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ABSTRACT—

i

Two alternative methods for optimizing an unconstrained non-linear

function are investigated and compared. The investigations are made

subject to a restriction as to the number of function evaluations

available to conduct the optimization procedures. Powell's method of

conjugate directions is employed as the direct search method and is

considered the reference method. The alternate method is based on

fitting a quadratic surface to the available function evaluations and

optimizing over the resulting fitted surface. The test functions

considered in the investigation were limited to unimodal functions.
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I. NATURE OF THE PROBLEM

A. INTRODUCTION

In Operations Research a major problem concerns the determination of

the optimum response for an objective function. In many cases, the

objective function may not lend itself to expression in closed analytical

form. Information concerning the nature of the objective function may

only be available through computer simulation, field testing or a combina-

tion of both. Furthermore, restrictions may exist with respect to the

quantity of information available or obtainable due to the costs involved

in securing the data. Thus, it is incumbent that the most efficient use

be made of the limited information available in order to achieve the best

possible results in determining the optimum response.

There exist several search techniques that could be adapted to solve

the problem as stated above. Generally, these search techniques could

be classified as direct search techniques or gradient search techniques.

Direct search methods do not require the computation of partial deriva-

tives of the objective function. Determination of the optimum response

is based solely on values of the objective function itself. On the other

hand, gradient search methods compute values of partial derivatives of

the objective function. These resulting values are then used in select-

ing future search directions. Search techniques employing gradient

methods require more information (i.e., additional function evaluations,

computer simulations, etc.) than direct search procedures. Thus, with

the presence of restrictions on the quantity of information available it

would be more advantageous to use a direct search method.





Direct Search methods can be broadly divided into three classifica-

tions: tabulation methods, sequential methods and linear methods.

Tabulation methods, as the name implies, result in a tabular listing of

objective function responses for different values of the input variables.

The "optimum" response is considered to be the "best" value found in the

table. In the case of minimization problems, the "best" value would be

the smallest value. An example of a tabulation method is random search.

Sequential methods employ the use of geometric designs in the input

variable space. The objective function is evaluated at the vertices of

the geometric design. The sequence is repeated until the desired accuracy

is achieved or the restriction of the quantity of information obtainable

precludes additional testing. Factorial designs and the simplex method

are examples of sequential methods.

Linear methods employ the use of a set of direction vectors through-

out the conduct of the search. The objective function is evaluated at

different points along these search directions and conduct of the search

is dependent upon the results obtained. The set of direction vectors

may or may not be changed during the course of the search. Examples of

linear methods are the alternating variable search and Powell's method

of conjugate directions.

An alternative approach to employing search techniques to solve the

problem would be to use curve-fitting techniques. Using this technique,

test points would be established in the input variable space and the

objective function would be evaluated at these test points. A least-

square polynomial surface would then be fitted to these resulting

objective function values. To complete the procedure the location of

the "optimum" response of the fitted surface would be determined and the





resulting input variable values would be input to the true objective

function to determine the "optimum" response.

B. STATEMENT OF THE PROBLEM

The specific problem that was the subject of investigation was to

compare the relative efficiency of a curve-fitting technique as opposed

to a search technique. The assumption was made that a restriction exists

on the quantity of information available (i.e., there were a finite number

of functional evaluation that could have been made). A direct result of

the above assumption was that the investigation was limited to those

techniques which do not require the computation of partial derivatives.

Furthermore, the investigation was restricted to test objective functions

of a unimodal nature insuring the existence of only one true optimum

response.





II. EXPERIMENTAL PROCEDURES

A. SEARCH PROCEDURE

Powell's method of conjugate directions was chosen as the direct

search technique to be used. Powell's method is considered to be one

of the most efficient direct search techniques available [Ref.l]. Its

efficiency is exceptionally good for functions that can be approximated

by a quadratic in the region of the optimum.

Powell's method commences with a search along a set of linearly

independent directions that span the input variable space starting from

an arbitrarily chosen initial point. The initial set of directions

chosen are the co-ordinate directions. At the completion of each itera-

tion a new direction is. defined and replaces one of the presently exist-

ing directions only if the new set of directions is at least as efficient

as the present set. If this is not the case, an additional iteration is

conducted retaining the present set of vectors. A complete description

of Powell's method and a detailed discussion of its efficiency and

convergence is contained in [Ref.2].

An existing version of Powell's method programmed in FORTRAN for use

on the IBM 360 Computer was used as a subroutine in the overall computer

program written to conduct the search technique optimization. The main

program provided the calling argument required by the subroutine to

conduct the optimization.

B. CURVE-FITTING TECHNIQUE

The curve-fitting technique used was based on standard multiple

linear regression techniques [Refs. 3 and 4] modified as follows.
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Because the test functions to be investigated were unimodal the decision

was made to fit a quadratic surface to the experimental data. Thus, the

order of the regression was double the number of input variables.

An early decision required to be made concerned exactly what proced-

ure would be used to place the test points in the input variable space.

Two possibilities were considered. A completely random selection of the

test points was one alternative. A second approach was to place the test

points throughout the space in accordance with an experimental design.

The first experimental design considered was a composite factorial design

[Ref. 5]. This approach was attractive for objective functions of few

input variables. However, the requirement for an excessive number of

test points and consequently an increased number of function evaluations

precluded the use of this design for objective functions of more than

four variables.

For functions of more than four variables it was decided to use an

orthogonal design requiring 2n+l test points, where n is the number of

input variables. The initial test point was placed in the center of the

input variable space and the remaining points were placed at a fixed

distance (0.5) in both the positive and negative direction along the

co-ordinate axes passing through the center of the design. In the

investigations a third alternative was also considered. For those cases

where the number of observations (function evaluations) available exceeded

the number required for the experimental design, the remaining points

were located randomly in the input variable space.

Once the test points were placed, the function was evaluated at these

points. The value of input variables, the squares of the input variables

and the value of the objective function for each test point were then





input to the regression subroutine to determine the regression co-

efficients of the fitted surface. The resulting fitted surface was a

quadratic of the form:

n n 2
f = E a- x- + I b. x- + constant term

i=l
1 7

i=l
1 n

Provided the quadratic was positive (negative) definite an explicit

determination of thp minimum (maximum) value of the quadratic could be

computed. In that case, the minimum (maximum) value of the quadratic

occurs at the point:

1
a '

x • = - 2" r ) l =
I , . . . , n

These values of x- were computed and substituted into the true objective

function to determine the "optimal" objective function response.-

Preliminary results indicated that the curve-fitting technique was

generating a large number of indefinite quadratic surfaces. This situa-

tion occurred more commonly when random choice was used to locate the

test points. Any indefinite quadratics generated were not useful because

it was not possible to find the location of the minimum response of the

fitted surface. Thus, an "optimum" response could not be determined in

those situations where the curve-fitting technique generated an indefinite

quadratic.

In an effort to overcome this problem, a procedure was introduced

into the curve-fitting technique to reduce the number of observations

considered by the regression procedure. The basic idea behind the pro-

cedure was for the regression procedure to restrict its consideration

to those test points that were close to the optimum. In that manner

points at a distance from the optimum did not affect the fit. It was

10





felt that this procedure would insure a better fit in the area of the

optimum and thereby, eliminate the number of indefinite quadratics

generated.

A search was made of the objective function values for each test

point. The worst 25 percent of the test points were then discarded

reducing the number of observations considered by the regression pro-

cedure. Because the curve-fitting procedure was designed to find the

minimum objective response, the worst 25 percent of the test points were

considered to be the 25 percent with the highest values of the objective

function. This procedure was then repeated eliminating the worst 50

percent of the test points.

This entire procedure was programmed in FORTRAN for use on the IBM

360 computer. The program as written is capable of handling up to 20

input variables and 50 observations of test points. A detailed

description of the curve-fitting program is contained in Appendix A.

C. TEST FUNCTIONS

Two types of objective functions were considered in the investigation;

quadratic functions, with cross product terms, and exponential functions.

The decision to include cross product terms in the quadratic functions

was made to preclude the possibility of achieving an exact fit when

employing the curve-fitting technique. In the case of exponential func-

tions, the exponent term was a quadratic function chosen so that the

function itself was unimodal

.

The test functions used were positive definite quadratic functions.

Thus, the optimum response was the minimum objective function value.

The test functions were constructed so that this minimum occurred at

values of the input variables restricted to the domain zero to one.

11





This restriction limited the selection of initial starting points for

Powell's method to points lying within this domain. Test points for the

curve-fitting technique were also restricted to the interval zero to one

for all input variables.

To insure that the quadratic functions of eight variables were in

fact positive definite, the following procedure was used to generate

eight by eight matrices of quadratic term coefficients. An eight by

eight matrix was generated and pre-multi plied by its transpose. The

resulting eight by eight matrix is assured to be positive definite.

An explicit expression of all test functions considered can be found

in Appendix B.

D. NUMBER OF VARIABLES

Functions of two different levels of input variables were considered

in the investigation. Initially, functions of three input variables

were investigated. The investigation concluded with a study of functions

of eight input variables. While these two cases are not all inclusive,

it was felt they gave a comparative indication of how well the two

techniques handled functions of low and high levels of input variables.

E. NUMBER OF OBSERVATIONS

Again two different levels of observations were considered. The low

level was fixed at 2n+l observations. This was the minimum number

required for the orthogonal design used in the curve-fitting technique.

Twice the number of observations in the low level was arbitrarily

decided upon for the high level. An exception to this high level number

was made in the case of functions of three input variables. An additional

observation was added to the high level number to allow the use of a

composite factorial design with the curve-fitting technique.

12





F. NUMBER OF TRIALS

Ten trials were conducted for each procedure that was non-deter-

ministic. These procedures included all Powell Searches and those curve-

fitting techniques where random choice was used to locate some or all of

the points.

G. MEASURES OF EFFECTIVENESS

Two measures of effectiveness were employed to compare results:

1. the mean optimum response attained by optimization technique,

2. the mean Euclidean distance between the location of the true

optimum and the location of the optimum response found by the

optimization technique.

-
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III. PRESENTATION OF RESULTS

Tables I through XI contain the results of the eleven test functions

investigated. The following definition of terms is provided to assist

in understanding the tabulated data:

TECHNIQUE - The name of the optimization technique used.

POWELL - direct search technique, Powell's method of conjugate

directions.

C.F. DESIGN - curve-fit technique, employing experimental design

to locate the test points.

C.F. RANDOM - curve-fit technique, employing random choice to

locate the test points.

75 PERCENT C.F. DESIGN - curve-fit technique, employing experi-

mental design to locate the test point, eliminating the

worst 25 percent of the test points.

50 PERCENT C.F. DESIGN - curve-fit technique, employing experi-

mental design to locate the test points, eliminating

the worst 50 percent of the test points.

75 PERCENT C.F. RANDOM - curve-fit technique, employing random

choice to locate the test points, eliminating the worst

25 percent of the test points.

50 PERCENT C.F. RANDOM - curve-fit technique, employing random

choice to locate the test points, eliminating the worst

50 percent of the test points.

#0BS - The number of observations included in the investigation.

OPTIMUM RESPONSE - The mean and standard deviation, v/here applicable,

of the optimum response found using the optimization technique.

14





The mean and standard deviation were computed considering only

the results associated with positive definite quadratics gene-

rated by the curve-fitting technique. Results associated with

indefinite quadratic fitted surfaces were meaningless.

DISTANCE - The mean and standard deviation, where applicable, of the

Euclidean distance between the location of the true optimum and

the location of the optimum response using the optimization

technique. The mean and standard deviation were computed con-

sidering only the results associated with positive definite

quadratics generated by the curve-fitting technique. Results

associated with indefinite quadratic fitted surfaces were

meaningless.

REMARKS - This column contains the number of indefinite quadratic

surfaces generated using the different curve-fitting techniques.

In addition, curve-fitting techniques that yielded deterministic

results are noted by the statement, 1 trial, in this column.

15





TABLE I

3 VARIABLES

QUADRATIC I

TRUE OPTIMUM = -7. 9875

TECHNIQUE #OBS

OPTIMUM
MEAN

RESPONSE
STD. DEV.

DISTANCE
MEAN STD. DEV. REMARKS

POWELL 7 -7.3566 0.526 0.381 0.273

15 -7.5756 0.277 0.294 0.218

C.F.

DESIGN
7

15

-7.625

-7.625

-- 0.170

0.170

- -
1 trial

1 trial

C.F.

RANDOM
7 14.9451 31.03 1.424 1.369 7 indef

quad

15 1.6504 24.01 0.608 1.026 2 indef
quad

75% C.F.

DESIGN
15 -- -- -- --

1 trial

indef
quad

50% C.F,

DESIGN

75% C.F,

RANDOM

50% C.F,

RANDOM

15 -7.5283

15 -7.2643 0.409

15 -5.8791 2.569

0.116

0.297 0.074

0.551 0.570

1 trial

7 indef
quad

7 indef
quad

NOTES:

1.

2.

C.F. design technique achieved the best result. Of interest is

the fact that increasing the number of observations did not
improve the results.

C.F. random technique was quite erratic. An improvement accomp-

anied an increase in the number of observations. However, when

eliminating the worst 25% (50%) of the test points an improve-
ment in mean optimum response and distance was accompanied by

an increase in the number of indefinite quadratics.

16





TABLE II

3 VARIABLES

QUADRATIC 2

TRUE OPTIMUM = -•59.90

TECHNIQUE #OBS

OPTIMUM
MEAN

RESPONSE
STD DEV.

DISTANCE
MEAN STD. DEV. REMARKS

POWELL 7 -58.52 1.02 0.485 0.167

15 -58.76 0.816 0.449 0.169

C.F.

DESIGN
7

15

-58.14

-58.14

— 0.290

0.290

—
1 trial

1 trial

C.F.
RANDOM

7 -23.15 35.73 0.896 0.365 8 indef
quad

15 -59.03 0.657 0.274 0.074 6 indef
quad

75% C.F,

DESIGN

50% C.F.

DESIGN

75% C.F,

RANDOM

50% C.F,

RANDOM

15 7.77

15 210.60

15 -39.82

15 161.83 219.68

0.919

2.529

0.885

1.619 1.235

1 trial

1 trial

9 indef
quad

8 indef
quad

NOTES:

1.

2.

3.

Powell's method achieved the best results at both 7 and 15

observations.

At 15 observations the C.F. random techniques achieved better
results than Powell's method. However, 6 out of 10 quadratics
generated using this technique were indefinite.

Eliminating the worst 25% (50%) of the test points did not re-

flect any improvement using the C.F. design technique. Although
the mean optimum response and distance improved when eliminating
the worst 25% of the test points using the C.F. random technique,
the improvement was accomplished at the expense of 3 more
indefinite quadratics being generated.

17





TABLE III

3 VARIABLES

EXPONENTIAL 1

TRUE OPTIMUM = 4.476 x 10
-3

OPTIMUM RESPONSE DISTANCE
TECHNIQUE #OBS MEAN STD. DEV. MEAN STD. DEV. REMARKS

POWELL 7 6.599xl0'
3

1.71xl0"
3

0.478 0.165

15 5.251xl0"
3

0.43xl0'
3

0.336 0.111

C.F. 7 6.307xl0"
3

0.366 __
1 trial

DESIGN
57.487xl0"

3
15 -- 0.766 -- 1 trial

C.F. 7 5.491xl0"
3

0.337 9 indef
RANDOM quad

15 8.018xl0"
3

2.70xlO"
3

0.558 0.268 7 indef

quad

75% C.F. 15 __ __ __ _ _ 1 trial

DESIGN indef
quad

% C.F,

DESIGN

75% C.F
RANDOM

50% C.F,

RANDOM

15 5.241x10
-3

0.389

15 1056. C26 1829.075 0.746 0.563

15 93.852xl0"
3

145.24xl0
-3

0.506 0.142

1 trial

6 indef
quad

6 indef
quad

NOTES:

1

3.

C.F. design technique achieved the best results at 7 observa-
tions and the 50% C.F. design technique proved to be the best

at 15 observations.

At 7 observations C.F. random technique achieved a better mean
optimum response than C.F. design technique. However, 9 out of

10 quadratics generated were indefinite.

Eliminating the worst 25% (50%) of the test points using the

C.F. random technique decreased the number of indefinite quad-

ratics generated. However, the mean optimum response in both
cases became worse.





TECHNIQUE

POWELL

C.F.
DESIGN

C.F.

RANDOM

75% C.F.

DESIGN

50% C.F.

DESIGN

75% C.F.

RANDOM

50% C.F.

RANDOM

#OBS MEAN

7 0.0380

15 0.0285

7 0.0306

15 0.2548

7 0.0368

15 0.0943

15 7.0428

15 0.0380

TABLE IV

3 VARIABLES

EXPONENTIAL 2

TRUE OPTIMUM = 0. 0212

MUM RESPONSE DISTANCE
STD. DEV. MEAN STD. DEV. REMARKS

i 0.0154 0.606 0.200

0.0088 0.408 0.249

0.374 -- 1 trial

0.776 --
1 trial

; 0.0092 0.694 0.238 6 indef
quad

0.0652 0.641 0.149 6 indef
quad

1.128

0.365

15 1.22xl0
7

1.22xl0
7

1.802 1.026

15 106.38 148.94 0.729 0.302

1 trial

1 trial

8 indef
quad

7 indef
quad

NOTES:

1. C.F. design technique was best at 7 observations. Powell's
method achieved the best results at 15 observations.

C.F. random techniques generated a large number of indefinite
quadratics. Eliminating the worst 25% (50%) of the test points
neither improved the mean optimum response or distance, nor
did it decrease the number of indefinite quadratics.
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DESIGN

75% C.F,

RANDOM

50% C.F
RANDOM

TABLE V

3 VARIABLES

EXPONENTIAL 3

TRUE OPTIMUM = 0.2157

OPTIMUM RESPONSE
TECHNIQUE #OBS MEAN STD. D

POWELL 7 0.5255 0.313

15 0.2969 0.056

C.F.

DESIGN
7

15

0.2232

0.3423

--

C.F.

RANDOM
7 >10

76
>10

76

15 0.2873 0.045

75% C.F.

DESIGN
15 0.4668 --

50% C.F. 15 0.2205 __

15 23.7196 46.698

15 0.3059 0.073

MEAN

0.534

0.336

0.155

0.464

2.032

0.357

DISTANCE
STD. DEV

0.205

0.110

2.252

0.126

REMARKS

1 trial

1 trial

7 indef
quad

6 indef

quad

0.662 —
1 trial

0.164 -- 1 trial

0.625 0.475 5 indef
quad

0.330 0.054 7 indef
quad

NOTES:

1.

2.

C.F. design technique achieved the best results at 7 observa-
tions. At 15 observations, C.F. design eliminating the worst
50% of the test points achieved the best results.

C.F. random techniques were extremely erratic generating many
indefinite quadratics. In the case of 7 observations, one bad

fit caused the mean optimum response to become so large as to

be meaningless.
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TABLE VI

8 VARIABLES

QUADRATIC 1

TRUE : OPTIMUM = -44.61

TECHNIQUE #OBS
OPTIMUM

MEAN
RESPONSE
STD.DEV.

DISTANCE
MEAN STD. DEV. REMARKS

POWELL 17 -41.97 1.207 1.028 0.047

34 -43.50 0.591 0.962 0.047

C.F.

DESIGN
17

34

-44.18

-27.26 21.14

0.644

1.871 1.992

1 trial

2 indef
quad

C.F.

RANDOM
17 — -- -- -- 10 indef

quad

34 -34.30 7.76 1.584 1.844 8 indef
quad

75% C.F.

DESIGN
34 -43.45 1.569 0.55 0.066 7 indef

quad

50% C.F.

DESIGN
34 -43.14 -- 0.827 — 9 indef

quad

75% C.F.

RANDOM
34 — -- -- -- 10 indef

quad

50% C.F.

RANDOM
34 -- — -- -- 10 indef

quad

NOTES:

1. C.F. desicin achieved the best resijits at 17 observat'ions. At
34 observations, Pov/ell's method proved to be the best
technique. However, it is significant to note that the
results achieved using C.F. design techniques with 17

observations is better than that achieved by Powell with 34

observations.

C.F. random techniques were a complete disaster generating
all indefinite quadratic surfaces in 3 out of 4 investigations
used.
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TECHNIQUE

POWELL

C.F.

DESIGN

C.F.

RANDOM

75% C.F.

DESIGN

50% C.F.

DESIGN

75% C.F.

RANDOM

50% C.F.

RANDOM

#OBS

17

34

17

34

TABLE VII

8 VARIABLES

QUADRATIC 2

TRUE OPTIMUM = -91.89

OPTIMUM RESPONSE
MEAN STD. DEV.

-79.56

-85.04

15.31

-16.92

9.53

4.02

49.88

17

34 676.47

34 1358.07 1308.57

34

34

34

DISTANCE
MEAN STD. DEV

0.997

0.942

0.763

1.099

0.212

0.233

1.314

3.751

3.153 1.885

REMARKS

1 trial

6 indef
quad

10 indef
quad

9 indef
quad

8 indef
quad

10 indef
quad

10 indef

quad

10 indef
quad

NOTES:

1.

2.

Powell's method achieved the best results at both 17 and 34

observations.

All curve-fitting techniques were inefficient. A probable
cause of this problem was the fact that the quadratic function
investigated here had sharply rising contours in the vicinity
of the optimum.
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TABLE VIII

8 VARIABLES

QUADRATIC 3

TRUE OPTIMUM = -68 .25

TECHNIQUE #OBS

OPTIMUM
MEAN

RESPONSE
STD. DEV.

DISTANCE
MEAN STD. DEV. REMARKS

POWELL 17 -43.29 30.42 1.201 0.454

34 -47.67 26.62 1.135 0.448

C.F.

DESIGN
17

34

154.19

1681.1 3398.9

1.011

14.68 31.56

1 trial

3 indef
quad

C .F.

RANDOM
17 — — -- -- 10 indef

quad

34 — — — -- 10 indef

. quad

75% C.F.

DESIGN
34 1617.68 1282.98 2.893 1.495 7 indef

quad

50% C.F.

DESIGN
34 -- — — -- 10 indef

quad

75% C.F.

RANDOM
34 — -- — -- 10 indef

quad

50% C.F.

RANDOM
34 -- — — — 10 indef

quad

NOTES:

1. Powell's method achieved the best results at both 17 and 34

observations

.

All curve-fitting techniques were inefficient. A probable
cause of this problem v/as the fact that the quadratic function
investigated here had sharply rising contours in the vicinity
of the optimum.

23





TECHNIQUE

POWELL

C.F.

DESIGN

C.F.

RANDOM

NOTES

1.

TABLE IX

8 VARIABLES

EXPONENTIAL 1

TRUE OPTIMUM = 1.3x10
-9

OPTIMUM RESPONSE
#OBS MEAN STD. DEV

DISTANCE
MEAN STD. DEV

17 1245.08xl0~
9
3605.4xl0~

9
1.072

34 8.46xl0'
9

18.38xl0"
9

0.925

0.214

0.188

17 2.3x10"

34 10.6x10

17

-9

0.526

0.674

34

75% C.F.

DESIGN
34 81.93x1

50% C.F.

DESIGN
34 3.31x10

75% C.F.

RANDOM
34 --

50% C.F.

RANDOM
34 --

•9 ,„> nr , rt-9

-9
0.542

REMARKS

2.

1 trial

9 indef
quad

10 indef

quad

10 indef
quad

7 indef
quad

9 indef
quad

10 indef
quad

10 indef
quad

C.F. design technique achieved the best results at 17

observations while Powell's method proved best at 34 observa-
tions. However, the results at 17 observations using C.F.

design were better than those using Powell's method with 34

observations.

At 34 observations, C.F. design eliminating the worst 50% of

the test points achieved results superior to Powell's method.
However, 9 out of the 10 quadratics generated were indefinite

C.F. random techniques were completely inefficient generating
indefinite quadratic surfaces in every situation they were
used.
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TABLE X

8 VARIABLES

EXPONENTIAL 2

TRUE OPTIMUM = 1.02xlO"
25

OPTIMUM RESPONSE DISTANCE
TECHNIQUE #OBS MEAN STD. DEV. MEAN STD. DEV. REMARKS

POWELL 17 61.27xlO"
25

108.13xl0'
25

1.096 0.190

34 14.40xl0"
25

23.61xl0"
25

0.949 0.204

C.F. 17 33.4xl0"
25

-- 0.591 1 trial

DESIGN
34 __ __ __ _

_

10 indef
quad

C.F. 17 _ _ -_ _ _ - - 10 indef
RANDOM quad

34 -- 10 indef
quad

75% C.F. 34 18599xl0"
25

26296xl0"
25

1.262 0.495 7 indef
DESIGN quad

50% C.F. 34 94.3xl0"
25 — 0.696 9 indef

DESIGN quad

75% C.F. 34 _ — — — _ _ _ _ 10 indef
RANDOM quad

50% C.F. 34 — _ — — _ _ —

_

10 indef
RANDOM quad

NOTES:

1. At 17 obs ervations C.F. design achieved the best result s while
Powell's method was superior at 34 observations.

C.F. random techniques were completely inefficient generating
indefinite quadratic surfaces in every situation they were used
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TECHNIQUE

POWELL

C.F.
DESIGN

C.F.

RANDOM

75% C.F,

DESIGN

50% C.F,

DESIGN

75% C.F,

RANDOM

50% C.F
RANDOM

NOTES:

TABLE XI

8 VARIABLES

EXPONENTIAL 3

TRUE OPTIMUM = 9.91x10
-6

OPTIMUM RESPONSE
#OBS MEAN STD. DEV.

17 67.95xl0"
6

50.18xl0"
6

34 17.0xl0"
6

5.11xl0"
6

>10
26

DISTANCE
MEAN STD. DEV

1.078 0.269

0.960 0.277

0.516

1.912 1.903

17 12.92x10'

34 >10
26

17

34 1172.35xl0'
6
1147.92xl0"

6
1.003 0.349

34 21.74xlO"
6

12.09xl0"
6

0.608 0.104

34 13.63xlO~
6

0.836xl0~
6

0.540 0.025

34 10'

34

2.482

REMARKS

1 trial

4 indef
quad

10 indef
quad

8 indef

. quad

2 indef
quad

6 indef

quad

9 indef
quad

10 indef
quad

C.F. design achieved the best results at 17 observations.
Although Powell's method proved to be the best at 34 observations
the results achieved were not as good as those achieved using
C.F. design with 17 observations.

At 34 observations, C.F. design eliminating the worst 25% (50%)
of the test points improved the mean optimum response and dist-
ance. However, when eliminating the worst 25% a decrease in the

number of indefinite quadratics occurred, while elimination of

the worst 50% caused an increase in the number of indefinite
quadratics.

C.F. random techniques were inefficient due mainly to the

large number of indefinite quadratics generated.
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IV. CONCLUSIONS

Overall, the direct search technique, Powell's method of conjugate

directions, proved to be the best technique of those considered in the

investigations. A particularly desirable feature of Powell's method was

the fact that results achieved using this technique converged to the true

optimum response when increasing the number of observations. Thus,

Powell's method exhibited the characteristic that the more information

(function evaluations) available, the better the results that could be

expected to be achieved. A decrease in the distance between the loca-

tion of the true optimum response and the location of the optimum found

using Powell's method was also experienced as the number of observations

was increased.

The curve-fitting techniques, as a whole, were quite erratic. The

biggest single problem area was the fact that the curve-fitting tech-

niques generated a large number of indefinite quadratic surfaces. This

situation was prevalent in both the case where the test points were

located by random choice and the case where experimental design was

used to locate the test points. However, it should be noted that the

problem of indefinite quadratics arose in the curve-fitting techniques

employing experimental design only in those cases where the total number

of observations exceeded that number required by the experimental design.

In this situation, the remaining number of test points were located by

random choice. Thus, the results achieved strongly indicate a high

correlation between the generation of indefinite quadratic surfaces

and the use of random choice to locate any or all of the test points.
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A second problem encountered when using curve-fitting techniques

was the trend toward higher standard deviations of the optimum responses.

This situation resulted from the fact that the curve-fitting techniques

generated many bad fits with respect to the optimum response. This

problem coupled with a reduction in the sample size due to the genera-

tion of indefinite quadratics led to a higher variance of optimum

response, thus a high standard deviation.

To overcome these problems the effect of reducing the number of

observations considered by the curve-fitting technique by elimination

of the worst 25% and 50% of the test points was investigated. This

approach did not yield consistent results. In some cases the number of

indefinite quadratics generated was reduced, while in other cases the

number remained the same or increased. In addition, in many cases where

the number of indefinite quadratics was reduced, an increase in the

number of bad fits with respect to the optimum response was experienced.

However, curve-fitting" techniques do merit consideration under

certain circumstances. Provided that the objective function did not

have sharply rising contours in the immediate location of the true

optimum, curve-fitting techniques employing experimental design, where

the number of test points considered was exactly equal to the number

required by the experimental design, provided results better than those

achieved by Powell's method. In fact for some of the test functions

investigated, the results achieved using the curve-fitting techniques

employing experimental design were better than those achieved using

Powell's method with twice the number of observations.

Thus, on the whole Powell's method is an efficient method of

optimization that consistently achieved better results than any of the
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curve-fitting techniques investigated. Under certain circumstances,

the curve-fitting technique employing experimental design to locate

test points provided better results and was more efficient than Powell's

method.
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V. SUGGESTED FUTURE INVESTIGATIONS

The problem of generating indefinite quadratic fits when using

curve-fitting techniques was never overcome. In future investigations

one way of addressing this problem would be to constrain the regression

procedures so that the coefficients of the quadratic terms are all

positive. Another method that could be used, either in connection with

the above technique or by itself, is to force the fitted surface

through a certain point. As a suggestion it might prove useful to

force the fitted surface through the best of the test points. The best

test point being chosen as the one with the smallest function value in

the case of a minimization problem.

Another interesting question that could be considered is whether

a combination of the search and curve-fitting procedures would achieve

better results than either procedure achieved by itself. A suggested

approach to this question would be to use Powell's search initially to

find the general area of the optimum solution. Once this has been

achieved, the curve-fit design procedure could be used in this general

area to obtain the optimum solution.
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APPENDIX A

CURVE-FITTING PROGRAM

The purpose of the curve-fitting program was threefold:

1) determine the location of the test points and their respective

functional values,

2) fit a quadratic surface to these test points,

3) determine the location of the optimum response of the resulting

"fitted" quadratic surface and compute the true functional

value at that point.

A. LOCATION OF TEST POINTS

The program considered two different methods for locating test

points in the input variable space, random choice or placement in

accordance with an experimental design. Input data to the program pro-

vided the basis for selection of the appropriate method. A uniform

random number generator was used in connection with the method of

random choice. The two experimental designs used, composite factorial

and orthogonal, were written into the program to be constructed by the

computer as they were needed.

Upon selection of the appropriate method a matrix v/as constructed,

each row of the matrix containing one observation of the input variables.

At this stage the number of columns in the matrix was equal to the number

of input variables. The size of the matrix was then expanded in the

following manner. For each observation the value of each input variable

was squared and stored in the corresponding row of the matrix, thus,

doubling the number of columns of the matrix. A final column was added
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to the matrix by computing the function value corresponding to each

observation of the input variables.

The completed matrix was then input to the curve-fitting procedure

unless a reduction in the number of observations was called for. In

that case the function values were scanned by the computer to determine

the worst 25% or 50% of the values as appropriate. These worst function

values along with their corresponding input variables and their squares

were eliminated from the matrix reducing the number of rows in the

matrix input to the curve-fitting procedure.

B. FITTING THE QUADRATIC SURFACE

Multiple linear regression techniques were used to fit a quadratic

surface to the test points. This section of the program consisted of

three subroutines and the procedures for computation of the regression

coefficients. The three subroutines used were CORRE, ORDER, and MINV.

These subroutines are included in the IBM 360 Scientific Subroutine

Package and are stored internally on the computer.

The purpose of subroutine CORRE was to compute the means, the

standard deviations and a matrix of correlation coefficients of the

variables included in the regression. In this case, the original input

variables, their squares and the function values. The matrix constructed

in the initial section of the program served as input to CORRE to accomp-

lish these tasks.

The resulting correlation coefficient matrix from subroutine CORRE

was then input to subroutine ORDER. The function of subroutine ORDER

was to compute a matrix containing the correlation coefficients of the

independent variables and a vector containing the correlation coefficients

of the independent variables with the dependent variables. In the
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program, the original input variables and their squares were designated

the independent variables, and the function value was designated the

dependent variable.

To check the validity of the regression the matrix of correlation

coefficients among independent variables calculated by subroutine ORDER

was input to subroutine MINV. Subroutine MINV computed the determinant

of this matrix. If the determinant was non-zero, the regression was

valid and the program continued. However, if the determinant was zero

the program terminated due to the presence of multi-col linearity in the

regression.

Provided the regression was valid, the next step was to compute the

regression coefficients of the independent variables. To accomplish

this task a portion of subroutine MULTR, also included in the IBM 360

Scientific Subroutine Package, was used. The standard deviations com-

puted by subroutine CORRE, and the matrix of correlation coefficients

among the independent variables and the vector of correlation

coefficients between the independent variables and the dependent

variable computed by subroutine ORDER served as input to this subroutine,

The output of the subroutine was a vector containing the regression

coefficients.

C. LOCATION OF OPTIMUM RESPONSE

The vector of regression coefficients contained the necessary

information to determine the location of the optimum response of the

fitted surface. The length of this vector was 2n, where n is the number

of input variables. The resulting fitted quadratic was of the form:

n n
2

f = z a. x. + z b. x. + constant
i=l

n 1

i=l
]
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The value of the a.'s was contained in the first n elements of the vector

of regression coefficients and the value of the b- 's was contained in

the last n elements.

The location of the optimum (minimum) response was determined as

follows. The values:

1
a '

x • - ~ p" 7" j i i , . . . , n

,

were computed. These values uniquely determined the location of the

minimum response of the fitted quadratic provided that the quadratic

was positive definite. A vector containing the location of the optimum

response of the fitted surface was then substituted into the true

objective function to determine the optimum objective response for the

curve-fitting procedures.
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APPENDIX B

TEST FUNCTIONS

I. THREE VARIABLE FUNCTIONS

A. QUADRATIC 1

F = X
T

2 1 2

4 3

6

X + X

True Optimum = -7.9875

-6

-8

-13

At X, = 0,

x
2

= 0,

x
3

= o,

625

4

725

QUADRATIC 2

F-XT
29 26 30]

29 34

45

X + X -80.2
-81.0
-98.4

True Optimum = -59.90 At X
]

=

x
2

=

x
3

= o

EXPONENTIAL 1

F = exp/ X

(

T
X + X -10

- 6
-

8J

True Optimum = 0.004476 At X
1

=

x
2

=

x
3

= o

2727

8636

3636

D. EXPONENTIAL 2

F = exp/X -3

-2

4

X + X
T

-9

-3

1

True Optimum = 0.0212 At X
1

=

x
2

=

x
3

= o

,6364

,9318

,8182
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EXPONENTIAL 3

F = exp / X
T

8 2-3
2 -2

4

X + X

-3

2

True Optimum = 0.2157 At X
]

= 0.2273

X
2

= 0.8864

X
3

= 0.3636

II. EIGHT VARIABLE FUNCTIONS

A. QUADRATIC 1

F = X
T n

2 4

1

5

11

2

2

4 2

1 1

6

12

5

X + X
T

True Optimum = -44.61 At X
l

= 0. 6

X
2

= 0.9

X
3

= 0.2

x
4

= 0.8

QUADRATIC 2

F = X
T

93 -53 -54 32 13 31 -67 43~

103 54 -40 -28 1 46 -1

50 -28 -1 -20 54 -30

22 8 7 -30 14

32 -11

25

3

-30

69

-15

30
-45

- 57

True Optimum := -91.89 At X
l

X
2

X
3

= 0.7

= 0.7

= 0.4

x„ = 0. 3

-18.8
-13.6
-38.0
-24.4
-25.8
-23.8
-24.8
-10.4

Xo =

X + X

0.7

0.2

0.3

0.8

T r

X
6

=

X
7

=

Xo =

-96.2
-75.0

6.4
3.2
4.0

-65.8

48.0
-89.4

0.6

0.8

0.2

0.3
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QUADRATIC 3

F = X
T

43 -23 16 -29 25 -22 22 -21

50 -22 53 -45 39 -39 37

19 -28 24 -21 21 -20

106 -69

76

60 -60 57

-45 45 -43

41 -40 37

45 -35

_ 38_

True Optimum = -68.25 At X
]

= 0.7

x
2

= 0.1

X
3
=0.2

X„ = 0.4

X + X - 1.0
- 78.0

32.8
-146.2

92.0
- 85.2

79.6
- 83.

Oj

= 0.1

= 0.6

= 0.2

= 0.6

EXPONENTIAL

/
F = exp -3

-2

4

10

V

True Optimum = 1.3 x 10"

-4

-2

8

At X
1

=

h-
U =

X + X

0.9

0.7

0.3

0,9

T r-11.4 ^
- 7.6

8.0
-16.4
-15.0
- 7.4

1.2
- 2.0

/

X
5

=

X
6

=

0.7

0.3

0.6

0.4

EXPONENTIAL 2

/ T
F = exp 1/144 X

1

V

806 374 473 390 456 388 570 620
395 453 417 585 275 405 452

587 529 696 417 583 535
810 574 297 403 589

1581 411 644 624

385 591 372

1574 693

930

X + X
t r25.84

-20.95

•27.40

•25.00

•34.75

21.61
•42.48

32.72

^i
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True Optimum = 1.02 x 10
25

At X
]

=

h-

X„ =

0.1032 X
5

= 0.3980

0.1502 X
6

= 0.7504

0.1759 h = 0.9039

0.3889 Xo = 0.8039

F. EXPONENTIAL

F exp 1/144 X
T

295 171

687

-170
- 90

316

V
True Optimum = 9.91 x 10

-6

123

136
-140
302

125
-138
-150
- 42
329

At X.

128

89

28

149

199
687

5-

138-

196-

-192
-108
-125

707

X, =

0.4004

0.4158

0.6355

0.7187

24 X + X
T

-4.48
N

191 -6.76
44 -1.63
14 -2.27

114 -1.28

122 -10.40

42 -7.53

269 -1.84
/

X
5

= 0.4314

0.7791

0.8928

0.2144
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