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ABSTRACT

Two-beam deckhouse theory including shear deflection is developed.
Estimated value of deck shear-lag factor "r" is included in the theory.
The longitudinal stress distribution is obtained using the developed
theory and Bleich's method. The results are compared at midship and at

the end of deckhouse. The agreement between the results at midship is

reasonable. The difference between the results at the end of deckhouse
is more distinguishable.
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NOMENCLATURE

A. cross sectional area of deckhouse

A. section area of deckhouse (webs only)

A« cross sectional area of hull
I

A„ section area of hull (webs only)

a Distance between centers of gravity of hull and
deckhouse

I total moment of inertia of structure cross section

I factor for determining I

I, moment of inertia of deckhouse cross section

I« moment of inertia of hull cross section

K deck stiffness

£ length of deckhouse

L length of hull

2b beam of hull

M constant moment

M moment in the midship section due to the loads p..

and p 2

(Pi+Po) equally distributed loads (load/unit length)

x.. vertical distance from center of gravity of deckhouse
cross-section

x~ vertical distance from center of gravity of hull
cross section

x vertical distance from center of gravity of entire
section

z horizontal distance from amidship

y transverse coordinate distance from centerline
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a ratio of the distance of center of gravity of deck-

house from main deck

_ ratio of the distance of center of gravity of hull
from main deck

E Young's modulus

G modulus of elasticity in shear (= . . )

y Poisson's ratio

Q. longitudinal stress in deckhouse

O longitudinal stress in hull

r shear-lag factor
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INTRODUCTION

In 1953, H. H. Bleich published a paper in the "Journal of Applied

Mechanics" entitled "Non-Linear Distribution of Bending Stresses Due to

Distortion of the Cross Section". In this paper he derived a viable

analytical solution to the problem of hull-deckhouse interaction.

Basically, he considered the hull and the deckhouse as separate

beams which are forced to act together by shearing forces and by verti-

cal forces resisting relative displacements of the two beams. The case

of constant cross section of the beam is treated, and it is assumed

that Navier's hypothesis is valid for the deckhouse and hull separately.

For two types of loading he considered (constant moment loading and

equally distributed load) , solutions were in a qualitative agreement

with the test results at midship. As one moves away from amidships or

the center of the deckhouse structure, solutions were departing from

the reality.

It is proposed that including shear effects into Bleich f

s original

two-beam deckhouse theory, it is possible to improve it, particularly at

deckhouse ends. In order to confirm or disaprove this hypothesis, new

theory which includes shear effects is developed, and the results are

compared at midship and at the end of deckhouse.

The theorem of Minimum Potential Energy is used in the analysis.

The variational procedure established two coupled six order differential

equation systems and the natural boundary conditions. The boundary value

problem is solved for the displacement and then the stress distributions.
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FUNDAMENTAL ASSUMPTIONS

The two components of the combination of hull and deckhouse are

treated as if each were a Navier beam which are forced to act together

by shearing forces and by vertical forces.

It is assumed that the stiffness of bulkheads or deck beams

resisting relative vertical displacement of the deckhouse is constant

for the full length of the deckhouse, the magnitude of the stiffness

being given by a spring constant K. In reality, the deck stiffness K

vary along the deckhouse length due to the presence of structural

bulkheads

.

The possibility of having different materials for hull and deck-

house is not considered in this analysis.

Shear deformation is accounted for in the sides of both hull

and deckhouse. For this purpose, the following equations are employed,

M
l

= - EI
l
(y

l
+
ATG> (1)

lw

p
. 2 (2)

2w

The longitudinal stress in the deck at the junction and the

longitudinal stress in the deck-edge may differ. Bleich's theory

neglects this. To include the shear-lag effect in the deck-edge and

deckhouse side, the following assumption is used,

O
x

= r a
2

(3)

where r is the ratio of longitudinal deck stress at the junction to

the stress at deck-edge.
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Precise determination of "r" would require two-dimensional

elastic analysis of the response of all plate elements of the section.

For the present purpose, it is assumed that "r" has the same value it

would have without the deckhouse, determined by a box-girder analysis

of the hull alone, such as in Reference (2). According to this analysis,

for a sinusoidal bending moment:
*

r =
1 TTb ^ Slnh "¥" + 2

°
0Sh ^ " \ tanh \ C °Sh "^ ^

cosh -r-

It is pointed out in Reference (A) by Shade, for a bending

moment which is constant over the length of the deckhouse "r" should

be taken as unity.
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CHAPTER I - ANALYSIS OF A SIMPLIFIED TWO CELL STRUCTURE

Consider the problem of two separate beams forced to act together

by horizontal shear forces and vertical forces acting at the junction of

hull and deckhouse, (Figures 1 and 2). The vertical forces are due to

elastic resistance of the deck framing or bulkheads against the motion

of the super structure with respect to the hull. The system consists,

therefore, essentially of a beam elastically supported by another beam,

with a shear connection to enforce equal strains at deck level.

In this section the important simplifying assumption made is that

the deck A-B, Figure 1, and its supports have no stiffness, and will not

resist any relative vertical movements between hull and deckhouse.

This simplification is not justified for any real ship system, but

because of its relative simplicity it is easier to study the play of

forces; the understanding gained is of value in treating the full

problem in the following chapters.

In the structure shown in Figure 1, the lower hollow box beam

represents the hull and is of length L while the upper box, the

deckhouse, is shorter and is of length £. Both boxes are assumed to

be of constant cross-section. The cross-sectional area and the moment

of inertia of the deckhouse and hull are A , I , and A- , I~,

respectively, and the distances of the respective centers of gravity

from each other and from the deck are a, a a, and a_a.

At a distance z in the free body diagram of Figure 2, the moment

and direct forces in the deckhouse and hull are M
1

, N , and M
? , N

respectively, with positive moments producing compression at the top of
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the respective units. Direct forces N.. and N~ are positive if they

create tension. The external loads acting to the left of the section

have a moment M. A shear force T of unknown magnitude will act on

the underside of the deckhouse, and a similar force T will act in the

opposite direction on the hull. Equilibrium of the portions of deck-

house and hull in Figure 2, requires the relations:

N
x

= -T, M = - a aT (5a)

N
2

= T, M
2

= M - a a
2
T (5b)

Owing to the assumption that Navier's hypothesis is valid for the

deckhouse and hull separately, the stresses can be determined at points

at a distance x.. or x~ from the respective center of gravities. In

the deckhouse,

N M
1

a
i

=
a7" T[

x
i

(6a)

in the hull,

N
2

M
2

ff2"i£"lp2 (6b)

with tension stresses counted as positive.

At the junction of deckhouse and hull, the longitudinal stress

in the deck at this junction and the longitudinal stress in the deck-

edge may differ; simple beam theory implies that they are the same.

Shear lag in the deck plating may modify this using the following

relation,

°1
= ra

2
(3)
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where r is the ratio of longitudinal deck stress at the junction to

the stress at deck-edge.

Furnishing Equations (5) and (6) with x. = -a ot x = a ^ and

using Equation (3), the value of T is found to be:

a a
?

I r

T = n—

n

M (7)
19 19 9 9 9 '~-^ + -±-^ r + a (a, r 1 + a I )
A, A- 2 112

T was defined as the total horizontal shear force acting between

the left end of the deckhouse and the section at z. According to

Equation (7), T is proportional to the moment M, and the unit horizontal

shear (dT/dz) which will be transferred by rivets or welds from the hull

to the deckhouse, will be

, T a a I r

£ = n

—

it V < 8 >

12 . 12 2, 2 T 2 _ ,

Tj" +
"XT"

r + a (a
2

r h + a
i V

dM
where V = -r~» is the total shear force in the structure,

dz

After finding the value of T using Equation (7) , and introducing

this into Equations (5) and (6) , the longitudinal stresses O and G_

at any point can be calculated easily.
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CHAPTER II - GENERAL ANALYSIS OF TWO-CELL STRUCTURE

Consider again the structure in Figure 1; differing from the

treatment in the preceding section the assumption is made that any

relative displacement of the deckhouse with respect to the hull will

be resisted by the internal forces required to deflect bulkheads and

transferse beams supporting the deckhouse. The deckhouse is considered

as a beam elastically supported on the hull, and is further attached to

the hull at deck level so as to enforce equal strains. External vertical

loads and buoyancy will cause the structure to deflect, and this

deflection can be described by the displacements y, and y~ of the center

lines of the deckhouse and hull respectively, (Figure 3). In order to

exclude motions of the entire vessel as a rigid body, y, and y_ are

defined as the relative displacements measured from a straight line

C-D rigidly connected to the hull. As a result of this definition the

displacement y. of the centroid of the hull at points C and D must

always be zero.

C.G. of Deckhouse

~i?rrr::

•^
OVJ

Deflected
Centerlines

C.G. of Hull FIGURE 3
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It is assumed that the stiffness of bulkheads or deck beams,

resisting relative vertical displacements of the deckhouse, is constant

for the full length of the deckhouse, the magnitude of the stiffness

being given by a spring constant K. K is defined by Bleich as being

the force per unit length of deckhouse required to produce a relative

deflection equal to one unit of length. Therefore the vertical

reaction between hull and deckhouse will be K(y.. - y_) per unit of

length .

The structure analysed here is shown in Figure 4. There are two

beams having areas A., and A- and moments of inertia I., and I,,; and they

are connected along C-D in such a way that both horizontal shear forces

and vertical reactions can be transferred. It is assumed that, also,

Navier's hypothesis to be valid for the hull and for the deckhouse

separately.

FIGURE 4
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This structure will be under the action of vertical loads p
1

on the deckhouse, p„ on the hull (which includes buoyancy), shear forces

Sr , S and moments M and M^.

Using the "theorem of stationary potential energy", the

differential equations for the deflections y, and y~ can be obtained.

The total potential energy U consists of the internal strain energy V,

and the potential energy U of the external forces. The total potential
w

energy U = V + U is
,

«-*

1/2
r

[E^ y^2 + EI
2

y"2 + El^yJ + r a^" 2
)

2
+ K(y

±
- y

2
)

2

-1/2
2 ' 2

+ E E*(y'")
2
+ E F*(y"')

2
+ E G*(y T " y

r ")

1 2 .12

- 2Pl y. - 2p y ] dz + [M y :]
£/2

- [S y,]
l/2

(9)11 Z Z
-1/2

Z
-1/2

U will be minimum if the variation

6U =

Using the rules of calculus of variations, the set of two simultaneous

2
equations are derived.

See Appendix I, for the derivation of V and U

See Appendix II
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„,,. VI _,_ 2 _ N IV
, Tr EG* VI . ^ IV

EE* y±
+ EC^ + O

x
I
A)

7l
+ K

yi
-— y2

+ E ro^ a
£

i
A y,.

-Ky
2
=P

1
(10. a)

EG* VI IV VI 2 2 IV— y
l

+ E r a
i
a
2

X
A y

l " K yl " EF* y2
+ E(I

2
+ r a

2 V y
2

+ K y2
= p

2
(10. b)

The calculus of variations method also furnish the boundary

conditions required to determine the arbitrary constants which will

appear in the general solutions of the differential equations.

Because of symmetry, there are six boundary conditions instead of

twelve. For z = + 1/2 and z = - 1/2

y2
- (11. a)

2EE* y^" + EG* y
2
"' = (11. b)

EG* y{" + 2EF* y2
M

' = (11. c)

IV 2 ' ' EG* IV i I

-EE* y^ + E(I
X
+ a

±
I
A ) y^yy^ + Er^ a

2
I
A y

£
=0 (11. d)

EG* IV »« IV 2 v • i

"T y
l

+ E r a
i
a
2 h y

l
" EF* y2

+ E(I
2
+ r

2
a
2 V y

2
= "M

(11. e)

V 2 '
'

' EG* V » '

«

EE* yx
- E(I

1
a* I

A) y
x

+ ~- y^ - E(r 0^ a
2

I
A) y

£
= (11. f)





-26-

II. A - NON-DIMENSIONALIZATION OF THE EQUATIONS

It is thought that employing non-dimensional equations and

boundary conditions, the amount of algebra in the computation will

be reduced and the results can be represented in a general form.

Non-dimensionalization is made in the manner that is given

by the following equations.

yi
= y. £, i = 1,2 ' (12. a)

z = z I (12. b)

a = a Z (12. c)

A
i

= \ %1
> i = 1

'
2 (12. d)

I. = Y7 £
A

,
i = 1,2 (12. e)

P± = p ±
U, i = 1,2 (12. f)

M = M E I
3

(12. g)

K = K E (12. h)

The length of the deckhouse is selected as a characteristic length,

because it is one of the most important parameters in the distribution

of the longitudinal stresses.

Substituting Equation (12) into Equations (10) and (11) , the

following non-dimensional equations and boundary conditions are

derived.

-VI -IV - — • -VI
, , -IV - — — /no v"a16 y

l
+ a

14 y l
+ K yx - a y2 + b y

2
- K y

£
= V± (13. a)

-VI
,

. -IV - — -VI -IV -— — ... ..
-a yx

+ b y
1
-Ky^ a

26 y
2

+ a
24 y

2
+.K y

2
= P

2
(13. b)





-27-

Boundary conditions for z = + 1/2 and z = - 5-/2,

y2
= (14. a)

a
16

y{" + a y2
" = (14. b)

a yl
a
26 y2

= 0-4 «<0

-IV -« i -IV -»

'

~a
l6 y

l
+ a

14 y
l

" a y 2
+ b y 2

=
° (14. d)

-IV - 1 i
" -IV -' •

-a y
1
+by

1
= o.^ y

2
+ a^ y

2
= -M (14. e)

-V -ill -V -iii
a
16 yl " a

14 y
i

+ a y
2

" b y
2

=
° (1A * f)

Expressions for non-dimensional coefficients for the equations and

boundary conditions are given in the section entitled "Parameters

Used for Computation".
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CHAPTER III - SOLUTION OF DIFFERENTIAL EQUATION FOR CONSTANT

MOMENT M

Considering the simple case that the loads p , p and the

shears S and S are zero, the only loads being M = M^ = M,

Equations (13) are then homogeneous.

Setting the determinant of the coefficients of the differential

equations equal to zero, the charactericits equation will be derived,

and it will be in the following form.

r
h

(r
8
+ a

3
r
6
+ a

2
r
4
+ a

r
r
2
+ a

Q
) - (15)

where, a , a
?

, a , and a.~ are known constants. The roots of the

characteristic equation is found for the models with different

dimensions, and it is seen that the roots were always in the following

manner

.

r
l

= r
2

= r
3

= r
4

= ° (16. a)

r
5

= - Y
3

(16. b)

r
6

= Y
3

(16. c)

r
?

= - y
4

(16. d)

r
g

= Y
A

(16. e)

r
9

= - Y
1

- i Y2
(16. f)

r
10

= " Yl
+ ± Y2

(16 '8 )

rn - y1
- 1 y2

• (16. h)

r
12

= y1 + i Y
2

(16. i)
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Then, keeping in mind that the problem considered is symmetrical

with respect to the origin of the co-ordinate z, and using only

symmetrical functions, the general symmetrical solution will contain

only six arbitrary constants. This general solution is,

y, = c.. + c- z + c. sin y_ z sinh y-i z + c, cos Y- z cosh Y-, z

+ c c cosh Y. z + c, cosh Y, z
5 '3 6 '4

(17. a)

-2
y2

= c. + c„ z + c' sin Y2
z sinh Y-, + c' cos Y2

z cosh y. z

- y c_ cosh Yo z - V, c, cosh Y/ z
J _» J 4 4

(17. b)

where,

y
i

C
3
+ y

2
C
A

c ; = - y
2

c
3
+ y

x
c
A

(18 .a)

(18. b)

and, y.. , y„, y„, y, are given in the following expressions,

(a
16
h " a

lA
f " K)

" (a
l6
m " a

lA8)

y
i

=

(-ah + bf - K)

(am - bg)

-(am - bg)

(-ah + bf - K)

-(am - bg)

(-ah + bf - K)

(18. c)

or,
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(ah - bf + K)

-(am - bg)

(
"a

26
h + a

2A
f + K)

(a
26
m " a

24
8)

- (a
26
m - a

24
8)

(
"a

26
h + a

24
f + K)

-(a
26
m - a

24g)

(
"a

26
h + a

2A
f + K)

(18. d)

(a
l6
m " a

lA
8)

(a
l6
h " a

l4
f " R)

y
2

=

(-ah + bf - K)

(am - bg)

-(am - bg)

(-ah + bf - K)

-(am - bg)

(-ah + bf - K)

(18. e)

or,

(am - bg)

(ah - bf + K)

(
"a

26
h + a

2A
f + K)

(a
26
m " a

248)

- (a
26
m " a

2A8)

(_a
26
h + a

2A
f + K)

_(a
26
m " a

2A
8)

(
"a

26
h + a

2A
f + K)

(18. f)

y
3

=
(
" a16 Y3

+ a
lA Y3

+ ^ or ^~a Y
3
+ b Y

3
~ K)

(-a yJ+byJ-K) (
"a

26 A + a
2A

Y
3
+ V

(18. g)
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(" a
l6 \ + *14 ^4 + V °r (^ Y* + b y

4

4
- K)

y
4

= 6 4 = =
6 4

(18 * h)

(" a T4 + b Y* ' K) C- a^ Y° + a^ Y* + K)

Introduction of Equations (17) into the boundary conditions,

leads to the equations to find the arbitrary constants givem in

9

TABLE (1).
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After finding the general coefficients, the stresses at any

point along the deckhouse can be computed from the expressions for

the moments M , M , and direct forces N_ , N
9 ,

M
1

= - E I
1

yj' (19. a)

M
2

=
" E h y

2
(19,b)

Because, in this case p, » p. » d

E I

N
1

= - N
2

= -^ (a
±

yj' + r a
2

y^') (20)

Here, it is important to notice that the solutions for y. and y~ will

be non-dimensional.
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CHAPTER IV - SOLUTION OF DIFFERENTIAL EQUATION FOR

FOR EQUALLY DISTRIBUTED LOADS

In this section the case is considered of equally distributed

loads p, and p~, acting on deckhouse and hull, respectively, while

the moments at the end of the deckhouse are M_, = M = 0. Equilibrium

requires external shear forces

I
S
C

= - S
D

=
f (p

i
+P

2
} (21)

at the ends C and D. The moment in the midship section due to the

loads pi and p2 are

P
l + P

2 2
m =

1
T — r

p 8
(22)

M.

t * v

z
FIGURE 5

Equally distributed loads,

P l
+ P

2
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The loading being symmetrical, the general symmetrical solutions

of Equation (13) are,

y. = c. + c
?

z + c» sin y_ z sinh y. z + c, cos y z cosh y z

+ c r cosh y. z + c, cosh y. z
5 3 o 4

+ lp i + p2) ;A _Pj
24(a

14
+ a

24
+ 2b > (1 + p

5
)K

y_ = c- + c z + cl sin y ?
z sinh y. z + c! cos y z cosh y. z

- y_ c c cosh y_ z - y . c, cosh y. z
J J J 4 H

,

(P
1 + "2 )

;* + 5
P
2 (23 . b )

24(au + ,
24

+ 2b)
(1 + vg

where c', c!, \i-, > y
? , y~» an^ ^a as given in the Equations (18) for

the case of constant moment loading, and

aU + b V
Q

P. - , r — (24)
5 a

24
+ b v

10

But it should be mentioned that the value of "r" shear-lag factor will

be different in this case, so all the coefficients will not, in

general, have the same numerical value.

Introducing general solutions Equations (23) into the boundary

conditions Equations (14) will lead us to the same kind of equations

given in Table 1. But, there will be some more terms, because of the
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particular integral parts of the general solutions. These additional

terms can be determined easily, using the particular integral parts

of the general solutions.

After finding the general coefficients, the further computation

to find the stresses at any point along the deckhouse follows the

pattern for the preceding section. The only difference being that

the additional terms appear in the equations for M and M« due to

distributed loads p. and p 9
on the deckhouse and hull, respectively.

lw

M
2

=
" EI

2 <*2
+ lh ) ' (26)

2w
EI

N
l

= - N
2

=
-T (a

iyi'
+ ra

2
^') (27)
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CHAPTER V - TOTAL SOLUTION OF DIFFERENTIAL EQUATION

Considering the total loading for the system shown in Figure (5)

,

being equally distributed loads p 1
and p 9 , acting on deckhouse and hull

respectively, while the moments at the end of deckhouse are M = ]yL = M,

it is possible to find the total solution

The differential equations for this system are Equations (13)

and the boundary conditions are given by Equations 0.4) for (+ —) and

(- —) . The problem considered is symmetrical with respect to the

origin of the co-ordinate z. The general symmetrical solutions of

Equations (L3) can be given by Equations (23. a) and (23. b) for y. and

y2 , respectively. The coefficients in the solutions (c', c', VU , vu,

y , y,, y^) are given by Equations (18) and (24).

But, it must be remembered that the values of the general

coefficients (c. , c„, c_, c,, c,., c,) will be different numerically

than the values found for the two cases considered before.

In the above approach to get the total solution, an additional

assumption is made: Deck shear-lag factor "r" is considered to be

constant over the length of the deckhouse and is given by Equation (4)

,

even though there is an applied constant bending moment at the end of

deckhouse.

Another approach to get the total solution is to make super-

position to the solutions found for. constant moment and equally

distributed loading cases.

Total solution of differential equation is found by using both

approachs explained above, and the results are compared in the
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following chapter.
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CHAPTER VI - MODEL USED FOR COMPUTATION

For this analysis a model was selected with the dimensions as

shown in Figure (6). This model can be assumed as short deckhouse, so it

will be possible to see more pronounced shear effects. Bulkheads are

placed at equally spaced distances of 20 feet in the hull section. The

thickness of the hull box girder plating is 0.5 inches and the thickness

of the deckhouse plating and bulkheads is 0.25 inches. The material

constants include a Young's modulus of 30 x 10 , modulus of elasticity

in shear of 11.5 x 10 and a Poisson's ratio of 0.3.

The model is assumed to have a 15 foot draft with a corresponding

hydrostatic upward distributed force of 17.143 tons/ft. The internal

loading is arranged so as to provide equilibrium and a resultant

symmetrical loading. Shear and moment diagrams for the total model are

also provided in Figure (7)

.

In a model with bulkheads, the main difficulty is the determina-

tion of the deck stiffness or spring constant (K) . Since K was defined

as the force per unit length of deckhouse required to produce a relative

deflection equal to one unit of length, it is apparent that the value

of K will, in reality, vary along the deckhouse length due to the

emplacement of structural bulkheads. In order to simplify the use of

the method, however, an average value of K must be determined. To

achieve this end, the same approach- that was used in Reference (3) is

followed. A symmetrical portion of the hull structure is modelled to

include a bulkhead and attached deck and bottom plating, Figure (8).
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This I-beam type structure is simply supported on its end and allowed

to deflect under vertical forces applied to the hull-deckhouse con-

nections. In the analytical procedure used for determining the forces

needed to deflect the hull-deckhouse connections 1 inch, it must be

kept in mind that although the deflection due to shear forces is

negligible in most cases, in short deep metal beams the deflection

caused by shear may become a significant portion of the total

deflection. In this case shear contributes a major portion to the

total deflection.

4
This analytic approach to K yielded a value of 1.58 x 10 psi

for the present model under consideration. Sample calculations are

provided in Appendix III.

In Reference (3)>as a further check on K, a STRUDL program using

'PSR' elements on the same model presented in Figure (8) was run.

Arbitrary forces (F) were applied at the locations indicated, and the

resulting deflection at the hull-deckhouse connection noted. The

force was then scaled for a deflection of 1 inch. P was obtained by

dividing F by the width of the flange (240 inches) . Using Equation

K = 2P, K was found to have value of 1.53 x 10 psi. As it is said

in Reference (3) , the disparity between the STRUDL K and the analytical

K can be attributed to the fact that in the analytical approach the

deflection calculations apply to the neutral axis of the beam only.

The value of K that is used in the computations was the value

found by employing STRUDL program.
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VI. A - PRESENTATION OF THE RESULTS

Presentation of the stress distributions for Bleich's method

and for the method developed are shown in Figures (9) , (10) , (11) , (12)

,

(13), (14), and (15) on the following pages. Figures (9) and (10)

show the comparison of longitudinal stress distribution for constant

moment loading at midship and at the end of deckhouse, respectively.

The comparison of the results for equally distributed loading are shown

in Figures (11) and (12) at midship and at the end of the deckhouse,

respectively. Figures (13), (14), and (15) show the comparison of

stress distributions for the total solutions.

For the computation of the results, the model shown in Figure (6)

is used for both methods.

"ACCESS II" Primer Operations in Linear Algebra for the Interdata

Computer in Joint Computer Facility is used to find the roots of the

characteristic equations and to solve the general coefficient matrices.

The explanation about Bleich's method can be found in References

(1) and (3).
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" CONSTANT MOMENT LOADING"
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"EQUALLY DISTRIBUTED LOADING"
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VI. B - COMPARISON OF THE METHODS

In Figure (9) , the longitudinal stress distributions at midship

found by using two methods were plotted. In this figure, it can be

easily seen that both results are almost the same except 400 psi

difference in stresses at deckhouse top. The difference is 50 psi at

main deck level.

Figure (10) shows the comparison of two methods at the end of

deckhouse. In this case, the difference in stresses at deck level is

320 psi. At deckhouse top, there is a big gap between the values of

stresses found by using two methods. At hull bottom, the difference

is about 30 psi. But, the value of stress found by using the theory

developed is smaller than the value found by Bleich's method.

Figures (11) and (12) show the comparison of longitudinal

stresses for equally distributed load. Looking at the results shown

by solid line in Figure (11) , shear-lag effect at main deck level can

be seen easily. All the values for stresses are smaller than the

results found by Bleich's method. But, the differences are not so big

at mid ship.

In Figure (12) , it is not difficult to recognize the big

differences between the results found by using both methods. The

differences are approximately 1290 psi, at deckhouse top, and 690

psi at hull bottom. At main deck level, there is about 310 psi and

400 psi difference between the results at hullside and at the junction

of main deck and deckhouse, respectively.
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Figure (13) shows the comparison of the total solution at

midship. The strudl results were taken from Reference (3). The

agreement among the results is reasonable. The stress distributions

were transformed into moments and checked against equilibrium condition;

that is, the values of the moments obtained corresponded to the value

on the bending moment diagram, except for strudl results and for the

total solution using r = 0.76, strudl results give 9% bigger than the

moment at midship, and the total solution with r = 0.76 gives 6% smaller

bending moment. This was expected, because shear-lag factor r = 0.76

is not true for the whole system with applied constant bending moment

at the end of deckhouse.

In Figure (14), the total solutions found by using r = 0.76,

r = 1.0 and the total solution by superposition were compared. In

this figure, it is seen that the total solution found by using r = 1.0

takes the average of the stresses at deck level.

Comparison of the total solutions at the end of deckhouse were

shown in Figure (15) . The values of the stresses found by using the

theory developed were always smaller than Bleich's results.

As a conclusion of the comparison of the methods, inclusion of

the shear effects into two beam theory did not change the values of

the stresses at midship. But, at the end of deckhouse, more

distinguishable differences were found.
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CONCLUSIONS AND RECOMMENDATIONS

Even though the method which includes shear effects requires

more elaborate work, it is seen that it is possible to use it for

computing the longitudinal stresses at any point along the deckhouse.

There seems to be no reason to ignore these effects in design procedures

for short and moderate deckhouses where the shear effects could be

pronounced.

After examining the comparison of the results found by using

both methods at midship, it is possible to conclude that there is some

indication to use Bleich's method for design purposes in the computa-

tion of longitudinal stresses at midship. The simplicity in his compu-

tation is a prime factor. But, for the stress solution at the end of

the deckhouse where more distinguishable differences were found by

employing both methods, the inclusion of shear effects into two-beam

theory being used is necessary. The results may become more realistic.

In the theory developed, the shear-lag effects in the deck

represented by "r" is important only in the case of equally distributed

load. Application of Equation (4) is a very simplified means of

estimating "r", because it was determined by a box-girder analysis of

the hull alone in Reference (2) . Even though it may require a much

more elaborate analysis, it is recommended to improve on the estimation

of the shear-lag parameter.

In this analysis, the stiffness of bulkheads or deck beams

resisting relative vertical displacements of the deckhouse was assumed
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constant for the full-length of the deckhouse. It is known that the

deck stiffness K vary along the deckhouse length due to the presence

of structural transverse bulkheads. The inclusion of this variation

in K in the two-beam deckhouse theory needs further investigation.

Finally, it is recommended to built a physical model similar to

the one considered in this theoretical analysis. Then the strain and

deflection measurement under similar loading conditions could be

employed for verification of the results.





-56-

APPENDIX - I

I. A - DERIVATION OF STRAIN ENERGY OF STRUCTURE

Denoting by z and c the average longitudinal strain in the

deckhouse and hull, respectively, the strain energy of the longitudinal

stresses will be as follows:

Deckhouse:
1/2

1/2

(A
l

e
l
+ I

l
y
l'

2
>

dz

Hull:

1/2

(A
2

z\ + I
2
y" 2

) dz

"1/2
' 2

The strains are counted positive if they represent elongation.

In addition to the strain energy of the longitudinal stresses,

there will be energy stored in the bulkheads or deck beams which resist

the relative vertical displacements of deckhouse and hull; this part

of the strain energy can be expressed by the spring constant K in the

form

1/2

K(y
l

" y
2
} dz

1/2

The strain energy due to the shear deflection caused by vertical

shear forces will be as follows:

Deckhouse:

k
!

v
l

AG
-A/2

dz
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Hull:

V2 t * 2
k* v
2 2 .

A
2
G

-A/2
z

where, k* and k* are shear deflection constants and for wide flange

box girders, can be assumed that they are equal to 1.0.

The total strain energy V is

v
2

V2
tA

l
£
l
+Il^'

2
+ A

2
£
2
+ I2^2

,2+
f Cyx-y2

)

:

-A/2

.'12 1 . 2, , . .

+ 2EGA/2 +
2E6AJ

V
2

] dz (a)

The stresses in the deckhouse and hull can be expressed by

the average strains £, and e«, and by the second derivatives of the

deflections y. and y_

i i

Deckhouse: a. = Ee. + E y x

Hull: a
2

= Ee
2
+ E y'' x

2

Using the relationship given in Equation (3) in Chapter I

for the longitudinal stress in the deck at the junction, and the

longitudinal stress in the deck-edge,

^ - r e
2

= aa
x

y|' + r a a^yj 1

(b)

Further, the longitudinal resultant of all stresses in the deckhouse

N- , must be equal to EA, £ , and, similarly, N» = EA~ £_. The
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resultant of all longitudinal forces, N + N_, must vanish.

N
x
+ N

2
= E(A

X
e
x
+ A

2
e
2
) = (c)

By means of Equations (a) and (b) , e. and e_ can be expressed as

follows:

a A„
: , i » it
- Its vr 4- v IV it

(d)
(a

l y
l

+ r a
2 *2)

1 2

a A
e
2

== "
rA, h A„ v"l '1(a, y, + r a

2 y2 ) (e)

1 2

Substituting expressions for e.. and e , and v, and v„ (Equations

1, and m, in I-C) into the Equation (a) for total strain energy V,

fV2

V = E

2

r-r ' '2
, T ' '2

,
_ , f», 1 1 2 ,

K. N 2
[I

i yi
+I

2 y
2

+ Va
i

yi
+ r a

2
y
2 >

+
E
(y

i
- y

2
}

a/2

n2 tn2 tit 1 1

1

+ E* y + F* y2
+ G* y y2 ] dz (f)
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I.B - POTENTIAL ENERGY U OF EXTERNAL FORCES
w

Counting p
1

and p„ positive if acting downward, their potential

energy is,

rV2
(v

±
y ±

+ p
2
y
2

) dz

-1/2
The shear forces S and S^ and the moments M and >L act

c D c D

immediately outside points C and D, and their potential energy will

depend on the vertical displacements y_ and y y^» and on the rotations

of* the end surfaces of the hull, yA r > and yArv*

Taking into account the direction of. the shears and moments

shown in Figure 6 in Chapter II, the potential energy will be;

" S
D y2D

+ S
c

y2c
+

«D y M
c y2c - - ^An + ^y'A/l

t _

and the potential energy U of the external load is;
w

U , fl A/2 1/2
Ml

w lHfJV/2 - [Sy
2lA/2

(pi y1
+ p2 y

2
) dz (g)

-1/2
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I.C - EXPRESSION FOR LONGITUDINAL FORCES AND

HORIZONTAL AND VERTICAL SHEARS

The resultants N.. and N_ of the longitudinal stresses in the

deckhouse and hull are N- = EA. e.. , and N~ = EA„ e„, and using

Equations (d) and (e)

EI
A

N
l

= IT (a
l

y
l

+ r a
2

y
2 ) (h)

EI
N
2

= -— (a
l

yi'
+ra

2 3F2 ) (i)

2
A
l
A
2

Where
' h = a

(r A
x
+ A

2
)

T being the total shear force from the left end of the deckhouse to a

point having the co-ordinate z, equilibrium requires,

EI
T = " N

l
= "

a
(a

l y
l'

+ r a
2

y
2
,} (j)

and the unit horizontal shear will be,

EI

dz"
= " T" (a

l y
l

+ra
2 y2 } (k)
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M, dz

FIGURE A

To obtain the expression for the vertical shear V.. , in the

deckhouse, considering an element of the deckhouse of length dz, as in

above Figure A.

Equilibrium of moments with respect to the centroid requires,

dT
dM

l
v
l

" a a
i 17

= JT
Jfp

Substituting — from the above Equation (k) and using

M
i - - EI

i <y'i
+ 175 >

lw

« • !

V
l

= " E(I
1
+ a

l V yl - a
l
a
2

r EI
A y

2
(1)
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The vertical shear force in the hull, considering Figure B below,

similarly:

V
2

= " a
l

a
2

EI
A yl" ' E(I

2
+ r a

2
I
A ) y2" (m)

M,

FIGURE B

In the derivation of the Equations (1) and (m) , attention must
dM

be paid to the following point; when the derivative of —r- (for i =
CI £*

1,2) is taken, the contribution from the second term in the moment

equation will be zero in both cases. Because, in the following

chapters, the cases considered for solving the equations are constant

moment loading (p = p_ = 0), and equally distributed loading
dp, dp 1 2
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APPENDIX II - APPLICATION OF CALCULUS OF VARIATIONS

The problem considered was in the following manner,

p£/2

U = 6 F(z, yv yj, yj\ yj", y2> y£, y^\ yjj") dz

-£/2

+ I" yy$ - ts y2l$

To get the set of two simultaneous differential equations,

Euler-lagrange equation is employed for y
1

and y« , in the following

manner,

dx dx
where,

dF „i 8FFy=9^, Fy =-^,....etc.

To get the natural boundary condition equations, the following

equations are used for y 1
and y

n" tfrr.1-0

"' ifrr -
fe (^) -

-3F d , 9F N , d
2

,_9F N1 n^ " dx"
(9?rr) +

^2 (VrfT)] =
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APPENDIX III - CALCULATIONS FOR DETERMINING K

The following is an analytical appraoch to the determination

of the spring constant (K) for a model with bulkheads spaced 20 feet

apart.

Basic Nomenclature

A Area of beam cross section

K' Factor depending on shape of beam cross section

p Distributed load at hull-deckhouse connection

Y Vertical shear due to actual forces

v Vertical shear due to load of one pound acting at the section

where the deflection is to be determined

Y.. Deflection due to internal moments
M

Y Deflection due to shear
T

Y Total deflection

x Distance along length of beam

< > Indicates singularity functions

The equation for the deflection due to the internal moments

(Y ) is calculated through the use of singularity functions. The

expression for the deflection due to shear (Y ) is obtained through

the use of the method of unit loads as described in Reference (11)

.

The total deflection (Y„) is then expressed as the sum of Y_, and Y
T v M T

and set equal to 1 inch. The equation is solved for p (the distributed

load acting on the hull-deckhouse connections) . The expression for

K is twice the value of p.
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Deflection Due to Moment Only

d
2
Y

EI —^ = 240 [p - p <x - 120> - p <x - 360> ]

dx
X

tttv o/n r
x3 <x - 120>

3
<x - 360>

3
.

EIY
M

= 240 [g g g + c
x

x + c
2

]

B.C Y„ = when x = 0, 480"
M

E = 30 x 10 psi

1 = 8,748,005 in

,-5,
Y„ = - (2.105 x 10 )p at x = 120"
M

Deflection Due to Shear

Y
T

S= "
K'

V
v

AG
dx (method of unit loads)

v = I P(2A0)x
T K' AG

K'
10(1 + y)(l + 3m)

6(2 + 12m + 25m
2
+ 15m

3
) + (11 + 66m + 135m

2
+ 90m

3
) +

where

2 2
30mn (1 + m) + 5 yi™ (8 + 9m)

2b f b
m =

, h = —
h fcw n

I-BEAM CROSS SECTION

«—

>

w
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t, = 0.5"; t = 0.25"; h = 360"; b = 240"
f w

m = 2.66; n = 0.666

K 1 = 0.262

It is customary to assume that only webs of structural shapes, such as

channels and I beams resist shearing stresses, because shear stresses

are small in flanges.

Y - - (10.55 x 10~ 5
)p

Y » Y^ + Y = 1"
T M T

1" = - (12.655 x 10
_5

)p

p = 0.7902 x 10
A

K = 2p

K = (1.58 x 10
A
)psi
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APPENDIX IV - SAMPLE CALCULATIONS

IV. A - FOR CONSTANT MOMENT LOADING

a = 306", A- = 150 in
2

, A
2

= 840 in
2

I. = 534,600 in
4

, I = 19,440,000 in
4

, I = 11,917,309 in
4

I = 31,891,909 in
4

7
M = M = 19.2 x 10 in-lbs

P

K = 1.53 x 10
4

OL = 0.4118, a = 0.5882, r = 1.0 (shear-lag factor)

b = (1.392) x 10
6

, a
l4

= (1.232) x 10
6

, a^ = (1.136) x 10
5

a = (5.685) x 10
_8

, a,, = (2.335) x 10~ 8
, a , = (3.129) x 10~7

lb zo

4, 8 6 4 2
, N nr (r + a» r + a

?
r + a r + a_) =

a
3

- -(1.208) x 10
2

,
a
2

= (2.959) x 10
3

, a
1

= -(5.630) x 10
4

a
Q

= (1.924) x 10
6

Roots of the characteristic equation are as follows:

r
l

= r
2

= r
3

= r
4

=
°

r
5

= - r
6

= - y
3

= - 5.843

r
?

= - r
g

= - y4
- - 9.656

- y - i Y = ~ 3.266 - i 3.731

r
1Q

= - y + i y
2

= " 3.266 + i 3.731

rn = y - i y
2

" 3.266 - i 3.731

r
12

= y + i Y
2

= 3.266 + i 3.731
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f = -(583.35), g = (158.58), h = 5762.89, m = 13,700.88

n
±

= (-) 3.253, n
2

= 24.370, r
±

= (-) 101.55, r
2

= (-) 67.45

S = 2236.18, S
2

= 2694.43

y 1
= (-) 0.20974, y

2
= (-) 0.00449, y

3
= (-) 0.88467

y
4

= 0.22336

t
±

= (-) 1.166 x 10" 6
,

t
2

= (-) 7.449 x 10" 7
, t

3
= 7.982 x 10

7

t. = 7.359 x 10~7
, t c

= 3.413 x 10"6
, t, = (-) 39.09 x 10~ 6

4 5 6

t
?

= (-) 3.371 x 10" 6
, t

g
= 24.899 x 10~ 6

, t
g

= 12.216 x 10
_5

t = 9.302 x 10" 5

Vj^ = 7.364 x 10" 8
, v

2
= 1.065 x 10~ 8

, v
3

= 33.375 x 10
_8

v. = (-) (1.305) x 10" 8
,

v c = 2.463 x 10" 6
, v, = 0.921 x 10" 6

H DO
v
?

= 11.444 x 10" 6
, v

g
= (-) 1.146 x 10" 6

, v
g

= 2.624 x 10" 6

v
1Q

= 12.755 x 10" 6

For the B.C's equations; (z = 0.5)

sin Yo z sinh y z = 2.34891

cos y z cosh y z = (-) 0.76987

sin Yo z cosh Y-i z = 2.53634

cos y2
z sinh Y-.Z = (") 0.71298

sinh y3
z = 9.257

cosh Yo z = 9.404

sinh y4
z = 62.540

cosh Ya z = 62.548
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Substituting everything into the B C's equations shown in Table 1,

the following matrix is derived,

1.0 0.250 -0.49611 0.1509 8.3199 -13.970

0.0 0.0 -3.5.181 -1.049 136.010 599.812

0.0 0.0 2.549 1.297 616.40 -735.20

0.0 5.249 -22.08 -94.45 -16.22 -418.6

0.0 25.51 11.25 56.73 16.12 416.3

0.0 0.0 37.62 14.88 9.321 769.2

0.0

0.0

0.0

0.0

-3.704 x]

0.0

-3

Results from the solution of above matrix,

-5

-4

-6

-9

-9

C;L
= 3.494 x 10

c
2

= - 1.290 :

c
3

= 3.070 x 10

c = - 7.899 3

4

c = 7.021 x 10

c, = 2.549 x 10
o

The value of c. is not used in the calculations, as it was pointed

out by Bleich in Reference (1) ; it describes only a rigid-body motion

of the structure not required for the purpose of this analysis.
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For z = (Midship)

N
l-^ = - 1481.439 psi

A
l

M
l~ x = (-) 494.586 psi; x = - 126.01" (main-deck level)

h

•==- x = + 211.948 psi; x
±

- 54.0" (deckhouse top).

M

H M
!

so; using ^ - — - — x
±

q1
- - 1481.439 + 494.586 = - 986.85 psi (main-deck level)

a = - 1481.439 - 211.948 = - 1693.38 psi (deckhouse top)

N
2

y- = 264.542 psi
2

M— x = 1251.396 psi; x_ = 179.989 (main-deck level)

2

— x
2

= - 1251.396 psi; x
2

= - 179.989 (hull-bottom)

N
2

M
2

Using
, ^ _ _____ ^

2
= 264.542 - 1251.396 = - 986.54 psi (main-deck level)

a
2

= 264.542 + 1251.396 - 1515.938 psi (hull-bottom)





-71-

For z = 0.5 (At the end of deckhouse)

N
l~ = - 982.177 psi

A
l

M
== x = 348.770 psi; x = - 126.01 (main-deck level)

M

"1

VL— x. = - 149.461 psi; x. = 54" (deckhouse top)

a- = - 982.177 - 348.770 = - 1330.94 psi (main deck level)

G. - - 982.177 + 149.461 = - 832.71 psi (deckhouse top)

N
2— = 175.388 psi

A
2

M— x = 1506.336 psi; x = 179.989 (main-deck level)
1
2

l

M
==• x_ = - 1506.336 psi; x = - 179.989 (hull-bottom)

a
2

= 175.388 - 1506.336 = - 1330.948 psi (main deck level)

a
2

- 175.388 + 1506.336 = 1681.724 psi (hull-bottom)
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IV. B - FOR EQUALLY DISTRIBUTED LOADING

All the values of parameter for mathematical model will be

the same except,

r = 0.76 (shear-lag factor)

A A
I* = a

2
i | . = 1.23670 x 10

?
in

A

A rA. + A
2

1=^+1+1= 32,341,600 in
4

b = 1.09790 x 10" 6
, a

4
- 1.26918 x 10" 6

, a , = 1.09432 x 10
_5

a = 5.28018 x 10"8
, a

g
= 2.48364 x 10~8

, a
26

= 2.82865 x 10" 7

Coefficients in the characteristic equation,

a
3

= - 1.21261 x 10
2

, a
2

= 2.98730 x 10
3

a
±

= - 4.96456 x 10
A

, a
Q

= 1.730691 x 10
6

Roots of the characteristic equation are as follows.

r
l

= r
2

= r
3

= r
4

=
°

- 5.882

r
7

= ' r
8

= " ^4
= " 9 ' 62A

r- - - y - i y2
= - 3.183 - i 3.621

r
1Q

= - y1
+ i y2

= - 3.183 + i 3.621

r
±1

= y - i y2
= 3 - 183 " ± 3.621

r
12

- y1
+ i y2

- 3.183 + i 3.621
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f = - 522.480, g = 137.393, h = 4724.149

m = 11,634.397

11-*=- 2.980, n
2

= 23.051

r
1

= - 92.955, r
2
- - 62.581

S. = 1895.044, S
2

= 2329.223

VI - - 0.20766, y
2

= - 0.01375, \i = - 0.72377

y. = 0.25226
4

t
1

= - 1.289 x 10
6

, t
2

= - 8.006 x 10*7
, t = 3.085 x 10~ 7

t. = 7.331 x 10" 7
, t c = 3.697 x 10" 6

, t. - - 26.240 x 10" 7

4 5 6

t, - - 3.617 x 10~6
, t Q = 26.307 x 10~6

, tn = 12.570 x 10" 5

/ o y

t
1Q

= 10.272 x 10~5

v
±

- 6.305 x 10" 8
, v

2
= 1.151 x 10~ 8

, v
3

= 25.753 x 10
_8

v. = -1.855 x 10" 8 v c
= 2.063 x 10~ 6

, v. = 0.991 x 10~ 6

4 '5 6

v
?

= 9.018 x 10~ 6
, v

g
= - 1.667 x Kf 6

, v
g

= 2.367 x 10"6

v = 12.041 x 10~ 6

For the B.C's equations; (z = 0.5)

sin y2
z sinh y, z = 2.2854

cos y2
z cosh Y-i z = - 0.6060

sin y z cosh y z = 2.4832
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cosh Y_ z sinh Y
1

z

sinh Yo z

cosh Yt z

sinh y, z

cosh Ya z

- 0.5578

9.43150

9.48439

61.517

61.526

Substituting everything into the B C's equations shown in

Table 1, the following matrix is derived.

1.0 0.250 -0.4829 0.0944 6.864 -15.55

0.0 0.0 -3.648 -1.268 121.0 631.2

0.0 0.0 11.75 16.48 4943.0 -10170.

0.0 4.734 -7.452 -62.61 -38.86 -427.8

0.0 24.08 7.676 62.31 35.38 291.5

0.0 0.0 36.94 18.50 22.73 411.7

Results from the solution of above matrix,

,-5

c

S
2.322 x 10

-5

-8.066 x

-3.487 x

-4.539 x

-2.430 x

2.459 x

10

10

-5

-3

10
-4

10

10

-3

c
1

= 5.678 x 10

c
2

= -1.000 3

-4

c
3

= 7.168 x 10
-6

c. = -1.015 x 10
-6

c
5

= -6.462 x 10
-7

c, = 3.548 x 10
o

-8
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The value of c. is not included in the computations. As explained

before, it describes only a rigid-body motion of the structure, not

required for the purposes of this analysis.

For z = (Midship)

N
l— - - 957.677 psi

A
l

M
1— x- = - 200.573 psi; x. = - 126.01 (main deck level)

M
l=— x. = 85.592 psi; x

1
= 54" (deckhouse top)

1

using, a
x

- — - — x
x

Q - - 957.677 + 200.573 = - 759.103 psi (main deck level)

ff. - - 957.677 - 85.592 = - 1045.62 psi (deckhouse top)

N
2

7=- = + 171.371 psi
A
2

M— x
2

- 1224.315 psi; ' x
2

= 179.989 (main deck level)

M
2— x

2
= - 1224.315 psi; x, = - 179.989 (hull-bottom)

„
k
2

M
2

a2"T
2

- T
2
*2

a = 171.371 - 1224.315 = - 1052.94 psi (main deck level)

O = 171.371 + 1224.315 - 1395.686 psi (hull-bottom)
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For z = 0.5 (At the end of deckhouse)

N
l— = - 520.778 psi

A
l

M
-^x =- 148.120 psi; x = - 126.01 (main deck level)

h

M
i— x. = 63.474 psi; x. = 54" (deckhouse top)

1

a = -520.778 + 148.120 = - 372.658 psi (main deck level)

0. - 520.778 - 63.474 = - 584.252 psi (deckhouse top)

N
2— = 92.996 psi

A
2

M— x
2

= 583.474 psi; x
2

= 179.989 (main deck level)

M
2~ x

2
= - 583.474 psi; X- - - 179.989 (hull-bottom)

°2 - A
2

" I
2

X
2

O - 92.996 - 583.474 = - 490.478 psi (main-deck level)

a
2

= 92.996 + 583.474 - 676.470 psi (hull-bottom)
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IV. C - FOR TOTAL LOADING

All the values of parameter for mathematical model will be the

same except,

r = 0.76 (shear-lag factor)

I A
= 1.23670 x 10

7
in

A
. 4

I = I + I
2
+ I = 32,341,600 in

The other coefficients and parameters will be the same as for

equally distributed loading case.

Substituting everything into the B.C's equations, the following

matrix will be derived

1.0 0.250 -0.4829 0.0944 6.864 -15.15

0.0 0.0 -3.648 -1.268 121.0 631.2

0.0 0.0 11.75 16.48 4943.0 -10170.0

0.0 4.734 -7.452 -62.21 -38.86 -427.8

0.0 24.08 7.676 62.31 35.38 291.5

0.0 0.0 36.94 18.50 22.73 411.7

Results from the solution of above matrix,

,-5
c
1

= 9.244 x

c
2

= - 2.286 ;

-4

c
3

= 1.234 x :

-5

c
A

= - 1.145 x 10

c
5

- - 6.169 x 10"

-5

/

2.322 x 10
-5

-8.066 x 10
-5

3.487 x 10
-3

-4.539 x 10
-4

-6.134 x 10

2.459 x 10
-4

c
6

= 3.878 x 10
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For z (Midship)

A
1

- 2049.499 psi

M
l— x, = - 492.638 psi; x. = - 126.01 (main deck level)

1

M
l • .~ x

n
= + 211.113 psi; x

1
= 54" (deckhouse top)

CT. - - 2049.499 + 492.638 = - 1556.861 psi (main deck level)

a
1

- - 2049.499 - 211.113 = - 2260.61 psi (deckhouse top)

N
2~ - 365.982 psi

A
2

M
2— x = 2414.481 psi; x

?
= + 179.989 (main deck level)

I
2

M
== x

2
= - 3414.481 psi; x

2
= - 179.989 (hull-bottom)

a
2

= 365.982 - 2414.481 = - 2048.49 psi (main deck level)

2
= 365.982 + 2414.481 = 2780.46 psi (hull-bottom)

For z = 0.5 (At the end of deckhouse)

N
l— - - 1035.029 psi

A
l

M
1— x- = 463.73 psi; x

1
= 126.01 (main deck level)

1

M
l— x = - 198.725 psi; x = 54" (.deckhouse top)
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0. - 1035.029 - 463.730 = - 1498.759 psi (main deck level)

a = - 1035.029 + 198.725 = - 836.30 psi (deckhouse top)

N
2

-r=- = 184.826 psi
A
2

M— x
2

= 2156.883 psi; x = 179.989 (main deck level)

M _ „

== x = - 2156.883 psi; x = 179.989 (hull-bottom)

a
2

= 184.826 - 2156.883 - - 1972.05 psi (main deck level)

a
2

= 184.826 + 2156.883 = 2341.709 psi (hull-bottom)
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