
IMPROVING TSS/360 PERFORMANCE
BY TUNING THE TABLE-DRIVEN SCHEDULER

Jerry Kelcey Bai rd

LIBRARY
OOL

United States
Naval Postgraduate Schoo

F T T~P IT

Ijj fc) 1 '-
fc

IMPROVING TSS/360 PERFORMANCE
BY TUNING THE TABLE-DRIVEN SCHEDULER

by

Jerry Kelcey Baird

Thesis Advisor G.H. Syms

June 1971

Approved ioM pub tic. telzaie.; dutubution unlimited.

T139345

4

SCHOOL'
• 93940

Improving TSS/360 Performance
By Tuning the Table-Driven Scheduler

by

Jerry Kelcey .Baird
Captain, United States Marine Corps

B.S., University of Utah, 1966

Submitted in partial fulfillment of the
requirements for the degree of

MASTER. OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1971

LIB!

M0fl ;

SCHOOL.

HO

LIBRARY

SCHOOL'

40

ABSTRACT

During the period of time from August 1970 through Jan-

uary 1971 and while employing the TSS/36O Time-Sharing Sys-

tem at this institution, it was observed by the user

community that the performance of the system was poor com-

pared to the previously used time-sharing system - the CP/67

(version 3 3 from Cambridge Research Center). For this reason,

the problem of improving TSS/36O performance was undertaken

as a thesis project. Specifically, the improvements consist

of an increase in system performance - responsiveness and

throughput - by judiciously adjusting the parameters of the

TSS/3^fi Table— Driven Sched ii
~lnvi ^r g^cc 1"'^ ^'* '---<-i~ -<-i

Principles of Balanced-Core Time and V/orking Set Size.

A number of test runs were made, and the results are giv-

en, employing different schedule tables. A set of benchmark

programs (or script) were developed and used with these tests

that were characteristic of a "typical" or "realistic" load

at this installation.

TABLE OF CONTENTS

I. INTRODUCTION
7

II. NATURE OF THE PROBLEM
g

III. PRINCIPLES AND CONCEPTS 10

A. PERFORMANCE 10

B. FOLDING PROGRAMS 12

C. LOCALITY OF REFERENCE 13

D. WORKING SET AND WORKING SET SIZE m
E. BALANCED CORE TIME 15

IV. TSS/360 TABLE-DRIVEN SCHEDULER 16

A. STRUCTURING OF SCHEDULE TABLE ENTRIES 20

j.. me oi/ai'oiu^ oei 21

2. The Looping Set 23

3. The AWAIT Set 2k

k. The Holding Interlock Set 2k

5. The Waiting-For-Interlock Set 25

V. EXPERIMENTAL PROCEDURE AND RESULTS 25

A. DEVELOPMENT OF A BENCHMARK 25

B. MEASUREMENT TECHNIQUES' 27

C. TOOLS FOR MEASURING PERFORMANCE 27

D. PRESENTATION AND DISCUSSION OF RESULTS 28

1. Test 1 30

2. Test 2 30

3. Test 3 33

4. Test 4 33

5. Test 5 37

VI. CONCLUSIONS AND RECOMMENDATIONS : 43

APPENDIX A SCHEDULE TABLE PARAMETER DEFINITIONS 4 7

APPENDIX B SCHEDULE TABLES USED FOR DIFFERENT TESTS 5^

LIST OF REFERENCES 60

INITIAL DISTRIBUTION LIST 62

FORM DD 1473 63

LIST OF FIGURES

1. Contents of the Schedule Table Entry 17

2. Maintenance of Task Status Index Lists 19

3. TSS/360 Schedule Table Example 22

4. Naval Postgraduate School IBM 360 Model 67 29

5. TSS/36O Test 1 Load Conditions and
Performance Statistics 31

6. TSS/360 Test 2 Load Conditions and
Performance Statistics 32

7. TSS/360 Test 4 Load Conditions and
Performance Statistics

: 34

8. TSS/360 Test 5 Load Conditions and
Performance Statistics 39

Q. Response Time Comparisons for Fortran
Compilation of Test 5 40

10. Response Time Comparisons for Small PL/1
Compilations of Test 5 40

11. Response Time Comparisons for EDIT
Script of Test 5 41

12. Throughput Comparisons for Fortran
Compilation of Test 5 41

13. Throughput Comparisons for EDIT Script
of Test 5 42

14. Schedule Tables Used for Different Tests 54

Bl. Old TSS/360 Schedule Table 54

B2. New IBM Research Schedule Tables 56

B3. Test 4 (Run 5) Schedule Table Modifications - 58

B4. Test 5 - Schedule Table Modifications 59

ACKNOWLEDGEMENTS

I am grateful to Professor Gordon Syms for his help as

my thesis advisor. Without his consistent motivation to seek

improvements in the performance of time-sharing systems,

this particular thesis project would not have been possible.

I am also greatly appreciative of the efforts and many

hours that Mrs. Pimporn C. Zeleny, of the W.R. Church Com-

puter Center programming staff, spent in helping with the

TSS/36O system. I would also like to thank my classmates

who helped with the terminal sessions.

I. INTRODUCTION

Since the initial release of the time-shared operating

system, TSS/36O, in October 1967, performance has improved

significantly with each subsequent release. However, for the

period from August 1970 to February 1971, the Naval Postgrad-

uate School converted from the CP/67 time-sharing system to

the Time-Shared System, TSS/36O, and found the new system

undesirable to the user community in terms of system perfor-

mance - responsiveness and throughput. Because of its poor

performance, TSS/36O was short-lived at the school and was

never given an opportunity through testing and evaluation

procedures to Indicate its worth and future use as a good

performance time-sharing utility.

The objective of the research for this thesis was to

find ways of improving the performance of TSS/36O at the

Naval Postgraduate • School

.

After having read the available literature on the

TSS/36O system, it seemed that the key area for study and

work was the scheduling algorithm. At first a simulation

model of the TSS/36O scheduling algorithm looked like a

fruitful area of endeavor; however, this area was abandoned

because of the time factor in building such a detailed sim-

ulation model and since It had taken John McCredie and

Steven Schlesinger of Carnegie-Mellon [Ref.l] about a year

to write such a model. They describe a modular simulation

model designed to aid in determining the value of entries in

the TSS/360 schedule table. They showed that a useful model

can be designed to answer a limited set of questions about a

complex system without detailed modeling of all system

components

.

Another alternative, and the one that was finally pur-

sued, investigated, and tested, was that of methodically

altering the parameters of the TSS/360 Table-Driven Scheduler

to achieve optimum system performance for the particular

IBM 360/67 hardware configuration available.

In order to test and evaluate the performance of TSS/360,

which was based on five test runs with different schedule

tables, it was first necessary to construct a set of test

nro fsypi ins (a h p ri c J"
1m ^

"^k n r s^riot ^ that would be representative of

a realistic load on the system. This alone was a difficult

task since, in a time-sharing environment, many user programs

are in contention for similar system resources and at any

particular -time, there could be many demands or requests for

a particular resource.

Another objective of this paper is to compile the avail-

able literature regarding the performance of time-sharing

systems that apply to TSS/360 and show by experimental tests

that these principles and concepts improve system

performance

.

II. NATURE OF THE PROBLEM

When this institution purchased the IBM 360/67 computing

system in 1968, TSS/36O time-sharing operating system was not

yet available (with the bugs removed), but the future em-

ployment and implementation of TSS was the big factor and

sales promotion feature in purchasing the IBM 360/67 hard-

ware configuration. As an alternate, CP/67 (version 3 from

Cambridge Research Center) was used successfully for nearly

two years. Then announcement was made to the user community

that in August 1970 the IBM 360/67 would be operated as it

was originally intended and that TS3/360 would replace the

CP/67 time-sharing system. Prior to implementation by the

computer facility programming staff, the TSS/36O was debug-

ged and tested; however, little consideration was given to

tuning the system to the job load of the Naval Postgraduate

School environment.

As previously stated, the TSS/36O time-sharing system

was used for about six months during which time the perfor-

mance was quite unacceptable to the user community. It was

observed that heavy paging users could ruin the performance;

i.e., a few users manipulating large matrices or having

many subroutines not properly linked could decrease the re-

sponsiveness to the other users. It was for this reason that

this thesis project was initiated and motivated.

The two basic approaches that have been used for investi-

gation of existing time-sharing systems have utilized either

the analytic or simulation techniques. The analytic approach

was the technique used to improve system performance of

TSS/36O. By methodically adjusting the parameters of the

TSS/36O Table-Driven Scheduler using the principles of

Balanced-Core Time and Working Set Size, improvement of the

performance of the system can be achieved. Walter J.

Doherty [Ref.2] showed that the performance of Release 4

Schedule Table of TSS/36O at the T.J. Watson Research Center

was dramatically improved in a three-month period.

III. PRINCIPLES AND CONCEPTS

The principles and concepts discussed in this section

are a compilation of the available literature regarding the

improvement of performance of time- sharing systems as they

pertain to TSS/36O.

A. PERFORMANCE

Performance, appraised by Calingaert [Ref.3] as an inde-

pendent entity, does not exist. The concept of performance

can have a broad spectrum of meaning to different classes of

people. However, fundamentally, performance of a computer

is defined as the degree to which a computing system meets

the expectations of the person involved with it. Some of the

terms that are often included as aspects of performance are

10

responsiveness, throughput, turn-around time, availability,

reliability, number of terminals supported, CPU utilization,

channel and device utilization, and efficiency.

To a user of TSS/36O sitting at a terminal, the ability

of the system to respond to his commands is his predominant

view of performance [Ref.4]. A terminal user does not care

if only one person or a hundred people are using the system

simultaneously with him so long as the user thinks that

there is a complete and dedicated computer at his disposal

to provide certain services to him. A user would be much

more irritated if he expected a TSS/36O edit request to

respond in three seconds but it took five seconds than if he

expected a response of ten minutes to some complex mathema-

tical equation but it took thirty minutes. In other woras

,

the system should be much more responsive to those requests

to which a user expects an immediate reply, than to those

requests during which the user knows that his attention can

be turned elsewhere. (He could execute these programs in

the background batch operation if the response is too slow.)

This was a primary assumption that was made while setting out

to improve TSS/36O performance.

It is most important to a system manager to know the

number of terminals that TSS/36O can support, and it is also

important to consider the categories of work that the termi-

nal users are doing. As Doherty points cut in his paper,

an intuitively obvious but rarely mentioned concept is that

for some categories of trivial work, the number of terminal

11

receiving adequate response may increase only after a thresh-

old of human performance is reached. In other words, if the

system is responding at a rate slower than a person's re-

sponse time, any initial improvements in system performance

will first result in the user's getting more work done; and

only then will the system be able to handle more users at

that level of responsiveness. By allowing longer delays in

processing long-running programs as the load increases, it

is possible to ensure that the very short jobs will constantly

be provided with a fast response.

B. FOLDING PROGRAMS

Sayre [Ref.5] states: "By the unfolded form of a program

we mean the form a program would take if it had avail ahlp to

it a large enough uniform memory to hold both itself and its

data.... On the folded forms the addresses have been rear-

ranged -- folded-to-fit into the smaller address space actu-

ally available." In TSS/36O, unfolded forms of programs and

data exist in virtual memory. When a program is executed,

portions of the program and its data are brought automatically

into main memory for execution, which will result in automa-

tic folding of the program if its complete execution space

requirements are larger than the main memory available to

hold it. McCredie [Ref.6] expressed in his paper that exces-

sive overhead and long delays while pages are transferred

into and out of core are two potential dangers of paging

designs. It is important to fold a program into as small

12

space as possible to prevent a degenerate situation called

"thrashing" from occurring due to an unnatural folding.

"Thrashing," as Denning [Ref.7] states, may also occur when

a page is pushed from core to make room for another, but then

is demanded again and brought back into core. Many programs

can reach this state, and the paging rate can get so high

that all productive work ceases. It is important to main-

tain a high degree of folding since it permits many programs

to be folded into main core simultaneously, thereby providing

a potentially significant increase in the level of multi-

programming. The dynamic relocation hardware available on

the IBM 360/67 makes the automatic folding concept possible.

C. LOCALITY OF REFERENCE

The program performance on any paging system is directly

related to its page demand characteristics. A program which

behaves poorly accomplishes little computation on the CPU

before making a reference to a page of its virtual memory

that Is on back-up storage, and thus it spends a good deal of

time in waiting for pages to be read into core memory. A

program which behaves well references storage in a more

acceptable fashion, utilizing the CPU longer before referenc-

ing a page which must be brought in from back-up storage.

This characteristic of storage referencing is often referred

to as a program's locality of reference and can be found in

Brawn's and Gustavson's paper [Ref.8]. Therefore, a program's

locality of reference will influence the degree of folding to

13

which that program can be subjected with a minimal influence

on its performance. Doherty has shown that a program with

good locality will run more efficiently in a small execution

space than one with poor locality.

D. WORKING SET AND WORKING SET SIZE

P.J. Denning [Refs.9 and 10] has investigated working set

models with regard to program behavior in a virtual memory

environment such as in the IBM 360 Model 67. The working

set W(t,T) of a program is the set of pages referenced in

the T page references immediately prior to time t. As time

progresses, W(t,T) may or may not change; however, the

better the program's locality of reference, the less likely

it is that W(t+1,T) ? W(t,T). From Denning's paper, it

appears natural to try to fold a program in such a way that

the program's working set for a given time interval fits

entirely in core memory. Reports of Fine, Jackson, and

Mclssac [Ref.ll] provide some experimental evidence that

the working set concept is a reasonable assumption for pro-

gram paging behavior. Denning defines the working set size

S(t,T) of a program, at time t, as the number of pages con-

tained in the working set W(t,T). Therefore, it is possible

to have the working set size remain unchanged and have the

working set change. It appears natural to try to refold the

program whenever its working set changes but, as Doherty in-

dicates in his paper, it is difficult to do since it 'is not

known in advance just when the working set is changing. So

in most paging systems, a working set size change is more

Ik

easily detectable; hence, it is possible to detect working

set changes at least when the working set size changes.

Doherty describes a method for doing this, and his method is

outlined below. The dynamic relocation hardware of the

Model 67 system makes the application of this concept

possible

.

Using the concepts of working set, working set size, and

locality of reference, Doherty states:

"During a single interaction between a user at a terminal
and TSS/36O, several programs are usually executed for
that user. Thus for the virtual execution time which
spans this interaction, the working set size may or may
not change; however, the working set will almost always
change several times. Furthermore, for those- programs
having good locality of reference, the working set size
during any one time slice will usually be much smaller
than the working set size for the whole interaction time
interval. And, in addition, the maximum working set size
for all the time slices will probably always be smaller
than the working set size for the whole interaction time
interval. For those programs having poor locality of
reference, the working set size for each time slice may
frequently approach the working set size for the entire
interaction time interval. Good locality relates more to
the rate at which new pages enter W(t,T) than to its
actual size."

E. BALANCED CORE TIME

From the previous discussion, programs having poor local-

ity of reference and a large working set size would greatly

reduce the level of multiprogramming if allowed to remain in

core for very long periods of time. This result would affect

throughput and responsiveness, since any new demands for ser-

vice could not be honored quickly because core would be tied

up. The Principle of Balanced-Core Time states that the

length of the time slice in terms of virtual CPU execution

time for any one task is inversely oroportional to the

working set size in that interval. Therefore, this concept

will allow good locality programs to progress very rapidly,

whereas it will minimize the elapsed time that any large

program (large working set size) can tie up core memory. In

other words, a minimum time slice length will then be set for

programs with large S(t,T) and poor locality to prevent pag-

ing overhead from dominating the system. In order to com-

pensate for this compromise, the duration between large

program tine slices will be made much longer than the dura-

tion between time slices for smaller working set size pro-

grams. As a result, the level of multiprogramming and

responsiveness will increase since more core is available

more often. In addition, the degree of CPU utilization will

increase

.

IV. TSS/360 TABLE-DRIVEN SCHEDULER

The table-driven scheduler [Refs.12 and 13] is an algo-

rithm which schedules and dispatches tasks within the multi-

programmed, time-shared environment. More specifically, the

scheduler consists of a set of programs in the resident

supervisor of TSS/360 used for scheduling, and consists of a

static and resident table consisting of a variable number

(256 maximum) of 28-byte entries. The 28-byte entries are

called levels of the schedule table of Schedule Table En-

tries (STE). Each entry in any one level of the schedule

table contains sufficient information to completely control

16

the execution of a task. The format of the schedule table

entry is depicted in Figure 1.

1 BYTE 1 BYTE 2 BYTES 1 BYTE 1 BYTE 2 BYTES

LEVEL PRI-
ORITY

QUAN-
TUM
LENGTH

MAX
QUANTA
COUNT

MAX
PAGES
ALLOV/ED

MAX
DISK
I/O

1 BYTE 1 BYTE 2 BYTES 1 BYTE 1 BYTE 1 BYTE

SCAN
THRESH-
OLD

PULSE
LEVEL

AWAIT
EXT.

DELTA
TO
RUN

TIME
SLICE
END

MAX
PAGES
TSE

1 BYTE 1 BYTE 1 BYTE 1 BYTE

AV/AIT
LEVEL

TV/AIT
LEVEL

1 BIT 1 BIT 1 BIT

MAX
RELOC.
PER
QUANTUM

RE-
COMPUTE
FLAG

PRE-
EMPT
FLAG

STEAL
REQUEST

1 BYTE 1 BYTE 1 BYTE 1 BYTE 1 BYTE

HOLDING
INTER-
LOCK

LOW
CORE
HOLDING
INTER-
LOCK

WAITING
ON
INTER-
LOCK

CONVP
SAT1C
WRITE
ONLY

R-
>NAL

LOW
CORE
FORCI
TSE

1 BYTE 1 BYTE 2 BYTES

UNUSED
NEXT
STEAL
LEVEL

DRUM
SHARE

Figure 1. Contents of the Schedule Table Entry

17

Each task which enters the system has another table to

describe itself to the system called the Task Status Index

(TSI). Each TSI has a pointer to a level in the schedule

table. Therefore, by changing the value of that pointer a

task will be given a completely new set of scheduling

parameters

.

All TSI ' s in the system are chained together on one of

two lists called the active and inactive lists. The active

list has two logical subdivisions called the dispatchable

and eligible lists. The dispatchable list consists of

tasks occupying core storage and waiting for the .CPU, and in

most cases, whose Scheduled Start Tlme.(SST) is less than

the Master Clock (MC) . When the SST of a task is less than

the Master Clock, the task is said to be behind schedule.

Tasks in the dispatchable lists are ordered according to

their status as "execute bound" or "I/O bound." Those with

heavy paging demands (I/O bound) are dispatched first.

The eligible list consists of tasks which are waiting for

entry to the dispatchable. list, i.e., which are ready to exe-

cute but have not yet been brought into main ' storage . These

tasks are ordered by priority with the lowest priority number

first on the list.

The inactive list consists of tasks waiting on long

delay type stimuli, such as a terminal interrupt. These

tasks, which are in AWAIT or TWAIT status, are incapable of

continuing execution until a particular interruption occurs.

Figure 2 depicts the movement of tasks among these three lists

18

TASK REACHES NOR-

MAL OR FORCED

TASK
BECOMES
DISPATCHABLE

TASK
LEAVES
AWAIT
OR
TWAIT
STATUS

Figure 2. Maintenance of TSI Lists

The schedule table controls the order in which tasks

are brought into the dispatchable list and the conditions

under which the task will leave the dispatchable list.

The fields of each Schedule Table Entry (STE) can be

classified into six logical areas.

19

The first is a set of fields that control dispatching,

i.e., the order in which tasks move from the eligible to the

dispatchable list (STEPRIOR, STEDELTA, STERCMP).

The second is a set of fields that provide limits that

determine when a task shall be time sliced and leave the

dispatchable list (STETSVAL, STEQUANT, STEMAXCR, STEAWTEX,

STEPRMT)

.

Third is a set of fields that specify the level transi-

tion that will be made when the respective limit or stimulus

has been reached (STEPULSE, STETSEND, STEMPRE, STETWAIT,

STEAWAIT, ATEHLCK, STELCHL, STEWLCK, STECV/O, STELCF, STEPRJ3,

STENSL)

.

Next is one field which can stimulate a change in the

order of tasks on the dispatchable list (STEMRQ).

Fifth is a set of fields which allow the resident

supervisor to release some of a task's pages rather than

time slice the task (STEST, STESRI).

Finally, there is a field which can override the system

calculated drum share of private pages for a task (STEDSH)

.

Appendix A contains a description of each of the fields

or parameters within a schedule table entry.

A. STRUCTURING OF SCHEDULE TABLE ENTRIES

By implementing the scheduling principles and concepts

previously discussed, a wide spectrum of scheduling strate-

gies can be implemented by altering only the entries within

the schedule table.

20

In constructing the schedule tables according to the

table scheduling strategies, different sets of levels are

grouped according to some primary goals of scheduling.

Several particular programs (tasks) are treated differently

than other programs, e.g., system operator task, bulk I/O

task, logon, and logoff. Figure 3 shows an example of a

schedule table. All other programs are divided into the

interactive and batch categories. In general, the same sets

of levels exist for both kinds of programs, except that inter-

active programs have priority over batch programs; that is,

interactive programs, initially, have a greater urgency to

start than do the batch. The number of batch programs al-

lowed to run simultaneously is arbitrarily restricted so

that adequate space will be available for anticipated inter-

active programs. The interactive sets of table levels are

grouped according to the following:

1. The Starting Set

The starting set of table levels are used to handle

new inputs from the terminal. The functions of this set of

table levels are to facilitate a rapid reply to the terminal,

if possible, and to make an initial judgment of the present

working set size of longer running programs, so that the best

entrance to the looping set of table levels can be chosen for

the particular program.

To accomplish this, several successive table levels

with high priority, small execution time limits (100 milli-

seconds), and increasingly larger core space limits (16, 32,

21

PI' fl II t
CB P. I C
Fin c H

PP K L

T

ST»R-t«3

SET

STsnp
IHTEB
INTEB
INTER
I HTFR
INTPR
INTER
INTER
IKTfp
I NTPR
BULK
BITCH
BITCH
BITCH
BITCH
B 1 TC H

BITCH
BUTCH
BATCH
BATCH
I 3GJN
LOGOP

•BO
ACTIVE
acmv e

active
A CT I V F.

ACTIVE
ACTIVE
UTII E

active
act iv r.

i-n

no os
01 in

02 in

01 1H
Ox 1R

05 Id

06 1R
07 ltl

01 1 1

09 11

0» 04
OB 10
OC 10

OD 10

OE ID
or in
10 10
11 ID

12 ID
11 ID

002* 01
0010 01

00 10 01
0010 01

0010 01
00 10 01
0U10 01

0010 01
0010 01

0010 01
002h 01
0011 01

0011 01

001 1 01

0011 01
0011 01

0011 01
001 I 01

001 1 01

0011 01
0026 02
002h 02

20 rr
io rr
10 PE
io pr
10 FP
10 PP
10 PP
10 PP
10 PP
io pr
20 ?t
10 PP
10 PP
10 PP
io rr
io rr
10 PP
io rp
io rr
io pr
20 rr
20 FF

00 oooo
01 oooo
02 oooo
oi oooo
0* oooo
OS oooo
Oh oooo
07 0000
OH OOOJ
01 OOOO
0» OOOO
ob oi2r
OC 12P
on oi2r
OR 012P
or our
io oi2r
11 Wf
12 012r
11 012P
to 00)0
IS oooo

00 00 00
00 07 bl
00 07 SI
00 07 SI
00 07 St
00 17 SI
00 »7 SI
00 «7 SI
00 07 SI

7 SI
00 (It 0»
01 OC IS
01 OC IS
01 OC IS
01 OC

o i oc
o i or

1 OC
01 OC
ob i:

IS

JS
IS
JS
JS
JS

00 11 14

00 IS IS

00 00
ID OU
in oh
ID OH
in oh
10 OH
ID OH
ID Oi)

in oh
10 08
I* J»

IS OB
IS OC
IS OD
JS OR
is or
IS 10
IS 1 1

IS 12

00 0»
HO 0»
HO 0»
HO UA
HO OA
HO OA
HO A

HO OA
HO OA
BU OA
00 01
HO OA
HO OA
HO OA
HO Ot
HO A

HO OA
OO OA
HO OA
HO OA

OA
HO OA

16 1t>

17
1 7

I (

I I

2 J ou
20 ir

17
1A

IB IB

1 B 1 B

IB IB
IB IB
IB IB
IB IB
IBID
IB IB
ID IB
ID 10
1E IE

20 ir

24 ir

22) l

2 7 OB
2(OC
2 I UD
i i or

n or
a io
ii ii

II 12

1 1 i j

21 10

20 1S

ou UO 00
IF IP

IP IF 1

IF IP

IP IP

ir ir ii

ir ir
ir ir
ip ir

ir ir
hi ui
OB ob oa
OC OC OC
OD UO 00
UE OE 08
up ur or
tu 1U 10,

ii ii

12
1 J IJ
10 10

11

12 W
1

J

10

INTERLOCK

lb 00 0011 01 20 Fr IS 012P OO (IO 00 16 UO 00 OA lb lb 21 UJ OU OU UO
INTERACTIVE 17 02 0011 01 13 Fr 17 012P 07 2D
INTERACTIVE 111 02 0011 01 20 FF 1H 012P 00 OB 2B
HTPRtCTIVE II 01 0011)1 10 PF 11 012

JH 00 OA 17 17
OK UO UA IH 111

UH 00 OA 11 11

1P IP IP IP

ip ip ir ir
ip if ip ir

t J l « I

BATCH
9\TCH

OO OA 2C
1A 01 001J HI 20 FF 1A OI2r 00 I'A OA 1A UA UJ UA 1A 1A 22 U IA 1A 1A

IB Oo 001) 01 10 FF IB 012F CO OC JS IR JO 00 OA 1B IB 2/ IB IB IB lb
1C 012P 30 IS J(,ir oo ooit oi 1 I 00 OA 1C 1C 2H IC IL 1C 1C

n> ot noil oi 2n ff in oi/r oo to 10 id 10 00 oa id id 21 10 10 10 11
IP 1 0011 01 20 FF IE 0I2P 00 IS IS IE IS 00 OA IE IE 20 IS IS Is IS

PHElUDICf 4\- ITE ir oi noil oi 2i rr ip no.to no if ir ch oh oo oa 17 17 20 ir ip ip ir

INTERLOCK

Lc> c.nrr

LOGON
BULK 1-0
STSOTPRO
I NTEPACTIVE
INTERACTIVE

?o Oh 0011 01 20 rr 20 ooio 21 is ts is is ho oa ir if 20 is is is is
21 0*. noil 01 20 rr 21 oooo 2J 10 10 10 u ho oa id id .21 to 10 io 10

22 OS 0011 01 20 FF 21 0000 21 01 0» Ot OA HO OA It 1A 22 OA UA UA UA
21 Ob 3011 01 20 Pr 21 0300 07 00 00 00 00 HO OA lb lb 21 00 00 UU UO
20 OS 0011 01 10 PP 2» 0030 21 07 21) 10 OH 00 UA 1/ 17 20 IP IP IP tr
2S OS 0011 01 20 rr ?S 0003 21 01 2d ID OH HO OA 10 IH 2S IP IF IP IP

INTERACTIVE 26 Ob 00 11 Ot 10 PP 2s OOOO 21 2l< 2D IP Urt HU OA 11 11 2b IP IP IP IP
BATCH 27 Ob 0011 01 10 FP 21 012P 21)l IS 27 OB IU UA IB IB 21 OB OB OB UB
BATCH 2H OS 0011 01 10 PF 2H 012F 21 Jl IS 2H II HO OA IC IC 2* 11 1) II IJ

! NT

SST

GROJI
>I1C 3FLAT

I'.F >JI

'PACTI VE CinJl
r.p n 1 1

-. J I

01 LAY
DcLAF
DFLAT
DFLAT

L.WT NG

BAT'll

SET

NG
INC.

ir,

If,

i»;
I 1 :

INC.

IN.:

2B 10 OH UU OA 1/ 17 2a IP ir tr tr

GROWING
1FLAT I NG

GRnuIHG
GROWING
GBOil I N ,

I'.K .3 U I N r,

DFLAT I NG

DELATING
3ELAT I NG

TELA? I NG

MO UA III IH 2S IP IF

00 UA IH IH 2S IP IF

0026 OH 10 FF 21 OOOO 01
0025 OH IN PF 2A 00)0 2 1 07 21 IJ

0026 02 2T PF 23 OOOJ UO 2 A 2C IP

30 2h 32 I'J IP 2f OOOO 00 2P
noil UI «i PF 20 OOOO 00 to 2E 01 OH JO OA II II 2b IP IP IF IF
011 Jl 03 FF 2P. J J) JO
JC2S 02 20 FP 2P OOOO 2J

1) 300 3 2 1

IF IF
IP IP

10 OH JO OA II 11 2b IP IF IF IP

II J2 02 OH UO Ot II 11 2h IP IP

10) n 2 '. 01

I 4 Ou2S 1

11 001 I 31

K
or, FF II OOi

3H HO Ut II 11 2b l» IF
IH HO OA 11 11 2b 1P IP

IP IF
if ir

F f 12 3U0 1

2 1 •! 2D o

1

2 1 01 2 >

302S UJ
2b OH

OO.'h 02
0U26 02
00 11 111

001 I Jl

002b 02
0026 01
001 I 01

00 11 01

II 12 F

Io 12P 21
IS I2P 00
lb (1 I 2 r

17 0I2P 00
ii o i2r oo
Jl (I I2P

IA BI2P
I H t 2 F

FF 1' 012P

OC J I II

2 FP
io rr
on FF
on fp
20 FP
JO PF
OU IF

Jl

11

JA

30 IB

2 J SO

OF 17 |:

OH HO OA 11 11 2b IF 1 P

OH 00 OA 11 11 2b IF i r

10 00 UA IB ID 11 JO JO
10 HO Ot IB IB 2

;

JO J»
11 JO Ut IB IB 2 / Jl Jl

la 00 OA IC IC 2H It it

IB 00 OA IC IC 2D JB JB
IC 00 OA IC IC 2H IC IC

19 HO OA IC IC 2H 11 19

It Oil OA IC It 2H Jt I A

IB HO Ot IC IC 2H ID IB

IC BO OA IC IC 2B JC JC

GROWING
AWAIT DELATING

grow I NG
INTERACTIVE GR INING

GROWING
it T CROWING

DIIII I NG
OELAI I

»".

e I A T I NG

3ELAUNG

SHRINK IN".

I")PI NG DFLAT I NG
I'.TE" ACTIVE GHil I'll IN ;

?RI SHRINK IN".

SHRINKING

17 20 IF IF IP 1

17 20 IP IF ir 1

IB 2S 1 r IP IP I

10 03 002b 01 tO FF J3 012r 00 2A 2B JE OH 00 UA
IE 0.1 niVh 01 10 IF IK 012F .'I 07 2U ID OH HO OA
IP 1-1 JOtl 01 20 FF IP 012F OU 2A 2C 01 OH OU OA
00 I ? 0010 Jl IU Fr 0.1 0I2P 30 2r 2 Hi' OH 00 OA
01 Is 33)0 01 00 PF 01 0I2P 00 10 2E OS JM OU OA
02 IS 3001 01 00 FP 02 OI2P-00 II J2 Oh OH 00 OA
01 Io 0311 01 20 FP 01 012P 21 29 2C JP OH BO OA
00 10 0013 01 10 PF Oo JI2F 21 ?B 20 03 Ud dj 01
OS 10 Orrjo 01 00 PF OS 012P 21 2C 2F 01 OH HO A 19
Ob to 00114 Jl 00 PF OS 0I2P 21 20 2P 02 OH MO OA 19

07 07 0026 10 OH FP 07 0003 00 OB 21 10 OH 00 OH 17 17 21 IP 1F ir 1

OH 07 0026 10 OH rr OH OOOO 21 07 21 JD OR HO 0» 17 17 20 ir ir ir 1

09 17 002b Ot 10 FP OF 00)0 00 OA 2C 00 OH 00 Ot 19 19 2b IF IF IP 1

11 16 002h 02 20 FF ot 30)0 30 OB 2a IF OH UO UA IB 10 2S 1P IF IF 1

ou IS 302h 3H IH pp 49 0030 00 17 21 If OH 00 OA 1d IB 2S IF IF IF I

19 w 2b ir IF ir i

11 19 26 IP IP tr i

1 1 11 2b i r i r ip i

IB IB 2S 1 F ir ir i

19 19 2b i r ir ir 1

19 19 2b IF ir ip t

19 19 26 1P i p ir i

SHRINKING oc II 0026 10 OH FP OC 012P 00 ID II OH OD 00 OH IB IB 27 OD OD OD ID
DELATING id 11 3C26 10 3H FF 03 II 1 2 F 21 OC II oc OD 80 Od IB IB 2/ 00 «D 00 «D
SHRINKING OF ll 3326)1 JC FP OE UI2P «7 J7 IA IA OO UA IC IC 2H oP.OE OE »R
SHRINKINI op 1a 132m 02 23 ff OP 0I2P 00 SO lb 19 II JU OA IC IB 27 OP OF OP or
SHRINKING SO I" 002s OH IH >p So 0I2P oo o: IS 14 10 00 OA IB 111 21 so su so so

INTEPALTI7E St 17 J00H 0,1 20 FF SI 0000 00 2B S2 IP OH 00 OA IH IH 2S tr tr Ir ir
INTEKAITIV 12 16 0336 ll" 10 PP S.' 00)0 00 2C SI 00 Jo OU OA 11 11 26 IP IP IP IF
INT;BtCTIv; SI IS JOOo 01 40 Pr SI 3003 00 2C 20 40 OH 00 Ot 11 19 2b IF ir ir ir

Figure 3. Schedule Table Example

22

48 pages) are established. As each program request enters

from the terminal, it will move upward through these levels

each time it exceeds its core space limit. Whenever the

program exceeds its time limit at any of these levels, the core

space limit of that level is used as the estimate of the pro-

gram's present working set size. The program is then consi-

dered to be a longer running program and its future execution

will be controlled by the looping set of table levels. When-

ever a program exceeds its largest space limit, the largest

allowable working set size (64 pages) will be used as the

first estimate for future execution under control of the

looping set.

When a program completes its execution, it is returned

to Lhe initial starting set table level to await the next

input from the terminal.

2 . The Looping Set

The looping set of table levels performs the follow-

ing functions: they use the fields of the schedule table to

follow a program's working set size by regularly overestimat-

ing and underestimating its time and core space requirements

in a minimal fashion in accordance with the principle of

balanced-core time; they cause the load that is generated by

long running programs to be spread out in time to allow start-

ing set entries to be processed rapidly; furthermore, they

optimize the CPU utilization, and thereby penalize programs

with poor paging characteristics by causing programs with

minimal paging requirements to be selected to run much .-.ore

23

frequently than those with large paging requirements. This

penalty occurs only when the program has poor locality of

reference and a large working set size.

3. The AWAIT Set

The AWAIT set is a special set of table levels re-

served for tasks doing tape I/O and other kinds of AWAIT

operations. As previously described, in each table level

there is an AWAIT extension field, which is an elapsed time

interval during which a program's current working set pages

are kept in core while the program remains idle in the AWAIT

state. This can cause severe elongations of real-time com-

pared to virtual time; so that tasks with smaller values of

virtual time are placed in this set of table levels rather

than tasks of the same working set size which are in the

looping set

.

4

.

The Holding Interlock S et

The holding interlock set is also a special set that

is reserved for programs that are currently holding inter-

locks on some system resource. (Holding an interlock means

that some program is using a resource and preventing other

programs from using that resource.) Programs in this set

are given high priority so that the interlocked resource

may be quickly released. An insignificant change in the

working set size of programs operating in this set is

assumed.

2k

5 . The Wait ing-For-Interlock Set

The waiting-for-interlock set is another special set

of levels for programs that are waiting for interlocks to be

released that are currently being held by other programs

in the holding interlock set. Until the interlock is re-

leased, programs in this set of table levels will not usually

be considered for dispatching. An insignificant change in

the working set size is also assumed for the interlock set.

V. EXPERIMENTAL PROCEDURE AND RESULTS

In order to make a number of test runs using different

schedule tables, it was first necessary to provide a number

of programs that would characterize a "realistic" load on

the system relative to user demands at this school. This

was necessary since TSS/36O was no longer the current time-

sharing system in use at this computer installation, and a

fixed load was needed to make valid performance comparisons.

A. DEVELOPMENT OF A BENCHMARK

As was previously discussed, the benchmark design concept

for general purpose time-sharing systems is not an easy task

to undertake and is confounded by two factors. The first is

the variety of demands placed upon the system and second is

the stochastic behavior of a time-shared system. Arnold D.

Karush [Ref.14] presented an excellent discussion of the de-

velopment of a benchmark design for the ADEPT Time-Sharing

System at System Development Corporation, and pointed out

25

specific functional variables (compute activity, interactive

activity, I/O activity, page activity, response allocation,

user population, and swap activity) that affect system

performance - specifically response time and throughput.

Karush discusses two general program design techniques used

to measure the performance of time-sharing systems - the

analytical and stimulus methods. The analytical technique

involves the insertion of probes into the system running

under actual operating conditions. The stimulus technique

consists of a "black box." concept and involves applying a

controlled and measurable set of stimuli to the black box

to activate the functional variables and then observe the

effect of the stimuli upon the system.

The stimulus technique was used to develop the scripts

for the experimental tests used in this paper; specifically

a similar set of programs was used by the CP/67 and TSS/36O

Time-Sharing System comparison group [Ref.15].

The final set of benchmark programs used in the test

runs were as follows:

PLILG - large PL/I compilation

PLISM - small-sized PL/I compilation

FORT - Fortran program that is compiled

FORTEX - Fortran program that is executed

EDIT - execute routine that edits a simple program and
files the edited program

PAGE - Fortran program which executes a large matrix
multiplication

.

26

B. MEASUREMENT TECHNIQUES

Two types of performance criteria were used to measure

and judge the improvements in performance. The measurement

consisted of observing the response times and throughput.

The benchmark programs used in the tests were written to give

the real time at the commencement and at the completion of

a compilation. The throughput was calculated by observing

the completed compilation or execution of a particular type

job. The figure obtained by this procedure is called the

throughput factor and was obtained as follows

:

TP
i

= SS/(RD x NTj_)

where SS = Sample Size (number of completed jobs)

RD = Run Duration

NTjl = Number of terminals running program type i

In essence, the throughput factor is the reciprocal of the

time to execute the program, modified by the size of the

sample

.

C, TOOLS FOR MEASURING PERFORMANCE

Unfortunately no hardware or software measurement device

was available to measure resource utilization and performance

of TSS/36O in this research. A software measurement tool

called SIPE was obtained from IBM, but the required data

analysis programs could not be obtained. Thus the actual

measurements could be made, but there was no means of convert

ing them into meaningful information on resource utilization.

27

The problem of developing a data analysis program to analyze

the data from SIPE was considered as beyond the scope of this

research.

D. PRESENTATION AND DISCUSSION OF RESULTS

Five test runs were conducted using different schedule

tables. The results of these tests will be presented and

discussed in this section.

The IBM 360 Model 67 configuration of the Naval Post-

graduate School is shown in Figure 4 and is very similar, but

not identical, to the IBM T.J. Watson Research Center's Model

67 configuration which Doherty used for his work. It should

be noted that when the TSS/36O Time-Sharing System was

implemented at this school for the months previously men-

tioned, the new IBM Watson Research Table by Doherty was not

used. The initial schedule table used in TSS/36O is shown in

Appendix B (Figure Bl). This table provided poor perfor-

mance to the user community. Just prior to TSS/36O being

replaced by the new CP/67 version time-sharing system, the

new IBM Research Schedule Table arrived and was implemented

by extending and using important parameters that were never

used in the old table. A significant improvement in perfor-

mance was observed. This improved schedule table is shown

in Appendix B (Figure B2) . In fact about a fifty percent

increase in utilization was observed, and yet, it was clear

that more improvement could be obtained. It was not until

these tests were begun that the new IBM Research Table

(Figure B2 of Appendix B) was implemented and tested:

28

Figure 4. Naval Postgraduate School
IBM 366 Model 67

29

1. Test 1

Test 1 was a preliminary test in which the benchmark

programs (or scripts) were initially used and in which the

new IBM Watson Research Schedule Table (Figure B2 of Appen-

dix B) was used. The load configuration and performance

statistics for this test can be seen in Figure 5. Run six,

operating with a good sampling of all the script except

paging, produced a mean response of 8 min 37 sec for a large

PL/1 compilation, k min 30 sec for a small PL/1 compilation,

1 min 8 sec for a Fortran compilation and 48 sec for an

edit. This test did not provide a heavy load to the system.

This table, however, did provide better responses than were

previously observed by the user community when TSS/360 was

running on a regular basis using the old schedule table.

2. Test 2

Test 2 was conducted, with the same schedule table

used in Test 1, to provide a more realistic mix with different

ratios of edit-to-run (compile and execute) programs and

heavier load on the system. An important factor to remember

in scheduling is that almost any scheduling technique will

show similar results under light loads, but it is only when

the demand for system resources gets large that scheduling

differences are clearly indicated. The run durations were

also lengthened to provide a steadier load on the system.

The load characteristics and the performance statistics for

test 2 are shown in Figure 6. Under this change in load,

the response times have correspondingly increased significantly

30

LOAD CONFIGURATION/DATA

RUN NUMBER 1 2 . 3 4 5 6 7

PLILG (BIG PL/1) 1 1 1 -L 1 2 1

PLISM (SMALL PL/1) 1 1

PORT (FORTRAN) 1 2 1 2 3 1 3

EDIT (EDIT SEQ. 8 10 12 12 14 14 16

PAGE

FORTEX (CPU BOUND) 2 2 3 3 3 3 4

RUN DURATION 16:53 13:29 14:52 17:18 14:32 16:48 20:23

RESPONSE TIME/THROUGHPUT STATISTICS

PLILG MEAN 1:51 3:32 4:16 4:26 7:54 8:37 9:11

S DEV 0:07 0:21 0:16 0:13 0:11 0:54 0:51

SS 8 4 4 3 ? 4 2

TP 0.47 0.30 0.27 0.17 0.14 0.12 0.10

PLISM MEAN 3:11 4:30
.

S DEV 0:28
—

0:58

SS 4 4

TP —
0.27

— — 0.24

FORT MEAN 0:18 0:36 0:43 0:46 1:14 1:08 1:28

S DEV 0:03 0:08 0:09 0:09 0:22 0:17 0:21

SS 49 41 18 40 22 14 36

TP 2.90 1.52 1.21 1.16 0.50 0.83 0.59

EDIT
RE-
SPONSE
TO 6

EDIT
COM-
MANDS

MEAN 0:30 0:50 0:50 0:44 1 :09 0:48 1:12

S DEV 0:02 0:07 0:05 0:04 0:10 0:06 0:11

SS 8 10 12 12 14 14 16

TP .059 .077 •06JL •0:9 .071 . : 6 •05

Figure 5. TSS/360 Test 1

Load Conditions and Performance Statistics

31

LOAD CONFIGURATION/DATA

RUN NUMBER 1 2 3 4

PLILG (BIG PL/1) 4 4 4 3

PLISM (SMALL PL/1) 5 6 5 5

FORT (FORTRAN) 7 7 7 5

EDIT (EDIT SEQ.

)

4 4 4 8

PAGE - - 2 2

FORTEX (CPU BOUND) 6 3 2 1

RUN DURATION 17:32 15:42 37:45 43:20

RESPONSE TIME/THROUGHPUT STATISTICS

PLILG MEAN 21:58 21:48 35:07 31:07

S DEV 1:25 3:26 0:30 3:39

SS 4 4 4 3

TP .0570 .0635 .0262 .0230

PLISM MEAN 15:38 17:30 27:03 22:02

S DEV 1:42 2:34 1:31 3:22

SS 4 6 8 6

TP .0760 .0636 .0423 .0276

FORT MEAN 3:12 3:47 6:16 5:12

S DEV :39 1:03 2:00 1:10

SS 38 26 36 36

TP .3100 .2371 .1361 .1660

EDIT
RE-
SPONSE
TO 6

EDIT
COM-
MANDS

MEAN 3:59 4:56 11:47 9:26

S DEV — — — —

SS 8 5 8 16

TP .0761 .1060 .1055 .3690

Figure 6. TSS/36O Test 2

Load Conditions and Performance Statistics

32

Each test run was conducted under a terminal load of

27 users. Runs three and four were conducted with heavy

paging, and as a result, a greater delay was observed in the

response to a request. It was believed initially from the

first two runs that the PL/I compiler characteristics produced

the heavy load and the poor response, but when several heavy

paging programs were added to the load, the performance was

degraded even more. Paging in TSS/36O is handled by disk as

well as drum, and since disk paging is slow, this might be

one of the major problems.

3. Test 3

When test 3 was performed, one of the three core

boxes failed. The results of this test indicate that TSS/36O

operating with only two core boxes rather than three will

produce a much lower system performance, so low that the re-

sults are meaningless for a comparison and are not included

in this thesis.

4. Test 4

Without changing the schedule table of test 2, runs

one through four were conducted to see if a different load

would change the performance characteristics. Run four

seemed to be a good sampling of the scripts and provided a

heavy paging load, and the performance characteristics were

about the same as that in run three of test 2. The load

conditions and performance statistics for run four are

shown in Figure 7-

33

LOAD CONFIGURATION/DATA

RUN NUMBER 1 2 3 4 5

PLILG (BIG PL/1) 2 n£ 2 2 2

PLISM (SMALL PL/1) 3 3 3 3 3

FORT (FORTRAN) 5 5 5 5 5

EDIT (EDIT SEQ.

)

12 10 8 6 8

PAGE 2 4 6 4

FORTEX (CPU BOUND) 2 2 2 2 2

RUN DURAITION 22:00 27:53 | 29:07 30:12 48:00

RESPONSE TIME/THROUGHPUT STATISTICS

PLILG MEAN 19:26 17:25 25:12 25:15 >46 mln

S DEV 0:26 0:09 1:38 1:48

SS 2 2 2 2

none fin-
ished (2)

TP * * % * ^

PLISM MEAN 12:58 17:14 18:48 20:44 11:22

S DEV 1:01 3:02 0:50 1:40 1:27

SS # * * JE *

TP 0.291 0.251 0.220 0.192 0.350

FORT MEAN 12:58 17:14 18:48 20:44 11:22

S DEV 0:46 0:48 0:59 0:52 0:52

SS
3 3 3 3 9

TP K x * * *

EDIT
RE-
SPONSE
TO 6

EDIT
COM-
MANDS

MEAN 3:00 4:08 5:25 6:12 8:38

S DEV 0:19 0:26 0: 32 0:26 2:39

SS 24 22 15 10 18

TP 0.091- 0.079 0.064 0.055 0.0469

Note: * insufficient statistics.

Figure 7. TSS/360 Test 4

Load Conditions and Performance Statistics

3^

Run five was conducted with the IBM Research

Schedule Table patch altered. This modified IBM schedule

table is shown in Appendix B (Figure B3) . The table para-

meters that were altered for this run are found in the

table levels of the Looping Interactive Sets and the Start-

ing Set of the schedule table, since these sets provide

areas in which the most improvements in performance could

be realized. Several fields of the schedule table levels

were altered, but none were changed drastically. This was

done so that any degradation to the system which may have

occurred from changing parameter values could be observed.

The fields altered and the reasons for the alterations were

as follows:

The delta-to-run parameters were increased so that

the larger working set size programs could get into core

faster but less frequently and remain there longer with

larger values of time-slice end. The smaller size programs

still get priority through the system.

The AWAIT extension field increases the time

allowed for the larger size programs to remain on the dis-

patchable list before being forced to time slice. Since a

task in AV/AIT status is normally moved from the list of dis-

patchable tasks, and since this can cause a delay in redis-

patching the task, the idea was to make the AV/AIT extension

large enough to allow for completion of I/O operations.

A few priority values were changed, since these

priorities determine the position a task will assume within

35

the list of eligible tasks; that is, low priority numbers

are given precedence over higher priority numbers

.

The Quantum Count and Quantum length fields were

altered. These parameters determine the time slice, which

is dynamic, for tasks assigned to this entry. Time slice

duration equals Quanta Count times Quantum length x 3-33

milliseconds. These fields were altered to see the effect

of the Balanced-Core Time Principle — where the time slice

duration in terms of CPU execution time for a task is in-

versely proportional to the working set size in that time

interval. This will minimize elapsed time that any large

job can clog memory and allows jobs with good locality to

progress rapidly.

The maximum core page residency values (MAXCR) have

been selected to minimize task performance. Trivial and

many non-trivial commands require less than 35(23 hexa-

decimal) pages allowed in the small conversational levels.

However, some non-trivial commands take more pages, causing

the task to move to other levels. If tasks with the Steal

Request Flag (SRF) on move into core faster than pages can

be released, they will exceed the MAXCR limit and be time

sliced

.

The maximum relocations per quantum field was

altered. The smaller the value, the greater the guarantee

the task will be considered I/O bound and its order in the

dispatchable list will not change. Therefore, tasks which

must be serviced can remain on or near the too of the

36

dispatchable list by assuming them to levels with small MRQ

values .

The recompute flag field was altered. If tasks in

these levels fall behind schedule, they will be given pre-

ference through the computation of their schedule start

time. If the preempt flag is on, a task can be time slice

ended if a higher priority task is ready and can not be

dispatched.

The scan threshold fields were reduced in value,

since it was felt that a 100% page stealing value was not

necessary. The scan threshold is related to page stealing.

It should be noted that the stealing mechanism which sets

the steal flag was not implemented in the old schedule table

that vss used i^i^iall" with t^ a system, '"'"'his field value

was altered to allow page stealing.

As shown in Figure 7, by primarily increasing the

delta-to-run and quantum fields, the large working size

programs (PLILG) were penalized in their response times,

whereas an improvement in response was observed in small

PL/I and Fortran compilations. However, in the EDIT pro-

grams, response times were even worse during this run than

before and the throughput factor went down.

5. Test 5

The last test was conducted using three different

schedule tables. The characteristics for this test are

shown in Figure 8. Unfortunately, there were only 20 ter-

minals loading the system, since the other terminals were

37

inaccessible or inoperable. The time was also limited for

these test runs so that the durations were shorter than was

desirable. The schedule table for run three is shown in

Figure B4 of Appendix B. The parameters that were altered for

the schedule table for run three were the delta-to-run fields,

which were set to very large values, and the quantum fields.

Although the load was not as heavy as that of test 4, these

test runs do show significant improvement, and the increased

performance is the result of judiciously altering these para-

meters. The response times for PLILG programs for runs two

and three were about the same, while the response time for

FORT programs was better for run one than for two and three.

However it is expected that if a heavier load had been

placed on the system, run three would have provided the bet-

ter performance statistics. The response times for small

size PL/I programs, and EDIT programs for run three show bet-

ter response statistics, and the response time for FORT

programs for run three shows an incj-'ease over run two.

Figures 9,10 and 11 show the difference in response times

for each of these runs. The throughput factor could not be

obtained for big and small PL/I programs, but run three

shows an increase in throughput over run two for FORT pro-

grams but about the same as run one. For EDIT programs, run

three shows an increase in throughput over run one and two.

Figures 12 and 13 show the difference in throughput.

38

LOAD CONFIGURATION/DATA

RUN NUMBER
1

APP B FigB2
2

APP B Fig B3
3

APP B Fig B4

PLILG (BIG PL/I) 1 1 1

PLISM (SMALL PL/I) 2 2 2

FORT (FORTRAN) 5 5 5

EDIT (EDIT SEQ.

)

4 4 4

PAGE 3 3 3

FORTEX (CPU BOUND) 2 2 2

RUN DURATION 44:08 25:43 17:48

RESPONSE TIME/THROUGHPUT STATISTICS
PLILG MEAN 44:06 20:50 20:50

S DEV

SS 1 1 1

TP * * #

PLISM MEAN 32:08 12:48 9:31

S DEV 2:51 :11 :27

SS 2 2 2

TP K * *

FORT MEAN :54 1:46 1:28

S DEV :15 :3.1 :02

SS 93 30 38

TP .62 . .3 .60

EDIT
RE-
SPONSE
TO 6

EDIT
COM-
MANDS

MEAN 6:26 8:36 6:13

S DEV :07 :04 :06

SS 22 9 8

TP .14 .11 .21

Note insufficient statistics

Figure 8. TSS/36O Test 5

Load Conditions and Performance .Statistics

39

MEAN
RESPONSE
TIME
(min)

/> RUN 2

RUN 3

mQ RUN 1

12 3^5
NUMBERS OF TASKS

Figure y. Response Time comparisons for Fortran Compilations
of Test 5

MEAN
RESPONSE
TIME
(min)

30

20

10 "

o
RUN 1

RUN 2

RUN 3

NUMBER OF TASKS

Figure 10. Response Time Comparisons for Small PL/I
Compilations of Test 5

40

12

MEAN
RESPONSE
TIME
(min)

10

8

6

i|

2
'

0-

.£- -A A RUN 2

-©
-ca-

° RUN 1
' D RUN 3

-r—

NTTMRER OP TASKS

Figure 11. Response Time Comparisons for EDIT Script of
Test 5 (6 EDIT Commands)

RUN 1
1.0 '

.90 -

.80 •

THROUGHPUT
FACTOR .70 \

.60

.50
O

.40 • i

.30 & &•

.20

.10

Q RUN 3

RUN 2

12 3^5
NUMBER OF TASKS

Figure 12. Throughout Comparisons for Fortran Compilations
of Test" 5.

ill

THROUGHPUT
FACTOR

.36..

.32..

.28

.24 1

.20

.16 .

.12

.08 ,

.04 ..

Q

•0-

(3 Q

^

RUN 3

RON 1

*& &
RUN 2

12 3 4

NUMBER OP TASKS

Figure 13- Throughput Comparisons for EDIT Script (6 EDIT
Commands) of Test 5

42

VI. CONCLUSIONS AND RECOMMENDATIONS

The objectives of this paper were to organize all avail-

able literature regarding improvement of performance measures

and techniques for the TSS/36O Time-Sharing System Schedule

Tables and to show that these principles and concepts could

be substantiated by performing experimental tests on the

computer. As a result of altering the parameters of the

TSS/36O schedule table, improved performance over the initial

system perfcrrnance , when the TSS/36O system was in full ope-

ration, was observed. From these tests it is evident that

because of differences in the user community and in hardware

configurations it is necessary that certain parameters in the

table-driven scheduler be set for each installation to improve

its system performance and thus maintain a satisfied user

community

.

It has been shown by these tests that the Naval Postgra-

duate School's Model 67 computer could support about 20-25

simultaneous users using a modified IBM Research schedule

table, while maintaining a fair response to the trivial re-

quests, and simultaneously servicing large users rather well.

With more work on the schedule tables, better service could

be provided for a greater simultaneous load. Once the TSS/36O

Time-Sharing System was removed as the installation's time-

sharing system, the time available for testing in this project

was restricted. Many more valuable tests remain to be

43

performed to eventually optimize the performance of the sys-

tem through the judicious alteration of the parameters of the

TSS/36O table-driven scheduler.

There were many fields of the TSS/36O schedule table that

were not varied and tested. For example, during the last test

a table was designed to test the page drum mechanism, but

since this mechanism was not yet implemented into the soft-

ware, this table could not be employed. The present values

of the schedule table at this installation show a 0000 default

to the system calculated, minimum number of pages on disk for

all users. This value could be increased to allow some

tasks to be allocated greater space on drum in order that

fewer of their pages have to be moved from drum to disk.

Nieison [Ref.lbJ in his simulation studies of time-sharing

systems, showed that disk paging can be very slow and can

reduce system performance substantially, and proposes that a

drum be used in place of the disk. Since this installation

used both drum and disk paging, an alternative solution could

be to purchase another drum for paging. Also, revision of

the disk management .algorithm could be made.

As mentioned at the outset of this paper, a more flexible

approach to evaluating the effects of changing different

schedule table parameters on the performance of the system

would have been the simulation approach rather than an analy-

tical approach. However, such a simulation model would have

to be limited in terms of expensiveness of design and running

44

time. Also, there is always the very difficult problem of

validating the simulation model.

From the tests conducted in this paper, attempting to

optimally tune the scheduler by trying various schedule tables

in the proper type of environment is not an easy process.

There were many factors which limited more speedy progress in

tuning the scheduler to the job load of this school's environ-

ment. The benchmark that was implemented for the tesbs may

not have accurately represented the user community, although

a great effort in this direction was made. Since loads are

constantly changing, it is important to develop a methodology

for automatically producing scripts that are characteristic

at this installation and then to verify that they are accurate

The use of the TSS/36O software measurement technique,

SIPE [Ref.17], would have been very valuable and helpful in

establishing a good benchmark for developing, evaluating, and

improving the interactive system. SIPE and Its data-reduc-

tion program could also have been very helpful in evaluating

changes to the schedule tables and the effects on system

performance. These measurement tools could also provide

valuable statistics about each task as it is being processed

by the system. Software counters, as Doherty used, could

also provide information about each task as it migrates

through various levels of the schedule table to more accu-

rately verify the principles of working set size and balanced

core time. De Meis and Weizer [Ref.l8] established by exper-

imental means in developing RCA ' s Time Sharing Operat.'.

45

System (TSOS) that by using certain measurement devices, the

working set size and balanced-core time of programs can be

monitored and verified.

Although SIPE produces some degradation to the system,

this is not considered serious. The only way to monitor a

system without altering its operation is by external hard-

ware monitors. Schulman [Ref.19], for example, discusses a

hardware monitor (SPAR) that also is used to measure TSS/36O

and that does not degrade that system. Another tool that

has been extremely useful in TSS/36O evaluation and improve-

ment of performance is the instruction-time trace monitor

(ITM) [Ref.20] which is a combination of software and hard-

ware. With the aid of these additional measuring devices,

it is believed that many more improvements could bo made to

the performance of TSS/36O by further adjustment of the

entries in the schedule table.

hG

APPENDIX A

SCHEDULE TABLE PARAMETER DEFINITIONS

LEVEL (STELEVEL), 1 BYTE

Relative entry number in schedule table. The level num-

ber is used to relative address within the schedule table.

PRIORITY (STEPRIOR), 1 BYTE

The priority of a level in conjunction with the Schedule

Start Time (SST) is used to govern the allocation of CPU re-

sources to a task. Only those tasks brought into .the dis-

patchable list can increase in core usage. Zero is the

highest priority. When seeking to bring a task into the dis-

patchable list, the highest priority task behind schedule is

chosen. If no tasks are behind schedule, the highest priority

task is chosen.

QUANTUM LENGTH (STETSVAL), 2 BYTES

The quantum length is the number' of time units (one

quantum) a task will be dispatched or the amount of time to

be used as a factor in determining how long a task will be

allowed to run before time-slice end. One unit represents

3-33 milliseconds. A quantum represents the maximum virtual

memory time that a task will be dispatched. The system will

then make a decision as to whether the task may have more CPU

time based on the number of quanta used (see STEQUANT) or

interrupted by a time-slice end.

47

MAXIMUM NUMBER OF QUANTA (STEQUANT), 1 BYTE

This field represents the maximum number of quanta (STES-

VAL) a task may use or receive when it is in execution before

a time-slice must occur.

MAXIMUM PAGES (STEMAXCR), 1 BYTE

This field represents the maximum number of private

physical pages allowed in core before a time-slice end or page

steal will occur. (see SCAN THRESHOLD)

MAXIMUM DISK I/O OR PAGE READS (STEKAXRD), 2 BYTES

This field represents the maximum disk reads or writes,

or maximum number of page relocations a task will be allowed

before a time-slice end will occur.

SCAN THRESHOLD (STEST), 1 BYTE

If the steal request flag (STESRP) is on, the resident

supervisor will release some of a task's pages when the page

count equals STEMAXCR (maximum core page residency values).

The scan threshold is the percentage of STEMAXCR pages to be

retained. The scan threshold is a percentage specified in

hexidecimal (i.e., 80% = 80 base 10 = 50 base 16). When steal-

ing occurs, the task is not time-sliced, but stays in the

dispatchable list. However, the schedule table entry in the

TSI is changed to the value specified In STENSL (next steal

level)

.

'18

PULSE LEVEL (STEPULSE), 1 BYTE

This field represents the schedule table level entry to

be used if the pulse service is requested by the user. The

pulse service allows the user to request a level change.

AWAIT EXTENSION (STEAWTEC), 2 BYTES

This field represents the maximum time that a task, issu-

ing an AWAIT service, is allowed to remain in the dispatch-

able list while waiting for an I/O operation to be completed.

The units are 3-33 milliseconds. If the I/O operation has

not completed before the time limit specified, the task is

time-sliced.

DELTA-TO-RUN TIME (STEDELTA), 1 BYTE

Specii'ies the real time interval at wnicn a tasK is to

be given a slice of CPU time. This field specifies a factor

which is used to calculate a new Schedule Start Time (SST)

for a task as it moves from one state to another; i.e., as

the task becomes ready, in AWAIT or in TWAIT. The value in

this field is multiplied by 852.5 milliseconds and may be

combined with the master clock time or the old Scheduled

Start Time if the old SST is negative to determine the task's

new SST. If delta-to-run equals zero, the SST is set to

zero and the task is automatically placed behind schedule.

(see RECOMPUTE FLAG)

49

(TSE) TIME-SLICE END (STETSEND) , 1 BYTE

This field represents the schedule table level entry to

be used when a time-slice end occurs because of the maximum

number of quanta (STEQUANT) or a maximum disk I/O (STEMAXRD)

has been reached.

MAXIMUM PAGES TSE (STEMPRE), 1 BYTE

This field represents the schedule table level entry to

be used when a tmme-slice end occurs because of the maximum

pages in core (STEMAXCR) has been reached.

TWA IT TSE (STETWAIT), 1 BYTE

This field represents the schedule table level to be

Used after a time-slice end occurs because the TWAIT service

has been used.

AWAIT TSE (STEAWAIT), 1 BYTE

This field represents the schedule table level entry to

be used after a time-slice end occurs because the AWAIT service

has been used.

RECOMPUTE FLAG (STERCMP), 1 BIT

If the recompute flag is on, the task's Scheduled Start

Time is computed to place the task back on schedule as des-

cribed above under delta-to-run (STEDELTA) . If the flag

is off, past performance (if behind schedule) is taken into

account by calculating SST as the present time plus delta-

to-run minus the amount behind schedule on the previous

time-slice. NOTE: When a task enters the eligible list

50

directly from the dispatchable list, the schedule start time

is calculated as if the recompute flag is off.

PRE-EMPT FLAG (STEPRMPT), 1 BIT

A task on the dispatchable list whose pre-empt flag is on

may be forced to time-slice end so as to make room for a task

from the eligible list having a higher priority.

STEAL REQUEST FLAG (STESRI), 1 BIT

A task on the dispatchable list whose steal request flag

is on will have pages released (stolen) when its private

pages in core reach the STEMAXCR limit. If pages -are brought

in faster than they can be released so that the STEMAXCR

limit is exceeded, the task will be time-sliced.

MAXIMUM PAGE RELOCATIONS PER QUANTUM (STEMRQ), 1 BYTE

Specifies the maximum number of page relocation inter-

ruptions allowed per quanta before the task is declared pag-

ing bound; i.e., a task is considered to be execute bound if

its number of page relocations per quantum is less than or

equal to STEMRQ. Execute bound tasks are placed at the end

of the dispatchable list to allow non execute bound tasks to

overlap their paging I/O with execute bound tasks.

HOLDING INTERLOCK CHANGE LEVEL (STEHLCK), 1 BYTE

This field represents the schedule table level entry to

be used when a time-slice end occurs (except for AWAIT or

TWAIT) and the task is holding a Virtual Access Method (VAM)

interlock

.

51

LOW-CORE HOLDING INTERLOCK (STELCHL), 1 BYTE

This field represents the schedule table level entry to

be used when a time-slice end occurs because of low-core and

the task is holding a Virtual Access Method (VAM) interlock.

WAITING ON INTERLOCK CHANGE LEVEL (3TEWLCK), 1 BYTE

This field represents the schedule table level entry to

be used when a time-slice end occurs and the task is waiting

on an interlock.

CONVERSATIONAL WRITE ONLY (STECWO), 1 BYTE

This field represents the schedule table entry to be used

when a write without response message is sent to the terminal

The level change occurs without a time-slice end.

LOW CORE FORCED TIME-SLICE END (STELCF) , 1 BYTE

This field represents the schedule table entry to be

used when a task is forced to time-slice end for low-core

and it is not holding an interlock.

PREJUDICE CATEGORY 3 (STEPRJ3), 1 BYTE

This field is not used in the system.

NEXT STEAL LEVEL (STENSL) , 1 BYTE

This field represents the schedule table entry to be used

when stealing occurs. The task is not time-sliced.

DRUM SHARE (STEDSH), 2 BYTES

This is the number of drum pages reserved for a task.

There are about 500 pages available after startup on a one

52

drum system and 1^00 pages on a two drum system. In general,

the number of a task's private pages on drum is a function of

the number of tasks logged on, the number of drums, and the

time since the last time-slice. If the number of unassigned

drum pages falls below a pre-determined limit, some pages

are moved from drum to disk. Each task receives a system

calculated minimum drum space. The drum share field allows

some tasks to keep a large drum share. A value of zero

defaults to the system calculated minimum.

53

APPENDIX B

SCHEDULE TABLES USED FOR DIFFERENT TESTS

CH5ST6 CSECT
« SCHEDULE TAniE ST*0D72 4/15/70 .V LPT QI N H SPA DTHTFH.HLHCLPHD
C ERS T X X TUT I S P II H U L L L IJ C.B S S

* V I V A C R L X RFRT T GOX K K G F J L H
"""

DC 2:
e :-:3:35f ^^vDZOOhS?:?.";''00000 1001 OOOQOCQOAGQG049G000360000GO." J

OC X"»0105C04C0432003232Q100000i< t8G836C8J iOO«

HC X«023i !03232C20f»OOC)10en8X6]L600PAGG<: lU
• DC X°0335004C0432003232 >ioeOG161< .

DS» i

DC X'040500'iCO432a03232040000OI060816160UOA0800«A880336J e
|

DC j:
c -"_j. ... -: ! 3i : AQ8G836C ° I

DC X , C605C0<:CG432G0323206Q0C0Oiaf -^ >*J
DC K«070S ?0000010e0816160COAC ^° i

_DC X , 0335004C0432003 ItJ,

be x»G905go«co432003. 3cnb6oi6e"ooi6ii
DC X 8 CA3 ' '

.
" '

3
;

DC X«OE !."
•

. 04320032: I ' •• •' 3 »!

DC R«(W2G0323; - 959365 1

!

DC X«C005C04(>323200000G015 :'

_oc
'

'

'
' '

'

- :V
"

' •

)%A
I 0015955 ''

!

DC XB
3 3 ''' ' '

.

,v- v
•

3 J

DC X.»?,<)£0
7 '-A?/>V ' "•' 1/

':

or •- 1 t
. .' «i -< •. - t

DC R»1604 '*< 102: .

' H] :

oc ,'; e r.

DC X«] 0233.^1
'"

: ''* '

"

DC X8 1S ')UE1£161 '*
!

PC ,';
6 ? ' ' 323231

'

>1<
'"• "' 3

-J

CC X»l< . : UA1A10 ->
3

DC
DC
DC
DC
DC
CC

K 5 ?,C
!'•-"•

; '.o ilCftOOOOOXOiaiaiQ A101E-"
K»1D.)2 . 1GGOICKI8IOC DA1C1C421C1C2 3 1

310 HD I
'

««1F0D05 • V. I011FXF1FH £ 0A2

DC :; c ?")li • l2ii,9i <

dc x«23090< ^cc4460G*6322: •

DC X»2407i
DC X'AC i £446GC< J0024241919800A34
DC X°26G9;)4C JA3434 t<5?.5253 !>•_.

DC :; G 27J7C •.•:-. 26261919 000A353547262636iF0aGG»
DC X»2607< &46O04&322e00C00O>./27i9J;98G0A353547272736] !>•

DC X»2^ " (0012821
DC X»2* 2A MOllElEieil 500A313U !

0«

oc ;:
: r,!" ' *3 919361FC0C)0«

DC X*2CQ! "- '" COO : ! '* -

co x»2< jOCGO;;' •-'

DC X»2£G(
'

f :»GG£ »<i O e
J

Figure 1H Bl. Old TSS/360 Schedule Table

54

oc x»2rco::cuOooocGOCoonocGc^oooo3aooCi:cn3riD'joooGOCo&occGor;coo«
PC K•3:^^2O2&O123^C2^^32?';0UO0C'i3Xl£;l6).6G;!;A5G30JlS16J.f3:^^JFt}'OO•
DC X»3105 >2601320G32323J 292 IFGCGO"

DC ;.•'. 45202iK£ IFCOCQ"
L_DC X»340! >92601< "v;.' >A34344&23 IOOO?

DC X»3SC! P26013 i i .323! i3535*?2627361FQ000>
DC. X,360500260132$G3232360 IFlFJFi
DC X e 3i 601: :

• !323?)GQ«
"

"' DC X_e 3(. G0GO»_
- DC X»39G! ...-, 1313131 139131313: J

""

..DC y>*Z")'j. 20032323 - ;/>
DC X»3i
DC X»2 :< ooo ...

. iol •

DC K'i
_.. rc ;:

:

..... pt' -

j

dc ;;°r. .

DC X»«C« IC
"'

3Q*_j
dc ;: • if.XAic: >iaia4U* .

f

-.
••

oaaiei - c »e» !

DC .".• 331C1C18] >• .

L. CC Ks
.<

'

'
!

' ' "

'

?.
''"

'

' DC .

, dc ;; H9i)
3

re x» .

pr
;;:

. • • ,0 .

DC X*<! 3C0OG*
dc)•':.

\ no*_i
DC X»';E ...:',: ;.'

1 DC X' 0315151513 kO?

f:c ?. ;:•..:
il_.DC X*';Ei ' *

.

DC K»4! ...•;.

;
cc ;.-"

' it)!

cc ;

I

'

DC K»S
DC .r
cc : .

•.-.
.DC .;

r
" n.

DC X«i»7 ,. J°

CC I

CC K»59if 1

re X«5* G0«
DC : Q0< .; :

re j;«; :

: K)'
DC ::«:.:

CC X«SE
cc ;:: :)df<uij

CC X»< >• .,

DC :.-
'

>00»

CC K«62< . .
.

*. <
e

DC X*&2 ic«

CC X'l
' '-•.:

. 10
_

DC X»65C
DC X»66CICC .; : . Fi'•, 6666661' 3A3A66666636669064*

EsVD

Figure 1^4 Bl. (CONTINUED)

55

X , 000500^C042000206',!-00000000003FOOOOOOOAl6l623000000000000
X* 011500200110001 064OlO00O012A513E08800A171724lFO81FlF0000
X'02l 500200110001 06^020000012A513E08800A17172ZHF081F1FOOOO
X , 031500200110001064030000012A513E08800A1717241F081F1FOOOO
X ' 04l 5002001 20002064$! 00000l2A5l3E08800Al?l72'f-lF081 Fl F0000
X'0515O02O0120002O6^-O5O00OOl2A513SO88OOA17172^1F081FlF0O00
X'06l50020012000206406000O0l2A513E088OOA171724lF081FlF0000'
X' 071 500200110001 06^Q7000.0012A513E08800A1 71 72^1F071F1F0000
X , 08150020011800186^080000012A513E08800A17172/11F071F1FOOOO
X , 09150020012000206^090000012A513E08800A1717?>1F081F1FOOCO
X ' 0AO400*! C04200020640A00O0O00A'-) 0OAOA00O11AIA220A0AOAOAO000
X 0BlD00'iC04l00010640E012FFE3735390E800AH 1B27OE0BOBOBO0O0
X , 0ClD004C04l00010640c6l2FFS3735390C800AlBlB270C0C0C0C0000
X , OD1D004C04100010640D012FFE3735390D800A1B1E270DODOBODOOOO
X , OElD0^^CO,M0^010^^0^O12Fi'^37?5390 !!:n00Al;_l":?70E0E0: ;:0E00OO

X»OF1D004C04100010640F012FFE3735390E80QA1B1B270FOFOFOFOOOO
X , 101D004C041000106410012FFE37353910800A1B1B27101010100000
X , lllD0(AC(y4'1000106iH1012FFE37353911800AlElL:27111111110000
X , 121D00/-!GO/+lO06l06iH2012FFE37353912800AlElE271212121200O0
X'131D004C04l0001 06413012FFE37353 91 3800A1B1B27131313130000
X ' 1^0300'.' CO,42000206/+l400O00Ol4l/f-1^1^000AlDlD211^1iJ-l4l^0000

X ' 150400-':-CO':-200020#-H 50000001 51 51 51 5800A1E1E20151 51 r
.l 5^000

X ' 1715004C042000206417012F012F303E08800A1818241F291 F] F0000
X '] 81 500'- C0^3000306^18012F013031^308800A1919251F2B1 P1F0000
X ' 191 50O' 1 CO45000506ii-19012F01313]M088O0A191926lF3OlFlF0000
X , lA15004C042000306'm012F010AOA0A0A800AlAlA220A0AlAlA0000
X'1B15004^042000206^1B012F01393A1BOB800A1C1C274C4C1P1 1'>0000

X , lC15OOilCC^-!-5000506^!-lC012F013i?3ElC1380OAlClC2835351ClC0000

X , lD150CACO^20003O6'!-lDO12F011/-!-l^l4l480OAlDlD211/4-l^l/|.1^0Q00

X ' 1 E15004C'0420003064lE0:i 2F011 515151 5800A1 ELE201 51 51 51 50000
X'lF1^0O4C04l000i064lF0000002A510108000A171724lFlFlFlF0O00
X*20150O/

-l 0042000306^-20000017151 51 51 5800A1E1E2O151 5."! 5] 50000
X ' 211 5004C042000306421000017] !^>'

] kl^BOOA.1 D1D211;+1/
-J-] 4140000

X'2215O#«CO42000306422O000170A0A0A0A8OOAlAlA22OA0AOA0A0000
X , 2315004C0420003064230000l700000000800Al6l623000000000000
X'2^150^!-C^^.000i06 / !2'!-0000172D2 p370oS00A171?2'i-lF29]71v^ n00

X'251500^C0^20003064250000172E2C4308800A1818251F2B1F1F0000
X'26l50O^CO45000506/!-26000017313l4i'r08800A191926lF301FlF0000
X'271500)

^co;;ioooiO:>42?oi2?'i73735?70
n
^ooAi: IB2733330BOBOOOO

X'2815 r
'0^'-oo!!-50005o6''23oi2; /i?3 : y 3-E.3 r n^A]ciC233333i3i3oooo

X ,

2915O^C08lO00io6^29O000002A2F3E08O0OAl71724lF2FlFlF0OO0

Figure 14 B2 . NEW IBM Research Schedule Table

56

X l 2Al r)nniiCOBlO00106'i?AOO0OO02r'?r3 :

:O'QP 00A1717?'il ir2AlFl!?OO00
X' 21715001!<C04200020&J-2B0000002F30'!-308000A18182

5"
1 F2F1F1FOOO0

X* 2C1500^C0^3000306^t2COOOO0O3031^O8000Al919261F301F1F0000
X , 2D15004C08200010642D000000482A3S08000A1717241F2A1F1F0000
X*2E150(y.!-C0^2000206^2S0000002A.2F4308000A18l8251F2FlFlFOOOO
X , 2F1500^C042000206^2F0000202E2Ck308800Al8l8251F2F.lFlFOOOO
X ,301500^C04300030#O0C0000C&932^+08800A191926lF301FlF000q
X ' 311500': C#! 50005C6'430000000^A32>508000A191926lF31IFlFOOo6
X'3215O0'i-CCyi5OO0306^320OOOOO3131^5O88OOA.191926lF311FlF0O0O
X , 33lAOO';oo8lOOOlo^33012F003^393'0 / 'OOOAl:'lU273':-3^-3 ; !-3^nooo

X ' 3*HA0C4C081000.1Q&l3^0I 2:?5037353^ 200AlBlB273/ !-3' L3h 3'f 0000
X'35lA0^c^2ooo20^35010F00393A3 (?3?00'")AiFlr:27393939390^00

X , 36TA00 , 'C0'0-0030 ,9;-3-012'?003A303A3A000AlClC2p 3^3A3A3A0^ o

X , 37noo'!COOio^^iOo ,;37oi2000; :D3';3';3':oo nAlPl9273 /!-3 z'3^3 ;;ooo^

X '3 81A00' ,-CO,

!-2C0020
l,

3
o ^i3 roo3 ; !-393 93 9000A1C1C28393 93 93 90000

X ' 391A00-! 00^20002o6'-!-39012F5C383639398oOA] C1C28393939390000
X , 3AlA00'lCC^,-30003O(9!-3AO12F8A/i:i;3C3A3A800AxlGlC283A3A3A3AO0O0

X'391AO0''C-; 50005O6 i!4-3D012FI?8i!-F3C3}j3D8OOAlClC283B3B3r;3pOO00
X , 3ClA00i!C0'!-500O506/:-3C0l2FO03E3 T 3B3P000A1C1C283I:'3^3T:3F0000

X'3DOP0026011000FF6';
!-3

T
)012 ff002A2] 3E08000A1 7172'.'-3D3D] FIFOOOO

X '3E15004C04] 0OQ1Q643EQ12F0O*! 82! 0208800217172<'HF291F] FOOOO
v ' 3Pf)CQni!f,

rv,.!.?0D0^l 0''^J O^^nnnononTcnnnnnn.oAi £r\ f^^.^o^^QrCQCiOOCj

X ,
'l0O'

r

i'00il-C0'l'20002054'400000000A'-,-00A0A00011AlA220A.0AOAOA0000
Hl600#J)1^000FF#A:3 012F00302D'! 5O8OO0A19192641411F.1F0000
^215O0C^!-Ol^O0OT;,F^Wi.2oi2Fno3132'!^08O00A1.91926il'2^21FlF0000
^3l5^o , !0'^!Po o :oo''^0 3o^ ^? on'^^9-r:.:oco o^^'

l,^lR?o.F2F1F1F0000
^•150Of!-CO^300030:>^V4012F002F31O2088002191926lF2ClFIFOOOO
i-5i5oo4co/i-50005o6^.!-50] 2F003031020880021919261F311FIF0000
f-6l^000k0l4000Fi^46012FFF2D2E^208800A19192o^2;421FlF000Q
-'•7] 5QO^ClOO8OOlO6U47OOO0O$f8483EO8OOO8l7172il]

;P n J r
] POOOO

{8l500/!-C?.00800] D6'^+8000017^7293E0«000817172^].?^81F1F0000
^91500^C043000506/,^!-90000002F3OV^08000A191926lF3O'+A/!-A0000

^A15O0^C(V-l-300O5O6^4A0000003O31-'!-508000A191926lF311FlF0000

!-E15002608l5C0FF6^/J-EO000OO!^7293E08O0OA18l8251FlFlFlF0000
!-ClA00^C100800106i!-^CO12F0O'-liyM^!-Di!-D000SlF] ^27^1)41400000
^DlA^^:Cloo3n^lo6 , ' , !001^:^50

,

'C33':v'^^ooo3;^v_l:p7/'^^[y^3^.pnooo

{•ElA00^(-COif-3000306^!4E012F00393A3A3A000AlClC283A3A3A3A0000

^FlAO04CO45000506WiFO12F0O3A3 ;^.\lClC3 p;OF3^3 v o- 0000
X'5OlD00260815OOFF6450012F0O4C353-'-!-3;+000AlB] ' 27505050500000
X'511P n^200' ,'2^ n -° r

':v' 5] 0000002F524?08000A1818251F5UF1FOOOO
X , 52V , ^^^-^ 3^^"3 r ^'^C9''Oorpo903i/ : Mnoo^--^;

^lolno /V|Tr;o1^ 1 mpon
X* 53"). 5E3CTC2D3 F7F8F253000 0003 C-3

r,l '.oo°oO' ,

''ii .91 Q265353IFIFOOOO

X'

X

'

X'

X'

X

'

X'

X'

X'

X'

X'

X'
V I

J.

X'

X'

X'

Figure 14 B2 . (CONTINUED)

57

L P T Q M S A D RP M
E R S U A T N E CR R
V I V A X T L MM Q
E A N C E T PP
L L T R X A T

GROWING 29 15 004C 08 10 64 0000 OC 40 OA
DELAYING 2A 15 0020 04 10 64 0000 06 80 OA

LOOPING GROWING 2B 15 004C 04 20 64 0000 00 00 OA
INTER- GROWING 2C 15 0020 04 30 64 0010 10 AO OA
ACTIVE GROWING 2D 16 004C 02 OC 64 0000 OC 40 OA
SET GROWING 2E 16 004C 02 20 64 0010 10 AO OA

DELAYING 2F 15 004C 02 20 64 0000 10 80 OA
DELAYING 30 15 004C 04 30 40 0020 24 AO OA
DELAYING 31 15 004C 04 50 50 0098 30 AO 2A
DELAYING 32 16 004C 08 50 5A 0098 60 AO 46

LOOPING SHRINKING
INTER- DELAYING
ACTIVE SHRINKING
SET SHRINKING

SHRINKING

47 16 004C 10 08 64 0000 OC CO OA
48 15 004C 08 08 64 0000 17 CO OA
49 15 004C 02 30 40 0010 10 20 OA
4A 15 004C 04 40 50 004C 24 2'0 OA
4B 15 0026 08 15 64 0000 00 20 14

STARTING INTERACTIVE 51 15 0020 02 20 64 0020 04 00 OA
SET INTERACTIVE 52 14 0020 04 30 46 0010 08 AO 18

INTERACTIVE 53 15 E3CI C2. 03 P2 0000 00 00 OA

Figure 14 B3. Test 4 (Run. 5) Schedule Table Modifications

58

L Q D
E U E
V A L
E N T
L T A

GROWING 29 08 OC
DELAYING 2A 04 FE
GROWING 2B 04 00
GROWING 2C 02 10

LOOPING GROWING 2D 01 OC
INTER- GROWING 2E 01 10
ACTIVE DELAYING 2F 02 FF
SET DELAYING 30 02 FF

DELAYING 31 02 FF
DELAYING 32 02 FF

SHRINKING 47 10 OC
LOOPING DELAYING 48 08 FF
INTER- SHRINKING 49 02 10
ACTIVE SHRINKING 4 A 02 24
SET SHRINKING 4B 08 00

STARTING • INTERACTIVE 51 02 04
SET INTERACTIVE 52 02 08

INTERACT I V£ 53 Od 00

Figure 14 B4 . Test 5 - Schedule Table Modifications

59

LIST OF REFERENCES

1. McCredie, J.N., Schlesinger, S.J., A Modular Simulation
of TSS/360

, paper presented at the Conference on Applica-
tions of Simulation, New York, New York, 9-11 December
1970.

2. Doherty , W.J., Scheduling TSS/360 for Responsiveness ,

Fall Joint Computer Conference, pp. 97-111, 1970.

3. Calingaert, P., "System Performance Evaluation: Survey
and Appraisal'' , Communications of the ACM , Vol. 10, No. 1,

pp. 12-18, January 1967.

4. Hellerman, H.,"Some Principles of Time-Sharing Scheduler
Strategies,

"

IBM Systems Journal , Vol. 8, No. 2, pp. 94-117,
1969.

5- Sayre, D. , "Is Automatic 'Holding' of Programs Efficient
Enough to Displace Manual?," CACM, Vol. 12, No. 12,
pp. 656-660, 1969.

6. McCredie, J.N., Measurement Criteria for Virtual Memory
Paying Rules , kOM proceedings, p~p~! 193-197, 1969 •

7. Denning, P.J., "Thrashing, Its Causes and Prevention,"
Proceeding FJCC , Vol. 33, Part 1, pp. 915-922, 1968.

8. Brawn, B., Gustavson, F.G., Program Behavior in a Paying
Environment , RC 219^, IBM Thomas J. Watson Research,
York Town Heights, New York, 1968.

9. Technical Report Number 81, Virtual Memory , by P.J.
Denning, 1970.

10. Denning, P.J., "The Working Set Model for Program Behavior,"
CACM , Vol. 11, No. 5, 1968.

11. Fine, G.H., Jackson, C, Mclssac, P., Dynamic Program
Behavior under Paging , Procedure ACM 21st National Con-
ference, pp. 223-228, 1966.

12. IBM Corporation, Form Y28-2012 , "System/360 Time Sharing
System Resident Supervisor"

,

Program Logic Manual , 1970.

13. IBM Corporation, Form Y28-2011, "System/360 Time Sharing
System, System Control Blocks," Program Logic Manual ,

1970.

60

14. System Development Corporation, Santa Monica, California,
SP-33^7, Benchmark Analysis of Time-Sharing Systems , by
A.D. Karush, pp. 1-38, 30 June 1969.

15- Syms , G., Haines, W., Porterfield, J., "A Comparison of
CP/67 and TSS/360 Time-Sharing System, U.S. Naval Post-
graduate School, Monterey, California, "paper to be presented
to the 3rd Symposium on Operating System Principles, Palo
Alto, California, October 1971.

16. Stanford Computation Center, Stanford, California, The
Analysis of General Purpose Computer Time-Sharing Sys -

tems ", Doc. 40-10-1, by N.R. Nielsen, pp. 97-115, 1966.

17. Deniston, W.R., S1PE: A TSS/360 Software Measurement
Technique , 2^th National ACM Conference Proceedings,
pp. 229-239, 1969.

18. De Meis, W.M., Weizer, N. , Measurement and Analysis of
a Demand Paging Time-Sharing System , Proceeding of the
FJCC, pp. 201-216, 19 69.

19. Shulman, F.D. , "Hardware Measurement Device for IBM Sys-
tem/360 Time Sharing Evaluation , "Proceedings of the 22nd
National Conference ACM, Vol. P--67, pp. 103-109, 1967.

20. Technical Report, TR53.0012, An instruction-Trace Tech -

nique for Time-Sharing System/36 0, by C.E. Seabold,
31 March 19 69.

61

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate School
Monterey, California 939^0

3- Asst Professor Gordon H. Syms , Code 53 Zz 1

Department of Mathematics
Naval Postgraduate School
Monterey, California 939^0

k, Asst Professor George E. Heidorn, Code 55 Hd 1

Department of Operations Research
and Administrative Sciences

Naval Postgraduate School
Monterey, California 939^0

5. Capt -Jerry K. Baird, USMC 1

2^122 Ramada Lane
Mission Viejo, California 92675

62

Security Classification

r DOCUMENT CONTROL DATA -R&D
[Security c tassiftcation of title, bodv ot abstract and indexing annotation must be entered when the overall report is classift

i Originating activity (Corporate author)

Naval Postgraduate School
Monterey, California 939^0

2a. RETORT SECURITY CLASSIFICATION

Unclassified
2fc. GROUP

3 REPOR T TITLE

Improving TSS/360 Performance by Tuning the Table-Driven Scheduler

4 DESCRIPTIVE NOTES (Type ot report and.inc lus i ve deles)

Master's Thesis; June 1971
5 au thORIS) (First name, middle initial, last name)

Jerry K. Baird

6 REPORT DATE

June 1971
la. TOTAL NO. OF PAGES

64

7b. NO. OF RE FS

20
ta. CONTRACT OR GRANT NO

fc. PROJEC T NO

9a. ORIGINATOR'S REPORT NUMBER(S)

9b. OTHER REPORT NOISI (Any other numbers that may be at signed
this report)

10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

*

II. SUPPLEMENTARY NOTES 12. SPONSO RING Ml LI T AR Y ACTIVITY

Nava.l Postgraduate School
Monterev, California 939^0

13. ABSTRACT

During the period of time from August 1970 through January 19 7 1

and while employing the TSS/36O Time-Sharing System at this institu-
tion, it was observed by the user community that the performance of
the system was poor compared to the previously used time-sharing sys-
tem - the CP/67 (version 3, from Cambridge Research Center). For
this re'ason, the problem of improving TSS/360 performance was under-
taken as a thesis project. Specifically, the improvements consist of
an increase in system performance - responsiveness and throughput -

by judiciously adjusting the parameters of the TSS/360 Table-Driven
Scheduler in accordance with the Principles of Balanced-Core Time
and Working Set Size.

A number of test runs were made, and the results are given,
employing different schedule tables. A set of benchmark programs
(or script) were developed and used with these tests that were
characteristic of a "typical" or "realistic" load at this installation.

DD, Fr,M473
S/N 0101 -807-681 1

(PAGE 1)

63 Security Classification
A.- 3 1408

Security Classification

key wo R OS
RCLE W T

TSS/360

Performance

'Time-Sharing Systems

CP/67

/.T..1473 < BACK >

1 -607-68.-1 6H Security Classification

2 18H

128136

63
improving »

ton
., ng

1 HI
Thesis 128136
B149 Bai rd

c.l Improving TSS/360
performance by tuning
the table-driven sche-
duler.

3 2768 001 91185 2
DUDLEY KNOX LIBRARY

