BUCKLING AND POST-BUCKLING BEHAVIOR OF A LARGE ASPECT RATIO ORTHOTROPIC PLATE UNDER COMBINED LOADINGS.

Fred Lewis Ames

LIBRARY VAVAL POSTGRADUATE SCHOOD HONTEREY, CALIF. 93940

BUCKLING AND POST-BUCKLING BEHAVIOR OF A LARGE ASPECT RATIO ORTHOTROPIC PLATE UNDER COMBINED LOADINGS

by

FRED LEWIS AMES ^{II} LIEUTENANT, UNITED STATES COAST GUARD B.S., United States Coast Guard Academy

(1963)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF OCEAN ENGINEER

AND THE DEGREE OF

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1973

LIBRARY NAVAL POSTGRADUATE SCHOOD MONTEREY, CALIF. 93940 2

BUCKLING AND POST-BUCKLING BEHAVIOUR

OF A LARGE ASPECT RATIO ORTHOTROPIC PLATE

UNDER COMBINED LOADINGS

by

Fred L. Ames Lieutenant, United States Coast Guard

Submitted to the Departments of Ocean Engineering and Mechanical Engineering on 11 May 1973 in partial fullfillment of the requirements for the degrees of Ocean Engineer and Master of Science in Mechanical Engineering.

ABSTRACT

Orthotropic plate theory has been increasingly used to model plate-stiffener combinations typical of those which are used in ship hulls. The behaviour of a thin plate with large deflections is described by two nonlinear partial differential equations of equilibrium and compatibility. The orthotropic form of these equations is derived and solved for a large aspect ratio plate with long edges simply supported and short edges fixed as boundary conditions. Buckling and post-buckling regions are investigated under combined loadings of lateral pressure, inplane edge compression and edge shear. Results are presented for virtual aspect ratios 1/1.5 to 1/6 and both isotropic and orthotropic plate properties in the form of design and behaviour charts.

Thesis Supervisor: Alaa E. Mansour

- Title: Associate Professor of Ocean Engineering
- Thesis Reader: Thomas J. Lardner
- Title: Associate Professor of Mechanical Engineering

The author would like to express his appreciation to Professor Alaa Mansour for his support and guidance in this research. Gratitude is extended to Commander Joseph L. Coburn, U. S. Coast Guard Headquarters Research and Development Branch, for providing the funding of the necessary computer services.

Special thanks is given to my wife Holly for her continued understanding and long hours spent deciphering and typing the rough draft. In addition, the fine typing of the final draft by Ms. Cathy Bayer is greatly appreciated.

Table of Contents

Abst	ract		2				
Acknowledgement							
Tabl	e of	Contents	4				
List	of 1	Figures	7				
List	of !	Tables	9				
Nome	enclat	ture	10				
1.	Intro	oduction	14				
2.	Form	ulation of the Problem	. 17				
	2.1	Orthotropic Material Properties	. 17				
	2.2	The Rectangular Orthotropic Plate with					
		Large Deflection	. 17				
	2.3	Bending and Membrane Stresses	21				
	2.4	Load Boundary Conditions	, 22				
	2.5	Support Conditions	, 23				
3.	Theo:	retical Analysis	. 24				
	3.1	Analysis Procedure	, 24				
	3.2	Solution	, 25				
	3.3	Bending and Membrane Stresses	. 29				
	3.4	Effective Width	, 33				
	3.5	Principal Stresses	, 35				
4.	Nume	rical Solution	, 37				
	4.1	Analytic Solution	, 37				
	4.2	Computer Solution	. 39				

5.	Results											41					
	5.1	Design	Charts	• •		• • •	•	•	•	•	•	•	•	•	•	•	41
		5.1.1	Charts	of	Defle	ection	•	•	•	•	•	•	•	•	•	•	41
		5.1.2	Charts	of	Effec	tive	Wić	lth	ì.	•	•	•	•	•	•	•	41
		5.1.3	Charts	of	Bendi	.ng Mo	mer	nt	•	•	•	•	•	•	•	•	41
	5.2	Behavio	our Char	cts.		•••	•	•	•	•	•	•	•	•	•	•	42
		5.2.1	Charts	of	Defle	ction	•	•	•	•	•	•	•	•	•	•	42
		5.2.2	Charts	of	Maxim	um an	d M	1in	ı i n	num	ı						
			Total H	?rir	ncipal	Stre	sse	es	•	•	•	•	•	•	•	•	42
6.	Discussion of Results							43									
	6.1	Orthoti	ropic Pr	rope	erties		•	•	•	•	•	•	•	•	•	•	43
	6.2	Compari	ison wit	ch E	Existi	.ng So	lut	zic	ns	5.	•	•	•	•	•	•	43
	6.3	Design	Charts	• •			•	•	•	•	•	•	•	•	•	•	44
		6.3.1	Charts	of	Defle	ction	•	•	•	•	•	•	•	•	•	•	44
		6.3.2	Charts	of	Effec	tive	Wić	lth	1 .	•	•	•	•	•	•	•	45
		6.3.3	Charts	of	Bendi	.ng Mo	mer	nt	•	•	•	•	•	•	•	•	46
	6.4	Behavio	our Char	cts.		• • •	•	•	•	•	•	•	•	•	•	•	46
	6.5	Example	es Demor	ıstı	cating	Use	of	th	ie	Ch	nar	ts	5.	•	•	•	49
		6.5.1	Design	Exa	ample		•	•	•	•	•	•	•	•	•	•	49
		6.5.2	Behavio	our	Examp	le	•	•	•	•	•	•	•	•	•	•	50
7.	Conc	lusions	and Red	com	nendat	ions.	•	•	•	•	•	•	•	•	•	•	52
8.	Refe	rences ,	• • • •	•		• • •	•	•	•	•	•	•		•	•	•	54
9.	Appendices										101						
	Appendix A. Details of Derivation of Basic																
			Equat	ions	s of I	arge	Def	1 6	ect	ic	ons	5.	•	•	•	•	102
	Apper	ndix B.	Effect	tive	e Widt	h	•	•	•	•	•	•			•	•	115

	<u>.</u>	<u>je</u>
Appendix C.	Details of Solution 1	18
Appendix D.	Computer Programs 12	26

*

List of Figures

Figure	Title	Page
1	Illustration of Coordinate System and Inplane Edge Loadings	66
	Design Charts of Deflection vs. Inplane Load N_x^*	
2,3	$\rho = 0.667$	67
8,9	$\rho = 0.50$	70
14,15	$\rho = 0.25$	73
20,21	$\rho = 0.167$	76
	Design Charts of Effective Width vs. Inplane Load N^*_{X}	
4,5	$\rho = 0.667$	68
10,11	$\rho = 0.50$	71
16,17	$\rho = 0.25$	74
22,23	$\rho = 0.167$	77
	Design Charts of Bending Moment vs. Inplane Load $N^*_{\mathbf{x}}$	
6,7	$\rho = 0.667$	69
12,13	$\rho = 0.50$	72
18,19	$\rho = 0.25$	75
24,25	ρ = 0.167	78
	Behaviour Charts of Deflection	
26,27	$\rho = 0.667, N^* = 0$	79
36,37	$\rho = 0.80, N^* = 0$	84
46,47	$\rho = 0.667$	89

Page

8

Behaviour Charts of Maximum and Minimum Total Principal Stresses

28-31	$\rho = 0.667, N^* = 0, x = 0$	80,81
32-35	$\rho = 0.667, N^* = 0, y = 0$	82,83
38-41	$\rho = 0.80, N^* = 0, x = 0$	85,86
42-45	$\rho = 0.80, N^* = 0, y = 0$	87,88
48-51	$\rho = 0.667, x = 0$	90,91
52-55	$\rho = 0.667, y = 0$	92,93
56-60	Deflection and Principal Stresses, Top and Bottom of Plate	94,95,96
61-63	Design Charts of Deflection, Effective Width and Bending Moment vs. Inplane Load N*, $\rho = 1.0$	97,98
64	Plate Deflection Comparison with Levy Solution [5]	99
65	Effective Width Comparison with Levy Solution [5]	100

List of Tables

TableTitlePage1Coefficients C_{pq} 562Rigidity and Compliance Coefficients603Integrals614Computer Symbols65

9

y= ordinate in long direction x = ordinate in short direction a = plate length in x-direction b = plate breadth in y-direction $\beta = \frac{b}{a}$ = aspect ratio u, v, w = displacements of a point in x-, y-, and zdirections respectively ε_x , ε_y , ε_{xy} = middle-plane strains

G = modulus of elasticity in shear

 N_x , N_y , N_{xy} = middle-plane loads per unit length

 M_{xy} = twisting moment in orthotropic plate b_{mn} = nondimensional deflection coefficient

F = Airy's stress function

$$J_{x} = \frac{1}{hE_{y}}$$
h = plate thickness, orthotropic

$$J_{y} = \frac{1}{hE_{x}}$$

$$2J_{xy} = \frac{1}{Gh} - v_{x}J_{y} - v_{y}J_{x}$$

$$2D_{xy} = D_{x}v_{y} + D_{y}v_{x} + 4C$$

$$C = \frac{Gh^{3}}{12}$$

$$\theta = 12 \frac{a^2}{b^2} (1 - v_x v_y)$$

 P_x , P_y = total loads in x- and y-directions respectively \bar{q} = uniform lateral load, per unit area of plate \bar{s} = constant inplane shear load, per unit length

$$\rho = \frac{a}{b} \int_{-\infty}^{D} \frac{y}{D_x} = \text{virtual aspect ratio of orthotropic plate}$$

$$\eta = \frac{D_{xy}}{\sqrt{D_x D_y}} = \text{torsion coefficient of orthotropic plate}$$

$$\gamma = \frac{J_{xy}}{\sqrt{J_x J_y}}$$

 $N_X^* = \frac{\bar{N}_X a^2}{\pi^2 D_X} = \text{nondimensional in-plane load x-direction}$

12

$$N_{Y}^{*} = \frac{\bar{N}_{Y} b^{2}}{\pi^{2} p_{y}} = \text{nondimensional in-plane load}$$

$$y-direction$$

$$Q^{*} = \frac{\bar{q}b^{*}}{\pi^{*}h D_{y}} = \text{nondimensional lateral load}$$

$$S^{*} = \frac{\bar{s}ab}{\pi^{2} D_{XY}} = \text{nondimensional edge shear load}$$

$$b_{e}, a_{e} = \text{effective width, x- or y-directions}$$

$$respectively$$

$$\sigma_{x}, \sigma_{y}; \sigma_{x}^{*}, \sigma_{y}^{*} = \text{membrane stresses in x- and y-}$$

$$directions respectively; nondimensional
$$\tau_{xy}; \tau_{xy}^{*} = \text{shear stress in xy plane; nondimensional}$$

$$\tau_{bxy}; \sigma_{bx}^{*}, \sigma_{by}^{*} = \text{bending stresses in x- and y-}$$

$$directions respectively; nondimensional
$$\tau_{bxy}; \tau_{xy}^{*} = \text{twisting stress in xy plane; non-}$$

$$dimensional$$

$$\sigma_{tx}, \sigma_{ty}, \tau_{txy} = \text{total stresses}$$

$$\sigma_{tx}^{*}, \sigma_{ty}^{*}, \tau_{txy}^{*} = \text{nondimensional total stresses}$$

$$\sigma_{1,2}; \sigma_{1,2}^{*} = \text{maximum and minimum principal stresses},$$

$$plane stress; nondimensional
$$\sigma_{x_{e}}, \sigma_{y_{e}} = \text{edge membrane stress in the x- or y-}$$

$$direction respectively$$$$$$$$

 $M_{x_{O}}^{*}, M_{y_{O}}^{*}$ = nondimensional bending moments per unit length due to curvature in xdirection only ($M_{x_{O}}^{*}$) and y-direction only ($M_{y_{O}}^{*}$)

 C_{pq} , ϕ_{pq} , A_{pq} , X_{q} , Y_{q} = coefficients

 σ_{o} ; σ_{o}^{*} = Von Mises combined stress; nondimensional

Ix' Iy = moments of inertia of the stiffeners
 with effective plating in the x- and
 y-directions respectively

h_x, h_y = equivalent thickness of the plate and the stiffeners (diffused) in the x- and y-directions respectively h_p = thickness of plate alone

1. Introduction

Of major concern to the naval engineer is the reaction of ship bottom plates to a combination of inservice loadings. In genemal, the plate-stiffener combinations will be subjected to inplane compression or tension edge loads due to ship hogging or sagging, lateral hydrostatic loads and inplane edge shear loads. With increasing compression and shear loads, a critical state will be reached where buckling will occur. Plate deflection will exceed plate thickness, however, the plate may still carry considerable loads. High slenderness ratio (b/h) plates are encountered in modern longitudinally framed ship designs. The yielding load may be considerably higher than the buckling load and investigation of the plate-stiffener residual strength in the postbuckling region is of great importance.

Orthotropic plate theory has been increasingly applied to ship structures. With this analysis, the plate-stiffener combination is modeled as an equivalent flat plate with elastic properties that are different in two perpendicular directions. Schade [12, 13] and Mansour [9, 10]*, among others, have worked with this concept.

The small deflection theory is useful only in the prebuckling region where deflections of a plate are small in

14

^{*}Numbers in brackets designate references in Chapter 8.

comparison with its thickness. The assumption of no deformation in the middle plane of the plate is made in this case. If deflections are not small, $\frac{W}{h} > \frac{1}{2}$, the strain in the middle plane is no longer negligible and must be considered. Von Karman's equations describe the behavior of an isotropic plate under combined lateral and inplane loads. The nonlinear equations describe the behavior of the plate in both small and large deflection regions.

Considerable application has been made of von Karman's equations. Levy [4, 6] investigated square and rectangular plates simply supported and subjected to both inplane edge loading and normal pressure. Coan [3] included the effects of small initial curvature for this case. Levy [5], using two fixed and two simply supported ends, solved the equations with edge loading only for an aspect ratio of 4, and studied pure shear for the simply supported square plate [7, 8]. The square plate with variations of the boundary conditions, subjected to edge loading only, was studied by Yamaki [17]. Payer [11] applied von Karman's equations to deep web frames and included uniform edge shear in addition to compressive edge stress and normal pressure. Shultz [15] investigated wide plates having aspect ratios of $\beta = 1.5$ to 8 for conditions of a transversely framed ship. All of these analyses apply only to isotropic plates. Mansour [9, 10] extended von Karman's equations to consider slightly rectangular orthotropic plates under various boundary, loading and initial deflection conditions.

A large aspect ratio orthotropic plate with the short edges fixed and the long edges simply supported is considered in this paper. The plate-stiffener combination is subjected to loads of inplane edge compression, uniform edge shear and uniform pressure normal to the plate. Figure 1 illustrates the loadings and coordinate system used.

The orthotropic form of von Karman's equations are solved similar to the theoretical analysis of Mansour [9, 10]. The IBM System 370 model 165 is employed to produce the numerical results. "Design" charts of deflection, effective width and bending moment are given for orthotropic plate virtual aspect ratios of 1/1.5 to 1/6 with inplane edge compressive and lateral loadings. In addition, "behaviour" plots of plate centerline deflection and total principal stresses are given for virtual aspect ratios of 1/1.5 and 1/1.25 for various combinations of inplane edge compression, edge shear and lateral loadings.

16

2. Formulation of the Problem

2.1 Orthotropic Material Properties

An orthotropic material has different elastic properties in two perpendicular directions. For plane stress in the xy plane, the stress-strain relations are

$$\sigma_{x} = \frac{E_{x}}{1 - v_{x} v_{y}} (\varepsilon_{x} + v_{y} \varepsilon_{y})$$

$$\sigma_{y} = \frac{E_{y}}{1 - v_{x} v_{y}} (\varepsilon_{y} + v_{x} \varepsilon_{x}) \qquad (1)$$

$$\sigma_{xy} = \gamma_{xy} G$$

from energy symetry

$$E_x v_y = E_y v_x$$

which gives 4 independent elastic constants.

2.2 <u>The Rectangular Orthotropic Plate with Large Deflection</u> (Figure 1)

For thin plates with large deflection, $\frac{W}{h} > \frac{1}{2}$, a satisfactory approximate theory makes the following assumptions:

 Points initially on the normal to the middle plane of the plate remain on the normal after bending. (Disregard of shear deformation.)
- 2. The normal stresses in the direction transverse to the plate can be disregarded. (Plane stress where $\sigma_z = 0.$)
- 3. Hooke's Law relating stress-strain applies.

For the large deflection theory, deformation in the middle plane of the plate must be considered. These strain components therefore include the effect of deflection and are approximately

$$\varepsilon_{\rm X} \simeq \frac{\partial {\rm u}}{\partial {\rm x}} + \frac{1}{2} \left(\frac{\partial {\rm w}}{\partial {\rm x}} \right)^2$$

$$\varepsilon_{\rm Y} \simeq \frac{\partial {\rm v}}{\partial {\rm y}} + \frac{1}{2} \left(\frac{\partial {\rm w}}{\partial {\rm y}} \right)^2 \qquad (2)$$

$$\varepsilon_{\rm XY} \simeq \frac{\partial {\rm u}}{\partial {\rm y}} + \frac{\partial {\rm v}}{\partial {\rm x}} + \frac{\partial {\rm w}}{\partial {\rm x}} \cdot \frac{\partial {\rm w}}{\partial {\rm y}}$$

Equilibrium of forces and moments on an element of a plate produces the equilibrium equations

γ

$$\frac{\partial N}{\partial N} \frac{\partial Y}{\partial X} + \frac{\partial N}{\partial Y} \frac{\partial Y}{\partial X} = 0$$
(3)

and

$$\frac{\partial^{2} M_{x}}{\partial x^{2}} - 2 \frac{\partial^{2} M_{xy}}{\partial x \partial y} + \frac{\partial^{2} M_{y}}{\partial y^{2}}$$
$$= -(\bar{q} + N_{x} \frac{\partial^{2} w}{\partial x^{2}} + 2N_{xy} \frac{\partial^{2} w}{\partial x \partial y} + N_{y} \frac{\partial^{2} w}{\partial y^{2}})$$
(4)

Introducing the familiar Airy's stress function F which satisfies equations (3)

$$N_{x} = \frac{\partial^{2} F}{\partial y^{2}}; N_{y} = \frac{\partial^{2} F}{\partial x^{2}}; N_{xy} = -\frac{\partial^{2} F}{\partial x \partial y}$$
(5)

From substitution of large deflection strains (2) into the stress-strain relations (1) and using the definition of bending and twisting moments, the moment-curvature relations for an orthotropic material are derived

$$M_{X} = -D_{X} \left(\frac{\partial^{2} w}{\partial x^{2}} + v_{Y} \frac{\partial^{2} w}{\partial y^{2}} \right)$$

$$M_{Y} = -D_{Y} \left(\frac{\partial^{2} w}{\partial y^{2}} + v_{X} \frac{\partial^{2} w}{\partial x^{2}} \right)$$

$$M_{XY} = 2C \frac{\partial^{2} w}{\partial x \partial y}$$
(6)

where the rigidity coefficients are defined as

$$D_{x} \equiv \frac{E_{x}h^{3}}{12(1-v_{x}v_{y})}$$
$$D_{y} \equiv \frac{E_{y}h^{3}}{12(1-v_{x}v_{y})}$$

and

$$C \equiv \frac{Gh^3}{12}$$

Substitution of equations (6) and equations (5) into equation (4), the "equilibrium" equation is obtained as

$$D_{x}\frac{\partial^{4}w}{\partial x^{4}} + 2D_{x}\frac{\partial^{4}w}{\partial x^{2}\partial y^{2}} + D_{y}\frac{\partial^{4}w}{\partial y^{4}}$$

$$= \bar{q} + \frac{\partial^{2}F}{\partial y^{2}} \cdot \frac{\partial^{2}w}{\partial x^{2}} - 2\frac{\partial^{2}F}{\partial x\partial y} \cdot \frac{\partial^{2}w}{\partial x\partial y} + \frac{\partial^{2}F}{\partial x^{2}} \cdot \frac{\partial^{2}w}{\partial y^{2}}$$
(7)

where

$$2D_{XY} = D_{X}v_{Y} + D_{Y}v_{X} + 4C$$

To obtain the "compatibility" equation, the strain equations (2) are first differentiated and combined to eliminate displacements u and v

$$\frac{\partial^{2}\varepsilon_{x}}{\partial y^{2}} - \frac{\partial^{2}\gamma_{xy}}{\partial x\partial y} + \frac{\partial^{2}\varepsilon_{y}}{\partial x^{2}} = \left(\frac{\partial^{2}w}{\partial x\partial y}\right)^{2} - \frac{\partial^{2}w}{\partial x^{2}} \cdot \frac{\partial^{2}w}{\partial y^{2}}$$
(8)

Differentiation of equations (1), substitution into equation (8) along with (5) and using the equilibrium equations (3), the "compatibility" equation is obtained as

$$J_{x}\frac{\partial^{4}F}{\partial x^{4}} + 2J_{xy}\frac{\partial^{4}F}{\partial x^{2}\partial y^{2}} + J_{y}\frac{\partial^{4}F}{\partial y^{4}}$$
$$= \left(\frac{\partial^{2}W}{\partial x\partial y}\right)^{2} - \frac{\partial^{2}W}{\partial x^{2}} \cdot \frac{\partial^{2}W}{\partial y^{2}}$$
(9)

where

$$J_x = \frac{1}{E_y h}$$
; $J_y = \frac{1}{E_x h}$

and

$$2J_{xy} = \frac{1}{Gh} - v_x J_y - v_y J_x$$

Equations (7) and (9) are fourth-order non-linear partial-differential equations that describe both small and large deflections of an orthotropic plate. This includes the buckling and post-buckling behavior of the stiffened plate. Substitution of the isotropic material properties

$$E_{x} = E_{y} = E$$
; $v_{x} = v_{y} = v$; $G = \frac{E}{2(1+v)}$

result in the familiar von Karman's equations.

Solution of these equations with 16 boundary conditions results in the two functions F and w. The boundary conditions are eight support conditions and eight edge load/ displacement conditions.

2.3 Bending and Membrane Stress

The membrane stresses are determined from equations (5) as $\sigma_{x} = \frac{N_{x}}{h} = \frac{1}{h} \frac{\partial^{2} F}{\partial y^{2}}$ $\sigma_{y} = \frac{N_{y}}{h} = \frac{1}{h} \frac{\partial^{2} F}{\partial x^{2}}$ $\tau_{xy} = \frac{N_{xy}}{h} = -\frac{1}{h} \frac{\partial^{2} F}{\partial x \partial y}$ (10)

Noting that the maximum normal stress acts on those sections parallel to the xz or yz planes, and using equations (1), (2) and (6) the bending and shear stresses are obtained as

$$\sigma_{bx}^{\prime} = z \frac{E_x}{(1 - v_x v_y)} \frac{M_x}{D_x}$$
$$\sigma_{by}^{\prime} = z \frac{E_y}{(1 - v_x v_y)} \frac{M_y}{D_y}$$
$$\sigma_{by}^{\prime} = -z G \frac{M_x y}{C}$$

The maximum bending and shear stresses occuring at $z = \pm \frac{h}{2}$ gives

$$\sigma_{bx} = \pm 6 \frac{M}{h^2}; \quad \sigma_{by} = \pm 6 \frac{M}{h^2}; \quad \tau_{bxy} = \pm 6 \frac{M}{h^2}$$
 (11)

where M_x and M_y and M_{xy} are given in equations (6). The total stresses are the sums

$$\sigma_{tx} = \sigma_{x} \pm \sigma_{bx}$$

$$\sigma_{ty} = \sigma_{y} \pm \sigma_{by}$$

$$\tau_{txy} = \tau_{xy} \mp \tau_{bxy}$$
(12)

2.4 Load Boundary Conditions

The following most general conditions state that the edges are subjected to an inplane average compressive load per unit length in the y-direction and x-direction of magnitudes \bar{N}_y and \bar{N}_x respectively. Additionally, all edges are subjected to a constant inplane shear load per unit length of magnitude \bar{S} . Referring to Figure 1,

at $x = \pm \frac{a}{2}$

$$N_{xy} = \overline{S}$$
, $\frac{\partial^2 F}{\partial x \partial y} = -\overline{S}$

Inplane load resultant
$$P_x$$
 is (13a)

$$P_{X} = \int_{-b/2}^{b/2} \frac{\partial^{2}F}{\partial y^{2}} dy = -\bar{N}_{X}b$$

at $y = \pm \frac{b}{2}$

$$N_{yx} = \overline{S}$$
, $\frac{\partial^2 F}{\partial x \partial y} = -\overline{S}$
Inplane load resultant P_y is (13b)

$$P_{y} = \int_{-a/2}^{a/2} \frac{\partial^{2}F}{\partial x^{2}} dx = -\bar{N}_{y}a$$

2.5 <u>Support Conditions</u>

Edges simply supported at $x = \pm \frac{a}{2}$

Deflection equals zero: w = 0 External moments equal zero: (14a)

$$\frac{\partial^2 w}{\partial x^2} + v_y \frac{\partial^2 w}{\partial y^2} = 0$$

Edges clamped at
$$y = \pm \frac{b}{2}$$

Deflection equals zero: $w = 0$
Slope equals zero: $\frac{\partial w}{\partial y} = 0$ (14b)

3. Theoretical Analysis

3.1 Analysis Procedure

The solution method used is identical to that of Mansour [9, 10] which is an extension of Levy [4], Coan [3] and Yamaki [17]. Briefly, the outline of the procedure is:

- Express the deflection of the plate satisfying the support boundary conditions, in a double trigonometric series choosing only a finite number of terms. w will be a function of unknown nondimensional coefficients b_{mn}.
- 2. Substitution of this expression into the "compatibility" equation (9) results in a fourth order partial-differential equation with the Airy stress function F and quadratic functions of the coefficient b_{mn} expressed as coefficients C_{pq}.
- 3. A solution for the stress function is assumed which satisfies equation (9) and the load boundary conditions. F will be expressed as functions of unknown coefficients \$\overline{pq}\$ which in turn are functions of coefficients \$C_{pq}\$.
- To determine the unknown coefficients b_{mn}, Galerkin's Method is applied to the "equilibrium" equation (7)

with substitution for w and F by their appropriate expressions. Using the orthogonality properties of the trigonometric functions, a set of simultaneous, non-linear algebraic equations involving cubic products of the coefficients b_{mn} results.

3.2 Solution

The deflection of the plate surface can be expressed in the form

$$w = h \sum_{m} \sum_{n} b_{mn} f_{m}(x) g_{n}(y)$$
(15)

Satisfying the boundary conditions (14), the deflection terms take the form

$$f_{m}(x) = \cos \frac{m\pi}{a} x ; m = 1, 3, 5...$$
$$g_{n}(y) = (-1)^{n+1} + \cos \frac{2n\pi}{b} y ; n = 1, 2, 3...$$

Differentiation of expression (15) and substitution into the "compatibility" equation (9)

$$J_{x}\frac{\partial^{4}F}{\partial x^{4}} + 2J_{xy}\frac{\partial^{4}F}{\partial x^{2}\partial y^{2}} + J_{y}\frac{\partial^{4}F}{\partial y^{4}}$$

= $h^{2}\left\{\sum_{m}\sum_{n}b_{mn}\left(\frac{m\pi}{a}\right)\left(\frac{2n\pi}{b}\right)\sin\frac{m\pi}{a}x\sin\frac{2n\pi}{b}y\right\}^{2}$
- $h^{2}\left\{\sum_{m}\sum_{n}b_{mn}\left[\left(-1\right)^{n+1}+\cos\frac{2n\pi}{b}y\right]\left(\frac{m\pi}{a}\right)^{2}\cos\frac{m\pi}{a}x\right\}$
 $\cdot\left\{\sum_{m}\sum_{n}b_{mn}\left(\frac{2n\pi}{b}\right)^{2}\cos\frac{m\pi}{a}x\cos\frac{2n\pi}{b}y\right\}$

$$= \frac{h^{2}\pi^{4}}{a^{2}b^{2}} \{\sum_{m} \sum_{n} \sum_{j} \sum_{k} 4b_{mn}b_{ij}mnij \sin\frac{m\pi}{a}x \sin\frac{2n\pi}{b}y$$

$$\cdot \sin\frac{i\pi}{a}x \sin\frac{2j\pi}{b}y - \sum_{m} \sum_{j} \sum_{k} 4b_{mn}b_{ij}m^{2}j^{2}\cos\frac{m\pi}{a}x$$

$$\cdot [(-1)^{n+1} + \cos\frac{2n\pi}{b}y] \cos\frac{i\pi}{a}x \cos\frac{2j\pi}{b}y\}$$

$$m, i = 1, 3, 5...$$

$$n, j = 1, 2, 3...$$
(16)

which can be expressed in the form

$$J_{x}\frac{\partial^{4}F}{\partial x^{4}} + 2J_{xy}\frac{\partial^{4}F}{\partial x^{2}\partial y^{2}} + J_{y}\frac{\partial^{4}F}{\partial y^{4}}$$
$$= \frac{h^{2}\pi^{4}}{a^{2}b^{2}}\sum_{p} \sum_{q} C_{pq} \cos\frac{2p\pi}{a} \cos\frac{2q\pi}{b} y \qquad (17)$$
$$p, q = 0, 1, 2...$$

where C_{pq} are quadratic functions of the nondimensional coefficients b_{mn} .

A particular solution for (17) is assumed in the form

$$F_{p} = h^{2} \sum_{p} \sum_{q} \phi_{pq} \cos \frac{2p\pi}{a} x \cos \frac{2q\pi}{b} y$$
(18)

substitution of (18) into equation (17) defines coefficient $\phi_{\rm pq}^{}$ as

$$\phi_{pq} = \frac{\beta^2 C_{pq}}{16 (J_x p^4 \beta^4 + 2J_{xy} p^2 q^2 \beta^2 + J_y q^4)}$$
(19)

where

$$\beta = \frac{b}{a}$$

The stress function F to satisfy the load boundary conditions (13) and equation (9) is

$$F = -\frac{\bar{N}_y}{2}x^2 - \frac{\bar{N}_x}{2}y^2 - \bar{S}xy + F_p$$
(20)

The method of B.G. Galerkin is applied to the "equilibrium" equation (7) to determine the unknown coefficients b_{mn} . Galerkin's condition requires that the following equation be satisfied by all functions $f_r(x) g_s(y)$

$$\int_{0}^{a/2} \int_{0}^{b/2} \left[D_{x} \frac{\partial^{4} w}{\partial x^{4}} + 2 D_{xy} \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}} + D_{y} \frac{\partial^{4} w}{\partial y^{4}} - \frac{\partial}{q} - \frac{\partial^{2} F}{\partial y^{2}} \cdot \frac{\partial^{2} w}{\partial x^{2}} + 2 \frac{\partial^{2} F}{\partial x \partial y} \cdot \frac{\partial^{2} w}{\partial x \partial y} - \frac{\partial^{2} F}{\partial x^{2}} \cdot \frac{\partial^{2} w}{\partial y^{2}} \right]$$
(21)
$$\cdot \mathbf{f}_{r}(x) \mathbf{g}_{s}(y) \mathbf{d}x \mathbf{d}y = 0$$

where $f_r(x) g_s(y)$ is given be equation (15). Equation (21) may also be obtained by applying the principle of virtual work.

Substitution of w and F, expressions (15) and (20) respectively, into equation (21) and using the orthogonality

properties of the trigonometric functions, there results

$$\begin{split} &\sum_{T} \sum_{S} \left[(2s)^{2} \frac{e^{b}}{6J_{Y}} \left(\frac{\bar{N}_{Y} b^{2}}{\pi^{2} D_{Y}} \right) + r^{2} \frac{1}{6J_{Y}} \left(\frac{\bar{N}_{X} a^{2}}{\pi^{2} D_{X}} \right) \right] b_{TS} \\ &= \frac{1}{6J_{Y}} \sum_{R} \sum_{T} \sum_{S} b_{TR} \left(2\left(-1\right)^{R+S} r^{s} + \left[r^{s} + 2e^{2} n\left(2s\right)^{2} r^{2} + e^{b}\left(2s\right)^{s} \right] \delta_{RS} \\ &= 2 \cdot r^{2} \left(-1\right)^{R+S} \left(\frac{\bar{N}_{X} a^{2}}{\pi^{2} D_{X}} \right) \right) + \sum_{R} \sum_{T} \sum_{T} \sum_{S} dm \left(\frac{4}{\pi} \right)^{2} \Delta_{mr} \left(-1\right)^{S+1} \frac{n \rho^{2}}{\theta J_{Y}} \left(\frac{\bar{S} a b}{\theta J_{Y}} \right) b_{mn} \\ &+ \sum_{R} \sum_{T} \sum_{n=2} 2nm \left(\frac{4}{\pi} \right)^{2} \Delta_{mr} \left(\frac{1}{n+S} + \frac{1}{n-S} \right) \frac{n \rho^{2}}{\theta J_{Y}} \left(\frac{\bar{S} a b}{\pi^{2} D_{XY}} \right) b_{mn} \\ &+ \sum_{R} \sum_{T} \sum_{T} \sum_{S} b_{mn} \left(2\left(-1\right)^{S+1} n^{2} r^{2} \left(\phi \frac{m+r}{2}, n \right) + \phi \frac{m-r}{2}, n \right) b_{mn} \\ &+ \sum_{R} \sum_{T} \sum_{T} \sum_{S} b_{mn} \left(2\left(-1\right)^{S+1} n^{2} r^{2} \left(\phi \frac{m+r}{2}, n \right) + \phi \frac{m-r}{2}, n \right) \\ &+ 2\left(-1\right)^{n+1} m^{2} s^{2} \left[\phi \frac{m+r}{2}, s \right] + \phi \frac{m-r}{2}, s + \phi \frac{r-m}{2}, s \\ &+ \left(ms-nr \right)^{2} \left[\phi \frac{m+r}{2}, n+s \right] + \phi \frac{m-r}{2}, s - n \\ &+ \left(ms+nr \right)^{2} \left[\phi \frac{m+r}{2}, n-s \right] + \phi \frac{m+r}{2}, s - n \\ &+ \left(ms+nr \right)^{2} \left[\phi \frac{m+r}{2}, n-s \right] + \phi \frac{m+r}{2}, s - n \\ &+ \left(ms+nr \right)^{2} \left[\phi \frac{m+r}{2}, n-s \right] + \phi \frac{m+r}{2}, s - n \\ &+ \left(ms+nr \right)^{2} \left[\phi \frac{m+r}{2}, n-s \right] + \left(\frac{m+r}{2}, s - n \\ &+ \left(\frac{m+r}{2}, n+s \right) \\ &= \sum_{T} \sum_{S} \left(-1 \right)^{S+\frac{3r+1}{2}} \frac{e^{a}}{\theta J_{Y}} \left(\frac{s}{r\pi} \left(\frac{s}{r} b^{b} \right) \right) \\ &= n, r \\ &= r = 1, 2, 3 \dots \end{split}$$

]

where δ_{ij} is the Kronecker delta, $\phi_{i,j} = 0$ if i < 0 or j < 0, $\frac{1}{n-s} = 0$ if n = s and

$$\Delta_{mr} = \frac{1}{m+r}$$
 if $\frac{m+r}{2}$ odd

or

$$\Delta_{mr} = \frac{1}{m-r}$$
 if $\frac{m-r}{2}$ odd

Equation (21) is identical, except for the addition of the two shear and two \bar{N}_{χ} load terms, to that of Mansour [9] case (i) and, if isotropic material properties are substituted, reduces to Yamaki [17] case IIIb for zero initial curvature.

Substitution for coefficients ϕ_{pq} in equation (22) results in a set of simultaneous, non-linear algebraic equations involving cubic products of the coefficients b_{mn} . Solution of these equations gives the coefficients b_{mn} and hence defines the functions w and F.

3.3 Bending and Membrane Stresses

The membrane stresses are now determined from equations (10), (18) and (20). These are

$$\sigma_{\mathbf{x}} = -\frac{\mathbf{N}_{\mathbf{x}}}{\mathbf{h}} - \mathbf{h} \sum_{\mathbf{p}} \sum_{\mathbf{q}} \phi_{\mathbf{pq}} \left(\frac{2\mathbf{q}\pi}{\mathbf{b}}\right)^2 \cos\frac{2\mathbf{p}\pi}{\mathbf{a}} \times \cos\frac{2\mathbf{q}\pi}{\mathbf{b}} \mathbf{y}$$

$$\sigma_{\mathbf{y}} = -\frac{\mathbf{N}_{\mathbf{y}}}{\mathbf{h}} - \mathbf{h} \sum_{\mathbf{p}} \sum_{\mathbf{q}} \phi_{\mathbf{pq}} \left(\frac{2\mathbf{p}\pi}{\mathbf{a}}\right)^2 \cos\frac{2\mathbf{p}\pi}{\mathbf{a}} \times \cos\frac{2\mathbf{q}\pi}{\mathbf{b}} \mathbf{y}$$

$$\tau_{\mathbf{xy}} = -\frac{\mathbf{S}}{\mathbf{h}} - \mathbf{h} \sum_{\mathbf{p}} \sum_{\mathbf{q}} \phi_{\mathbf{pq}} \left(\frac{2\mathbf{p}\pi}{\mathbf{a}}\right) \left(\frac{2\mathbf{q}\pi}{\mathbf{b}}\right) \sin\frac{2\mathbf{p}\pi}{\mathbf{a}} \times \sin\frac{2\mathbf{q}\pi}{\mathbf{b}} \mathbf{y}$$
(23)

The membrane stresses will be represented in the most general form, the nondimensional form used by Mansour [9]. Using equation (19)

$$\sigma_{x}^{*} = \frac{\sigma_{x}}{(\frac{\pi^{2}h}{a^{2}J_{y}})} = -\frac{N_{x}^{*}}{12(1-\nu_{x}\nu_{y})}$$

$$-\sum_{p \neq q} \sum_{q} \frac{C_{pq}q^{2}\rho^{4}}{4(p^{4} + 2\gamma\rho^{2}p^{2}q^{2} + \rho^{4}q^{4})} \cos\frac{2p\pi}{a} x \cos\frac{2q\pi}{b}y$$
(24)

$$\sigma_{y}^{*} = \frac{\sigma_{y}}{(\frac{\pi^{2}h}{b^{2}J_{x}})} = -\frac{N_{y}^{*}}{12(1-v_{x}v_{y})}$$

$$-\sum_{p q} \sum_{q} \frac{C_{pq}p^{2}}{4(p^{4} + 2\gamma\rho^{2}p^{2}q^{2} + \rho^{4}q^{4})} \cos \frac{2p\pi}{a} x \cos \frac{2q\pi}{b} y$$
(25)

and

$$f_{XY}^{*} = \frac{\frac{\tau_{XY}}{[\frac{\pi^{2}h}{abJ_{XY}}]}}{[\frac{\pi^{2}h}{abJ_{XY}}]} = -\frac{\frac{S^{*}n\gamma}{12(1-\nu_{X}\nu_{Y})}}{\frac{C_{pq}p^{*}q}{4(\frac{p^{4}}{\gamma\rho^{2}} + 2p^{2}q^{2} + \frac{\rho^{2}}{\gamma}q^{4})}} \sin\frac{2p\pi}{a} \sin\frac{2q\pi}{b} y$$

$$p, q = 0, 1, 2...$$

The bending and twisting stresses from equation (11) are

$$\sigma_{bx} = \pm \frac{6}{h^2} M_x = \pm \frac{6D}{h^2} \left[-\frac{\partial^2 W}{\partial x^2} - v_y \frac{\partial^2 W}{\partial y^2} \right]$$
(26)

$$\sigma_{\text{by}} = \pm \frac{6}{h^2} M_{\text{y}} = \pm \frac{6D_{\text{y}}}{h^2} \left[-\frac{\partial^2 W}{\partial y^2} - v_{\text{x}} \frac{\partial^2 W}{\partial x^2} \right]$$

$$\tau_{\text{bxy}} = \mp \frac{6}{h^2} M_{\text{xy}} = \mp \frac{12C}{h^2} \quad \frac{\partial^2 W}{\partial x \partial y}$$

The normal bending stresses may be expressed as functions of nondimensional bending moments M_X^* and M_Y^* where

$$M_{X}^{*} = \frac{M_{X}}{\left[\frac{h\sqrt{D_{X}D_{Y}}}{b^{2}}\right]} = M_{X_{O}}^{*} + \nu_{Y} \sqrt{\frac{D_{X}}{D_{Y}}} M_{Y_{O}}^{*}$$

$$M_{Y}^{*} = \frac{M_{Y}}{\left[\frac{hD}{D_{Y}}\right]} = M_{Y_{O}}^{*} + \nu_{X} \sqrt{\frac{D_{Y}}{D_{X}}} M_{X_{O}}^{*}$$

$$(27)$$

and

$$M_{X_{O}}^{\star} = \frac{M_{X_{O}}}{\left[\frac{h\sqrt{D_{X}D_{Y}}}{b^{2}}\right]} = -D_{X} \frac{\partial^{2}w}{\partial x^{2}} \frac{b^{2}}{h\sqrt{D_{X}D_{Y}}}$$

(28)

$$M_{Y_{O}}^{\star} = \frac{\frac{M_{Y_{O}}}{hD}}{\left[\frac{hD}{h^{2}}\right]} = -D_{Y} \frac{\partial^{2} w}{\partial y^{2}} \frac{b^{2}}{hD_{Y}}$$

The bending stresses as functions of the nondimensional bending moments are

$$\sigma_{bx} = \pm \frac{6M_{x}^{*}}{h^{2}} \cdot \frac{h\sqrt{D_{x}D_{y}^{*}}}{b^{2}}$$

$$\sigma_{by} = \pm \frac{6M_{x}^{*}}{h^{2}} \cdot \frac{hD_{y}}{b^{2}}$$
(29)

The nondimensional moment due to curvature in the x-direction only $(M_{x_0}^*)$ and that due to curvature in the y-direction only $(M_{y_0}^*)$ are determined from (15) and (28)

$$M_{X_{O}}^{*} = \sum_{m} \sum_{n} \frac{\pi^{2} m^{2}}{\rho^{2}} b_{mn} \cos \frac{m\pi}{a} x [(-1)^{n+1} + \cos \frac{2n\pi}{b} y]$$
(30)
$$M_{Y_{O}}^{*} = \sum_{m} \sum_{n} 4\pi^{2} n^{2} b_{mn} \cos \frac{m\pi}{a} x \cos \frac{2n\pi}{b} y$$
$$m = 1, 3, 5....$$
$$n = 1, 2, 3....$$

The bending stresses may be expressed as nondimensional bending stresses in a form compatible to equations (24) and (25). Using equations (15) and (26), the nondimensional bending and twisting stresses are

$$\sigma_{bx}^{\star} = \frac{\sigma_{bx}}{\left[\frac{\pi^{2}h}{a^{2}J_{y}}\right]} = \pm \frac{1}{2\left(1 - \nu_{x}\nu_{y}\right)} \sum_{m=n}^{\infty} \sum_{n=0}^{\infty} b_{mn} \cos\frac{m\pi}{a}x$$

$$\cdot \left[m^{2}\left(-1\right)^{n+1} + \left(m^{2} + \frac{4n^{2}\nu_{y}}{\beta^{2}}\right) - \cos\frac{2n\pi}{b}y\right]$$
(31)

$$\sigma_{by}^{\star} = \frac{\sigma_{by}}{\left[\frac{\pi^{2}h}{b^{2}J_{x}}\right]} = \pm \frac{1}{2\left(1-v_{x}v_{y}\right)} \sum_{m=n}^{\Sigma} \sum_{m=n=0}^{\infty} b_{mn} \cos\frac{m\pi}{a}x$$
(32)

$$[m^{2}\beta^{2}\nu_{x}(-1)^{n+1} + (4n^{2} + m^{2}\beta^{2}\nu_{x})\cos\frac{2n\pi}{b}y]$$

and

τ

$$\underset{\text{bxy}}{*} = \frac{\tau_{\text{bxy}}}{\left[\frac{\pi^2 h}{a b J_{\text{xy}}}\right]} = \tilde{+} \frac{\gamma \eta}{(1 - \nu_{\text{x}} \nu_{\text{y}})} \left[1 - \frac{\nu_{\text{y}}}{2 \eta \rho^2 \beta^2} - \frac{\nu_{\text{x}} \rho^2 \beta^2}{2 \eta}\right]$$
$$\cdot \sum_{\text{m} n} \sum_{\text{m} n} b_{\text{mn}} nm \sin \frac{2 n \pi}{b} y \sin \frac{m \pi}{a} x$$

m = 1, 3, 5...n = 1, 2, 3...

The nondimensional total stresses are therefore, from (12)

$$\sigma_{tx}^{*} = \sigma_{x}^{*} \pm \sigma_{bx}^{*}$$

$$\sigma_{ty}^{*} = \sigma_{y}^{*} \pm \sigma_{by}^{*}$$

$$\tau_{txy}^{*} = \tau_{xy}^{*} \mp \tau_{bxy}^{*}$$
(33)

3.4 Effective Width

The effective width of a rectangular plate which has buckled is defined as that width of a uniformly stressed phantom plate of the same thickness stressed to the same maximum stress and sustaining the same total force as the real plate. The effective widths a_e and b_e, in the y and x

directions respectively are hence defined as

$$a_{e}\sigma_{ye} = a \frac{\bar{N}_{y}}{h}$$
(34a)

$$b_e \sigma_{xe} = b \frac{\bar{N}_x}{h}$$
 (34b)

where σ_{ye} is the edge membrane stress in the y-direction (σ_{y} at $x = \pm \frac{a}{2}$) and σ_{xe} is the edge membrane stress in the x-direction (σ_{x} at $y = \pm \frac{b}{2}$). Substitution of (25) evaluated at $x = \pm \frac{a}{2}$ into (34a) gives

$$\frac{a_{e}}{a} = \frac{N_{y}^{*}}{N_{y}^{*} + 3(1 - \nu_{x}\nu_{y})\sum_{p=q}^{p} \frac{p^{2}(-1)^{p}C_{pq}}{(p^{4} + 2\gamma\rho^{2}p^{2}q^{2} + \rho^{4}q^{4})}\cos\frac{2q\pi}{b}y}$$
(35a)
$$p, q = 0, 1, 2....$$

or

$$\frac{a_{e}}{a} = \frac{N_{y}^{*}}{N_{y}^{*} + 3(1 - \nu_{x}\nu_{y}) \left[\sum_{p} \frac{(-1)^{p}}{p^{2}}C_{p,0} + \sum_{p} \sum_{q=1}^{\infty} \frac{p^{2}(-1)^{p}C_{pq}}{(p^{4} + 2\gamma\rho^{2}p^{2}q^{2} + \rho^{4}q^{4})}\right] \cos \frac{2q\pi}{b}y}$$

substitution of (24) evaluated at $y = \pm \frac{b}{2}$ into (34b) gives

$$\frac{b_{e}}{b} = \frac{N_{x}^{*}}{N_{x}^{*} + 3(1 - v_{x}v_{y})\sum_{p=q}^{p} \frac{q^{2}(-1)^{q}\rho^{4}C_{pq}}{(p^{4} + 2\gamma\rho^{2}p^{2}q^{2} + \rho^{4}q^{4})}\cos\frac{2p\pi}{a}x}$$

$$p, q = 0, 1, 2....$$
(35b)

$$\frac{b_{e}}{b} = \frac{N_{x}^{*}}{N_{x}^{*} + 3(1 - \nu_{x}\nu_{y}) \left[\sum_{q} \frac{(-1)^{q}}{q^{2}} C_{o,q} + \sum_{p=1}^{\infty} \sum_{q} \frac{q^{2}(-1)^{q} \rho^{4} C_{pq}}{(p^{4} + 2\gamma \rho^{2} p^{2} q^{2} + \rho^{4} q^{4})} \right] \cos \frac{2p\pi}{a} x^{2}$$

Clearly, the effective widths a_e and b_e are not constant over the y and x-directions respectively. Neglecting the small amount of change due to the periodic terms in y or x, taking only the average values into account [15], the effective widths take the form

$$\frac{a_{e}}{a} = \frac{N_{y}^{*}}{N_{y}^{*} + 3(1 - v_{x}v_{y})\sum \frac{(-1)^{p}}{p^{2}} C_{p,0}}$$

$$p = 0, 1, 2...$$
(36a)

and

or

$$\frac{b_{e}}{b} = \frac{N_{x}^{*}}{N_{x}^{*} + 3(1 - v_{x}v_{y})\sum_{q} \frac{(-1)^{q}}{q^{2}} C_{0,q}}$$

$$q = 0, 1, 2....$$
(36b)

3.5 Principal Stresses

For the state of plane stress, the maximum and minimum principal stresses, σ_1 and σ_2 , are given by
$$\sigma_{1,2} = \frac{\sigma_{x} + \sigma_{y}}{2} \pm \sqrt{(\frac{\sigma_{x} - \sigma_{y}}{2})^{2} + \tau_{xy}^{2}}$$

Substituting the nondimensional total stresses, equations (33), the nondimensional principal total stresses are

$$\sigma_{1,2}^{*} = \frac{\sigma_{tx}^{*} + \sigma_{ty}^{*}}{2} \pm \sqrt{\left(\frac{\sigma_{tx}^{*} - \sigma_{ty}^{*}}{2}\right)^{2} + \tau_{txy}^{*}}$$
(37)

where

$$\sigma_{1,2}^{*} = \frac{\sigma_{1,2}}{[\frac{\pi^{2}h}{b^{2}J_{X}}]}$$

and

$$\sigma_{tx}^{**} = \frac{\sigma_{tx}^{*}}{\rho^{4}\beta^{2}}$$
$$\sigma_{ty}^{**} = \sigma_{ty}^{*}$$
$$\tau_{txy}^{**} = \frac{\tau_{txy}^{*}}{\gamma^{2}\beta}$$

(

4. Numerical Solution

4.1 Analytic Solution

Shultz [15] found that eight deflection terms were sufficient to describe a simply supported plate up to an aspect ratio of 8. In this solution eight deflection terms in the y-direction and one in the x-direction were assumed. From equation (15) with m = 1 and n = 1,2,3...8, the deflection of the plate takes the form

$$w = h \cos \frac{\pi}{a} x \left[b_{11} \left(1 + \cos \frac{2\pi}{b} y \right)^{2} + b_{12} \left(-1 + \cos \frac{4\pi}{b} y \right) \right]$$

+
$$b_{13} \left(1 + \cos \frac{6\pi}{b} y \right) + b_{14} \left(-1 + \cos \frac{8\pi}{b} y \right) + b_{15} \left(1 + \cos \frac{10\pi}{b} y \right)$$

+
$$b_{16} \left(-1 + \cos \frac{12\pi}{b} y \right) + b_{17} \left(1 + \cos \frac{14\pi}{b} y \right) + b_{18} \left(-1 + \cos \frac{16\pi}{b} y \right)$$

Similarly, the right hand side of equation (16) is expanded for m, i = 1; n, j = 1,2,3...8. The coefficients C_{pq} are determined by collecting terms on the right hand side of equation (16) and matching the coefficients to the series on the right hand side of equation (17) for p = 0, 1; q = 0, 1, 2...16. The coefficients X_q and Y_q are listed in Table 1 where the coefficients C_{pq} are given by

$$C_{pq} = Y_{q} + (-1)^{p} X_{q}$$
 (38)
 $p = 0, 1$
 $q = 0, 1, 2...16$

Substitution of coefficients C_{pq} into equation (22) using equation (19) and with m, r = 1; n, s = 1,2,3....8 produces the following equation after considerable simplification

$$\begin{split} \frac{1}{5} & (2s)^{2} N_{Y}^{*} b_{1,s}^{+} + \frac{1}{5} \frac{N_{X}^{*}}{\rho^{4}} b_{1,s}^{-} - \frac{1}{\rho^{4}} \frac{1}{n} \frac{1}{5} b_{1,n}^{-} \{2(-1)^{n+s} \\ &+ [1+2\rho^{2}n(2s)^{2} + \rho^{4}(2s)^{4}] \delta_{ns}^{-}\} + \frac{2}{\rho^{4}} \frac{1}{n} \frac{1}{5} b_{1,n}^{-} (-1)^{n+s} N_{X}^{*} \\ &+ 2(\frac{4}{\pi})^{2} \frac{n}{\rho^{2}} \frac{odd}{n} \frac{1}{5} b_{1,n}^{-} (-1)^{s+1} S^{*} + (\frac{4}{\pi})^{2} \frac{n}{\rho^{2}} \frac{odd}{n} b_{1,n}^{-} n(\frac{1}{n+s} + \frac{1}{n-s}) S^{*} \\ &+ \sum_{n} \frac{1}{5} b_{1,n}^{-} \{2(-1)^{s+1} n^{2} [A_{1,n}C_{1,n} + 2A_{0,n}C_{0,n}] \\ &+ 2(-1)^{n+1} s^{2} [A_{1,s}C_{1,s} + 2A_{0,s}C_{0,s}] \\ &+ (s-n)^{2} [A_{1,n+s}C_{1,n+s} + 2A_{0,n-s}] C_{0,n-s}] \\ &+ (s+n)^{2} [2A_{0,n+s}C_{0,n+s} + W \cdot A_{1,n-s}] C_{1,n-s}]] \\ &+ (s+n)^{2} [2A_{0,n+s}C_{0,n+s} + W \cdot A_{1,n-s}] C_{1,n-s}]] \\ &+ \sum_{n} \frac{1}{5} (-1)^{s+2} \frac{8}{\pi} Q^{*} = 0 \\ &= 0 \\ &= 1.0 \quad \text{if } n \neq s \\ &= 2.0 \quad \text{if } n \neq s \\ &= 2.0 \quad \text{if } n \neq s \\ \end{bmatrix}$$

and

$$A_{pq} = \frac{\frac{3}{4}(1 - v_{x}v_{y})}{(p^{4} + 2\gamma\rho^{2}p^{2}q^{2} + q^{4}\rho^{4})}$$

where

$$\phi_{pq} = A_{pq} C_{pq} \frac{\rho^4}{\theta J_y}$$

Equation (39) gives a set of eight simultaneous, nonlinear equations for the eight coefficients b_{11} , b_{12} , b_{13} , b_{14} , b_{15} , b_{16} , b_{17} , and b_{18} .

4.2 Computer Solution

Equation (39) is programmed on the IBM System 370 model 165 using Fortran IV level Gl. The subroutine ZEROIN from the M.I.T. MATHLIB program library is used to solve the system of simultaneous, non-linear equations. This subprogram uses an iterative method of solution and convergence is achieved when the difference between two successive values of b_{nm} is less than 0.5×10^{-12} .

The foregoing analysis is for the completely general case with all the loadings as indicated in figure 1, however, the computer solutions were restricted to certain specific cases.

Basically, two programs were written to calculate the deflection coefficients. The first program produces curves of deflection at the center of the plate, effective width and bending moment in the y-direction at the center of the fixed supports versus inplane edge compressive load N_X^* with Q* as a parameter, $N_Y^* = 0$ and S* fixed. Curves of this nature, for a range of orthotropic parameters γ and η , result in a set of design charts. The other program permits investigation of the behaviour for any set of loading conditions with $N_Y^* = 0$. Deflection along the centerline x = 0 and total principal stresses along the centerlines x = 0 and y = 0 are plotted.

.

5. Results

5.1 Design Charts

The design program was used to generate a set of design charts with $N_Y^* = S^* = 0$. Virtual plate aspect ratios of 1/1.5, 1/2, 1/4 and 1/6 are presented. For each aspect ratio a complete set of curves for orthotropic material parameters $\gamma = \eta = 1.0$ and $\gamma = 4.0$, $\eta = 0.5$ are given.

Description of design charts:

5.1.1 Charts of Deflection

The nondimensional deflection at the center of the plate, from equation (15) with x = y = 0, is plotted versus the inplane compressive edge load N_X^* with the lateral load Q* as a parameter. Figures 2,3,8,9,14,15,20 and 21 give the deflection.

5.1.2 Charts of Effective Width

The nondimensional effective width given by equation (36b) is plotted versus the inplane compressive edge load N_X^* with the lateral load Q* as a parameter. Figures 4,5,10, 11,16,17,22 and 23 give the effective width.

5.1.3 Charts of Bending Moment

The nondimensional bending moment M_y^* at the middle of the supports $y = \pm \frac{b}{2}$ and x = 0, equation (27), is plotted versus the inplane compressive edge load N_x^* with the lateral load Q* as a parameter. Figures 6,7,12,13,18,19,24 and 25 give the bending moment.

5.2 Behaviour Charts

The behaviour program was used to investigate a few general sets of loading conditions with $N_{Y}^{*} = 0$. Virtual plate aspect ratios of 1/1.5 and 1/1.25 are presented for orthotropic material properties $\gamma = \eta = 1.0$.

Description of behaviour charts:

5.2.1 Charts of Deflection

The nondimensional deflection, from equation (15), along the centerline of the plate (x = 0) is plotted versus y/b with either S* or N^{*}_x as a parameter and Q* fixed. Figures 26,27,36,37,46, and 47 give the deflection.

5.2.2 Charts of Maximum and Minimum Total Principal Stresses

The nondimensional total principal stresses, equation (37), along the centerlines on the bottom surface of the plate $(z = -\frac{h}{2})$ are plotted versus y/b (x = 0) and x/a (y = 0)with either S* or N_x^{*} as a parameter and Q* fixed. Figures 28-31, 38-41, and 48-51 give the stresses for x = 0 and Figures 32-35, 42-45, and 52-55 give the stresses for y = 0.

6. Discussion of Results

6.1 Orthotropic Properties

Reference [10] contains a complete discussion of the rigidity coefficients D_x , D_y and D_{xy} and compliance coefficients J_x , J_y and J_{xy} which are used to express the non-dimensional parameters and orthotropic material coefficients. Possible approximate formulas for their calculationare given in that reference. The two extreme cases of orthotropic plate coefficients are the isotropic case where $\eta = \gamma = 1.0$ and the grid (intersecting beams, no plate) $\eta = 0$ and $\gamma = \infty$. Most plate-stiffener combinations fall between $\eta = \gamma = 1.0$ and $\eta = 0.5$, $\gamma = 4.0$; hence the choice of parameters for the design charts.

Comparison of Figures 2 to 25 as to the nondimensional load parameters N_X^* and Q* indicates as ρ decreases the assigned values of N_X^* decrease and Q* increase. N_X^* and Q* are indirect functions of the aspect ratio since they are nondimensionalized by the plate edges a and b respectively. The ranges of values used in the design curves were predicated on achieving a certain minimum value of effective breadth in the calculations.

6.2 Comparison with Existing Solutions

The first set of design curves to be produced were those for the case $\rho = \gamma = \eta = 1.0$, Figures 61,62 and 63, for N^{*}_y with Q^{*} as a parameter and S^{*} = N^{*}_x = 0. This choice of parameters permitted comparison with the solution obtaine

by Mansour [10]. The number of coefficients retained in this analysis (only one in the x-direction vice two by Mansour) does not favor the solution for the square plate case, however, the results of Figures 61, 62 and 63 agree to within 3% of the figures 1, 2 and 3 of Mansour [10]. The deflection coefficients obtained in reference [10] show that the one term assumption only neglects terms that are less than 5 1/2% of the primary deflection term b₁₁, which accounts for the reasonable agreement in this case.

For the loading conditions of the design curves, Figures 2-23, comparison was made with the solution of Levy [5]. Levy calculated deflection at the center of the plate and effective width for the isotropic plate of $\beta = 1.5$, $Q^* = S^* = 0$ and the same boundary conditions as this investigation. Comparison of Levy's results, Figure 3. and Table 11 of reference [5], with the curves for $Q^* = 0$ from Figures 2 and 3 is graphically displayed in Figures 64 and 65. Correlation of the two results is very good.

6.3 Design Charts

6.3.1 Charts of Deflection

The deflection at the center of the plate is always the maximum deflection since only the first deflection mode is encountered in these cases. With reference to the curve $Q^* = 0$ in the deflection charts, the plate remains undeflected until the critical compressive load N_X^* is reached. Increasing N_X^* further buckles the plate and plate deflection

increases rapidly. Hence, intersection of the curve $Q^* = 0$ and the N^{*}_X axis gives the lowest buckling load. The nonlinearity of the curves is evident. In the small deflection range, $\frac{W}{h} < \frac{1}{2}$, a doubling of the lateral load Q* will double the deflection, however, in the large deflection range the lateral load effect becomes nonlinear with decreasing increments of plate deflection for increasing additions of load.

As ρ goes from 1/1.5 to 1/6 the magnitude of the maximum deflection of the plate is considerably reduced. The plate becomes more of a beam supported all around and hence "stiffer" than the slightly rectangular plate. The effect on the deflection of increasing Q* as $\rho \rightarrow 1/6$ becomes less.

Comparison of buckling loads and the range of N_X^* values over the four aspect ratios shows that for $\rho = 1/1.5$ the maximum value of N_X^* considered is four times the buckling load while it is less than twice the buckling load for $\rho = 1/6$. The reason for this selection of N_X^* values is that the range where the solution is reliable decreases as $\rho \rightarrow 1/6$. Convergence to the correct solution becomes increasingly more difficult. In addition, the 8 term solution begins to become insufficient for $\rho = 1/6$ where the eight term, b_{18} , has increased to a value almost 6% of the primary term, b_{11} , for the highest set of N_X^* and Q^* considered.

6.3.2 Charts of Effective Width

By definition, the plate is fully effective in carrying the external compressive edge load until it buckles. With

reference to the effective width figures, $b_e/b = 1$ for Q* = 0 until the buckling load is reached. Extensions of the curves for Q* \neq 0 at values of N* less than the buckling load are meaningless and should be ignored. After buckling, the effectiveness drops off as the plate deflects. Comparison of different aspect ratios shows that the effective width decreases more rapidly and takes on significantly lower values a $\rho \rightarrow 1/6$.

6.3.3 Charts of Bending Moment

The bending moment M_Y^* at the middle of the fixed supports $y = \pm \frac{b}{2}$ is calculated because it is expected to be large. M_Y^* is equal to $M_{Y_O}^*$ at these points since the curvature along these supports in the x-direction is zero $(M_{X_O}^*=0)$, hence equation (28) is plotted. With reference to the bending moment figures, the bending moment is zero until the plate deflects. Increasing Q* increases the bending moment in all cases with the nonlinearity associated with large deflections.

6.4 Behaviour Charts

Unfortunately, there are no existing solutions to which the results of shear loading may be compared for this particular set of boundary conditions. Levy [7,8] and Payer [11] considered the simply supported isotropic case. However, the results obtained are consistent with those anticipated in the magnitude and shape of the center line

deflection curve and values of principal stresses.

Results are given only for $\rho = 1/1.5$ and 1/1.25. Investigation of the solution revealed that for virtual aspect ratios greater than about 1/1.75, the plate will have one symmetric buckle about the diagonal while for smaller' values of ρ antisymmetric buckling shapes are experienced. The choice of one term in the x-direction limits the solution to some degree in the former case*, however, it cannot begin to approximate the true solution in the later case. Hence, the narrow range of investigation for ρ .

Additionally, with reference to the nondimensionalizing of the total stresses, sections 3.3 and 3.5, to present the results in a concise and meaningful form, the solution is restricted to the isotropic case where $\gamma = \eta = 1.0$. This is a result of the isotropic aspect ratio β appearing explicitly in the nondimensional equations. Nondimensionalizing the bending and membrane stresses to eliminate β will result in a set of incompatable nondimensional stresses which must be plotted and evaluated separately, thus increasing the number of charts required for each specific case.

Initially, the total principal stresses at both the top and bottom ($z = \pm \frac{h}{2}$ respectively) of the plate were investigated. Figures 56-60 show the results for $\rho = 0.667$, $\gamma = \eta =$ 1.0, S* = 14 (above critical load) and N* = Q* = 0. Using the Von Mises yield criteria for the biaxial case, $\sigma_{\gamma} = 0$,

^{*}Note: The assumption of the one team solution in the xdirection will model a symmetric buckle about the plate centerline, not the diagonal.

$$(\sigma_0^*)^2 = (\sigma_1^*)^2 + (\sigma_2^*)^2 - \sigma_1^* \sigma_2^*$$
(40)

48

a combined stress may be calculated to evaluate the relative importance of the total stress field at the top or bottom of the plate. With reference to Figures 57-60, the table of $(\sigma_0^*)^2$ is as follows:

	$\underline{y}=x=0$	$\underline{y=\pm \frac{b}{2}, x=0}$	$x=\pm \frac{b}{2}$, $y=0$
Тор	12.4	17.7	10.8
Bottom	12.2	19.5	10.8

The combined stresses are slightly greater at the top than at the bottom for the center of the plate, however, the magnitude and difference is considerably greater at the fixed supports with the bottom stresses being of higher value. By the nature of the upwards (+z) buckling mode, this is the expected result. Due to the higher combined stress at $y = \pm \frac{b}{2}$, the behaviour charts were plotted only for the principal stresses at the bottom of the plate $(z = -\frac{h}{2})$.

Figures 26-45 show the effect of increasing shear loads above the critical load for $\rho = 1/1.5$ and 1/1.25. Inplane edge loads $N_X^* = N_X^* = 0$ and cases are presented for both $Q^* = \bigcirc$ 0 and a finite value. Increasing S* and/or Q* increases the deflection and total principal stresses throughout the plate.

Figures 46-55 show the effects of completely general sets of loading conditions with increasing inplane edge compressive loads N_x^* above the critical load. Comparison of the charts for the sub-critical (S* = 6) and super-critical

(S* = 14) shear loads clearly indicate the influence of shear on the shape of the deflection curve and values of principal stress. Increased shear increases deflection and principal stresses. In addition, the highest maximum principal stresses are observed to occur at the fixed support, $y = \pm \frac{b}{2}$.

6.5 Examples Demonstrating Use of the Charts

The following examples are given to demonstrate the use of the design and behaviour charts. The approximate formulas for calculation of the rigidity and compliance coefficients are discussed in detail in reference [10]. The formulas are listed in Table 2.

6.5.1 Design Example

Consider the following orthotropic characteristics and nondimensional loads for the stiffened plate:

 $\rho = 0.5, \gamma = 4.0, \eta = 0.5, N_x^* = 4.0, Q^* = S^* = 0$

From Figure 9

The critical load $\bar{N}_{x_{c}} = 1.8 \frac{\pi^{2} D_{x}}{a^{2}}$

The center of the plate deflection

$$w = 1.64h$$

where h is the average stiffener's depth plus the plate thickness.

From Figure 11

The effective width $b_e = 0.505b$

Edge membrane stress (equations 24,34b and 35b) is

$$\sigma_{x_{e}}^{\star} \simeq -\left(\frac{b}{b_{e}}\right) \frac{N_{x}^{\star}}{12\left(1-v^{2}\right)} = -\frac{1}{0.505} \cdot \frac{4.0}{10.9}$$

$$\pi^{2}b$$

 $\sigma_{xe} \simeq 0.73 \frac{\pi}{a^2 J_{y}}$

From Figure 13

The bending moment at the middle of the fixed support

$$M_{V}^{*} = -102$$

The maximum bending stress at this point (equation 29) is

$$\sigma_{b_{y}} = \pm \frac{6M^{*}}{h^{2}} \cdot \frac{hD}{y} = \mp 612 \frac{D}{hb^{2}}$$

6.5.2 Behaviour Example

Consider the following orthotropic characteristics and nondimensional loads for an isotropic plate:

$$\rho = 0.667, \gamma = \eta = 1.0, N_v^* = 3.0, Q^* = 8.0, S^* = 6.0$$

From Figure 46

The maximum deflection at the center of the plate w =

1.74 h

From Figures 48 and 50

The maximum principal stresses occur at the fixed supports $y = \pm \frac{b}{2}$, x = 0 and are

$$\sigma_1 = 6.50 \frac{\pi^2 h}{b^2 J_x}$$
$$\sigma_2 = -1.54 \frac{\pi^2 h}{b^2 J_x}$$

and the combined stress

$$\sigma_0^2 = \sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2 = 54.6 \left[\frac{\pi^2 h}{b^2 J_x}\right]^2$$

2.2

7. Conclusions and Recommendations

The problem of a large aspect ratio orthotropic plate with the short edges fixed and long edges simply supported has been modeled for the case of inplane edge compressive and lateral loads and subcritical edge shear loads. The design charts provide valuable information of use in establishing design criteria for the plate-stiffener combination.

From the behaviour Figures 46 to 55, it is evident that the highest principal stresses occur at the fixed supports $y = \pm \frac{b}{2}$. The design Figures 2 to 25 do not present information to permit the calculation of the membrane stresses at the fixed supports. Design charts of σ_{y_e} , edge membrane stress in the y-direction (denominator of equation (36a)), should be produced.

As noted in the results, the one term assumption in the x-direction will not model the deflection of a plate with edge shear as the predominate loading. As the major point of this investigation was to model a large aspect ratio plate, the solution chosen was an inevitable consequence when the large range of ρ is considered. It is recommended that to model a large aspect ratio plate subjected to shear loading, close attention must be paid to the important deflection terms that should be included in the solution. Levy [8] confined himself to a β = 1.5 and used 14 selected terms in the deflection equation.

Additionally, the eight term solution is just sufficient to model the case for the orthotropic plate aspect ratio of 1/6.
.8. References

- 1. Bleich, F. and L.B. Ramsey, Buckling Strength of Metal Structures, McGraw-Hill, New York, 1952.
- 2. Bleich, F. and L.B. Ramsey, <u>A Design Manual on the</u> <u>Buckling Strength of Metal Structures</u>, Technical and Research Bulletin No. 2-2, SNAME, May 1970.
- 3. Coan, J.M., "Large-Deflection Theory for Plates With Small Initial Curvature Loaded in Edge Compression," Journal of Applied Mechanics, June 1951, p. 143.
- 4. Levy, Samuel, "Bending of Rectangular Plates with Large Deflections," NACA Report Number 737, 1942.
- 5. Levy, S. and P. Krupen, "Large-Deflection Theory for End Compression of Long Rectangular Plates Rigidly Clamped Along Two Edges," NACA Technical Note No. 884, January 1943.
- Levy, S., D. Goldenberg and G. Zibritosky, "Simply Supported Long Rectangular Plate Under Combined Axial Load and Normal Pressure," NACA Technical Note No. 949, October 1944.
- Levy, S., K. Fienup and R. Woolley, "Analysis of Square Shear Web Above Buckling Load," NACA Technical Note No. 962, February 1945.
- 8. Levy, S., R. Woolley and J. Cornick, "Analysis of Deep Rectangular Shear Web Above Buckling Load," NACA Technical Note No. 1009, March 1946.
- 9. Mansour, Alaa, "On the Nonlinear Theory of Orthotropic Plates," Journal of Ship Research, December 1971, p. 266.
- 10. Mansour, Alaa, "Post-buckling Behavior of Stiffened Plates with Small Initial Curvature Under Combined Loads," International Shipbuilding Progress, June 1971 and Dept. of NAME, MIT, Report No. 70-18, Oct. 1970.
- 11. Payer, Hans Georg, "Notes on the Buckling and Postbuckling Behavior of Deep Web Frames," Marine Technology, July 1972, p. 302.
- Schade, Henry A., "Bending Theory of Ship Bottom Structures," Trans. SNAME, vol. 46, 1938, p. 176.

- 13. Shade, Henry A., "The Orthogonally Stiffened Plate Under Uniform Lateral Load," Journal of Applied Mechanics, Dec. 1940, p. A-143.
- 14. Schade, Henry A., "The Effective Breadth of Stiffened Plating Under Bending Loads," SNAME, vol. 59, 1951, p. 403.
- 15. Schultz, H.G., "Post-buckling Behavior of Wide Ship Plating," Report No. NA-64-3, Department of Naval Architecture, University of California at Berkeley, February 1964.
- 16. Timoshenko, S. and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959.
- 17. Yamaki, Naboru, "Postbuckling Behavior of Rectangular Plates with Small Initial Curvature Loaded in Edge Compression," Journal of Applied Mechanics, September 1959, p. 407.
- 18. Kantorovich, L.V. and V.I. Krylov, Approximate Methods of Higher Analysis, P. Noordhoff LTD, Holland, 1964.

TABLE 1 - COEFFICIENTS C pq

$$C_{pq} = Y_{q} + (-1)^{p} X_{q}$$

 $p = 0, 1$
 $q = 0, 1, 2...16$

where
$$X_q$$
 and Y_q are given by
 $X_o = b_{11}^2 + 4b_{12}^2 + 9b_{13}^2 + 16b_{14}^2 + 25b_{15}^2 + 36b_{16}^2 + 49b_{17}^2 + 64b_{18}^2$
 $Y_o = -X_o$

$$X_{1} = 4b_{11}b_{12} + 12b_{12}b_{13} + 24b_{13}b_{14} + 40b_{14}b_{15} + 60b_{15}b_{16}$$

$$+ 84b_{16}b_{17} + 112b_{17}b_{18}$$

$$Y_{1} = 2b_{11}(-b_{11} - \frac{3}{2}b_{12} - b_{13} + b_{14} - b_{15} + b_{16} - b_{17} + b_{18})$$

$$-13b_{12}b_{13} - 25b_{13}b_{14} - 41b_{14}b_{15} - 61b_{15}b_{16} - 85b_{16}b_{17} - 113b_{17}b_{18}$$

$$X_{2} = -b_{11}^{2} + 6b_{11}b_{13} + 16b_{12}b_{14} + 30b_{13}b_{15} + 48b_{14}b_{16}$$

$$+ 70b_{15}b_{17} + 96b_{16}b_{18}$$

$$Y_{2} = 8b_{12}(-b_{11}+b_{12}-b_{13}-\frac{3}{2}b_{14}-b_{15}+b_{16}-b_{17}+b_{18})$$
$$-b_{11}^{2}-10b_{11}b_{13}-34b_{13}b_{15}-52b_{14}b_{16}-74b_{15}b_{17}$$
$$-100b_{16}b_{18}$$

$$x_{3} = -4b_{11}b_{12} + 8b_{11}b_{14} + 20b_{12}b_{15} + 36b_{13}b_{16} + 56b_{14}b_{17} + 80b_{15}b_{18}$$

$$Y_{3} = 13b_{13}(-b_{11} + b_{12} - b_{13} + b_{14} - b_{15} - \frac{3}{2}b_{16} - b_{17} + b_{18})$$

-5b_{11}b_{12} - 17b_{11}b_{14} - 29b_{12}b_{15} - 65b_{14}b_{17} - 89b_{15}b_{18}

$$x_{4} = - 6b_{11}b_{13} + 10b_{11}b_{15} - 4b_{12}^{2} + 24b_{12}b_{16} + 42b_{13}b_{17} + 64b_{14}b_{18}$$

$$Y_{4} = 32b_{14}(-b_{11} + b_{12} - b_{13} + b_{14} - b_{15} + b_{16} - b_{17} - \frac{3}{2}b_{18})$$
$$-10b_{11}b_{13} - 26b_{11}b_{15} - 4b_{12}^{2} - 40b_{12}b_{16} - 58b_{13}b_{17}$$

$$x_{5} = -8b_{11}b_{14} + 12b_{11}b_{16} - 12b_{12}b_{13} + 28b_{12}b_{17} + 48b_{13}b_{18}$$

$$x_{5} = 50b_{15}(-b_{11} + b_{12} - b_{13} + b_{14} - b_{15} + b_{16} - b_{17} + b_{18})$$

$$-17b_{11}b_{14} - 37b_{11}b_{16} - 13b_{12}b_{13} - 53b_{12}b_{17} - 73b_{13}b_{18}$$

$$x_{6} = -10b_{11}b_{15} + 14b_{11}b_{17} - 16b_{12}b_{14} + 32b_{12}b_{18} - 9b_{13}^{2}$$

$$y_{6} = 72b_{16}(-b_{11} + b_{12} - b_{13} + b_{14} - b_{15} + b_{16} - b_{17} + b_{18})$$

$$-26b_{11}b_{15} - 50b_{11}b_{17} - 20b_{12}b_{14} - 68b_{12}b_{18} - 9b_{13}^{2}$$

$$x_7 = -12b_{11}b_{16} + 16b_{11}b_{18} - 20b_{12}b_{15} - 24b_{13}b_{14}$$

$$y_7 = 98b_{17}(-b_{11} + b_{12} - b_{13} + b_{14} - b_{15} + b_{16} - b_{17} + b_{18})$$

$$-37b_{11}b_{16} - 65b_{11}b_{18} - 29b_{12}b_{15} - 25b_{13}b_{14}$$

 $X_8 = -14b_{11}b_{17} - 24b_{12}b_{16} - 30b_{13}b_{15} - 16b_{14}^2$

$$Y_8 = 128b_{18}(-b_{11} + b_{12} - b_{13} + b_{14} - b_{15} + b_{16} - b_{17} + b_{18})$$

-50b_{11}b_{17} - 40b_{12}b_{16} - 34b_{13}b_{15} - 16b_{14}^2

 $x_{9} = -16b_{11}b_{18} - 28b_{12}b_{17} - 36b_{13}b_{16} - 40b_{14}b_{15}$ $y_{9} = -65b_{11}b_{18} - 53b_{12}b_{17} - 45b_{13}b_{16} - 41b_{14}b_{15}$

 $x_{10} = -32b_{12}b_{18} - 42b_{13}b_{17} - 48b_{14}b_{16} - 25b_{15}^2$ $y_{10} = -68b_{12}b_{18} - 58b_{13}b_{17} - 52b_{14}b_{16} - 25b_{15}^2$

 $\begin{array}{r} x_{11} = -48b_{13}b_{18} - 56b_{14}b_{17} - 60b_{15}b_{16} \\ y_{11} = -73b_{13}b_{18} - 65b_{14}b_{17} - 61b_{15}b_{16} \end{array}$

 $x_{12} = -64b_{14}b_{18} - 70b_{15}b_{17} - 36b_{16}^{2}$ $y_{12} = -80b_{14}b_{18} - 74b_{15}b_{17} - 36b_{16}^{2}$

 $x_{13} = -80b_{15}b_{18} - 84b_{16}b_{17}$ $y_{13} = -89b_{15}b_{18} - 85b_{16}b_{17}$

 $X_{14} = -96b_{16}b_{18} - 49b_{17}^2$ $Y_{14} = -100b_{16}b_{18} - 49b_{17}^2$

 $X_{15} = -112b_{17}b_{18}$ $Y_{15} = -113b_{17}b_{18}$

 $x_{16} = -64b_{18}^2$ $y_{16} = x_{16}$

•

TABLE 2 - RIGIDITY AND COMPLIANCE COEFFICIENTS

$$\begin{split} D_{x} &\cong \frac{EI_{x}}{S_{x}(1-v^{2})} \\ D_{y} &\cong \frac{EI_{y}}{S_{y}(1-v^{2})} \\ \rho &\cong \frac{a}{b} \sqrt[4]{\frac{I_{y}}{I_{x}}} \frac{S_{x}}{S_{y}} \\ \eta &= \frac{D_{xy}}{\sqrt{D_{x}D_{y}}} \cong \sqrt{\frac{I_{px}I_{py}}{I_{x}I_{y}}} \\ J_{x} &\cong \frac{1}{Eh_{y}} \\ J_{y} &\cong \frac{1}{Eh_{x}} \\ J_{xy} &\cong \frac{1}{E} \left[\frac{1+v}{h_{p}} - \frac{v}{h}\right] \\ \gamma &= \frac{J_{xy}}{\sqrt{J_{x}J_{y}}} \cong (1+v) \sqrt{\frac{h_{x}h_{y}}{h_{p}}} - v \sqrt{\frac{h_{x}h_{y}}{h}} \\ \bar{h} &= \frac{2h_{x}h_{y}}{h_{x} + h_{y}} \end{split}$$

.

TABLE 3 - INTEGRALS

 $\int_{0}^{b/2} \int_{0}^{a/2} \cos \frac{m\pi}{a} \cos \frac{r\pi}{a} x \, dxdy = \frac{ab}{8} \qquad m = r$ m ≠ r $\int_{0}^{b/2} \int_{0}^{a/2} \cos \frac{m\pi}{a} x \cos \frac{r\pi}{a} x \cos \frac{2s\pi}{b} y \, dxdy = 0$ $\int_{0}^{b/2} \int_{0}^{a/2} \cos \frac{m\pi}{a} x \cos \frac{r\pi}{a} x \cos \frac{2n\pi}{b} y \, dxdy = 0$ $\int_{a}^{b/2} \int_{a}^{a/2} \cos \frac{m\pi}{a} \cos \frac{r\pi}{a} \cos \frac{2n\pi}{b} \cos \frac{2s\pi}{b} \cos \frac{2s$ = 0 m≠r or n≠s $\int_{a}^{b/2} \int_{a}^{a/2} \cos \frac{m\pi}{a} x \cos \frac{2p\pi}{a} x \cos \frac{r\pi}{a} x \cos \frac{2q\pi}{b} y \, dx dy = 0$ $\int_{a}^{b/2} \int_{a}^{a/2} \cos \frac{r\pi}{a} x \cos \frac{2s\pi}{b} y \, dxdy = 0$ $\int_{0}^{b/2} \int_{0}^{a/2} \cos \frac{r\pi}{a} x \, dx dy = \frac{ab}{2r\pi}(-1) \frac{r-1}{2}$ r odd otherwise $\int_{0}^{b/2} \int_{0}^{a/2} \cos \frac{m\pi}{a} x \cos \frac{2p\pi}{a} x \cos \frac{r\pi}{a} x \cos \frac{2q\pi}{b} y \cos \frac{2s\pi}{b} y dxdy$ $=\frac{ab}{22}$, m+r = 2p, q = s $=\frac{ab}{32}, |m-r| = 2p, q=s, m > r$ $=\frac{ab}{32}, |r-m| = 2p, q=s, r > m$ = 0 otherwise

 $\int_{0}^{b/2} \int_{0}^{a/2} \cos \frac{m\pi}{a} x \cos \frac{2p\pi}{a} x \cos \frac{r\pi}{a} x \cos \frac{2n\pi}{b} y \cos \frac{2q\pi}{b} y dxdy$ $= \frac{ab}{32}, m + r = 2p, q = n$ $= \frac{ab}{32}, |m - r| = 2p, q = n, m > r$ $= \frac{ab}{32}, |r - m| = 2p, q = n, r > m$

 $\int_{0}^{b/2} \int_{0}^{a/2} \sin \frac{m\pi}{a} x \sin \frac{2p\pi}{a} x \cos \frac{r\pi}{a} x \sin \frac{2n\pi}{b} y \sin \frac{2q\pi}{b} y dxdy$ $= \frac{ab}{32}, m + r = 2p, n = q$ $= \frac{ab}{32}, |m - r| = 2p, n = q, m > r$ $= -\frac{ab}{32}, |r - m| = 2p, n = q, r > m$ $= 0 \quad \text{otherwise}$

 $\int_{0}^{b/2} \int_{0}^{a/2} \cos \frac{m\pi}{a} x \cos \frac{2p\pi}{a} x \cos \frac{r\pi}{a} x \cos \frac{2n\pi}{b} y \cos \frac{2q\pi}{b} y \cos \frac{2s\pi}{b} y dxdy$

$$= \frac{ab}{64}, m + r = 2p, n + s = q$$

$$= \frac{ab}{64}, m + r = 2p, |n - s| = q, n > s$$

$$= \frac{ab}{64}, m + r = 2p, |s - n| = q, s > n$$

$$= \frac{ab}{64}, |m - r| = 2p, n + s = q, m > r$$

$$= \frac{ab}{64}, |m - r| = 2p, |n - s| = q, m > r, n > s$$

$$= \frac{ab}{64}, |m - r| = 2p, |s - n| = q, m > r, s > n$$

$$= \frac{ab}{64}, |m - r| = 2p, |s - n| = q, m > r, s > n$$

$$= \frac{ab}{64}, |r - m| = 2p, |n - s| = q, r > m, n > s$$
$$= \frac{ab}{64}, |r - m| = 2p, |s - n| = q, r > m, s > n$$
$$= 0 \quad \text{otherwise}$$

$$\int_{0}^{b/2} \int_{0}^{a/2} \sin \frac{m\pi}{a} x \sin \frac{2p\pi}{a} x \cos \frac{r\pi}{a} x \sin \frac{2n\pi}{b} y \sin \frac{2q\pi}{b} y \cos \frac{2s\pi}{b} y dxdy$$

$$= \frac{ab}{64}, m + r = 2p, n + s = q$$

$$= \frac{ab}{64}, m + r = 2p, |n - s| = q, n > s$$

$$= -\frac{ab}{64}, m + r = 2p, |s - n| = q, s > n$$

$$= \frac{ab}{64}, |m - r| = 2p, n + s = q, m > r$$

$$= \frac{ab}{64}, |m - r| = 2p, |n - s| = q, m > r, n > s$$

$$= -\frac{ab}{64}, |m - r| = 2p, |n - s| = q, m > r, n > s$$

$$= -\frac{ab}{64}, |m - r| = 2p, |s - n| = q, m > r, s > n$$

$$= -\frac{ab}{64}, |r - m| = 2p, n + s = q, r > m$$

$$= -\frac{ab}{64}, |r - m| = 2p, |n - s| = q, r > m$$

$$= -\frac{ab}{64}, |r - m| = 2p, |n - s| = q, r > m$$

$$= -\frac{ab}{64}, |r - m| = 2p, |n - s| = q, r > m$$

$$= -\frac{ab}{64}, |r - m| = 2p, |n - s| = q, r > m$$

$$= -\frac{ab}{64}, |r - m| = 2p, |n - s| = q, r > m$$

$$= -\frac{ab}{64}, |r - m| = 2p, |s - n| = q, r > m, s > n$$

$$= 0 \quad \text{otherwise}$$

$$b/2 \frac{a}{2} \frac{a}{2} \sin \frac{m\pi}{a} x \cos \frac{r\pi}{a} x \sin \frac{2n\pi}{b} y \, dxdy$$

$$= \frac{ab}{n\pi^2} \left(\frac{1}{m+r}\right), \qquad \frac{m+r}{2} \text{ odd, n odd}$$

$$= \frac{ab}{n\pi^2} \left(\frac{1}{m-r}\right), \qquad \frac{m-r}{2} \text{ odd, n odd}$$

$$= 0 \qquad \text{otherwise}$$

 $\int_{0}^{b/2} \int_{0}^{a/2} \sin \frac{m\pi}{a} \cos \frac{r\pi}{a} \sin \frac{2n\pi}{b} \cos \frac{2s\pi}{b} \cos \frac{2s\pi}{b} \cos \frac{2s\pi}{b} \sin \frac{m\pi}{a} \cos \frac{\pi\pi}{a} \cos \frac{2\pi\pi}{a} \sin \frac{2\pi\pi}{b} \cos \frac{2\pi\pi}$

= 0 otherwise

and the second of the second second second second

ASTYTACTO D

Table 4 - Computer Symbols

Fortran Symbol	Variable
B (N)	b _{l,n}
RHO	ρ
GAMMA	γ
ETA	η
QSTAR	Q*
NXSTAR	N* X
NYSTAR	N* Y
SSTAR	S*
W/H	w/h
AE/A	a _e /a
BE/B	b _e /b
MYSTAR	м* У
SIGMA STAR	σ_1^* or σ_2^*
CPQ	с _{рq}
APQ	Pd Dd
RANG	Max. value of N* or S*
RANGQ	Max. value of Q*

Figure 1

 $\frac{w}{h}$

 $\frac{w}{h}$

 $\frac{w}{h}$

 $\frac{w}{h}$

N*x

Figures 12 & 13

 $\frac{W}{h}$

 $\frac{W}{h}$

м* У

м* У

 $\frac{w}{h}$

. .

w h .

be b

м* У

м* У

•

.

Figures 28 & 29

Figures 30 & 31

Figures 32 & 33

Figures 36 & 37

Figures 38 & 39

Figures 40 & 41

Figures 42 & 43

Figures 44 & 45

.

.

Figures 57 & 58

Figures 59 & 60

 $\frac{w}{h}$

м* У

Figure 63

거리

.

Figure 65

100

a a

9. Appendices

APPENDIX A

Details of Derivation of Basic Equations of Large Deflections

Definition of External Forces and Moments

Shearing force per unit length parallel to x axis

$$Q_{x} = \int_{-h/2}^{h/2} \tau_{xz} dz$$

Shearing force per unit length parallel to y axis

$$Q_{y} = \int_{-h/2}^{h/2} \tau_{yz} dz$$

Bending moments per unit length of sections of a plate perpendicular to x and y axis respectively

$$M_{x} = \int_{-h/2}^{h/2} z \sigma_{x} dz$$
$$M_{y} = \int_{-h/2}^{h/2} z \sigma_{y} dz$$

Twisting moment per unit length of section of a plate perpendicular to x and y axis respectively

$$M_{xy} = -\int_{-h/2}^{h/2} z \tau_{xy} dz$$
$$M_{yx} = -\int_{-h/2}^{h/2} z \tau_{yx} dz$$

Strain - Displacement Relations

Consideration of strain in the middle of the plate

For large deflections, the effect of deflection on the strains has to be included in the strain-displacement relations. The accompanying figure shows a typical elongation of a linear element of length dx due to displacement in the x and z directions from bending.

Elongation = dl
$$\simeq \frac{\partial u}{\partial x} dx + \frac{1}{2} (\frac{\partial w}{\partial x})^2 dx$$

The strain in the x direction is therefore

$$\varepsilon_{\rm x} \simeq \frac{\partial u}{\partial {\rm x}} + \frac{1}{2} \left(\frac{\partial w}{\partial {\rm x}}\right)^2$$
 (a)

The strain in the y direction is likewise

$$\varepsilon_{y} \simeq \frac{\partial v}{\partial y} + \frac{1}{2} (\frac{\partial w}{\partial y})^{2}$$
 (b)

The shearing strain due to displacements u and v is

 $\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$

It can be shown that the shearing strain due to displacement w is

$$\frac{9x}{9m} \cdot \frac{9x}{9m}$$

The total shear strain in the middle plane is

$$\gamma_{xy} \simeq \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x} \cdot \frac{\partial w}{\partial y}$$
 (c)

For small angles the displacements u and v can be represented by the change in displacement w as

$$u \simeq - z \frac{\partial W}{\partial x}$$

 $v \simeq - z \frac{\partial W}{\partial y}$

Substitution into (a), (b) and (c) gives

$$\varepsilon_{X} \simeq -z \frac{\partial^{2} w}{\partial x^{2}} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^{2}$$

$$\varepsilon_{Y} \simeq -z \frac{\partial^{2} w}{\partial y^{2}} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^{2}$$

$$\gamma_{XY} \simeq -2z \frac{\partial^{2} w}{\partial x \partial y} + \frac{\partial w}{\partial x} \cdot \frac{\partial w}{\partial y}$$
(2)*

^{*}Numbered equations correspond to those used in the main text.

The above diagrams are superimposed to make one loading condition. For equilibrium in the z-direction:

$$\Sigma F_{z} = 0$$

$$\frac{\partial Q_{x}}{\partial x} dx dy + \frac{\partial Q_{y}}{\partial y} dy dx + \bar{q} dx dy = 0$$

$$\frac{\partial Q_{x}}{\partial x} + \frac{\partial Q_{y}}{\partial y} = -\bar{q} \qquad (a)$$

Moment equilibrium about the x-axis

$$\Sigma M_{XX} = 0$$

$$\frac{\partial M_{xy}}{\partial x} dx dy - \frac{\partial M_{y}}{\partial y} dy dx + Q_{y} dx dy + \frac{\partial Q_{y}}{\partial y} dy dx dy + \overline{q} dx dy 0 (dy) = 0$$

Neglecting the last two terms since they are of higher order gives

$$\frac{\partial M}{\partial x} - \frac{\partial M}{\partial y} + Q_y = 0$$
 (b)

Moment equilibrium about the y-axis and similarly neglecting small terms

$$\Sigma M_{YY} = 0$$
$$\frac{\partial M_{YX}}{\partial Y} + \frac{\partial M_{X}}{\partial x} - Q_{X} = 0$$

Forces in the middle plane of the plate (Membrane Stresses)
 The forces acting in the middle of the plate may have a
 considerable effect on the bending of the plate and must be
 considered.

Assuming no body forces or tangential forces

$$\Sigma F_{x} = 0$$

$$\frac{\partial N_{x}}{\partial x} dx dy + \frac{\partial N_{yx}}{\partial y} dy dx = 0$$

$$\Sigma F_{y} = 0$$

$$\frac{\partial N_{y}}{\partial y} dy dx + \frac{\partial N_{xy}}{\partial x} dx dy = 0$$

and from symmetry noting $N_{xy} = N_{yx}$

$$\frac{\partial N}{\partial X} + \frac{\partial N}{\partial Y} = 0$$

$$\frac{\partial N}{\partial Y} + \frac{\partial N}{\partial X} = 0$$
(3)

Equations (3) are independent of equations (a), (b) and (c) and can be treated separately.

Projecting normal forces $N_{_X}$ onto the z axis and taking into account the bending of the plate and resulting small angles

$$-N_{x}dy\frac{\partial W}{\partial x} + (N_{x} + \frac{\partial N_{x}}{\partial x}dx)(\frac{\partial W}{\partial x} + \frac{\partial^{2}W}{\partial x^{2}}dx)dy$$

Similarly projecting normal forces N_v onto the z axis

$$-N_{y}dx\frac{\partial W}{\partial y} + (N_{y} + \frac{\partial N_{y}}{\partial y}dy)(\frac{\partial W}{\partial y} + \frac{\partial^{2}W}{\partial y^{2}}dy)dx$$

Neglecting higher than second order terms gives

$$N_{x}\frac{\partial^{2}w}{\partial x^{2}}dxdy + \frac{\partial N_{x}}{\partial x} \cdot \frac{\partial w}{\partial x}dxdy$$
(d)

$$N_{y} \frac{\partial^{2} w}{\partial y^{2}} dy dx + \frac{\partial N_{y}}{\partial y} \cdot \frac{\partial w}{\partial y} dy dx \qquad (e)$$

Treating the projections of the shearing forces onto the z axis the same way

(1) for N_{XY} with slope of deflection surface in the y direction on the two opposite sides of the element as $\frac{\partial w}{\partial y}$ and $\frac{\partial w}{\partial y} + \frac{\partial^2 w}{\partial x \partial y} dx$

$$N_{xy}\frac{\partial^{2}w}{\partial x\partial y}dxdy + \frac{\partial N_{xy}}{\partial x} \cdot \frac{\partial w}{\partial y}dxdy$$

(2) for N_{yx} with slope of deflection surface in the x direction on the two opposite sides of the element as $\frac{\partial W}{\partial x}$ and $\frac{\partial W}{\partial x} + \frac{\partial^2 W}{\partial x \partial y} dy$

$$N_{yx}\frac{\partial^2 w}{\partial x \partial y}dydx + \frac{\partial^2 N_{yx}}{\partial y} \cdot \frac{\partial^2 w}{\partial x}dydx$$

combining (1) and (2) gives

$$2N_{xy}\frac{\partial^2 w}{\partial x \partial y}dxdy + \frac{\partial N_{xy}}{\partial x}\frac{\partial w}{\partial y}dxdy + \frac{\partial N_{xy}}{\partial y}\frac{\partial w}{\partial x}dxdy$$
(f)

Differentiation of (b) with respect to y and of (c) with respect to x and substitution into (a) eliminates shearing forces Q_x and Q_y

$$\frac{\partial^2 M_x}{\partial x^2} + \frac{\partial^2 M_y}{\partial x \partial y} + \frac{\partial^2 M_y}{\partial y^2} - \frac{\partial^2 M_x y}{\partial x \partial y} = -\overline{q}$$

Noting that $M_{yx} = -M_{xy}$, adding expressions (d), (e) and (f) to the load $\bar{q}dxdy$ originally defined and making use of (3)

$$\frac{\partial^{2}M_{x}}{\partial x^{2}} - 2 \frac{\partial^{2}M_{xy}}{\partial x \partial y} + \frac{\partial^{2}M_{y}}{\partial y^{2}}$$
$$= -(\overline{q} + N_{x}\frac{\partial^{2}W}{\partial x^{2}} + 2N_{xy}\frac{\partial^{2}W}{\partial x \partial y} + N_{y}\frac{\partial^{2}W}{\partial y^{2}})$$
(4)

Moment - Curvature Relations

Substitution of equations (2) for ϵ_x , ϵ_y and γ_{xy} in equations (1) gives*

$$\sigma_{\mathbf{x}} = \frac{\mathbf{E}_{\mathbf{x}}}{1 - \mathbf{v}_{\mathbf{x}} \mathbf{v}_{\mathbf{y}}} \left[-z \; \frac{\partial^2 w}{\partial x^2} + \frac{1}{2} \left(\frac{\partial w}{\partial \mathbf{x}} \right)^2 - z \mathbf{v}_{\mathbf{y}} \frac{\partial^2 w}{\partial \mathbf{y}^2} + \frac{1}{2} \mathbf{v}_{\mathbf{y}} \left(\frac{\partial w}{\partial \mathbf{y}} \right)^2 \right]$$

$$\sigma_{\mathbf{y}} = \frac{\mathbf{E}_{\mathbf{y}}}{1 - \mathbf{v}_{\mathbf{x}} \mathbf{v}_{\mathbf{y}}} \left[-z \; \frac{\partial^2 w}{\partial \mathbf{y}^2} + \frac{1}{2} \left(\frac{\partial w}{\partial \mathbf{y}} \right)^2 - z \mathbf{v}_{\mathbf{x}} \frac{\partial^2 w}{\partial \mathbf{x}^2} + \frac{1}{2} \mathbf{v}_{\mathbf{x}} \left(\frac{\partial w}{\partial \mathbf{x}} \right)^2 \right] \quad (a)$$

$$\sigma_{\mathbf{x}} = -2z G \frac{\partial^2 w}{\partial \mathbf{x} \partial \mathbf{y}} + G \; \frac{\partial w}{\partial \mathbf{x}} \cdot \frac{\partial w}{\partial \mathbf{y}}$$

Taking the moments as defined before and integrating

$$M_{x} = \int_{-h/2}^{h/2} z \sigma_{x} dz$$
$$M_{y} = \int_{-h/2}^{h/2} z \sigma_{y} dz$$
$$M_{xy} = -\int_{-f/2}^{h/2} z \tau_{xy} dz$$

Even functions will drop out over the integration interval leaving the same expressions for moments M_{χ} , M_{χ} and $M_{\chi\gamma}$ as for a plate undergoing pure bending and only small deflections. The result is

^{*}Numbers in parenthesis correspond to equations in the main text.

$$M_{X} = -D_{X} \left(\frac{\partial^{2} w}{\partial x^{2}} + v_{Y} \frac{\partial^{2} w}{\partial y^{2}} \right)$$

$$M_{Y} = -D_{Y} \left(\frac{\partial^{2} w}{\partial y^{2}} + v_{X} \frac{\partial^{2} w}{\partial x^{2}} \right)$$

$$M_{XY} = 2C \frac{\partial^{2} w}{\partial x \partial y}$$
(6)

where the rigicity coefficients D_x and D_y are defined as

$$D_{x} \equiv \frac{E_{x}h^{3}}{12(1-v_{x}v_{y})}$$
$$D_{y} \equiv \frac{E_{y}h^{3}}{12(1-v_{x}v_{y})}$$

and

$$C \equiv \frac{Gh^3}{12}$$

"Equilibrium" Equation

Substitution of equations (6) into (4) gives

$$D_{\mathbf{x}} \frac{\partial^{4} w}{\partial \mathbf{x}^{4}} + 2D_{\mathbf{x}} \frac{\partial^{4} w}{\partial \mathbf{x}^{2} \partial \mathbf{y}^{2}} + D_{\mathbf{y}} \frac{\partial^{4} w}{\partial \mathbf{y}^{4}}$$
$$= \overline{q} + N_{\mathbf{x}} \frac{\partial^{2} w}{\partial \mathbf{x}^{2}} + 2N_{\mathbf{x}} \frac{\partial^{2} w}{\partial \mathbf{x} \partial \mathbf{y}} + N_{\mathbf{y}} \frac{\partial^{2} w}{\partial \mathbf{y}^{2}}$$

where

$$2D_{XY} = D_{X^{V}Y} + D_{Y^{V}X} + 4C$$

Substitution of the stress function defined by equations (5)

$$D_{x}\frac{\partial^{4}w}{\partial x^{4}} + 2D_{xy}\frac{\partial^{4}w}{\partial x^{2}\partial y^{2}} + D_{y}\frac{\partial^{4}w}{\partial y^{4}}$$
$$= \bar{q} + \frac{\partial^{2}F}{\partial y^{2}} \cdot \frac{\partial^{2}w}{\partial x^{2}} - 2\frac{\partial^{2}F}{\partial x\partial y} \cdot \frac{\partial^{2}w}{\partial x\partial y} + \frac{\partial^{2}F}{\partial x^{2}} \cdot \frac{\partial^{2}w}{\partial y^{2}}$$
(7)

"Compatibility" Equation

The forces N_x , N_y , and N_{xy} in the middle plane of the plate depend on the strain due to bending as well as the external forces applied in the xy plane.

Again assuming no body forces and requiring load \bar{q} is perpendicular, equations (3) apply for equilibrium in the middle xy plane

$$\frac{\partial N_{x}}{\partial N_{x}} + \frac{\partial N_{xy}}{\partial N_{x}} = 0$$
(3)

The corresponding strain components are those of equations (2)

$$\varepsilon_{X} = \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^{2}$$

$$\varepsilon_{Y} = \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^{2}$$

$$\gamma_{XY} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x} \cdot \frac{\partial w}{\partial y}$$
(2)

Differentiating equations (2) and combining to eliminate u and v results in

$$\frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} - \frac{\partial^{2} \gamma_{xy}}{\partial x \partial y} + \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} = \left(\frac{\partial^{2} w}{\partial x \partial y}\right)^{2} - \frac{\partial^{2} w}{\partial x^{2}} \cdot \frac{\partial^{2} w}{\partial y^{2}}$$
(8)

Using Hooke's Law to relate strain and forces N

$$\varepsilon_{x} = \frac{N_{x}}{hE_{x}} - v_{y} \frac{N_{y}}{hE_{y}}$$

$$\varepsilon_{y} = \frac{N_{y}}{hE_{y}} - v_{x} \frac{N_{x}}{hE_{x}}$$
(a)
$$\gamma_{xy} = \frac{N_{xy}}{hG}$$

Differentiation of equations (a) and substitution into equation (8) with use of equation (3)

$$J_{x}\frac{\partial^{2}N_{y}}{\partial x^{2}} + 2J_{xy}\frac{\partial^{2}N_{xy}}{\partial x\partial y} + J_{y}\frac{\partial^{2}N_{x}}{\partial y^{2}}$$
$$= (\partial^{2}W_{y})^{2} - \partial^{2}W_{y} - \partial^{2}W_{y}$$

$$(\frac{\partial x \partial y}{\partial x^2})^2 = \frac{\partial x^2}{\partial x^2} \cdot \frac{\partial y^2}{\partial y^2}$$

where

$$J_x = \frac{1}{E_y h}$$
; $J_y = \frac{1}{E_x h}$

and

$$2J_{xy} = \frac{1}{Gh} - v_x J_y - v_y J_x$$

Substitution of the stress function defined by equations (5)

$$J_{x}\frac{\partial^{4}F}{\partial x^{4}} + 2J_{xy}\frac{\partial^{4}F}{\partial x^{2}\partial y^{2}} + J_{y}\frac{\partial^{4}F}{\partial y^{4}} = \left(\frac{\partial^{2}w}{\partial x\partial y}\right)^{2} - \frac{\partial^{2}w}{\partial x^{2}} \cdot \frac{\partial^{2}w}{\partial y^{2}}$$
(9)

APPENDIX B

EFFECTIVE WIDTH

Figure a

Figure b

Consider the simple case of a rectangular plate simply supported on all edges where the loaded edge remains straight in the plane of the plate at all times. If the load is below the buckling load, the stresses will be distributed evenly as shown in figure a. For post-buckling loads the center of the plate will exhibit less compressive strain than the edges because of large deflections of the center of the plate. The stress distribution is shown in figure b. The effective width relates the maximum stress σ_{max} uniformly distributed along a phantom plate sustaining the same total load as the real plate, thicknesses being the same. Therefore

$$a_{e}\sigma_{max} = a\overline{\sigma}$$

Where σ is the average edge stress. For this particular case

$$\frac{\bar{N}_y}{h} = \bar{\sigma}$$
 and $\sigma_{max} = \sigma_{ye}$

Where σ_{ye} is the edge membrane stress in the y-direction (σ_{y} at x = $\pm \frac{a}{2}$). Substitution into the above relation gives the result

$$a_{e}\sigma_{ye} = a \frac{\bar{N}_{y}}{h}$$
(34a)

Similarly, for loads in the x-direction

$$b_e \sigma_{xe} = b \frac{\bar{N}_x}{h}$$
(34b)

APPENDIX C

.

Details of Solution

1. Determination of Coefficients Cpq

Substitute deflection expression (37) into the right hand side of equation (16). The right hand side of equation (16) becomes*

Term #1

$$= \frac{h^{2}\pi^{4}}{a^{2}b^{2}} \{4\sin^{2}\frac{\pi}{a}x[b_{1}\sin\frac{2\pi}{b}y + 2b_{2}\sin\frac{4\pi}{b}y + 3b_{3}\sin\frac{6\pi}{b}y \\ + 4b_{4}\sin\frac{8\pi}{b}y + 5b_{5}\sin\frac{10\pi}{b}y + 6b_{6}\sin\frac{12\pi}{b}y \\ + 7b_{7}\sin\frac{14\pi}{b}y + 8b_{8}\sin\frac{16\pi}{b}y]^{2}\}$$

Term #2

$$-\frac{h^{2}\pi^{4}}{a^{2}b^{2}}\left[4\cos^{2}\frac{\pi}{a}x\left[b_{1}+b_{1}\cos\frac{2\pi}{b}y-b_{2}+b_{2}\cos\frac{4\pi}{b}y+b_{3}\right]\right]$$
$$+b_{3}\cos\frac{6\pi}{b}y-b_{4}+b_{4}\cos\frac{8\pi}{b}y+b_{5}+b_{5}\cos\frac{10\pi}{b}y-b_{6}$$
$$+b_{6}\cos\frac{12\pi}{b}y+b_{7}+b_{7}\cos\frac{14\pi}{b}y-b_{8}+b_{8}\cos\frac{16\pi}{b}y\cdot\left[b_{1}\cos\frac{2\pi}{b}y\right]$$

$$+4b_2\cos\frac{4\pi}{b}y + 9b_3\cos\frac{6\pi}{b}y + 16b_4\cos\frac{8\pi}{b}y + 25b_5\cos\frac{10\pi}{b}y$$

$$+36b_{6}\cos\frac{12\pi}{b}y + 49b_{7}\cos\frac{14\pi}{b}y + 64b_{8}\cos\frac{16\pi}{b}y]\}$$
(a)

*Note: since m = 1 for all cases, for convenience b_{1,n} is represented by b_n.

- -- --

Each of the two terms of equation (a) is multiplied out and like terms are collected in the form $\cos \frac{2q\pi}{b}y$ for q = 0,1,2...16 using the function product relations

$$4\sin\alpha\sin\beta = 2\cos(\alpha-\beta) - 2\cos(\alpha+\beta)$$
$$4\cos\alpha\cos\beta = 2\cos(\alpha-\beta) + 2\cos(\alpha+\beta)$$

The first and second terms produce coefficients $2x_q$ and $2y_q$ respectively. Using the function relationships

$$\sin^2 \frac{\pi}{a} x = \frac{1}{2} - \frac{1}{2} \cos^2 \frac{2\pi}{a} x$$

$$\cos^2\frac{\pi}{a}x = \frac{1}{2} + \frac{1}{2}\cos\frac{2\pi}{a}x$$

there results

First term:

$$X_q \cos \frac{2q\pi}{b} y - X_q \cos \frac{2q\pi}{b} y \cos \frac{2\pi}{a} x$$

Second term:

$$Y_q \cos \frac{2q\pi}{b} y + Y_q \cos \frac{2q\pi}{b} y \cos \frac{2\pi}{a} x$$

Comparison with the right hand side of equation (17), the coefficients C_{pq} are

$$c_{o,q} = Y_{q} + X_{q}$$
$$c_{1,q} = Y_{q} - X_{q}$$

-

or

$$C_{pq} = Y_q + (-1)^p X_q$$

 $p = 0.1$
 $q = 0.1.2...16$

Application of the Method of B. G. Galerkin to Equation (7)

Method of B.G. Galerkin (from reference [18])

It is required to determine the solution of the equation L(w) = 0

where L is a differential operator in two variables, which solution satisfies homogeneous boundary conditions.

The approximate solution sought is in the form

$$\overline{w}(x,y) = \sum_{n=1}^{L} b_n F_n(x,y)$$

where $F_n(x,y)$ (n = 1,2...i) is a system of functions chosen to satisfy the boundary conditions and b_n are undetermined coefficients. Consider the functions $F_n(x,y)$ to be linearly independent over a given region (no one of the functions can be expressed as a linear combination of the others). For $\bar{w}(x,y)$ to be the exact solution of the given equation, it is necessary that

 $L(\bar{w}) = 0$

If $L(\bar{w})$ is continuous, this requires that the expression $L(\bar{w})$ is orthogonal to all functions of the system $F_n(x,y)$ (n = 1,2...i). With i constants, b_1 , b_2 ... b_i , i conditions of orthogonality can be satisfied.

Requiring that the two functions are orthogonal over a region produces the following system of equations

$$\begin{aligned} \int f_{L}(\vec{w}) F_{n}(x,y) \, dx \, dy \\ R \\ &= \int f_{L}(\sum_{n} b_{n} F_{n}(x,y)) F_{n}(x,y) \, dx \, dy = 0 \\ R \\ &n \end{aligned}$$

$$(n = 1, 2...i)$$

from which the coefficients b_n can be determined. These coefficients will define the solution $\overline{w}(x,y)$.

The method of B.G. Galerkin can also be obtained from the principle of virtual work.

Application of the method of Galerkin to equation (7) requires that the following equation be satisfied by all functions $f_r(x)g_s(y)$

$$\int_{0}^{a/2} \int_{0}^{b/2} \left[D_{x} \frac{\partial^{4} w}{\partial x^{4}} + 2 D_{xy} \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}} + D_{y} \frac{\partial^{4} w}{\partial y^{4}} - \overline{q} - \frac{\partial^{2} F}{\partial y^{2}} \cdot \frac{\partial^{2} w}{\partial x^{2}} + 2 \frac{\partial^{2} F}{\partial x \partial y} \frac{\partial^{2} w}{\partial x \partial y} - \frac{\partial^{2} F}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}} \right]$$

$$X f_{r}(x) g_{s}(y) dxdy = 0$$
(21)

Substitution of w and F, expressions (15) and (20) respectively

$$\int_{0}^{a/2} \int_{0}^{b/2} \sum_{k} \sum_{k} \left[hD_{x} \sum_{m} \sum_{k} \left[\frac{n\pi}{a} \right]^{k} b_{mn} \left[(-1)^{n+1} + \cos \frac{2n\pi}{b} y \right] \cos \frac{n\pi}{a} x \right] \\ + 2 D_{xy} h \sum_{mn} \sum_{k} \left(\frac{2n\pi}{b} \right)^{2} \left(\frac{m\pi}{a} \right)^{2} b_{mn} \cos \frac{2n\pi}{b} y \cos \frac{n\pi}{a} x \\ + h D_{y} \sum_{m} \sum_{k} \left(\frac{2n\pi}{b} \right)^{k} b_{mn} \cos \frac{2n\pi}{b} y \cos \frac{n\pi}{a} x - \overline{q} \\ - h^{3} \sum_{m} \sum_{k} \sum_{k} \sum_{k} \frac{q}{q} \left(\frac{m\pi}{a} \right)^{2} \left(\frac{2q\pi}{b} \right)^{2} \phi_{pq} b_{mn} \left[(-1)^{n+1} + \cos \frac{2n\pi}{b} y \right] \\ \cdot \cos \frac{2q\pi}{b} y \cos \frac{n\pi}{a} x \cos \frac{2p\pi}{a} x \\ - \bar{N}_{y} h \sum_{m} \sum_{k} \left(\frac{2n\pi}{b} \right)^{2} b_{mn} \cos \frac{2n\pi}{b} y \cos \frac{n\pi}{a} x \\ - \bar{N}_{y} h \sum_{m} \sum_{k} \left(\frac{2n\pi}{b} \right)^{2} \left(\frac{2p\pi}{a} \right)^{2} \phi_{pq} b_{mn} \cos \frac{2n\pi}{a} x \\ - h^{3} \sum_{m} \sum_{k} \left(\frac{2n\pi}{b} \right)^{2} \left(\frac{2p\pi}{a} \right)^{2} \phi_{pq} b_{mn} \cos \frac{2n\pi}{a} x \\ - h^{3} \sum_{m} \sum_{k} \left(\frac{2n\pi}{b} \right)^{2} \left(\frac{2p\pi}{a} \right)^{2} \phi_{pq} b_{mn} \cos \frac{2n\pi}{a} x \\ - \bar{N}_{x} h \sum_{m} \sum_{k} \left(\frac{2n\pi}{b} \right)^{2} \left(\frac{2p\pi}{a} \right)^{2} \phi_{pq} b_{mn} \cos \frac{2n\pi}{a} x \\ - \bar{N}_{x} h \sum_{m} \sum_{k} \left(\frac{2n\pi}{b} \right)^{2} \left(\frac{2p\pi}{a} \right)^{2} \phi_{pq} b_{mn} \cos \frac{2n\pi}{a} x \\ - 2\bar{S}h \sum_{m} \left(\frac{2n\pi}{b} \right)^{2} \left(\frac{2p\pi}{a} \right)^{2} \phi_{pq} b_{mn} \cos \frac{2n\pi}{a} x \\ + 2h^{3} \sum_{m} \frac{\pi}{h} \left(\frac{2n\pi}{b} \right)^{2} \left(\frac{2n\pi}{a} \right) b_{mn} \sin \frac{2n\pi}{b} y \sin \frac{n\pi}{a} x \\ + 2h^{3} \sum_{m} \frac{\pi}{h} \sum_{k} \sum_{k} \frac{q}{k} \left(\frac{2n\pi}{b} \right) \left(\frac{n\pi}{a} \right) b_{mn} \sin \frac{2n\pi}{b} y \sin \frac{2n\pi}{a} x \\ + 2h^{3} \sum_{m} \frac{\pi}{h} \sum_{k} \sum_{k} \frac{q}{k} \left(\frac{2n\pi}{b} \right) \left(\frac{n\pi}{a} \right) \left(\frac{2p\pi}{a} \right) \left(\frac{2q\pi}{b} \right) \phi_{pq} b_{mn} \sin \frac{2n\pi}{b} y \sin \frac{2n\pi}{b} y \sin \frac{2n\pi}{b} y \\ \cdot \sin \frac{n\pi}{a} x \sin \frac{2p\pi}{a} y \cdot \left[(-1)^{s+1} + \cos \frac{2s\pi}{b} y \right] \cos \frac{s\pi}{a} x \\ dxdy = 0 \\ m, r = 1, 3, 5 \dots \\ n, s = 1, 2, 3 \dots$$

The orthogonality properties of the trigonometric functions must be used to evaluate the integral of equation (21). By employing the function relations

$$\cos A + \cos B = 2\cos\frac{1}{2}(A + B)\cos\frac{1}{2}(A - B)$$
$$\sin A + \sin B = 2\sin\frac{1}{2}(A + B)\cos\frac{1}{2}(A - B)$$

The trigonometric products may be expressed in typical forms

$$\int_{0}^{a/2} \cos \frac{m\pi}{a} x \cos \frac{r\pi}{a} x dx$$

$$= \frac{1}{4} \int_{0}^{a/2} [2\cos \frac{\pi}{a}(m+r)x + \cos \frac{\pi}{a}(m-r)x + \cos \frac{\pi}{a}(r-m)x] dx$$

and

$$\int_{0}^{a/2} \sin \frac{m\pi}{a} x \cos \frac{r\pi}{a} x dx$$

$$= \frac{1}{4} \int_{0}^{a/2} [2\sin \frac{\pi}{a}(m+r)x + \sin \frac{\pi}{a}(m-r)x - \sin \frac{\pi}{a}(r-m)x] dx$$

where integration is carried out for all m and r. By combining terms that integrate to similar values, these integrals are equivalent to

$$\frac{1}{4}\int_{0}^{a/2} \left[2\cos\frac{\pi}{a}\left|m+r\right|x + 2\cos\frac{\pi}{a}\left|m-r\right|x + 2\cos\frac{\pi}{a}\left|r-m\right|x\right]dx\right]$$

and

$$\frac{1}{4}\int_{0}^{a/2} [2\sin\frac{\pi}{a}|m+r|x + 2\sin\frac{\pi}{a}|m-r|x - 2\sin\frac{\pi}{a}|r-m|x]dx$$

where the second two terms in each expression integrate to

zero if r > m or m > r respectively. Manipulation of the trigonometric products on the right hand side of equation (21) into these typical relations permits the reduction of the equation into the convenient form of equation (22). Table 3 lists all the specific integrals from equation (21) with their respective values.
APPENDIX D

COMPUTER PROGRAMS

The computer program to solve the simultaneous equations (39) is written in Fortran IV Level Gl for the IBM system 370. The program consists of the main and three subprograms--MATHLIB subroutine ZEROIN, and subroutines EVAL and CPQ. Table 4 lists the important computer symbols used.

ZEROIN is a Fortran IV subprogram, from the M.I.T. mathematical library, which computes the solution vector \underline{b} of a set of N simultaneous, nonlinear equations $\sum_{i=1}^{N} (\underline{b}) = 0$ using double-precision arithmetic. \underline{b} is obtained $\sum_{i=1}^{N} (\underline{b}) = 0$ using double-precision arithmetic. \underline{b} is obtained by an iterative method beginning with estimated values of the solution vector and iteration is performed as

$$\underline{b}^{k+1} = \underline{b}^k + \underline{D}^k$$

with the vector $\underline{D}^{k} = J^{k} \cdot \underline{F}(\underline{b}^{k})$ where $\underline{F}(\underline{b}^{k})$ represents the vector of function values at the point \underline{b}^{k} and J^{k} represents an approximation to the Jacobian at \underline{b}^{k} . Convergence is tested with the expression

$$|\underline{b}^{k+1} - \underline{b}^{k}|^{2} \leq 0.5 \times 10^{-12} |\underline{b}^{k+1}|^{2}$$

Subroutine EVAL generates the eight simultaneous equations and calculates the vector of function values for a given solution vector <u>b</u>. EVAL is called repeatedly by subroutine ZEROIN.

Subroutine CPQ is in turn called by subroutine EVAL, with a solution vector \underline{b} , to calculate the coefficients C_{pq} that are used in the simultaneous equations.

For the starting values of the solution vector \underline{b} , the main program uses a well guessed set of values set in the program. If the lateral load is not zero ($Q^* \neq 0$) (see note 1) or the present loading conditions did not change significantly from the last set, the previously computed solution vector \underline{b} is used for the starting values.

If ZEROIN cannot achieve convergence in 50 iterations, the main program alters the initial set of starting values and returns them to ZEROIN. Normally convergence is obtained within the first 50 iterations, however, never more that a second set of values is required.

Part 1 - Design Charts

The main program varies the nondimensional loads Q* and N* or S* for a particular set of plate parameters. Tables of nondimensional deflection coefficients, nondimensional deflection at the center of the plate, nondimensional effective width and nondimensional bending moment (ydirection) at the middle of the supports ($y = \pm b/2$) are outputs. Additionally, CALCOMP plots of the last three tables are produced.

Part 2 - Behaviour Programs

The main program reads the input parameters for 4 sets of loading conditions on a particular plate and outputs CALCOMP plots of nondimensional plate deflection along the centerline (x = 0) and nondimensional total principal stresses along the centerlines (x = 0 and y = 0). These programs are completely general and can be used with any set of loading conditions.

The design programs must be used with care. With reference to equations (36a) and (36b), the effective width is only defined for $N_Y^* \neq 0$ or $N_X^* \neq 0$ respectively. Hence, variation of S* with N* = 0 will give a value of zero for the effective width. The design programs are written so that no computation or plot of effective width will be made for any variation of S* with N* fixed. Additionally, deflection at the center of the plate and the y-direction bending moment may not be significant parameters in this case. It is recommended that the "behaviour" program be used if variation of the shear load, S*, is desired.

129

<u>Main Program 1</u> - Design ($N_y^* = 0$)

<u>Input</u> one card per set of complete design curves set up as follows:

Column		Parameter
1-10	RHO	
11-20	GAMMA	
21-30	ETA	
31-40	*NXSTAR	(Enter Negative Value to vary)
41-50	*SSTAR	(Enter negative value to vary)
51-60	RANG	
61-70	RANGO	

Note: Either N or S* may be varied, but not both in the same run.

Output

1. Tables a. $b_{1,n}$ b. $\frac{w}{h}$ at y = x = 0c. b_e (only if N_x^* is varied) d. M_y^* at $y = \pm \frac{b}{2}$, x = 0

2. CALCOMP Plots

Tables b, c and d above.

3. Values

 N_X^* or $S^* = 0$ to RANG in 10 increments of RANG/20 and $Q^* = 0$, RANGQ/6, RANGQ/3, RANGQ

Termination

A blank card as the last data card is required.

<u>Main Program 2</u> - Design ($N_X^* = 0$)

<u>Input</u> one card per set of complete design curves set up as follows:

Column		Parameter
1-10	RHO	
11-20	GAMMA	
21-30	ETA	
31-40	*NYSTAR	(Enter negative value to vary)
41-50	*SSTAR	(Enter negative value to vary)
51-60	RANG	
61-70	RANGQ	

Note: Either N or S* may be varied, but not both in the same run.

Output

1. Tables

a. b_{l,n}

2. CALCOMP Plots
a.
$$\frac{W}{h}$$
 at $y = x = 0$
b. a_e (only if N_Y^* is varied)
c. M_Y^* at $y = \pm \frac{b}{2}$, $x = 0$

3. Values

 N_{Y}^{*} or $S^{*} = 0$ to RANG in 10 increments of RANG/20 and $Q^{*} = 0$, RANGQ/6, RANGQ/3, RANGQ

Termination

A blank card as the last data card is required.

Main Program 3 - Behaviour

Input four cards per program run, each set up as follows:

Column	Parameter
1-10	RHO
11-20	GAMMA must be same all 4 cards
21-30	ETA)
31-40	NSTAR (see note 2)
41-50	SSTAR
51-60	QSTAR
61-70	*TB

*Note: If TB other than zero, stresses at top of plate will be computed. TB = zero defaults to bottom of plate.

Output

1. Tables

	a.	^b l,n
	b.	$\frac{w}{h}$ at $y = x = 0$
	c.	σ_1^* and σ_2^* at $y = x = 0$
2.	CAL	COMP Plots
	a.	$\frac{W}{h} \text{ at } x = 0 \text{ for } -\frac{1}{2} \le \frac{Y}{b} \le +\frac{1}{2}$
	b.	σ_1^* and σ_2^* at $x = 0$ for $-\frac{1}{2} \leq \frac{y}{a} \leq +\frac{1}{2}$

c.
$$\sigma_1^*$$
 and σ_2^* at $y = 0$ for $-\frac{1}{2} \le \frac{x}{a} \le +\frac{1}{2}$

Termination

A blank card as the fifth card is required.

Subroutine EVAL

Two subroutine programs EVAL - one for $N_Y^* = 0$, the other for $N_X^* = 0$. The appropriate EVAL program must be used with the corresponding main programs.

Subroutine ZEROIN & CPQ

Completely general subprograms. Use with all combinations of main programs and EVAL.

NOTE 1

If the lateral load is equal to zero ($Q^* = 0$) a possible but trivial solution is that all the coefficients $b_{mn} = 0$. Care must be exercised to avoid using $b_{mn} = 0$ for starting values in this case. Additionally, under certain circumstances the solution readily converges to zero rather than the appropriate non-trivial solution. The programmer should be aware of this possibility.

NOTE 2

The behaviour program may be used with either N_y^* or N_x^* as a loading, but not both. The main program must be used with the appropriate subroutine EVAL.

DESIGN PROGRAM

0.6666667 1	0.1	1.0	-1.0	0.0	12.0	8 • J
(Blank card)						
		BEHAVIOUR	PROGRAM			
0.6666667 1	0.	1.0	0.0	13.0	0.0	
0.6666667 1	•	· I•0	0.0	14.0	0•0	
0.6666667 1	0.	1.0	0.0	16.0	0-0	
0.6666667 1	•	1.0	0.0	20.0	0.0	
(Blank card)						

MAIN PROGRAM 1 - DESIGN

$$(N_{V}^{*} = 0)$$

OUTPUT ARE GRAPHS OF W/H, BE/E AND MYSTAR FOR QSTAR = 0,1,2,3 TIMES RANGE/3 NONDIMENSIONAL AVERAGE INPLANE COMPRESSIVE LOADING (X-DIRECTION) CALCULATION OF NONDIMENSIONAL DEFLECTION COFFFICIENTS OF A LARGE ASPECT I TERATIVE SOLUTION OF EIGHT SIMULTANEOUS NUNLINEAR CUBIC EQUATIONS REAL 0S(4),NS(11),BB(8,44),W(11,4),BE(10,4),MYSTAR(11,4),PS(10) NONDIMENSIONAL INPLANE EDGE SHEAR LOADING (ALL EDGES) W01(11), W02(11), W03(11), W04(11), BE1(10), BE2(10), BE3(10) NDNDIMENSIONAL BENDING MOMENT AT MIDDLE DF SUPPORTS SUBPROGRAM EVAL CALCULATES F(B) FOR A VECTOR OF B(N) VALUES. DIMENSION XAX (2),YAXI(1),YAX2(1),YAX3(2),XAX1(1),XAX2(1) (F(B)=0), USING THE MATHLIB SUBPROGRAM ZFROIN (AP-21). SUBPROGRAM CPQ CALCULATES COEFFICIENTS CPQ OF USE IN THE LL. NUNDIMENSIONAL DEFLECTION OF CENTER OF PLAT NONDIMENSIONAL HYDROSTATIC PRESSURE LOADING 大水水 YAX1/'W/H '/,YAX2/'BE/B'/,YAX3/' MYS', TAR '/ VIRTUAL ASPECT RATIO OF ORTHOTROPIC PLATE TORSION COEFFICIENT OF ORTHOTROPIC PLATE COEFFICIENT, QUADRATIC FUNCTIONS OF B(N) BE4(10), MY1(11), MY2(11), MY3(11), MY4(11), NST USE THIS PROGRAM TO VARY INPLANE LOAD NXSTAR NONDIMENSIONAL DEFLECTION COEFFICIENTS XAX1/* NST*/, XAX2/* SST*/, XAX(2)/*AR */ RATIO ORTHOTROPIC PLATE UNDER COMBINED LOADINGS REAL*8 R, EPS, D, C, VARY, RANG, DET, RANGQ, DETQ NONDIMENSIONAL EFFECTIVE WIDTH REAL*3 RHO, GAMMA, ETA, NSTAR, QSTAR, SSTAR COMMON RHD, GAMMA, ETA, NSTAR, QSTAR, SSTAR ORTHOTROPIC PLATE COEFFICIENT K0,K2,K4,K6/24),241,242,243/ DOUBLE PRECISION B(8), F(8) SI/0.07/,PI/3.141593/ SIMULTANEDUS EQUATIONS. COEFFICIENT AEE=3.0^{\(\|}(1.0-0.09) KI,K0/5,6/ EXTERNAL EVAL II H 11 H 11 П R H H - 11 Ш H DATA DATA REAL DATA DATA DATA REAL MYSTAR GAMMA QS TAR SSTAR NSTAR **BE/B** B(N) 必於大 RHO ETA CPQ APO H/M 0 $\cup \cup$ S υU S S $\cup \cup$ S J S

```
SUPPRESS ERRORS CAUSED BY ZERDIN SUBROUTINE IN PROCESS OF CONVERGING
                                                                                                                                                                                                                             LOADINGS. ENTER NEGATIVE VALUE IN PLACE OF PARTICULAR LOAD TO
BE VARIED. FIX THE OTHFR LOAD AS A CONSTANT. ENTER MAX VALUE OF
LOAD TO BE VARIED (DEFAULT IS 20.0) AND MAX VALUE OF QSTAR (DEFAULT
                                                                                                                                                                                                            ENTER VIPTUAL ASPECT RATIO, ORTHOTROPIC MATERIAL CONSTANTS AND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          B(N)
                                                                                                                                                                                                                                                                                                                                  READ(KI,100)RHC,GAMMA,ETA,NSTAR,SSTAR,RANG,RANGO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         INITIALIZE NONDIMENSIONAL DEFLECTION COEFFICIENTS
                                                                                                               NEWPLT( * M1034 7", '9782', 'VELLUM ', 'BLACK')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF(RANGQ.NE.O.O) DETQ=RANGQ/6.DO
                                                                   CALL ERRSET (208,256,-1,1,1,209)
USE CALCOMP PLOTTER SUBROUTINES
                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF(SST.LT.0.0) XAX(1)=XAX2(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                IF(NST.LT.9.3) XAX(1)=XAX1(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IF (RANG.NE.0.0) DET=RANG/2.D1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             STORE SET OF B(N) VALUES AS F(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               B(I+I)=(-I.00)**I*B(I)*0.500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF(RANG0.E0.0.0) DETQ=1.D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  INITIALIZE LOADING CONSTANTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF(RANG.EQ.J.J) DET=1.DO
                                                                                                                                                                                                                                                                                                                                                         IF(RH0.EQ.0.0) GO TO 51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           WRITE (K0, 250)
YS=4.0*P1**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DO 13 I=1,8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D0 12 I=1,7
                                               TO A SOLUTION.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 B(1) = 0.4D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          25 T AR = 0 . DO
                                                                                                                                                                                                                                                                                                                                                                                 NST=NSTAR
                                                                                                                                                                                                                                                                                                                                                                                                         SST=SSTAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F(I) = B(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      12 CONTINUE
                                                                                                                                           50 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                 MOUSE = 0
                                                                                                                                                                                                                                                                                                          IS 6.0).
                                                                                                                    CALL
                                                                                                                                                                                          l = NN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     13
                                                                                                                                                                                                                 00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ပ
                         ပပ
                                                                                              C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ပ
ပ
```

140

```
USE MATHLIR SUBROUTINE TO SOLVE THE NONLINEAR EQUATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                      CALL ZERDIN(8, 8, R, EPS, ICV, EVAL, IRITE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    WR ITE (K0, 240) QSTAR, NSTAR, SSTAR, B, IN
                                                                                                          19
                                                                                                         IF(IQ.NF.1.AND.II.NE.1) GO TO
                                            IF (NST.LT.0.0) NSTAR=VARY
                                                           IF (SST.LT.0.0) SSTAR=VARY
                                                                                                                       RESET INITIAL VALUES P(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF(ICV.GE.2) GO TO 15
                                                                                                                                                                                                                                                                                             IF(IN.GE.20) GO TO 16
                                                                           VARY NSTAR DR SSTAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 WRITE (K0, 206) NN
                                                                                         DO 91 II=1,11
              D0 94) IQ=1,4
                                                                                                                                                                                                                                                                                                                            DO 14 I=1,8
                                                                                                                                      DO 17 I=1,8
                                                                                                                                                                                                                                                                                                                                                                                                        EPS=0.50-12
                                                                                                                                                                                                                                                                                                                                            B(I) = F(I) / D
                             VARY = 0 \bullet D0
                                                                                                                                                       B(I) = F(I)
                                                                                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G0 T0 92
                                                                                                                                                                     CONTINUE
                                                                                                                                                                                    CONT I NUE
                                                                                                                                                                                                                                                 GO TO 14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTI NUE
                                                                                                                                                                                                                                                                CONT I NUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GO TO 94
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MOUSE=1
VARY GSTAR
                                                                                                                                                                                                                                C = 0.2 DO
                                                                                                                                                                                                                                                                                                                                                                                          R = 0.4D0
                                                                                                                                                                                                                                                                                                                                                                           IRITE=2
                                                                                                                                                                                                                                                                               I +N I=N I
                                                                                                                                                                                                                                                                                                              D = C + D
                                                                                                                                                                                                                  D= 1.1
                                                                                                                                                                                                     N=0
                                                                                                                                                                      17
                                                                                                                                                                                   19
                                                                                                                                                                                                                                                                 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   16
                                                                                                                                                                                                                                                                                                                                                             14
                                                                             ں
C
                                                                                                                           ں
                                                                                                                                                                                                                                                                                                                                                                                                                          C
```

WR ITE (K0, 305) ((NS(II), (MY STAR (II, IQ), IQ=1, 4)), II=1, 11) WRITE (K0, 307) ((NS(II+1), (BE(II, IQ), IQ=1, 4)), II=1, 10) WRITE(KO,303)((NS(II),(W(II,IQ),IQ=1,4)),II=1,11) NUMBER OF VALUES OF EFFECTIVE WIDTH TO BE PLOTTED IF(BE(I,1).EQ.1.0.AND.BE(I+1,1).NE.1.0) MM=I ARRANGE DATA TO BE PLOTTED INTO VECTORS WRITE (K0,205) NS(II), (BB(N,NN), N=1,8) NO PLOT IF A SOLUTION DID NOT CONVERGE IF (NST.LT.0.0) WRITE(K0,202)SSTAR IF(SST.LT.0.) MRITE(K0,222)NSTAR WRITF(KO, 300)RHD, GAMMA, ETA, SSTAR WRITF(K0,301)(CS(IC),IQ=1,4) IF (NST.LT.0.0)WRITE(K0, 203) IF(SST.LT.0.0)WRITE(K0,233) WRITE(KO, 201)RHD, GAMMA, ETA IF(MOUSE.EQ.1) GO TO 50 05 TAR = 05 TAR + 2 . D 3* D E TO IF(MM.GT.1) GO TO 20 WRITE(K0,204)QS(IQ) DO 31 II=1,11 WRITE (K0,200) WRITE (K0, 302) WRITE (K0, 304) WRITE (K0,306) DO 30 IQ=1,4 00 89 I=1,9 OUTPUT DATA CONT INUE CONT INUE **20 CONTINUE** CONTINUE CONTINUE ND=11-MM I + NN=NN NN = 1I = W W 06 89 30 31 J С U ں ں
```
CALL PICTUR(4.,4.,4.,XXX,8,YAXI,4,NS,WOI,-II,SI,KO,NS,WD2,-II,SI,K2,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CALL PICTUR(4.,4., XAX,8,YAX3,8,NS,MY1,-L1,SI,K0,NS,MY2,-11,SI,K2,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CALL PICTUR(4.,4.,XAX,8,YAX2,4,PS,BE1,-NO,SI,KO,PS,BE2,-NO,SI,K2,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               AN . .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FORMAT ('1'//, 28X, 'NONDIMENSIONAL DEFLECTION COFFFICIENTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PLOT NONDIMENSIONAL BENDING MCMENT IN THE Y-DIRECTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           I NS, MY3, -11, SI, K4, NS, MY4, -11, SI, K6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1 PS,RE3,-N0,SI,K4,PS,BE4,-N0,SI,K6)
                                                                                                                                                                                                                                                                                                                                                                                                                                 PLCT NONDIMENSIONAL PLATE CEFLECTIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PLOT NONDIMENSIONAL EFFECTIVE WIDTH
                                                                                                                                                                                                                                           41
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF(SST.LT.J.O) GO TC 42
                                                                                                                                                                                                                                       IF(SST.LT.0.0) GO TO
                                                                                                                                                                                                                                                                                                               BEI(I) = BE(I + MM - I, I)
                                                                                                                                                                                                                                                                                                                                     BE2(I)=BE(I+MM-1,2)
                                                                                                                                                                                                                                                                                                                                                              BE3(I)=BE(I+MM-1,3)
                                                                                                                                                                                                                                                                                                                                                                                   BE4(I)=BE(I+MM-1,4)
                                                                                                                                                                  MY3(I)=MYSTAR(I,3)
                                                                                                                                         MY2(I)=MYSTAR(I,2)
                                                                                                                                                                                          MY4(I)=MYSTAR(I,4)
                                                                                                                    MYI(I) = MYSTAR(I,I)
                                                                                                                                                                                                                                                                                        (MW+I)SN=(I)Sd
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FORMAT(8F10.3)
                                             WO2(I) = W(I,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  WRITE(K0,299)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (K0,207)
                     (I \cdot I) = W(I \cdot I)
                                                                    WO3(I)=W(I,3)
                                                                                             WO4(I)=W(I,4)
                                                                                                                                                                                                                                                                 DO 41 I=1,N)
DO 40 [=1,1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CALL ENDPLT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       42 CONTINUF
                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GO TO 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                            41
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        001
                                                                                                                                                                                                                   40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C
                                                                                                                                                                                                                                                                                                                                                                                                                                    C
```

```
250 FORMAT('1', 2X, 'QSTAR', 5X, 'NSTAR', 5X,' SSTAR', 7X, 'BI1', 7X, 'BI2', 7X,
1 'BI3', 7X, 'BI4', 7X, 'BI5', 7X, 'BI6', 7X, 'BI7', 7X, 'BI8'/4X, 'W/H',
                             201 FORMAT(38X, "RHD =",F6.3,2X," GAMMA =",F6.3,2X," ETA =",F6.3,2X/)
                                                                                                                                                                                                                                                                                                                                 FORMAT(5X, SOLUTION DID NOT CONVERGE AT STAGE', 13/10X, 'NO PLOT')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     300 FORMAT('1'///9X,'RHC =',F6.3,2X,' GAMMA =',F6.3,2X,' ETA =',
                                                                                                                               FORMAT(5X, NXSTAR, SX, BIL', IOX, BI2', IOX, BI3', IOX, BI4',
                                                                                                                                                                                             233 FORMAT(5X, SSTAR, 10X, BIL, 10X, BI2, 10X, BI3, 10X, BI4,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     301 FURMAT (36X, 0STAR' //9X, NXSTAR',5X, 4(F6.2, 4X)//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FORMAT (8X, F6.2, 6X, F7.3, 3X, F7.3, 3X, F7.3, 3X, F7.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FORMAT(8X, F6.2,6X, F8.3,2X, F8.3,2X, F8.3,2X, F8.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FURMAT(8X,F6.2,6X,F6.3,4X,F6.3,4X,F6.3,4X,F6.3)
                                                                                                                                                             1 10X, "B15", 10X, "B16", 10X, "B17", 10X, "B18"/)
                                                                                                                                                                                                                             1 10X, "BI5', 10X, "B16', 10X, "B17', 10X, "B18'/)
                                                                                                                                                                                                                                                                                                                                                                 2)7 FORMAT("1","TERMINATION OF RUN")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   299 FDRMAT("1", 20X, "END DATA SET")
                                                                                                                                                                                                                                                                                                 FORMAT (4X, F6.2, 5X, 8(F10.6, 3X))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1 F6.3//23X, SSTAR =', F6.2//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FORMAT(/21X,4(•MYSTAR•,4X)/)
                                                             = ', F6.2/ )
                                                                                             FORMAT(52X, NSTAR =', F6.2/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FORMAT (/21X,4('BE/B',6X)/)
                                                                                                                                                                                                                                                                 FORMAT(3X, 0STAR = . . F5.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FORMAT(22X,4("W/H",7X)/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 6X, MYSTAR, 5X, 8E/8'/)
I . ORTHOTROPIC PLATE'//)
                                                                                                                                                                                                                                                                                                                                                                                                                                   FORMAT(11F13.5,14)
                                                             FORMAT (52X, SSTAR
                                                                                                                                                                                                                                                                                                                                                                                                   FORMAT (3F10.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           STOP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             END
                                                                                                                                                                                                                                                                                                                                                                                                                                     240
                                                                                                                                                                                                                                                                   204
                                                                                                                                 203
                                                                                                                                                                                                                                                                                                                                   206
                                                                                                                                                                                                                                                                                                                                                                                                     230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       303
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         304
                                                                 202
                                                                                                 222
                                                                                                                                                                                                                                                                                                 205
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         305
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           306
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         307
```

145

MAIN PROGRAM 2 - DESIGN

$$(N_{x}^{*} = 0)$$


```
SUPPRESS EPRORS CAUSED BY ZEROIN SUBROUTINE IN PROCESS OF CONVERGING
                                                                                                                                                                                                                                                            LOAD TO BE VAPIED (DEFAULT IS 20.0) AND MAX VALUE OF QSTAR (DEFAULT
                                                                                                                                                                                                                 LOADINGS. ENTER NEGATIVE VALUE IN PLACE OF PARTICULAR LOAD TO
BE VARIED. FIX THE OTHER LOAC AS A CONSTANT. ENTER MAX VALUE OF
                                                                                                                                                                                          ENTER VIRTUAL ASPECT RATID, DRTHDTRDPIC MATERIAL CONSTANTS AND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        R(N)
                                                                                                                                                                                                                                                                                                               READ(KI,1)))RH0,GAMMA,ETA,NSTAR,SSTAR,RANG,RANGO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       INITIALIZE NUNDIMENSIONAL DEFLECTION COEFFICIENTS
                                                                                             CALL NFWPLT (* M1034 7', '9782', 'V ELLUM ', 'BLACK')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF(RANGQ.NE.0.0) DETQ=RANGQ/6.DU
                                                CALL ERRSET (208,256,-1,1,1,209)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF(RANG.NE.O.O) DET=RANG/2.D1
                                                                                                                                                                                                                                                                                                                                                                                                              IF(NST.LT.0.0) XAX(1)=XAX1(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                    IF(SST.LT.0.0) XAX(1)=XAX2(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          STORE SET OF B(N) VALUES AS F(N)
                                                                      USE CALCOMP PLOTTER SUBROUTINES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             B(I+I)=(-I.00)**I*B(I)*0.1C0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF(RANGQ.EQ.O.O) DETQ=1.DO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                INITIALIZE LOADING CONSTANTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF(PANG.EQ.0.0) DET=1.00
                                                                                                                                                                                                                                                                                                                                      IF(RH0.EQ.0.0) GO TO 51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WRITE (K0, 250)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DO 13 I=1,8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DO 12 I=1,7
                         TO A SOLUTION.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 B(1)=0.400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         OS TAP = 0.00
                                                                                                                                                                                                                                                                                                                                                                NST=NSTAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F(I) = B(I)
                                                                                                                                                                                                                                                                                                                                                                                        SST=SSTAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       12 CONTINUE
                                                                                                                      50 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   13 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                VARY CSTAR
                                                                                                                                               MOUSE=0
                                                                                                                                                                                                                                                                                        IS 6.0).
                                                                                                                                                                       NN = 1
                                                                           C
                                                                                                                                                                                               00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ں
       ပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ں
```

USE MATHLIB SUBROUTINE TO SOLVE THE NONLINEAR EQUATIONS CALL ZERDIN(8, B,R, EPS, ICV, EVAL, IRITE) IF(ICV,GE,2) GC TO I5 IF(B(1).NE.0.0.AND.II.NE.1) GO TO 19 WR ITE (KO, 240) QSTAR, NSTAR, SSTAR, B, IN IF(NST.LT.0.0)NSTAR=VARY IF(SST.LT.0.0)SSTAR=VARY RESET INITIAL VALUES B(N) GO TO 16 VARY NSTAR OR SSTAR WRITE (KC, 206) NN DO 91 II=1,11 IF(IN.GE.20) DO 97 IQ=1,4 00 17 I=1,8 EPS=0.5D-12 DO 14 I=1,8 B(I) = F(I)/DV ARY= 0 . DO B(I) = F(I)CONT I NUE G0 T0 92 17 CONTINUE 19 CONTINUE GO TO 14 **15** CONTINUE **CONTINUE** GO TO 94 CONTINUE MOUSE = 1 R = 0.4D0C= 0.2 D0 I+NI=NI I R I TE = 20 = C + D $D = 1 \cdot 1$ N=014 16 92 J C C

WRITE (K0,230) W (II, IG), MYSTAR(II, IQ), AE (II-1, IQ) COMPUTE BENDING MOMENT AT MIDDLE OF SUPPORTS STORE COMPUTED VALUES OF B(N) AS BB(N, NN) PLOT IF A SOLUTION DID NOT CONVERGE WRITE (K0,230) W(II,IQ), MYSTAR(II,IQ) COMPUTE DEFLECTION AT CENTER OF PLATE W(II,IQ) = 2.0%(B(I) + B(3) + B(5) + B(7))IF(SST.LT.J.U)WRITE(K0,222)NSTAR IF (NST.LT.0.0)WRITE(KD, 202)SSTAR AE(II-I, IQ)=NSTAR/(NSTAR-AEE*C1) IF (NST.LT.0.0)NSTAR=VARY*DET IF (SST.LT.0.0) SSTAR=VARY*DET YSTAR=YS48(N) #N##2#(-1) ##N WRITE(K0,201)RH0,GAMMA,ETA IF (NSTAR. EQ. 0.0) GO TO 93 IF (MOUSF.EQ.1) GO TO 50 0 S T A R = Q S T A R + 2 • D 0*D E T Q COMPUTE EFFECTIVE WIDTH CALL CPQ(0, R, C1, C9) MYSTAR(II,IO)=SUM NS(II) = VARY*DET VARY= VARY+2.00 SUM= SUM+ YSTAR BB(N, NN)=B(N) WRITE (KD, 200) QS(IQ)=QSTAR DO 18 N=1,8 OUTPUT DATA G0 T0 94 CONTINUE CONTINUE CONTINUE CONTINUE CONT INUE SUM=0.0 I + UN=NN ÛN 94 06 18 93 16 C ں ں ں C \odot

```
PLOTTED
                                                                                                                                                                                                                                                                         IF(AE(I,1).EQ.I.O.AND.AE(I+I,1).NE.I.O) MM=I
                                                                                                                                                                                                                 NUMBER OF VALUES OF EFFECTIVE WIDTH TO BE
                                                                                                                                                                                                                                                                                                                                    ARRANGE DATA TO BE PLOTTED INTO VECTORS
                                                                                                                  WRITE(K0,205)NS(II),(BB(N,NN), N=1,8)
                 IF(SST.LT.0.0)WRITE(K0,233)
IF(NST.LT.0.0)WRITE(KD, 203)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF(SST.LT.J.J) 60 T0 41
                                                                            WRITE(K0,204)QS(IQ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  AE2(I) = AE(I+MM-1,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      AE3(I)=AE(I+MM-1,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               A \in I(I) = A \in (I + M M - I, I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AE4(I) = AE(I+MM-1, 4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            MY3(I)=MYSTAR(I,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MY 2(I)=MYSTAR (I, 2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MY4(I)=MYSTAR(I,4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                        MYI(I)=MYSTAR(I,1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (WW+I)SN=(I)Sd
                                                                                               DO 31 II=1,11
                                                                                                                                                                                                                                                                                                                                                                         WOI(I) = W(I, I)
                                                                                                                                                                                                                                                                                                                                                                                              W02(I)=W(I,2)
                                                                                                                                                                                                                                                                                                                                                                                                                  W03(I)=W(I,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                    WD4(I)=M(I,4)
                                                                                                                                                                                                                                                                                                                                                    DD 40 I=1,11
                                                         DO 30 IQ=1,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DO 41 I=1,NO
                                                                                                                                                                                                                                                       DO 89 I=1,9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONT I NUE
                                                                                                                                                        CONT I NUE
                                                                                                                                                                           CONT I NUE
                                                                                                                                                                                              60 10 50
                                                                                                                                                                                                                                                                                             89 CONTINUE
                                                                                                                                                                                                                                                                                                                N0=11-MM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CONTI NUE
                                                                                                                                      I + NN=NN
                                        NN=1
                                                                                                                                                                                                                                     MM = 2
                                                                                                                                                                           30
                                                                                                                                                          31
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              41
```

C

C

```
CALL PICTUR(4.,4.,XAX,8,YAX1,4,NS,WOI,-11,SI,K0,NS,WO2,-11,SI,K2,
                                                                                                                                                                                                                                                                                                                                                             CALL PICTUR(4.,4.,XAX,8,YAX3,8,NS,MY1,-11,SI,KO,NS,MY2,-11,SI,K2,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              25'J FORMAT('1', 2X, 'QSTAR', 5X, 'NSTAR', 5X, 'SSTAR', 7X, 'BII', 7X, 'BL2', 7X,
1 'BI3', 7X, 'BI4', 7X, 'BL5', 7X, 'BI6', 7X, 'BI7', 7X, 'BI8' /4X, 'W/H',
                                                                                                                                                                                                   CALL PICTUR(4.,4., XAX,8,YAX2,4,PS,AE1,-M0,SI,K0,PS,AE2,-N0,SI,K2,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        200 FDRMAT('1'//,28X,'NONDIMENSIONAL DEFLECTION COEFFICIENTS OF AN',
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    206 FORMAT(5X, SOLUTION DID NOT CONVERGE AT STAGE, JI3/10X, NO PLOT.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        201 FORMAT(38X,'RHO =',F6.3,2X,' GAMMA =',F6.3,2X,' ETA =',F6.3,2X/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           203 FORMAT(5X, "NYSTAR", 9X, "BLL", LOX, "BL2", LOX, "BI3", LOX, "B14",
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         233 FORMAT(5X, SSTAR, 10X, BI1', 10X, BI2', 10X, BI3', 10X, BI3', 10X,
                                                                                                                                                                                                                                                                                                                       PLOT NONDIMENSIONAL BENDING MOMENT IN THE Y-DIRECTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   I 10X, "B15', 10X, 'B16', 10X, 'B17', 10X, 'B18'/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1 10X, "B15', 10X, 'B16', 10X, 'B17', 10X, 'B18'/)
                                                                                                                                                                                                                                         1 PS, AE3, -NO, SI, K4, PS, AE4, -NO, SI, K6)
                                                                                                                                                                                                                                                                                                                                                                                                      I NS, MY3, -11, SI, K4, NS, MY4, -11, SI, K6)
                                                                            1 NS,W03,-11,SI,K4,NS,W04,-11,SI,K6)
PLOT NONDIMENSIONAL PLATE DEFLECTIONS
                                                                                                                                                          PLOT NONDIMENSIONAL EFFECTIVE WIDTH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       207 FORMAT("1","TERMINATION OF RUN")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           205 FORMAT(4X, F6.2, 5X, 8(F10.6, 3X))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FURMAT (52X, 'SSTAR =', F6.2/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  222 FORMAT(52X,"NSTAR =", F6.2/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     204 FORMAT(3X, QSTAR = , F5.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1 . ORTHOTROPIC PLATE'//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2 6X, MYSTAR, 5X, AE/A. /)
                                                                                                                      IF(SST.LT.0.0) GO TO 42
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        240 FORMAT(11F10.5,14)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  230 FORMAT (3F10.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FORMAT(8F10.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              WRITE (K0, 207)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CALL ENDPLT
                                                                                                                                                                                                                                                                                                                                                                                                                                            GO TO 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTI NUE
                                                                                                                                                                                                                                                                                   42 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ST OP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              202
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    51
       C
                                                                                                                                                               J
                                                                                                                                                                                                                                                                                                                            ں
```

MAIN PROGRAM 3 - BEHAVIOUR

56.8

OF A LARGE ASPECT BY ZERCIN SUBROUTINE IN PROCESS OF CONVERGING EQUATIONS DIMENSION T1(17), T2(17), T3(17), T4(17), T5(17), T6(8), T7(8), T8(8) NONDIMENSIONAL INPLANE EDGE SHEAR LOADING (ALL EDGES) DIMENSION Y(5,4,101), Y1(101), Y2(101), Y3(101), Y4(101), Y5(101 DIMENSION CSI(17,101), CS2(101), CS3(101), CS4(8,101), CT(2,17) NONDIMENSIONAL AVERAGE INPLANE COMPRESSIVE LOADING SUBPROGPAM EVAL CALCULATES F(P) FOR A VECTOR OF B(N) VALUES. ITERATIVE SOLUTION OF EIGHT SIMULTANEOUS NONLINEAR CUBIC F(B)=0), USING THE MATHLIB SUBPROGRAM ZERDIN (AP-21). SUBPROGRAM CPQ CALCULATES CDEFFICIENTS CPQ OF USE IN THE NONDIMENSIONAL HYDROSTATIC PRESSURE LOADING CALCULATION OF NONDIMENSIONAL DEFLECTION COEFFICIENTS VIRTUAL ASPECT RATIO OF ORTHOTICPIC PLATE TORSION COEFFICIENT OF ORTHOTROPIC PLATE COEFFICIENT, QUADRATIC FUNCTIONS OF B(N) DIMENSION XAX(1), XAX1(1), XAX2(1), YAX1(1), YAX2(3) NONDIMENSIONAL DEFLECTION COEFFICIENTS RATIO ORTHOTROPIC PLATE UNDER COMBINED LOADINGS DIMENSION T9(8), TI3(8), F(1)1), BB(8,4), SUM(9) SIG', MA S', TAR '/ SIGMA STAR = NONDIMENSIONAL PRINCIPAL STRESS NONDIMENSIONAL DEFLECTION OF PLATE COMMON RHJ, GAMMA, FTA, NSTAR, QSTAR, SSTAR REAL*8 RH0, GAMMA, ETA, NSTAR, QSTAR, SSTAR ORTHOTROPIC PLATE COEFFICIENT CALL ERRSET (208,256,-1,1,1,209) XAX1/* Y/B*/, XAX2/* X/A*/ REAL*8 R, EPS, D, C, B(8), V(8) DATA MM, S1, IS1/101, C. 0, 0/ YAXL/' W/H'/,YAX2/' REAL*4 NS(4), SS(4), 0S(4) SIMULTANECUS EQUATIONS. SUPPRESS ERRORS CAUSED COFFFICIENT PI/3.141593/ KI, K0/5,6/ EXTERNAL EVAL A SOLUTION. 11 h П -11 11 11 11 11 11 Ħ DATA DATA DATA DATA NSTAR GAMMA **USTAR** SSTAR 8 (N) ETA CPO H/M RHO APQ C L 0000 ں ں υU 0000 C $\cup \cup \cup$ S $\cup \cup \cup$

```
ENTER VIRTUAL ASPECT RATID, ORTHOTROPIC MATERIAL CONSTANTS AND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    READ(KI,100)RHC,GAMMA,ETA,NSTAR,SSTAR,GSTAR,TB
               CALL NEWPLT('M10347', 9782', VELLUM ', 'RLACK')
                                                                                                    GENERATE MATRIX OF VALUES OF COSINE TERMS
                                                                                                                                                                                                                                                                                                                                                                                                                                V(I+I)=(-I.00)**I*V(I)*0.100
USE CALCOMP PLOTTER SLBROUTINES
                                                                                                                                                                                                                       C S I ( I Q , I ) = C Q S ( 2 • 0 * G * P I * F F )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF (RH0.EQ.0.0) GO TO 51
                                                                                                                                                                                                                                                                                                                             CS4(N,I)=CS1(N+1,I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF(TB.NE.0.0) IZ=1
                                                                                                                                                                                                                                                                          CS2(I)=COS(PI*FF)
                                                    A= 12。①*(1。0-0。09)
                                                                                                                                                                                                                                                                                          CS3(I) = CS1(2, I)
                                                                                    XAX(1) = XAX1(1)
                                                                                                                                                                                                       DO 71 IQ=1,17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     BETA= 1.0/RH0
                                                                                                                                                     00 70 I=I,MM
                                                                                                                    E=1.0/100.0
                                                                                                                                                                                                                                                                                                             DO 72 N=1,8
                                                                                                                                                                                                                                                                                                                                                                                                                DO 73 I=1,7
                                                                                                                                                                                                                                                                                                                                                                                                V(1) = 0.400
                                                                                                                                     FF=- ). 500
                                                                                                                                                                                                                                                         CONTINUE
                                                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CONT INUE
                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                 CONTINUE
                                                                   M=6.0/A
                                                                                                                                                                      F(I)=FF
                                                                                                                                                                                                                                         Q= Q+1.0
                                                                                                                                                                                                                                                                                                                                                               3+33=33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   MOUSE = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LOADINGS.
                                                                                                                                                                                       Q=0°0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    I Z = 2
                                  I=NN
                                                                                                                                                                                                                                                                                                                                                                                                                                                 73
                                                                                                                                                                                                                                                                                                                                                                               70
                                                                                                                                                                                                                                                                                                                                              72
                                                                                                                                                                                                                                                           11
   J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   υU
                                                                                                      C
```

INITIALIZE NONDIMENSIONAL DEFLECTION COEFFICIENTS B(N) IF (NN.EQ.I) WRITE(KD,208)RHD,GAMMA,ETA T6 (N) = (1.0+4.0*0.03*(N/BETA)**2)*W T8 (N) = (4.0×N×*2+BETA××2×0.03) *W T AUXY=TAUXY/(GAMMA*RHO**2#BETA) TAUXY = - SSTAR*E TA* GAMMA/A IF(IN.GE.20) GO TO 16 M*(1+N)**(0)=(-1,0)**(N+1)TIO(N) = T7(N) + T8(N)(N) = T5(N) + T6(N)TAUXY S= TAUXY** 2 WRITE (K0,250) Q S (NN) = QSTARNS(NN)=NSTAR SS (NN) =SSTAR DO 61 N=1,8 TN=-NSTAR/A RH04=RH0**4 DO 14 I=1,8 0 / (1) = V (1) / 0DO 12 I=1,8 (I) = V(I)CONTI NUE CONT INUE **CONTINUE** GA = GAMMAG0 T0 14 CONT INUE C = 0.200I + N I = N IET=ETA RH=RHO D=1.1 D = C + DG = N I15 12 14 61

J

```
USE MATHLIR SUBROUTINE TO SOLVE THE NONLINEAR EQUATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CT (2, IQ)=C1/(4.0+8.0×GAMM A×(RH0×Q)*×2+RH04×24)
                                                                                                                                                                                                                                  STORE COMPUTED VALUES OF B(N) AS BB(N, NN)
                                                                        CALL ZERJIN(8, B, R, EPS, ICV, EVAL, IRITE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF(M.NE.0) CT(1,IQ)=C0/(4.0*RH04*04)
                                                                                                          WR ITF (KO, 240) QSTAR, NSTAR, SSTAR, B, IN
                                                                                                                                                                                                                                                                                                             PLOT IF A SOLUTION DID NOT CONVERGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GENERATE VECTORS OF THE TERMS
                                                                                                                                                                                                                                                                                                                                IF(MOUSE.EQ.1) GO TO 95
                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF(M.EQ.0) CT(1,IQ)=0.0
                                                                                            IF(ICV.GE.2) GO TO 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TI(I0)=T2(I0)+T3(IC)
                                                                                                                                                                                                                                                                                                                                                                                                             CALL CPQ(M, B, C1, C0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                T3(I0)=CT(2,IQ)*G
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             T2(I0)=CT(1,IQ)*G
                                                                                                                                                                        WRITE (KO, 206) NN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     T4(IQ)=CT(2,IQ)
                                                                                                                                                                                                                                                                       BB(N, NN) = B(N)
                                                                                                                                                                                                                                                                                                                                                                       D0 40 I0=1,17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DO 60 IQ=1,17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G=RH04*0**2
                                                                                                                                                                                                                                                     DO 18 N=1,8
                                    EPS=0.50-12
                                                                                                                                  G0 T0 92
                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              40 CONTINUE
                                                                                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                               04=0x x t
IRITE=2
                  R = 0.4 DO
                                                                                                                                                                                             MOUSE = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Q = Q_{\bullet} O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           M = M + 1
                                                                                                                                                                                                                                                                                                                                                                                           N = Ø
                                                                                                                                                                                                                                                                                                                                                      M=0
                                                                                                                                                                                                                 92
                                                                                                                                                       16
                                                                                                                                                                                                                                                                                                              ON
                                                                                                                                                                                                                                                                                            18
                                                                                                                                                                                                                                                                                                               ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ں
                                                          C
                                                                                                                                                                                                                                   ں
```

```
CALCULATE TOTAL STRESSES AND DEFLECTION
                                                                                                                                                                                                                                                                                                                                                                                                            SUM(6)=SUM(6)-B(N)*(T7(N)+T8(N)*C54(N,I))
                                                                                                                                                                                                                                                                                                                                                                                   SUM(5)=SUM(5)-B(N)*(T5(N)+T6(N)*CS4(N,I))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Z2=S0RT((SIGX2/2.0-SIGY2/2.0)**2+TAUXYS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Z1=SQPT((S1GX1/2.0-S1GY1/2.0)**2+TAUXYS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SUM(9)=SUM(9)+B(N) = (T5(N)/W+CS4(N,I))
                                                                                                                                                                                                                                                                            SUM(3)=SUM(3)-(T2(10)+T3(10)*CS3(1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SIGX2=TN+SUM(3)+(-1.0)**IZ*SUM(7)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SIGX1=TN+SUM(1)+(-1.0)**IZ*SUM(5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                               SUM(8) = SUM(8) - B(N) * T10(N) * CS2(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                   SUM(7)=SUM(7)-B(N)*T9(N)*CS2(I)
                                                                                                                                                                                                                                                   SUM(2)=SUM(2)-T4(IQ)±CS1(IQ,I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Y (2, NN, I) = (SIGX1+SIGY1)/2.0-21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SIGY2=SUM(4)+(-1.0) ** IZ*SUM(8)
                                                                                                                                                                                                                           SUM(1) = SUM(1) - T1(IQ)*CS1(IQ,I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SIGY1=SUM(2)+(-1.0) ** I 2*SUM(6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Y(3,NN,I)=(SIGX1+SIGY1)/2.0+21
                                                                                                                                                                                                                                                                                                      SUM(4)=SUM(4)-T4(IQ)*CS3(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             S I GX2 = S I GX2 / (R H04 * BET A * * 2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SIGX1=SIGX1/(RH04*BETA**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FOR X= ) (ALONG Y-AXIS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FOR Y=0 (ALONG X-AXIS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PRINCIPAL STRESSES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Y(I,NN,I)=DEFL
                                                                                                                                                                                                     DO 31 IQ=1,17
                                              SUM UP TERMS TO
                                                                        DO 80 I=1,MM
                                                                                               INITIALIZE SUMS
                                                                                                                           00 83 M=1,9
                                                                                                                                                                                                                                                                                                                                                           DO 82 N=1,8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DEFL = SUM(9)
                                                                                                                                                  SUM(M) = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CONTINUE
                                                                                                                                                                            CONT INUE
                                                                                                                                                                                                                                                                                                                                CONTI NUE
                     60 CONTINUE
Q = Q + 1 = 0
                                                                                                                                                                              83
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   82
                                                                                                                                                                                                                                                                                                                                    81
                                                                                                  C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ں
                                                  C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ں
```



```
CALL PICTUR(6.,4.,XAX,4,YAX2,12,F,Y1,MM,S1,IS1,F,Y2,MM,S1,IS1,
                                                                                                                                                                                                                                                                                                                                                                                                                   CALL PICTUR(6.,4.,XAX,4,YAX1,4,F,Y1,MM,S1,IS1,F,Y2,MM,S1,IS1,
                                                                                                                                                                                                                                                                                                                                                                                                                                       L F,Y3,MM,SI,ISI,F,Y4,MM,SI,ISI,F,Y5,MM,SI,ISI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             I F,Y3,MM,SI,ISI,F,Y4,MM,SI,ISI,F,Y5,MM,SI,ISI)
                                                              IF(I.EQ.51) WRITE(KC, 300)(Y(J, NN, I), J=1,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              WRITE (K0, 202) NS(II), SS(II), QS(II)
Y(4,NN,I)=(SIGX2+SIGY2)/2.0-Z2
                   Y(5,NN,I)=(SIGX2+SIGY2)/2.0+22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WRITE(K0,204)(88(N,11),N=1,8)
                                         IF(I.EQ.51) WRITE(K0, 301)
                                                                                                                                                                                                                                                                                                                                                                        IF(J.GT.3) XAX(I) = XAX2(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              WRITE(KD, 201)RH, GA, ET
                                                                                                                                                                                                                                                                                                                                                                                             IF(J.GT.1) GO TO 53
                                                                                                                                                                                                                                                               Y 2 (I) = Y (J, 2, I)
                                                                                                                                                                                                                                                                                    Y3(I) = Y(J, 3, I)
                                                                                                                                                                                                                                          Y1(I) = Y(J, 1, 1)
                                                                                                                                                                                                                                                                                                         Y4(I)=Y(J,4,I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DO 31 II=1,NN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  WRITE (K0,203)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       WRITE (K0,200)
                                                                                                                                                                                                                    MM 1=1 16 00
                                                                                                                                                                                               DD 97 J=1,5
                                                                                                                                                                          PLOTS ##
                                                                                                                                                                                                                                                                                                                              Y5(I)=0.0
                                                                                                                                                     CONT INUE
                                                                                                                                                                                                                                                                                                                                                   CONTI NUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                              G0 T0 54
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     54 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  OUTPUT DATA
                                                                                                                                60 10 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CONTI NUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             95 CONTINUE
                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   I-NN=NN
                                                                                                           I+NN=NN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     53
                                                                                      80
                                                                                                                                                     51
                                                                                                                                                                                                                                                                                                                                                    16
                                                                                                                                                                           大が
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ں
                                                                                                                                                                           J
```

```
201 FORMAT(38X,"RHO =",F6.3,2X," GAMMA =",F6.3,2X," ETA =",F6.3,2X///)
                                                                                                                                                                                                                                                 202 FURMAT(3)X, "NSTAR =", F6.2, 2X," SSTAR =", F6.2, 2X," QSTAR =", F6.2/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FORMAT("0", 2X, "QSTAR", 5X, "NSTAR", 5X, "SSTAR", 7X, "B11", 7X, "B12", 7X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FORMAT ("0", 38X, "RHO =", F6.3, 2X, " GAMMA =", F6.3, 2X, " ETA =", F6.3/)
                                                                                                                                       200 FORMAT ('1'//, 28X, 'NONDIMENSIONAL DEFLECTION COEFFICIENTS OF AN',
                                                                                                                                                                                                                                                                                                                                                                                                 206 FORMAT(5X, SOLUTION DID NOT CONVERGE AT STAGE, 13/10X, NO PLOT')
207 FORMAT('1', 'TERMINATION OF RUN')
                                                                                                                                                                                                                                                                                       FORMAT (12X, "B11", 10X, "B12", 10X, "B13", 10X, "B14", 10X, "B15", 10X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   301 FORMAT(/5X,'DEFLECTION AND PRINCIPAL STRESSES AT THE CENTER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1 "BI3",7X,"BI4",7X,"BI5",7X,"BI6",7X,"BI7",7X,"RI8"/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1 'OF THE PLATE'//5X, DEFLECTION', 13X, 'STRESSES'/)
                                                                                                                                                                                                                                                                                                                             1 'B16',10X,'B17',1CX,'B18'/)
                                                                                                                                                                               1 • OFTHOTROPIC PLATE //)
                                                                                                                                                                                                                                                                                                                                                                    FORMAT (8X, 8 (F10.6, 3X)//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.) 7 FORMAT(5X,3(F8.4,6X)//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FORMAT(11F1 ). 5,14)
                                                                                                          FORMAT(8F10.3)
                                                                    WRITE (K0, 207)
                                 CALL ENDPLT
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ST 0P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 END
                                                                                                                                                                                                                                                                                                                                                                       204
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   208
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       240
                                                                                                                                                                                                                                                                                           203
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          250
                                                                                                          100
  31
```

160

SUBROUTINE EVAL 1

$$(N_{Y}^{*} = 0)$$
CALCULATE REPETATIVE CONSTANTS USED IN SIMULTANEPUS EQUATIONS DOUBLE PRECISION B(8), U(8), F(16), T(7), TC(4), TC4(4), APQ APQ(P,0)=AP/(P#¥4+2。D0%6AMMA#(RH0*P %2)基*2+(Q%RH0) #84) INITIALIZE ARRAY F FOR USE AS DOUBLE PRECISION INDICES REAL*8 G0, G1, COS, CIS, CON, CIN, CONPS, CINPS, COM, CIM A, C, Z, D, E, S2, ST2, SL, TC42P, DELNS, W, T7, V COMMON RHD, GAMMA, ETA, NSTAR, QSTAR, SSTAR A=2.D0%ETA*SSTAR*(4.D9/(P1%RHD))**2 REAL=8 RH0, GAMMA, ETA, PI, RHC4, AP GENERATE AND CALCULATE EQUATIONS FN, FS, FNPS, FNMS, FM AP=3.09/4.03*(1.00-9.0-2) REAL*3 NSTAP, SSTAR, QSTAR X DIRECTION DATA 63,61/J.D0,1.DJ/ PI=3.141592653589793 EV AL (8, U) Z=2.00*RH0**2*ETA V=2.00*NSTAR/RH04 $F(I+I) = F(I) + I \cdot DO$ D=-8.D 7%Q S TAR /PI S 2=2. D0%FS##2 DO 11 I=1,15 E=-1.D0/RH04 RH04=RH0%%4 LOAD NSTAR IN SUBROUTINE DO 1 S=1,8 INTEGER S F(1) = 1.00(0,0,0) = (1,0)T(4) = 0.00T(2) = 0.00T(3) = 0.00T(7) = 0.00 $C = A/2 \cdot D0$ CONTINUE F S=F (S) R E AL ≭ 8 RF AL # 8 11 C ں ا C J

```
TC42P=(APQ(G1,FS)*CIS+2.D0*APQ(G0,FS)*C0S)*S2
                                                                                                                                                                                                                                                                         TC(1)=B(N)*(((-1.00)**NPS*2.00)+DELNS)*E
                                                                                                                                                                                                                                                        IF (N. EQ. S) DEL NS= 1. 00+ Z#ST2+RH0 4% ST2 ***2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      TC (3) = C*FN* B(N)*(1.00/FNPS+1.00/FNMS)
                                CALL CP0(S, B, C1S, C0S)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF(I.GT.NPS) GO TO 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ~
                                                                                                                                                                                                                                                                                                                                                               4 50
                                                                                                                                                                                      IF(M.EQ.0) FM=0.D0
                                                                                                                                                                                                      IF(M.NE.J) FM=F(M)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF (NPS.FO.I) GO TO
                                                                                                                                                                                                                                                                                                                                                                              01
               SL=(-1.D0) ** (S+1)
                                                                                                                                                                                                                                                                                                                                                              01
ST2=(2.D0*FS)**2
                                                                                                                                                                                                                                                                                          T(1) = T(1) + TC(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                4 TC (2) = A * SL * B(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        T(3) = T(3) + TC(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                 5 T(2) = T(2) + TC(2)
                                                                                                                                                     FNMS=F(N)-F(S)
                                                                                                                                                                                                                                                                                                                                                             IF (N.EQ.I) GD
                                                                                                                                                                                                                                                                                                                                                                              IF(I.6T.N) GD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00 6 1=1,15,2
                                                                                                                                                                                                                                                                                                                                            DO 3 I=1,7,2
                                                                                                                                                                     M= IAPS (NMS)
                                                                                                                    FNPS = F(NPS)
                                                                  DO 2 N=1,8
                                                                                                                                                                                                                                        DE LNS = 0. DO
                                                                                                                                                                                                                                                                                                                            TC(2) = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  TC(3) = 0.00
                                                                                                                                                                                                                                                                                                           SECOND TERM
                                                                                                                                                                                                                                                                                                                                                                                               CONT I NUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTI NUE
                                                                                                                                                                                                                       FIRST TERM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  THIRD TERM
                                                                                   FN=F(N)
                                                                                                   NP S=N+ S
                                                                                                                                                                                                                                                                                                                                                                                                                GO TO 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GO TO 8
                                                                                                                                     NM S= N - S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ø
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ~
                                                                                                                                                                                                                                                                                                                                                                                                3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       9
                                                                                                                                                                                                                                                                                                             ں
ا
                                                                                                                                                                                                                        C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ပ
```

```
TC4(1)=2.D0%SL%(FN*#2)*(APQ(G1,FN)*C1N+2.D0#APQ(G0,FN)*C0N)
                                                                                                                                                                                                                                              TC4(3)=(FS-FN)**2*(APQ(G1,FNPS)*C1NPS+2.D0*APQ(G0,FM)*C0M)
                                                                                                                                                                                                                                                                                            TC4(4)=FNPS**2*(2.0)*APQ(G9,FNPS)*C0NPS+W*APQ(G1,FM)*C1M)
                                                                                                                                                                                                                                                                                                                   T(4)=T(4)+B(N)*(TC4(1)+TC4(2)+TC4(3)+TC4(4))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       U(S)=T(1)+T(2)+T(3)+T(4)+T(5)+T(6)+T(7)
                                                                                                                                                                     TC4(2)=(-1.00)**(N+1)*TC42P
                                                                                              CALL CPQ(NPS, B, CINPS, CONPS)
                                                                                                                                                                                                                                                                                                                                                                      T7=V*(-1.00) **NPS*B(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      T(5) = (-1, 00) \times \times (S+2) \times 0
                                                                     CALL CPOIN, B, CIN, CON)
                                                                                                                    CALL CPQ(M, B, CIM, COM)
                                                                                                                                                                                                                     [F (N.EQ.S) GO TO 14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            T(6)=NSTAR*B(S)/RH04
                                                                                                                                                                                                                                                                                                                                                                                                                                              FIFTH AND SIXTH TERMS
                                             IF (N.EQ.S) W= 2.DO
                                                                                                                                                                                                                                                                                                                                                                                             T(7) = T(7) + T7
                                                                                                                                                                                              TC4(3)=0.00
                                                                                                                                                                                                                                                                                                                                              SEVENTH TERM
                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                       2 CONTINUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CONTI NUE
FOURTH TERM
                       W= 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              END
                                                                                                                                                                                                                                                                        14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ----
 J
                                                                                                                                                                                                                                                                                                                                                 C
                                                                                                                                                                                                                                                                                                                                                                                                                                                 ပ
```

SUBROUTINE EVAL 2

$$(N_{X}^{*} = 0)$$

C. GATT. DEPTIMINE

12 - 225

. .

CALCULATE REPETATIVE CONSTANTS USED IN SIMULTANFOUS EQUATIONS DOUBL E PRECISION 8(8), U(8), F(16), T(7), TC(4), TC4(4), APQ APQ(P,Q)=AP/(P※×4+2。D0×GAMPA*(RHO*P*Q) ※※2+(Q~RHO) ※※4) INITIALIZE ARRAY F FOR USE AS DOUBLE PRECISION INDICES REALES G9, G1, C0S, C1S, C0N, C1N, C0NPS, C1NPS, C0M, C1M REAL*8 A,C,Z,D,E,S2,ST2,SL,TC42P,DELNS,W,T7,V COMMON RHD, GAMMA, ETA, NSTAR, QSTAR, SSTAR A= 2.00 * (4.00/P[)**2*ETA/RH0**2*STAR REAL* 8 RHO, GAMMA, ETA, PI, RHO4, AP REAL* 8 NSTAR, SSTAR, QSTAR GENERATE AND CALCULATE EQUATIONS FN, FS, FNPS, FNMS, FM AP=3. D0/4. D0% (1. D0-9. D-2) Y DIRECTION DATA G0,61/0.D0,1.C0/ PI=3.141592653589793 SUBRDUTINE EVAL(B,U) Z=2.0.0%PH0=%2%ETA SL=(+1.00) ★☆(S+1) ST 2= (2 . D0 * FS) **2 D=-8. D0~0STAR/PI $F(I+I) = F(I) + I \cdot D0$ S2=2. D0*FS**2 E=-1.00/RH04 DO 11 1=1,15 RH04= RH04#4 LOAD NSTAR IN DO 1 S=1,8 INTEGER S F(1) = 1.00 $T(1) = U_0 D_1$ T(3) = 0.00T(4) = 0.00T(2) = 0.0011 CONTINUE C= A/2 . D0 FS=F(S)REAL#8 J C J ں

```
TC42P= (APQ(G1, FS)*C1S+2.D0*APQ(G0, FS)*C0S)*S2
                                                                                                                                                                                                                        TC(1)=B(N)*(((-I.O)**NPS*2.D0)+DELNS)*E
                                                                                                                                                                                                        IF (N. E0.S) DEL NS=1.D0+Z*ST2+RH04*ST2**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 7 TC (3)=C*FN*B(N)*(I.D0/FNPS+L.D0/FNMS)
CALL CPQ(S,B,CIS,COS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF(1.6T.NPS) GO TO 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF (NPS.EQ.I) GO TO 7
                                                                                                                                                                                                                                                                                                          4
                                                                                                                                                                                                                                                                                                                       S
                                                                                                                                           IF(M.EQ.0) FM=0.D0
                                                                                                                                                          FM = F(M)
                                                                                                                                                                                                                                                                                                         10
                                                                                                                                                                                                                                                                                                                       10
                                                                                                                                                                                                                                         T(1) = T(1) + TC(1)
                                                                                                                                                                                                                                                                                                                                                                      4 TC(2) = A* SL*B(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 8 T(3)=T(3)+TC(3)
                                                                                                                                                                                                                                                                                                                                                                                    5 T(2)=T(2)+TC(2)
                                                                                                            F NMS = F (N) - F (S)
                                                                                                                                                                                                                                                                                                                       IF(1.6T.N) GO
                                                                                                                                                                                                                                                                                                      IF(N.EQ.I) GD
                                                                                                                                                                                                                                                                                                                                                                                                                                   D0 6 I=1, 15, 2
                                                                                                                                                                                                                                                                                        00 3 I=1,7,2
                                                                                                                           M=IABS(NMS)
                                                                                                                                                         IF (M. NE.O)
                                                                             FNPS=F (NPS)
                              DO 2 N=1,8
                                                                                                                                                                                                                                                                                                                                                                                                                    TC(3) = 0.00
                                                                                                                                                                                           DELNS = 0 . DO
                                                                                                                                                                                                                                                                        TC(2) = 0.00
                                                                                                                                                                                                                                                         SECOND TERM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FOURTH TERM
                                                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                             NMS=N-S
                                                                                                                                                                         FIRST TERM
                                                                                                                                                                                                                                                                                                                                                                                                    THIRD TERM
                                                                                                                                                                                                                                                                                                                                                     60 T 0 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GO TO 8
                                                              NP S=N+S
                                               FN=F(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  W= 1.00
                                                                                                                                                                                                                                                                                                                                        m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    9
                                                                                                                                                                           ں
                                                                                                                                                                                                                                                           Q
                                                                                                                                                                                                                                                                                                                                                                                                     C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C
```

```
TC4(1)=2.D0%SL*(FN**2)*(APQ(G1,FN)*C1N+2.D0*APQ(G0,FN)*C0N)
                                                                                                                                                                                                              TC4(3)=(FS-FN)**2* (APQ(GI,FNPS)*CINPS+2.D)*APQ(G),FM)*C0M)
                                                                                                                                                                                                                                                                 TC4(4)=FNPS%*2*(2.CO*APQ(G0,FNPS)*C0NPS+W*APQ(G1,FM)*C1M)
                                                                                                                                                                                                                                                                                          T(4)=T(4)+B(N)*(TC4(1)+TC4(2)+TC4(3)+TC4(4))
                                                                                                                                                                                                                                                                                                                                                                                                                            U(S) = T(1) + T(2) + T(3) + T(4) + T(5) + T(6)
                                                                                                                                  TC4(2)=(-1。D0)本本(N+1)*TC42P
                                                  CPQ(NPS, B, CINPS, CONPS)
                       CALL CPQ(N, B, CIN, CON)
                                                                               CALL CPQIM, B, CIM, COM)
                                                                                                                                                                                                                                                                                                                                                                        T(5)=(-1.D3)※※(S+2)※D
                                                                                                                                                                                     IF (N.EQ.S) GO TO 14
                                                                                                                                                                                                                                                                                                                                                                                                T(6)=NSTAR*B(S)*ST2
                                                                                                                                                                                                                                                                                                                                               FIFTH AND SIXTH TERMS
IF (N. EQ. S) W= 2.00
                                                                                                                                                           TC4(3)=0.00
                                                                                                                                                                                                                                         CONTINUE
                                                                                                                                                                                                                                                                                                                     CONT INUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONT I NUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RETURN
                                                  CALL
                                                                                                                                                                                                                                                                                                                       \sim
                                                                                                                                                                                                                                           14
                                                                                                                                                                                                                                                                                                                                                                                                                                                       ----
```

END

C

SUBROUTINE ZEROIN

```
DIMENSIONXO(20), X(20), F(20,20), H(20,20), Y(20), D(20), F0(20), FX (20)
SUBROUTINE ZERCIN(N, XD, RD, EPS, ICV, EVAL, IRITE)
                                                                                                                                                                                                                                                                              USF I FOR THE ORTHOGONAL MATRIX.
                          I MPLICIT REAL*8(A-H, 0-Z)
                                                                                                                                                                                                                                                                                                                                                                                                                    F0(J)
              DRD PRNGRAM NO. 9065
                                                                                              MAX=AMINO(MAX,50)
                                                                                                                                      CALL EVAL(X0,F0)
                                                                                                                                                                                                                                                                                                                                                              CALL EVAL(X0, X)
                                                                                                                                                                                                                                                                                                                                                                                                                        I
                                                                                                                                                                                                                                                                                                                                                XO(I) = XO(I) + RO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D(I) = -R0 \approx FX(I)
                                                                                                                                                                                                                                                                                                                                                                                                                   F(J, I) = X(J)
                                                                                                                                                   NUMB=NUMB+1
DC 1 I=1,N
                                                                                                                                                                                                                                                                                                                                                                                                                                               GO TO 18
DO 7 I=1,N
                                                                                                                                                                                                                                                                                                                        I=1,N
                                                                                                                                                                                                                                                                                                                                                                           NUMB = NUMB + 1
                                                                                                                                                                                                          DO 3 I=1,N
                                                                                                                                                                               F X(I) = F(I) X =
                                                                                                                                                                                                                        FO(I) = FX(I)
                                                                                                                                                                                                                                                                                                                                                                                                     D0 5 J=1,N
                                                                                                                                                                                                                                      (1) \times (1) \times (1) \times (1)
                                                                                                                                                                                                                                                                                                                                    C = XO(1)
                                                                                                                                                                                                                                                                                                                                                                                         XO(I) = C
                                                                                M AX= 10%N
                                                                                                                                                                                          GO TO 4
                                                                                                            C T=R )*R )
                                                                                                                        NI = N - I
                                                      NUMB=0
                                                                    I C V = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CON=0.
                                                                                                                                                                                                                                                                                                                      00 5
                                                                                                                                                                                                                                                                                                                                                                                                                                  I = I
              CTC
                                                                                                                                                                                                                                                                                                                         4
                                                                                                                                                                                                                                                                                                                                                                                                                    S
                                                                                                                                                                                                                                                                                                                                                                                                                                                               9 ~ 8
                                                                                                                                                                                                            2
                                                                                                                                                                                                                                       m
              ں
                                                                                                                                                                                                                                                     00000
```

```
USE THE DIFFERENCE MATRIX AS THE ORTHOGONAL APPROXIMATION.
                                                                                                                                                                                                                                                                                                           CHECK FOR CONVERGENCE AND NEARNESS TO THE SOLUTION.
                                                                                                                                                                                                                                                  WRITE(6,300) NUMB, (FX(I),I=1,N)
                                                                                                                                                                                                                               WRITE(6,200) CON, (X(I),I=1,N)
                                                                                                                                                                                                                                                                                                                                                                                       G0 T0 28
                                                                                                                                                                        [F(CON.EQ.0.0) CON=1.0D-32
                                                                                                                                                                                                                                                                                                                                                                    G0 T 0 27
                                                                                                                                                                                                                                                                                                                                                                                                        IF(PK.GT.CT) GO TO 2
                                                                                                                                                                                                                                                                                                                                                                                                                                             F(I, N) = FO(I) - FX(I)
                                                                          CON = CON + X(I) * * 2
                                    DO 9 [=1,N
X(I) = D(I) + XO(I)
                                                                                            RK= RK + D(I) 4 # 2
                                                                                                                                                                                                                                                                                                                                                                                       IF(CON.LE. EPS)
                                                                                                                                                                                                                                                                                                                                                                   IF(ICV.GT.MAX)
                                                                                                                                   CALL EVAL (X, FX)
                                                                                                                                                                                                                                 [F(IRITE.EQ.1)
                                                                                                                                                                                                                                                  F(IRITE.E0.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DO IO J=1,NI
H(I,J)=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                           DO 10 I=I .N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  H(I, N) = -D(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (1)X = (1)OX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DO 11 J=1,N1
                                                                                                                                                     NUMB = NUMB+1
                                                                                                                                                                                           CON= RK/CON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FO(I) = FX(I)
                                                                                                                                                                                                              I CV = 1 CV + 1
RK= 0.000
                 F SUM = 0.
                                                                                                               \gamma(I) = RK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                K = J + I
                                                                                                                  σ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               10
```

00000

 $\cup \cup \cup \cup \cup$

```
SYST EM
                                                                                                                                                                                                                                                                                                                                                            THE RESULT IN FX. THE
                                                                                                                                                                                                                                                                                                                                                                           WITH PARTIAL PIVOTIN
                                                                                                                                                                                                                                                                                                                                                            SOLVE THE SYSTEM F*A=FX AND STORE
IS SOLVED BY GAUSSIAN ELIMINATION
            IF(VAL.FQ.0.0) VAL=1.00-32
                                                                                                                                                                                                                                                                                                      D(I)=D(I)- H(I,J)*FX(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                10 19
                                                                    H(I, J) = CON * D(K) * D(I)
                                                                                                                                                                        F(I,J) = FX(I)-FO(I)
CONTINUE
                                                                                                              X(I) = X0(I) +H(I,J)
                                         H(K,J) = -Y(J) \times CON
                         CON=DSORT (RK / VAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CON= DABS (F(J, I))
                                                                                                                             CALL EVAL(X, FX)
                                                                                   DO 14 J= 1, NI
                                                                                                                                                                                                                                                                                                                                                                                                                       I = I \cdot N I
                                                                                                                                                                                                                                                                                                                                                                                                                                                 00 19 J=1,N
                                                                                                                                                                                                   DO 15 I=1,N
                                                                                                                                                                                                                                                            00 17 I=1,N
                                                                                                                                                                                                                                                                                       DO 17 J=1,N
                                                                                                DO 12 I=1,N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF(CON.LT.C)
VAL=Y(J)*Y(K)
                                                       00 11 I=I,J
                                                                                                                                                                                                                  FX(I) = FO(I)
                                                                                                                                                          DO 13 I=1,N
                                                                                                                                            NUMB=NUMB+1
                                                                                                                                                                                                                                              GO TO 18
                                                                                                                                                                                                                                                                                                                    GO TO 8
                                                                                                                                                                                                                                                                                                                                                                                                                       24
                                                                                                                                                                                                                                                                         0(I) = 0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           L = XON I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C=CON
                                                                                                                                                                                                                                                                                                                                                                                                                                    C =0.
                                                                                                                                                                                                                                1 = 2
                                                                                                                                                                                                                                                                                                                                                                                                                       00
                                                                                                                                                                                                                                                             16
                                                                                                                                                                                                                                                                                                                                                                                                                       18
                                                                      12
                                                                                                                                                                        14
                                                                                                                                                                                                                  15
                                                                                                                                                                                                                                                                                                      17
```

 $\cup \cup \cup \cup \cup \cup$

```
END GAUSSIAN PORTION AND RETURN TO MAIN PROGRAM.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF(F(NXT,NXT).EQ.0.0) F(NXT,NXT)=1.0D-32
                                                                                                                                                                                                                                                                                                                                                                                                                                                   F(NXT, J+1) *FX( J+1)
                                                                                                                                                                                                                                                                                                                                                               IF(F(N,N).F0.0.0) F(N,N)=1.0D-32
                                                                                                                                                                                                      IF(F(J,I).FQ.C.0D0) GO TO 23
IF(F(I,I).EQ.0.0) F(I,I)=1.0D-32
                                                                                                                                                                                                                                                                                            - F(I,IP)+C
                                                                                                                                                      G0 T0 24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FX(NXT)=FX(NXT)/F(NXT,NXT)
                                                                                                                                                                                                                                                                                                             FX(I) X
               G0 T0 21
                                                                                                                                                                                                                                                                                                                                                                                                                                                  FX(NXT) = FX(NXT) - -
                                                                                                                                                      IF(F(I,I).EQ.0.000)
                                                                                                                                                                                                                                                                                                                                                                               F X (N) = F X (N) / F (N,N)
                                                                  F(I, J) = F(INDX, J)
                                                                                                                                                                                                                                                                           DC 22 IP=NXT,N
                                                                                                                                                                                                                                                                                                                                                                                                                                  DO 25 J=NXT,NI
                                                                                                                                                                                       DG 23 J=NXT,N
                                                                                                                                                                                                                                                                                                             FX(J)=FX(J) -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GO TO (6,16),IT
ICV=2
                                                                                                                                                                                                                                         C = F(J, I) / F(I, I)
                                                                                                                                                                                                                                                                                           F(J, IP) = F(J, IP)
                                                                                                                                                                                                                                                                                                                                                                                                  DO 26 I=1,N1
                                                                                                                    F \times (I) = F \times (I \times X)
                IF(INDX.EQ.I)
                                 DO 20 J=I,N
                                                                                   F(INDX, J)=C
                                                                                                                                      FX(INDX)=C
                                                                                                                                                                                                                                                           F(J, I) = 0.
                                                   C = F(I,J)
                                                                                                                                                                                                                                                                                                                              CONT I NUE
                                                                                                                                                                                                                                                                                                                                              CONTINUE
C ONT I NUE
                                                                                                                                                                                                                                                                                                                                                                                                                  NXT = N - I
                                                                                                    C = F X (I)
                                                                                                                                                                      I + I = I \times I
  19
                                                                                                                                                                                                                                                                                                                               23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     26
                                                                                    20
                                                                                                                                                                                                                                                                                             22
                                                                                                                                                                                                                                                                                                                                                                                                                                                    25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           27
                                                                                                                                                       21
```

```
NUMB, (FO(I),I=1,N)
                                                                                                                                                                                                  17X,7015.7))
                                                                                                                                                                                       17X,7D15.7))
                                                                                                                                              R0, (X0(I),I=1,N)
                                                                                                                                  10<
                                                                                                                                                                                       FORMAT(3H X 1PD15.7,2X,7D15.7/(3H
FCRMAT(3H # 16,11X, 7D15.7/(3H
                                                                                                                                               WRITE(6,200)
                                                                                                                                                           WRITE(6,300)
                                                                                                                                   WRITE(6,400)
                                                                I CV = 0
                                     F SUM = F SUM + FX(I)**2
GO TO (31,32),ICV
                                                                                                                                                                                                   FCRMAT(3H * 16,11X,
FORMAT(4H **** 16)
                                                                I F (F SUM. GT..5D-10)
                                                                                                                                 IF(IRITE.EQ.1)
IF(IRITE.EQ.1)
                                                                                                                                                           IF(IRITE.EQ.0)
                         DD 30 I=1,N
                                                                                                         DO 33 I=1,N
                                                                                                                      (I) \times = (I) \times = (I) \times (I)
                                                                             EPS=FSUM
GO TO 29
                                                                                            RO= CON
                                                                                                                                                                           RETURN
            I C V = 1
             28
29
30
                                                                  31
                                                                                                                       33
                                                                                                                                                                                         200
                                                                                                                                                                                                                  400
```

END

SUBROUTINE CPQ

```
X=-8。D0%B(1)%B(4)+I。201%B(1)%B(6)-I。201%B(2)%B(3)+2。8D1%B(2)%B(7)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1 - 1. 701 \times 9(1) \times 8(4) - 3. 701 \times 8(1) \times 8(6) - 1. 301 \times 8(2) \times 8(3) - 5. 301 \times 8(2) \times 8(7)
                                                                                                                                                                                                                                                                                                                                                                                                X=4.00xB(1)*B(2)+1.201xB(2)*B(3)+2.401xB(3)*B(4)+4.001xB(4)*B(5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1 - 2°D0*8(1)*8(2)-1°701*8(1)*8(4)-2°901*8(2)*8(5)-6°501*8(4)*8(7)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            X=-4.00x8(1) & B(2) + 8.00x8(1) x8(4) + 2.01x8(2) # B(5) + 3.601 & B(3) # B(6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Y = I_{\bullet} & B D I = B (3) = (-B(1) + B(2) - B(3) + B(4) - B(5) - I_{\bullet} & 5 D = B(7) + B(3) )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Y = 3.201 + B(4) + (-B(1) + B(2) - B(3) + B(4) - B(5) + B(6) - B(7) - 1.500 + B(8))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               X=-6.00mB(1)%B(3)+1.01mB(1)%B(5)-4.00%B(2)%E2+2.401%B(2)%B(6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Y = 2_{0} \ J = 8(1) = (-8(1) - 1_{0} 50 \ J = 8(2) - 8(3) + 8(4) - 8(5) + 8(6) - 8(7) + 8(8))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Y=8.D0*B(2)*(-B(1)+B(2)-B(3)-1.5D0*B(4)-B(5)+B(6)-B(7)+B(8))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            I -1.DL*R(1)*B(3)-2.6D1*B(1)*B(5)-4.D0*B(2)**2-4.D1*B(2)*B(6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1 -B(3)*(1.301*B(2)+2.501*B(4))-B(5)*(4.101*B(4)+6.101*B(6))
                                                                                                                                                                                                                                             1 +2.501×8(5) **2+3.601×8(6) **2+4.901×8(7) **2+6.401×8(8) **2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X=-8(1)**2+6•00%8(1)*8(3)+1•601%8(2)*8(4)+3•001%8(3)%8(5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1 -B(1) ***2-1.001*B(1)*B(3)-3.401*B(3)*B(5)-5.201*B(4)*B(6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Y=5.01*8(5)*(-8(1)+8(2)-8(3)+8(4)-8(5)+8(6)-8(7)+8(8))
                                                                                                                                                GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),N
                                                                                                                                                                                                                                                                                                                                                                                                                                                1 +6.001*B(5)*B(6)+8.401*B(6)*B(7)+1.1202*B(7)*B(8)
                                                                                                                                                                                             X=B(1) ** 2+4.00*B(2) ** 2+9.00%B(3) ** 2+1.601*B(4) ** 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1 + 4.801%B(4)%B(6)+7.001%B(5)%B(7)+9.601%B(6)%B(8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1 +4.201×8(3)×8(7)+6.401×8(4)×8(8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1 +5.6D1×8(4)×8(7)+8.D1×8(5)×8(8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2 -7.401%B(5)%B(7)-1.02%B(6)%B(8)
                                          DOUBLE PRECISION B(8), X, Y, C1, CO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2 -B(7)*(8.5D1*B(6)+1.13D2*B(8))
SUBROUTINE CPQ(II, B, C1, CO)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2 -8.901*8(5)*8(8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 -5.801*8(3)*8(7)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1 +4.8D1*8(3)*B(8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GO TO 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G0 T0 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GD T0 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G0 T0 18
                                                                                                                                                                                                                                                                                                                                                      GO TO 18
                                                                                                      N= I I + 1
                                                                                                                                                                                                                                                                                                   \chi = -\chi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  S
                                                                                                                                                                                                      ----
                                                                                                                                                                                                                                                                                                                                                                                                      \sim
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           9
```



```
Y=-6.501%B(1) *B(8) -5.301 × B(2) * B(7) -4.501 × B(3) × B(6) -4.101 × B(4) × B(5)
                                                                              X=-1.01*8(1)*8(5)+1.401*8(1)*8(7)-1.601*8(2)*8(4)+3.201*8(2)*8(8)
                                                                                                                                                                                                                                                                                                                                       X=-1。201~B(1)*B(6)+1。601*B(1)*B(8)-2。01*P(2)×B(5)-2。401*B(3)*B(4)
                                                                                                                                                                                                                                                                                                                                                                                                                   1 - 3.701 \times B(1) \times B(6) - 6.501 \times B(1) \times B(8) - 2.901 \times B(2) \times B(5) - 2.501 \times B(3) \times B(4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                X=-1.6D1*8(1)*8(8)-2.8D1*8(2)*8(7)-3.6D1*8(3)*8(6)-4.01*8(4)*8(5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             X=-3.201+B(2) + B(8) - 4.201+B(3) + B(7) - 4.801+B(4) + B(6) - 2.501+B(5) + + 2
Y=-6.801+B(2) + B(8) - 5.801+B(3) + B(7) - 5.201+B(4) + B(6) - 2.501+B(5) + + 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X = -1.401 \times B(1) \times B(7) - 2.401 \times B(2) \times B(6) - 3.01 \times B(3) \times B(5) - 1.601 \times B(4) \times 2
                                                                                                                                                                                                          1 -2.601%B(1)%B(5)-5.01%B(1)%B(7)-2.01%B(2)%B(4)-6.801%B(2)%B(8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             I -5.01×8(1)×8(7)-4.01×8(2)×8(6)-3.401×8(3)×8(5)-1.601×8(4)×2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Y = 1.28C2 \times B(8) \times (-B(1) + B(2) - B(3) + B(4) - B(5) + B(6) - B(7) + B(8))
                                                                                                                                                                                                                                                                                                                                                                        Y = 9, 8D1 \approx (7) \approx (-8(1) + 8(2) - 8(3) + 8(4) - 8(5) + 8(6) - 8(7) + 8(8))
                                                                                                                                                               Y = 7.201 \times 8(6) \times (-8(1)+8(2)-8(3)+8(4)-8(5)+8(6)-8(7)+8(8))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X=-4。801%8(3)%8(8)-2。601%8(4)%8(7)-6。001%8(5)%8(6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Y=-7。3D1±8(3)±8(8)-6。5D1±8(4)±8(7)-6。1D1±8(5)±8(6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   X=-6.4D1*B(4) *B(8)-7.0D1*B(5)*B(7)-3.6D1*B(6)**2
Y=-8.0D1*B(4)*B(8)-7.4D1*B(5)*B(7)-3.6D1*B(6)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Y=-8.9D148(5) *8(8)-8.5D1*B(6) %B(7)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               X=-8.0D1¤8(5)*8(8)-8.4D1*8(6)*8(7)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X=-9.601*8(6)*8(8)-4.901*8(7)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Y=-1.0248(6) = 8(8) - 4.90148(7) * * 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     X=-1.12D2*B(7)*B(8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Y=-1.13D2×B(7)*B(8)
2 -7.30148(3)*8(8)
                                                                                                                            1 -9.D0*B(3)**2
                                                                                                                                                                                                                                                     2 -9. D0#B(3) ##2
                                           GO TO 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GO TO 18
                                                                                                                                                                                                                                                                                              GO TO 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GO TO 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GO TO 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GO TO 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G0 T0 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G0 T0 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GO TO 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GO TO 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         51
                                                                                   ~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              σ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     16
                                                                                                                                                                                                                                                                                                                                         ω
```


- 17 CO TO 18 17 X=-6.4D1*B(8)**2 Y=X 18 CONTINUE C1=Y+X RETURN END END

