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ABSTRACT

Network functions and sensitivity expressions for linear

networks are reviewed for networks with single unilateral or

bilateral immittances and the corresponding extension to the

general case of n variable immittances. The sensitivity

expression is exact and suitable for the analysis of networks

with either small or large variation of parameters.

A method is proposed for minimizing sensitivity using

the exact expression. The general linear network is studied

in various aspects like changes on frequency, variation of

elements or mixed variation of frequency and network

components. By proper network transformation and synthesis,

it is possible to design a network with minimum sensitivity

even if the variation in immittance is large. Generally, for

small or incremental variation of immittance, the sensitivity

of the network function remains invariant. However, this

theorem does not hold in cases of large variation.

Normally, the range of sensitivity for which a network

is to operate, is specified. It follows that the elements

and parameters composing the network have certain ranges.

It was determined that with specified range of sensitivity,

the allowable range of values for the parameters of the

network can be computed.
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I. INTRODUCTION

Sensitivity analysis is recognized as one of the major

considerations in the study of modern networks. The advent

of integrated circuits, LSI and MSI, thin film technology,

etc., pose a need for an exact sensitivity evaluation on

possible variations of parameters. Even with the tremendous

advancement of miniaturization, the goal towrkds component

perfection is still far from reality. Instead, the problem

has grown complex as the components become smaller and

miniaturized. The effect of temperature variations, for

example, could cause variation of parameters that is too

excessive to be completely ignored. The seriousness of the

problem is apparent when circuits fail due to changes in

element values. Sensitivity analysis provides information

on the acceptable tolerances for the network to operate

within the limits of the design specification.

Throughout this thesis, linearity of the network is

assumed. This class of circuits involves network functions

whose expressions are linear combinations of the variables

contained in the network. The second chapter reviews the

results in references [2], [6], [9] and [12] which express

the exact sensitivity of linear networks with either unilat-

eral or bilateral variable immittances.

The next chapter presents a comparison between the expres-

sions used for incremental sensitivity and exact sensitivity.





Incremental sensitivity uses a truncated Taylor series

expansion to find the amount by which the network function

deviates from its original value when any or several elements

vary.

The exact sensitivity expression is applied in seeking

the minimum sensitivity network. The characteristics of a

minimum sensitivity network are discussed. The results may

be used in synthesis of networks where sensitivity is a

major consideration. The simplification of the criteria for

minimum sensitivity eases the burden of choosing the best

network suitable for a specific purpose.

Sensitivity evaluation by the classical approach, even

in simple networks, may become fairly complex. However,

using the exact expression, the usual change of procedure

from the incremental to large variation analysis is

eliminated.





II. GENERAL REVIEW

A. INTRODUCTION

The materials in this chapter are derived from references

[2], [6], [9]j and [12], which serve as the theoretical basis

for this paper.

Two kinds of network functions are of interest, namely,

the transfer function and the driving point immittance. A

transfer function is defined as the transform ratio of the

response to the excitation. This applies to, in general,

two-port networks. In network theory, the response and

excitation can take the form of either voltage or current.

A network can then have a transfer function as the ratio of

voltage-to-voltage, voltage-to-current, current-to-current,

or current-to-voltage. To define the transfer function of

a network, it is necessary to specify the required response

and the given excitation.

A driving-point immittance is defined as the ratio of

the response to the excitation in a one-port network. The

response and excitation must be of different types so that

only the ratio of voltage-to-current and current-to-voltage

are allowed.

In a linear network, the network function is a multi-

linear function of the parameters involved. This means that

the network function can be formulated in terms of the

network parameters with at most the first power of any





variable. A network parameter may be any passive or active

component upon which the network function depends.

The charactersitics of physical devices are subject to

change for various reasons. Perfect system;.] with stable

components that can maintain their design v-.i±ue under all

conditions are difficult to obtain in practice. Take for

example a simple active device, the transistor. It is almost

impossible to obtain a transistor with the; exact parameters

specified by the manufacturer. Even if thii "ideal" device

is obtainable, factors like temperature variations, aging,

radiation etc. may eventually cause the parameters to vary

and produce undesirable results on the system of which it

is a component.

A measure of the effects of parameter variation upon

a network or system has been denoted as sensitivity.

Basically, there are two types of parameter variations

studied by various investigators. The most popular type is

the incremental variation case, where the change in

parameter values is assumed to be very. small. The other

type considers the effect on the network function due to a

large variation of parameters. The study of the effects of

a large variation is hindered by the need to use series

expansion in system analysis. For example, a truncated

Taylor series expansion may be used to find the deviation of

the network function caused by large parameter variations.

However, the technique of truncation entails error and an

increase in accuracy requires a corresponding increase in
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computation. Further, Taylor series computation requires

the computation of derivatives which requires much computa-

tion time. These problems in sensitivity analysis and

synthesis pose a need for a more sophisticated approach

toward a simple and easy solution of network.

B. NETWORK FUNCTIONS

It was derived in [2], [6] and [12] athat a network

function, relating the Laplace transform of the response

to the Laplace transform of the excitation, of a linear

network (Fig. 1) with a single variable immittance or

controlled source, free of all independent sources except

one and initally at rest, can be expressed as:

T(x) . row + xt(-)
(2_1}

W + x

where

W = the Thevenin immittance seen looking back into the
network from the terminals of x.

x = a variable immittance or controlled source.

T(x)= the network function relating a response to an
excitation.

T(0)= Lim T(x) as x approaches zero.

T(°°)= Lim T(x) as x approaches infinity.

Eq. (2-1) is valid provided W, T(0), and T(°°) are finite.





-Ur '-

X

5 W

^,

Figure 1

A Linear Network with Variable Immittance
or Controlled Source x.
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Manipulation of Eq. (2-1) with the introduction of

minute or large changes of the variable immittance or

controlled source leads to the derivation of a sensitivity

equation which will be discussed later.

A basic application of Eq. (2-1) is to consider that

the variable x represents a resistor element with Laplace

transform r(s) as shown in Fig. 2. It is desired to deter-

mine the network function of the linear network N- designated

as the ratio of the response R(s) over the excitation C(s).

Now short the excitation force if it is a current source or

open it if its is a voltage source and apply an auxiliary

driving force at port 3-3, i.e. at the terminals of the

variable element. In this case, the auxiliary driving force

is a voltage source and the measured response at the same

port terminal is the current flowing to it. This Thevenin

immittance measured is designated as W(s), the ratio of

voltage over current. Then the network function of the

linear network N in Fig. 2 is given as

R(s) _ W(s)T(0) + r(s)T(«Q (0 p n

CTsT W(s) + r(s) Kd~d)

In many complex types of networks and with the proper

choice of a group of network elements to represent the

variable x, Eq. (2-1) offers a much simpler way of deter-

mining the network function. Another example worth mentioning

is when x represents a dependent source coupling factor

11





Figure 2

A Three Port Network with Variable Resistance r(s)
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designated by 3 as depicted in Fig. 3. Table II gives the

network function for different relationships of the controlled

source and controlling quantity.

In general, Eq. (2-1) is a powerful tool in network

analysis whether the network has passive or active elements.

Further discussions are found in references [6], [7]> [8],

and [12].

Troop and Peskin [9] extended the expression in Eq. (2-1)

to consider n variable immittances . Using the loop or node

method of analysis, the network function was derived and

found to be a ratio of determinants with elements containing

all possible combinations of variables except those involving

powers greater than one. Since any immittance can be

represented as a controlled source, the resulting expression

includes general network containing passive and active

elements. The general expression for a transfer function of

a network with n variable immittances or controlled sources

which are considered as ports, is given by

T T(c
n
,...,c ) n x. [W . ]

1_1
^

ilV..,i =0
JL n j=l J '" , ,J 'j+r" s °n

T(x
1
,...,xn ) = j - j

n x.
J
[w . „ l

1" 1
^

i
1
,...,i

n
=0 j = l J '-' ,j,c

j+1
,...,c

n

(2-3)

13





Figure 3

Four-Port Network with Variable Amplification

Factor, a, and a
2

are the controlling source

and controlled quantity, respectively.
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Table II

Network Function with Single Variable Amplification Factor

T(B) = A T(0) + g T(°°)

A + 3

Controlling
Quantity

Controlled
Source

3 A*

Voltage V_ Voltage V^ v
4
/v

3
-v

3
/v

4

Voltage V~ Voltage L i
4
/v

3
-v

3
/i

4

Current I-, Voltage Vh v,/i
3

-i
3
/v„

Current I~ Current K I
4
/I

3
-I

3
/I

H

A is derived from the network with excitation set at zero

See Fig. 2 for subscript notations.
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where

x. = the variable transmittance or transfer ratio
* of the controlled source across point j

c. = 0,°° for 1. = 0,1 respectively

T(Ci • • • .c ) = Lira T(x-,,....x ) as x.+c. , j = 1.2, ... .n
1 n 1' ' n J J

j j j

W . = the Thevenin transmittance or "Thevenin
c
1
...,K,...,c

n Transfer Ratio" for port K. At all the
remaining ports, it is required that
x. = c.(jYK) hence c. to c, , are infinite.
J J 1 k-1

Accordingly, Eq. (2-2) is valid provided the limiting

conditions of the network function T(c-,,,..,c ) and the

Thevenin transmittance as W
.+iv .. jC are finite.

Certain conditions have to be satisfied in order to assure

the finiteness of the Thevenin immittance W. They are the

following:

a. No open circuit should appear in series with the port
at which the Thevenin impedance is to be calculated
(measured) when other ports are open circuited.

b. No parallel path should be formed across the port at
which the Thevenin admittance is to be calculated
(measured) when the other ports are short circuited.

The conditions above therefore require that when W is an

impedance function, then the branches across the ports (or

any subset of these) do not form a cutset. If W is an

admittance function, then the branches across the ports (or

any subset of these)do not form a closed path.
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C. EXACT SENSITIVITY

The definition of sensitivity varies among investigators.

Generally, it is construed as a measure of the amount by

which the system's network function deviates from Its

original or nominal value when one or more of its parameters

vary. From this definition, sensitivity is mathematically

given as:

S =
4f[f} (2-4)

where T(x) is the nominal network function of the network

whose elements are at their designed value without any

deviation. In network analysis requiring sensitivity

evaluation, the nominal network function Is first determined

by assuming no deviation of network element. When one or

more elements are allowed to vary, a new network function is

then computed, after which the ratio of the amount of

deviation of the network function to the nominal network

function Is taken. The result is the sensitivity of the

network for the given amount of variation exhibited by the

variable elements.

Another definition of sensitivity given by Bode Is

q d[Ln T(x)] (0 p-x
S
b " d[Ln x]

(2~ 5)

where x is the variable parameter and T(x) Is the network

function. Unlike Eq. (2-4), the Bode definition offers

17





simplicity only when a single variable parameter is involved.

For multi-variable parameter sensitivity analysis, the

normal procedure is to take the summation of the sensitivities

of the network for all the variable parameters taken indepen-

dently. The limitation in this method of analysis is that

for practical networks, variable parameters do not change

individually but are of combined variation. However, if

combined variation is assumed, the normal Bode Method becomes

too complex for computation.

A recently developed method of analyzing sensitivity was

given by Parker [6], The method considered linear networks

with single variable immittance. The sensitivity expression

is given as

q ATU) T(°q) - T(x)
t

Ax , ^b " TJJJ ~ w + x + ax tTTT l ;

which was derived to be an exact expression whether the

variation of the variable Ax is either large or small. The

terms in the expression of Eq. (2-6) are as previously

defined in this chapter.

To check the validity of Eq. (2-6) in computing the

sensitivity consider the case when the variation of x becomes

small. Then

Llm ATOO = dTOO =
T(cc) T(x)

( ,

Ax-K)
Ax dx W + x

18





Now, the original network function T(x) stated in Eq. (2-1)

is differentiated with respect to the variable x as follows:

d[T(x)] d_ r W T(0) + x T(°°) -,

dx dx L W + x J

[W + x][T(«>)] - [W T(0) + x T(°°)]

[W + x]
2

CT(-) - T(0)]

(2-8)

[W + x]
2

but

W T(0) + x T(«>)
T(oo) - T(x) = T(oo) -

W + x

(2-9)

vtft [T(a° " T(0)]

therefore

d[T(x)] _ T(°°) - T(x) to in\
dx W + x

u ;

It is apparent that comparison of Eqs . (2-10) and (2-6)

shows similar expression for sensitivity. Obviously, this

is an increment variation analysis when small changes in x

was assumed. When large variation is expected in the elements

of the network, Eq. (2-6) offers an exact analysis.

Troop and Peskin [9] extended the works of Parker et al

.

and Sorensen [12] in the analysis of networks containing two

ore more variable elements. Following the same techniques

used by Parker et al . [7] in deriving Eq. (2-6) the resulting

19





general expression Is given as:

n h 11.
Z{[T(p™pn)]-T(x~-,x)} II x.

J
[x.+W TO . n r J

Q _ AT(x) _
1 n 1 n

j=l J J v">J»Pj-n»-»Pn
" t(x) n rr

T(x,r ..,x ) I n Ax.
J
[x.+W . i

1"1
^

1 n
V.,in=o 3-1 J J "W.J.P

J+1.-^

(2-11)

where

p. = x.+c. ; p. = x., 00 c. = O, 00 for i. = 0,1

All the variables are as defined previously in this chapter.
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III. MINIMIZATION OF LINEAR NETWORK SENSITIVITY

A. INTRODUCTION

Sensitivity has been recognized as one of the main

criteria in modern network design. Various proposals have

been presented to minimize the sensitivity of networks

within the framework of assuming small changes In parameters.

Schoeffer [10] proposed the method of continuous equivalent

theory to transform the original circuit Into the best

minimum sensitivity network. The method had been found to

be a powerful tool In network synthesis except that in the

original proposal, a long computation of sensitivity is

required at some stages of the transformation. Unfortunately,

sensitivity evaluation using classical approach requires

too much computer time for practical application In many

instances. When there are several equivalent networks to

evaluate, there Is a need for easier comparison of their

sensitivities. There is also the problem of large changes

In parameters to consider which can complicate the solution.

Hakimi and Cruz [3] presented measures of sensitivity for

linear systems with large multiple parameter variations.

They studied a method of obtaining an upper bound and lower

bound of the maximum and minimum network function respectively

A problem brought forward is to synthesize a network such that

the effect of the variation of the element values on the

network is minimized in some sense.

21





This chapter establishes a general criteria of seeking

the minimum sensitivity of linear networks using the exact

expression previously stated in Chapter II. Critical regions

in the sensitivity values are discussed and eventually lead

to the derivation of the minimum sensitivity theorem.

Critical region in sensitivity as herein stated is defined

as that condition wherein the varying parameters have values

such that the sensitivity of the network is either maximum

or minimum. A knowledge of these critical regions helps in

the solution of the following problems normally encountered

in network design.

1. Comparing the sensitivities of equivalent networks.

Classically, it would normally require long computation to

perform sensitivity comparison but a simpler way is possible

as will be shown.

2. Minimizing sensitivity of networks under the assump-

tion of constant network function.

3. Analyzing network under worst case conditions where

large or small variations of parameters might be expected.

B. EXACT SENSITIVITY EXPRESSION

As discussed in Chapter II and presented by Parker et al.

[7] Eq. (2-6) gives the sensitivity expression of a general

linear network with single variable immittance. Another

form of expression used which Is basically suited for

computer application for incremental variation Ax Is given by

22





_ AT(x,s) _ T(°°,s) - T(x,s) . s

Ax(s) W(s) + x(s) + Ax(s) K3 ^ J

Expression (3-1) will be studied under three different

sets of conditions:

Case I - frequency is fixed, Ax varies.

Case II - Ax is fixed, frequency varies.

Case III - both Ax and frequency vary.

Sensitivity is normally a complex quantity at a given

frequency. However, the usual area of interest is on the

magnitude of sensitivity. The magnitude-squared of the

sensitivity is given by:

P - |S|
2 = |T(~,s) - T(x,s)|

2

(3_2)
|W(s) + x(s) + Ax(s)

|

C. VARIATION OP VARIABLE IMMITTANCE AT CONSTANT FREQUENCY

Equation (3-1) gives the sensitivity expression of a

general linear network with single variable immittance . The

equation can also be expressed in terms of T(0,s) and T(°°,s)

by substituting in Eq. (3-D the expression T(x,s) in Eq.

(2-1), resulting in

q AT(x.s) W(s)[T(«,s) - T(0,s)] , q Q v
a

' AxTi) " [W(s) + x(s)j[W(s) + x(s) + Ax(s)J U" J;

At constant frequency, all the terms In Eq. (3-3) are

constant except Ax(s) which is a complex variable. It is to

23





be emphasized here that all the terms In the expression

above are complex resulting to a complex sensitivity value.

Two problems In practical application may be encountered

In dealing with variable immittance at constant frequency.

These are:

1. If a certain immittance in a given network is made

to vary, at what change in the variable immittance results

to a minimum sensitivity of the network?

2. If the network is required to operate at a specific

frequency where the sensitivity of the system is greatly

affected by the variable immittance, what equivalent network

will give the minimum sensitivity due to the variable

immittance? This problem is by no means easy as it will

involve some techniques in equivalent network synthesis

starting from the basic equation in Chapter II and which is

not yet available to the writer. However, some discussions

are presented and possible solutions are foreseeable provided

proper equivalent network synthesis is available.

Definition III-l

Minimum sensitivity is the state of the network that for

a given excitation, the response Is least affected by any

changes of the parameters within the network. The parameters

in a network can take the form of an element, a controlled

source or any combination thereof.

In trying to search for the answer to the first question

posed, it Is necessary to refer back to Eqs. (3-D or (3-3).

Since both equations are equivalent to each other, it will

24





be adequate to analyze only the expression in Eq. (3-1) in

the succeeding paragraphs and refer to Eq. (3-3) in cases

where necessary. At constant frequency, the expression is

investigated in two parts, the numerator and denominator

expressions. The result of the investigation can be stated

as:

1. The numerator expression [T(°°,s) - T(x,s)] must be

a complex constant term whose value depends only on the

frequency and the values of the original parameters or

elements of the network. It is noted that the expression

is independent of the varying parameter denoted by Ax(s).

2. The denominator expression [W(s) + x(s) + Ax(s)]

is a complex variable expression whose value depends upon

the variable parameter Ax(s). It was mentioned that W(s)

and x(s) are complex constants, hence the complex value of

Ax(s) mainly determines the value of the expression.

Therefore, in order to minimize the sensitiviy of the

network, the parameter deviation of x(s), represented by

x(s), must be such as to increase the magnitude value of

the denominator.

Further analysis can be made when the criterion used is

the magnitude-squared of the sensitivity. Let L(s) = W(s) +x(s),

from Eq. (3-2)

.

2
,s)

1

|L(s) + Ax(s)
p =

|

S
|

2 = lT(~,s) - T(x,s)[
(3 __ 4)

or

25





F = jsl
2 = lT(°%s) - T(x,s)|

2

|L(s)
Ax(s)
ITiT + 1

(3-5)

where [T(°°,x) - T(x,s)] must be finite as previously

discussed. Also the magnitude-squared of L(s) = W(s) + x(s)

must be finite.

Let

|T(«°,s) - T(x,s)
|

|L(s)|
2

= K (3-6)

Then the expression in Eq. (3-5) can be rewritten as

F =
K K

Ax(s) . , / Trn r Ax(s) -,

\
Im[ TTiT J Re[ ^f> + 1]}'

(3-7)

Where Im and Re denote the Imaginary and Real Parts respec-

tively of the complex quantity x(s)/L(s). F is minimum if

and only if the real and imaginary parts of the complex

ratio x(s)/L(s) is maximum.

Example III-l

Consider the network as shown in Fig. 4 with the capacitor

C as the variable element.
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Figure 4

Network for Example III - 1
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A nodal or loop analysis of the network yields the

following expressions:

V (Z ,S) tP~ + tt^To z
o c 5 2s+3 2s+3 cT(X ' S) =
Y^J) T+2

2s+
+ Z

c

T(0,s) = 1 , T(«,s) = 2^3 >

s+2
W(s) =

2s+3 '

At various frequencies, the following results were

computed by substituting s = jto and assuming the values of

C and Ax as indicated.

to = 1 rad/sec

Z = 1/s (one farad capacitance)

a. Ax = 0.0

|T(»,jl) - T(Z .jl)|
2

= 4.5

W(J1) + x(jl) = 0.615 - jl.767

|W(jl) + x(jl)|
2

= 3.5

|S|
2

= 1.28

b. Ax = -j 0.5

|S|
2

= 1.99

c. Ax = j 0.5

|S|
2

= 0.816
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One of the problems which was brought forward at the

beginning of this section involves cases wherein equivalent

network synthesis is to be used. The question posed is when

equivalent networks having the same immittance x(s) are

compared in sensitivity due to changes in the same variable,

which network will present the least sensitivity.

Kuh and Lou [13] and de Buda [14] in a recent article

proved the sensitivity invariants of equivalent networks.

Their theorems were only true on sensitivities of networks

involving incremental variations (the limit as Ax(s)

approaches zero) . However, on cases where the variations of

the variable x(s) are large, then sensitivity invariant

no longer hold. This results from the Eq . (3-1) where it

is assumed that T(x,s), x(s) and Ax(s) are complex constants.

Transformation of the network using equivalent network theory

varies T(°°,s) and W(s) which can result to a circuit having

the best sensitivity for a constant frequency and specific

Ax(s).

D. VARIATION OF FREQUENCY AT SPECIFIC VARIATION
OF IMMITTANCE*

When the frequency is varied for a given variation of

the variable immittance x(s), then all the terms in Eq . (3-D

change since all of them are functions of frequency. In

order to simplify the formula, let Z(s) = x(s) + Ax so that

Eq. (3-1) can be written as:

*
In this section, Ax is assumed fixed.
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„ _ AT(x,s) T(« J s) - T(x,s) ,- onb " Ax(s) W(s) + Z(s) U " BJ

Taking the derivative of S in Eq. (3-8) with respect to

frequency s,

OS _ as . d[T(«>,s)] . as
a
d[T(x,s)]

ds ' 8T(°°,s) ds aT(x,s) ds

. 8S dW(s) , 9S dZ(s)
3W(s) ds azTsT ' ds (3-9)

and

9S 1

3T(», S )
= W(s) + Z(s)

(3-10a)

as i

3T(x,s)
= " W(s) + Z(s)

(3-10b)

8S _ T(«>,s) -T(x,s)W^ ~ "
[w(s) + z(s)]

2

as _ T(°°,s) - T(«,s)
8Z(S)

[W(s.) + Z(s)]
2

(3-10c)

(3-10d)

Equating Eq. (3-9) to zero, the frequencies where the

exact sensitivity is either maximum or minimum can be

located. Thus we obtain
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d[T(°» a s)] d[T(x,s)]
f
T(x.s) -T(°».s)U d[W(s)1 , d[Z(s)] l

ds ds \W(s) + Z(s) j\ ds ds /'

or

d[T(°°,s)] _ d[T(x,s)] d[W(s )] +
d[Z(s)]

ds ds _ ds ds

T(°o,s) - T(x,s) W(s) + Z(s)

|j[T(-,b) - T(x,s)] fg-CWCs) + Z(s)]

T(»,s) - T(x,s) W(s) + Z(s)

Thus,

|^ Ln [T(oo, s ) - T(x,s)] = ~ Ln [W(s) + Z(s)]

which requires that

T(«,s) - T(x,s) = W(s) + Z(s) (3-11)

The solution of Eq. (3-11) will result in the frequency

at which the sensitivity S is maximum or minimum.

E. MIXED VARIATION OF A SINGLE VARIABLE ELEMENT
AND FREQUENCY

Mixed variation of the single variable immittance x(s)

and frequency s in a general network provide an insight into

the actual behavior of the system under realistic situations.

These situations are what really exist In a practical circuit
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since all factors whether Internal or external, causing the

variation in the characteristics of the network come into

play as the system is put into operation.

Consider again Eq. (3-1) ,

<sf v o - T(oq
3 s) - T(x,s)

b ^ x ' s; W(s) + x(s) + Ax(s)

or Eq. (3-8),

S(x,s) = T(°° s) - T(x,s )

W(s) + Z(s)

where

Z(s) = x(s) + Ax(s)

The corresponding partial derivatives of the equation

above with respect to either x(s) or s are, respectively,

d[S(x,s)]
dx s=constant

2 T(°°,s) - T(x,s) ]

[W(s) + Z(s)]
2

(3-12)

d[S(x,s)]
ds x=constant

W(s) + Z(s)
T(x,s) - T(°°,s)

d_rrv> W(s) + Z(s)
ds

Lijn T(x,s) -T(~,s) J

(3-13)
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The general theorem on partial differentiation requires

two conditions for a function like S(x,s) to have a realtive

minimum as follows:

3S(x,s) m 3S(x,s) = Q
3x ' 9s

2. Let

L. f a[S(x,s)] l p = 3_ f
3[S(x,s)]

F
ll

;

3x 1 3x j '
F
12 3x 5s

F = 9_ f
a[S(x,s)] l -, = 9_ f

a[S(x,s)]
\

21 3s \ 8x / ' 22 3s \ 3s
J

then, S(x,s) has a relative minimum at a point when

a. F
1]L

>

b. [F
12 ]

2
- P P <

However, the requirement for condition b is very

impractical especially when the aid of the computer is

available. The best approach then is to try points taken

from condition "a" and subsequently select the minimum

sensitivity from the result. In fact, this procedure can

easily be determined by letting the computer make the

decision where the minimum is and come out with the

selected frequency where the sensitivity of the network is
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minimum. This is conditioned on the premise taht the

variable parameter x and frequency s are both allowed to

vary simultaneously.
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IV. SENSITIVITY WITH PARAMETER TOLERANCE

A. INTRODUCTION

The efficientcy of any network design depends crucially

on the tolerances allowed on its parameters before the

network ceases to perform its intended purpose. In any

practical circuit, it is normal to find component elements

whose values differ from that of the original design.

Since this imperfect situation exists, it Is Imperative that

more information be gathered as to the behavior of such

elements in network design.

This chapter attempts to discuss the expected changes on

sensitivity of the network for a given change of the variable

parameter. This will help designers In predicting the

possible limits in the magnitude of sensitivity of the

network with known variable parameters. Discussion is also

made on cases wherein the sensitivity of the network is

previously specified and it is now required to find the

tolerance or maximum change allowed on the variable

parameter within the network.

B. PERCENTAGE CHANGE OF SENSITIVITY MAGNITUDE

It was discussed in Chapter III that the magnitude of

sensitivity is one of the main criteria in studying the

behavior of networks. It was observed that as the parameters

within the network vary, the sensitivity also varies as

compared to the original sensitivity of the network when

there was no variation of parameters.
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Aside from the variation of parameters, it is also

obvious that sensitivity values is dependent upon frequency.

With this information on hand, a theorem on the magnitude

of sensitivity is derived.

THEOREM IV-1 : In a linear network with a single variable

parameter, the relative change in magnitude of sensitivity

caused by the changes in the variable parameter is given by:

CI =
S~ - S
f o
S
o

s |Ax(s)
I (h .

= |w(s) + x(s)| + |Ax(s)| (4" 1}

where

C = is the relative change in sensitivity caused by the

change in the variable parameter.

S
f

= is the exact sensitivity of the linear network when

the variable immittance x(s) exhibits a change

equivalent to Ax(s).

S = is the original sensitivity of the linear network

when there is no change in the variable immittance.

all the other terms were as previously defined.

Proof:

The expression of sensitivity S as given in Eq. (3-1)

results to the corresponding expressions of S
f

and S . From

the definitions of both terms, the two expressions are:

„ T(°°,s) - T(x,s) ,u
2)

o W(s) + x(s)
K J
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and

c - T(~,s) - T(x,s)
S
f W(s) + x(s) + Ax(s) (4_3)

The difference of the two expressions is:

q q = T(°q,s) - T(x,s) T(°°,s) - T(x,s)
f o W(s) + x(s) + xTsT W(s) + x(s)

-Ax(s)[T(°°,s) - T(x.s)]
" [W(s) + x(s) + Ax(s)][W(s) + x(s)]

Substituting the equation in Eq . (4-2) to the expression

above, the difference S
f

- S may be written as:

S
f
" S

o
= ~S

o [ W(s) + x(s) + Ax(s) ] ^"^

The magnitude of the whole expression is then taken.

Sf- S
o!

- |S
o! |w(s) + x(s) + Ax(s)| (4" 5)

In complex variable theory, the total sum of the magni-

tude of the individual terms is greater than or equal to the

magnitude of the sum of the individual terms. Applying this

theory to the denominator expression of Eq. (4-5) gives

|W(s) + x(s) + Ax(s)| < |W(s) + x(s)| + |Ax(s)| (4-6)
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Dividing both sides of Eq. (4-5) by S
Q

results to the

relative change in sensitivity.

Sf- S
o

S
o

,Ax(s)l
'W(s) + x(s) | + |Ax(s)

and this proves the theorem.

Theorem IV-1 shows that for a linear network with a

single variable immittance, the change in the magnitude of

sensitivity depends upon the frequency and the change in

variable immittance equivalent to Ax(s).

C. IMMITTANCE TOLERANCE FOR SPECIFIED SENSITIVITY

In circuit designs, the designer may wish to specify the

limits of sensitivity wherein the network should operate.

Within this framework, it becomes the job of the designer to

place the allowed tolerances on the components of the network

in order to meet the desired specification.

The previous discussion dealt with the relative change

of sensitivity Involving single parameter variation. From

Eq. (4-1), another theorem can be derived giving the allowed

tolerance of a single variable immittance connected to a

network when the maximum allowable sensitivity of the circuit

is specified.

THEOREM IV-

2

: In a linear network with a specified maximum

sensitivity, the maximum allowable tolerance that the

variable Immittance should have is given as:
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|S
f
-S

I

|W(s) + x(s)|
Ax(s)

l $ I s 1
- |s--s 1

1 o ' ' f o

'

(4-7)

where the terms in the expression are as previously defined

in Eq. (4-1)

.

Proof:

Starting from Eq. (4-1),

l

Sf" S
ol > Ax(s)

"[FT |W(s) + x(s)
|

+ Ax(s)

Multiplying both sides of the equation by

|S
o
|||W(s) + x(s)

|

|Ax(s)
|

| , we obtain

|S
f -SJ j|W(s) + x(s)| +

|
Ax(s)

1

1 > |Ax(s)||S
o | ,

or

|S
f
-S

o
||W(s) + x(s)| + |S

f -SJ |Ax(s)| > |Ax(s)||S
o |

Subtracting from both sides the term |

S

f - S
|

| Ax(s)
| ,

results in

|S
f
-S

Q |

|W(s) + x(s)| > |Ax(s)| |S
Q |

|S
f
-S

Q |

|Ax(s)| .

therefore,

|Ax(s)| <

S
f
-S

|

|W(s) + x(s)
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which proves the theorem. All the terms on the right hand

side of Eq. (4-7) were previously known so that the maximum

tolerance allowed on x(s) can then be computed.

Example IV-

1

Consider the network shown in Pig. 4 of Example III-l,

from which the following quantities can be calculated:

V s
> . ffrf

+ 3iW z
,

T(Z
o'

s) ~ TJJT 2i+3
1

fSflf
+Z

c

2s + 3 + Z c
'

2s + 3 + Z (3s+4) '

*<-.> =3^ . W(s) =|f±|

Suppose that the network has the specification given as

follows:

Z = 1/s (one farad capacitance)

frequency u = 1 rad/sec

The magnitude of sensitivity should not exceed a certain

value as will be discussed later.

It is required to find the maximum allowable tolerance

on the capacitor to meet the design specification.
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The solution Is obtained for three specified values

of sensitivity:

a.

b.

c.

|S
|

1.6

S
f |

< 2.0

Ax | < 0.42

S
f [ < 1.8

Ax | < 0.18

S
f |

< 5.0

Ax | < 2.38

The result of the example shows that It is now possible

to find the maximum tolerance of the element x(s) for a given

frequency and specified maximum allowable sensitivity.

Example IV-

2

The next circuit that will be studied is the Bootstrapped

Darlington circuit shown in Fig. 5a. Assume that the values

of the parameters are as follows:

A = 1,000 ohms
A

B„ = 1,000 ohms

C =40,000 ohms
A

D = 4,000 ohms
A

3
1

= 50 (initial)

B
2

= 50
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Figure 5a

Bootstrapped Darlington Circuit

Ah

Figure 5b

Low Frequency Equivalent Circuit

k2





The low frequency equivalent circuit is shown in Fig. 5b

From the equivalent circuit and using loop analysis, the

following equations are derived;

B D +C D +B D 3 n +B D 3, 3
rp, n _ X X X X X X M 1 X X M 1 M 2
iK

^l } A B +A C +B C +C D +C B g, +B D 3o +B D 3-, 3oxx xx xx xx x x 1 x x 2 x x M l M 2

A B +A C +B C +B D +C D +B D 3
ur xx xx xx xx xx xx w 2
wt
\ C B +B D 3o1 xxx x M 2

With the given parameter values, using the above

expressions, the following quantities can be determined for

various values of A3-, :

W3 = 1.85 2
*

1

a. A3-L = -50.0 s
f

= -3.17309

b. A3
X

= -25.0 S
f

= -0.00541

c. A3
1

= 0.0 S = 0.08484

d. A3
1

= 25.0 s
f

= 0.11608

e

.

A3
X

= 50.0 s
f

= 0.13192

From the data above, it can be observed that the

original sensitivity of the network S is equal to 0.08484.

It is now desired to find the maximum allowed tolerance

of the parmeter 3-. for which the maximum percentage change

of sens'itivity does not exceed 50$ of its original value.

Using Eq. (4-7) we obtain





|S
f
-S

Q |

= 0.04242

IS I
= 0.08484

1 o

'

|W(s) + x(s)| = |W a + 0,1 = 11.854 - 50 I
= 48.146

hence

Ia t m iao i
(0.04242) (48.146) ,lQ , „<.|Ax(s)| =

| A3-i_ |
<.

q .QJ4242 ^8.146

The sensitivity values taken from Table IV-1 confirm this

result

.

It might also be necessary to determine the percentage

change in the magnitude of sensitivity. Assuming the

maximum value of A$, is 25, how much will the sensitivity

deviate from its original network sensitivity value? From

Eq. (4-1) we obtain

r\
Sf ~ S

° > 25
L

l " S = 48.146 + 25

7TTS6-
= °' 342

Example IV-3

Consider the operational amplifier circuit shown in

Fig. 6. The voltage transfer function is given as

V
q
(s) T

A
(s)

T(S)
V^TiT T

B
(A) + 1/A
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TABLE IV-1

A6
1

A6
2

Sensitivity

-50.0 -50.0 -7.71812

-25.0 -5.06164

0.0 -4.14932

25.0 -3.57167

50.0 -3.17309

-25.0 -50.0 -1.43290

-25.0 -0.35211

0.0 -0.14331

25.0 -0.05454

50.0 -0.00541

0.0 -50.0 -0.85570

-25.0 -0.13078

25.0 0.05475

50.0 0.08484

25.0 -50.0 -0.63423

-25.0 -0.05231

0.0 0.05007

25.0 0.09271

50.0 0.11608

50.0 -50.0 -0.51709

-25.0 -0.01213

0.0 0.07557

25.0 0.11198

50.0 0.13192
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and

W(s) = 1/A

x(s) = T
B
(s)

In this example, assume the following values:

T^Cs) = 0.9 at a frequency to = 1 rad/sec

A = -50.0

From the information given above, it is required to find

the percentage change in the magnitude of sensitivity when

ATg(s) has a maximum value of 0.5 at the operating frequency

of to = 1 radians per second. The computation proceeds as

follows

:

|C| =^ > ^

0.5 0.5
=

0.5 + .88
=
T73%

= 0.3623 or 36.23$
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Figure 6

Operational Amplifier Circuit
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V. CONCLUSIONS

It is observed that the network function of general

linear, passive or active network, could be expressed as a

linear combination of the unilateral or bilateral immittances

composing the network. This theory was proved by Troop and

Peskin [93- A review was made on the results derived in [2],

[6], [9] and [10] as a theoretical foundation of this thesis.

Sensitivity minimization in networks becomes more Impor-

tant as the complexity of the circuit Increases. It was

determined that it is possible to seek the minimum sensitivity

of the network. A possibility exists that with proper trans-

formation, a network can be generated from a design specifica-

tion such that its sensitivity is minimum at the desired

frequency of operation.

It is often normal in network design to encounter problems

wherein the range of sensitivity of the circuit is already

specified. It was shown that this case can be solved with

specific tolerances on the elements and other variable

parameters of the network. The limit allowed to the tolerance

of the elements can then be specified to meet the design

specification of sensitivity.
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APPENDIX

SUGGESTED TOPICS FOR FURTHER STUDY

As a result of this investigation several possibilities

for continuing research are suggested as listed below;

1. Investigate the conditions of minimum sensitivity of

network with multiple variations using the general expression

of exact sensitivity.

2. Adopt a procedure to synthesize the network when the

given functions are the Thevenin immittances W, the variable

immittance x and the limits of the network function T(0) and

T(°°) as the variable x approaches zero and infinity

respectively. This procedure can easily provide a method to

transform a network directly into a minimum, maximum or even

zero sensitivity.

3. Investigate the amount of error from the general

exact sensitivity expression when mutual coupling between

variation are truncated, i.e. products of x. and x. and

higher product terms. This information can greatly simplify

the expression for computational calculation.
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