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ABSTRACT 
This report presents the process and results of a formal computer-aided 

Specification, Validation and Verification (SV&V) of two mission and safety critical 
projects: the Brazilian Satellite Launcher flight control  system, and the Department of 
Defense’s Multifunctional Information Distribution System (MIDS) controller. The 
Specification, Validation, and Verification (SV&V) process begins with a system 
requirement analysis and Natural Language (NL) specification. UML statechart-formal 
specification assertions are then created using the StateRover SV&V specification 
environment; these assertions formally capture the NL requirements. The assertions are 
validated against the NL and cognitive requirements using JUnit-based testing within the 
StateRover SV&V environment.  Finally, Runtime Verification (RV) is performed on the 
target system under test (SUT). The RV phase is based on log files created by 
automatically instrumenting source code files, building and executing them on the 
VxWorks-based target thereby creating log files, importing resulting log files into the 
StateRover SV&V environment and executing them as JUnit tests against the assertions. 
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1. I

ler. This is 
the 

 specification and validation of the part of the flight 
control system was performed in California, execution and log file creation was 
performed in Brazil, and subsequent log-file based RV was performed in California.  

 

2. PRELIMINARIES - THE V&V PROCESS  
The SV&V process consisted of the following activities: 

1. Perform system requirement analysis and Natural Language (NL) specification in 
California. 

2. Create UML statechart-formal specification assertions using the StateRover SV&V 
specification environment [6]; these assertions formally capture the NL requirements. 
The assertions are  then validated against the NL requirements using JUnit-based 
testing within the StateRover SV&V environment. This activity was performed in 
California. 

3. Finally, Runtime Verification (RV) is performed on the target System Under Test 
(SUT). The RV phase was 

a.  StateRover  is used to automatically instrument the source code files; this activity 
was performed in California. 

f the software is built for the VxWorks-based target; 

 
NTRODUCTION 
Correctness of computer software is critical, especially for embedded software in 

mission critical application domains such as space, transportation, military and medical. 
These software systems perform the mission and safety-critical functions with complex 
time-constrained sequencing behaviors that are difficult to specify correctly and to verify 
using the prevailing manual SV&V techniques. Research has shown that formal 
specifications and formal methods help improve the clarity and precision of requirements 
specifications [1].  In particular, lightweight formal methods, when used in tandem with 
rapid prototyping, help debug the requirements and identify errors earlier in the design 
process [2].  In [3], we presented a continuous and proactive process for conducting V&V 
of systems.  The process involves using scenario-based testing to validate whether the 
formal assertions correctly capture the intent of the natural language requirements, and is 
automated through the use of statechart-assertions and runtime execution monitoring [4]. 

This paper presents the results of applying the method to the SV&V of two mission 
critical, time-constrained systems: (i) the Satellite Launcher flight control  system  [5], 
and (ii) the Multifunctional Information Distribution System (MIDS) control

first reported case of the application of the entire SV&V methodology using rapidly 
developed UML-based formal specifications. It is also the first reported case of 
“distributed verification”, where

based on log files, as follows: 

b.  The instrumented version o
in the case of the Brazilian Satellite Launcher flight control system, this activity 
was performed in Brazil . 
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an Satellite Launcher flight control 

verts log files into an equivalent JUnit test. 

variables namespace to the 

assertions, using the 

involves the following steps: 

 given a set of natural language requirements, statechart-
ey represent the understanding of the cognitive requirements 

c. The resulting program was executed on the VxWorks-based target thereby 
creating log files; in the case of the Brazili
system, this activity was performed in Brazil. 

d.  The log files are imported into the StateRover SV&V environment using the 
StateRover “Import” tool that con
Such JUnit tests are called JUnit verification tests, thereby distinguishing them 
from validation tests discussed in activity No. 2. This activity was performed in 
California. 

e. A namespace mapping is created, using the StateRover namespace mapping tool. 
This mapping translates the C functions and 
namespace used in the assertions. This activity was performed in California. 

f. The JUnit verification tests are executed against the 
StateRover’s assertion repository tool, a plug-in that dispatches events 
(corresponding to function calls or variables assignments logged in the log file) to 
all assertions. This activity was performed in California. 

Requirements validation, as established in activity No. 2, follows a abstract-validate-
refine strategy (Figure 1) and 

1. Requirements Modeling:
assertions are created. Th
model. 

2. Validation: for every requirement, a set of scenarios is created to check whether the 
assertion satisfies the desired system behavior as specified in the NL requirements. 
Some scenarios will satisfy, or conform the requirement, and other scenarios will fail 
it.  

 

 
Figure 1. The valid

•

ation activities. 

 Failure Scenarios:  the scenario that leads the assertion to fail is examined to 
determine whether it is illegitimate. This examination is done by evaluating the 
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 case, the problem is 
to the next 

liminate the 
e 

fy, or 

n tests that fail an assertion are examined to determine 

rmal operational conditions. In the latter case, the problem is 

d implementation 
 step 1. 

requirement, using the failure scenario as a guide, to find out if the scenario 
represents a valid behavior of the system. If this is the
reported (requirement was not validated). Otherwise, the loop proceeds 
step. 

• Assertion Refinement: the set of statechart assertions is changed to e
wrong behavior and possibly other illegitimate behaviors introduced in th
abstraction process. Given the update set of statechart assertions, the loop 
proceeds to step 1. 

Figure 2 describes the verification process framework based on the abstract-verify-
refine strategy. It uses the following steps to gather data produced by the runtime 
execution in the log files and then verifies the test results via automated generated JUnit 
tests based on these log files. 

1. Runtime execution monitoring: data is gathered in a log file by observing the system 
behavior in real time execution.  

2. Log-file based Verification: a set of JUnit verification tests is created from the log-
files. They are executed against the assertions; some scenarios will satis
conform the corresponding requirements, while other scenarios will not.  

3. Failure tests:  verificatio
whether they are due to an implementation error or perhaps the log files were 
generate under abno
reported. Otherwise the process proceeds.  

4. Assertion Refinement: feedback is given to the system design an
team. Given the update design and code, the loop proceeds to

 

 

Figure 2. The verification activities 
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ered and 

vents: reference 

t named C: ThrustDrop_2Stage. 

ct relative 

hen in state 

gned to work with the JUnit Java testing 

 

3. FLIGHT CONTROL SYSTEMFORMAL SPECIFICATION 
The SUT has algorithms and control loops that operate during the pow

ballistics flight phases to direct the actuators, so as to keep the launcher sufficiently close 
to its reference launching trajectory. The sequence of flight events characterizes the 
different stages of the flight and determines when the algorithms and control loops have 
to be executed during the flight [7]. There are two different types of e
events and relative events.  

The flight control system, in a pre-determined timeframe, must detect the four 
reference events: 

• Reference event named A: LiftOff. 

• Reference event named B: ThrustDrop_1Stage. 

• Reference even

• Reference event named D: ThrustDrop_3Stage. 

Once a reference event is detected, the flight control system has to dete
events in a pre-determined time in order to activate and/or deactivate controlling 
algorithms and electrical systems (e.g. actuators, ignition devices, stage separation 
dispositive).  

Figure 3 shows the statechart-assertion formalization for the reference event A 
requirement: 

 “Req_Ref_A: Once the navigation starts (time=0), A must occur within the 
interval [lA,uA].” 

The statechart-assertion in Figure 3 will enter the Error_A state if it observes the 
event A when in state Nav_On, before its lower limit time (timer_LA=) or w
Waiting_A, it observes that the upper limit of the time interval (timer_UA) has been 
reached and A was not detected.  

StateRover’s code generator generates a Java class Req_Ref_A for the statechart-
assertion file. The generated code is desi
framework [8]. 



 
Figure 3. Statechart-assertion for the Req_Ref_A 

Once the reference event A is detected, eleven other relative events associated with 
the event A must be detected after a time interval pre-established for each relative event, 
with X milliseconds of tolerance. This tolerance tends to be readjusted for each assertion 
as much as we learn about the system performance. Let us generically consider the 
relative event Ax, and its detection time DAx, x=0,1,..10. Therefore, the relative event 
requirement is written as: 

“Req_Rel_Ax: illisec 
afterwards.” 
A single statechart-assertion formalization for these requirements was used as a 

pattern, as shown in Figure 4. The associated Java class generated by StateRover was 
then re-factored for each of the relative requirements and a special Java function was 
created to set the corresponding DAx for each Ax. 

The first part of the statechart-assertion in Figure 4 formalizes the detection of the 
event A (If A is detected), as explained previously. The remaining part formalizes the 
generic relative event detection (R_E) after A has been detected (then Ax must be 
detected DAx millisecs, within X millisecs afterwards). The statechart-assertion will enter 
the Error_Rel state if it observes the R_E event when in state A, before its DAx 
milliseconds timeout (timer2) has expired or when in state Waiting_Relative for more 
than X milliseconds (timer3).  

If A occurs, then Ax must occur DAx millisecs within X m

 10
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The statechart-assertion for the reference event B requirement is presented in Figure 
5:  

“Req_Ref_B: B must be detected within interval [lB,uB] of the detection of A.” 

The statechart-assertion in Figure 5 will enter the Error_B state if it observes the B 
event when in state A, before its lower limit time (timer_LB) or when in state Waiting_B, 
it observes that the upper limit of the time interval (timer_UB) has been reached and B 
was not detected. 

 
Figure 4. Statechart-assertion for the Req_Rel_Ax 

The requirements for the other reference events C and D were established as follow: 

“Req_Ref_C: C must be detected within interval [lC,uC] of the detection of  A.” 

“Req_Ref_D: D must be detected within interval [lD,uD] of the detection of C.” 

The statechart-assertion for the requirements Req_Ref_C uses the same pattern 
showed in Figure 5 and the statechart-assertion for Req_Ref_D is illustrated in Figure 6. 
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One can observe that this requirement has a similar formalization as the reference event 
B, but D also depends on C. 

The relative events requirements associated with the reference events B, C and D 
follows the same pattern as the ones associated with reference event A, as showed 
previously in Figure 4. 

 
Figure 5. Statechart-assertion for the Req_Ref_B 

 

Up to this point, 44 requirements associated with the flight events sequence, including 
reference e 
StateRov k 
accomplished, as they both contributed 

 and relative events, were formalized as statechart-assertions. The support of th
er tool and the reuse of statechart-assertions were fundamental to have the wor

to the rapid creation of assertions. 



 
Figure 6. Statechart-assertion for the Req_Ref_D 

 

To assure that the statechart assertions accurately represent the requirements, their 
t cases created as follows: 

• 

4. FLIGHT CONTROL SYSTEM VALIDATION 

behaviors were tested using JUnit tes

Obvious success: test a trivial scenario that conforms to the NL requirement; 

• Obvious failure: test a trivial scenario that violates the NL requirement. 

 13
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• 

nal JUnit tests were created to guarantee that all the states in 

for the relative event A0 requirement 
espective timeline associated 
here A0 is supposed to occur 

Full scenario success: test a nontrivial scenario that goes through the entire basic 
scenario while in agreement with the NL requirement. 

• Full scenario failure: test a nontrivial scenario that goes through the entire basic 
scenario while violating the NL requirement. 

When necessary, additio
the state-assertion diagram were covered. 

Listing 1 shows the JUnit test case A0_test1 
(statechart-assertion in Figure 5), and Figure 7 shows the r
with this test. This test represents a full scenario success, w
15 milliseconds after A occurs. 

 

package req_ref_timer_A0; 

import junit.framework.TestCase; 

public class A0_test1 extends TestCase { 

 req_rel_A0 A0; 

 protected void setUp() throws Exception { 

  super.setUp(); 

  A0=new req_rel_A0(); 

 } 

 protected void tearDown() throws Exception { 

  super.tearDown(); 

 } 

 public void testExecTRreset(){ 

  A0.incrTime(5000); 

  A0.A(); 

  A0.incrTime(15); 

  A0.R_E(); 

  A0.incrTime(1); 

  assertTrue(A0.isSuccess()); 

 } 

} 

Listing 1. JUnit test case A0_test1 
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 timelines associated with two failure scenario tests for the 
ere the event R_E 

 events where R_E 

StateRover for Eclipse animation was used to visualize the behavior of the statechart-
ng the validation tests. It also helped to analyze the statechart-

asse

Figure 8 shows two
relative event A0 requirement: the first one is a full scenario failure wh
(A0) occurred too late (A0_test2); the second one shows a sequence of
occurred too early (A0_test3). 

assertions while runni
rtion state coverage.  Figure 9 presents the statechart-assertion view when the 

animation of A0_test2 was done. The last two visited states of the statechart-assertion are 
highlighted. 

 

Figure 7.  A full scenario success sequen

 

ce of events 

 
Figure 8. Two event sequences that violates requirement A0 

 



 
Figure 9. Statechart-assertion animation for a full scenario failure. 

 

As of January 2011, around 220 JUnits validation tests were run to validate 44 
requirements. 

 

5. FLIGHT CONTROL SYSTEMVERIFICATION  

A simplified scheme of the laboratory environment where the runtime execution 
monitoring took place is presented in Figure 10.  The flight control system is embedded 
in a target computer running a specific RTOS (VxWorks) connected to a Host computer 
where the log files are created.  
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Figure 10. The lab setup scheme for runtime execution monitoring 

 

In the specific case of this study, adaptations in the automatic instrumentation had to 
be done in order to optimize the execution of the instrumented code. This was necessary 
due to the very tight time constraints imposed to the flight control system execution. In 
the first simulations, the overhead of getting extra data interfered in the results of the 
simulated flight.  Therefore, changes were made in the instrumented code to cope with 
the restrictions imposed by the flight control system environment. 

As the initial main goal was monitoring the flight events sequence, the code 
instrumentation was optimized to collect certain variables assignments that flagged the 
events occurrence and their cu

While still working in the generation of additional log files, we have created three log 
worth mentioning that because log files generation took place in Brazil, 

ect to the availability of the Flight Dynamics Lab [9][10]. In 
ord

rrent time of occurrence. 

files to date. It is 
their throughput was subj

er to generate JUnit verification tests to verify the statechart-assertions, the log file 
was imported by StateRover, which generates a XLM equivalent file and a 
JUnitFromLogs Java class. This class contained the log file-based verification tests for 
the statechart-assertions. 

The next step, prior to running the verification tests, was to create a namespace 
mapping that mapped the SUT name space to the assertion namespace. Figure 11 shows a 
namespace mapping for one of the log files. 
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Figure 11. Namespace mapping for verification testing 

The left hand side of the Namespace Mappe shows nodes consisting of events from 
the log file; The right hand side of the Namespace Mapper shows nodes consisting of 

s in the assertion repository, namely statechart 
asse

s attributed to the 
execution overhead caused by the tight timing on the target that was perturbed by the 
instrumented code causing a cascade effect that results in the late detection of the relative 
events as well. This situation was rather expected, considering the strict real time 
requirements of the flight control system and its operation environment.  

However, the assertions violations in certain scenarios uncover the lack of well-
defined requirements to deal with recovery of failures and adequate treatment for missing 
time deadlines. Table 1 summarizes the tests and their results for the V&V process.  The 
results also showed that the adopted process was possible due to the support of a 
computer-aided tool, and more efficient when compared to traditional and manual 
techniques. It significantly improved the requirement understanding, validation and 
verification.   

 

 

r 

events and conditions for assertion
rtions and propositional assertions (outside the scope of this report. The connectors 

connecting both sides can be created manually or algorithmically – using built in or 
custom algorithms. In this study some of the connectors were created automatically and 
others were created manually, using a drag-and-drop user interface. 

The verification tests were executed according to the scheme shown in Figure 12. It 
could be observed that approximately  50% of the assertions were violated due to late 
reference events detection. The reason behind this high number i
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Figure 12. Verification tests execution from log files 

 

Table 1. Summary of the Validation and Verification tests. 
 Validation Tests 

(% of assertions) 
Verification Tests 
(% of assertions) 

Success 60% 50% 

Violated 40% (*) 50% 

Total of tests 220 (5 tests per 
assertion) 

220 JUnit classes 
- 1 JUnit class per 

3 log files  (3 tests 
per assertion) 

3 JUnit class- 1 
JUnit class per log 

test file 

(*) obvious failure and full scenario failure 
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6. THE MIDS CONTROLLER SYSTEM UNDER TEST (SUT) 
The EA-6B mission supports Suppression of Enemy Air Defenses (SEAD) and 

Destruction of Enemy Air Defenses (DEAD ission includes detecting, locating, 
identifying, correlating on-board and off-boa
against enemy communication and weapon systems.  It also includes employing or 
directing the employment of weapons to emy assets. The modern battle space is 
complex and dynamic, requiring timely and clear information and decisions by all levels 
of military command. Link-16 supports the onstraints by enabling exchange of real-
time tactical data among US Navy, Joint Service, and North Atlantic Treaty Organization 
(NATO) ships and aircraft. Link-16 provides for the rapid and reliable exchange of 
tactical data at all levels of command, control and operational engagement.  It consists of 
a specialized communications network infrastructure operating in the UHF part of the 
Radio Frequency (RF) spectrum. The Multifunctional Information Distribution System 
(MIDS) is a hardware communication device that enables Link-16 data and voice 
communication and access to the Link-16 network. It implements Link-16 tactical 
communication by providing integrated position determination, navigation and present 
position identification as well as voice and data communication capabilities. Any system 
requiring Link-16 network capabilities has to interface with a MIDS terminal. 

On the EA-6B  host computer to 
terface with a MIDS terminal. 

 

).  The m
rd data, and employing jamming techniques 

en

se c

aircraft, MIDS Controller (MC) is a designated
in

 
Figure 13. MC components and connections  

 

6.1 SYSTEM ARCHITECTURE 

MC is developed in C++ with about 60K source line of code. MC is hosted on 
PowerPC single board computer running VxWorks real time operating system. The 
system architecture from the MIDS Controller (MC) perspective includes the components 
and connections depicted in Figure 13.  The MC components are: 
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● Tactical Display System (TD r controls and displays, Link-16 
tracks management and MIDS terminal control. 

● Information Manager (IM): Manages distributed databases, coordinates Link-16 data 
betw d 

al programs, mission database 
and

network 
k-16 messages. 

 RF 

● MID d 
to 

age 
Maintains Link-16 all active tracks, local and remote tracks management 

and

 

een participating Link-16 platforms are called J-series 
messag ve 

 one 
 

l circuit (surveillance, air control, Electronic Warfare (EW), etc.) it supports.  These 
virtual 

 to these NPGs.  MC categorizes incoming J-series 
messag

irecting/requesting either the MC or the aircrew to act.  Alerts 
and

The NL requirements were taken directly from MC Software Requirement 
pecification (SRS) document. The NL requirements described in this paper capture two 

ct functional areas: MC Power Up Initialization and HARM (High Speed Anti-
Radar Missile) Hand Off (HHO). 

6.3.1 MC Power Up Initialization Sequence 

S): Provides operato

een MC and TDS, distributes data to multiple TDSs, mission recording an
mission database loading and storage. 

● Data Storage Memory Unit (DSMU): Stores operation
 mission recording data. 

● Multifunctional Information Distribution System (MIDS):  Link-16 
participation, receive and transmit Lin

● Central Mission Computer (CMC): RF jamming management and control of the
synthesizers and transmitters. Aircraft navigation data control. 

S Controller (MC): Intermediary between MIDS terminal and EA-6B integrate
distributed systems. Provides data exchange protocol with a MIDS terminal 
process Link-16 messages. Implements Link-16 message formatting and mess
decoding. 

 track filtering. 

6.2 LINK-16 MESSAGES 
The messages exchanged betw

es. Each J-series message is composed of one or more words.  All messages ha
an initial word (I).  In addition, they may have one or more extension words (E), and
or more continuation words (C). Each J-series message is mapped to the functional
virtua

circuits are called Network Participation Group (NPGs) and are the building 
blocks of the network.  Various types of operational information are exchanged among 
users through assigned access

es into two broad categories: 

1. Situational Awareness (SA) messages providing data regarding Track/Point entities. 

2. Command messages d
 warnings are included in this category.  Some of these messages will be Link-16 

Receipt Compliance (R/C) messages requiring an Operator Response (OR) message. 

 
6.3 NL REQUIREMENTS 

S
distin
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Note that in the NL specifications below, numbered actions must be performed in 
sequence while subsidiary actions may be performed in any order. 

1. The MC shall obtain results of the PowerPC power-on Built-in Test (BIT)  

2. The MC will perform the following actio s (order is irrelevant): 

a. The MC shall begin transmitting its UDP Broadcast Client Status message-2541 

b. The MC shall attempt to establish IL-STD-1553B communications with the 
MIDS LVT and shall continue to do so until communications are established. 

c. When communications are established, MC shall obtain the results of the 
terminal's power-on BIT  

d. When communications are established, MC shall set the LVT Terminal State 
(AP004) to Time Division Multiple Access (TDMA) Only 

e. When communications are established, MC shall obtain the terminal's current 
load and net entry states   

f. The MC shall attempt to establish a T P connection with the IM processor 

g. The MC shall set up an VME bus interrupt capability to receive an external 
interrupt fro

. Once the TCP socket is established, MC will send the following messages to the TDS 
(order is irrelevant): 

a. MC shall send the On-Demand BIT (ODB)/Power-On BIT Results message-2544, 
containing results of PowerPC and MIDS LVT power-on BIT. 

b. MC shall send the MC Software Version message-2547. 

c. MC shall send the Link-16 Network Status message-2545. 

4. In addition, MC shall complete entire initialization sequence within 10 seconds. 

6.3.2 HARM Hand Off (HHO) 

High Speed Anti-Radar Missile is used against detected radar sites. Link-16 is used to 
coordinate HARM missile launch between platform with surveillance capabilities and 
HARM shooters. For example, EA-6B has a sophisticated surveillance system, but might 
not have HARM on board. F-16 has HARM launching capabilities but does not have a 
sophisticated surveillance detection system. In this case, Link-16 is using a series of J-
Messages J3.5 (radar location), J12.6 (HARM parameters) and J12.0 (actual command to 
shoot HARM missile) to coordinate HARM shot between EA-6B and F-16. 

HHO Requirements include: 

● Upon receiving from IM message-2572 (Local Track Report) with HHO field set to 
true, MC shall: create local track in the database, assign loopbackID to a track 
number, setup retry count to one and transmit J3.5 (Land Point) message to MIDS 
terminal.   

n

M

C

m CMC.  

3
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● MC shall receive loo S terminal for the  J3.5 
message. If loopbackID from MIDS indicating transmit status failure, MC shall re-
transmit J3.5 message once. If loopbackID from MIDS indicating transmit status 

C shall abort HHO processing.  

● Upon receiving loopbackID from MIDS indicating transmit success for the J3.5 
message, MC shall assign loopbackID to a track number, setup retry count to one and 

 parameters) message to MIDS terminal. 

● MC shall receive loopbackID response message from the MIDS terminal for the J12.6 
message. If loopbackID from MIDS indicating transmit status failure, MC shall re-

 MIDS indicating transmit status 
fail ort HHO processing. 

● Upon receiving loopbackID from MIDS indicating transmit success for the J12.6 
message, MC shall wait for the IM to send to MC Message-5362 (Mission 

● Upo ge-5362 (Mission Assignment), and only if MC had 
already successfully processed J3.5 and J12.6, MC shall assign loopback to a track 

d transmit J12.0 Mission Assignment.  

● MC  from IM only if MC had successfully sent J3.5 and 
J12

62 prior to Message-2572, MC must wait for Message-
it J3.5 (Land Point) and J12.6 (HARM DA 

par ansmit J12.0 (Mission Assignment). 

● MC shall receive loopbackID response message from the MIDS terminal for the J12.0 
 MIDS indicating transmit status failure, MC shall re-

tra  MIDS indicating transmit status 
fai

● Upon receiving loopbackID from MIDS indicating transmit success for the J12.0 
essage from the MIDS terminal with a Receipt 

Co ponse: either Will Comply or Cannot 
Com

● Up ssage from MIDS terminal with Cannot Comply response, 
MC shall remove local track from the database. 

 

7.  MC FORMAL SPECIFICATION AND VALIDATION  

Figure 14 depicts the statechart assertion diagram for the MC Power Up Initialization 
Sequence described in section 6.4.1. It captures the following NL concerns: 

1.  The NL requirement specifies a strict sequence order for sub-requirements 1, 2, and 3. 

2.  There exists a 10 seconds upper bound time constraint for the entire initialization 
sequence. 

pbackID response message from the MID

failure from the re-transmit J3.5 message, M

transmit J12.6 (HARM DA

transmit J12.6 message once. If loopbackID from
essage, MC shall abure from re-transmit J12.6 m

Assignment). 

n receiving from IM messa

number, setup retry count to one an

 shall process message-5362
.6 messages. 

● In case IM sends Message-53
2572 from IM, in order to transm

ameters) messages prior to tr

message. If loopbackID from
nsmit J12.0 message once. If loopbackID from

age, MC shall abort HHO processing. lure from re-transmit J12.0 mess

message, MC shall wait for the J12.0 m
mpliance fields indicating the following res

ply status. 

on receiving J12.0 me
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3.  The order of events within numbered NL requirements 2(BIT) and 3(Interfaces 
Initialization) is irrelevant, except for MC having to first establish 1553 
communication with a MIDS terminal and only then get MIDS terminal BIT, set 
TDMA and get terminal load and net status.  

Figure 15 depicts the statechart assertion diagram for the HHO requirement set 
described in section 6.4.1.  

 

 
Figure 14. Statechart assertion for NL requirement 6.4.1.1 
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Figure 15. Statechart assertion for NL requirement 6.4.1.2 

 

Based on the validation methodology described in [5], we created a plurality of JUnit 
validation tests for each statechart assertion. Two such tests, for the MC Power Up 
Initialization statechart assertion, are depicted using the timeline diagrams of Figure 16. 
A timeline diagram captures events and their associated time stamp of occurrence. The 
timeline diagrams of Figures 16a and 16b depict success and failure cases, respectively. 
Specifically, Figure 16a depicts a test for a scenario the developer believes conforms to 
the NL whereas Figure 16b depicts a test for a scenario the developer believes violates to 
the NL. Additional validation tests were created according to the validation testing 
patterns methodology of [5]. 
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a. Timeline diagram rendering of a validation test expecting a success.  

 

 
b.  Timeline diagram rendering of a validation test expecting a failure (i.e., 

violation of a NL requirement).  

 

Figure 16.  Two validation tests for the MC Power Up Initialization statechart 
assertion. 

 

The statechart assertions were developed and validated inside a special container 
called the assertion repository. This is a special Eclipse project that provides the 
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environment for subsequent verification described in section 8. Figure 17 depicts the 
Eclipse view of the assertion repository for the MC controller. 

 

 
 

Figure 17. The assertion repository view for MC   

 

13B8.  VERIFICATION USING SOURCE CODE INSTRUMENTATION AND LOG 
FILES 
Verification was performed on the VxWorks-based target system using the steps 

similar to those presented in section 5.  

 
17B8.1 Source Code Instrumentation 

Using an instrumentation GUI within the StateRover we selected the project and 
individual files for instrumentation. The source code instrumentation tool then 
automatically inserted instrumentation code snippets into the source file, resulting in 
instrumented code as in Listing 2.  
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Note that although the instrumentation tool, like all other StateRover tools, is an 
Eclipse plug-in, the source code was not developed and is not required to be built in the 
Eclipse environment. The MC source code was developed using VxWorks development 
environment and is built there. The source code files were imported into Eclipse solely 
for the purpose of instrumentation. They were subsequently used to rebuild the project in 
the VxWorks environment. 
void TerminalCtrl::periodicTask() 
{ 
   int               iCycleCount   = 0; 
   int               cmcCycleCount = 0; 
   unsigned int      mstrRadValidFlags01;  
   unsigned int      mstrRadValidFlags02; 
   MHCLANMsg         *mhcLANMsg, *mstrRadLANMsg; 
   MHCLANMsg         *rpLAN; 
   STATUS            result = OK; 
 
   /*  @instrumented Maya-Software. */ 
   MAYA_INSTRUMENT((char *)  
     "<sig><![CDATA[TerminalCtrl::periodicTask()]]></sig>", 
     (char *)"",(char *) 
       "<sourcefile><![CDATA[C:/mcWorkSpace/verificationMC/ 
        terminalctrl.cpp]]></sourcefile>", 
     (char *)"<pos val=\"47965\" instrval=\"54507\" />"); 
    
   pCMC = new  CMCDATAMsg; 
   CMCDATAMsg *      airStatus_CMC = new CMCDATAMsg; 
   airStatus_CMC->id  = CMCIN_AIRCRAFT_STATUS; 
   CMCin_AircraftStatus airStatus;    
 
   d1553StatusInfo_t statusInfo; 
 
   int tickDelayBeforeStart =   
     sysClkRateGet() / 20 - TC_DELAY_TICK; 
   periodicTaskStarted = true; 

Listing 2. A source code file snippet with source code instrumentation.  

 

The snippet is automatically inserted to the source code file using the instrumentation 
tool. 

The instrumentation snippet makes calls to customizable utility methods that log the 
following information in a log file. The information being logged is: 

● Per every method (or C function) call:  

○  Method signature and actual arguments. 
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○  Method call time. 

○  Location of instrumentation point in source code file (optional). 

● Per variable assignments: name and value of variable being assigned. 

 
18B8.2 Log file Creation 

After instrumentation, the MC application was re-built in the VxWorks environment 
and then executed on the target using the existing test harness. A resulting log file snippet 
(one of a plurality of log files created by a plurality of test runs) is depicted in Listing 3. 

<newtest> 
<event> 
<sig><![CDATA[TerminalCtrl::snd1553_BIMA01()]]></sig> 
<time lang="c" unit="sec" val="430" /> 
</event> 
<event> 
<sig><![CDATA[TerminalCtrl::snd1553_BIMA04()]]></sig> 
<time lang="c" unit="sec" val="430" /> 
</event> 
<event> 
<sig><![CDATA[CMCInterface::getReadDataReadyFlag( 
   map<unsigned short,  
             cmc_data_info>::iterator& pos )]]></sig> 
<time lang="c" unit="sec" val="430" /> 
</event> 
<event> 
<sig><![CDATA[TerminalCtrl::get1553_BOMA01()]]></sig> 
<time lang="c" unit="sec" val="430" /> 
</event> 
<event> 
<sig><![CDATA[TerminalCtrl::get1553_BOMA08()]]></sig> 
<time lang="c" unit="sec" val="430" /> 
</event> 

Listing 3. A log file snippet 

 
19B8.3 Log File Import and JUnit Conversion 

Log-files were imported into the assertion repository using the StateRover’s import 
plug-in. This tool converts the log file from XML format to an equivalent verification 
JUnit test. Listing 4 contains a snippet of the verification JUnit test that corresponds to 
the log file of Listing 3.  

 
public void testMe1() throws Exception { 

assertions.reset( 
  "assertionrepository.HHO_namespace_map"); 
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nBaseTime = (int)(430L  * nFactor_LogUnitsAreSec); 
assertions.fire("TerminalCtrl::snd1553_BIMA01()"); 
assertions.incrTime( 
  (int)(430L  * nFactor_LogUnitsAreSec - nBaseTime)); 
nBaseTime = (int)(430L  * nFactor_LogUnitsAreSec); 
assertions.fire("TerminalCtrl::snd1553_BIMA04()"); 
assertions.incrTime( 
  (int)(430L  * nFactor_LogUnitsAreSec – 
        nBaseTime)); 
nBaseTime = (int)(430L  * nFactor_LogUnitsAreSec);  
… 

} 
Listing 4. A snippet of the verification JUnit test created from the log file depicted 

in Listing 2. 

 
20B8.4 Namespace Mapping 

The next step in the MC verification process was to match the namespace used by the 
assertions to the C++ namespace of the MC code base, namely, to the namespace of the 
method calls logged in the log file. This mapping is done using a namespace mapping 
GUI, part of the StateRover’s namespace plug-in. This GUI allows manual and 
algorithmic mapping (using built-in as well as customizable mapping algorithms) of the 
two namespaces. An instance namespace map used for MC verification is depicted in 
Figure 18. For example, it maps ProcessLoopbackResponse to Loopback_J12_0. The 
namespace mapping plug-in also generates Java code (denoted executable namespace 
translation) that implements this mapping.  
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Figure 18. MC Namespace mapping. 

 

21B8.5 Verification 
The final step is of-course, verification. In this step the verification JUnit test (the 

JUnit equivalent of the log file) was executed in the assertion repository. It operates as 
follows. Every event in the verification Junit test (such as assertions. 
fire("TerminalCtrl::snd1553_BIMA01()");  in Listing 4) corresponds to a method that 
fired and subsequently logged. This event is translated, using the executable namespace 
translation code, into the namespace of the assertion repository, and then dispatched to all 
assertions in the repository. Every assertion that contains that event responds by possibly 
changing states, while all others simply ignore it. 

The assertion repository also keeps track and reports the following information, as 
depicted in Figure 19: 

● Names of all assertions that failed (ended with bSuccess=false) during this 
verification JUnit test 
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● All SUT events the fired (and hence present in the log file and subsequently in the 
verification JUnit test) but no assertion with such an event name was detected. This 
situation could indicate an error in the namespace mapping.  

 

 
Figure 19. The assertion repository viewer showing all assertions that failed and all SUT 

events that fired but were not mapped to an assertion event. 

 

22B8.6 Assertion Coverage Animation 
We executed the verification JUnit test using the StateRover’s animation using a 

special coverage animation option. The results of this execution, depicted in Fig. 20, 
color all states that were visited during the test as well as all transitions that were 
traversed during the test. This is done for all assertions of interest. Such coverage 
animation provides the following devil’s advocate information: absence of animation 
coloring indicates interesting scenarios that could potentially cause an assertion to fail; 
such scenarios can then be coded as new on-target  tests for the SUT. 
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Figure 20 Coverage animation after the execution of a verification JUnit test 

 

14B9.  CONCLUSIONS 
In this report, we presented an approach for formal validation and verification for 

mission- and safety-critical systems, and illustrated the approach with two case studies,  a 
flight control system of the Brazilian Satellite Launcher and controller of the US 
Multifunctional Information Distribution System (MIDS), where UML statechart 
assertions are used to formally capture the complex mission-critical behaviors of these 
systems. The assertions are first validated via scenario-based testing and then used to 
automatically instrument the target software.  The instrumented software are executed on 
the VxWorks-based target to generate log files, which are then imported into the 
StateRover SV&V environment and executed as JUnit tests against the assertions. This is 
the first reported cases of the application of the entire SV&V methodology using rapidly 
developed UML-based formal specifications.  It is also the first reported case of 
“distributed verification”, where specification and validation of assertions for the 
Brazilian Satellite Launcher was performed in California, execution and log file creation 
were performed in Brazil, and subsequent log-file based RV was performed in California. 
The StateRover SV&V tool supports all the activities involved in this approach, from the 
statechart assertions creation to the runtime verification against real data log files.  
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