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ABSTRACT

The Method of Partial Images has been successfully

applied to electrostatic problems involving conductors on

a dielectric substrate. This same method is investigated

for its adaptation to dynamic problems'. A Green's Function

is derived and applied to the problem of a wire dipole

antenna on a dielectric substrate. The input admittance

of the antenna is computed by the Method of Moments.

Experimentally measured values of input admittance are

compared with the theoretical values and the error is

discussed.
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I. INTRODUCTION

If a monopole antenna is mounted on a perfectly

conducting ground plane, it will reflect totally above the

plane and will produce an image below the plane. This

image will have an image current in the same direction

as the monopole in order to satisfy boundary conditions

at the ground plane. In essence, because of its image,

the monopole will act as a dipole in a free-space. Hence,

if the ground plane is removed, the image may be replaced

by another physically real monopole thereby creating a dipole

In other words, conditions above the reflective plane remain

unchanged if the plane is removed and a real object replaces

the image.

A. THE USE OF IMAGE THEORY

With the monopole, the thickness of the ground plane

is assumed to negligible. This results in only one image. .

However, if the ground plane is a dielectric with finite

thickness, total reflection no longer occurs. Instead,

images are produced from partial reflection at the surface,

reflection within the dielectric and transmission through

the dielectric. These images are used in the "method of

partial images" [1]. When the dielectric region is removed,

these images may be considered real charges and are summed

as an infinite series. However, a finite number of them

give good results.





B. A DYNAMIC SOLUTION

The method of partial images has been successfully

applied to static problems. The purpose of this research

is to investigate its application in solving dynamic

problems. A search for a Green's Function is conducted.

Once found, it is utilized in an impedance equation.

The equation generates an impedance matrix so that the

"method of moments" can be used to solve for the current

distribution or the input impedance of an antenna mounted

on a dielectric substrate.





II. NATURE OF THE PROBLEM

Since the electrostatic problem has been solved, a

method for solving the dynamic problem is sought using

image theory. The dynamic situation is chosen to be a

half-wave dipole antenna on a dielectric substrate of

arbitrary thickness and relative permittivity (e ). A

wire constitutes the antenna whose radius and length are

variable.

A. ON THE IMAGE COEFFICIENT METHOD

Consider one small segment of the wire as an element

of charge. Assume the charge to be a short distance from

the dielectric. The charge element will have many lines

Dielectric.

X

X

Charge element
/

of flux in every radial direction. However, in considering

a single line of flux, some of it penetrates the dielectric,

while some of it is reflected at the interface. The amount

reflected is proportional to the reflection coefficient (K)

.

Similarly, the part penetrating the dielectric is propor-

tional to (1-K).

Naturally, many reflections and transmissions occur

due to this single flux line. In turn, it produces many

image points. The diagram serves to illustrate:
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Each of the three regions, I, II, III, may. have different

dielectric constants. However, in this case, regions I and

III have e =1 (free space). Region II has an arbitrary e

In solving for the Green's Function, each region has a

different image representation.

(a). Image representation for left region - I.

(b). Image representation for center region - II.

(c). Image representation for right region - III.
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B. SOLVING FOR THE GREEN'S FUNCTION

Specifically, in the problem at hand, the wire actually

lies on the dielectric at the interface of regions II and

III. Region II is the desired region with which to work

because the accumulation of charge is assumed to be greater

on the dielectric side of the wire than on the free space

side. The image representation for this region appears as

-PO-P)^ -p(l-P)q (|-f)(j PVp)<j pVrti

where the reflection coefficient is now p c 1

~ € *- in order

to avoid confusion with the propagation constant (k).

Adding terms to simplify:

(a)
* For t : O-P)





(b). For't,-. p
2

(i-p)-p(i-p) -- (\-e)(?
x-n

(c). F or %:

(d). For ^3 •

pvp)-p
3
(1-p)

= p
3
(i~P)(p-0

f
fc

ll-p)-f
f
(\-p)

s -PCv-pv

= (v-P)(P
4

- P
3
)

* -p 3
(l-p)

z

(\-p)(p
fc

-p
5

)

p O-pXp-0 = -P h-P)
z

- In terms of a summation, the Green's Function for the

dielectric region is expressed
, , . .

^ exp(-jk/(7V) 2
-r (y-y") z )

4ir/U-^)
2

-f (Y-Y')
2
~

where

P - ^ k* 2 TT

i+e.
Aa

Yet, with a single wire, variation occurs in only the

X-direction. Y

10





where

The dielectric Green's Function then becomes

t]t. « exp(-jk/u -*')' + (2*D) Z
)

4*/ (*-*•')*

C. PHASE CONSIDERATION

In formulating the Green's Function for the static

problem, the phase of each image point need not be consid-'

ered. However, in the dynamic problem, image point phase

must be examined. With the charge element a distance "a"

from the dielectric in Figure 1, each image point has a

phase term associated with it. This means that H^d could

not be expressed as a simple summation.

On the other hand, phase terms are eliminated if the

charge element is adjacent to the dielectric. Since the

wire is actually adjoined to the dielectric, every image

point appears as though it were immersed in the dielectric

region. For instance, consider image point "q, " which

.5J.

<U

11





results from image path CI. This CI comes from flux line A,

which is reflected into B and then C. The image path length

(CI) is equal to the addition of dielectric path lengths A

and B through simple geometry. In other words , the ' image

path "CI" appears to be in the dielectric medium due to A

and B. Then image point "q-," also appears to originate in

the dielectric for the same reason. This is true for every

image point. Hence, all image points appear to be in the

same medium with equal phase. The Green's Function, then,

retains its simple form.

D. THE USE OP l|r.

The Green's Function (^d ) of this section was derived

in a manner similar to Silvester's solution [1] using the

method of partial images. Silvester, of course, solved a

static problem. Yet, it seems logical to assume that his

method should be applicable to a dynamic problem through

the reasons stated.

The method of .moments is used to find a numerical

solution to the input impedance of the antenna. This method

utilizes the Green's Function in solving for the impedance

matrix.

12





III. THE IMPEDANCE MATRIX

In solving for the current distribution or the feed-

point impedance of an antenna, the matrix approach in the

method of moments is a good approximation. The key is to

properly" load the impedance matrix. Once this is accom-

plished, assumed values of voltage fill the voltage matrix

and the problem is solved.

[I] = [Z]
_1

[V]

The impedance matrix is obtained through the impedance

equation. The equation is derived by Harrington [2] and

the details are given in Appendix A. The Green's Function

(^j) from the previous section is employed in the equation,

^(S,m) " t(n,m) + t^m)]

A. CALCULATION OF THE GREEN'S FUNCTION

In order to express the Green's Function in matrix form.

M/-, must be integrated along the wire. Holding the source

point (n) fixed while the observation point (m) ranges over

every segment generates the n— column of the matrix. Then

13





st
moving the source point to the (n+1)— segment and, again

allowing the observation point (m) to roam along the wire

generates the next column, etc. Finally, the (m x n)

matrix is filled, where "m" is chosen numerically equal

to "n".

In terms of equations:

where

t<„( n ,
rW) s

J.

Afln

t(\rrO * J_ \ ^ A*

"i
kRom

4"ir Rem A5o 14-Tt

9 g <**'

R a m
a=i

r

fflstl

R s Ji^JfTaFom J **

!,m=/7il^ 2;d

YTi^n

l*t





There is a different Green's Function for each case.

The derivations are detailed in Appendix B while the results

are shown here.

For case 1. (m=n)

2ir

6ml <L /,A1-^ - (Vf) \ P g

A-l

For case II. (m^n)

t(n,m) = (l-rt e
jk C/irn" ^n)

- (i - eV
4 'hr

i.=<

4 IT (^m-^n)

P _e

B. CALCULATION OF THE IMPEDANCE MATRIX

The impedance values are now found using the calculated

Green's Functions in the impedance equation.

Z(m,i0 3 JUuAfin^Cn m) + J_P)'(n
i

m)
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Where Ax n " Axn* Ai-rn since the length of each segment

is chosen to be equal.

Three different situations arise in calculating elements

of the impedance matrix. The first is the "self-impedance"

term. Whenever the observation point and source point

coincide, a self-impedance term is generated. These terms

occupy the diagonal of the matrix and are all numerically

equal.

The second situation is the "mutual-adjacent" term.

These occur when the observation point is adjacent to the

source point. Due to the fact that the distance between

"m" and "n" is always the length of one segment (Ait\)>

every mutual-adjacent term is equal.

The third situation happens when the observation and

source points are one or more segments apart and are called

"mutual impedance" terms. They complete the matrix and

vary in magnitude.

16





1 . Self-Impedance
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2. Mutual-Adjacent Impedance
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3. Mutual Impedance

n m m rift
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C. PROGRAMMING

The impedance equations of the previous section are

programmed for computer usage. Of course, similarities

exist throughout the equations making the programming

easier.

Once the proper parameters and constants are selected,

the impedance matrix is filled and then inverted. The

values of voltage in the voltage matrix are chosen to be

zero everywhere except at the feedpoint, where the source

is one volt.

-1
[Z] [V] = [I]

The resulting matrix [I] will be the current distribution

on the wire. The middle value of [I], the feedpoint value,

is the feedpoint admittance since the source was one volt.

The computer program is written to solve for various values

of feedpoint, or input, admittances.

20





IV. DATA EVALUATION

After programming the equations, meaningful data is

sought for analysis. Several parameters are available:

the radius, the length, the dielectric constant, the

thickness, and the frequency. In order to evaluate the

validity of the equations, a comparison is made against

Harrington's solutions. Hence, the dielectric constant

in Region II is chosen to be e =1. The length is equal to

half of a free space wavelength at f = 3 GHz. The length-

to-diameter ratio, L/2a, is set at 7^.2, while the frequency

is varied.

The results are plotted and compare favorably to

Harrington's graphs. Figures 3 and 4 show conductance and

susceptance, respectively, versus the length-to-wavelength

ratios. It was found that at least a forty-one by forty-one

matrix was necessary to achieve accuracy.

A. EXPERIMENTAL PROCEDURE

Experimentally, a thin copper strip was attached to a

one-eighth inch thick dielectric substrate with e =16. The

dielectric was mounted perpendicular onto the ground plane

so that the thin strip would be fed as a quarter-wave

monopole vice a half-wave dipole. The antenna was driven

Harrington, R.P., Field Computation by Moment Methods
p. 72, The MacMillan Company, 1968^
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through 50 ohm miniature coax and input impedance was

measured with a network analyzer.

The experimental values of input conductance and sus-

ceptance are plotted along with values calculated using the

.impedance equations. Obviously, Figures 5 and 6 illustrate

a significant difference between experimental and calculated

results. There is an amplitude variation and a difference

in resonant frequencies.

23
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V. CONCLUSIONS

Prom the free-space curves which match Harrington's

curves, it seems that the Green's Function and the

impedance equations are valid. Of course, in this instance,

e =1 so that the reflection coefficient (p) is zero and

every term containing (p) is eliminated. The part remaining

is simply a free-space Green's Pucntion. Hence, the solution

is valid for a half-wave dipole antenna in free-space.

Unfortunately, the same is not true when e
r
> l«

A. EXPERIMENTAL DIFFERENCES

Aside from the normal attenuation losses of experimental

measurements, it seems the only other inaccuracy would come

from the adhesive used to attach the copper strip to the

dielectric. This would influence the effective dielectric

constant (e ) and, perhaps, the amplitude of the admit-

tance. Therefore, the emphasis is switched to the

calculation procedures.

B. PROBLEM IN THE GREEN'S FUNCTION

The manner in which the Green's Function was chosen

allows some error to exist. The accumulation of charge

was assumed to be greater on the dielectric side of the

wire rather than the free-space side. Because of this,

Region II was selected in accordance with the method of

partial images to solve for the necessary Green's Function.

In the process, the propagation constant is dependent on

25





the relative permittivity of the dielectric.

k= I* 2 it

/U A/IT

However, from the physical standpoint, as the limit of

the dielectric thickness approaches zero, the Green's

Function should reduce to a free-space solution. Yet, y,

from section II-B will never reduce to a free-space function

due to the dependence of the propagation constant on e .

This suggests the use of both a free-space propagation

constant and a dielectric propagation constant. But there

does not seem to be any apparent method in combining the two

propagation constants with a Green's Function for Region II.

Further investigation led to a Green's Function for

Region III which incorporated both propagation constants.

It reduces to the free-space function as zero dielectric

thickness is approached. However, the solution leads to

negative conductance.

Finally, since the method of partial images can produce

valid solutions for static and free-space dynamic problems,

it would seem that with some additional changes this same

method should solve all dynamic problems. Unfortunately,

the final answer lies beyond the research efforts of this

paper. The method of partial images, however, warrants the

need for further investigation.
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APPENDIX A

DERIVATION OF THE IMPEDANCE EQUATION

The impedance equation is developed in a manner similar

to Harrington's derivation. Formulating the problem:

E
s

= -j<oA - v$ (A-0

K

- -ikR
Js_e aS

4tr R
(a -a)

€

(r s _e aS

4-n-R

(a -3)

(A -4)

r\ x E. = -n x E.* on S (A-S)

2 * a

n ° " (Ftaurt A-l)
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The wire is broken into many segments subject to the

following conditions:

(1) Current flow is assumed to be along the wire axis.

(2) To the axial component of E at the surface, apply
boundary condition (A-5).

With these assumptions, equations (A-l) through (A-4)

become

Ejj
z -

j
cj A j>

-
j*J?_ on S (A-0
hi

7 r -;J
kR

A = (i \KH.e afi (a-t)

L 4**

$ - j_V <r(tt_e a£ (A-8)

£ J 4frR
AtflS

cr - -j_ al_ (a-<?)

where "x " is the "length variable" along the axis of the

wire.
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Figure A-l illustrates the division of the wire into

"n" segments. According to the notation, any n— segment

_ +
starts at n, is centered at n 3 and terminates at n. The

distance between any n and n is denoted by Ax n 5
the

length of the segment. Summing integrals over many small

segments of AC n approximates an integral over the entire

length. Equations (A-6) through (A-9) are then further

approximated

tjjM * iU>Aj,(nO - I (m) - § (m) (A-10)

AJJm

A(m) ~ \x\~* 'LmAK \jL_- a A (A-u)

n
j Ah UttR

(m) ~ 1 \ 0"(n)\ e 61 (A-\l)

n in

(T(S) ^ -J_ I (tm) - X (n) (A- 13)

^ AK
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Similarly

<rU) « -J_ X(n) - X (n-Q (A-14)

i
W A Jin

substituting equation (A-13) into (A-12), and equation

(A-l^) into an equation similar to (A-12) for S?(m),

1 Cm) = -
} V^ ICn+O-ICrQ \ _C <dL Q (A -15)

$(*) = - i \ Icn^-Icn-o \ e d& (A-lO

jO>t__j A^a J +ffft

it is often convenient to express the integral parts of the

above equations in the form of Green's Functions.

t(nm)r \ \ e"
A

Ai

n ) . 4 « R.
Mr

Where Rm = the distance from the midpoint of the m— , ,

segment to the integration point on the n

—

Using this definition, equations (A-ll), (A-15) and

(A-16) become

Ac**) = ^Y" I^M^M ^ A ' 17 ^

h
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§
+

Cm) fc-iti

icoe /_, L J
n

Now substituting equations (A-17), (A-18) and (A-19) into

equation (A-10) and noting that A|(m)= A(m) • A
j
m

"Ejj (tn) - -JGJp

A Jm

XCn)Aln 'A$m ^(n.m)

Ailm Z 1

n

-J

A?
- 1

m jui
ICMO^CS.^-Icn)^^^)

_ n

* I

ju>£

!(«)%,« -Itn-ONTCn.A)

n J]

(A-£o)

Two further approximations are made

and
ICn-OYln,m) - I(n)tln>)

(A-21)

(A-**)

With these two substituted, equation (A-20) is written as

ELJmAJL =

d
wP^ Iw AL'ASL ^taivO

+U \ I(n) te^-^^-tcS.m)*^,^
. (A- 23)

-* y
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or

Ej(r*)Af *A Z.(nfi,n) I(|V)

where n

"-+(V*) -!(S» + tu,*)l (A-24)

Equation (A-2^) is the impedance equation which applies

for the case of (m=n) self impedance, as well as for (m^n)

mutual impedance.

Since "m" roams along all "n" segments of the wire,

there is a set of "n" linear equations. In matrix form:

Eto-Al.

o

o

E(r>vAln

o o o

©

o

Zm Zn2 ° ° ° Znn

^_in X (0

Xcn
o

o

jLnn _X(n^_

or

[V] = [Z] [I]

If [V] and [Z] are known, the current distribution may be

found,

[I] = [Z]~
1
[V]

as well as the feedpoint impedance.
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APPENDIX B

DERIVATION OF THE GREEN'S FUNCTION

There is a distinct Green's Function for each case:

when the observation point coincides with the source point

(m=n); and when the observation point and source do not

coincide (m^n)

.

Case I. (m=n)

t(n,m) - _l_ \
(1-P) €.

-A](^-A-'t+ o?
J

d/3C'

A,«
J

4-tt ]Um - *.')*+ *'

- 1 \ (>-PV

Ain

<U'

A-»

P g

a. The first term must be integrated over one segment

T{P^^ry^
Using a Maclaurin series expansion on the first term;

ih£i_\_£.

v a

d rtl - (\ - P)

4^AJ h J /(^-/t0*+ ? **AI. ju„-+'r+<s

i
2.

d/A
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since the first two terms of this Maclaurin expansion give

reasonably good results,

'- 0-P)

4-irAlr,

ZU {d.m -/L')+]u»-£')*+<£ - ijVdf

assuming A 5n *\0a

= (I-P)

4wy,
ZJUhrV.jkAJn

2 TT

b. Integration is now performed on the second term of

the Green's Function.

-_l_ \ o-pv

A! h J4ir

It^iD

dU

X-l
ZiD

(l-p/T P e \ 4a

4-irAi„4^ 2*D J

r\

4it JUD

3^





Finally, the Green's Function for Case I, (m=n) is

t(n,m) ' (l-p)

2 *

4 TT

!U (^-) _

AJ?n
3

2

P e

j
*->

2; D

Case II. (m^n)

+ (n,m) = J.

- < k (/im - An)

0-p^ e cU»

A5n

-
1 (l-p) c e a*'

Z^ > _(*i-»

AJk \ 4 TT /Uw -/i„)
2
+ (2XO);

For the crudest approximation, assume that

/ v^rYi-z^rO + (2iD) remains constant over the integration,

Then, the Green's Function for (m^n) becomes

tu.m) = d-p^ e

n

4ft
L-l
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C APPENDIX D. COMPUTER PROGRAM
C
C CCMPUTER APPLICATION ON THE METHOD
C OF IMAGES USING REGION II
C
C
C

IMPLICIT REAL*4 (K)
IMPLICIT COMPLEX*8 (C,Z)
DIMENSION Z(41,4l), ZMP(41), Y(41)
REAL*4 CAMPS(41)
REAL V(41 1/2.0*0.0, 1.0,20*0.0/
COMPLEX CABS

C
C THE THICKNESS (D) IN METERS

D=0. 003175
C
C THE DIELECTRIC CONSTANT (ER)

ER=16.0
C
C THE RADIUS (A) IN METERS

A=0.C0O5O0
C

20 READ(5,30,END=250 ) DATA
3C F0RMAT(F5.3)

NUM=41
MID=(NUM+1 )/2

C
C THE LENGTH OF THE WIRE IN METERS

ELNGTH=0. 13493750
C

CLTA= EL NGTH/( FLOAT { NUM )

1

F=( (3E03)*DATA)/ELNGTH
P 1 = 3. 14159
W=2.0*PI*F
U=PI*4.0*l.E-7
E0=L.0/(36.0*PI l*l.E-9

C
C
C EQUATION CONSTANTS
C

RhC=(l .0-ER)/(l .O + ER)
B =C0
K=W.*SQRT(U*EO*ER)
A1=W*U*DLTA**2
A2=( 1.0-RHO)/(2.0*PI)
A3=(l .0/DLTA)*ALOG(DLTA/A)
A4=1.0/(2.0*PI1*(1 ,0-RHQ)**2
A5=2.0/ (W*EO*ER)
A6=A2/2 .0
A7=A4/2.0

• A8=A5/2.0
A9=K/2.0
A10=DLTA**2
A11=4.0*D**2
AK1=K*DLTA
CD1=CEXP(CMPLX(B,-AKL) 1/DLTA
AK2=2.0*AK1
CC2=CEXP(CMPLX(B,-AK2 ) )/ (2 .0*DLTA

)

C1 =CMPLX( B,A1)
C2 = A3-CMPLX(B, A9)

C
C SUMMATION OF THE EXPONENTIAL WITh DELTA (DLTA)
C

C3=CMPLX(B,B)
R2=0.0
DC 40 J=l, 10
J 1 = 2.0* J-

1

J2=J**2
R1=RH0**J1
R2=R2+R1

37





c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

X1 = SQRT (A10+AU*J2)
X2=K*X1
C4=CEXP(CMPLX(B,-X2))
C5=(R1*C4)/X1
C3=C3+C5

4G CONTINUE

SUMMATION OF THE EXPONENTIAL WITH 2*DELTA (2*DLTA)

C6=CMPLX(B,B)
R2 = 0.0
DO 50 1=1, 10
11=2.0*1-1
12=1**2
R4=RH0**I1
R3=R3+R4
X3=SQRT(4.0*A10+A11*I2 )

V Ar K ^ X ^

C8=CEXP(CMPLX(B,-X4) )

C<5 = (R4*C8) /X3
C6=C6+C9

50 CONTINUE

SUMMATION OF THE EXPONENTIAL WITH 2*1*0

C20=CMPLX(B,B)
DC 60 1=1, 10
12=2.0*1-1
14=1**2
P10=RH0**I3
X2G=2.0*I*D
X21 =K*X20
C21=CEXF(CMPLX(B,-X21 )

)

C22 = (R10*C21) /X20
C20=C20+C22

60 CONTINUE

CALCULATION OF THE IMPEDANCE MATRIX

DO 110
DO 100
L=IABS(
IF(L.EQ
IFtL.EQ

M=1,NUM
N = l ,NUM
M-N)
.0) GO TO
.1 ) GO TO

90
80

FOR MUTUAL IMPEDANCE

LP=L+1
LM=L-1
AK3=K*L*DLTA
CD3=CEXP(CMPLX(B,-AK3) )/(L*DLTA)
AK4=K*LP*DLTA
CD4=CEXP(CMPLX(B,-AK4) )/( LP*DLTA)
AK5=K*LM*DLTA
CD5=CEXP(CMPLX(B,-AK5) )/(LM*DLTA)
C10=CMPLX(B,B)
C13=CMPLX(B, B)
C16=CMPLX(B,B)
R5=0.0
DC 70 J=l,10
J11=2.0*J-1
J22=J**2
R6=RH0**J11
R5=R5+R6
A12=(L*DLTA)**2
X5=SQRT(A12+A11*J22)
X6=K*X5
Cil=CEXP(CMPLX(B,-X6) )
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c
c
c
c

c
c
c
c

c
c
c

c
c
c
c

C12=(R6*C11) /X5
C10=C 10+C12
A13=(LP*DLTA)**2
X7 = SQRT( A13+A11*J22 )

X F — K ^ X 7
C14=CEXP(CMPLX(B,-X8) )

Ci5=(R6*C14) /X7
C13=C13+C15
A14=(LM*DLTA)**2
X9=SQRT( A14+A11*J22)
X 1 = K. -^ X 9
C17=CEXP.(CMPLX( B,-X10 ) )

C18=(R6*C17)/X9
C 16 = C16+C18

70 CONTINUE
Z21=C1*(A6*CD3-A7*C10)
Z22=(CMPLX(B,-A5 )

) *( A6*CD3-A7*C 10)
Z23=(CMPLX(B, A3) )* ( A6*CD4-A7 *C1 3 )

Z24=(CMPLX(B,A8) )* ( A6*CD5-A7*C1 6

)

ZiM,N)= Z21 + Z22 + Z23 + Z24
GC TO 100

FOR MUTUAL-ADJACENT IMPEDANCE

80 Z'31=-C1*(A6*CD1-A7'*C3)
Z32=(CMPLX(B,-A5) ) * ( A6 *CD1 -A7* C3 )

Z33=(CMPLX(B,A8) ) * ( A6*CD2-A7*C6 )

Z34=(CMPLX(B,A8 ) )* ( A2*C2-A7*C20 )

Z(M,N) = Z3L + Z32+Z33+Z34
GO TO 100

FOR SELF IMPEDANCE

90 Z.11=C1*(A2*C2"A7.*C20)
Z12=(CMPLX(B,-A5) ) * ( A2*C2-A7*C20

)

Z13=(CMPLX(B,A5) )*(A6*CD1-A7*C3)
Z(MiN) = Z11+Z12+Z13

100 CONTINUE
110 CONTINUE

THE MATRIX INVERSION
CALL CM1N1(NUM,Z,NUM,DETERM)

MATRIX MULTIPLICATION OF Z-INVERSE AND V

DC 130 1=1, NUM
ZMPd ) -(0.0,0.0)
DC 120 J=1,NUM
ZMP( I) = ZMP(I J+Z( I, J)*V( J

)

CONTINUE
CONTINUE
WPITE(6,140)
FORMAT (

'
1*

)

WRITE(6, 150)
FCPMAT( 15(/)
WRITE(6il60) D,ER,A
FORMAT ( 10X, 'THE THICKNESS D

l'DIELECTRIC CONSTANT ER«,4X
2' A' , 18X,F 12.8,//)
WRITE(6,170) W
FCRMAT(//,10X,' THE RADIAN FREQUENCY W « , 10X , E 1 3 .7 , / / )

WRITE(6, 180)
FORMAT! 10X, 'THE COMPLEX

3' AMPS' , /)
WRITE(6,190) ZMP(MID)

90 FORMAT (42X, El 1.5, 3X, Ell
DO 200 1=1, NUM
C£MPS( I ) = CABS (ZMP( I ) )

120
130

140

150

160

170

130

)

, 15X
, F12 .

,F12.8, //, 10X,' THE ',
3,//, 10 X, 'THE RADIUS'.

CURRENT AT THE FEEDPOINT IN '

5,3X)
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c
c
c

200

2L0

220

230

240

250

26C

CONTINUE
WRITE(6,2L0)
FORMAT (//, LOX, 'THE MAGNITUDE OF THE CURRENT',/)
WRITE(6.220) CAMPS(MID)
F0RMAT(42X,ELL. 5)
WRITE(6,230) DATA
FORMAK //,LOX,'FOR THE LENGTH/LAMDA RATIO «,5X,F6.4,/)
WRITE(6,240) F
F0RMAT(//,10X,'THE FREQUENCY L6X, 1PE1C.4, //)

CARD PRINT OUT - DATA
kRITE(7,25C) ZMP(MID)
FORMAT( ELL. 5)

GO TO 20
CONTINUE
STOP
END

FOR DRAW SUBROUTINE

C
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c

c
c
c

c
c
c

LO

20

SUBROUTINE CMINL ( N , A , NDI M, DETE RM )

CMINL IS A SUBROUTINE WHICH WILL ACCEPT A SINGLE
PRECISION COMPLEX MATRIX AND RETURNS THE INVERSE
OF THE MATRIX IN ITS PLACE.

6C

80

85

LOO
LOS

N
A

NDIM -

THE ORDER OF THE MATRIX TO BE INVERTED
COMPLEX SINGLE PRECISION INPUT MATRIX
(DESTROYED). THE INVERSE OF A IS
RETURNED IN ITS PLACE.
THE SIZE TO WHICH A IS DIMENSIONED

COMPLEX A (NDI M,NDIf) , PIVOT

(

LOO) , AMAX , T , SWA P ,DETERM ,

U

INTEGER** IPIVOK LOO) , INDEX ( LOO, 2 )

REAL TEMP,ALPHA( LOO)

INITIALIZATION

DETERM=CMPLX( L. 0,0.0)
DC 20 J = L,N
ALPHA (J)=0.ODO
DO LO I = L,N
ALPHA (J ) = ALP HA (J )+A(J, I

ALPHA( J)=SCRT(ALPHA(J) )

IPIVOK J) =
DC 600 1 = 1, N

)*CONJG( A(J,I ))

SEARCH FOR PIVOT ELEMENT

AMAX=CMPLX(0. 0,0.0)
DO 105 J=l,N
IF ( IPIVOKJ )-L ) 60,L05,60
DC LOO K=L,N
IF ( IPI VOT(K )-L) 80,
TEMP=AMAX*CONJG(AMAX )

IF(TEMP) 85, 85, LOO
IROW=J
ICCLUM=K
AMAX=A( J,K)
CONTINUE
CONTINUE
IPIVOK ICOLUM)

100,740
A(J,K)*CONJG(A(J,K) )

IPIVOK ICOLUM)+L

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

IF( IROW-ICOLUM) L40, 260, L40
L4C DETERM=DETERM

DO 200 L=L,N
SWAP=A( IROW,L)
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c
c
c

c
c
c

c
c
c

AC IROW,L)=A( ICOLUM, L)
200 AC IC0LUM,L) = SWAP

SkAP=ALPHA( IROW)
ALPHA

(

IROW)=ALPHA( ICOLUM)
ALPHA( ICOLUM)=SWAP

260 INDEXC I ,1) =IROW
INDEX( I,2)=IC0LUM
PIVOT CI ) = A( ICOLUM, ICOLUM)
U=PIVOT(I)
TEMP=PIVOT(I ) *CONJG(PIVOT(
IF(TEMP) 330, 720, 330

I ) )

DIVIDE PIVOT ROW BY PIVOT ELEMENT

330 AC ICOLUM, ICOLUM) =CNPLX (1 .0,0.0 )

DO 350 L=1,N
U=PIVOT (I )

350 AC ICOLUM, L ) = A ( I COLUM , L ) /U

REDUCE NON-PIVOT ROWS

380 DO 550 L1=1,N
IFCL1-IC0LUM) 400, 550, 400

400 T=A(L1, ICOLUM)
ACL1, ICOLUM )=CMPLX(C. 0,0.0)
DC 450 L=l f N
U=A( ICOLUM, L)

450 A(LI,L)=A(L1,L)-U*T
550 CCNTINUE
60C CONTINUE

INTERCHANGE COLUMNS

620 DO 710 1=1,

N

L=N+1-I
IFC INDEXCL ,L)-INDEX(L,2) ) 630, 7L0, 630

63C JRCW=INDEX(L, I)
JCGLUM=INDEX(L,2 )

DO 705 K=1,N
SWAP=A(K, JROW)
A(K,JR0W) =A(K, JCOLUM)
A(K,JCOLUM)=SWAP

705 CCNTINUE
7 1C CCNTINUE

RETURN
720 WPITE(6,730)
73C F0RMATC20H MATRIX IS SINGULAR)
740 RETURN

END
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