

When a matrix is displayed in terms of its submatrices,

the zero submatrices m.ay not be shown explicitly. For

example.

Qi

Q = Q. P,

Q.
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For any square matrix A we use A, to denote the matrix

which has the same elements as A on its main diagonal but

has zeroes elsewhere. For any matrix B v;e use B to denote
-' sq

the matrix which has the square of the elements of B as

its elements.

The matrix P. and the vector s
.
(t) are defined for

i=l,'-*,n. For convenience we may use the convention P.=0

and s^(t) = for i < 1.

If X and y are two vectors such that

^ = (^l'-"'^m^

and,

y = (yi,-",yj,
then we define the congruent multiplication operator, @,

by,

xOy = (x,y,,*'',x y ).
-^ I-' 1 ' m-^m

'

Congruent multiplication is discussed in some detail in

R. A. Howard, 197 0.

A "distribution vector" is a nonnegative vector having

components that sum to one. Row vectors are enclosed in

parentheses. Column vectors are enclosed in brackets.

The symbol lZI denotes the end of a proof.
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APPENDIX B. DIAGONAL MATRICES

Let A be a matrix, not necessarily square, and let

A (k,j) be the element of A in row i and column j. We say

that A is a diagonal matrix if for some integer k , a (k,j)

^ implies that j-i equals k . V7e call k. the index of the

diagonal matrix A.

The key cell of the diagonal matrix A is defined as:

(1) A (1,1) if k^ = 0,

(2) A (l,k^ + 1) if k^ > 0,

(3) A i^-'^j^, 1) if k^ < 0.

We will use the notation (i,/ j^) ^^^ the row and column of

the key cell of A. Note that j - i = k. .

t\ J\ /\

If A is a zero matrix, then it is a diagonal matrix, and

the value of its index is arbitrary. If A is a non-zero

diagonal matrix, then its index is unique and its key cell

is well defined.

Let A be a non-zero mxn diagonal matrix, and let Z be

maximum number of non-zero elements in A. Then it is readily

verified that

Z- = min {m + min {O, K }, n - max {0, k }}.

All non-zero elements of A are in the set:

{A(i^ + r, j^ + r); r = 0,1, •••,z^ - l).

This set is called the non-zero diagonal of A.

The purpose of this appendix is to show that diagonal

matrices can be stored and multiplied in compacted form.
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If A is an m X n diagonal matrix, then the compacted form
*

of A is a vector A v/here,

A* (1) = m,

A* (2) = n,

A* (3) = k^,

A* (4) = z^,

*
and the fifth through last elements of A are the elements of

the non-zero diagonal of A.

A zero matrix A may be stored as a four-component
*

vector A :

A* (1) = m

A* (2) = n

A (3)>_n or A (3)_<-m

A* (4) < 0.

We will show that the product of diagonal matrices is

a diagonal matrix, and that the product is efficiently

computed using the compacted forms of the multiplicand and

product matrices.

Lemma 1 . If A and B are diagonal matrices such that C = AB

is defined, then C is a diagonal matrix. Furthermore the

index of C is the sum of the indices of A and B.

Proof , If C is a zero matrix, then it is a diagonal matrix

and the value of its index is arbitrary.

If C is not a zero matrix, then for some row i and column

C (i, 3) / 0.
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We note that C(i, j) is the inner product of the i row of

A and the j column of B, and that each of the rows and

columns of A and B contain at most one non-zero element.

Consequently, there must exist nonnegative integers r and

r such that:
n

C(i, j) = A(i^ + r^, j^ = r^) B(ig + r^, j^ + r^)

i = ^A -^ ^A

^ = ^B + ^B

3a = ^A = ^B -^ ^B
•

Starting with the last equation

^B
=

3a + ^A - ^B

^ = ^ifi + ^A -^ ^A - ^B

^-^ = ^B + 3a -^ ^B - ^A

=
^^A - ^a) + ^h - ^B^

= ^A ^ ^B-

Continuing with notation used above, we see that each

element of the non-zero diagonal of C is the product of

elements of the non-zero diagonals of A and B. We consider

next how the elements of the non-zero diagonals of A and B

are paired to form the non-zero diagonal of C.

From the proof of the lemjna, if C (i,j) / 0, then for

some non-negative integers r and r^^:

(1) C(i,j) = A(i^ + r^, j^ + rj B(i^ + r„, j^ + r^)
B'

(2) i = i^ -H r^
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(3) j = J3 + rg

To find the relation between r, and r we note that

^h -^ ^B^ - (^A -^ ^a) = ^ - i

= ^A -^ ^B'

so.

^B
-

^A = ^A
-^

^B
-

^B + i^

= ^^B - ^B^ + (^A -^
'^a)

But,

i^ + k^ = 1 + k^ if k^ >

= 1 if k- < 0,A -

and,

^B - 3b = -1 if kg >

= k„ -1 if k„ < 0.

Thus,

^B - ^A = ^B -^ ^A

where k_ = k. if k, >
A A A

= otherwise,

^B = ^B
if

'^B
< °

= otherwise.

^^^ ^AB = ^B -^ 4 •

1) If k- 4- k+ = d^3 > 0, then r^ =' r^ -h d^^ > 0, and

the first element of the non-zero diagonal of A is paired with

St
the (d,„ + 1) element of the non-zero diagonal of B.

AB ^
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2) If kg + k^ = d^g < 0, then r^ = r^ - d^g > 0, and the

first element of the non-zero diagonal of B is paired with

the (1-d^--) element of the non-zero diagonal of A.AB

Consider the case

^A = -^AB

^B = ^AB

Then,

^B - ^A = ^AB -^ ^AB = ^AB '

and.

C(i,j) = ACi^-d-g, JA-d^B^^^V^B'^B+^AB^

^
=

^B -^ 4b •

If k^ > or k^ < 0, then,
A — B —

1) ^AB < -^
'^B

< °

-> j = 1

2^ ^AB > - k^ >

-^ iA= 1

-> i = 1

3) ^AB = ° -^ ^A = ^B = °

^
^A = ^B = 1

So if k > or k < , then either i or j equals 1 in the

equation

C(i,j) = Ad^-d^g, J;,-d^B)^(V^AB' ^b'-'^Ab)
•
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That is, C(i,j) is the key element of C.

If K, < and k„ > 0, then d,^ = and
A B AB

C(i,j) = C(i^,jg) = C(l-k^,
1+^^B^'

and the first min (-k , k„} elements of the non-zero diagonalA D

of C are zeroes.

The foregoing observations lead to the following algorithm

for multiplying two diagonal matrices.

1) Compute d,^ = k_, + k, .^ AB B A

2) Drop the first d elements of the non-zero diagonal

of A and store the remaining elements in a vector VA.

3) Drop the first d ^ elements of the non-zero diagonal

of B and store the remaining elements in a vector VB.

4) Drop elements from the end of the longer of the two

vectors VA and VB until they are of equal length. Multiply

corresponding components of these vectors to form a new vector

VC.

5) Append max {0, min {-k ,k„}} zeroes in front of VC.

Compute z , the length of the non-zero diagonal of C, and

append zeroes to the end of VC as necessary to form the non-

zero diagonal of C.

6) The first four elements of the compacted form of C

are A(l), B(2), k + k_, , z , The remaining elements are the
A B C

non-zero diagonal of C as computed in 5)

.
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