COMPUTER SOLUTION OF HALLEN'S INTEGRAL EQUATION ON MULTI-ELEMENT ARRAYS EMPLOYING THE TWO TERM APPROXIMATE CURRENT DISTRIBUTION

Charles William Schillinger

Library Naval Postgraduate School Monterey, California 93940

NAVAL POSTGRADUATE SCHOOL Monterey, California

Computer Solution of Hallen's Integral Equation on Multi-Element Arrays Employing the Two Term Approximate Current Distribution

by

Charles William Schillinger

Thesis Advisor:

R. W. Adler

T154597

March 1973

Approved for public release; distribution unlimited

Computer Solution of Hallen's Integral Equation on Multi-Element Arrays Employing the Two Term Approximate Current Distribution

by

Charles William Schillinger Captain, United States Marine Corps B.S.E.E., Pennsylvania State University, 1967

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

Library Naval Postgraduate School Monterey, California 93940

ABSTRACT

The objective of this analytical study was to develop a rapid theoretical analysis on approximate half wavelength elements of an antenna configured in a co-planar, symmetrical array. A computer program was written employing the method of moments approach to the solution of Hallen's integral equation with an approximate two term entire domain expansion assumed for the current distributions. With the solution of the current distributions on each element, additional calculations were made for the input impedance and admittance values, field distributions, power gain, and a graphical output of the radiation pattern.

TABLE OF CONTENTS

Ι.	INT	RODUCTION	8
	Α.	DEVELOPMENT OF THE STUDY	8
	Β.	ANALYSIS OF THE PROBLEM	8
	C.	OUTLINE OF THE RESULTS	9
	D.	SCOPE AND LIMITATIONS	9
II.	FOR	MULATION OF HALLEN'S INTEGRAL EQUATION	11
	Α.	THE DIFFERENTIAL EQUATION FOR THE VECTOR POTENTIAL FROM THE ELECTRIC FIELD INTENSITY	11
	Β.	THE DIFFERENTIAL EQUATION FOR THE VECTOR POTENTIAL FROM ELEMENT CURRENTS	15
	С.	HALLEN'S INTEGRAL EQUATION	16
III.	THE TO	THEORY OF THE TWO TERM APPROXIMATE SOLUTION HALLEN'S INTEGRAL EQUATION	18
	Α.	TWO TERM APPROXIMATION	18
	Β.	METHOD OF MOMENTS	18
	С.	MATRIX FORMATION	20
IV.	ASS	OCIATED EQUATIONS OF THE STUDY	24
	Α.	ADMITTANCE AND IMPEDANCE	24
	Β.	RELATIVE VERTICAL AND HORIZONTAL PLANE PATTERNS	24
	C.	POWER GAIN	28
۷.	PROGRAMMING PROCEDURES		
	Α.	ANALYSIS	30
	Β.	OUTLINE OF STEPS EMPLOYED	30
VI.	CON	CLUSIONS	32
	Α.	COMPARISON OF RESULTS	32

Β.	EXAMPLE ONE. TWO SYMMETRICALLY VOLTAGE DRIVEN ELEMENTS	32
С.	EXAMPLE TWO. SIMPLE SYMMETRIC CENTER FED DIPOLE	32
D.	RECOMMENDATIONS	35
APPENDIX A:	GUIDE TO OPERATION OF PROGRAM	38
COMPUTER PRO	OGRAM	42
BIBLIOGRAPH	Υ	56
INITIAL DIST	TRIBUTION LIST	58
FORM DD 1473	3	59

LIST OF TABLES

Ι.	COMPUTER OUTPUT FOR TWO SYMMETRICALLY VOLTAGE DRIVEN ELEMENTS	34
II.	COMPUTER OUTPUT FOR SIMPLE SYMMETRIC CENTER FED DIPOLE	37

LIST OF DRAWINGS

1.	COMPONENTS OF THE ELECTRIC FIELD AT THE SURFACE OF THE ANTENNA	12
2.	CONFIGURATION OF PARALLEL ELEMENTS IN THE YZ PLANE	13
3.	RELATIONS FOR SYMMETRICAL, THIN, LINEAR, CENTER-FED ANTENNA	25
4.	TWO TERM EXPANSION OF THE CURRENT	26
5.	CONFIGURATION OF PARALLEL ELEMENTS IN THE XY PLANE	29
6.	CURRENT DISTRIBUTION FOR TWO SYMMETRICALLY VOLTAGE DRIVEN ELEMENTS	33
7.	CURRENT DISTRIBUTION FOR SIMPLE SYMMETRIC CENTER-FED DIPOLE	36

.

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Professor R. W. Adler for suggesting this thesis topic and providing constant guidance and support throughout.

Mr. E. G. Neely and Mr. J. M. Callaghan provided considerable assistance in this project.

Finally, I wish to thank my wife, Barbara, for typing the preliminary drafts and providing suggestions, understanding and encouragement during this project.

I. INTRODUCTION

A. DEVELOPMENT OF THE STUDY

A goal in the theory of multi-element antenna design is to have a tool which easily analyzes the behavior of an array. The equations that describe the behavior of a one voltage-driven element with a simple sinusoidal current distribution are readily available in many texts [1]. However, upon the introduction of a second or third element with different physical dimensions--either voltage driven or parasitic-the behavior without the assumption of a simple sinusoidal current distribution becomes rather complex and lends itself to a computer oriented solution.

A large portion of the theory employed in the programming of this software package was presented and discussed in a seminar at the University of Mississippi, sponsored by the National Science Foundation in 1972 [2].

The computer program of this study was written in the XDS Fortran IV language. It was specifically to be used in the computer laboratory of the electircal engineering department at the Naval Postgraduate School, Monterey, California [3].

B. ANALYSIS OF THE PROBLEM

A brief synopsis of the theory of this study is as follows:

1. The Development of Hallen's Integral Equation

 <u>The Solving of Hallen's Equation for the Current Distribution</u> by the Use of an Assumed Two Term Approximate Solution Employing the <u>Method of Moments</u>

3. <u>The Development of the Associated Equations for the Relative</u> <u>Vertical Plane Pattern, Relative Horizontal Plane Pattern, and the Gain</u> <u>of the Array</u>

4. An Outlining of the Computer Programming Procedures

C. OUTLINE OF THE RESULTS

An antenna array of from one to ten elements was modeled in free space. The simple physical parameters of the designed array are the input to the computer program. All calculations were made by the computer, producing an output of: (a) a listing of the current distribution on each element of the array; (b) the input impedance and admittance quantities for each of the voltage-driven elements; (c) a listing of the relative field distributions about the array; (d) a graphics output of the radiation patterns; and (e) the values of the gain in magnitude and in decibels.

D. SCOPE AND LIMITATIONS

The procedures outlined were completed for a symmetrical, co-planar array of from one to ten elements in free space with each element being approximately a half wavelength long. No boom effects were included. Each of the ten elements may be voltage-driven or an array of one voltage-driven element and nine parasitic (reflectors or directors) elements may be configured. The latter includes possible Yagi-Uda arrays. The elements may be spaced arbitrarily apart and the centerdriven voltage may be any complex value. The radii of the elements are restricted to the thin wire approximation (a < .01 λ). The graphical radiation pattern outputs were of the relative vertical and horizontal planes.

No optimality procedures were introduced. Further study in this area could be extended by introducing a finitely conducting ground plane to the model; include elements which are other than co-planar; or include elements which are not symmetrical about the axis, but are at angles to the axis.

.

II. FORMULATION OF HALLEN'S INTEGRAL EQUATION

A. THE DIFFERENTIAL EQUATION FOR THE VECTOR POTENTIAL FROM THE ELECTRIC FIELD INTENSITY

The basis of this study is the calculation of the approximated two-term current in the solution of Hallen's integral equation, as all other quantities are determined from this data. In this section, a brief discussion of the formulation of Hallen's integral equation is presented. The objective is to obtain an expression of the current distribution of a cylindrical center-fed voltage driven antenna in terms of its length and diameter.

Consider a voltage driven element as depicted in Figure 1. It is known that:

$$E_{7}' = E_{7}$$
(II-1)

$$E'_{\rho} = E_{\rho} \qquad (II-2)$$

In this case, the electrical field intensity, E, and the vector potential, A, exist only in the Z-component. Therefore, the equation,

$$\overline{E} = \frac{-jc^2}{\omega} \nabla(\nabla \cdot \overline{A}) - j\omega\overline{A}$$
(II-3)

becomes,

$$\frac{d^{2}\overline{A}_{Z}}{dZ^{2}} + k^{2}\overline{A}_{Z} = jk^{2}\frac{\overline{E}_{Z}}{\omega}$$
(II-4)

Equation (II-4) is correct everywhere, where $\overline{A}_{Z}(x,y,z)$ is the vector potential and $\overline{E}_{Z}(x,y,z)$ is the electric field intensity. This equation is solved on each element of an array of co-planar elements in the YZ plane as seen in Figure 2. The radii of the elements in this figure are represented as 'a_n'.

FIGURE 1. COMPONENTS OF THE ELECTRIC FIELD AT THE SURFACE OF THE ANTENNA

Evaluating (II-4) on the surface of each of the N elements produces:

$$\frac{d^{2}\overline{A}_{Z}(a_{n},y_{n},z)}{dZ^{2}} + k^{2}\overline{A}_{Z}(a_{n},y_{n},z) = \frac{jk^{2}\overline{E}_{Z}(a_{n},y_{n},z)}{\omega}$$

$$Z\epsilon(-h_{n}, +h_{n}) \qquad (II-5)$$

Solving (II-5) with B_n and C_n being arbitrary constants and Z' being an arbitrary point on the 'nth' element gives:

$$\overline{A}_{Z}(a_{n},y_{n},z) = C_{n}\cos(kZ) + B_{n}\sin(kZ)$$

$$+\frac{jk}{\omega}\int_{S=Z_{n}^{\prime}}^{Z}\overline{E}_{Z}(a_{n},y_{n},S)\sin(Z-S)k dS$$

$$n = 1, \dots N \qquad (II-6)$$

simplifying,

$$\overline{A}_{Z}(a_{n},y_{n},z) = C_{n}\cos(kZ)$$

$$+\frac{jk}{\omega}\int_{S=0}^{Z} \overline{E}_{Z}(a_{n},y_{n},S) \sin(Z-S)k \, dS$$

$$n = 1, \dots N \qquad (II-7)$$

Equation (II-7) is achieved with the requirements that the array of elements are perfectly symmetric in the YZ plane so that the scalar potential is zero at the center of each element.

Now an expression for the vector potential, \overline{A} , will be expressed in terms of the antenna current and the two expressions will be set equal to each other, for the formulation of Hallen's integral equation. The only unknowns of the equation will be the current distribution and a constant of integration.

B. THE DIFFERENTIAL EQUATION FOR THE VECTOR POTENTIAL FROM ELEMENT CURRENTS

At an arbitrary point, 'P', in Figure 2, the vector potential can be written:

$$\overline{A}(\overline{r}) = \sum_{i=1}^{N} \overline{A}_{i}(\overline{r})$$
 (II-8)

where $\overline{A}_{i}(\overline{r})$ is the vector potential due to the current on the 'ith' element and is expressed as:

$$\overline{A}_{i}(\overline{r}) = \frac{\mu}{4\pi\mu_{Z}} \int_{z_{i}^{\dagger}=-h_{i}}^{h_{i}} I_{i}(z_{i}^{\dagger}) \frac{e^{-jk|\overline{r} - \overline{r}_{i}^{\dagger}|}}{|\overline{r} - \overline{r}_{i}^{\dagger}|} dz_{i}^{\dagger}$$
(II-9)

where,

$$|\overline{r} - \overline{r}'_{i}| = \left[x^{2} + (y - y'_{i})^{2} + (z - z'_{i})^{2}\right]^{\frac{1}{2}}$$
 (II-10)

In the above equation, x, y, and z are the coordinates of the point 'P'. The y_i^+ and z_i^+ are the coordinates on the 'ith' element.

Substuting (II-9) and (II-10) into (II-8) produces (II-11).

$$\overline{A}_{z}(\overline{r}) = \frac{\mu}{4\pi} \sum_{i=1}^{N} \int_{z_{i}=-h_{i}}^{h_{i}} I_{i}(z_{i}') \frac{e^{-jk|\overline{r} - \overline{r}_{i}'|}}{|\overline{r} - \overline{r}_{i}'|} dz_{i}'$$
(II-11)

Equation (II-11) is the vector potential at an arbitrary point in space due to all N antenna currents. Evaluating (II-11) along the surface of the 'nth' element produces (II-12).

$$\overline{A}_{z}(a_{n},y_{n},z) = \frac{\mu}{4\pi} \sum_{i=1}^{N} \int_{z_{i}^{i}=-h_{i}}^{h_{i}} I_{i}(z_{i}^{i}) \frac{e^{-jkR_{ni}^{i}}}{R_{ni}^{i}} dz_{i}^{i}$$
 (II-12)

where:

$$R_{ni}' = \left[a_n^2 + (y_n - y_i')^2 + (z - z_i')^2\right]^{\frac{1}{2}}$$
(II-13)

C. HALLEN'S INTEGRAL EQUATION

Setting equation (II-7) and equation (II-12) equal to each other along each of the N elements results in Hallen's integral equation (II-14).

$$\frac{\mu}{4\pi} \sum_{i=1}^{N} \int_{Z'=-h_{i}}^{h_{i}} I_{i}(Z') \frac{e^{-jkR_{ni}(Z,Z')}}{R_{ni}(Z,Z')} dZ' = C_{n}\cos(kZ) + \frac{jk}{\omega} \int_{S=0}^{Z} E_{Z}(a_{n},y_{n},S) \sin(Z-S)k dS$$

$$n = 1, \dots N \qquad (II-14)$$

where:

$$R_{ni}(Z,Z') = \left[a_n^2 + (y_n - y_i)^2 + (Z - Z')^2\right]^{\frac{1}{2}}$$
(II-15)

Since the current in each element is an even function of Z, the limits of the integrals can be changed to zero and h_i . With this change the set of N equations in (II-14) becomes (II-16), where,

$$V_{n}(Z) = \frac{-jV_{n}}{60} \sin(kZ)$$
 (II-17)

$$t(z) = \frac{-4\pi}{\eta} \cos(kZ) = \frac{-1}{30} \cos(kZ)$$
 (II-18)

$$K_{ni}(Z,Z') = \frac{e^{-jkR_{ni}(Z,Z')}}{R_{ni}(Z,Z')} + \frac{e^{-jkR_{ni}(Z,Z')}}{R_{ni}(Z,-Z')}$$
(II-19)

With this formulation of Hallen's integral equation, it was this study's objective to solve the N set of equations (II-16) for the unknowns of $I_1 \dots I_N$ and the constants of integration $C_1 \dots C_N$ as a function of the arbitrary distance along each element Z'.

(]I-])

III. THE THEORY OF THE TWO TERM APPROXIMATE SOLUTION TO HALLEN'S INTEGRAL EQUATION

A. TWO TERM APPROXIMATION

Even though the N set of equations (II-16) may look rather complicated, there exists only two sets of unknown quantities. Knowing the values of the parameters of an array of elements, the currents and constants of integration are easily determined.

The technique of the two-term solution assumes that the current on the element may be expressed as (III-1).

$$I_{i}(Z) = \sum_{p=1}^{P} b_{p}^{i} \sin \left[p\pi/2h_{i} (h_{i} - Z) \right] P = 2$$
 (III-1)

Expanding (III-1) produces (III-2).

$$I_{i}(Z) = b_{1}^{1} \sin \left[\frac{\pi}{2h_{i}} (h_{i} - Z) \right] + b_{2}^{1} \sin \left[\frac{2\pi}{h_{i}} (h_{i} - Z) \right]$$
 (III-2)

In equation (III-1), the 'i' represents the number of the element and the 'p' is the number of the coefficient in the sinusoidal expansion. This expansion sets the number of unknowns at two current coefficients and one constant of integration per element. Therefore, there are three unknowns per element in the set of equations (II-16). Applying (III-2) to (II-16) produces the set of N equations in (III-3). For an example, a three element array (N=3) would have nine unknowns in the set of three equations. They are, as seen in (III-3), b_1^1 , b_2^1 , b_1^2 , b_2^2 , b_1^3 , b_2^3 , C_1 , C_2 , and C_3 .

B. METHOD OF MOMENTS

In order to determine these unkowns, the method of moments is employed [4]. The set of testing functions selected are a set of delta

$$b_{2}^{I} \int_{2^{+}0}^{T_{2}} \ln \frac{T}{2n} (n_{1} - z^{+}) K_{1} (z_{2} z^{+}) dz^{+} b_{2}^{I} \int_{2^{+}0}^{T_{2}} \ln \frac{T}{2n} (n_{1} - z^{+}) K_{1} (z_{2} z^{+}) dz^{+} b_{2}^{I} \int_{2^{+}0}^{T_{2}} \ln \frac{T}{2n} (n_{1} - z^{+}) K_{1} (z_{2} z^{+}) dz^{+} b_{2}^{I} \int_{2^{+}0}^{T_{2}} \ln \frac{T}{2n} (n_{1} - z^{+}) K_{1} (z_{2} z^{+}) dz^{+} b_{2}^{I} \int_{2^{+}0}^{T_{2}} \ln \frac{T}{2n} (n_{1} - z^{+}) K_{1} (z_{2} z^{+}) dz^{+} b_{2}^{I} \int_{2^{+}0}^{T_{2}} \ln \frac{T}{2n} (n_{1} - z^{+}) K_{1} (z_{2} - z^{+}) K_{1} (z_{2} - z^{+}) K_{1} (z_{2} - z^{+}) dz^{+} b_{2}^{I} \int_{2^{+}0}^{T_{2}} \ln \frac{T}{2n} (n_{1} - z^{+}) K_{1} (z_{2} - z^{+}) K_{1} (z_{2} - z^{+}) dz^{+} b_{2}^{I} \int_{2^{+}0}^{T_{2}} \ln \frac{T}{2n} (n_{1} - z^{+}) K_{1} (z_{2} - z^{+}) dz^{+} b_{2}^{I} \int_{2^{+}0}^{T_{2}} \ln \frac{T}{2n} (n_{1} - z^{+}) K_{1} (z_{2} - z^{+}) dz^{+} b_{2}^{I} (n_{1} - z^{+}) K_{1} (z_{2} - z^{+}) dz^{+} b_{2}^{I} (n_{1} - z^{+}) K_{1} (z_{2} - z^{+}) dz^{+} b_{2}^{I} (n_{1} - z^{+}) K_{1} (z_{2} - z^{+}) dz^{+} b_{2}^{I} (n_{1} - z^{+}) K_{1} (z_{2} - z^{+}) dz^{+} b_{2}^{I} (n_{1} - z^{+}) K_{1} (z_{2} - z^{+}) dz^{+} b_{2}^{I} (n_{1} - z^{+}) K_{1} (z_{2} - z^{+}) dz^{+} b_{2}^{I} (n_{1} - z^{+}) K_{1} (n$$

(E-II)

functions, which enables the usage of the point matching procedure. In this study, the selected number of matched points per element equal the number of unknowns per element, that is, three. The point matching process then produces three equations for every one of the N equations in (III-3). Each integral in (III-3) must be solved for Z equalling one of the designated matched points and Z' existing as the dummy variable of integration. The notation used in (III-3) is as follows:

$$S_{mp}^{ni} = \int_{Z'=0}^{h_i} sin \left[p\pi/2h_i (h_i - Z') \right] K_{ni}(Z_m^n, Z') dZ'$$
 (III-4)

Here, the 'i' represents the number of the element, 'p' is the number of the coefficient in the sinusoidal expansion (in this study p=l or p=2), and 'm' is the number of the matched point on a particular element, 'n'. Employing this notation and arranging all the unknowns to the left hand side in (III-3), produces (III-5), where there are three equations for every one in (III-3). In (III-5) as previously, the unknown quantities are the b_p^i coefficients and the C_n constants of integration. Consider again, the example of the three element array (N=3) with its nine unknowns. Equation (III-5) becomes nine simultaneous integral equations with nine unknowns. Every S_{mp}^{ni} becomes a solvable integral with the selection of the matched points (Z_m^n).

C. MATRIX FORMATION

Rearranging (III-5) into matrix form produces (III-6), which is in the form AX=B. The "A" matrix must be filled in with the desired number of zeroes, depending on the number of elements, N. The 'A' matrix will always be square and be a 3N by 3N size matrix. The 'X' and 'B' matrices will always be a 3N by 1 size matrix. Clearly, the

TZ)	(22)	(^Z ¹)	(TZ)	(Z ⁿ)	(² ²)		$\binom{L}{N}$	(2 ^N)	$(\mathbb{Z}_{\mathbb{N}}^{\mathbb{N}})$	
TA	L ^V	TA TA	ц Д	∆ ^{tr}	An a		ΝA	NN	NA	2)
8	8	6	69	6	10		65	8		
	2 ²]	rim.		(12 12	agen a		(MZ	(NZZ	n m	II)
42	¢()	() 4	() ()	t ()	4		\$	يد د ()	t ()	
5	5	5	0 ²	0 ^H	OH		U	రే	U	
+	+	*	+	+	+		*	*	+	
SLS)	(S ²²)	(S ₃₂)	Nus)	(S22)	(S ^{nu} N) (S ₃₂		(ST2)	(S ^{NN} .	(S ₃₂	
N.S.	bN D2	N	Nor	NON	Ng		NON	No.	NS	
4	÷	4	\$	+	*		+	+	el _e ,	
(ITS)	(S2N)	(IES)	(IICS)	(S21)	(RES)		(IIIS)	(S21) (S21)	(ES)	
P.N	Egt	Z.H	zr	ZM	Zd		a H	ho'z	Z d	
+	*	4	+	4	+		+	+	+	
*	•	*	•	4	•		•	•		
•	•	e r	6 6	*	•		•	•	6 8	
4	•	r		ę	0		¢	•	6	
• +	• +	e e	+	4	+		* -{-	+	e +	
(S11)	(S ¹¹)	(S33)	(S ²¹)	(S22)	(S32)		(S ^{N1}) (S ₁₂)	(S ^{N1}) (S22)	(532)	
·1,01	1. N. h.	·rl N	·1 (V	50 5	·1 01		17 (1)	10 m	-101 -0	
÷.	+	*	\$	4	-Q-		4	4	+	
(S ¹¹)	(S21)	(S ¹¹)	(Sui)	(zuit)	(S31)		(Sll)	(S ^{N1})	(SN1) (531)	
·rt_rt	·rt_~t	·1_1	•1.1	n n	•n =		**		4.4	
4	+	4	4	*	+		+		4	
•	•	•	•	•	•		6 6	•	•	
	-	•	* •	•	•		*	•	-	
• -{·	+	•	* +		*		*	• +	*	
(11) (212)	S22)	(IES)	S ⁿ¹)	(S ⁿ¹) (S ₂₂)	(Sn1)		(SI2)	(S ^{N1}) 22)	(SNL)	
rt_N	H_N	ritu	H.N	H.N	rd_CV		HN	H_N	rd or	
40 -	μΩ	4- 	یے *	یے ج			لىدو ج	+	ليدم ج	
							. A.	24	ÂH	
LLS)	(S ¹¹ 152)	(S ² 33		(S ^{n]} (22]	(331	60 đ	S.L.S.	(SN S2	(S ^N	
r,ar	- a-	-larl		~!~ ~!	n n			d_d	. г.d	

'A' and 'B' matrices contain all known quantities and the 'X' matrix contains all the unknown quantities.

F									-	-
	$(\frac{1}{L}Z)^{T}A$	$v_{1}(z_{2}^{1})$	$\Delta^{T}(z_{1}^{z})$	$\Lambda_n(z_1^n)$	$v_n(z_2^n)$	(² ⁿ _u) ⁿ	$({}^{L}_{N}{}^{N})_{N}$	$v_N(z_2^N)$	$V_N(z^N)$	
	d L		e del	"!~~··	•.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N.C.	5		C _N	
		a na an		×						
	$\mathfrak{L}(z_1^1)$ 0 · · · · · · · · 0	$t(z_2^2)$ 0 0	*(Z ¹) 0 · · · · · · 0	0 0 (^T Z) + O 0	$0 \cdots \cdot 0 \cdot (Z_2^n) 0 \cdots 0$	$0 \cdots 0 \mathfrak{c}(\mathbb{Z}_{3}^{n}) 0 \cdots 0$	$\binom{T}{N}$ 2) 2 0 · · · · · · · 0	$0 \cdots \cdots 0 t(z_2^N)$	(^E Z) + 0 0	
	NUS	S22	S22	2TS	S ^{AM} 222	Sec.	SHN S12	SNR	Sint 32	I-6)
	S ¹¹ S ¹² S ^{1N}	Sli Slu	S32	sni Snu 12	s22 S21	Saz Sal	Siz Sill	S22 521	125	. (11
1	sll sli	s22 ***********************************	511	S ₁₂ Sni	s22 szi	165 5 ⁿ 2 32	SuzSwi	S22 SNi	s ^{N1} s ^{N1}	
		1122	rin co ring so	0077 207	521 221		• 11 20	123	R.S.	

IV. ASSOCIATED EQUATIONS OF THE STUDY

A. ADMITTANCE AND IMPEDANCE

The solving of the current distribution from the matrix equation (III-6) is the essence of this study. From the current distributions, the admittance and impedance quantities are found by using the terminal current (current at center of element, where the voltage is applied) and Ohm's Law.

B. RELATIVE VERTICAL AND HORIZONTAL PLANE PATTERNS

The calculations begin with the solving of the differential equation (IV-1) in the far field region [5].

$$dH_{\phi} = \frac{j(I) \sin \theta \, dZ}{2s\lambda} \qquad (IV-1)$$

The representation of this equation is found in Figure (3). The relative vertical plane pattern E_{θ} in free space is found from (IV-1) by equation (IV-2).

$$E_{\theta} = ZH_{\phi} = 120\pi H_{\phi} \qquad (IV-2)$$

The current distribution calculated previously is pictured in Figure (4). The approach used in solving (IV-1) was by superposition of the two currents. The current I_1^i may be substituted into (IV-1) as:

$$I_{1}^{i} \sin \left[k(L/2 \pm Z)\right] e \qquad (IV-3)$$

and the current I_2^i as:

$$J_{2}^{i} \sin[2k(L/2 \pm Z)] e \qquad (IV-4)$$

.

FIGURE 3. RELATIONS FOR SYMMETRICAL, THIN, LINEAR, CENTER-FED ANTENNA

FIGURE 4. TWO TERM EXPANSION OF THE CURRENT

In Figure (3), the distance 's' to a distant point is found to be:

$$S = r - Z\cos\theta \qquad (IV-5)$$

Substituting (IV-3) and (IV-5) into (IV-1) produces an integral equation of the form in (IV-6).

$$\int e^{ax} \sin(c + bx) dx = \frac{e^{ax}}{a^2 + b^2} [a \sin(c + bx) - b \cos(c + bx)] (IV-6)$$

Carrying through the integration and making use of the trigonometric identity in (IV-7) and the relationship that h=L/2 from Figure (3),

$$\sin^2\theta = 1 - \cos^2\theta \qquad (IV-7)$$

the result is:

$$H_{\phi l} = \frac{jI_{l}^{i'}}{2\pi r} \left[\frac{\cos(kh\cos\theta) - \cos(kh)}{\sin\theta} \right]$$
(IV-8)

where $I_1^{i'} = I_1^{i} e^{j\omega(t - r/c)}$

Relating this to (IV-2) and setting r=1 gives:

$$E_{\theta 1} = j60I_{1}^{i'} \left[\frac{\cos(kh\cos\theta) - \cos(kh)}{\sin\theta} \right]$$
 (IV-9)

Employing (IV-4) and (IV-6) in (IV-1) produces the second components of the superposition.

$$H_{\phi 2} = \frac{jI_2^{i'}}{2\pi r} \left[\frac{2\sin\theta}{4 - \cos^2\theta} \right] \left[\frac{\cos(kh\cos\theta) - \cos(kh)}{\sin\theta} \right]$$
(IV-10)

Relating (IV-10) to (IV-2) and setting r=1 produces (IV-11).

$$E_{\theta 2} = j60I_2^{i'} \left[\frac{2\sin\theta}{4 - \cos^2\theta} \right] \left[\frac{\cos(kh\cos\theta) - \cos(kh)}{\sin\theta} \right]$$
(IV-11)

Now for multiple symmetrical elements, a phase term is introduced due to the separation of elements along the Y axis. In taking this into

account, the time term of $I_p^{i'}$ is dropped and with the substitution of $k=\omega/c$ and $r = y_i \sin\theta$, the form of $I_p^{i'}$ becomes that of (IV-12).

$$I_{p}^{i'} = I_{p}^{i} e^{jky_{i}sin\theta}$$
(IV-12)

Finally, substituting (IV-12) into (IV-11) and (IV-9), the far field pattern in the Y-Z axis is achieved, using the superposition equation (IV-13).

$$E_{\theta} = E_{\theta 1} + E_{\theta 2}$$
 (IV-13)

The relative horizontal plane pattern as depicted in Figure (5) is found with equation (IV-14).

$$E_{\phi} = j60(I_{1}^{i} + I_{2}^{i}) e^{jky_{i}\cos\phi}$$
(IV-14)

C. POWER GAIN

The power gain was calculated for comparison with an isotropic source [6]. The gain is equal to the ratio of the power intensity to the power density. The gain is then expressed as in (IV-15).

$$G = \frac{4\pi W'}{W_{\text{in}}}$$
 (IV-15)

where from the Poynting vector,

$$M' = \frac{r^2}{120\pi} |E|^2$$
 (IV-16)

With,

$$v_{in} = |I|^2 R_{in}$$
 (IV-17)

The gain with r=l is expressed as in (IV-18).

$$G = \frac{|E|^2}{30|I|^2 R_{in}}$$
(IV-18)

FIGURE 5. CONFIGURATION OF PARALLEL ELEMENTS IN THE XY PLANE

V. PROGRAMMING PROCEDURES

A. ANALYSIS

With the equations of the unknown available, the writing of the software which would produce computer solutions with graphical outputs began. The program consists of the main program, one function subprogram, and four subroutines. The following is a brief outline of the procedures used, in the writing of the program.

B. OUTLINE OF STEPS EMPLOYED

1. The number of arrays to be analyzed, 1 to 99, and the designated number of the graphical output device [7] to be used is read in.

2. The number of elements in the array to be analyzed, 1 to 10, and the wavelength in meters is read in.

3. The applied complex voltage, value of 'Y' along the Y-axis in meters, half length of element 'h' in meters, and radius 'a' in meters is read in for each element.

4. Constants are formed including the designation of the position of the matched points for the solution of the integral, S_{mp}^{ni} .

5. That portion of the 'A' matrix involving the integral Sⁿⁱ is solved. The integration routine employs Weddle's Rule [8] which approximates the function with a sixth degree polynomial.

6. The remainder of the 'A' matrix is then completed by appropriately filling in the zeroes and the function, $t(Z_m^n)$.

7. The 'B' matrix is completed by solving the function, $V_n(Z_m^n)$.

8. With the 'A' and 'B' matrices formed, the 'X' matrix is solved for by using a Gaussian Elimination routine [9] including the

decomposing of the 'A' matrix, the solving for the 'X' matrix, and then the attempt to improve the 'X' matrix for the most accurate solution possible.

9. With the solution of the 'X' matrix achieved, the values of the current are outputed starting at the center (Z=O) and for every tenth of the distance along each element until the end of the element (Z=h_i).

10. For every element which is voltage-driven, the input impedance and admittance values are outputed.

11. Starting at theta equal to zero degrees, and for every degree through 360 degrees, the values of $E_{\theta 1}$ and $E_{\theta 2}$ for each element are summed together.

12. These values are normalized for output and the appropriate XY values are calculated for the graphical computer.

13. Starting at phi equal to zero degrees and for every degree to 360 degrees, the values of E_{d} for each element are summed together.

14. These values are normalized for output and the appropriate XY values are calculated for the graphical computer.

15. The XY coordinates of the relative patterns to be drawn are sent to the graphics computer for display.

16. The power gain in magnitude and decibels is computed and outputed.

VI. CONCLUSIONS

A. COMPARISON OF RESULTS

The parameters of two simple antenna configurations were used as input data. Results of this study, were then compared for degrees of accuracy.

B. EXAMPLE ONE. TWO SYMMETRICALLY VOLTAGE DRIVEN ELEMENTS

The first antenna consisted of two identical symmetrically voltage driven elements with a wavelength set equal to one meter (300MHz). Each element was driven with the complex voltage of 1+j0. The separation between the two elements was .01 meters $(y_1 = -0.005, y_2 = 0.005)$. Both elements were 0.50 meters in length (L=2h). The radius of each element was 0.000277 meters. Computer results produced by the program of this study for the current distribution are displayed in Figure 6. These results show good correlation with those of King's first-order theory [10] and a two term sinusoidal approximation as depicted by Butler [11].

With this study's calculated current distributions, the input admittances, input impedances, relative vertical pattern, relative horizontal pattern and power gain in magnitude and decibels were also calculated as shown in Table I.

C. EXAMPLE TWO. SIMPLE SYMMETRIC CENTER FED DIPOLE

The second example is a simple symmetric center-fed dipole, with a wavelength set equal to one meter (300MHz). The complex voltage applied was 1+j0. There is no separation involved in this example

FIGURE 6. CURRENT DISTRIBUTION FOR TWO SYMMETRICALLY VOLTAGE DRIVEN ELEMENTS

REAL CURRENT (ma.)	IMAGINARY C (ma.)	URRENT	DISTANCE ALON FROM CENTER	IG ELEMENT (meters)
5.28236974 5.16780772 4.92962568 4.57696180 4.12109759 3.57492582 2.95246973 2.26848157 1.53813553 0.77681740 0.00000000	-2.37995 -2.47847 -2.50660 -2.45519 -2.31881 -2.09652 -1.79220 -1.41511 -0.97857 -0.50012 -0.00000	399 437 1181 573 755 088 618 770 729 839 000	.000 .025 .050 .075 .100 .125 .150 .150 .175 .200 .225 .250	
INPUT ADMITTANCE (milisiemens	REAL)	INPUT (ADMITTANCE IMAGI milisiemens)	INARY
5.28236974			-2.37995399	
INPUT IMPEDANCE (ohms)	REAL	INPUT	IMPEDANCE IMAGIN (ohms)	IARY
157.36507827	509		70.90030883439	
OMEGA (deg.)	RELATIVE VERT. P (absolute)	ATTERN	RELATIVE HORZ (absolut	. PATTERN
000 010 020 030 040 050 060 070 080 090 100 110 120 130 140 150 160 170 180	1.000000000 .9778616021 .9141704194 .8163246415 .6942923199 .5586521887 .4174121131 .2763364447 .1372906322 .0000000000 .1372906322 .2763364447 .4175121131 .5586521887 .6942923199 .8164356415 .9141704194 .9778616021 1.0000000000	0 5 2 9 9 7 6 5 7 0 7 7 5 6 7 7 0 7 7 5 6 7 9 9 9 9 9 7 1 6 5 7 7 0 7 7 5 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	.999506560 .999521438 .999564277 .999629912 .999710227 .999796112 .999876632 .999942274 .999986119 1.000000000 .999985119 .999942274 .999876632 .999942274 .999876632 .999796112 .999710227 .999564277 .999521438 .999506560	036 319 764 265 788 278 247 133 978 900 978 133 247 238 247 256 764 319 036

The gain of the array is 3.09 = 4.90db.

TABLE I. COMPUTER OUTPUT FOR TWO SYMMETRICALLY VOLTAGE DRIVEN ELEMENTS
$(y_1=0.0)$. Following the length and radii restrictions, the length of the element was 0.25 meters and the radius was 0.0069 meters.

Computer results produced by the program of this study, are displayed in Figure 7. These results are plotted along with a two term sinusoidal approximation, and a five term sinusoidal approximation as displayed by Butler [12] and measured data by Mack [13]. The additional data calculated as listed in Example one is shown in Table II.

D. RECOMMENDATIONS

More complicated arrays were also analyzed by the computer program of this study. These outputs yielded results which were closely related to those of other two term approximations for current distributions [14].

In Examples one and two, the matched points used were Z=0.0, Z=0.5 h_i , and Z= h_i . It is recommended in a study by Darko Kajfez [15] that for the closest comparable results, using the two term approximation of this study, the matched points should be located at Z=0.0, Z=0.75 h_i , and Z= h_i .

This study found that the number of increments that the integral function is divided into when being approximated by a sixth degree polynomial employing Weddle's Rule, will in some cases have an unwieldy effect in the solutions of the integrals. It is recommended that the integer, 75, be employed in the determination of the number of increments.

Recommendations for further study are to employ a different complex numerical integration routine with the theory of this study. Possibly additional programming could be written in order to allow interactive graphics for design and testing procedures.

CENTER-FED DIPOLE

MAGNITUDE (ma)	ARGUMENT (deg.)	D. Fl	ISTANCE ALONG EL ROM CENTER (met	EMENT ters)
10.06945176 10.31137742 10.29630974 9.99144960 9.37425727 8.43725169 7.19133077 5.66716441 3.91449351 1.99942153 0.00000000	-20.91494045546 -23.88716574162 -26.55377940962 -28.92611960589 -30.97158254089 -32.68483783763 -34.07240413432 -35.13865883043 -35.89288284490 -36.34223309019 -36.49146393058		.000 .025 .050 .075 .100 .125 .150 .175 .200 .225 .250	
INPUT ADMITTANCE (milisiemens	REAL)	IMPUT	ADMITTANCE IMAG (milisiemens)	SINARY
9.40598988			-3.59460891	
INPUT IMPEDANCE RI (ohms)	EAL	INPUT	IMPEDANCE IMAG (ohms)	NARY
92.766859779	13		35.45193909900)
OMEGA (deg.)	RELATIVE VERT. PA (absolute)	FTERN	RELATIVE HO (absol	DRZ. PATTERN ute)
000 010 020 030 040 050 060 070 080 090 100 110 110 120 130 140 150 160 170	1.0000000000 .97740371048 .91249376631 .81307695801 .68974122014 .55322994009 .41223256076 .27215639036 .13498559880 .00000000000 .13498559880 .27215639036 .41223256076 .55322994009 .68974122014 .81307695801 .91249376631 .97740371048		1.000 1.0000 1.00000 1.0000 1.0000 1.0000 1.00000 1.00000 1.0000 1.0000	
180	1.0000000000		1.000	00000000

The gain of the array is 1.64 = 2.15db.

TABLE II. COMPUTER OUTPUT FOR SIMPLE SYMMETRIC CENTER-FED DIPOLE

APPENDIX A

GUIDE TO OPERATION OF PROGRAM

Below is a step by step procedure to follow in order to operate the computer program, at the Naval Postgraduate School computer laboratory. The software requires the use of the digital computer (XDS9300) and the graphics computer (AGT).

A. FORMATION OF THE DECK

 The first card is a 'BOOT' card which is found in the card stalls in the laboratory.

2. The second card is the 'JOB' card which is followed by the cards of the program through to the 'DATA' card as shown in the enclosed computer program printout.

3. Following the 'DATA' card is the initial data card which contains three digits in the first three columns of the card. The first two digits denote the number of arrays to be analyzed (01 to 99). The third digit denotes the assigned number of the graphics computer to be used (1 or 2).

4. After the initial data card, the input data of each of the arrays is formed. Each array will have one card plus as many cards as there are elements in the array. The first card of each array will have the number of elements in the array in the first two columns (O1 to 10). In the next twenty columns, the value of the wavelength in meters is to be entered.

5.	Fol	low	ing t	he	'wagele	ength'	card, there is one card for each of	
the elem	ent	S.	The	for	mat for	r each	of these cards is as follows.	
Columns	01	to	15:	Rea Exa	l value mple	e of co 1.0	mplex voltage applied to element.	
Columns	16	to :	30:	Ima ele	ginary ment.	value Exampl	of complex voltage applied to e -1.0	
Columns	31	to 4	45:	Val the	ue of elemen	the Y-a nt in m	exis, indicating the position of meters. Example 0.0	
Columns	46	to (50:	Value of half length of element (h) in meters. Example 0.25				
Columns	61	to	75:	Val Exa	ue of mple O	radius .001	of element in meters.	
6.	As	an	examp	ole,	in or	der to	run example one and two of section	
VI of th	nis	stu	dy, t	che	cards	after t	he 'DATA' card would appear as	
follows:								
Card 1:		02]					
or Card 1:		02	2					
Card 2:		02	1.	.0				
Card 3:		1.	00.	.0	005	0.25	.000277	
Card 4:		1.	0 0.	.0	.005	0.25	.000277	
Card 5:		01	1.	,0				
Card 6:		1.	0 0.	.0	0.000	0.25	.0069	

B. PREPARATION OF XDS9300 DIGITAL COMPUTER

1. Press IDLE switch at the XDS9300 control panel.

2. Hold the RESET switch depressed and press the POWER switch in order to energize the computer.

3. Turn switch at teletype to the 'on' position.

4. Press the READY button on the line printer.

39

.

C. PREPARATION OF THE AGT GRAPHICS COMPUTER

•

1. Press ON at the operator's control panel (OCP).

2. Wait 5 seconds, then press RESET on the OCP.

3. Press the ON/START switch at the disk drive of the AGT to be used.

4. Press HALT, RESET, and BTSP, in that order on the OCP.

5. Verify that the 'location counter' (behind the door of the left-most rack) indicates zero or all lights out. If not, press RESET and BTSP again.

6. Load a paper tape marked DISK BOOT LOADER (located behind the door of the left-most rack) into the tape reader of the AGT's teletype.

7. Verify that the knob on the front of the AGT's teletype is in the 'line' position.

8. Put the tape reader switch to 'start.'

9. Now verify that the 'location counter' indicates 110 (octal). If it is not, return to step 1 of this section and begin the procedure again.

10. When step 9 is satisfied, verify that the switches in the center of the OCP have the configuration 24000 77776 (octal).

11. Press HALT, RESET, RUN, and PULSE 1 on the OCP.

12. If the AGT's teletype does not respond now with a request for the operator to input MO/DA/YR, press HALT, RESET, RUN, BUTTON 29, and PULSE 1. If teletype does not respond now, return to step 1 of this section.

13. Type RESET("GATED", 101)! on the AGT's teletype.

14. Type GATED! on the AGT's teletype.

15. Turn vertical and horizontal gain knobs fully clockwise.

D. READING IN PROGRAM DECK

- 1. Place cards in card hopper.
- 2. Push POWER ON button, at the card reader.
- 3. Push START button, at the card reader.
- 4. Push IDLE, RESET, RUN, and CARDS on the XDS9300 control panel.

U.J 0 АΥ LL ING I ENGT ď. .V. 111 Η« \bigcirc T ilin **⊢** _ h ANALYZE OR THIS UUI \triangleleft StS EPARA 02 NAN Ū. CHARLE \square 5. ТŬ. Ш +7 Ð US D E SS B SS QUJ UZ • SUM ----ΩLU 0), YY(720), IGDIR(2), 0), Y(10), ZZ(10,3), R(10), 1PS(20), NXPPE(10), V(10), TH IN MET шm S TO E Q UI BY CAPTAI FILLMENT C du. <u>п</u>о ZZ* \bigcirc Z VOLTAGE RADIUS . UJI ŝ 9 ____ Con E Con ш NTS IN TH 11 Å M ANALYSIS WAS CONSTRUCTED RINE CORPS IN PARTIAL FUL ŝ 5 ----N'A ×6 0.01 . -----THE AGT W MPLEX + AND (21 I ON (WV) × 2 **p-**CEP. V. 0. READ (5.42) V(MA), Y(MA), H(MA), F FORMAT (5F15.7) WEITE (6.22) TOPMAT (11: 4X, VOLTAGE REAL, 6) T VOLTAGE IMAGINARY: 6X, 'SEPARATI X 'HALF-LENGTH', I2X, 'RADIUS') WRITE (6.23) V(MA), Y(MA), H(MA), FORMAT (5(F15.7, 5X)) п гап п CULL. ENGTH OF ELE H5 NUMBER 0 E CS L U U U A(30,30) 111-2 THE NUMBE IS THE VA • CM DEV XTRAN LS,60 CFRAME(723), H(10), A CFRAME(723), X(33), B(3 0LU(3),33), X(33), B(3 NC(10), REH(360), A CCMPLEX CF, CANS, CWF COMPLEX CCI, CECNE, C INTEGER FRAME A(1,13), XX), CCNE, C E A(1,13), XX), C[U(1,1), CCMMON I, CF, DECMPI, H, LU <7 E. IS THE NN. AMBD. F20.13) j----6 KILL - 111 - 111 - 111 - 111 AY MAI . ЦЭ (5.41) KILLE AT(12,11) 99, KILL=1.K ... ВЕ НА. ВЕ НА. AMBDA. ARRIA \square E. KILLE E. IDEV. SLES. V. EMENTS (12, (12, CH-RUGRAM FCR UNITED ST E DEGREE. U. . . UJ. ພະເມ 5 AR READ(S FCRMAT CRMAT DRMAT 110 100 NLO VARIAN ARIA N T T T T T T T A A F F S F ARA au Ľ THIS PR OF THE SCIENCE JJOS JAGT 22 c., NT NA >> 42.22 00 41 a. \cap LHA LUA HEA 5 Ü

CC

0

1.0.0

11

CCI

```
DERIVED
                                                                                                                                                                          ARE
                                                                                                                                                                         MATRIX INVELVING THE INTEGRAL FUNCTIONS
                                                                                                                                                                                                                                                                                            IS THE SUBROUTINE PERFORMING THE NUMERICAL INTEGRATION.
                                                                                                                                                                                                                                                                                                                                                                                                                        COMPLETED
                                                                                  DETERMINED
                                                                                                                                                                                                                                                                                                            CALL CWEDF (CF. 0.0, XU. NX. CANS)

IR = IR+1

60 T0 21

0 IC = IC+1

1 A(IR.IC) = CANS

2 CONTINUE

3 CCNTINUE

3 CCNTINUE

4 CCNTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                       5
                                                                                  ш
                                                                                                                                                                                                                                                                                                                                                                                                                       MATRIX
                                                                                  OSITION OF MATCHED POINTS AR
TCPI=2.)*3.1415926535
CNED=TCPI/360.0
BETA=TCPI/AMBDA
PI=3.1415926535
LLP=2
P=LLP
CI=(0.0.-1.0)
NS={LLP+1}*NN
                                                                                                                                                                                         F=3.0/4.0
IF(NN.LT.3) F=3.5
DC 202. KA=1.NN
ZZ(KA.1)=0.0
ZZ(KA.3)=H(KA)*F
ZZ(KA.3)=H(KA)*F
ZZ(KA.3)=H(KA)*F
                                                                                                             S
                                                                                                                                                                                                                                                                                                                                                                                                                         <
                                                                                                                                                                         PORTION OF THE A
                                                                                                                                                                                                                                                                                                                                                                                                                       E
H
H
                                                                                                                                                                                                                                                                                                                                                                                                                        LL
O
                                                                                                                                                                                                                                                                                                                                                                                                                       REMAINDER
                                                                                                                                                                                                                                                                                                                                                                   ~~~~~*
                                                                                                                                                                                                                                                                                                                                                  20
                                                                                                                                                         2 0 2
                                                                                                                                                                                                                                                                                             CWEDE
                                                                                                                                                                         THAT
                                                                                                                                                                                                                                                                                                                                                                                                                       THE
                                                                                   ۵
```

÷

COMPLETES THE SOLUTION OF THE X MATRIX BY ATTEMPTING TO IMPROVE OF THE X MATRIX TO THE PRECISION OF THE MACHINE. ω MATRIX BEGINS WITH THE SUBRCUTINE DECMP1. A MATRIX FOR THE GAUASSIAN ELIMINATION PROCESS. AND THE A MATRIX SCLVEL SOLVES FOR THE X MATRIX WITH THE DECOMPOSED A, 30, LU, IPS, 100S, 100S) II=0 D0 6. N=1, NN D0 7. M=1,3 II=II+1 B(II)=CI*V(N)*(SIN(TOPI*ZZ(N.M)))/60.0 CONTINUE CONTINUE LI I X, IPS) BEGINS ° CALL SOLVEI (NS, LU, 30, MATRIX CALL DECMP1 (NS, a) THE SOLUTION OF THE X DFC WP1 DECOMPOSES THE FORMATION OF THE VAL JES 13 5 16 20 10 12 14 ui T H

MATRIX.

H H H

```
ŝ
0
⊷4
iu,
×,
 .
ന
30,
Δ.
CALL IMPRVI (NS.
```

VALUES ADMITTANCE AND LL1 IMPEDANC Ш Ţ 1u. Õ FOR THE OUTPUTTING PARATION U. α 0

```
W
                                                                                                                                                                                                                                                                                                                                                         C.
                                                                             1
                                                                                                                                                                                                                                                                                                                                                         Ш
Т
                                                                                                                                                                                                                                                                                                                                                       BEGINS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F16.11
                                                                                                                                                                                                                                                                                                                                                       CUTPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            5
                                                                                                                                                                                                                                                                                                                                                                                       D3 33. 1=1.KBA*.LLF
N=N+1
K700.70
K700.70
K700.70
K700.70
B (X(1+1))*SIN((TOP1*(H(N)-Z))/(2.0*H(N))))+
ARG=(ATANZAIMAG(C(N)).REFL(C(N)))*S7.29577
BRG=(ATANZAIMAG(C(N)).REFL(C(N)))*S7.29577
BRG=(ATANZAIMAG(C(N)).REFL(C(N)))*S7.29577
BRG=(ATANZAIMAG(C(N)).REFL(C(N)))*S7.29577
BRG=(ATANZAIMAG(C(N)).REFL(C(N)))*S7.295777
BRG=(ATANZAIMAG(C(N)).REFL(ATANT, 5X, 710,11, 5)
BRG=(ATANZAIMAG(C(N)).REFL(ATANT, 5X, 710,11, 5)
BRG=(ATANZAIMAG(C))
BRG=(ATANZAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5779
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ~
                                                                                                                                                                                                                                                                                                                                                         ഗ
                                                                                                                                                                                                                                                                                                                                                       \vdash
                                                                                                                                                                                                                                                                                                                                                         ---
                                                                                                                                                                                                                                                                                                                                                    AND
                                                                                                                                                                                                                                                                                                                                                    DISTRIBUTION
                                                                                                                                                                                                C
                                                                                                                                                                                                ---
N=0
KBAR=NS-NN-LLP+1
LAST=0
D3 1. NUM=1.NN
V(NUM)=CABS(V(NUM))
V(NUM)=CABS(V(NUM))
V(NUM)=CABS(V(NUM))
CONTINUE
CONTINUE
                                                                                                                                                                                                U
                                                                                                                                                                                                                                                                                                                                                    T
N
U
L
                                                                                                                                                                                                                                                                                                                                                    HE CURR
                                                                                                                                                                                                                                                                                                                                                    1 40
                                                                                                                                                                                                                                                                                                                                                    SOLVING
          0
          õ
                                                                                                                                                                                                                                                                                                                                                    L
H
H
          p-d
                                                                                                                                                                                                                                                                                             -
```

```
ш
Т
                                                                                                                                                                     1
                                  ÷
                                                                                                                                                                     1-
                              F16.11
                                                                                                                    4
                                                                                                                                                                     ш.
                                                                                                                                                                                                                       UJ.
                                                                                                                    н
Ш
                                                                                                                                                                     ന
                                                                                                                                                                                        SUM#2. J#SIN(THETA)/(4.2-(CCS(THETA))
                                                                                                                                                                                                                      FORME
                                                        α:
                                                                                                                                                                     Z
                                                                                                                   CI≒SIN(BI
UM
                                                        W
                                                         Γ
                                                        INS
                                 .
                                                                                                                                                                                                                      U.
                               Xo
                                                                                                                                                                                                                      4
                                                        C
                                -----
                                                        UJ
                                                        (D
                                                                                                                                                                                                                       ¢.
                                 .
   .
                                                                                                                                                                                                                      LЦ
                                                        E
N
N
N
                               ЗX
                                                                                                                                                                                                                      TU9M:0
                               914
   ٤.
                                                        h---
 = LN II
                                                        PAT
                                                                                                                                                                                                                      \bigcirc
                                 .
           х
е
                                                                                                                                                                                                                      CS
                               11X
8 FORMAT('0' 1X, 'NUWBER OF ELTM
1 INPUT ADMITTANCE REAL' 3X;
6 INPUT ADMITTANCE REAL' 3X;
6 INPUT IMPEDANCE REAL' 3X;
H INPUT IMPEDANCE REAL' 3X;
WRITE (6,19) N, 0(1); 8(2)
WRITE (6,19) N, 0(1); 8(2)
VRITE (6,19) N, 0(1); 8(2)
11X, F16,11)
30 CONTINUE
  2.
                                                        CAL
  L
                                                                                                                                                                                                                      THA
                                                                                                                                                                                                                                          S
                                                        ERTIC
                                                                                                                                                                                                                                ATA)
                                                                                                                                                                                                                      \triangleleft
                                                                                                                                                                                                                      GR
S
                                                        >
                                                                                                                                                                                                                      ш
                                                        ΞΛΞ
                                                                                                                                                                                                                                SINCOS (THET
SINCTHET
FENCENC)
                                                                                                                                                                                                                      F
                                                                                                                                                                                                                      ПОR
                                                        -
                                                        4
                                                        U)
                                                                                                                                                                                                                                ABS(PB)
                                                                                                                                                                                                                      \succ
                                                        Ć
                                                        ш
                                                                                                                                                                                                                      A ND
                                                        Ξ
                                                                                                                                                                                                                               XX [MC) = R FA (
YY [MC) = R FA (
VORM=AMA X (A
                                                        н
С
                                                                                                                                                                                                                       \times
                                                                                                                                                                                                                      u.
                                                        u
                                                                                                                                                                                                                      \overline{\mathbb{C}}
                                                        SOLVING
                                                                                                                                                                                                                      ALUES
                                              30
                                                                                                                                                 100
                                                                                                                                                                                                                       >
                                                                                                                                  43
  0
                               σ
                                                                                                                                                                                    44
                                                                                                                                                                                                                       u
  -----
                               إسمع
                                                        ш
```

ш С

H

H

101 CONTINUE

w HER GINS ũ ന 2 ¢. ω 1-۵. DNTAL HOR I Z IJ ELATIV Ľ üΗL ¢. Ο LL_ SOLVING LL. I

```
ш
                                                                                                                                                                                                                                                                                                                                                               Ľ
                                                                                                                                                                                                                                                                                                                                                               ш
                                                                                                                                                                                                                                                                                                                                                               I
                                                                                                                                                                                                                                                                                                                                                               \square
                                                                                                                                                                                                                                                                                                                                                             LUI
                                                                                                                                                                                                                                                                                                                                                             FORM
                                                                                                                                                                                                                     S
                                                                                                                                                                                                                 Y(INB) +CO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         U.J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CZ
LU
                                                                                                                                                                                                                                                                                                                                                               ШJ
                                                                                                                                                                                                                                                                                                                                                             с
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           17
                                                                                                                                                                                                                                                                                                                                                               <
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GINS
                                                                                                                                                                                                                                                                                                                                                             a.
                                                                                                                                                                                               1: 1:
                                                                                                                                                                                                                                                                                                                                                             IJ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       EHLINZ) .
                                                                                                                                                                                                                                                                                                                                                           GRAPHICS COMPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  YL)
                                                                                                                                                                  NN
(1 IND)+X(IND+1))*CCI*120*(
(8)*COS(PHI))+CCI~SIN(BET)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         LU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4 WRITE(6,434)

• 34 FORMAT(*1.* 1X, *0MEGA*, 30X,

0 PELATIVE VERTICAL PATTERN*, 30X,

1NY=91

1NY=91

NY=91

NY=91

NY=91

NY=91

NY=91

NY=91

NY=91

NY=91

NY=91

NY=1, 1X=1, 360, 10

NRTE(6,405)

0MEGA=(1NY), 8EH(1

NY=1), 41X, F1

1NY=1, 1NY=1, 1NY=351

YL=0.0

YL=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              . A3S(YY(IV+1)).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ERN VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                        (NX)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          \bigcirc
                                                                                                                                                                                                                                                                                                                                                                                                                                                            Т
                                                                                                                                                                                                                                                                                                                                                                                                         H(INA)*COS(PHI)
H(INA)*SIN(PHI)
ABS(REH(INA)),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       112d
HORM=0.0
INE=361
DD 403. INA=1.363
PH I= (INA-1)*CNED
PH I= (INA-1)*CNED
CCONE=(0.0.0.0)
INC=1
INC=1
INC=1
INC=1
IND=1.1ND
CCONF=CONFI(ND)+X(IN
CCONFICS(BETA*Y(INB)*COS(PHI
CCONFIND+2
IND=IND+2
CONTINUE
IND=IND+2
CONTINUE
                                                                                                                                                                                                                                                                                                                                                           เม
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            160
16)/HORM
                                                                                                                                                                                                                                                                                                                                                             T
                                                                                                                                                                                                                                                                                                                                                           +-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ELATIVE
                                                                                                                                                                                                                                                                                                                                                           FOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            H IND
                                                                                                                                                                                                                                                                                                                                                           \succ
                                                                                                                                                                                                                                                                                                                                                          AND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C'.
                                                                                                                                                                                                                                                                                                                                                                                                     XX(INE)=REH(
YY(INE)=REH(
HCRM=AMAX(AB)
INE=INF+1
CCNTINUE
DO 402. INF=
REH(INF)=REH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IU
II
H
                                                                                                                                                                                                                                                                                                                                                           ><
                                                                                                                                                                                                                                                                                                                                                          ц
О
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       և.
Ը)
                                                                                                                                                                                                                                                                                                                                                          ALUES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1
D
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       <u>|--</u>
                                                                                                                                                                                                                   IO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           +0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4 36
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4 35
                                                                                                                                                                                                                                                                                       401
                                                                                                                                                                                                                                                                                                                                                           \geq
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     L
H
                                                                                                                                                                                                                                                                                                                                                           111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4
                                                                                                                                                                                                                                                                                                                                                           T
```


IHdd CALL DGINIT(IDEV.IGDIR,2.IER) IF(IER .NE. 0) DUTPUT(IJI IER, .DGINITL. FRAMF(1)=IHEAD(0,10) FRAMF(1)=IHEAD(0,10) FRAMF(2)=IPACK(XX(1)*.5/HUGE, (YY(1)*.5/HUGE)+.51, 0) DO 104. IK=3.361 FRAME(262)=IPACK(XX(1)*.5/HUGE, (YY(1)*.5/HUGE)+.51,1) CONTINUE FRAME(362)=IPACK(XX(361)*.5/HUGE, (YY(1)*.5/HUGE)+.51,1) Y 51, 0) FRAME(362)=IPACK(XX(361)*.5/HUGE, (YY(1)*.5/HUGE)+.51,1) Y 51, 0) CONTINUE FRAME(362)=IPACK(XX(361)*.5/HUGE, (YY(1)*.5/HUGE)+.51,1) Y 51, 0) FRAME(362)=IPACK(XX(1NG-2)*.5/HUGE, (YY(1NG-2)*.5/SUGE)-Y 51, 0) FO 403 ING=364.722 FO 403 ING=70 FO 403 α, G =IPACK(XX(1)*.5/HUGE, (YY(1)*.5/HUGE)*.51,1)
=IPACK(XX(361)*.5/BUGE, (YY(361)*.5/SUGE)-H H H u.i Ľ. ŧ1,1 T F16.11 0 0 1-9300 DUTPUT ۹۰ ۱۳ LU T H S AND XL) 7777 CONNECT . . С) Ш 0 S(YY(IV+1)) S(XX(IV+1)) ABS(XX(IV+1)) 4 CALCULAT ш Н Н 11). 11 WHICH WILL PROGRAM HDRM=0.5%HDRM HALL=AMAX(HORM,VORM) HALL=AMAX(HORM,VORM) GAIN=10.0%ALOSI0(HAIN) GRIN=10.0%ALOSI0(HAIN) WRITE (6,997) HAIN,GAIN WRITE (6,997) HAIN,GAIN WRITE (6,997) HAIN,GAIN STOP 00 xL=AMAX(ABS(XX(IV)), AE CCNTINUE HUGE=AMAX(XL.YL) XL=0.0 YL=0.0 YL=0.0 VL=AMAX(ABS(YY(IV)), AE XL=AMAX(ABS(YY(IV)), AE XL=AMAX(ABS(YY(IV)), AE CONTINUE BUGE=AMAX(XL.YL) << 4 -1 SUBROUTINE E มม T <u>}---</u> u. \bigcirc UND UND U H H UL: T S S -----NA 1---09 106 265 407 DGINI σ 5 50 Ó THE THE H 47 p----|

ц

COMPUT

S

CINH N D

MATRIX. ⊲ THE CCNPLEX CI, CF, CEXP DIMENSION H(10), Y(10), ZZ(10,3), R(10) CCMMJN I, LP, PI, H, Y, ZZ, CI, N, M, R, TOPI P=LP Ad=(R(N)**2)+((Y(N)-Y(I))**2) Ad=(R(N)**2)+((Y(N)-Y(I))**2) CF=(SIN(((P*PI))(2.0*H(I)))*(H(I)-Z)))*(((CEXP((CI* CF=(SIN((P*PI))(2.0*H(I))))*(Ad+(ZZ(N,M)-Z)**2)))+ R(Ad+(ZZ(N,M)-Z)**2))))/(SORT(Ad+(ZZ(N,M)-Z)**2)))+ A((CEXP((CI*TOPI)*(SGRT(Ad+(ZZ(N,M)+Z)**2))))/ R(SORT(Ad+(ZZ(N,M)+Z)**2))))/(SORT(Ad+(ZZ(N,M)-Z)**2))))/ R(SORT(Ad+(ZZ(N,M)+Z)**2)))) Ц. О FCRMING TO BE INTEGRATED IN THE OF THE FUNCTION SUBROUTINE. FUNCTION FUNCTION CF(Z) ON U IS THE IS THE THIS THIS

.

ЕND

AT WHICH THE FUNCTION IS A USER CWEDF IS A SUBROUTINE WHICH WILL NUMERICALLY INTEGRATE A BETWEEN SPECIFIED LIMITS. PRPARED BY MICHAEL G. HARNISC CF IS THE NAME OF THE FUNCTION TO BE INTEGRATED. XL IS THE LOWER LIMIT OF INTEGRATION. XU IS THE UPPER LIMIT OF INTEGRATION. NX IS THE APPROXIMATE NUMBER OF NODES AT WHICH THE FUNCT NX IS THE RESULT OF THE INTEGRATION. (CF,XL,XU,NX,CANS CWEDF SUBROUTINE

FUNCTION

SUPPLIED

ED.

EVALUAT

ш Ф

01

ANS IS THE RESULT OF THE INTEGRATION. DIMENSION CW(6) CCMPLEX CANS.CF DATA CW/82.016.27.272.27.216./ N=((NX+4)/6)%6+1 DXDX=DBLE(DX) NWIX=N/6 NWIX=N/6 NWIX=N/6 CANS=-CF(X)#41.0 CANS=-CF(X)#41.0 CANS=CF(X)#41.0 CANS=CANS+CW(KX)*CF(X) X=SNGL(XX+DXDX) ZOO 700 700 KZ+U(KX)*CF(X) X=SNGL(XX+DXDX) ZOO CCNTINUE CANS=(CANS+41.0*CF(X))#DX/140.0 RETURN

THIS IS THE END OF THE INTEGRATION SUBROUTINE

END

```
A MATRIX INTO A TRIANGULAR L
                                                                                       DIMENSION A(IDIM,N), IPS(N), LU(IDIM,N), SCALES(100)
CGMPLEX A, LU, EM, PINOT
DO 5 I = 1, N
RGWNRM = 0.0
DO 2 J = 1, N
LU(I,J) = A(I,J)
ROWNRM=AMAX1(RGWNRM,CABS(LU(I,J)))
SUBROUTINE DECMP1(N, A, IDIM, LU, IPS, M, L)
                             FCMPL IS A SUBRCUTINE WHICH DECUMPOSES THE
HAT L*U = A. PREPARED BY JOHN H. WELSCH
PS IS THE ROW PIVOT VECTCR.
                                                                                                                                                                                                                                                                                                                                                              .
                                                                                                                                                                                                                                                                                                                                                     PIVOTING.
                                                                                                                                                                                                                                                                                                                                                                                NM1 = N-1
CO 17 K = 1.NM1
BIG = 0.0
BIG = 0.0
DO 11 I = K.N
SIZE=CABS(LU(IP,K))*SCALES(IP)
IF(SIZE=LE=BIG)GOTO11
BIG = SIZE
IF(SIZE=LE=BIG)GOTO11
ICONTINUE
IPS(F) = SIZE
IPS(F) = IPS(F)
J = IPS(F) = IPS(F)
J = IPS(F) = J
IPS(F) = IPS(F)
J = F
IPS(F) = IPS(F)
IPS(F) = IPS(F)
DO 16 I = K1
DO 16 I = CU(FP,F)
EM = LU(FP,F)
EM = LU(FP,F)
                                                                                                                                                                                                                                                                                                                                                     AUSSIAN ELIMINATION WITH PARTIAL
                                                                                                                                                                                                                                                                                      IF(ROWNRM.EQ.O) RETURN M
SCALES(I) = 1.0/FOWNRM
5 CONTINUE
                                                                                                                                                                                                                                                         ROW
                                                                                                                                                                                                                                                        FOR MATRIX WITH ZERC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -
                                                                                                                                                                                                                                                         .
SШ
                                                                                                                                                                                                                           \sim
                                                                                                                                                                                                                                                         1-
                                                                                                                                                                                                                                                                                                                                                        ى
                                  OHH
```

SO

€ Ω

51


```
DO 16 J = KP1.N
LU(IP.J) = LU(IP.J) - EM*LU(KP.J)
17 CCNTINUE
17 CCNTINUE
17 FF(CABS(LU(IPS(N).N)).EQ.0) RETURN L
RETURN
THIS IS THE END OF THE DECOMPOSE SUBROUTINE.
```

END

•

-
SOLVEI IS A SUBROUTINE WHICH SOLVES FOR THE X MATRIX USING THE LU MATRIX FROM THE SUBROUTINE DECMP1. PREPARED BY JOHN H. WELSCH IPS IS THE ROW INTERCHANGE VECTOR FROM THE SUBROUTINE DECMP1. IPS) (N)× B(N). е Ю COMPLEX LU, B, X, SUN DIMENSION IPS(N), LU(IDIM,N), B(N NP1 = N+1 X(1) = B(IPS(1)) CO 2 I = 2,N IP = IPS(1) CO 2 I = 2,N IM = 1-1 SUM=(0,0,0,0) IM = 1-1 SUM = SUM + LU(IP,J) + X(J) Z(N) = B(IP) - SUM + LU(IP,J) + X(J) CO 4 DBACK I = NP1-IBACK I = NP1-IPACK I = SCLVE SUBROUTINE SOLVEI(N, LU, IDIM, THE u. O SUBROUTINE END S THE +---1 -N 50 S THT

53

END

```
ACCURACY
                                                                                                  B(N), X(N)
                                                                        T, SUM, DBL, DX
SCHI, WIZ, WIZA, SUMR
X, LU, IPS)
                  MACHINE
                 IS A SUBROUTINE WHICH IMPROVES X TO MACHIN
ED BY CHARLES W. SCHILLINGER
HE ORIGINAL A MATRIX FROM THE MAIN PROGRAM.
HE ORIGINAL B MATRIX FROM THE MAIN PROGRAM.
HE SOLUTION FROM THE SUBROUTINE SOLVEI.
                                                                                                      pri
                                                                                                  (13) (12 N)
                                                                                                                                                                                                                                                                                                                                                                     S
                                                                                                                                                                                                                                                                                                                                 ABS (SUMJS)
                                                                                                                                                                                                                                                                                                                                                                                                        DX, IP
                                                                                                                                                                                                                                                                                                                                                                     0
                                                                     CGMPLE X A. LU. B. X. R. DX. T. SUM. C

COUBLE PRECISION CB, D. SCH. SCHI. WI

DSUMJ

DSUMJ

CIMENSION A(IDIM.N), IPS(N), LU(IDIM.

CR(30), DX(30), OX(30), WORST(13)

CR(30), DX(30), OX(30), WORST(13)

CR(30), DX(30), OX(30), WORST(13)

CR(30), DX(30), CABS(X(1))

DC 1 I = 1.N

1 IF(XNORM = AMAXI(XNORM, CABS(X(I)))

DC 2, ILP=1.13

DO 2, ILP=1.13

DO 2, ILP=1.13
                                                                                                                                                                                                                                                                                                                                                                     00
م
                                                                                                                                                                                         IDIM,
                                                                                                                                                                                                                                                                                                                                                                                                        El(N. LU, IDIM,
1.N
     .
  à
•'U)
IMPRV1
                                                                                                                                                                                                                                                                                                                                                                                                        SOLVE
SUBROUT INE
                                                                                                                                                                                                                                                                                                                                                                                                                   9
                                                                                                                                                                                                                                                                                                                                                                                                        CAI
                  \bigcirc
                                                                                                           \odot
                                                                                                                                                         -
                                                                                                                                                                                                                                                                                                                                                                                                12
                                                                                                                                                                          m
                                                                                                                                                                                                                                                                                                                                                    ហ
                                                                                                                                                                                                                                                                    4
```

,

```
2 6 CCNTINUE
2 1 CCNTINUE
1 DC CNTINUE
9 CCNTINUE
1 DC L10.IL=1.N
1 DC L10.IL=1.N
1 DC CNTINUE
1 DC CONTINUE
1 DC CNTINUE
1 DC CONTINUE
1 DC CCNTINUE
1 DC CCNTIN
```

.

BIBLIOGRAPHY

- 1. Kraus, John D., <u>Antennas</u>, p. 127-132, 1st edition, McGraw Hill, 1950.
- Butler, C.M., <u>Study of Current Distribution in Arrays of Parallel</u>, <u>Co-Planar Wire Elements</u>, presented to the seminar at the University of Mississippi, Oxford, Mississippi, summer 1972.
- DeLaura, R.D., <u>Electrical Engineering Computer Laboratory</u>, compiled for the electrical engineering computer laboratory at the Naval Postgraduate School, Monterey, California, 10 February 1972.
- Butler, C.M. and Pearson, L.W., Moment Solution for the Currents on an Array of Parallel Symmetrically Driven Dipoles, presented to the seminar at the University of Mississippi, Oxford, Mississippi, summer 1972.
- Kraus, John D., <u>Antennas</u>, p. 140-142, 1st edition, McGraw Hill, 1950.
- Kennedy, Edward E., <u>A Computer Model for Rapid Solutions and Visual</u> <u>CRT Display of Padiation Patterns for Arbitrarily Orientable</u> <u>Yagi-UDA Arrays Operating Over Lossy Ground or in Shib Ocean</u> <u>Environments</u>, p. 31, Master of Science, Naval Postgraduate School, Monterey, California, 1972.
- 7. DeLaura, R.D., <u>Electrical Engineering Computer Laboratory</u>, compiled for the electrical engineering computer laboratory at the Naval Postgraduate School, Monterey, California, p. III-24.
- Scheid, Francis, <u>Theory and Problems of Numerical Analysis</u>, p. 123, McGraw Hill, 1968.
- Dorn, W.S. and McCracken, D.D., <u>Numerical Methods and Fortran</u> Programming, p. 231-238, 3rd edition, John Wiley and Sons, Inc., 1965.
- King, R.W., Theory of Linear Antennas, p. 276, Harvard University Press, 1956.
- Butler, C.M., <u>Study of Current Distribution in Arrays of Parallel</u>, <u>Co-Planar Wire Elements</u>, presented to the seminar at the University of Mississippi, Oxford, Mississippi, summer 1972, p. M-24.
- Butler, C.M., <u>Integral Equation Solution Methods</u>, presented to the seminar at the University of Mississippi, Oxford Mississippi, summer 1972.

- 13. Craft Laboratory Report Numbers 381-386, <u>A Study of Circular</u> Arrays, Harvard University, 1963.
- 14. King, R.W., Mack, R.B. and Sandler, S.S., <u>Arrays of Cylindrical</u> <u>Dipoles</u>, p. 226-230, Cambridge University Press, 1968.
- 15. Kajfez, Darko, <u>Analysis of Yagi Antenna by Moment Method</u>, presented to the seminar at the University of Mississippi, Oxford, Mississippi, summer 1972.

,

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940	2
3.	Asst. Professor R. W. Adler Code 52Ab Naval Postgraduate School Monterey, California 93940	١
4.	Capt. Charles W. Schillinger 7338 N. Oconto Avenue Chicago, Illinois 60648	1

County Classification						
Security Classification	OL DATA - R &	D				
Security classification of title, body of abstract and indexing an	notation must be •	ntered when the o	verall report is classified)			
RIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION				
Naval Postgraduate School		Unclassified				
Monterey, California 93940		26. GROUP				
Computer Solution of Hallen's Integral Ec	uation on M	ulti-Eleme	nt Arrays			
Employing the Two Term Approximate Currer	nt Distribut	ion				
DESCRIPTIVE NOTES (Type of report and Inclusive dates)						
Master's Thesis: March 1973						
AUTHOR(S) (First name, middle initial, last name)						
charles william schillinger						
	74. TOTAL NO. O	F PAGES	75. NO. OF REFS			
March 1973	60		15			
CONTRACT OR GRANT NO.	98. ORIGINATOR	S REPORT NUME	BER(S)			
. PROJECT NO.						
	AD OTHER REPO	RT NO(5) (Any o	ther numbers that may be assigned			
	this report)					
,						
DISTRIBUTION STATEMENT						
	1					
Approved for public release; distribution	n unlimited	•				
	LL SPONSOBING	MILITARY ACT	IVITY			
1. SUPPLEMENTARY NOTES	Naval Postgraduate School					
	Monterey, California 93940					
3. ABSTRACT						
		davalar 2	manid theoretical			
The objective of this analytical study was to develop a rapid theoretical						
analysis on approximate half wavelength elements of an antenna configured in a						
co-planar, symmetrical array. A computer program was written employing the						
method of moments approach to the solution of nation assumed for the current						
with an approximate two term entire domain expansion assumed for and surrent,						
distributions. With the solution of the current distributions on admittance						
values field distributions, power gain, and a graphical output of the						
radiation pattern.						

59

Security Classification			1.15			LINKC	
KEY WORDS	ROLE	W T	ROLE	WT	ROLE	ΨT	
Two Term Current Distributions of Multi- Element Arrays							
Yagi-Uda Arrays							
Radiation Patterns							
Input Impedances and Admittances for Arrays							
Gain of Arrays							
'							
	:						
•							

Thesis 533673 c.1 T	17 NOV 82 Schillinger Computer S Hallen's in tion on mul arrays empl term approx distribution	2 1440 solution tegral entrimetric ti-elemetric solution the timate curves on.	20 of qua- nt le two irrent	
Thesis \$33673 c.1	Schillinger Computer s Hallen's int tion on mult arrays emplo term approxi distribution	olution egral eq i÷elemen ying the mate cur •	of ua- t two rent	020

