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ABSTRACT

Four time differencing schemes were tested using a

barotropic primitive equation model on a spherical

staggered grid with an analytic input in order to com-

pare amplitudes, phase speeds, and computation time for

each. The methods tested were the leapfrog, Euler-

backward, leapfrog-^trapezoidal , and Adams-Bashford. One

set of experiments was performed using an averaging

technique to reduce the effects of gravity waves in the

higher latitudes. Another set was performed without the

averaging in order to determine the effects of this

technique on the solutions

.
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I. INTRODUCTION

In the field of operational numerical weather prediction,

the trend, in recent years, has been toward the development

of sophisticated global prediction models. This has been

made possible by the rapid expansion of computing capacity

and developments related to general circulation research.

The purpose of this study was to examine various time

differencing methods, using a barotropic primitive equations

model on a global staggered grid. A spherical harmonic

analytic stream function was used for the initial conditions.

By using an analytic initial condition, errors in real data

observations and analysis, which are unavoidable in practical

dynamical prediction, were eliminated.

The objective was to compare the time required for com-

putation, amplitudes, and phase speeds for each of the time

differencing schemes

.
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II. BAROTROPIC PRIMITIVE EQUATIONS MODEL

Time differencing experiments were performed using the

free surface barotropic primitive equations . The integra-

tions were carried out on the sphere using the difference

method of the Arakawa type which was developed by Winninghoff

(1971) .

A. PRIMITIVE EQUATIONS

The primitive equations, in spherical coordinates and in

flux form, for this model are:

a(uh)

at a cos

9(uuh) 9 (uvh cos 0)

9A 90

uvh tan
+ + fvh -

3(gh)

a cos 3A
(1)

3(vh)

at a cos

9 (vuh) 9 (wh cos 0)

9X 90

uuh tan h 9 (gh)
+ fuh - _

9(h)

9t a cos

a 9X

9(uh) 9(vh cos 0)

9X 90

(2)

(3)

Equations (1) and (2) are, respectively, the zonal and merid-

ional momentum equations, and equation (3) is the continuity

equation.
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B. GRID

The spatial finite differencing was performed on a

staggered, spherical grid. The wind and height variables

were carried at alternate points (see Fig. 1) with height

only at the poles. The latitudinal and longitudinal grid

increments were five degrees. This gives 2560 points

(72 x 35) over the globe, with wind and height carried at

1260 points each.

h (North Pole)

u,v h u,v h h

h u,v h u,v u,v

u,v h u,v h

A h u,v h u,v . .

j u,v h u,v h

i —

^

h (South Pole)

FIGURE 1. LOCATION OF VARIABLES

h

u,v

C. SPATIAL FINITE DIFFERENCING

Spatial differencing of the Arakawa (1966) type was

used which eliminates the spurious energy growth which can

occur with standard finite difference approximations to

the nonlinear advection terms. The difference equations

used here for this model are:

12





A(uh)ij 1

At a cos
3 L

(u± j.+Ui+x j.) (uh)

.

i+ 3sj.- (Uij+Ui^x j) (uh) i_^j

2AX

(uij+uij+2 ) (vh)*
j+1

cos Q
j+1 -,(u

ij
+u

ij^2
)••(yh),

i,j,.1cpS , Q.^

2A0

.u^.tvh) a a tan 0-

+ — 2 1 + fj(vh)
i:j

gh*.

a cos 0.

D L

h, . - h- , .ij 1-I3

AX
(4)

A(vh)ij 1

At a cos 0-

( Vij+vi+1 j) (uh) i+^j-(vij+v i_ 1 j) (uh)i_^j

2AX

(vij +vij+2 ) (vh)* j+1 cos Q
j+1-(vij +vij _ 2

)(vh)*
j
_ 1

cos
j
_ 1

"T ____________________________________________________________________________________________________

uij (uh) ij tan °j

2A0

f . (uh) . .

D ID

*_. h£-l j-l~h £-l i-1

a A0
(5)

Ah13

At a cos 0.

(uh) i+lj - (uh) i _ lj

AX

< vh)£j+l cos Gj+1 " < vh )jlj-l cos Qj-1

A0

where

(Uh)
±j

- Uijh.j

and

(6)

(vh)
L

. = V^h^

where

h*. E «_
±j

+ h^jj) -
_J.<-i+1J

- h
±j

- hi.y + h
±_ 2

.)

which is a second order, one-dimensional Bessel's interpola-

tion scheme with p = h.

13





Similarly

(uh)*+i5j = ^[(uh) ij+ (uh) i+lj ] - |_[(uh) i+2j -(uh) i+lj

-(uh)
ij

+(uh)
i_ lj ]

and

tvh)*j+1
i %tCvh) ij+1+ (vh) i_lj ] - ^[(vhj.^.^-tvh)..^

" (vh) i-l j+l+(vh) i-2 j + 1 1

Originally, all the interpolated, starred quantities were

derived using a two-dimensional linear interpolation. This

method was found to introduce a 2d-wave which in certain

areas was an order of magnitude greater in amplitude than

the zonal wave used for the experiments.

Figure 2 shows the indexing convention used for the

mass and wind variables. The index 1 in equations (5) and

(6) was i if j was odd and i + 1 if j was even.

j odd • wij -
mij

j even

j odd • wij -
mij"

FIGURE 2. GRID INDEXING
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III. TIME DIFFERENCING METHODS

Four time differencing methods were used to evaluate the

phase angle and amplitude errors of each method. The errors

were evaluated by comparison to an analytic solution to the

non-divergent barotropic vorticity equation.

The four methods tested were the leapfrog, Euler-backward,

leapfrog- trapezoidal , and Adams-Bashford schemes. Two tests

were made with each method.

The first set of tests used time increments of fifteen

minutes for the first three methods and ten minutes for the

Adams-Bashford scheme.

These time steps were possible, even though the i grid

distance at 85° N and S is only 40 km, because of a pro-

cedure, used by Arakawa (Langlois and Kwok , 19 69) to average

the effects of high frequency inertial gravity waves in the

zonal direction.

The averaging technique involved a coefficient

Aj = ,125(Dj - 1)/Dj (7)

where

Dj =
COS 0-j

and D-; was the greatest integer value of Da .

The uh terms in equation (3) and in the advective terms

of equation (1) and (2) were replaced by

(uh)}. = (uh) +A [(uh) +(uh). .-2(uh)..]
ID ij J i+lj V-lD ID

For KDj< 2 (8)
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and

(uh) N = (uh) N
~ 1+A [(uhjN" 1 +(uh) N

~ 1 -2(uh) N"l]
ij ij j i+l} i-1} lj

for N<D-<N+1 (9)

Similarly h in the pressure gradient term in equation (1)

was replaced by

h}
.
= h..+A.[h. ,+h, .-2h.J for l<D-<2 (10)

ij ij j i+lj i-lj ij J

and

h® . = h^-l+A. [hN-1 +hN"l -2hN-l] for N1D,<N+1 (11)
ID ID D i+lD i-lD ID ^

No averaging was done if D-:<1.

The second set of tests were run without using the

averaging technique. Thus to remain within the von Neumann

linear computational stability criterion (Haltiner, 1971) ,

a 2.5-minute time step was used. The two sets of tests

were run in order to determine the effects of the averaging

technique on the solutions.

A. LEAPFROG

The leapfrog method is a centered time differencing

cAt
scheme which is conditionally stable for <1. The finite

Ax
difference equation is:

Pt+1 = pt-l + 2At ffl (12)

3t

Since this method has three time levels, it has both a

physical and a computational mode.

16





B. EULER-BACKWARD

The Euler-backward method is a two-step iterative

scheme which is conditionally stable for c^t <1. The

Ax
difference equations are:

F* = Ft +

8Ft
At

at

Ft+1 = Ft
9F*

+ At
3t

(13)

Since the Euler-backward method has just two time levels

it has only a physical mode.

C. LEAPFROG-TRAPEZOIDAL

The leapfrog-trapezoidal is another two-step iterative

scheme which is conditionally stable for £ <\2.
Ax *

The difference equations are:

8Ft
F* = FtsL l + 2At

8t

At /8F* 9Ft\
Ft+1 = Ft + _[ +

]
(14)

2 \ 9t at /

Since this method, like the leapfrog, has three time levels,

it also has both a physical and a computational mode.

D. ADAMS-BASHFORD

The Adams-Bashford method used was the one examined by

Lilly (1965)

.

The difference equation is:

'3 9F fc 1 BFt-l^
Ft+1 = Ft + At

[ ) (15)
2 3t 2 3t

17





This method has three time levels, thus it has both a com-

putational and a physical mode. The method is unstable but

has some desirable features. The computational mode tends

to damp and the rate of erroneous amplification of the

physical mode is small if At is small.

18





IV. INITIAL CONDITIONS

The initial velocity and height fields for these ex-

periments were derived from a stream function which is a

solution to the non-divergent barotropic vorticity equa-

tion. The stream function used was examined by Gates

(1962) and Neamtan (1946), which is:

\p = A sin(mA-vt) Pm (sinO) - B a 2 sinG + C P„ (sin 0)

(16)

A reasonable meteorological pattern was obtained from equa-

tion (16) by selecting

C =

A = 1000 m2 sec" 1

The constant B was related to the angular wave speed by

v n(n+l)-2 2ft

_ = B - (17)
m n(n+l) n(n+l)

For wave number 6 and, with n = 7 for convenience, — = 20°
m

long, per day

B = 6.8905 x 10~ 6 sec' 1

The stream function then became

^ = -279.68 x 10-6 s in0 + 136.65 x 10 -6 sin (6X-vt) sinG

cos 6 Q m2 sec_1 (18)

Since these experiments were performed using a free sur-

face barotropic primitive equations model which allows di-

vergence, equation (17) was satisfied only approximately.

Rossby (19 39) has shown that the presence of divergence in

a barotropic atmosphere will slow up the rate of wave propa-

gation, especially for small values of wave number m.

19





The initial wind field was a non-divergent wind given

by

u = -
.3* 1 W
3g a 30

(19)

di> i 3ip

(20)
3x a cos 3A

The initial height field was derived by solving the

linear balance equation

1

V 2h = _ [fV 2
ip + Vijj'Vf] (21)

where

V 2 =
L

2 LCOS 2

3 2 1 3 3
"

+ (cos —

)

3A 2 cos 30 30

and

(1 3 1 3 \
.- —

Ja cos 3A a 30 /

Equation (21) was solved by the following relaxation

scheme

:

,N+1 ,N n , 00 sh
ij

= h
ij

+ R
ij

' (22)

where

ID

.9

(cos0-+ )

J COS0-;

[(cos0.-d sin0-;)h. .
, o+(cos0-+d sin0-;)h. .

j 3' 13+2 D D 13-2

thi+l-i+hi-li) 1 cos0, (2d) 2

+ i i -2(cos0j+ ) h ± j-
J

(fv iJH-Vip-Vf)
cos0j cos0- g \

(23)

with a relaxation tolerance of .1 meters.

20





One experiment, using the leapfrog scheme for time

differencing, was performed with the "restorative-iterative"

initialization method developed by Winninghoff (1971)

.

This method involved using the Euler-backward time dif-

ferencing scheme to alternately step forward and backward

six times. After each iteration of equations (1), (2),

and (3) the following restoration was added:

(uh)^ = (l-ku ) (uhJij + ku (uh) Q

(vh)
ij

= (l-kv ) (vh)
±j

+ kv (vh)
Q

(24)

h
±j

= (l-kh ) h.j + kh
h
Q

where the k's are functions of latitude. ku and k were

.5 from latitude 20° S to 20° N, from 40° N and S to the

poles, and a linear variation between and .5 between

latitude 20° and 40°. kh was .5 from 40° N and S to the

poles, between 20° S and 20° N, and a linear variation

between 20° and 40°.

21





V. WAVE ANALYSIS METHOD

To calculate the phase angles and amplitudes, a fourier

analysis was performed at each five degrees of latitude

around the latitude circle. The fourier series was ex-

pressed as follows:

F(x) = AQ + 23 C-^m cos mx + B
Tn

s:"-n mx ^

m

= CQ + £ Cm cos (mx-6m )

where

Cm ~

m

Bm Am

sin(6m ) cos(6m )

and

-1
Bm

6m = tan x —m
Am

Since the input stream function involved only wave number

six and a mean height, only C , Cg, and 6g values were ex-

tracted from the fourier analysis.

22





VI. RESULTS

All the experiments performed with the Arakawa averaging

technique showed a considerable tilt backward at high lati-

tudes in the phase propagation of the wave. This is to be

expected since the smoothing of the gradients in the

technique tends to slow down the rate of propagation.

Gates (1959) has shown that, as the wavelength and Ax de-

crease proportionally, the phase speed of the wave remains

constant, and also that if the wavelength decreases and

Ax remains constant, the phase speed will decrease relative

to the exact value. In this model, the Arakawa averaging

technique gives an effective Ax which is comparable to that

at low latitudes, thus as the wavelength decreased toward

the poles the phase speed also decreased.

The result of this differential movement was to cause,

eventually, the formation of closed highs and lows at the

higher latitudes which propagated equatorward. It is

believed that this instability is possible due to non-

linear effects introduced after the field ceased to be

harmonic in the latitudinal direction.

The amplitudes in all the experiments showed a tendency

to decrease at latitudes below 45° and increase above 45°.

The mean height also tended to increase at the higher

latitude (75° and above). These amplitude variations are

also believed to be caused by the nonlinear effects. All

the methods, except the Euler-backward , had small amplitude

gravity waves propagating with about a ten hour period.

23





Table I shows the comparison of the time required for

a 120-hour forecast using each of the four methods. It

also gives a comparison of the initial twenty-four phase

speed for selected latitudes

.

TABLE I

Time Difrcrenci
Method

ng Time
120hr

Required
Forecast

EhaEe Speed for Initial 24hrs
Equator 30° 60° 75°

Leapforg 32 14.0 10.7 1.7 -11.3

Euler-Backward 57 13.3 11.2 1.5 -9.7

Leapfrog-
Trapezoidal 58 13.7 10.8 1.5 -11.5

Adams -B ashford 46 14.3 10.8 1.8 -11.2

Note: Time in minutes
Phase speed in degrees longitude per day

The experiments performed without the averaging technique

still showed a slight tendency to tilt backwards at the

higher latitudes. This was not expected and was believed to

have been caused by truncation errors due to special treat-

ment near the poles using only a second-order difference

approximation for the derivatives. This belief was based

on the fact that the input stream function does not vary

linearly near the poles, which caused problems earlier in

the interpolation for (uh) and h .

Table II gives a relative comparison of the time re-

quired by each method using a 2.5-minute time step.

24





TABLE II

Time Differencing Time Required in Minutes
Method

Leapfrog 40 min. for a 32 hr. forecast

Euler-Backward 70 min. for a 30 hr. forecast

Leapfrog-Trapezoidal 70 min. for a 29 hr. forecast

Adams-Bashford 40 min. for a 32 hr. forecast

A. RESULTS OF INDIVIDUAL EXPERIMENTS USING THE AVERAGING
TECHNIQUE

Experiment 1 . This experiment was performed using the

leapfrog time differencing method. Figure 3 shows the phase

angles as a function of latitude at twelve-hour intervals

out to thirty-six hours and Fig. 8a shows phase angles at

twenty- four hour intervals out to 120 hours. The amplitudes

for wave number six and the mean heights are shown in Fig.

13 for selected latitudes.

Experiment 2 . The second experiment was performed using

the leapfrog scheme and the "restorative-iterative" initial-

ization method. This experiment was performed to see if the

tilt of the phase lines could be reduced by letting the mass

and wind fields "adjust" before performing the integrations.

As can be seen in Fig. 4, the tilt was not reduced.

Experiment 3 . The Euler-backward method was used for

this experiment. The phase curves are shown in Figs. 5 and

8b. The mean height and wave number six amplitudes are

shown in Fig. 14. It should be noted that the gravity waves

present in the other three methods are effectively damped

out with this method.

25





Also the maximum variations in amplitudes, which are

approximately equal for the other three methods , are

slightly less since this scheme tends to damp all waves.

• Experiment 4 . This experiment was performed using the

leapfrog-trapezoidal method. Figures 6 and 8c show the

phase angles vs latitude curves. The amplitudes are shown

in Fig. 15. The largest gravity wave amplitudes were ob-

served using this method.

Experiment 5 . The last experiment using the Arakawa

averaging scheme was performed using the Adams-Bashford

method. Figures 7 and 8d show the phase relationships and

Fig. 16 and amplitudes. There was very little difference

in the results between this method and the leapfrog, except

for the time required, see Table I, for the integrations.

B. RESULTS OF INDIVIDUAL EXPERIMENTS WITHOUT THE AVERAGING
TECHNIQUE

Experiment 6 . This experiment, like the first experi-

ment, was performed using the leapfrog scheme. The time

step was reduced from 15 minutes to 2.5 minutes. The phase

angle profiles are shown in Fig. 9 for zero, twelve, and

twenty- four hours.

Experiment 7 . This experiment was the same as experiment

3, except At was 2.5 minutes. The phase angle results are

shown in Fig. 10.

Experiment 8 . This experiment was the same as experi-

ment 4 with the exception of At, which was reduced to 2.5

minutes. The phase profiles are shown in Fig. 11.

26





Experiment 9 . The same time differencing method was

used as in experiment 5. The time increment was reduced

from 10 minutes to 2.5 minutes. Figure 12 shows the phase

relationships for this experiment.
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10 20 50 c 60c30° 40°

Longitude

FIGURE 3. PHASE ANGLE VS LATITUDE USING THE LEAPFROG
SCHEME WITH THE ARAKAWA AVERAGING.

Note: The input height field was constant at 85° lat. The
phase angle at that latitude is the result of trunca-
tion errors in the fourier analysis.
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10 20 30° 40 c

Longitude
50 c 60 c

FIGURE 4. PHASE ANGLE VS LATITUDE USING THE LEAPFROG
SCHEME WITH THE ARAKAWA AVERAGING AND
WINNINGHOFF 1 S "RESTORATIVE-ITERATIVE"
INITIALIZATION.
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10 20 30° 40 c

Longitude
50^ 60 L

FIGURE 5. PHASE ANGLE VS LATITUDE USING THE EULER-
BACKWARD SCHEME WITH THE ARAKAWA AVERAGING,

See note on Fig. 3.
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10 20 30° 40 c

Longitude
50 c 60°

FIGURE 6. PHASE ANGLE VS LATITUDE USING THE LEAPFROG-
TRAPEZOIDAL SCHEME WITH THE ARAKAWA AVERAGING,

See note on Fig. 3.
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10c 20 30° 40°

Longitude

50°

FIGURE 7. PHASE ANGLE VS LATITUDE USING THE ADAMS-
BASHFORD SCHEME WITH THE ARAKAWA AVERAGING

See note on Fig. 3.
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FIGURE 9. PHASE ANGLE VS LATITUDE USING. THE LEAPFROG

SCHEME WITHOUT AVERAGING.
See^note on Fig. 3.

This 24 hour movement appears to be wrong compared to
the averaging case but time did not permit a re-run to
verify this movement.
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50° 6cr30° 40

Longitude

FIGURE 10. PHASE ANGLE VS LATITUDE USING THE EULER-
BACKWARD SCHEME WITHOUT AVERAGING.

See note on Fig. 3.
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10 20 5 0° 60^30° 40°

Longitude

FIGURE 11. PHASE ANGLE VS LATITUDE USING THE LEAPFROG-
TRAPEZOIDAL SCHEME WITHOUT AVERAGING.

See note on Fig. 3.
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FIGURE 12. PHASE ANGLE VS LATITUDE USING THE ADAMS-
BASHFORD SCHEME WITHOUT AVERAGING.

See note on Fig. 3.
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VII. CONCLUSIONS

The Arakawa averaging method caused some problems with

the initial field which was represented by a spherical

harmonic, but it is felt that with real data, where the

longitudinal scale does not necessarily decrease with

latitude, the method might not cause such severe problems.

Considering the alternatives, such as a reduced time step,

variable grid size, or variable time step, the Arawaka

procedure is a simple and effective method for spherical

prediction. The reduced time step is much too expensive

in computer time to be practical. The abruptly changed

grid size causes severe problems around the area of the

change. A variable time step might prove to be acceptable

but would involve some very complex programming.

In the experiments performed, a second order one-

dimensional interpolation was used since problems arose

from using a two-dimensional linear interpolation and was

the easiest to apply. In the real data cases, a two-

dimensional second order interpolation scheme would prob-

ably give better overall results.

Overall the Euler-backward method gave the best results

since it effectively reduced the amplitudes of the gravity

waves, but was expensive in computer time. Considering

time requirements and overall results, the leapfrog method

is still the most desirable. Some further tests with com-

binations of the methods might produce a method which gives

good results and is acceptable as far as time required is

concerned.
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