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Summary:

Research was conducted to evaluate the feasibility of wavelet transforming
second order statistics. To identify the modulation type and to extract signal
modulation parameters of frequencyhopped signals the wavelet transform is
applied to the 2-dimensional instantaneous correlation function. Parameters of
Interest are switching times and hop frequencies. The characteristics of the
wavelet transform of the correlation function are derived. The wavelet transform
of the correlation function can replace the requirement to Fourier transform the
complete correlation surface with a Fourier transform once per hop to estimate the
hop frequency of a given hop. Wavelet processing is applied along the delay and

time axes.

Processing along the delay axis leads to the following conclusions:

® To perform visual identificationan SN R of 3 dB is required.

® For frequencies larger than 1/16 of the sampling rate the hop frequencies can be
estimated with a successrate of 100%for SN R levels of 0 dB or better.

® To estimate the hop times with an accuracy of 12to 17.5% an SNR of 6 dB or
better is required.

e If the true start and stop time are used we can obtain an improvement of the

spectral estimation performance by about 2 dB.

® Processing along the time axis allows detection of the transition times of
fi-equency and time hopped signals. The current implementation is limited to work
with one transition per observation interval but permits robust detectionat an SNR
level of 3 dB.



1. Introduction

This work focuses on the wavelet transform of the second order moment function to
enhance detection and classificationof fkequencyhopped signals. There are four useful and
important representations when dealing with non-stationary processes:

i) the temporal correlation function,

i) the ambiguity function,

iii) the spectral correlation function, and

iv) the time fkequency distribution.

Any of the four representations can be reached from any other representation by performing a
one or two-dimensional Fourier transforms (Fig. 1).

We will use the temporal correlation function as the starting point and examine the two
domains reachable by a one-dimensional Fourier transform. If we Fourier transform over the
delay or time axis of the correlation function, we obtain the Wigner-Ville Distribution or the
ambiguity function, respectively. In all discussions we use an approximation for the true
correlation function. If the expectation operator is left out then
Ry (t,7) = E[x'(t-7/2) x(t+7/2)] becomes x ' (t-1/2) x(t+1/2).

This is not an unusual approximationsince we cannot apply an expectation operator to
the data nor can we apply time domain averaging. Qur work will focus on this correlation
functionwhich is called the instantaneous correlation function. In particularwe will replace the
traditional Fourier transform with the wavelet transform. Chapters 1- 2 deal with general
background, chapters 3-5 address transformation over the delay axis, while chapter 6 focuses on

the transformation over the time axis.
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Figure 1: Time frequency representation.




2. General Background

In some applicationsthere is the desire to intercept digital communication signals. The
task of intercepting a communication signal can be summarized by i) detect the signal's
presence, ii) classify the modulation type, iii) estimate the reception control parameters, iv)
decode the data, and v) decrypt the information content. The process can be stopped at any
intermediate step.

Spread spectrum (SS) modulation is a widely used modulation technique. Frequency
hopping (FH) is a modulation subset of SS, and is primarily addressed in this report.

Many signal processing tools are available to help to achieve the tasks listed above. In
particular, correlation processing and wavelet analysis of the time domain data have been used
for the interception task. In this work we will address the merging of wavelet and correlation
conceptsto enhance detection, classification and signal parameter estimation. For the interested
reader an extensive reference section [1-64] is provided.

The FH signal is a non-stationary process having a two-dimensional correlation
function. Application of wavelet analysisto correlation functions is a new area and is still in the
exploratory stage. Thiswork assesseswavelet processing of the correlation function along the

delay and time axis.




2.1 INTERCEPTIONOF DIGITAL COMMUNICATION SIGNALS

Interception of communication signals is of interest to a wide range of applicationsin
surveillance, intelligence, reconnaissance, geo-location, spectral monitoring and jamming [13.
Digital communication systems can use a large number of modulation techniques (i.e., ASK,
BPSK, BFSK, QAM, MPSK ,MFSK , Spread Spectrum). Interception of digital communication
signals consists of detection, classification, parameter estimation, decoding, and decryption.

A large number of publications address the interception of digital communication signals.

Signal processing is used for the interception and can be grouped into the following approaches:

0 Second order moments: Spectral analysis and correlation analysis

. Linear: Linear transforms including the wavelet transform

. Nonlinear: Higher-order spectra, spectral correlation, and cyclic-feature processing
o Other: Eigen-analysis, singular-valuedecomposition, and stochastic resonance.

Demodulation of ASK, QAM ,BPSK, and DPSK are addressed in [2-14,17,32]. Time
domain correlation and Spectral correlation are used on FSK related problemsin {2,33],

higher-order moments are used in [3], and wavelet analysis is used in [5,17,56,65].

2.2 Spread Spectrum Signals
Interceptionof spread spectrum signals is addressedin [17-31]. These techniques differ
mainly in the bandwidth of the interception filter(s) relativeto the bandwidth of the FH signal

and the number of parallel channels relative to the number of hopping frequencies.

2.3 FOURIER ANALYSIS, TIME FREQUENCY DISTRIBUTIONS AND WAVELETS
Signalanalysis treats time signals as a linear combination of elementarybasis functions.
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Well-known examples are the Shannon, the Karhunen-Loeve, the Gram-Schmidt expansion, the
Eigen-decomposition, and the Fourier analysis. We will review the Fourier analysis, Time

Frequency Distributions and Wavelet analysis (41,52-58,61].

2.4 Fourier Transform
The Fourier transform (FT) is the most popular signal decomposition [36]. It is used to
decompose stationary signals into sinusoidal or complex exponential components. A

non-periodic continuous time signal, x(t), can be represented as

) = [~ X() " of
with (6))
X¢ = f_‘” x(t) e P™ gt ;

where the signal and its transform are continuous functions of time and frequency, respectively.
2.5 Short Time Fourier Transform

To track time evolution the short time Fourier transform (STFT) was developed. The STFT
windows the signal around a given time instant, performs the frequency domain analysis, and
repeats the process at other time instants of interest. The basic assumption is that the windowed
signal has a non-time-varying spectrum (local stationarity) within the time window. The STFT

for a continuous signal x(t) is given by

X(f7) = f_‘” x(H) w(t-1) e P dt. ¥)

where w(t) is the window function. X(f;7) is the spectral description of x(t), * denotes
conjugation and the time window is centered at .  If the window has a Gaussian shape, the

5



STFT is called the Gabor transform. Time and frequency localization are controlled by the
effective window duration. The STFT has a fixed-timeand fixed-frequency resolution, which
results in a uniform tiling of the time-frequencyplane. For discretetime signalsthe STFT is

defined as

X(km) = E: x(n) w(m-n) e 72™M

3)
where k = 0,1,2,..,M-1.

2.6 Discrete Fourier Transform

A finite-length non-periodic discrete signal has a continuous-fiequency-domain
representation. The discrete Fourier transform (DFT) and its fast implementation, the fast
Fourier transform (FFT), use a finite integration time. For digital signal processing it is
convenient to represent the processby its discrete-frequency samples. This leads to the discrete

Fourier transform (DFT). The DFT pair is given by

x(n) = UN Y oo X(k) e™N

“
Xk = Y00 xm) e PN for nk = 0,1,.,N-1. )

The DFT requires N complex multiplication operations and N(N-1) complex additions. The
fast Fourier transform (FFT) implementsthe DFT with fewer multiplications. The FFT has
computation complexity (number of multiplications) of N/2 log, N. Time or frequency

uncertainty can be reduced by using overlappingtechniques [20].
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2.7 Time Frequency Distributions
A Time Frequency Distribution (TFD) [38] can describe non-stationary signals by
displaying the energy density as a function of time and frequency. The most popular TDF is the

Wigner-Ville Distribution (WVD) [15,38,39,40]. The WVD of the signal s(t) is defined by:

WVD (t,0) = f T 5°(t-T2) s(t+1/2) e 7T dr; ®)

where @ =2 7 f. The WVD of the sum of two signals (i.e., s(t) =s, (t) *s, () is given by

W(t,(x)) = Wll (t,ﬁ) ) +W22 (t,(O) +W12 (tsw) +W21 (t,(D), Where
1 pe « o
W, (W) = o f..,,s‘ (t-1/2) s(t+7/2) e 7" dn ©)

Is acrossterm. The cross term is complex-valued,but W,, =W, * and hence
W), (t,0) + W, (t,w) isreal and W (tw) = W, (Lw) +W,, (t,w) +2 Re [W,, (t,w) 3, where
the crossterm 2 Re [W,, (t,w) 3 is an interference term. Window functions can be chosen to
improve the WVD by minimizing cross terms.
2.8 Wavelets

.Wavelet analysis is a new approach to represent non-stationary signals. In the following
discussionwe introduce wavelet analysis concepts. The function f(t) may be expressed as

=3, av® ;

with

a, = < fOv0) > " )
- f” RO v() at ;

where the set v,(t) typically forms an ortho-normalset and <> notation denotes an inner

~



product, i.e., a projection of the time data onto the k* basis function.

There are different types of wavelets; orthogonal, non-orthogonal, and bi-orthogonal
wavelets. The Daubechies family, Symmlet, Coiflet, and Meyer wavelets are examples of
orthogonal wavelets, while the Morlet wavelet is an example of a non-orthogonal wavelet
[16,34,35,37,42-47].

2.9 Continuous Wavelet Transform

The continuous wavelet transform (CWT) forms the mathematical basis for wavelet
analysis. In the wavelet analysisall basis functions can be generated from a single function
called the mother wavelet, which is usually denoted by Y (t). The other wavelets can be generated
using two distinct operations; scaling and translation. Scaling is the dilation or compression of
the wavelet functionaccording to a specificscaling value. The scale is denoted by s. The
translation allows shifting of the (scaled) wavelet to a desired position in time. This shift is

denoted by a. The scaled and translated wavelet is denoted by

Y,.0 = 105 Y(t-a)s);

where Vs isanormalization factor. The integral form of CWT of the finite energy signal f(t)

with respect to the wavelet function y(t) is given by [42,46]

W (0 = [ )W, 0 dt

O
= 1Nfs f " RO W((t-a)ls) dt. @)

The wavelet analysis computes inner products of the signal and the wavelet functions. We
can also interpret the wavelet analysis as a linear operation which transforms the signal using
modified kernel functions. The kernel of the transform is the mother wavelet, and the
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modifications are the scaling and translation operations {44,45]. The wavelet operation
can be interpreted as a bandpass functionwhich implies that the wavelet must be an oscillatory
function.
2.10 Scalogram

Using the scalogram, a signal f{(t) is characterizedby the distribution of | W(s,a)f* over
the time-scale plane. The quantity | W, (s,a)* may be viewed as a spectral density in units of
power per scale (44]. Consequently, the scalogram represents the power spectral density of the

signal over the time-scale plane. The quantity

1
C'I,s2

fa ]Ff"f(s,a)l2 da

represents the portion of the signal energy contained within the scale s. Here

.
s

e [FW))?
C, = ——l dw < e
N B

and ¥(w) is the Fourier transform of §(t). This fact is exploited in identifying the scale for each
frequency hop. In summary, the CWT is a linear, time-shift-invariant, time-scaling-invariant,

and frequency-scaling-invariantoperator.



2.11 Discrete Wavelet Transform

The CWT is defined by an integral transform over continuous variables in the scale s and
the time shift a. In practice a discrete grid for s and a is used. A widely accepted discretization is
to specify s=s," and k=na_s,", where m and n are integers, s,> 1, and a,> 0 [45]. Furthermore,
ifwe selects, =2 and a = 1 we obtain the well-known dyadic wavelet sampling (tiling) grid.
Hence the scaled and translated wavelet indexed by m and n is given by
Yon () =22 (2"t-n).
We will briefly introduce the WT from the perspective of the multi-resolution (MR) analysis.
The signal (or the time function) £(t) is expanded in terms of the wavelet functions. These
wavelets have a frequency bandpass shape, so they result in a set of successive details of the
signal. For the approximation we need a special basis, called the scaling function ¢ (t), which is
not a wavelet. It has a low pass fkequencybehavior and performs averaging. The discrete wavelet

synthesis equation is given by
O =Y e®® + Y0 Y, iR,

where j and K are integers, the coefficientsc(k) constitute the coefficientsof the approximation,
while d(j,k) constitutes the coefficients of the added details or equivalentlythe fine resolutions
[47]. If the wavelets and the associated scaling functions form an ortho-normal set of basis
functions the coefficients are given by c(k) = < f(t),d, (t) >, and d(j,k) =< (), y5;, (t) >.

Here ¢(t) is a lowpass functionwhose fkequencyresponse is the same as the fkequency response
of Y(t) exceptthat the frequency center of the bandpass filter is shifted to baseband (i.e., centered

at DC).

10




2.12 Scaling and Wavelet Equations
The Multi-resolution subspace representation leads to a method to formulate two

equations in terms of the unknown scaling and wavelet functions:
¢ =2 Y, ko d@t-B.

This equation includes two different scales of the scaling function and is known as the scaling or

dilation equation. The coefficientsh, (n) are called the scaling filter coefficients. We also have
YO =V2 Y, h® d@t-b.

which is called the wavelet equation. The coefficientsh, (n) are the wavelet filter coefficients
[42,47).

For discrete data the filter-bank concept leads to a simple method for computing the
wavelet coefficients. The wavelet function is replaced by the coefficients of the wavelet filter
h,(n) and the scaling functionis replaced by the coefficients of the scaling filterhy(n). In

[42,46,47], the following two recursive equations are obtained:

cGb) = Y. hy(m-2k) c(j+1,m)
dGk) =Y, h(m-2K) c(j+1,m) .

These two recursive equations enable us to compute the j* scale wavelet transform and is known
as Mallat's algorithm [46].
2.13 Daubechies Wavelet Family

The Daubechies wavelet family is a compactiy supported ortho-normal set of wavelet

11



functions {42]. The Daubechies wavelet are obtained by solving the scaling and wavelet
equations. An additional set of constraints is applied to satisfy the maximum number of
vanishing moments for each wavelet. This report, and the Matlab wavelet toolbox [59], uses the
notation that a Daubechieswavelet of order N has 2N coefficients. The wavelet of order N has
finite support over [0,2N-11, or equivalently the correspondingFIR filter has 2N multipliers. The
number of vanishing moments is an indication of the smoothness of the wavelet filter. The
number of vanishing moments implies the number of zeros of ¥(w) at w = . The higher the

order the longerand smootherthe Daubechies filter will be.

12




3. WAVELET TRANSFORMS AND CORRELATIONFUNCTIONS

Correlating two functions provides a measure of their similarity. The Wiener-Khinchin
theorem relates the signal's auto-correlationfunction and power spectral density for a stationary
process. Wavelet decomposition can be used to represent non-stationary signals over the
time-scale plane. We will examine the wavelet transform of the correlation function as an
alternative for non-stationary signal representation.

3.1 Correlation Functions

Depending on the underlying process, various definitions can be given to the
auto-correlation function (ACF). The process may be deterministic, stochastic, stationary or
non-stationary.

The ACF of a stochastic process is the correlation between two samples of the process
taken at t, and t,, and is defined asR(t,,t)) =E{x (t,) x*(t,)} , where E {} isthe expectation
operator and * stands for the complex conjugation. For a stationary (i.e., wide-sense stationary)
process, Rt,,t,) depends only onthe time lag <=1, -t,. The Wiener-Khinchintheorem defines
the relationship between the correlation function and spectral density as

S,x(@) = J R(¥) exp(;j 0 ) dT.
3.2 The Instantaneous Correlation Function

The ACF of a deterministic or stochastic process is computed using time domain
averaging or the expectation operator, respectively. This means that a smoothingprocess has to
be appliedto compute the correlation functions. The instantaneous Correlation function (ICF)
does not use an averaging operation. The instantaneous correlation function is simply defined as
the product of two samples of the process. These two samplesare d ram at two time instants
centered about time t. The instantaneous correlation fanction R'( t,t) is defined as

13




Ri(t,1) =x (t+1/2) x* (t-1/2), wherei stands for the instantaneous nature of the correlation
function [49].

If x(t) is a sinusoidal signal then the multiplicationto obtain the values of R'( t,7)
generates cross terms in the ICF. For example, the real-valued siriusoidal signal
x(t) =A cos (w t) has an ACF givenby R(t) = A?/2 cos(w ®, while the ICF is given by
Ri(t,7) =A%2 [cos (2w t’s) +cos ( T) 3.
The ACF of a single sinusoidal signal has only one componentand no cross term, while the ICF
has cross terms. If the signal x(t) is represented by its analytic form, say x(t)=A exp(j w t), then
its ICF is given by Ri(t,x) =A% exp( w ©).
That is, the ICF of a single complex exponential signal has no cross term. To minimize cross
terms from the negative frequency components we use the analytic form of the data [49].
33 WAVELET TRANSFORMS OF CORRELATION FUNCTIONS

The wavelet transform of the stochastic ACF of a stationaryprocess is addressed in {48].
The wavelet transform of the ACF of a deterministic signal will have a similar expression. Let
W (s,2) denote the wavelet transform of R(7). Note, the subscript in Wy (s,a) stands for the
wavelet transform of the ACF of x(t) in contrastto Wy (s,a) which denotesthe wavelet
transform of x(t). The wavelet basis function is denoted by g(t). The wavelet transformation
will transform the lag variable = to the shift variable a and the scale s. Wy (s,a) ,for positive s

IS given by:

Wyls,a) = —| R(T) g" —=dt
L

s

Vs f " 8,40 G (sf) e df.

14




This equation has the form of an inverse Fourier transform from the variable f to the variable a.
We canwrite Wy, (5,2) = F "' {Vs Sxx (F) G*(sf) } and deduce that the wavelet transform, at
any scale s> 0, represents a linear filtering operationusing aband pass filter whose impulse
response is the (time-reversed)wavelet function at scale s. Equivalently,the filter has a
frequency response given by the FT of the scaled wavelet.

Thewavelet transform of the ACF, R(< ), of the stationary finite-energy signal x(t),
gives aband pass filtered version of the power spectral density S.. (f) of this signal (upto a

constant, Js, the band pass filter used dependents on the chosen wavelet function and scale.

3.4 The Wavelet Transform of the Instantaneous Correlation Function

The Wigner-Ville Distribution (WVD) is used to represent non-stationary processes.
The WVD applies a one-dimensional Fourier transformation to the ICF. The Fourier transform
takes the delay < to the frequency f, leaving the global time variable t unchanged. This allows
the display of the time evolution of the spectrum of the signal. For one-dimensionaltime signals,
the one-dimensionalwavelet transform carries out a transformation from one global time variable
t to the two wavelet variables, the shift a and the scale s. Consequently, the signal is represented
by a time-scale distribution in the wavelet domain. The wavelet domain is called the time-scale
domain. For the two-dimensional surface, indexed by time t and the delay t, we carry out the
wavelet transformation along the delay axis. This permits a display as a function of time. Let

Vy (t,f) denote the WVD of the signal x(t),

Vet = f " x((t-T/2) x "(t+1/2) e P at

-

= f_: R'y a7) e ™ 4t |
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and let the Fourier transform of the wavelet basis function be given by

F ©@(F"2)) = s G(sf) e ™
S

SO

o g f” s G(sf) e ™ of ,

S

then using

Wi (tsa) = — [T R (60 g° (2) dt
s (55:0) ‘/;f_m x 67 &7 () dt

we have

W', (ts,a) = s f TG (sf) Vy () e df .

This equation is in the form of an inverse Fourier transform. W _  (t; s,a) and
Vs G* (sf) V, (t,f) area Fourier transform pair with respect to the variable a and f. This relation

suggeststhat we can obtain a filtered version of the WVD by Fourier transforming W, * (t; s,2).

3.5 FREQUENCY HOPPED SIGNALS AND THEIR CORRELATION FUNCTIONS
Communication systems can utilize a large number of digital modulation techniques;

spread spectrum modulation being one of them. Spread spectrum refers to any modulation

scheme that produces a transmitted bandwidth much larger than the information bandwidth [50].

We will briefly address different digital modulation schemesand focus on frequency hopping.
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3.6 SPREAD SPECTRUM COMMUNICATIONSIGNALS

Spread spectrum (SS) communication signals are characterizedby a wide transmission
bandwidth and a low power spectral density [19, 50,51]. SS signals have two main advantages:
1) The message has a low probability of being intercepted (LPI) as aresult of the wide fiequency
band and the low power spectral density of the signals.

i) .SS systems can reject jamming signals and allow users to share the same fkequency band.
Among the different possible SS modulation formats, the followingthree are prevalent:
Frequency Hopping (FH), Direct Sequence (DS) Modulationand Time Hopping (TH).

3.7 THEINSTANTANEOUS CORRELATION FUNCTION OF FREQUENCY

HOPPED SIGNALS
Spread spectrum studies usually consider the FH signal as a stationary process

{19, 50,64] even though the spectrum of the FH signal varies Wi each hop interval. The
stationary correlation representation, using time averaging, is not suitable for this process.

One way to identify the FH signal is to monitor the time-frequency evolution of the
signal. Hence, we need to keep the time dependency in the correlation representation. This is
achieved by using the instantaneouscorrelation function (ICF).

The FH signal may be represented as successive intervals (i.e., hops) of single fkequency
complex exponential (Fig. 2a). The fiequency within each interval (i.e., the hop fiequency)is
controlledby arandom (but known to the user) sequence. We assume without loss of generality -
that any two successive hops will have different frequencies.

The fiequency difference of adjacent hops will generate the patterns of the instantaneous
correlation functions. The IFC for values of |t} < T, (i.e., allows correlatingadjacent hops
only) and using values of (t+t/2) and (t-/2) such that the values are confined to be within the
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Figure 2a: Time behavior of an FH signal.

Figure 2b: FH signal and the cellular (diamond) structure of the ICF.
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L® hop,isgivenby:  R(t,1) =¢i*,
where w is the radian frequency of the complex valued sinusoid. We note that the values of
(t+t/2) and (t-1/2) are confined to be within the same L™ hop if they satisfy
(L-DT, < (t+/2) and (t-v/2) < LT, .ThisS inequality forms the boundaries of a diamond

pattern for a given value of L. This cellular structure is shown in Figure 2b. Inside each diamond
the ICF is obtained by correlating signals from the same hop, while outside the diamond the ICF
Is obtained by correlating signalsbelonging to two consecutive hops.
The correlation function R, (,7) (i.e., inregion U, ) is given by:
R, (7) =exp] (0, -w,) t+Hw, +o,) t/2; where m and n are the indices of the two adjacent
hops. We note that within the main diamond of the n® hop, (i.e., m=n), the ICF is given by
Rpna (8,7) =€Xpj (@, 75 while outside the nalin diamond (i.¢., in the upper triangle between hop
numbersn and n+1), the ICF is givenby Ry, () = exp § (0, -@p) t Hw,, To,) T/2} .
The lower half of the ICF has hermitian symmetry relative to the upper half and does not provide
any additional information.

In summary, the instantaneous correlation function of a FH signal will exhibit cellular
(i.e., diamond)patterns. Inside the L* diamond the ICF has a single complex éxponential
component along the delay axis representing the L™ hop frequency. Outside the diamond, Ri(t,t)
is aproduct of two terms, expj (w, -w,)t and expj (w, +®,) ©/2 ,where v, and w, are two

consecutive hop frequencies.
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4. PROCESSING SCHEME

The wavelet transform generates one surface for each scale. One can visually inspect the
wavelet surfaces to identify the FH signal and obtain an estimate for the hop time interval.
Alternatively, one can use a processing scheme to estimate the hop start/stop times, the hop-scale
pattern, and the hop frequency. For the extraction of the hop start/stop times an edge detector is
used. An estimate of the hop-scale pattern can be obtained by performing an energy analysis.

The energy analysis assigns a scale index (called the proper scale) to each hop. The proper
scale, is that scale which has the greatest energy content (i.e., spectral components live in the
spectral region covered by the scale under consideration). The sequence of proper scales,
representingthe hop sequence, is called the hop-scale pattern.

If a hop-scale pattern is detected, it provides the evidence that a frequency hopped signal
is present. If some or all frequenciesof an FH signal reside in the spectral region of one scale
then a follow-on spectral estimation will indicate different frequency components as a function
of the hop intervals which still permits the identification of the FH process.

For FH signals, the ICF displays a cellular pattern (i.e., see Fig.2), where each hop
results in a diamond pattern with a width equal to the hop interval. The diamond intersectsthe
time axis at the hop start/stop times. The wavelet surface at the proper scale emphasizes signals
which belong to that scale, while other signals(i.e., out of band components) are attenuated.

The interception problem usually assumes some prior knowledge about the signal of
interest. In our case, we assume the minimum and maximum hopping frequencies are

approximately known and the datais properly sampled.
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4.1 Discrete-Time Implementation of the Instantaneous Correlation Function
Let R(n,u) define the ICF of the discrete-time signal x(n), given by:
R(n,u) =X (n+uw/2) x* (n-u/2), where nistime and u is the delay. The combined index
n = w2 should assume integer values. We can insert zeros into the ICF (i.e., R(n,u), for odd u,
is set to zero), or we can letu =2m. The last approach is the one adopted in this report.

A one-dimensionalwavelet transformis performed in the direction of the delay u for
eachtime element of the correlation function. The Mattab wavelet toolbox [59] is used with the
convention that the highest band of passband frequencies is denoted by scale number 1.

4.2 VISUAL IDENTIFICATION

We investigated different types of wavelets as well as different surface representations. A
complex-valued Daubechieswavelet of order 3 is given in {60} and is used for comparison with
the real valued Daubechieswavelet of the same order. Operating on the complex valued ICF with
areal or complex valued wavelet results into a complex valued scale (surface) output. A complex
valued surface can be represented by its magnitude, phase or potentially the real or imaginary
component. A visual identification technique was used to select the type of wavelet and the type
of scalerepresentation. Based on a large number of simulations in conjunction with an opinion
test it was concluded that a real valued wavelet will suffice and the surfaces, using the real
output, provide superior results. Hence in all follow-onwork, real valued wavelets and real
valued scale surfaces are used. Thisprocessing approachwas also verified using the Morlet
wavelet [56].

The objective of the opinion test is to identify the frequency hop, interpreting the cellular
structure in the wavelet surface, and to identify the diarond®s  time axis intercepts to serve as an

estimate of the hop start/stop times.
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Figures 4.1 and 4.2 show examples of the real part of the WT obtained with the
real-valued Daubechieswavelet of order 3. Figure 4.1 and 4.2 display the real part of the IFC and
the real part of the first 5 scales of a FH signal with an SNR of 10and 3 dB, respectively. The
frequenciesof the FH signal are such that they hop the scalesin a staircase fashion (i.e. time
segment 1orhop 1isonscale 1,time segment2 or hop 2 is on scale 2, etc.). We note that we are
unable to identify the FH structure fromthe original ICF surface, denoted by "CF.” Wavelet
surfaces, labeled "S1r", ..,"S5r", allow identification of diamond patterns at hop number 1, ..,5
,respectively. The diamond patterns are detectable since they are presented by contour lines of
constant height that runfrom left to right. If we were to plot the delay trace that goes through a
diamond, for a given fixed value of time, we will observe a sinusoidal pattern having a fixed
frequency. These figures demonstrate that we can identify the FH structure from the wavelet
surfaces, while it is not possible to do so from the ICF surface. At high SNR’s (i.e., 10dB or
better), we can also determine the hop times (i.e., where the diamond intercepts the time axis)
easily. A color coded display is superior to the black and white representation used in this report.
43 ENERGY ANALYSIS AND SCALE IDENTIFICATION

If correct hop timing information is available, we can perform an energy analysis for each
hop. Parseval's theorem for the complete orthogonal filter bank (over L partitions) is applicable
to the discrete time wavelet analysis (45]. So [x@)I= 2., ([CL.22)+ 2. " [dG.2a+D) ),
where C(L,2a) are the scaling coefficients at the scale L, d(j,2a+1) are the wavelet coefficientsat
scalej, and a is the wavelet shift variable. The quantityEG) = Z__.~|d(,a)|* representsthe
signal energy over the j'" scale. Energy per sample is defined as: A(j) =E()/ N(j), wherej isthe

scaleindex, E(j) is the total energy at the j* scale, and N(j) is the number of wavelet coefficients

at this scale.
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23



q-laf(”.’«,’,jl\(..y

g )
SRar R e

6

4 0

0 500
)L\../:«U(}L' i % h [ !
n 1 g 4 " |r‘\j L
0 500

) rw (\
i 4/ o | \.\(" X
gk o0 10 MARANNT \
N WILALGLNIE) - Jhs Ml SS90 L 3 P
EIIMIV)IIIIIHI 114 mlm‘m vl i I!.u i) sag
100 200 300 40 600 700

time

Figure 4.2 Wavelet Surfaces of FH Signals Using Daub-3 at 3 dB (scale 1-5).

24




To identify the proper scale one can use the maximum value of the wavelet coefficients,
the total energy, or the energy per sample. Table 1 summarizes the energy distribution obtained
via wavelet analysis using Daubechies wavelet of order 2 (Daub-2) and order 10 (Daub-10). The
signal is 64 samples long and consists of three sinusoids. The first signal has a frequencyof 3/8
F,, the second has 3/16 F,, and the third has 3/32 F, where F, is the sampling frequency. Hence
the first, second, and third input signal is containedin the first, second, and third scale,
respectively. Using the information from table 1 we can conclude that the total energy of the
input signals is distributed across the scales and that the sum of the total energies over the scales
is slightly less than the total signal energy since we disregard any contribution from the low pass
section. The proper scale (where the signal resides) has the greatest share of the total energy.
This share increaseswith an increase of the wavelet length. This is attributable to the smaller
spectral leakage of longer wavelets. Energy per sample at the proper scale is larger if the signal
resides at a higher scale. The gain factor in energy per sample (if the signal resides within scale 2
rather than scale 1) is about 1.41 and 1.64 for Daub-2 and Daub-10, respectively. Ideally, the
gain factor in energy per sample should be 2 per scale index. For an automated detection scheme
the energy or energy per sample is the superior test statistics. To declare that a signal belongs to a
particular scale, that scale must be the dominant one relative to all other scales: The larger the
ratio the better the discrimination. We note in table 1 that the energy and energy per sample

outperform the maximum coefficient at all scales and all wavelet sizes tested.

431 Hop-Scale Pattern
The scale identification assigns a scale index to each hop of the observed signal. The hop

is assigned to the scale whose energy per sample is the largest among the values of the other

25




Table 1 Energy Distribution of Daub-2 and Daub-10 Wavelets

Signal with
Measure | Wavelet | Scale | f =(3/8)F, | £ =(3/16)F,_| f = (3/32)F, |
1 1.3365 0.6574 04349
Daub-2 2 0.5753 1.6998 1.0356
Max 3 0.3743 0.35%4 1.8480
Coefficient 1 1.2524 0.3818 0.3284
Daub-10 2 0.3968 20331 0.5504
3 0.1854 0.3859 2.8296
- 1 29.7687 7.2565 0.8486
Daub-2 2 11313 233282 8.2775
Total 3 1.0495 0.9492 21.2601
Daub-10 2 0.3980 29.9017 1.9671
3 0.0875 0.3900 29.0447
1 0.9201 0.2199 0.0257
Sample Daub?2 2 0.0628 1.2960 0.4599
Energy 3 0.1049 0.0949 2.1260
(average 1 0.7671 0.039% 0.0099
per sample) | Daub-10 2 0.0133 0.9967 0.0656
3 0.0036 0.0163 12102
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scales. This should correspond to the true scale location of the fiequency hop and is called the
proper scale. A sequence of hops will result in a sequence of proper scales forming the hop-scale

pattern.

432 Success Rate

The performance of scale identification is evaluated via the successrate P,,. Thisis done
by generating known hop-scale patterns and obtain the percentage of the correctly identified
hop-scales. The successrate is defined as: P,; =number of correct hop-scales/ total number of
hops. The quality of scale identificationdepends on the height of the greatest energy per sample
relative to the other sample energies from.other scales.

The spectral density of the ICF for a white noise input, in the delay direction, has a

triagular spectral shape. To allow comparison the spectral shape the energy per sample for all
wavelet scalesmust be corrected accordingly. Performance in terms of the successrate P, is

given in chapter 5.

4.4 FREQUENCY ESTIMATION

The Fourier Transform of the wavelet surface gives a bandpass filtered version of the
WVD. The hop frequency can be obtained from a Fourier transform over the delay direction of
the wavelet surface (i.e., over the main diagonal of the appropriate diamond region).

The Fourier transform of the wavelet coefficients can be used as a spectral estimate (i.e.,
periodogram) at all scales. The frequency resolution dependents on the parameters of the Fourier
transform.

The fiequency resolution (i.e., the minimum spacing between two resolved narrow band
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components) of the DFT is approximately equal to Af=/N. At any given scale k, the number of
data points N(k) is related to the number of input data points N by N(k) =N/ 2%, The sampling
frequency of the scale output (i.e., detail function) is scale dependent, i.e., F, (k) =F/2* ,where
F, is the input sampling frequency. At the k™ scale, both the number of data points (wavelet
coefficients) and the sampling fiequency have been reduced by the same factor. Consequently,
the FT of the N(k) data points has a frequency resolution that is constant, independent of the
wavelet scale being addressed.

441  Success Rate

Performance of the frequency estimationprocedure is evaluated in terms of the successrate, P..
The hop frequency is considered correctly estimated if the spectral peak is at the true spectralbin.
P, is defined as: P, =number of correct hop frequencies/ total number of hops.

The hop frequency is given by the bin number corresponding to the peak of the magnitude of the
FT over a specified region of the wavelet surface. The quality of the frequency estimation
depends on the spectral height of the peak relative to the average background.

Given the correct hop start/stop times, the hop frequency may also be estimated directly
from the time signal or from the ICF surface. To extract the frequency from the original time
signal we can use the FFT of the time data over the hop length. The FFT is a matched filter for
sinusoidal signals in white Gaussian noise. Thus, an optimal performance is expected relative to
the nonlinear processing of the signal through the ICF computation and the linearwavelet

transformation.

We use P, and B to denote the success rates of the fiequency estimator when using the

original time signal and the ICF surface, respectively. Results are provided in chapter 5.




45 ESTIMATIONOFHOP TIMES

We recall that the ICF surface and wavelet surfaces have a cellular structure consisting of
diamonds, where each diamond is associated with a specifichop. The diamond's interception of
the time axis definesthe start/stop point of the hops. The diamond width correspondsto the hop
interval T,. The sides (edges) of the diamonds of hops are mutually parallel and spaced by the
hop interval T,. There are many approaches one can use to solve the problem of hop time
estimation. In what follows we will use a technique based on an edge detection operator.

Edge detection is a fundamental problem in image analysis since edges help in
identifying objects. There are two basic types of edge operators, the gradient operators and the
compass gradient operators [62,63]. The gradient operator measures the gradient of the
two-dimensional image in two orthogonal directions. It is usually applied to detect edges with
unknown directions. The compass operator measures the gradient of the two-dimensional image
in a specific direction (i.e., = ©/4 in the 1CF or scale outputs).

The compass operator is applied to the upper half of the wavelet surfaces summing up all
contributions according to the compass weights. The maximum value is extracted and
determines the point where the compass array matches an edge. To make the data applicable to
compass operationsone needs to add a positive number, equal in magnitude, to the smallest

(i.e., the most negative) surface value. Results are presented in chapter5.
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5. SIMULATIONSAND RESULTS

This chapter provides simulation results of the techniques introduced in chapter 4.
Chapter 5 deals with wavelet transforms exclusively applied along the delay axis. We will
address visual inspection, scale identification, frequency and hop time estimation. Results for

wavelet processing along the delay axis are given in chapter 6.

5.1 VISUAL INSPECTION

To detect and to identify the FH modulation we performed an opinion test by examining
the wavelet surfaces visually. Ten participants were involved, each one was asked to identify the
diamond patterns of the FH signal from the wavelet surfacesat all pertinent scales and for all
hops. Two types of wavelets were used; the Morlet wavelet and the Daubechieswavelet of order
3. Both wavelet types were used in their real and complex form. Four S N R values were used;
10, 6, 3 and O dB. Four different surface representations were examined; the real part, imaginary
part, magnitude, and phase. To minimize biasing of the test results, all participants started to
identify the surfaces going fromthe lowest SNR to the highest SN R value. More detailed
scoring tables and the scoring code are given in [56 3. The FH signal occupiesthe first five scales
at differenthop times.

Table 2 shows scoring results based on the real values of the scale surfaces for an SNR of
10 and 3dB. 10dB isthe highest S N R value tested, while 3 dB is the minimumvalue that still
provides an acceptable identificationscore. The values of the ratings range from 0.2to 1. Here 1
indicates perfect identification of the hop diamond patterns at their proper time locations while
0.2 indicatesjust a detection of a hop pattern in the background noise.

The visual opinion test indicates that:




Table 2: Summary of the Identification Score Using the Real Rart of the Scales.

Wavelet | SNR Scales
- Type [dB] [S1|S2]|S3| sS4 S5

Real 10 [1.011.0[1.0({095] 0.95
Morlet 3 [{10/10110]095| 09

Complex | 10 |1.0]1.0{1.0]09 | 0.75
Morlet | 3 |07]08|09|05 | 04

" Real | 10 |10]1.0]08]02 | 02
Daub-3 | 3 |08]07]05[02 |02

Complex | 10 |{1.0[1.0/1.0]03 | 0.2
Daub-3 3 |06]05(07(04 | 0.2

o Scores vary between 02 and 1,where

o 1 : perfect identification of hop diamonds.
0.2: just distinction of hops from background noise.
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1) The FH signal can be identifiedfrom the wavelet surfacesby its cellular structure which is
dominant at the proper scales. That is, each scale will emphasize the hops which belong to the
scale and attenuate other out of band spectral components. The (diamond) cellular structure can
be used in the visual estimation of the hop start/stop times.

i) The FH signal can be easily identified at SNR levels of -3 dB and above.

iii) Thereal part (orimaginary part) provides the best representation for visual inspection.

iv) Thereal value of the wavelet function provides a better surface representationthan the
complex valued wavelets. We tested the Morlet and Daubechies (Daub-3) wavelets [56]. Other
types of wavelets may perform differently but were not evaluated.

v) Other modulation schemes such as ASK, PSK, MESK and noise only patterns will have
patterns residing at one scale only or have no discernible patterns at all. Typical plots are given in

[56] verifying that if diamond patterns are noted at different scales, FH signals are present.

52 SCALE IDENTIFICATION

A processing scheme is used to extract hop start/stop times, the hop-scale pattern, and
the hop frequency. Initially, we investigate scale identificationand hop frequency estimation
assuming that correct hop timing is available. Estimation of hop start/stop times is examined in
section5.4. For section 5.2 and 5.3 the parameters of the simulations are as follows:
i) Signal pattern length: 5 hops.
i) Wavelet scales occupied: S1, S2, S3, and S4 (i.e., one scale is used twice).
iii) Wavelet types: Daub-2, Daub-4, and Daub-8.
iv) SNR range: -10to 10dB.

V) Number of realizations: 10 per scale per SNR value.
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The hop frequencies of the FH signal are spaced to generate the hops according to a
known fixed scale test pattern. The test pattern occupies scales S1 through S4. The wavelet
surfaces are generated from the ICF surfaces at the relevant scales (i.e., scales 1 through 4). The
total energy of each hop at each scale is computed and the energy per samples is obtained by
dividing the total energy by the number of wavelet coefficients at each scale.

For each hop, the scale with the greatest energy per sample is designated as the proper
scale. The resultant hop pattern is compared to the known hop pattern and the probability of
correct identification is computed. To avoid bias from the colored noise of the ICF surfaces an
equalization is performed at all scales prior to the estimation procedure.

Figures 5.1 to 5.3 show the performance of scale identificationusing the success rate P,,.
Results are obtained for Daubechies wavelets of order 2, 4, and 8 for scales S1 through S4. For
the scale identification performance we consider the minimumSNR atwhich P, is still Uity as
the figure of merit. Over all tested scales the successrate, P,; assumesthe value of 1 at different
minimum input SN R values. This is a function of the order of the wavelet and the scale. Figure
5.1 shows that the performance of P,y obtained from Daub-2 achievesaP,, of 1 at an SNR of
-1 dB at all scales, hence, -1 dB is considered the minimum S N R value for Daub-2. The
minimum SNR value for Daub-4 is -2 dB at all scales as shown in Figures 5.2. Figure 5.3
indicatesthat an SNR level of -1dB or better is required to guarantee a P, level of 1. For aP,, of
0.9 we need -1 dB, - 2dB, and - 3 dB for Daub-2, Daub-4, and Daub-8, respectively. This shows
that longer wavelets perform better than shorter ones in terms of Pid. The exception of that case
is the performance at scale S1 to $4. The performance degradation, as the length of the wavelet is

increased, may be due to a non-ideal equalization of the ICF spectral shape.

33



o " "
-6 -4 -2 70
SNR [dB]
0'3/ 0.8;.
Boer 1 Sos
04r ' 04y.
o.z.L' 02
0 0
-6 -4 . 0 -6 -4 -2
SNR [dB] SNR [dB]

Figure5.1 P, for Daub-2.

34




1 M
0.8} . .
o 0.6}
0.4}
0.2 0.2
0 - 0 ,
% - -4 -2 0 -6 -4 -2 0
SNR [dB] "SNR [dB]
1} W 1
0.8% 0.
$06 3 o.6}
04l 0.4}
0.2 0.2}
0 0 .
-6 -4 -2 0
SNR [dB]

Figure5.2 P, for Daub-4.

35



& 0.6[
0.4[-
02] 0.2+
0 . . )
-6 -4 -2 0
SNR [dB] SNR [dB
1 = x
0.8[
& 0.6/
- < . N 0.4 [
0 . .

SNR [dB

Figure 5.3 P, for Daub-8.




—— —————

Theoretically, wavelet surfaces at higher scales have higher SN R values than those at
lower scales due to the reduced passband regions at higher scales. Generally, the scale
identification performance increases with increases in scale number, wavelet length, and SNR.
There are some small inconsistencies, but we attribute the anomalies to the non-ideal

equalization and the non-ideal filtertransfer functions (in a spectral sense).

53 FREQUENCY ESTIMATION

We carried out simulationsto evaluate the performance of fiequency estimation using
the data specified in section 5.2. The hop frequencies are estimated by taking the FT of the
wavelet coefficientslocated at the center of the diamond patterns in the direction of the delay.
The bin corresponding to the peak value represents the estimated hop frequency. The estimated
hop frequency is compared to the true hop fiequency and the probability of correct fiequency
extraction (the success rate P,) is computed. The estimated fiequency is considered correct if the
estimation error is less, in percentage of the true fkequency, than 1/N, where N is the length of
the vector of the wavelet coefficients. Figures 5.4 to 5.6 plot the success rate P, obtained for
differentwavelets as a function of scale. For the fkequency estimation we consider the minimum
SNR for a given P, value asthe figure of merit.

Figure 5.4 shows that the P, value for Daub-2 is 1at an SNR equal to 0 dB at
most of the scales. A P, of 0.9 is obtained for all scales for SNR levels greater or equal to -1 dB.
The minimum SNR value for Daub4 and Daub-8 at a P, of 09 is -2 dB, as shown in Figures 5.5
and 5.6. For Daub-2, Daub4 and Daub-8 at a P; of 1.0, the minimum SN R level is O dB at scales

S1, S2, and S3.
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Values of the success rate P, show that the hop frequencycan be reliably estimated from most
wavelet surfacesat an SNR > 0dB by using only one FFT at the center of the diamond area in
the direction of the delay.

Hopping frequenciesmay also be estimated directly from the original signal or from the
ICF. Figure 5.7 plots the performance P, and P,, obtained from the time signal and from the
ICF, respectively. The plots are indexed by the S NR and assume that exact estimates of hopping
start/stop times are available. By contrast, using the wavelet surface, under the best
circumstances (i.e., scale 3, Daub-8), we need an SN R > -3 dB to obtain perfect performance.
The SN R should be about -3 to -5 dB for using the raw time signal (i.e., need hop timing
information). The frequency estimation success rate using the ICF, ata P, of 1,requiresan SNR
value of 0 dB or better.

This shows that, assuming exact estimates of hopping start/stop times are available, hop
frequenciesmay be estimated by processing the original signal at lower SN R values than can be
achieved using the wavelet or the ICF surfaces. The benefit obtained by analyzing the ICF
surface by wavelet analysis is significant in case of unknown hop start/stop times. We also note
that fewer computations are needed when we estimate the fkequency from wavelet surfaces. This

is due to applying only one FT per hop, using few coefficients(i.e., decimated wavelet output).
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54  HOP TIMES ESTIMATION

This section presents hopping time estimation results obtained using the compass
operator referred to earlier. The wavelet surface canbe representedby its upper half plane. Then
the areas of interest (i.e., Fig. 2) have a triangular pattern instead of a diamond pattern. The line
compass operator is used over the surface moving from left to right. The location of the peak
value of the resultant provides the hop start/stop time. The differencebetween the true and the
estimated starting time is the estimation error. It is evaluated in terms of points of the time axis.
For each SN R 20, realizations are used with a 128-point hop interval.

Figures 5.8a - 5.8c plots the mean square estimation error (MS) as a function of SNR and
Daubechies wavelet length. At an SNR > 10dB, the MS is 200 or better. We notice that the
shorter wavelet (i.e. Daub-2) has the better performance (i.e., atan SNR > 6 dB the MSE is about
200). This observation agrees with the notion that longer wavelets relative to shorter ones have

better frequency localization but have poorer time localization.
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6. Wavelet-Based Hopping Time Detection

6.1 INTRODUCTION

As discussed earlier, spread spectrum communications schemes have received ever
increasing attention over the past two decades as numerous civilian applications havejoined military
applications [22,27,28,32,50,64]. Two main assumptionstypically found in the literature are that
the hop timing is constant and known, and that the hopping frequencies are selected from a known
class of candidate frequencies. Evenwhen the hop timing is not assumed known, it is still usually
assumed constant [28]. These assumptions generally restrict the detection and estimation schemes
to frequency hopping (FH), one of the more popular spread-spectrum communicationstechniques.

The primary goal ofthis section is to provide a new approach for the detection and estimation
of frequency hopping signals which makes none of the restrictive assumptions listed above. By not
making such restrictive assumptions, it is hoped that a secondary goal is obtained. This goal is the
application to the detection and estimation of other spread-spectrum communicationstechniques,
such as direct sequencing, time hopping and hybrids of the three.

Section 6.2 briefly reviews the definition of the temporal correlation function used as the
backbone of the analyzing scheme. Section 6.3 introducesthe preprocessing tools used to increase
the robustness of the analyzingto noise. Next, Section 6.4 briefly explains how wavelet analysisfits
in our procedure. Section'6.5 presents the detection scheme developed. Section 6.6 presents the
overall detection algorithm and simulationresults. Finally, Section 6.7 provides conclusionsand

proposed extensions.
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6.2 TEMPORAL CORRELATIONFUNCTION

The temporal correlationfunction (TCF), also called ICF, of a signal x(%) is defined as:

TCF (k,7)=x(k+T)x *(k-1),

where K is the absolute centertime and 7 is the lag time, expressed in number of samples. Consider

the following analytical frequency hopping signal x(k) given by:

27f;

x(k)=e u(k)—u(k—Thop)]+e 2ny u(k-T,,, +1)-u(k-T},

for 0<k<T, where T,,, is the time of the hop (or changein frequency) from £, to f,, and where u(k)

op

is the unit step function. The resulting TCF function is defined as:

TCF(k,v)=e *" ™D (k1) +e "D, (k1) ve 0B G oy
=TCF (k,t)*TCF (k,T)+TCF(k,),

where TCF,(k, ), TCF,(k,t), and TCF,(k, ?) represent the 1%, 2", and 3™ non overlapping terms
contained in the TCF expression. Note that computing the TCF of the real fiequency hopping signal
has drawbacks as additional “*crossterms'* are present in the resulting expression, making the
frequency identification process more complex [63]. Thus, we only consider the analytical
fiequency hopping signal. In practical situations, the analytical signal can easily be generated by

applying a Hilbert transform to the real signal [50].




Figure 6.1a presents the phase plot of an analytical frequency hopping signal x(k) for some
arbitrary f, and £, hoping time T,,,,=208, and for positive ¢ values. The combinations of the different
shifted versions of the unit step functions force the TCF to take on non-zero values only within the
overall triangular within the regions shown in Figure 6.1a. Note that:

1) TCE (k, ) is a function offi and = only. The secondterm, TCF,(k, 7), is a function of £,

and 7 only, while the last term, TCF,(k,7), is a function of £}, f;, K, and .

2) The frequency hopping time Ty, is located where the region covered by TCF,(k, 7) ends

and the region covered by TCF,(k,t) begins.

3) For a given value of 7, the terms within the triangular regions (i.e., the regions where

TCF,(k,7) and TCF,(k, 7) are defined) are constant, although at different levels, while the

phase behavior within the “cross-terms” region, TCF,,(k,7) is linear. This fact is further

illustrated in Figure 6.1b which plots the unwrapped phase of the TCF function for the value
7=30. Itisimportantto realize, however, that the phase values over these three regions are

a function offi and f, and, therefore, not predictable without knowing f; and f;, which in

general we donot. Nevertheless, forany givenvalue of the lag, =< T,,,,, this region of cross-

terms is centered on the hop time, T,,,, another factwhich is exploited.

op?
6.3 PREPROCESSING STEPS

The nmain idea behind the proposed scheme is to take advantage of the TCF phase behavior
along the time axis K (i.e., for fixed values of 7). As shown earlier the unwrapped TCF phase along
the time axis is constant prior and after the frequency jump, while it is linear in aregion centered
around the frequency hopping time, resulting in a constant-ramp-constantphase behavior along the

time axis K, asillustrated in Figure 6.1b. Differentiating such phase leads to a pulse centered around
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the hopping time, as shown in Figure 6.1c. Detecting the edges of the pulse is then all what is
needed to identifythe hopping time, as it can then be estimated as the midpoint between the two
edges. Therefore,'the hopping time detection problem can be viewed as an edge detection problem,
which the wavelet transform is well-matched to address.

However the additive noise contained in the communication signal results in phase noise,
degrading the quality of the resulting pulse. Furthermore, the differentiating step increasesthe effects
due to noise. Thus, we apply median filtering before and after the differentiating step to minimize
these phase noise effects. The main advantagebehind this filter is that it preserves the ramp and step
behavior and eliminates outliers. The length of the median filter operation was selected in order to
preserve the step discontinuities present in TCF(k, z) for fixed 7. Further details may be found in

Overdyk [63).

6.4 WAVELET TRANSFORM BASED DETECTION

Edge detection is an important problem in numerous applications ranging from image
processing to transient detection, and wavelet transforms have been used extensively for detecting
discontinuitiesin a given signal or its derivatives. Recall that wavelets may be used to detect
discontinuitiesin a signal or its derivatives, if the chosen wavelet function is able to represent the
highest order derivative present in the signal function, as any wavelet with, at least p vanishing
moments, can be used to detect a discontinuity in the (p-1)* derivative [46]. For our problem, we
are interested in identifying pulse edges, i.e., a-signal discontinuity, and the Hr wavelet is
sufficient for the task. In addition, detecting discontinuities can be done quite simply using the
decimated version of the wavelet transform [46].

The presence of noise makes identification of discontinuities more complicated. In sucha
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case, the averaging of several scales can enhance the wavelet's ability to detect discontinuities in
noise. The basic idea is that for true discontinuities, the spikes will line up, while those associated
to noise will not (46]. As aresult, we averaged the first two scales in our simulationto improve the

robustness of the detection scheme to noise degradations.

Figure 6.2a plots the result obtained by averaging the first two scales of the DWT applied
to the unwrapped phase of the TCF expression for an analytical frequency hopping (FH) signal. The
FH function has frequencies on either side of the hop, located at time sample 208, £, =6.250 MHZ
and f, =22.727 MHZ. The SNR level is equal to 10dB. Figure 6.2b illustrates the resulting wavelet
transform of the pre processed phase of the TCF obtained at lag =30. Figure 6.2b shows that the
wavelet transform clearly detect the location of the pulse ends, as expected. Note that the width
between each spike obtained from taking the wavelet transform of the TCF phase along the time axis
K (i.e., for fixed lag time 7) increases as 7 increases. The next step sums all the values which
represent the edges of the cross-termsin the TCF in 45" and 135 °directions so that they reinforce
each other, as illustrated in Figure 6.3b. Figure 6.3¢ showsthe *detectionvector” obtained from this
summation. Further details may be found in Overdyk [63]. Note that the resulting spike is located

at the hopping time T,,,,=2C5.

65 DETECTION SCHEME

Once the detectionvector has been formed, a decision must be made as to whether or not a
hop has occurred within the frame. Experiments suggestedthat the variance of the detection vector
would be the best indicator of whether or not ahop had occurred. AS aresult, the threshold, T}, oo

is chosen as a multiple, K, of the variance of the detection vector when no hop has occurred within
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the frame. The threshold determination was also guided by the fact that the cost associated with the
probability of a missed detection, P,, = 1 - probability of detection (P,)] far outweighs the cost
associated with the probability of a falsealarm, B as the hopping time estimation is only the first
step in a complete frequency hopping signal detection scheme. This is described in detail in the next
paragraph.

Note that once the hopping times are estimated, the signal frequencies need to be extracted
to demodulate the actual message. This step can easily be done by applying frequency analysis to
the estimated hopping intervals. Thus, in the case of false alarms, frequency analysis would show
the same frequencies in two, or more, consecutive hopping intervals, resulting in no message
degradation. However, a missed hopping time will result in degradationsin the frequency estimation
step, and errors in the decoded message. Receiver operating characteristics (ROC)curves were
generated for six SNR levels and an appropriate threshold chosen for each. Further detailsregarding

the choice of specificthresholds may be found in Overdyk [63].

6.6 DETECTIONALGORITHM AND RESULTS

As stated earlier, it was desired to make as few assumptions as possible on the nature of the
fiequency hopping signal. With this goal mind the assumptionswere limited to three:

1. Known spread spectrum fiequencyrange. Thisrangewas assumed to be limited from
1MHZ to 24 MHZ in the simulations conducted,

2. Known minimum hopping time, Ty, - 1NiSparameter was chosen to be equal to 256
sample points in our simulations. At a sampling rate of 50 MHZ, this translates into a minimum
hopping time 0F5.12 ps,

3. Minimum fiequency differential, Af, for frequency hops. This parameter was chosen to
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be 1Khz in our simulations.

Detection Algorith
Using the tools described above, the algorithm steps for the detection and estimation of

frequency hopping signals in noise can now be enumerated as follows:

1. Transform the real signal into an analytic signal.
2. Segment data into frames of length less than or equal to the minimum hopping time,

T,

hop_min®

This assumption ensures that, at most, one hop will be present in the processing
frame.

3. Compute the temporal correlation function on each frame.

4. Extract the TCF phase information and unwrap the phase along the time axis k.

5. Apply a median filter to the phase of the TCF along the time axis k, of length 5. This step
is done to reduce the noise effects prior to differentiating, since differentiating accentuates
the effects due to noise.

6. Differentiate the phase information along the time axis k. This step changes the
unwrapped phase of the TCF from aramp function to a pseudo-pulse.

7. Apply a second median filter along the time axis k of length 25. The length of 25 has
proven to work well with the T, ., chosen for our simulations [63]. This step is done to
again remove the effects due to noise which were accentuatedby the differentiationoperation
instep6.

8. Calculate DWTs along the time axis K (i.e., for each lag, <, of the TCF) using the Haar

wavelet. This stepis done to detect the discontinuities at the edges of the cross-terms region.
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9. Average the wavelet coefficients of the first two scalesof the DWT.

10. Perform a 45°/135° summation across all values of lag, t, to obtain a detection vector

which has time as its index.

11. Threshold the data in the resulting detection vector obtained in step 10. When detected

abovethe threshold, the maximum peak value time index represents the estimated hopping

time.
Simulation results

Simulations were conducted to test the effectiveness of the detection and estimation
algorithm given above. Five hundred trial experimentswere conducted in six different signal to
noise ratios (SNR) between -3 to 15dB. The basic idea behind the experiments was to simulate
signals that had already been segmented, as specifiedin steps 1and 2 of the algorithm. The problem
then becomes to determine: a) whether or not a fiequency hop exists within the given frame; b) to

estimate the hopping time when a fiequency hop is detected.

Communication signalswere generated by choosing random hopping time, T,,, and hopping
frequencies f,,f, selected randomly in a predefined range. The resulting signal is a signal with, at
most, one hop which canbe from any frequency, f;, to any hopping frequency, such that 1 MHZ <

fofs < 24 MHZ.

Table 6.1 shows the probability of detection, P, the probability of false alarm, P, and the
percentage of errors in classification for the selected threshold, 7, at €ach of the six SNRs
considered. Note the entries under the column labeled “4” represents a multiple of the variance of
the detection vector generated from a “no hop” frame for eachrespective SNR level. The column
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labeled “% Error” shows the percentage of mis classifications (i.e., the percentage of false alarms
plus misses). Note, also, that the low probability of false alarm was sacrificed for higher
probabilities of detection for reasons discussed earlier. For example, the entries in the row for SNR
=3 dB show that if a 11.4 % mis classificationrate and aPg,=0.1961 can be tolerated, then we can

expect to detect 89.53% of the hops in a given frequency hopping signal.

Simulation results are shown in Table 6.2. The column labeled “Avg. Error” gives the
average error obtained at each SN R level. For example, at the SNR level of 3 dB, out of all the hops
which were detected, the average distance from the true hopping time was 10.48 samplepoints (i:e.,
4.1% of the minimum hopping time). Columns Wi numeric headings indicate the hop detection
probability within a given percentage of 7,,,, ... For example, at the SNR level of 3 dB, the column

labeled“1%” indicates that 36% of all defected hops were located within 1% of 7,,,, ., or within 2

points of the true hop time, T,,,,. Similarly, 72%o0f all detected hops were located within 5% of

T op_min OF Within 12points of the true hop time, 7;,,,.

6.7 CONCLUSIONS

This section considered the applicationof temporal correlation functionsand wavelet analysis
to the detection and estimation of frequency hopping signals in additive white Gaussian noise. The
algorithm developed has only two restrictive assumptions: 1) a minimum hopping time; 2) a
minimum frequency differential. Thus, it can find applicationswhere the minimum hopping time
isnot held constant; i.e., in time hopping signals and hybrid techniques involving either frequency
hopping or time hopping. We showed how the detection problem can be formulated as an edge

detection problem, and how wavelet analysis can be used in the hopping time detection problem.
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Third, we introduced preprocessing techniques designed to improve the robustness of the detection
and estimation scheme in noisy environments. Results show that the scheme is robust to noise

degradationsdown to 3 dB.

Although the algorithm developed succeeded in meeting its goals, improvements can
potentially be obtained by taking advantages of the specific two-dimensional structure of the
hopping pattern. Thus, a possible extension involves considering the problem as an image
processing or pattern recognition problem, due to the specific triangular pattern generated by the
TCF of frequency hopping signals. AS aresult, applying more sophisticated two-dimensional edge
detection schemes may improve the robustness of the detection and estimation scheme to noise
distortions. As in the fist part (i.e., chapters 1-5), improvementsin the estimation of the TCF (or
ICF) will improve the performance of the estimation procedure, that is improve detection and

estimation of hop times. Such extensionsare left for further research.
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Figure 6.1: The unwrapped phase information of ( a ) the TCF,( b ) for 7=30, and ( ¢ ) after differentiating
and medianfiltering for =30.
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SNR k d 1% % Brar
15 dB 140 1 0 0.0
10dB 30 0.9866 0.0196 14
6dB 15 0.9844 0.1569 3.0
3dB 11 3.8953 3.1961 114
0 dB 1 0.8129 3.3529 20.4
-3dB B 3.6927 3.3333 1.0

Table 6.1: Detection statisticsof 500 experimentsapplying the detection and estimation algorithm.

SNR 1% | 5% | 10% | 15% | 20% | 30% | 40% | 50% | 75% |100%|| Avg. Error
(dB) i | (# of samples)

15 0.790]/0.984]0.992|0.996{0.996{0.998} 1.00{ 1.00 | 1.00 | 1.00 222

10 0.726]0.964]0.97410.978]0.982]0.986{0.986} 0.986 |0.986]0.986 2.70

6 0.5580.888]0.926}0.94010.950]0.960]0.968| 0.970 }0.970]/0.970 546

3 0.360/0.720}0.758{0.794]0.828|0.86210.874| 0.882 }0.886]0.886 10.48

0 0.116/0.302/0.418|0.510/0.572]0.684[0.752| 0.768 |0.796]0.796§  28.48

-3 0.090]0.174]0.276}0.382]0.456}0.568]0.614} 0.646 |0.686]0.690 30.99

Table 6.2: Estimation statisticsfor the 500 experimentsat each SN R level using the detectionand estimation
algorithmdescribed in Section B. Columnswith numeric headings, show the probability that estimated hops
arefound within a given distance, expressed in percentage of Thep_mins from true hopping times.
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7. CONCLUSIONSAND RECOMMENDATIONS
7.1 CONCLUSIONS

Wavelet analysis of 2-D correlation functionsis a new area of investigation. It can be
applied to the interception of communication signals. This work aims at applying wavelet
analysisto the instantaneous correlation functionto identify fiequency hopped signals. The
instantaneous correlation function (ICF) of the complex-valuedFH signal is shown to have a
cellular (diamond) pattern, where each hop generates one main diamond structure. Inside a given
diamond, the ICF of the signal consists a single complex exponential component representing the
hop fiequency in the delay direction and some noise. In the time direction, inside a given
diamond pattern, the wavelet transformed data tends to be a constant perturbed by noise. The
intersections of the diamond with the time axis determine the hop start/stop times while the
width of a given diamond correspondsto the hop interval.

The wavelet transform of the ICF surface generates a number of surfaces. The wavelet
surface, at any scale, emphasizesthe fiequency hops which reside there and attenuates spectral
components that do not belong to the particular scale (i.e., bandpass filter) under consideration.

If we apply the wavelet transform along the delay axis, we can address the interception
problem in two differentways. We can Visually inspect the wavelet surfacesto identify and
classify based on the structure the modulationdue to an FH signal. Thisalso allowsto obtain a
rough estimate of the hop time interval. Alternatively, we can apply a processing scheme which
can be used to automatethe interceptiontask. This processing scheme estimates the hop
start/stop times, the hop-scale pattern, and the hop fiequency.

The estimation of the hop start/stop times can be addressed using an edge detection

approach. We applied a compass operator to find edges in the wavelet filtered ICS. The hop scale
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pattern is obtained by applying an energy analysis.

The frequency of each hop can be extracted from the wavelet surface at the proper scale,
or from the original time data using the hop time parameters.

Visual inspection of the wavelet surfacespermits the identification of FH signals at SNR
levels of 3 dB and above. Other modulation schemes such as ASK, PSK, and MFSK will only
have cellular patterns on one of the wavelet surfaces, that is their frequency bandwidth does not
span more than one wavelet scale. Hop timing estimation showsthat the hop start/stop times
can be estimated with an accuracy of 12to 17.5per cent at SN R levels of 6 dB or better.

The performance of longer duration wavelets is better than that of shorter ones since
longer wavelets have better spectral energy concentration than shorter ones. The success rate of
frequency estimation from the wavelet surfaces showed that the probability of correct frequency
estimation from the wavelet surfaceis 1.0 for input SNR’s of 0dB and above. A frequency
estimationsuccessrate of 1.0requires an SNR level of -3 dB or about -3 dB to -5 dB using the
time data directly or wavelet surfaces, respectively. The minimum SNR required for an
automated estimation of hop times is 6 dB.

Processing along the time axis allows detection of the transition times of frequency

and time hopped signals. The current implementation is limited to work with one

transition per observation interval but permits robust detectionat an SNR of 3 dB.

72 RECOMMENDATIONS FOR FUTURE WORK
There are other ways to define or estimate the instantaneous (or temporal) correlation

function. A study to evaluate different candidate ICS (or TCS) should be performed.
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For processing of the ICS along the delay axis we recommend the following:
i) Refine the automatic recognition of the cellular structure of the FH signal over the wavelet
surfaces.
il) Improve the performance of the hop-scale identificationat lower SNR by reexamining the
equalization of the spectrum of the ICF surfaces.
1) Investigate other wavelet types, and the use of other definitions for the instantaneous
correlation function.

iv) Combine information from different wavelet surfacesto improve parameter estimation.
For processing the ICS along the time axis we recommend investigation of extensions for
successful operationwhen more than one transition (Jump) is present during the observation

interval.

Finally, both approaches, transformation over time and delay, will benefit from an

improved edge detection scheme. This problem should be addressed in more detail.
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