IMPROVING TSS/360 PERFORMANCE BY TUNING THE TABLE-DRIVEN SCHEDULER

Jerry Kelcey Baird

Approved for public release; distribution unlimited.

T139345

I L. RARY

AVAL POCTON SCHOOL MC . LEY, MLIF. 53940 Improving TSS/360 Performance By Tuning the Table-Driven Scheduler

by

Jerry Kelcey Baird Captain, United States Marine Corps B.S., University of Utah, 1966

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL June 1971

LIBRARY AVII TO THE INTERCHOOL COT P 1 . 90940

Thes 3 3149 c.1

ABSTRACT

During the period of time from August 1970 through January 1971 and while employing the TSS/360 Time-Sharing System at this institution, it was observed by the user community that the performance of the system was poor compared to the previously used time-sharing system - the CP/67 (version 3, from Cambridge Research Center). For this reason, the problem of improving TSS/360 performance was undertaken as a thesis project. Specifically, the improvements consist of an increase in system performance - responsiveness and throughput - by judiciously adjusting the parameters of the TSS/360 Table-Driven Scheduler in accordance with the Principles of Balanced-Core Time and Working Set Size.

A number of test runs were made, and the results are given, employing different schedule tables. A set of benchmark programs (or script) were developed and used with these tests that were characteristic of a "typical" or "realistic" load at this installation.

TABLE OF CONTENTS

.

I.	INT	RODUCTION	7
II.	NAT	URE OF THE PROBLEM	9
III.	PRI	NCIPLES AND CONCEPTS	10
	Α.	PERFORMANCE	10
	В.	FOLDING PROGRAMS	12
	С.	LOCALITY OF REFERENCE	13
	D.	WORKING SET AND WORKING SET SIZE	14
	Ε.	BALANCED CORE TIME	15
IV.	TSS.	/360 TABLE-DRIVEN SCHEDULER	16
	Α.	STRUCTURING OF SCHEDULE TABLE ENTRIES	20
		1. The Starting Set	21
		2. The Looping Set	23
		3. The AWAIT Set	24
		4. The Holding Interlock Set	24
		5. The Waiting-For-Interlock Set	25
v.	EXP	ERIMENTAL PROCEDURE AND RESULTS	25
	Α.	DEVELOPMENT OF A BENCHMARK	25
	в.	MEASUREMENT TECHNIQUES	27
	С.	TOOLS FOR MEASURING PERFORMANCE	27
	D.	PRESENTATION AND DISCUSSION OF RESULTS	28
		1. Test 1	30
		2. Test 2	30
		3. Test 3	33

.

4. Test 4	33
5. Test 5	37
VI. CONCLUSIONS AND RECOMMENDATIONS	43
APPENDIX A SCHEDULE TABLE PARAMETER DEFINITIONS	47
APPENDIX B SCHEDULE TABLES USED FOR DIFFERENT TESTS	54
LIST OF REFERENCES	60
INITIAL DISTRIBUTION LIST	62
FORM DD 1473	63

LIST OF FIGURES

1.	Contents of the Schedule Table Entry	17		
2.	Maintenance of Task Status Index Lists	19		
3.	TSS/360 Schedule Table Example	22		
4.	Naval Postgraduate School IBM 360 Model 67	29		
5.	TSS/360 Test 1 Load Conditions and Performance Statistics	31		
6.	TSS/360 Test 2 Load Conditions and Performance Statistics	32		
7.	TSS/360 Test 4 Load Conditions and Performance Statistics	34		
8.	TSS/360 Test 5 Load Conditions and Performance Statistics	39		
9.	Response Time Comparisons for Fortran Compilation of Test 5	40		
10.	Response Time Comparisons for Small PL/1 Compilations of Test 5	40		
11.	Response Time Comparisons for EDIT Script of Test 5 4			
12.	Throughput Comparisons for Fortran Compilation of Test 5	4ı		
13.	Throughput Comparisons for EDIT Script of Test 5	42		
14.	Schedule Tables Used for Different Tests	54		
	Bl. Old TSS/360 Schedule Table	54		
	B2. New IBM Research Schedule Tables	56		
	B3. Test 4 (Run 5) Schedule Table Modifications -	58		
	B4. Test 5 - Schedule Table Modifications	59		

ACKNOWLEDGEMENTS

I am grateful to Professor Gordon Syms for his help as my thesis advisor. Without his consistent motivation to seek improvements in the performance of time-sharing systems, this particular thesis project would not have been possible.

I am also greatly appreciative of the efforts and many hours that Mrs. Pimporn C. Zeleny, of the W.R. Church Computer Center programming staff, spent in helping with the TSS/360 system. I would also like to thank my classmates who helped with the terminal sessions.

I. INTRODUCTION

Since the initial release of the time-shared operating system, TSS/360, in October 1967, performance has improved significantly with each subsequent release. However, for the period from August 1970 to February 1971, the Naval Postgraduate School converted from the CP/67 time-sharing system to the Time-Shared System, TSS/360, and found the new system undesirable to the user community in terms of system performance - responsiveness and throughput. Because of its poor performance, TSS/360 was short-lived at the school and was never given an opportunity through testing and evaluation procedures to indicate its worth and future use as a good performance time-sharing utility.

The objective of the research for this thesis was to find ways of improving the performance of TSS/360 at the Naval Postgraduate School.

After having read the available literature on the TSS/360 system, it seemed that the key area for study and work was the scheduling algorithm. At first a simulation model of the TSS/360 scheduling algorithm looked like a fruitful area of endeavor; however, this area was abandoned because of the time factor in building such a detailed simulation model and since it had taken John McCredie and Steven Schlesinger of Carnegie-Mellon [Ref.1] about a year to write such a model. They describe a modular simulation

model designed to aid in determining the value of entries in the TSS/360 schedule table. They showed that a useful model can be designed to answer a limited set of questions about a complex system without detailed modeling of all system components.

Another alternative, and the one that was finally pursued, investigated, and tested, was that of methodically altering the parameters of the TSS/360 Table-Driven Scheduler to achieve optimum system performance for the particular IBM 360/67 hardware configuration available.

In order to test and evaluate the performance of TSS/360, which was based on five test runs with different schedule tables, it was first necessary to construct a set of test programs (a benchmark or script) that would be representative of a realistic load on the system. This alone was a difficult task since, in a time-sharing environment, many user programs are in contention for similar system resources and at any particular time, there could be many demands or requests for a particular resource.

Another objective of this paper is to compile the available literature regarding the performance of time-sharing systems that apply to TSS/360 and show by experimental tests that these principles and concepts improve system performance.

II. NATURE OF THE PROBLEM

When this institution purchased the IBM 360/67 computing system in 1968, TSS/360 time-sharing operating system was not yet available (with the bugs removed), but the future employment and implementation of TSS was the big factor and sales promotion feature in purchasing the IBM 360/67 hardware configuration. As an alternate, CP/67 (version 3 from Cambridge Research Center) was used successfully for nearly two years. Then announcement was made to the user community that in August 1970 the IBM 360/67 would be operated as it was originally intended and that TSS/360 would replace the CP/67 time-sharing system. Prior to implementation by the computer facility programming staff, the TSS/360 was debugged and tested; however, little consideration was given to tuning the system to the job load of the Naval Postgraduate School environment.

As previously stated, the TSS/360 time-sharing system was used for about six months during which time the performance was quite unacceptable to the user community. It was observed that heavy paging users could ruin the performance; i.e., a few users manipulating large matrices or having many subroutines not properly linked could decrease the responsiveness to the other users. It was for this reason that this thesis project was initiated and motivated.

The two basic approaches that have been used for investigation of existing time-sharing systems have utilized either the analytic or simulation techniques. The analytic approach was the technique used to improve system performance of TSS/360. By methodically adjusting the parameters of the TSS/360 Table-Driven Scheduler using the principles of Balanced-Core Time and Working Set Size, improvement of the performance of the system can be achieved. Walter J. Doherty [Ref.2] showed that the performance of Release 4 Schedule Table of TSS/360 at the T.J. Watson Research Center was dramatically improved in a three-month period.

III. PRINCIPLES AND CONCEPTS

The principles and concepts discussed in this section are a compilation of the available literature regarding the improvement of performance of time-sharing systems as they pertain to TSS/360.

A. PERFORMANCE

Performance, appraised by Calingaert [Ref.3] as an independent entity, does not exist. The concept of performance can have a broad spectrum of meaning to different classes of people. However, fundamentally, performance of a computer is defined as the degree to which a computing system meets the expectations of the person involved with it. Some of the terms that are often included as aspects of performance are

responsiveness, throughput, turn-around time, availability, reliability, number of terminals supported, CPU utilization, channel and device utilization, and efficiency.

To a user of TSS/360 sitting at a terminal, the ability of the system to respond to his commands is his predominant view of performance [Ref.4]. A terminal user does not care if only one person or a hundred people are using the system simultaneously with him so long as the user thinks that there is a complete and dedicated computer at his disposal to provide certain services to him. A user would be much more irritated if he expected a TSS/360 edit request to respond in three seconds but it took five seconds than if he expected a response of ten minutes to some complex mathematical equation but it took thirty minutes. In other words, the system should be much more responsive to those requests to which a user expects an immediate reply, than to those requests during which the user knows that his attention can be turned elsewhere. (He could execute these programs in the background batch operation if the response is too slow.) This was a primary assumption that was made while setting out to improve TSS/360 performance.

It is most important to a system manager to know the number of terminals that TSS/360 can support, and it is also important to consider the categories of work that the terminal users are doing. As Doherty points out in his paper, an intuitively obvious but rarely mentioned concept is that for some categories of trivial work, the number of terminals

. .

receiving adequate response may increase only after a threshold of human performance is reached. In other words, if the system is responding at a rate slower than a person's response time, any initial improvements in system performance will first result in the user's getting more work done; and only then will the system be able to handle more users at that level of responsiveness. By allowing longer delays in processing long-running programs as the load increases, it is possible to ensure that the very short jobs will constantly be provided with a fast response.

B. FOLDING PROGRAMS

Sayre [Ref.5] states: "By the unfolded form of a program we mean the form a program would take if it had available to it a large enough uniform memory to hold both itself and its data...On the folded forms the addresses have been rearranged -- folded-to-fit into the smaller address space actually available." In TSS/360, unfolded forms of programs and data exist in virtual memory. When a program is executed, portions of the program and its data are brought automatically into main memory for execution, which will result in automatic folding of the program if its complete execution space requirements are larger than the main memory available to hold it. McCredie [Ref.6] expressed in his paper that excessive overhead and long delays while pages are transferred into and out of core are two potential dangers of paging designs. It is important to fold a program into as small a

space as possible to prevent a degenerate situation called "thrashing" from occurring due to an unnatural folding. "Thrashing," as Denning [Ref.7] states, may also occur when a page is pushed from core to make room for another, but then is demanded again and brought back into core. Many programs can reach this state, and the paging rate can get so high that all productive work ceases. It is important to maintain a high degree of folding since it permits many programs to be folded into main core simultaneously, thereby providing a potentially significant increase in the level of multiprogramming. The dynamic relocation hardware available on the IBM 360/67 makes the automatic folding concept possible.

C. LOCALITY OF REFERENCE

The program performance on any paging system is directly related to its page demand characteristics. A program which behaves poorly accomplishes little computation on the CPU before making a reference to a page of its virtual memory that is on back-up storage, and thus it spends a good deal of time in waiting for pages to be read into core memory. A program which behaves well references storage in a more acceptable fashion, utilizing the CPU longer before referencing a page which must be brought in from back-up storage. This characteristic of storage referencing is often referred to as a program's locality of reference and can be found in Brawn's and Gustavson's paper [Ref.8]. Therefore, a program's locality of reference will influence the degree of folding to

which that program can be subjected with a minimal influence on its performance. Doherty has shown that a program with good locality will run more efficiently in a small execution space than one with poor locality.

D. WORKING SET AND WORKING SET SIZE

P.J. Denning [Refs.9 and 10] has investigated working set models with regard to program behavior in a virtual memory environment such as in the IBM 360 Model 67. The working set W(t,T) of a program is the set of pages referenced in the T page references immediately prior to time t. As time progresses, W(t,T) may or may not change; however, the better the program's locality of reference, the less likely it is that $W(t+1,T) \neq W(t,T)$. From Denning's paper, it appears natural to try to fold a program in such a way that the program's working set for a given time interval fits entirely in core memory. Reports of Fine, Jackson, and McIssac [Ref.11] provide some experimental evidence that the working set concept is a reasonable assumption for program paging behavior. Denning defines the working set size S(t,T) of a program, at time t, as the number of pages contained in the working set W(t,T). Therefore, it is possible to have the working set size remain unchanged and have the working set change. It appears natural to try to refold the program whenever its working set changes but, as Doherty indicates in his paper, it is difficult to do since it is not known in advance just when the working set is changing. So in most paging systems, a working set size change is more

easily detectable; hence, it is possible to detect working set changes at least when the working set size changes. Doherty describes a method for doing this, and his method is outlined below. The dynamic relocation hardware of the Model 67 system makes the application of this concept possible.

Using the concepts of working set, working set size, and locality of reference, Doherty states:

"During a single interaction between a user at a terminal and TSS/360, several programs are usually executed for that user. Thus for the virtual execution time which spans this interaction, the working set size may or may not change; however, the working set will almost always change several times. Furthermore, for those programs having good locality of reference, the working set size during any one time slice will usually be much smaller than the working set size for the whole interaction time interval. And, in addition, the maximum working set size for all the time slices will probably always be smaller than the working set size for the whole interaction time interval. For those programs having poor locality of reference, the working set size for each time slice may frequently approach the working set size for the entire interaction time interval. Good locality relates more to the rate at which new pages enter W(t,T) than to its actual size."

E. BALANCED CORE TIME

From the previous discussion, programs having poor locality of reference and a large working set size would greatly reduce the level of multiprogramming if allowed to remain in core for very long periods of time. This result would affect throughput and responsiveness, since any new demands for service could not be honored quickly because core would be tied up. The Principle of Balanced-Core Time states that the length of the time slice in terms of virtual CPU execution time for any one task is inversely proportional to the

working set size in that interval. Therefore, this concept will allow good locality programs to progress very rapidly, whereas it will minimize the elapsed time that any large program (large working set size) can tie up core memory. In other words, a minimum time slice length will then be set for programs with large S(t,T) and poor locality to prevent paging overhead from dominating the system. In order to compensate for this compromise, the duration between large program time slices will be made much longer than the duration between time slices for smaller working set size programs. As a result, the level of multiprogramming and responsiveness will increase since more core is available more often. In addition, the degree of CPU utilization will increase.

IV. TSS/360 TABLE-DRIVEN SCHEDULER

The table-driven scheduler [Refs.12 and 13] is an algorithm which schedules and dispatches tasks within the multiprogrammed, time-shared environment. More specifically, the scheduler consists of a set of programs in the resident supervisor of TSS/360 used for scheduling, and consists of a static and resident table consisting of a variable number (256 maximum) of 28-byte entries. The 28-byte entries are called levels of the schedule table of Schedule Table Entries (STE). Each entry in any one level of the schedule table contains sufficient information to completely control
the execution of a task. The format of the schedule table entry is depicted in Figure 1.

l BYTE	l BYTE	2 BYTES	l byte	l BYTE	2 BYTES
LEVEL	PRI- ORITY	QUAN- TUM LENGTH	MAX QUANTA COUNT	MAX PAGES ALLOWED	MAX DISK I/O

l BYTE	l BYTE	2 BYTES	l BYTE	l byte	l byte
SCAN THRESH- OLD	PULSE LEVEL	AWAIT EXT.	DELTA TO RUN	TIME SLICE END	MAX PAGES TSE

l BYTE	l BYTE		1 BYTE		
		1 BIT	l BIT	l BIT	
AWAIT LEVEL	TWAIT LEVEL	RE- COMPUTE FLAG	PRE- EMPT FLAG	STEAL REQUEST	MAX RELOC. PER QUANTUM

l BYTE	l byte	l byte	l BYTE	l byte
HOLDING INTER- LOCK	LOW CORE HOLDING INTER- LOCK	WAITING ON INTER- LOCK	CONVER- SATIONAL WRITE ONLY	LOW CORE FORCE TSE

l BYTE	l BYTE	2 BYTES
UNUSED	NEXT STEAL LEVEL	DRUM SHARE

Figure 1. Contents of the Schedule Table Entry

Each task which enters the system has another table to describe itself to the system called the Task Status Index (TSI). Each TSI has a pointer to a level in the schedule table. Therefore, by changing the value of that pointer a task will be given a completely new set of scheduling parameters.

All TSI's in the system are chained together on one of two lists called the active and inactive lists. The active list has two logical subdivisions called the dispatchable and eligible lists. The dispatchable list consists of tasks occupying core storage and waiting for the CPU, and in most cases, whose Scheduled Start Time (SST) is less than the Master Clock (MC). When the SST of a task is less than the Master Clock, the task is said to be behind schedule. Tasks in the dispatchable lists are ordered according to their status as "execute bound" or "I/O bound." Those with heavy paging demands (I/O bound) are dispatched first.

The eligible list consists of tasks which are waiting for entry to the dispatchable list, i.e., which are ready to execute but have not yet been brought into main storage. These tasks are ordered by priority with the lowest priority number first on the list.

The inactive list consists of tasks waiting on long delay type stimuli, such as a terminal interrupt. These tasks, which are in AWAIT or TWAIT status, are incapable of continuing execution until a particular interruption occurs. Figure 2 depicts the movement of tasks among these three lists.

Figure 2. Maintenance of TSI Lists

The schedule table controls the order in which tasks are brought into the dispatchable list and the conditions under which the task will leave the dispatchable list.

The fields of each Schedule Table Entry (STE) can be classified into six logical areas.

The first is a set of fields that control dispatching, i.e., the order in which tasks move from the eligible to the dispatchable list (STEPRIOR, STEDELTA, STERCMP).

The second is a set of fields that provide limits that determine when a task shall be time sliced and leave the dispatchable list (STETSVAL, STEQUANT, STEMAXCR, STEAWTEX, STEPRMT).

Third is a set of fields that specify the level transition that will be made when the respective limit or stimulus has been reached (STEPULSE, STETSEND, STEMPRE, STETWAIT, STEAWAIT, ATEHLCK, STELCHL, STEWLCK, STECWO, STELCF, STEPRJ3, STENSL).

Next is one field which can stimulate a change in the order of tasks on the dispatchable list (STEMRQ).

Fifth is a set of fields which allow the resident supervisor to release some of a task's pages rather than time slice the task (STEST, STESRI).

Finally, there is a field which can override the system calculated drum share of private pages for a task (STEDSH).

Appendix A contains a description of each of the fields or parameters within a schedule table entry.

A. STRUCTURING OF SCHEDULE TABLE ENTRIES

By implementing the scheduling principles and concepts previously discussed, a wide spectrum of scheduling strategies can be implemented by altering only the entries within the schedule table.

In constructing the schedule tables according to the table scheduling strategies, different sets of levels are grouped according to some primary goals of scheduling. Several particular programs (tasks) are treated differently than other programs, e.g., system operator task, bulk I/O task, logon, and logoff. Figure 3 shows an example of a schedule table. All other programs are divided into the interactive and batch categories. In general, the same sets of levels exist for both kinds of programs, except that interactive programs have priority over batch programs; that is, interactive programs, initially, have a greater urgency to start than do the batch. The number of batch programs allowed to run simultaneously is arbitrarily restricted so that adequate space will be available for anticipated interactive programs. The interactive sets of table levels are grouped according to the following:

1. The Starting Set

The starting set of table levels are used to handle new inputs from the terminal. The functions of this set of table levels are to facilitate a rapid reply to the terminal, if possible, and to make an initial judgment of the present working set size of longer running programs, so that the best entrance to the looping set of table levels can be chosen for the particular program.

To accomplish this, several successive table levels with high priority, small execution time limits (100 milliseconds), and increasingly larger core space limits (16, 32,

	L 2 7 2 1	Р К I R	T S V A L	Q U A H T	E A X C B	H A R B D	P D L S E	А Ч Т 2 Х	D R L T A	T S E N D	П Р 8 2	T V A I T	A d A I T	RP CR RR PP T	R Q	H L C K	L C K L	W L C K	P R J 1	₽ R J √	P R J J	P R J 4
SYSDPERO STARTING INTERACTIVE INTERACTIVE SET INTERACTIVE INTERACTIVE INTERACTIVE INTERACTIVE INTERACTIVE INTERACTIVE OBATCH BATCH	00 D1 02 03 04 05 07 09 00 00 00 00 00 00 10 11 13 14 15	05 18 18 18 18 18 18 18 18 18 18 18 18 18	0 0 2 6 0 0 1 0 0 0 1 3 0 0 2 6 0 0 0 1 3 0 0 1 3 0 0 2 6 0 0 0 2 6 0 0 0 1 3 0 0 2 6 0 0 0 2 6 0 0 0 1 3 0 0 0 1 3 0 0 0 2 6 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	20 10 10 10 10 10 10 10 10 10 1	PF FF FF FF FF FF FF FF	00 01 02 04 05 05 07 08 07 08 07 08 07 08 07 08 07 08 07 08 07 08 11 12 14 15	00000 0000 0000 0000 0000 0000 0000 0000	00 00 00 00 00 00 00 00 00 00 00 00 01 01	007777777777ACCCCCCCCU	00 55 55 55 55 55 55 55 55 55 55 55 55 5	00300000000000000000000000000000000000	00 08 08 08 08 08 08 08 08 08 08 08 08 0	00 80 80 80 80 80 80 80 80 80 80 80 80 8	0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A	16 17 17 17 17 17 17 17 17 17 17 17 17 17	16 17 17 17 17 17 17 17 17 17 17 17 17 17	23444444444444222777777722222777777720	DU 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P	00 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P	00 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P	00 17 17 17 17 17 17 17 17 17 17 17 17 17
SYSOPERO HOLDING INTERACTIVE INTERLOCX INTERACTIVE UTERLOCX INTERACTIVE SULK I-O SET BATCH BATCH LOGON LOGOPE	16 17 18 19 18 18 10 10 18	002 02 03 03 03 03 03 03	0 0 13 0 0 14 0 0 14 0 0 13	01 01 01 01 01 01 01 01	20 10 20 30 20 10 40 20 20	F P F P F F F F F F F F F F F F	16 17 18 19 18 13 10 10 12	012P 012P 012P 012P 012P 012P 012P 012P	00 00 00 00 00 00 00 00	0D 47 48 44 40 40 40 35 14 15	00 20 20 20 20 35 35 35 14	16 17 19 18 18 10 10 10	00 05 08 08 08 08 08 08 14 14 15	00 00 00 00 00 00 00 00	UA UA UA UA UA UA UA	16 17 18 19 18 16 10 10	16 17 18 19 18 18 10 10 18	23 24 25 25 27 21 21 20	00 12 12 14 18 10 14 15	00 1P 1F 1A 1B 1C 14 15	00 1P 1P 1A 10 1C 14 15	00 1P 1P 1A 15 1C 14 15
PREINDICE 40 ITE LDGOPP VAITING LOGON POR STSOPERD INTERACTIVE INTERACTIVE SET BATCH BATCH	1E 20 21 22 23 24 25 26 27 28	0 1 0 5 0 5 0 5 0 5 0 5 0 5 0 5	(0013 (0013 (0013 (0013 (0013 (0013 (0015) (0015)	01 01 01 01 01 01 01 01 01	23 20 20 20 20 10 20 10 10 10	F P	1 P 2 0 2 1 2 2 2 1 2 4 2 5 2 6 2 7 2 1	0030 0000 0000 0303 0030 0020 0000 012P 012F	00 21 23 23 23 23 23 23 23 23 23 21	1 F 15 14 0 A 00 47 47 28 33 33	17 15 14 0A 00 28 20 35 35	0H 15 14 03 30 3P 27 2H	08 15 14 00 08 08 08 08 08 08 13	00 80 80 80 80 80 80 80 80 80 80 80 80 8	0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A	17 12 10 14 16 17 18 19 18 19	17 18 10 14 16 17 18 19 18 10	24 20 21 22 23 24 25 26 21 28	17 15 14 00 19 19 19 19 19 13	12 15 14 0A 00 12 15 15	17 15 14 08 00 17 17 17 18 08 13	12 15 14 00 12 17 17 17 08 13
GROWING L'1221YG OFLATING GEOWING INT®PACTIVE GEOWING SET GROWING SET GROWING DELAYING DELAYING DELAYING OFLAYING	24 28 20 20 20 20 20 20 20 20 20 20 20 20 20	94 03 18 16 15 14 14 14	9026 0026 9026 9026 9025 0013 9025 9026 9025	194 08 02 02 01 01 02 01 01 01	10 18 20 40 40 40 40	8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	29 28 20 20 20 20 20 20 20 20 20 20 20 20 20	3000 0000 0000 0000 0000 0000 0000 000	00 23 00 00 30 23 23 23 23 23	7A 47 2R 13 14 43 44 44 44	28 29 20 28 32 28 20 20 20	30 32 32 43 42 41 42 41 42	08 09 09 09 09 09 09 09 09 09 09 09 09 09	00 00 00 00 10 10 10 10	0 A U A U A U A U A U A U A U A U A	17 18 19 19 19 19 19 19	17 14 19 19 19 19 19 19 19 19	24556666666	1P 1P 1P 1P 1P 1P 1P 1P 1P	1 P 1 F 1 F 1 P 1 P 1 P 1 P 1 P 1 P	17 19 19 19 19 19 19 19 19 19 19	17 17 17 17 17 17 17 17 17 17 17
GROWING DELATING GROWING BATCH GROWING SET GROWING DELATING OBLATING DELATING DELATING DELATING	33 34 35 35 17 14 14 16 10	13 11 13 14 14 14 14 14 14	0026 0026 0026 0026 0013 0013 0026 0026 0026 0013	03 04 02 01 01 01 01 01	10 18 20 30 40 20 30 40 40	PF FP FP FP FP FP FP FF FF	13 34 35 37 37 39 38 37 39 38 37 37 37 37 37 37 37 37 37 37 37 37 37	012P 012P 012P 012P 012P 012P 012P 012P	D0 23 00 00 23 23 23 23 23	14 40 33 38 38 38 50 49 49 45	15 33 37 30 30 30 30 30 30 30 30 30 30 30 30 30	34 33 34 30 30 30 30 17 30	14 19 19 19 19 19 19 19 19 19 19 19 10	80 80 80 80 80 80 80	0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A	1 B 1 B 1 C 1 C 1 C 1 C 1 C 1 C 1 C	18 18 10 10 10 10 10 10 10	21 21 21 21 21 21 21 21 21 21 21 21 21 2	100 100 100 100 100 100 100 100 100 100	14 14 14 15 16 17 17 18 17 18 17 18 17 18 17	14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	34 39 39 30 39 30 30 30 30 30 30 30 30 30 30 30 30 30
GROWING AWAIT DELATING TROWING INTERACTIVE GROWING SET GROWING DELATING DELATING DELATING DELATING DELATING	30 4E 49 41 42 43 44 45 46	03 13 17 15 15 14 14 14	0025 0013 0013 0010 0034 0034 0034 00313 0010 0024 0004	01 01 01 01 01 01 01 01 01 01	10 20 30 40 20 10 40 40	FF FF FF FP FP FP FP FP FP FP	30 32 32 41 42 44 44 44 46	0 12P 0 12P 0 12P 0 12P 0 12P 0 12P 0 12P 0 12P 0 12P 0 12P	00 23 00 00 23 23 23 23 23 23	2 A 47 28 30 31 29 28 20 20	28 28 20 20 28 32 20 20 20 20 20 20 20 20 20 20 20 20 20	38 10 41 45 45 45 40 41 42	08 08 08 08 08 08 08 08 08 08 08 08 08 0	80 80 80 80 80 80 80 80 80 80 80 80 80 8	0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A	17 17 18 19 19 19 19 19 19	17 17 18 19 19 19 19 19	24 25 6 6 6 5 6 6 2 2 2 2 2 2 2 2 2 2 2 2	1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P	17 17 17 17 17 17 17 17	117 117 117 117 117 117 117 117 117 117	17 17 17 17 17 17 17 17 17 17
SUBTING LODPING OFLATING INTEPACTIVE SHRIMKING SET SUBTING SHRIMKING	47 48 49 41 48	07 07 17 16 15	0026 0026 0026 0026 0026	10 10 01 02 08	0 8 0 8 10 20 1 8	РР РЕ ЕР ЕЕ РР	47 41 44 49	0000	00 23 00 00	68 47 48 49	29 29 20 28 29	3D 3D 3F 3F	0 H 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S	00 80 00 00	08 08 08 08 08 08	17 17 19 18 18	17 17 19 18 18	24 24 25 25 25	17 17 17 17 17	17 17 17 17 17	12 12 12 12 17	12 12 12 12 12
CODPLAT SHRINKING DELATING NATIN SHRINKING SPP SHBINKING SHRINKING	40 40 47 47 50	13 11 13 14 19	0026 0026 0026 1026 1026	10 10 01 02 04	08 08 30 20 14	F P F P F P F F F F	40 40 42 42 50	012P 012P 012P 012P 012P	00 21 00 00	40 40 49 40 40	33 33 37 36 35	4D 4C 3A 34 34	4 D 4 D 3 A 3 A 3 4 3 4	00 80 00 00 00	04 03 04 04 04 04	10 10 10 10 10	1 B 1 B 1 C 1 B 1 D	27 27 28 27 27	40 40 4P 4P 50	40 40 42 42 50	40 40 42 4 9 4 9 5 0	40 40 42 47 50
STAPTING INTERACTIVE SET INTERACTIVE INTERACTIVE	51 52 53	17 16 15	0008 0006 0004	01 01 01	20 30 40	F F # P ¥ P	51 52 53	0000 0000	00 00 00	28 20 20	52 53 20	96 40 40	08 08	00 00 00	0 A 0 A 0 A	18 19 19	18 19 19	25 26 26	12 12 12	17 19 17	17 17 17	12 12 12

Figure 3. Schedule Table Example

48 pages) are established. As each program request enters from the terminal, it will move upward through these levels each time it exceeds its core space limit. Whenever the program exceeds its time limit at any of these levels, the core space limit of that level is used as the estimate of the program's present working set size. The program is then considered to be a longer running program and its future execution will be controlled by the looping set of table levels. Whenever a program exceeds its largest space limit, the largest allowable working set size (64 pages) will be used as the first estimate for future execution under control of the looping set.

When a program completes its execution, it is returned to the initial starting set table level to await the next input from the terminal.

2. The Looping Set

The looping set of table levels performs the following functions: they use the fields of the schedule table to follow a program's working set size by regularly overestimating and underestimating its time and core space requirements in a minimal fashion in accordance with the principle of balanced-core time; they cause the load that is generated by long running programs to be spread out in time to allow starting set entries to be processed rapidly; furthermore, they optimize the CPU utilization, and thereby penalize programs with poor paging characteristics by causing programs with minimal paging requirements to be selected to run much more

frequently than those with large paging requirements. This penalty occurs only when the program has poor locality of reference and a large working set size.

3. The AWAIT Set

The AWAIT set is a special set of table levels reserved for tasks doing tape I/O and other kinds of AWAIT operations. As previously described, in each table level there is an AWAIT extension field, which is an elapsed time interval during which a program's current working set pages are kept in core while the program remains idle in the AWAIT state. This can cause severe elongations of real time compared to virtual time; so that tasks with smaller values of virtual time are placed in this set of table levels rather than tasks of the same working set size which are in the looping set.

4. The Holding Interlock Set

The holding interlock set is also a special set that is reserved for programs that are currently holding interlocks on some system resource. (Holding an interlock means that some program is using a resource and preventing other programs from using that resource.) Programs in this set are given high priority so that the interlocked resource may be quickly released. An insignificant change in the working set size of programs operating in this set is assumed.

5. The Waiting-For-Interlock Set

The waiting-for-interlock set is another special set of levels for programs that are waiting for interlocks to be released that are currently being held by other programs in the holding interlock set. Until the interlock is released, programs in this set of table levels will not usually be considered for dispatching. An insignificant change in the working set size is also assumed for the interlock set.

V. EXPERIMENTAL PROCEDURE AND RESULTS

In order to make a number of test runs using different schedule tables, it was first necessary to provide a number of programs that would characterize a "realistic" load on the system relative to user demands at this school. This was necessary since TSS/360 was no longer the current timesharing system in use at this computer installation, and a fixed load was needed to make valid performance comparisons.

A. DEVELOPMENT OF A BENCHMARK

As was previously discussed, the benchmark design concept for general purpose time-sharing systems is not an easy task to undertake and is confounded by two factors. The first is the variety of demands placed upon the system and second is the stochastic behavior of a time-shared system. Arnold D. Karush [Ref.14] presented an excellent discussion of the development of a benchmark design for the ADEPT Time-Sharing System at System Development Corporation, and pointed out

specific functional variables (compute activity, interactive activity, I/O activity, page activity, response allocation, user population, and swap activity) that affect system performance - specifically response time and throughput. Karush discusses two general program design techniques used to measure the performance of time-sharing systems - the analytical and stimulus methods. The analytical technique involves the insertion of probes into the system running under actual operating conditions. The stimulus technique consists of a "black box" concept and involves applying a controlled and measurable set of stimuli to the black box to activate the functional variables and then observe the effect of the stimuli upon the system.

The stimulus technique was used to develop the scripts for the experimental tests used in this paper; specifically a similar set of programs was used by the CP/67 and TSS/360 Time-Sharing System comparison group [Ref.15].

The final set of benchmark programs used in the test runs were as follows:

- PLILG large PL/I compilation
- PLISM small-sized PL/I compilation
- FORT Fortran program that is compiled
- FORTEX Fortran program that is executed
- EDIT execute routine that edits a simple program and files the edited program
- PAGE Fortran program which executes a large matrix multiplication.

B. MEASUREMENT TECHNIQUES

Two types of performance criteria were used to measure and judge the improvements in performance. The measurement consisted of observing the response times and throughput. The benchmark programs used in the tests were written to give the real time at the commencement and at the completion of a compilation. The throughput was calculated by observing the completed compilation or execution of a particular type job. The figure obtained by this procedure is called the throughput factor and was obtained as follows:

 $TP_i = SS/(RD \times NT_i)$ where SS = Sample Size (number of completed jobs) RD = Run Duration

 NT_i = Number of terminals running program type i In essence, the throughput factor is the reciprocal of the time to execute the program, modified by the size of the sample.

C. TOOLS FOR MEASURING PERFORMANCE

Unfortunately no hardware or software measurement device was available to measure resource utilization and performance of TSS/360 in this research. A software measurement tool called SIPE was obtained from IBM, but the required data analysis programs could not be obtained. Thus the actual measurements could be made, but there was no means of converting them into meaningful information on resource utilization.

The problem of developing a data analysis program to analyze the data from SIPE was considered as beyond the scope of this research.

D. PRESENTATION AND DISCUSSION OF RESULTS

Five test runs were conducted using different schedule tables. The results of these tests will be presented and discussed in this section.

The IBM 360 Model 67 configuration of the Naval Postgraduate School is shown in Figure 4 and is very similar, but not identical, to the IBM T.J. Watson Research Center's Model 67 configuration which Doherty used for his work. It should be noted that when the TSS/360 Time-Sharing System was implemented at this school for the months previously mentioned, the new IBM Watson Research Table by Doherty was not used. The initial schedule table used in TSS/360 is shown in Appendix B (Figure Bl). This table provided poor performance to the user community. Just prior to TSS/360 being replaced by the new CP/67 version time-sharing system, the new IBM Research Schedule Table arrived and was implemented by extending and using important parameters that were never used in the old table. A significant improvement in performance was observed. This improved schedule table is shown in Appendix B (Figure B2). In fact about a fifty percent increase in utilization was observed, and yet, it was clear that more improvement could be obtained. It was not until these tests were begun that the new IBM Research Table (Figure B2 of Appendix B) was implemented and tested:

Figure 4. Naval Postgraduate School IBM 366 Model 67

1. Test 1

Test 1 was a preliminary test in which the benchmark programs (or scripts) were initially used and in which the new IBM Watson Research Schedule Table (Figure B2 of Appendix B) was used. The load configuration and performance statistics for this test can be seen in Figure 5. Run six, operating with a good sampling of all the script except paging, produced a mean response of 8 min 37 sec for a large PL/1 compilation, 4 min 30 sec for a small PL/1 compilation, 1 min 8 sec for a Fortran compilation and 48 sec for an edit. This test did not provide a heavy load to the system. This table, however, did provide better responses than were previously observed by the user community when TSS/360 was running on a regular basis using the old schedule table.

2. Test 2

Test 2 was conducted, with the same schedule table used in Test 1, to provide a more realistic mix with different ratios of edit-to-run (compile and execute) programs and heavier load on the system. An important factor to remember in scheduling is that almost any scheduling technique will show similar results under light loads, but it is only when the demand for system resources gets large that scheduling differences are clearly indicated. The run durations were also lengthened to provide a steadier load on the system. The load characteristics and the performance statistics for test 2 are shown in Figure 6. Under this change in load, the response times have correspondingly increased significantly.

	I	LOAD CON	IFIGURA	ATION/I	ATA]
RUN NUMBER		1	2.	3	4	5	6	7
PLILG	(BIG PL/1)	1	1	l	1	1	2	1
PLISM	(SMALL PL/1) 0	0	1	0	0	l	0
FORT (FORTRAN)	1	2	1	2	3	l	3
EDIT (EDIT SEQ.	8	10	12	12	14	14	16
PAGE								
FORTEX	(CPU BOUNE)) 2	2	3	3	3	3	4
RUN DU	RATION	16:53	13:29	14:52	17:18	14:32	16:48	20:23
[RESE	PONSE 1	IME/TH	IROUGHF	UT STA	TISTIC	S
PLILG	MEAN	1:51	3:32	4:16	4:26	7:54	8:37	9:11
	S DEV	0:07	0:21	0:16	0:13	0:11	0:54	0:51
-	SS	8	4	4	4 3		4	2
	TP	0.47	0.30	0.27	0.17	0.14	0.12	0.10
PLISM	MEAN			3:11			4:30	
	S DEV			0:28			0:58	
	SS			Lį			4	
	TP			0.27			0.24	
FORT	MEAN	0:18	0:36	0:43	0:46	1:14	1:08	1:28
	S DEV	0:03	0:08	0:09	0:09	0:22	0:17	0:21
	SS	49	4 <u>1</u>	18	40	22	14	36
	TP	2.90	1.52	1.21	1.16	0.50	0.83	0.59
EDIT	MEAN	0:30	0:50	0:50	0:44	1:09	0:48	1:12
SPONSE	S DEV	0:02	0:07	0:05	0:04	0:10	0:06	0:11
EDIT	SS	8	10	12	12	14	14	16
MANDS	TP	.059	.077	.067	.059	.071	.06	.05

Figure 5. TSS/360 Test 1 Load Conditions and Performance Statistics

	LOAD	CONFIGURA	TION/DATA			
RUN NUN	MBER	1	2	3	4	
PLILG	(BIG PL/l)	4	4	4	3	
PLISM	(SMALL PL/1)	3	6	5	5	
FORT (1	FORTRAN)	7	7	7	5	
EDIT (1	EDIT SEQ.)	4	4	4	8	
PAGE		-	-	2	2	
FORTEX	(CPU BOUND)	6	3	2	1	
RUN DUI	RATION	17:32	15:42	37:45	43:20	
	RESP	ONSE TIME/	THROUGHPUT	STATISTIC	S	
PLILG	ME, AN	21:58	21:48	35:07	31:07	
	S DEV	1:25	3:26	0:30	3:39	
	SS	4	4	4	3	
	TP	.0570	.0635	.0262	.0230	
PLISM	MEAN -	15:38	17:30	27:03	22:02	
	S DEV	1:42	2:34	1:31	3:22	
	SS	4	6	8	6	
	TP	.0760	.0636	.0423	.0276	
FORT	MEAN	3:12	3:47	6:16	5:12	
	S DEV	: 39	1:03	2:00	1:10	
	SS	38	26	36	36	
	TP	.3100	.2371	.1361	.1660	
EDIT	MEAN	3:59	4:56	11:47	9:26	
SPONSE	S DEV	-	-		-	
EDIT	SS	8	5	8	16	
MANDS	TP	.0761	.1060	.1055	.3690	

Figure 6. TSS/360 Test 2 Load Conditions and Performance Statistics

- 10

Each test run was conducted under a terminal load of 27 users. Runs three and four were conducted with heavy paging, and as a result, a greater delay was observed in the response to a request. It was believed initially from the first two runs that the PL/I compiler characteristics produced the heavy load and the poor response, but when several heavy paging programs were added to the load, the performance was degraded even more. Paging in TSS/360 is handled by disk as well as drum, and since disk paging is slow, this might be one of the major problems.

3. Test 3

When test 3 was performed, one of the three core boxes failed. The results of this test indicate that TSS/360 operating with only two core boxes rather than three will produce a much lower system performance, so low that the results are meaningless for a comparison and are not included in this thesis.

4. Test 4

Without changing the schedule table of test 2, runs one through four were conducted to see if a different load would change the performance characteristics. Run four seemed to be a good sampling of the scripts and provided a heavy paging load, and the performance characteristics were about the same as that in run three of test 2. The load conditions and performance statistics for run four are shown in Figure 7.

	LOAI) CONFIGU	RATION/	DATA		
RUN NUM	BER	1	2	3	4	5
PLILG (BIG PL/l)	2	2	2	2	2
PLISM (SMALL PL/l)	3	3	3	3	3
FORT (F	ORTRAN)	5	5	5	5	5
EDIT (E	DIT SEQ.)	12	10	8	6	8
PAGE		0	2	4	6	4
FORTEX	(CPU BOUND)	2	2	2	2	2
RUN DUR	AITION	22:00	27:53	29:07	30:12	48:00
	RESP	ONSE TIM	IE/THROU	GHPUT S	TATISTI	CS
PLILG	MEAN	19:26	17:25	25:12	25:15	>46 min
	S DEV	0:26	0:09	1:38	1:48	
	SS	2	2	2	2	none fin- ished (2)
	TP	*	*	*	*	*
PLISM	MEAN	12:58	17:14	18:48	20:44	11:22
	S DEV	1:01	3:02	0:50	1:40	1:27
	SS	*	*	*	×	*
	TP	0.291	0.251	0.220	0.192	0.350
FORT	MEAN	12:58	17:14	18:48	20:44	11:22
	S DEV	0:46	0:48	0:59	0:52	0:52
	SS	3	. 3	3	3	9
	TP	*	*	×	*	*
EDIT	MEAN	3:00	4:08	5:25	6:12	8:38
SPONSE	S DEV	0:19	0:26	0:32	0:26	2:39
EDIT COM-	SS	24	22	15	10	18
MANDS	TP	0.091	0.079	0.064	0.055	0.0469

Note: * insufficient statistics.

Figure 7. TSS/360 Test 4 Load Conditions and Performance Statistics
Run five was conducted with the IBM Research Schedule Table patch altered. This modified IBM schedule table is shown in Appendix B (Figure B3). The table parameters that were altered for this run are found in the table levels of the Looping Interactive Sets and the Starting Set of the schedule table, since these sets provide areas in which the most improvements in performance could be realized. Several fields of the schedule table levels were altered, but none were changed drastically. This was done so that any degradation to the system which may have occurred from changing parameter values could be observed. The fields altered and the reasons for the alterations were as follows:

The delta-to-run parameters were increased so that the larger working set size programs could get into core faster but less frequently and remain there longer with larger values of time-slice end. The smaller size programs still get priority through the system.

The AWAIT extension field increases the time allowed for the larger size programs to remain on the dispatchable list before being forced to time slice. Since a task in AWAIT status is normally moved from the list of dispatchable tasks, and since this can cause a delay in redispatching the task, the idea was to make the AWAIT extension large enough to allow for completion of I/O operations.

A few priority values were changed, since these priorities determine the position a task will assume within

the list of eligible tasks; that is, low priority numbers are given precedence over higher priority numbers.

The Quantum Count and Quantum length fields were altered. These parameters determine the time slice, which is dynamic, for tasks assigned to this entry. Time slice duration equals Quanta Count times Quantum length x 3.33 milliseconds. These fields were altered to see the effect of the Balanced-Core Time Principle — where the time slice duration in terms of CPU execution time for a task is inversely proportional to the working set size in that time interval. This will minimize elapsed time that any large job can clog memory and allows jobs with good locality to progress rapidly.

The maximum core page residency values (MAXCR) have been selected to minimize task performance. Trivial and many non-trivial commands require less than 35(23 hexadecimal) pages allowed in the small conversational levels. However, some non-trivial commands take more pages, causing the task to move to other levels. If tasks with the Steal Request Flag (SRF) on move into core faster than pages can be released, they will exceed the MAXCR limit and be time sliced.

The maximum relocations per quantum field was altered. The smaller the value, the greater the guarantee the task will be considered I/O bound and its order in the dispatchable list will not change. Therefore, tasks which must be serviced can remain on or near the top of the

dispatchable list by assuming them to levels with small MRQ values.

The recompute flag field was altered. If tasks in these levels fall behind schedule, they will be given preference through the computation of their schedule start time. If the preempt flag is on, a task can be time slice ended if a higher priority task is ready and can not be dispatched.

The scan threshold fields were reduced in value, since it was felt that a 100% page stealing value was not necessary. The scan threshold is related to page stealing. It should be noted that the stealing mechanism which sets the steal flag was not implemented in the old schedule table that was used initially with the system. This field value was altered to allow page stealing.

As shown in Figure 7, by primarily increasing the delta-to-run and quantum fields, the large working size programs (PLILG) were penalized in their response times, whereas an improvement in response was observed in small PL/I and Fortran compilations. However, in the EDIT programs, response times were even worse during this run than before and the throughput factor went down.

5. <u>Test 5</u>

The last test was conducted using three different schedule tables. The characteristics for this test are shown in Figure 8. Unfortunately, there were only 20 terminals loading the system, since the other terminals were

inaccessible or inoperable. The time was also limited for these test runs so that the durations were shorter than was desirable. The schedule table for run three is shown in Figure B4 of Appendix B. The parameters that were altered for the schedule table for run three were the delta-to-run fields, which were set to very large values, and the quantum fields. Although the load was not as heavy as that of test 4, these test runs do show significant improvement, and the increased performance is the result of judiciously altering these parameters. The response times for PLILG programs for runs two and three were about the same, while the response time for FORT programs was better for run one than for two and three. However, it is expected that if a heavier load had been placed on the system, run three would have provided the better performance statistics. The response times for small size PL/I programs, and EDIT programs for run three show better response statistics, and the response time for FORT programs for run three shows an increase over run two. Figures 9,10 and 11 show the difference in response times for each of these runs. The throughput factor could not be obtained for big and small PL/I programs, but run three shows an increase in throughput over run two for FORT programs but about the same as run one. For EDIT programs, run three shows an increase in throughput over run one and two. Figures 12 and 13 show the difference in throughput.

LOAD CONFIGURATION/DATA				
RUN NUMBER		l APP B FigB2	2 APP B Fig B3	3 APP B Fig B4
PLILG (BIG PL/I)		1	l	l
PLISM (SMALL PL/I)		2	2	2
FORT (FORTRAN)		5	5	5
EDIT (EDIT SEQ.)		4	4	4
PAGE		3	3	3
FORTEX (CPU BOUND)		2	2	2
RUN DURATION		44:08	25:43	17:48
		RESPONSE TIME/THROUGHPUT STATISTICS		
PLILG	MEAN	44:06	20:50	20:50
	S DEV			
	SS	l	1	·l
	TP	×	*	×
PLISM	MEAN	32:08	12:48	9:31
	S DEV	2:51	:11	:27
	SS	2	2	2
	TP	*	*	×
FORT	MEAN	:54	1:46	1:28
	S DEV	:15	:31	:02
	SS	93	30	38
	TP	.62 .	• 3	.60
EDIT RE- SPONSE TO 6 EDIT COM- MANDS	MEAN	6:26	8:36	6:13
	S DEV	:07	:04	:06
	SS	22	9	8
	TP	.14	.11	.21

Note: * insufficient statistics

Figure 8. TSS/360 Test 5 Load Conditions and Performance Statistics

Figure 9. Response Time Comparisons for Fortran Compilations of Test 5

Figure 10. Response Time Comparisons for Small PL/I Compilations of Test 5

Figure 12. Throughput Comparisons for Fortran Compilations of Test 5.

Figure 13. Throughput Comparisons for EDIT Script (6 EDIT Commands) of Test 5

VI. CONCLUSIONS AND RECOMMENDATIONS

The objectives of this paper were to organize all available literature regarding improvement of performance measures and techniques for the TSS/360 Time-Sharing System Schedule Tables and to show that these principles and concepts could be substantiated by performing experimental tests on the computer. As a result of altering the parameters of the TSS/360 schedule table, improved performance over the initial system performance, when the TSS/360 system was in full operation, was observed. From these tests it is evident that because of differences in the user community and in hardware configurations it is necessary that certain parameters in the table-driven scheduler be set for each installation to improve its system performance and thus maintain a satisfied user community.

It has been shown by these tests that the Naval Postgraduate School's Model 67 computer could support about 20-25 simultaneous users using a modified IBM Research schedule table, while maintaining a fair response to the trivial requests, and simultaneously servicing large users rather well. With more work on the schedule tables, better service could be provided for a greater simultaneous load. Once the TSS/360 Time-Sharing System was removed as the installation's timesharing system, the time available for testing in this project was restricted. Many more valuable tests remain to be

performed to eventually optimize the performance of the system through the judicious alteration of the parameters of the TSS/360 table-driven scheduler.

There were many fields of the TSS/360 schedule table that were not varied and tested. For example, during the last test a table was designed to test the page drum mechanism, but since this mechanism was not yet implemented into the software, this table could not be employed. The present values of the schedule table at this installation show a 0000 default to the system calculated. minimum number of pages on disk for all users. This value could be increased to allow some tasks to be allocated greater space on drum in order that fewer of their pages have to be moved from drum to disk. Nielson [Ref.16] in his simulation studies of time-sharing systems, showed that disk paging can be very slow and can reduce system performance substantially, and proposes that a drum be used in place of the disk. Since this installation used both drum and disk paging, an alternative solution could be to purchase another drum for paging. Also, revision of the disk management algorithm could be made.

As mentioned at the outset of this paper, a more flexible approach to evaluating the effects of changing different schedule table parameters on the performance of the system would have been the simulation approach rather than an analytical approach. However, such a simulation model would have to be limited in terms of expensiveness of design and running

time. Also, there is always the very difficult problem of validating the simulation model.

From the tests conducted in this paper, attempting to optimally tune the scheduler by trying various schedule tables in the proper type of environment is not an easy process. There were many factors which limited more speedy progress in tuning the scheduler to the job load of this school's environment. The benchmark that was implemented for the tests may not have accurately represented the user community, although a great effort in this direction was made. Since loads are constantly changing, it is important to develop a methodology for automatically producing scripts that are characteristic at this installation and then to verify that they are accurate.

The use of the TSS/360 software measurement technique, SIPE [Ref.17], would have been very valuable and helpful in establishing a good benchmark for developing, evaluating, and improving the interactive system. SIPE and its data-reduction program could also have been very helpful in evaluating changes to the schedule tables and the effects on system performance. These measurement tools could also provide valuable statistics about each task as it is being processed by the system. Software counters, as Doherty used, could also provide information about each task as it migrates through various levels of the schedule table to more accurately verify the principles of working set size and balanced core time. De Meis and Weizer [Ref.18] established by experimental means in developing RCA's Time Sharing Operating

System (TSOS) that by using certain measurement devices, the working set size and balanced-core time of programs can be . monitored and verified.

Although SIPE produces some degradation to the system, this is not considered serious. The only way to monitor a system without altering its operation is by external hardware monitors. Schulman [Ref.19], for example, discusses a hardware monitor (SPAR) that also is used to measure TSS/360 and that does not degrade that system. Another tool that has been extremely useful in TSS/360 evaluation and improvement of performance is the instruction-time trace monitor (ITM) [Ref.20] which is a combination of software and hardware. With the aid of these additional measuring devices, it is believed that many more improvements could be made to the performance of TSS/360 by further adjustment of the entries in the schedule table.

APPENDIX A

SCHEDULE TABLE PARAMETER DEFINITIONS

LEVEL (STELEVEL), 1 BYTE

Relative entry number in schedule table. The level number is used to relative address within the schedule table.

PRIORITY (STEPRIOR), 1 BYTE

The priority of a level in conjunction with the Schedule Start Time (SST) is used to govern the allocation of CPU resources to a task. Only those tasks brought into the dispatchable list can increase in core usage. Zero is the highest priority. When seeking to bring a task into the dispatchable iist, the highest priority task behind schedule is chosen. If no tasks are behind schedule, the highest priority task is chosen.

QUANTUM LENGTH (STETSVAL), 2 BYTES

The quantum length is the number of time units (one quantum) a task will be dispatched or the amount of time to be used as a factor in determining how long a task will be allowed to run before time-slice end. One unit represents 3.33 milliseconds. A quantum represents the maximum virtual memory time that a task will be dispatched. The system will then make a decision as to whether the task may have more CPU time based on the number of quanta used (see STEQUANT) or interrupted by a time-slice end.

MAXIMUM NUMBER OF QUANTA (STEQUANT), 1 BYTE

This field represents the maximum number of quanta (STES-VAL) a task may use or receive when it is in execution before a time-slice must occur.

MAXIMUM PAGES (STEMAXCR), 1 BYTE

This field represents the maximum number of private physical pages allowed in core before a time-slice end or page steal will occur. (see SCAN THRESHOLD)

MAXIMUM DISK I/O OR PAGE READS (STEMAXRD), 2 BYTES

This field represents the maximum disk reads or writes, or maximum number of page relocations a task will be allowed before a time-slice end will occur.

SCAN THRESHOLD (STEST), 1 BYTE

If the steal request flag (STESRF) is on, the resident supervisor will release some of a task's pages when the page count equals STEMAXCR (maximum core page residency values). The scan threshold is the percentage of STEMAXCR pages to be retained. The scan threshold is a percentage specified in hexidecimal (i.e., 80% = 80 base 10 = 50 base 16). When stealing occurs, the task is not time-sliced, but stays in the dispatchable list. However, the schedule table entry in the TSI is changed to the value specified in STENSL (next steal level).

PULSE LEVEL (STEPULSE), 1 BYTE

This field represents the schedule table level entry to be used if the pulse service is requested by the user. The pulse service allows the user to request a level change.

AWAIT EXTENSION (STEAWTEC), 2 BYTES

This field represents the maximum time that a task, issuing an AWAIT service, is allowed to remain in the dispatchable list while waiting for an I/O operation to be completed. The units are 3.33 milliseconds. If the I/O operation has not completed before the time limit specified, the task is time-sliced.

DELTA-TO-RUN TIME (STEDELTA), 1 BYTE

Specifies the real time interval at which a task is to be given a slice of CPU time. This field specifies a factor which is used to calculate a new Schedule Start Time (SST) for a task as it moves from one state to another; i.e., as the task becomes ready, in AWAIT or in TWAIT. The value in this field is multiplied by 852.5 milliseconds and may be combined with the master clock time or the old Scheduled Start Time if the old SST is negative to determine the task's new SST. If delta-to-run equals zero, the SST is set to zero and the task is automatically placed behind schedule. (see RECOMPUTE FLAG)

(TSE) TIME-SLICE END (STETSEND), 1 BYTE

This field represents the schedule table level entry to be used when a time-slice end occurs because of the maximum number of quanta (STEQUANT) or a maximum disk I/O (STEMAXRD) has been reached.

MAXIMUM PAGES TSE (STEMPRE), 1 BYTE

This field represents the schedule table level entry to be used when a tmme-slice end occurs because of the maximum pages in ccre (STEMAXCR) has been reached.

TWAIT TSE (STETWAIT), 1 BYTE

This field represents the schedule table level to be used after a time-slice end occurs because the TWAIT service has been used.

AWAIT TSE (STEAWAIT), 1 BYTE

This field represents the schedule table level entry to be used after a time-slice end occurs because the AWAIT service has been used.

RECOMPUTE FLAG (STERCMP), 1 BIT

If the recompute flag is on, the task's Scheduled Start Time is computed to place the task back on schedule as described above under delta-to-run (STEDELTA). If the flag is off, past performance (if behind schedule) is taken into account by calculating SST as the present time plus deltato-run minus the amount behind schedule on the previous time-slice. NOTE: When a task enters the eligible list

directly from the dispatchable list, the schedule start time is calculated as if the recompute flag is off.

PRE-EMPT' FLAG (STEPRMPT), 1 BIT

A task on the dispatchable list whose pre-empt flag is on may be forced to time-slice end so as to make room for a task from the eligible list having a higher priority.

STEAL REQUEST FLAG (STESRI), 1 BIT

A task on the dispatchable list whose steal request flag is on will have pages released (stolen) when its private pages in core reach the STEMAXCR limit. If pages are brought in faster than they can be released so that the STEMAXCR limit is exceeded, the task will be time-sliced.

MAXIMUM PAGE RELOCATIONS PER QUANTUM (STEMRQ), 1 BYTE

Specifies the maximum number of page relocation interruptions allowed per quanta before the task is declared paging bound; i.e., a task is considered to be execute bound if its number of page relocations per quantum is less than or equal to STEMRQ. Execute bound tasks are placed at the end of the dispatchable list to allow non execute bound tasks to overlap their paging I/O with execute bound tasks.

HOLDING INTERLOCK CHANGE LEVEL (STEHLCK), 1 BYTE

This field represents the schedule table level entry to be used when a time-slice end occurs (except for AWAIT or TWAIT) and the task is holding a Virtual Access Method (VAM) interlock.

LOW-CORE HOLDING INTERLOCK (STELCHL), 1 BYTE

This field represents the schedule table level entry to be used when a time-slice end occurs because of low-core and the task is holding a Virtual Access Method (VAM) interlock.

WAITING ON INTERLOCK CHANGE LEVEL (STEWLCK), 1 BYTE

This field represents the schedule table level entry to be used when a time-slice end occurs and the task is waiting on an interlock.

CONVERSATIONAL WRITE ONLY (STECWO), 1 BYTE

This field represents the schedule table entry to be used when a write without response message is sent to the terminal. The level change occurs without a time-slice end.

LOW CORE FORCED TIME-SLICE END (STELCF), 1 BYTE

This field represents the schedule table entry to be used when a task is forced to time-slice end for low-core and it is not holding an interlock.

PREJUDICE CATEGORY 3 (STEPRJ3), 1 BYTE

This field is not used in the system.

NEXT STEAL LEVEL (STENSL), 1 BYTE

This field represents the schedule table entry to be used when stealing occurs. The task is not time-sliced.

DRUM SHARE (STEDSH), 2 BYTES

This is the number of drum pages reserved for a task. There are about 500 pages available after startup on a one

drum system and 1400 pages on a two drum system. In general, the number of a task's private pages on drum is a function of the number of tasks logged on, the number of drums, and the time since the last time-slice. If the number of unassigned drum pages falls below a pre-determined limit, some pages are moved from drum to disk. Each task receives a system calculated minimum drum space. The drum share field allows some tasks to keep a large drum share. A value of zero defaults to the system calculated minimum.

APPENDIX B

SCHEDULE TABLES USED FOR DIFFERENT TESTS

CHI	STE	CS	EC	Τ_,		c .	× 0	070		4		5.47	20															4J+ ==
	SCE	12:00	LĘ	- 86	HILL C		8 e Li	UEC C		7 A	(13	0	1 L.J. - 72	14	4	·r	G	63	F.1	1	11	r	1 5	5 1		<u>n</u>		-
5			2	1	10	11	n v	С 7	11	T		r	c	D	11	й.	1	R	E	B	1	U.	C I	2 1	S.	ŝ		
		. C	- 13. - 17	N.		ĉ	p		- ř	- *		'n	F	n	T	- 10	G	0	K	M	E	G	e .		Ľ	Ë.		-
-	DP	V BD	4	FOR	1400	1.7	200	323	20	eñ.	10	nn i	in:	a es	an	10	nör	201	inn	101	145	00	003	261	00	000	00	
	00	100	11	41.51	1210	43	200	323	26	10	000	202	101	19	836	530	608	101	108	01	14.6	36	08	261	66	000	38	Ē.
	ne	YEA	23	900	1670	63	200	323	20	26	00	กกร	101	en:	814	51	66!	102	100	0.	14.5	30	001	16	ce	0.4.3	30	
**********	00	1:00	23	500	10 7 6	13	200	323	23	2.6	30	001	10	201	OX	52	001	104	30	0.	344	.95	083	25:	cc:	000	30	
	00	XOD	ഹ്	500	N.CO	43	200	323	23	40	00	0M	10	80	010	53	601	101	100	995	340	136	003	36-	20	300	00	۹ ۱
<u>-</u>	DC.	NOG.	σă	501	14.0.0	43	200	323	23	ŝõ	39	001	10	00	31.0	53	660	30/	102	:28	345	00	00:	36	36	:00	00	1
	00	100	66	500	1.50	43.	200	323	20	56	00	001	10	6.3	ES	5%	63:	100	in:	08	0.67	ne	00:	36	00	and	176	i
1	33	Xea	7)	591	14:00	43	289	323	20	20	30	001	10	2.91	61.0	51	608	3.93	30	00:	342	:00	23	35	03	Cat	្រាំ	-
6	00	200	62	591	1400	-13	200	323	20	30	00	003	3.6	89.	31	51	653	207	:00	:01	043	9.8	ion:	36	58	r 1	00	- 1
Percentle or variations of	DC	XOB	93	500	1400	43	200	322	20	90	30	001	60	00	OL	51	60	204	198	197	34,6	:38	03	56	00	11.0	38	1
*	20	NOO	A 3	6.01	140.0	43	300	323	2.0	AB	00	001	20	0.3	AO.	()	133	:0;	10/	16.	101	0/	IGA:	36	04	C. C.	0.1	-
pr	00	NºO	00	501	0.140	43	200	323	20	65	00	601	15	95	95	95	90	207	137	13	759	305	150	33	27	in jir	° 5 &	1
	20	20%	60	501	1400	63	280	329	20	<u>c</u> .)	00	00)	25	95	95	75	08	0.07	127	131	3.55	0.850	0.20	3.5	50		133	-
	DC	7.0 C	20	50	1400	43	200	323	20	00	90	003	15	95	95	95	92	31	137	73	759	151	159	30	55	000	00	
	00	800	-13	57:	nen	133	200	323	2.3	80	23	00;	15	95	95	05	nr	201	137	237	859	355	350	2.6	5.0		38	1.4
i interestation	20	1:00	50	500) den	43	200	323	20	FÓ	99	50;	15	95	95	95	0.5	201	127	13	253	251	:59	26	55	r.ac	30	1
*	00	107	03	533	2003	-13	200	323	21	00	3-3	00	15	25	95	05	ne	i.n;	1.37	73	750	354	150	76	5.0	nger i	0	1
	DC	No 3	2)	333	100	32	200	323	21	10	0.0	001	15	95	95	95	00	201	137	13	351	0145	010	36	55) f.	.00	
	00	XOZ	23	500	1.00	:43	200	323	23	25	00	00;	15	95	35	95	98	107	137	73	359	5:01	155	36	27.0	1001	1.00	- 1
	DC	XOL	31	.401	14.07	107	100	913	21	20	33	361	37.	31	22	33	30	1.54	035	23	545	223	980	34	3.	ICE!	00	÷.
	DC.	NOI	2. 3	1200	1490	:43	200	979	23	20	60	691	22	Δş.]	47,	63	1787	121	334	5 M.	6,40	384	36	26	3.4	nor	3.6	
ł	00	1163	20	50.	1.25	1:0	200	223	22	200	0.2	60	4 4	12	23	56	50	10 24	14.	22		1.1	122	20	20	le va	5 . E	14
p	00	319 2	ēŋ,	15/13	3200	1-32	590	233	23	60	20	00	12	El	61	67	55	.31	131	32	1 1 1 I	ER	うれた	5.6	45	5 11	5	
	00	Nº L	3.	00	36.90	120	996	000	0.0	90	0.0	00	00	03	98	63	0.0	601	900	963	200	133	2 - 21	d Q	211	16.16	10.5	-
1	2.0	NOR	50	120	32.0	145	300	233	RI	0.0	07	883	RX	Et	SX	53	60	(.D,	4.3:	33	724		37.6	36	3.5	-C.J.	.0.5	- A. m.
4	ÐC	Xº X	0.0	40.)235	-25	300	235	31	50	រៀរីវ	Sù.	11	E.,	61	61	52	(1)) (1))	A2:	03	011	EA)	536	36	2.5	1.11		-
Ban	.PG.	1:07	1. 1	t fan i	14,556	123	SUU	323	13.2	AC.	95	0.01	0.5	92	01	33	0.0	1	100	13	3.24	22.	739	26	1.8	1.21	135	
1 1	D:C	No Y	C.J	130	3424	143	200	320	321	EC.		0.9	99	Λl	.63	33	33.	20.	ΛĀ	A E	Α1.	33	123	20	2.5	-1 C .	30	
	00	No F	0.1	0203	0400	123	238	323	23	£0	193	84	33	03	30	31	,62		A E	33	24	13	350	10	173	16 15	1.1.6	14
	30	Nol	9-1	133	94.40	343	200	9323	33	00	100	95	33	.6.2	61	01	102	0.0	AR	GA	64	ZA	110	20	Ré	· .	130	
	DC	X3 ¥	E0	030	0425)-63	200	1322	123	Ęŝ	180	50	33	.83	113	33	.86	13.	a N	3 E,	65	5 E.	0313	38	1.1.2	1	· jæ	
:	00	2253	FU	203	31.20	343	200	321	133	6 - L B	003	93	AN	5-0	(F.Z.	FA	.6.6	353	AE.	53	ġ1	1 m	125	26	24	-6.20	1.36	
ę .	53	205	C.	120	34.55	16.2	-598	48	23		1.13	90	55	93	191	53	e. 3	34	ND.	33	24	1	325	26	121	16 15 6		
	BC	205	20	Tec.	0650	143	600	1-5-63	135	35	000	35	35	:03	(O]	91	510	00	ΛЭ	39	3-5	1	020	20	27.5	New .		
	00	2205	20	120	0490	74A	300	633	120	26	103	66	35	18.2	198	23	100	30	A3.	33	2.13	16	323	2 2	1.6.6	t condit		
	DC	NoS	30	300	3463] l'é	600	1463	2.2	20	320	39	02	555	2.1	92	160	50	A3	93	34	22	222	22	3 2 1	4		
	00	705	41	170	3450	344	396	0462	322	:45	iau	30	02	33	23%	51	.90	n.e	112	43	-3-3	52		35	3.	- QC (-Ue	
	03	Ne S	50	070	04.64	344	:où0	403	22	150	183	130	02	242	243,	93	09	00	AB-	40	1.1	0	929 5 5 5	20) di i	1000	100	
	0.0	X6S	140	155	35 20		590	1403	132	165	146	(UI)	02	152	161	-03	190	0.0	23	43	24	03	222	212	A		100	
	23	202	170	070	040:	044	600)463	322	270	103	100	05	162	261	93	196	110	22	525	5.3	16	020	120		*603 *335	30 °	
	00	205	160	370	0400	044	1696	145	222	131	ŝίĘ	60	97	di	3 P.	91	110	19.19	A.2	20	129	16	666	20	383	74/14 18/03	333 M 5.5.8	
	00	1425		349	0456	14.	1608	145	3.2.2	190	100	00	20	195	2012	91		1. 21	23	23	2.5	82	020	30		-238	1.0.0	
	00	2:05	3 h *	140	0424	042	1500	132:	22	· 6.4	162	90	1.1	Ei	1. 2. 3	.81	003	6313 1	A.5	10	22	10.00	020	20	121	- 050	0.00	
	DC	11 2	121	340	1466	3/2/2	1504	145	21	121	10.2	:00	7. E	(E)	21	91	196	23	83	23	2.2	C.L.	284	20	3 7.1 3 7	1001	() A	
	04	13 6	. Q	125	12.51	l ge L	- 197	90.	, ij (141.	14	Pr to	19.5		1.000	1.1	3425	60	0.6 0.6	5-		- 11		-	1 5.1 1 C	30	150	
	00	18 2 11 10	1 	395	200.	339	ng di l	12:1		~ 5	100	500	1.1.	N 1	1997	100	100	Sec.	12 U 74 O	4. 8.		1.12	n in in N in in	1235	2.6.14 1.1.14	1001	C. E	
	C.S	X # 2	15 1	-00	0251	Li v E	Neid's	34235	100	101 1	24. 2	19.12		122	102	1	10	64	40	sa sa	1.		1160	4.10	181	10.01		

Figure 14 Bl. Old TSS/360 Schedule Table

-	
00	_X*SF693F96A96A96643B6643B5653C6665C9C9C9C9C9C6C69C66
00	X#80050026012300233230000001121E161636506438301E16161E6100#
1 00	MADIOE 19976112200999999999000010000110000100001000
1 66	W. D'EAC THEACHEACHEACACE AND BE SEEN BUT THE SET SET STATE THE SET STATE AND A
E DC	_% *9597
0.0	##\$7795 1027.126.006653212517 11232620202030300105534500023361E00008
00	A DUBLIC CONTRACTOR CONT
- DC	
05	教事のためもうほうとうすると自己ならの之内ものないではようかとないたものものにつかればならんのなからからうためのです。
DC	-#*\$+073.657707703703795702000015555559670000326555555555555555555555555555555555
DC	1*378502201320032323738008153535858587008573753533585650086*
0.5	
- lie	W. TELS IS CONTRACTION STRATION STRATES AND CONTRACTIONS STRATES (STRATES)
- 00	_%*39050026917205915229906900119131313C603A53531313131306190699 -
00	9224057026122601220022000000000000000000000000
Krise	U. P. D. TINGAT SYGAPS STRAAGAT GEDERAL PANDARA COCOL DED DEDRA.
99	% #\$\$\$\$C32D2\$9948\$\$%%^\$\$\$\$U04835J3\$\$C03336C0 i3803\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ 0 9 9 *
00	##\$??&??\$^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
	A Base bodd sate coost of sensor correction sets of the set of the
106	.W.READALCAAASEEFDBFESEEFESEEFESEEFESEEFESEEFESEEFESE
DC	X#97671133332666666666666666666666666666666
0.0	
14	1.1.1.00849x4x4x4aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
00	X#4466666666666666666682682643566663262956%846463A3%3%65267985%63946#***
00	READ DOCED DOCODO DESCON PORTE DE DE CARALASIA A A A A A A A A A A A A A A A A A A
1 1/2	- V. ATACTERINGAUTADTERITATING CODENTRUCTOR PROTECTION VUTTURE DITUDIA 1
: 05	XF42353848643200025242006833636363820000336383423D38333260060° -
1 00	25 ADDA 10 ACO1817 AR22034
00	サムメラカモンとふれたみちてんちてもないとうこうたちがほどのからこう いがんがが うつやかをがつからら 100
- CC	
: 00	1.9人でハルゴル人でわんさんのうちんのクスというかんののクラングをなれたか、いろの内立はもちりかりたい人内かしたの意味。
2 2 2 2	
1 . 05	_##4636_30468464666366686660036323232319163043336562826553666383
2.0	X\$&57354998686554994563247685563826268936111133333547262626262626326032603263
00	
- 13m	- 16.44、5.26.517434112、3555352、211556554575、112555544454555535464655
DC	X* 4906854684520002224956655558666666666666665296669666666666
1 100	M&A 20 4 C C 5 C 5 A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
216	West ser construction of the set restored and the rest of the set.
- DC	_X*<20とどのたちらなうえどがとどの足りつかられつりうえなえみえなよらとのようえなえなかりまなかからえものはしょ*
175	BEACOXCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
. Ula	- ##41.91.2.2.4からも4945404540454045404045455454545454545454
00	_X@@F02_APA666A_55/AA_592A512/746666666666666000073686666666666666666666
0.19	
· 15	- 2%。(3.3 C) ほどできひもち ついちをにだいたないなどなどなどなどの いっかんひょうとかをない スピット ひ。
	-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
00	教育にすまたから人々と、んんしのなまたのとうとうとなるなどの広までもんだ。このでのな人と気をおうころ気を入つのの意
134	H. DYFF. C. CERTERICORDEDERSE. CONSERVATE CONSERVATED CONSERVATED
. 55	- 発表できましたの文化がななないのななななどとしい。こうからともずなるために、 いうかんのためかっていたのかのののない。
BC.	
00	
- Uu	-発言許は状況、小方音音なななたたないないないないないというなみななない。 いううれきもの アニシロネト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
20	X#\$5X\$004204466u44325560000035554555500037374055550635003F
20	\$05636 10000 / ASTORASTOCIOL ASTOCIACIÓN SOCIATION ASTOCASASTOCIA SOCIAD
man he is	
. 65	X \$\$\$\$\$£0046064606465225700603053£653\$57070026574057572555700370020*
66.	「影響を見なくのであたのとないなられなからになって、作べる時期になり、ここのにはななからかだのになって、「食業」
0.0	
6.2	**たきまたのかたのはまたららいをなんたたりのできたななたなからにというなのもともなられたのでのでのから。
20	X • 5 66 6 7 7 6 6 6 6 6 6 6 6 7 7 7 7 7 7
, DC	
60	w.roledfograddigoneddfogodorgenegaetrogdagaagaacodr o cercoo.
20	`X! #55860606060446046668222056605205660555006885006666066606062888"
00	**************************************
00	W. NPTC 2016066669030040855000056666667. C. 26666666060666666
00	★★は見めでおうともですべきからなどうとなわせるかのうとはないのかられなかのからからならいとおならられていたらのき。
29	X*5522201205050505050505050505050505050505
00	
06	- サ。 ゆきと ひとり コイコモイ ちはむつ ひとり おうさけ シング たつち ログイ こうたい ひんつう かかいかき かいなし エーロ・ウイン
20	- #\$61000000000000000000000000000000000000
50	"# 6 3 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0
616	AL DE MILLERAL FOR DEDUCTOREDE DE DESEMPLITE DE SEL L'ADERE RECORDINATION.
DC	
0.5	NEAS TO STOLED THE SHOULD BE SHOULD TO STOLED A STOLED STOLED STOLED STOLED
80	• 866693866208663936493843668763394866676665533388887486644*#
20	\$266868000372226016056666003266666666666666666666666666666
	Concertation of the second se second second sec
	Efc3

Figure 14 Bl. (CONTINUED)

X 0005004C04200020540000000003F0000000A16162300000000000 X'011500200110001064010000012A513E08800A17172/41F081F1F0000 X'0215002001100010640200000124513E08800A17172//1F081F1F0000 X'031500200110001064030000012A513E03800A17172/11F081F1F0000 X 041500200120003064040000012A513E08800A1717241F081F1F0000 X'051500200120002064059000012A513E08800A1717241F081F1F0000 X'061500200120002064060000012A513E08800A1717241F081F1F0000 X'0715002001100010640700000124513E08800A1717241F071F1F0000 X'081500200118001854080000012A513E03800A1717241F071F1F0000 X 091500200120002064090000012A513E08800A1717241F081F1E0000 X * 0A04004 CO420002064 0A0000000A4 00A0A00 011A1A220A0A0A0A0000 X'0B1D004C04100010640B012FFE3735390F800A1115270E0E0E050000 X'0C1D004C04100010640C012FFE3735390C300A1F1E270C0C0C0C0C0000 X'0D1D004C04100010640D012FFE3735390D800A1P1E270D0D0D0D0000 X'0E1D004C04100010540E012FFE3735390E800A1L1E270E0E0E0E00000 X;0F1D004C04100010640F012FFE3735390E80QA1E1E270F0F0F0F0000 X'101D004C04100C105410012FFE37353910800A1E1L27101010100000 X'111D004CC41000106411012FFE37353911800A1E1L2711111110000 X'121D004C041000105412012FFE37353912800A1F1D27121212120000 X'131D004C041000106413012FFE37353913800A1E1E27131313130000 X'1403004C042000203/14000000141/2414000A1D1D211414141/0000 X 1 504004 COM 20002064 1 50000001 51 51 51 5800 A1 EL E201 51 51 51 50000 X'161500'/00'/2000206'/16012F0100001600800A161623000000000000 X'17150040042000205417012F012F303E08900A1818241F291F1F0000 X'1815004C043000306448012F0130314308800A1919251F2P1F1F0000 X'1915004C045000506419012F0131314408800A1919261F301F1F0000 X'1A15004C0/2000306/21A012F010A0A0A9A303A1A1A220A0A1A1A0000 X'151500%C04200020641P012F01393A1B0F800A1C1C274C4C1F1P0000 X1101500400450005064120012F013F301013900A101028353510100000 X120150040042000306412001250114141414200A101021141414140000 X'1E15004C04200030641E012F011515151515900A1E1E20151515150000 X'1F1400'+C041000106/+1F00000024510108000A17172/+1F1F1F1F0000 X 201500/ 00/2000306/2000001715151515800A1E1E2015151505000 X'2115004C042000306421000017141414800A152521141414140000 X'221500400420003064220000170A0A0A0A800A1A1A220A0A0A0A00000 X 231 5004 C0420003064230000170000000800A161623000000000000 X'2415004C0410001064240000172D2F3E08300A1717241F291F1F0000 X'251500'+00'+2000306'+250000172E2C'+308800A1818251F2E1F1F0000 X 2615004004500050642600001731314408900A1919261F301F1F0000 X'27150040041000106427012F1737352708300A1112273333050200000 X'2815004C045000506428012F173F3F2813800A1C1C2S333313130000 X'2915004C0810001064290000002A2F3E08000A1717241F2F1F1F0000

Figure 14 B2. NEW IBM Research Schedule Table

56

X'2A15004C08100010642A0000002D2F3E08800A1717241F2A1F1F0000 X'2E15004004200020642E0000002F304308000A1818251F2F1F1F0000 X'2C15004C04300030542C00000030314403000A1919261F301F1F0000 X'2D15004C08200010642D000000482A3E08000A1717241F2A1F1F0000 X'2E15004C04200020642E0000002A2F4308000A1818251F2F1F1F0000 X'2F15004C04200020642F0000202E2C43088C0A1818251F2F1F1F0000 X'301500/C0/3000306/30000000/9324/408800A1919261F301F1F0000 X'311500400450005064300000004A324508000A1919261F311F1F0000 X'321500%0%5000306%320000031314508900A1919261F311F1F0000 X'331A004C081000106433012F0034393434000A1B1L273434343400000 X'341A00'+C081000106434012F5C37353434800A1B1E27343434340000 X'351A0040042000205435012F00393A3939000A1E1E27393939390000 X'361A00/100/43000306/436012F003A313A3A000A1C1C283A3A3A3A0000 X 371A0040031000106437012F0040343434000A1B1B27343434340000 X 381A 304/004/20002054/38012F0034/393939000A1C1C2839393939390000 X*391A00%0042000206439012F503A363939800A1010283393939390000 X '3ALA00'/CO//3000305//3A0L2N8A//E3C3A3A800ALCLC283A3A3A3A0000 X '3B1A00/ CO/ 500050643P012F18/ F3C3E3P800A1C1C283F3D3E3F0000 X'301A00/00/05000506/030012F003E3F3I3P000A10102832353L310000 X 3D0E0026011000FF643D012F002A013E0800CA1717243D3D1F1F0000 X '3E15004004200020643F012F00482E020590021717241F291F1F0000 X '3F0500'0 3'200020403F00000003F0000000A16242300000000000 X '400'200'100'2000206'240000000A/200000011A1A220A0A0A010000 X 4116000 01/1000776/1410127003021/1508000/1919264141771F0000 X 421500040140000006442012F0031324608000719192642421F1F0000 X 43150040042000206443012F002A200208P0021318251F2F1F0000 X 441500/c043000305444012F002F31020880001919261F201F1F0000 X145150040045000506445012F003031020890021919261F311F1F0000 X 461400000014000FFK446012FFF2D2E/208800A19192642421F1F0000 X 1473 500401.008001.0644900000048483203000217172412748173 50000 X 481500401008001064480000174729380200081717241F481F1F0000 X 491500/10043000506//490000002730/1408000A1919261F304A//A0000 X 4A15004C043000505/44A00000G30314508000A1919261F311F1F0009 X 49150026081500F7644200000047293E08000A1818251F1F1F0000 X 4C1A004C1008001.0344C012F004D/15/204D00031E1E274D/4D/4D/4D/4D0000 X 4D1A00% C1008001 C6/44 D01? 7 50% C33% D4D30081 D1E27% D4D% D% P00000 X 4ELA004C04300030644E012F00393A3A3A000AlClC283A3A3A3A0000 X %F1A904C04500050644F012F003A3*3F3E000A1C1C380B3*3*3*0000 X ' 501 2002 6081 500 FF64 500 12 F004 03 53 1 34 000 A1 31 7 27 50 50 50 50 0000 X 511B00200420002064510000002E524308000A1818251E511E1E0000 X 5214002008300030645200000030314408000A19192617521F1 F0000 X '5315E30102D3F7F9F25300000030304008000419192653531F1F0000

Figure 14 B2. (CONTINUED) .

		L E V E L	P R I	T S V A L	Q U A N T	M A X C R	S T	A N T E X	D E L T A	RP CR MM PP T	M R Q
LOOPING INTER- ACTIVE SET	GROWING DELAYING GROWING GROWING GROWING DELAYING DELAYING DELAYING DELAYING	29 2A 2D 2C 2D 2E 30 31 32	15 15 16 15 16 15 15 16	004C 0020 004C 0020 004C 004C 004C 004C	08 04 04 02 02 02 04 04 08	10 20 30 20 20 30 50 50	64 64 64 64 64 64 50 50	0000 0000 0010 0000 0010 0000 0020 0098 0098	0C 06 00 10 0C 10 24 30 60	40 80 00 40 40 80 80 A0 A0	0A 0A 0A 0A 0A 0A 2A 46
LOOPING INTER- ACTIVE SET	SHRINKING DELAYING SHRINKING SHRINKING SHRINKING	47 48 49 4A 4B	16 15 15 15 15	004C 004C 004C 004C 0026	10 08 02 04 08	08 08 30 40 15	64 64 40 50 64	0000 0000 0010 004C 0000	0C 17 10 24 00	C0 C0 20 20 20	0 A 0 A 0 A 0 A 1 4
STARTING SET	INTERACTIVE INTERACTIVE INTERACTIVE	51 52 53	15 14 15	0020 0020 E3C1	02 04 C2	20 30 03	64 46 F2	0020 0010 0000	04 08 00	00 A0 00	0A 18 ÛÂ

Figure 14 B3. Test 4 (Run 5) Schedule Table Modifications

.

•

•

.

		L E V L	Q U . A N T	D E L T A
LOOPING INTER- ACTIVE SET	GROWING DELAYING GROWING GROWING GROWING DELAYING DELAYING DELAYING DELAYING	29 28 20 20 2E 2F 30 31 32	08 04 02 01 01 02 02 02 02	0C FE 00 10 0C 10 FF FF FF FF
LOOPING INTER- ACTIVE SET	SHRINKING DELAYING SHRINKING SHRINKING SHRINKING	47 48 49 4A 4B	10 08 02 02 08	0C FF 10 24 00
STARTING SET	· INTERACTIVE INTERACTIVE INTERACTIVE	51 52 53	02 02 02	04 08 00

Figure 14 B4. Test 5 - Schedule Table Modifications

LIST OF REFERENCES

- McCredie, J.N., Schlesinger, S.J., <u>A Modular Simulation</u> of TSS/360, paper presented at the Conference on Applications of Simulation, New York, New York, 9-11 December 1970.
- 2. Doherty, W.J., <u>Scheduling TSS/360</u> for <u>Responsiveness</u>, Fall Joint Computer Conference, pp. 97-111, 1970.
- Calingaert, P., "System Performance Evaluation: Survey and Appraisal", <u>Communications of the ACM</u>, Vol. 10, No. 1, pp. 12-18, January 1967.
- Hellerman, H., "Some Principles of Time-Sharing Scheduler Strategies,"<u>IBM Systems Journal</u>, Vol. 8, No. 2, pp. 94-117, 1969.
- Sayre, D., "Is Automatic 'Holding' of Programs Efficient Enough to Displace Manual?," <u>CACM</u>, Vol. 12, No. 12, pp. 656-660, 1969.
- 6. McCredie, J.N., <u>Measurement Criteria for Virtual Memory</u> Paying Rules, ACM proceedings, pp. 193-197, 1969.
- 7. Denning, P.J., "Thrashing, Its Causes and Prevention," Proceeding FJCC, Vol. 33, Part 1, pp. 915-922, 1968.
- Brawn, B., Gustavson, F.G., <u>Program Behavior in a Paying</u> <u>Environment</u>, RC 2194, IBM Thomas J. Watson Research, York Town Heights, New York, 1968.
- 9. Technical Report Number 81, <u>Virtual Memory</u>, by P.J. Denning, 1970.
- 10. Denning, P.J., "The Working Set Model for Program Behavior," CACM, Vol. 11, No. 5, 1968.
- 11. Fine, G.H., Jackson, C., McIssac, P., <u>Dynamic Program</u> <u>Behavior under Paging</u>, Procedure ACM 21st National Conference, pp. 223-228, 1966.
- IBM Corporation, Form Y28-2012, "System/360 Time Sharing System Resident Supervisor", Program Logic Manual, 1970.
- 13. IBM Corporation, Form Y28-2011, "System/360 Time Sharing System, System Control Blocks," <u>Program Logic Manual</u>, 1970.

- 14. System Development Corporation, Santa Monica, California, SP-3347, <u>Benchmark Analysis of Time-Sharing Systems</u>, by A.D. Karush, pp. 1-38, 30 June 1969.
- 15. Syms, G., Haines, W., Porterfield, J., "A Comparison of CP/67 and TSS/360 Time-Sharing System, U.S. Naval Postgraduate School, Monterey, California,"paper to be presented to the 3rd Symposium on Operating System Principles, Palo Alto, California, October 1971.
- 16. Stanford Computation Center, Stanford, California, <u>The Analysis of General Purpose Computer Time-Sharing Systems</u>, Doc. 40-10-1, by N.R. Nielsen, pp. 97-115, 1966.
- 17. Deniston, W.R., <u>SIPE: A TSS/360 Software Measurement</u> <u>Technique</u>, 24th National ACM Conference Proceedings, pp. 229-239, 1969.
- 18. De Meis, W.M., Weizer, N., <u>Measurement and Analysis of</u> <u>a Demand Paging Time-Sharing System</u>, Proceeding of the FJCC, pp. 201-216, 1969.
- 19. Shulman, F.D., "Hardware Measurement Device for IBM System/360 Time Sharing Evaluation,"Proceedings of the 22nd National Conference ACM, Vol. P-67, pp. 103-109, 1967.
- 20. Technical Report, TR53.0012, <u>An Instruction-Trace Technique for Time-Sharing System/360</u>, by C.E. Seabold, 31 March 1969.

61

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940		2
3.	Asst Professor Gordon H. Syms, Code 53 Zz Department of Mathematics Naval Postgraduate School Monterey, California 93940		1
4.	Asst Professor George E. Heidorn, Code 55 Hd Department of Operations Research and Administrative Sciences Naval Postgraduate School Monterey, California 93940		1
5.	Capt Jerry K. Baird, USMC 24122 Ramada Lane Mission Viejo, California 92675		1

62

Security Classification									
DOCUMENT CONTI	ROL DATA - R 8	S D							
(Security classification of title, body of abstract and indexing a	nnotation must be e	ntered when the	overall report is classified)						
		Unc	lossified						
Naval Postgraduate School		2b. GROUP	Tassilieu						
Monterey, California 93940									
3 REPORT TITLE		A							
Improving TSS/260 Performance by Tu	ning the S	Pable-Dri	ven Scheduler						
A DESCRIPTIVE NOTES (Type of report and inclusive dates)									
Master's Thesis; June 1971									
5. AUTHOR(5) (First name, middle initial, last name)									
Jonny V. Doind									
Jerry K. Daird									
6. REPORT DATE	ZE TOTAL NO. OF	PAGES	76. NO. OF REES						
June 1971	6/1		20						
SA. CONTRACT OR GRANT NO.	98. ORIGINATOR'S	REPORT NUME	LER(S)						
b. PROJECT NO.									
с.	vo. OTHER REPORT NO[5] (Any other numbers that may be acsigned this report)								
d.									
10. DISTRIBUTION STATEMENT	· · · · · · · · · · · · · · · · · · ·								
Approved for public release: distri	bution un	limited.							
	12 SPONSORING								
	Naval Po	ostgradua	ate School						
	Monterey	y, Califo	ornia 93940						
13. ABSTRACT									
During the period of time from	August 19	(0 throug	gh January 1971						
and while employing the TSS/300 Tim	e-Snaring	System a	nonformance of						
the system was noor compared to the	nrevious	luat the	ime-sharing sys-						
tem - the CP/67 (version 3 from Ca	mbridge Re	esearch (Center). For						
this reason, the problem of improvi	ng TSS/360) perform	nance was under-						
taken as a thesis project. Specifi	cally, the	e improve	ements consist of						
an increase in system performance -	responsi	veness ar	nd throughput -						
by judiciously adjusting the parame	ters of th	ne TSS/36	50 Table-Driven						
Scheduler in accordance with the Pr	inciples o	of Baland	ced-Core Time						
and Working Set Size.	and the	magulta	omo givon						
A number of test runs were made	A set	results of benchr	are grven, mark programs						
(or script) were developed and used	with the	se tests	that were						
characteristic of a "typical" or "r	ealistic"	load at	this installation.						
· · · ·									
DO FORM 1172 (PAGE 1)									

63

-

Security Classification

-

	LIN	K A	LIN	кв	LINKC		
KEY WORDS	ROLE	wт	ROLE	₩ т	ROLE	wт	
TSS/360							
Performance							
Time-Sharing Systems							
CP/67							
·							
•							
•							
		This is a second					

