
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2011-02-01

Applying UML-based Formal

Specification, Validation, and

Verification to Space Flight Control

System and Defense Software

Alves, Miriam C Bergue

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/15279

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36708562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS-CS-11-003

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

Applying UML-based Formal Specification, Validation, and

Verification to Space Flight Control System and Defense Software

by
Miriam C. Bergue Alves, Konstantin Beylin, Doron Drusinsky, James

Bret Michael, and Man-Tak Shing

February 2011

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President and
 Provost

The report was funded by the Graduate School of Operational and Information Sciences, Naval
Postgraduate School (NPS).

Reproduction of all or part of this report is authorized.

This report was prepared by:

___________________________________ ____________________________
Doron Drusinsky Man-Tak Shing
Associate Professor of Computer Science Associate Professor of Computer Science
Naval Postgraduate School Naval Postgraduate School

___________________________________ ____________________________
Dr. Miriam C.B. Alves Chris Beylin
Research Associate Software Engineer
Contractual Support to NPS Naval Air Warfare Center
Institute of Aeronautics and Space (IAE) at
DCTA (Brazilian Department of Aerospace
Science and Technology)

James Bret Michael
Professor of Computer Science
Naval Postgraduate School

Reviewed by: Released by:

___________________________ ____________________________
Peter J. Denning, Chairman Karl A. van Bibber
Department of Computer Science Vice President and Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services,
Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be
aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display
a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
1/31/2011

2. REPORT TYPE
Technical Report

3. DATES COVERED (From - To)
9/1/2010 – 1/31/2011

4. TITLE AND SUBTITLE
Applying UML-based Formal Specification, Validation, and Verification to Space
Flight Software and Defense Software

5a. CONTRACT NUMBER
N/A

 5b. GRANT NUMBER

 5c. PROGRAM ELEMENT
NUMBER

6. AUTHOR(S)
M. C. B. Alves, K. Beylin, D. Drusinsky, J. B. Michael, M.T. Shing

5d. PROJECT NUMBER

 5e. TASK NUMBER

 5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Naval Postgraduate School
1411 Cunningham Road, Monterey, CA 93943
and Naval Air Warfare Center, Weapons Division, Point Mugu, CA 93042

8. PERFORMING ORGANIZATION
REPORT NUMBER
NPS-CS-11-003

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSOR/MONITOR’S
ACRONYM(S)
11. SPONSOR/MONITOR’S

 REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES
The views expressed in this report are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

14. ABSTRACT
This report presents the process and results of a formal computer-aided Specification, Validation and Verification (SV&V)
of two mission and safety critical projects: the Brazilian Satellite Launcher flight software, and the Department of
Defense’s Multifunctional Information Distribution System (MIDS) controller. The Specification, Validation, and
Verification (SV&V) process begins with a system requirement analysis and Natural Language (NL) specification. UML
statechart-formal specification assertions are then created using the StateRover SV&V specification environment; these
assertions formally capture the NL requirements. The assertions are validated against the NL and cognitive requirements
using JUnit-based testing within the StateRover SV&V environment. Finally, Runtime Verification (RV) is performed on
the target system under test (SUT). The RV phase is based on log files created by automatically instrumenting source code
files, building and executing them on the VxWorks-based target thereby creating log files, importing resulting log files into
the StateRover SV&V environment and executing them as JUnit tests against the assertions.
15. SUBJECT TERMS
specification, validation, verification, testing, flight software, UML, formal methods

16. SECURITY CLASSIFICATION OF:

17.
LIMITATION
OF

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON
Doron Drusinsky

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

UL

19b. TELEPHONE NUMBER
(include area code)
831-656-2168

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK

 4

ABSTRACT
This report presents the process and results of a formal computer-aided

Specification, Validation and Verification (SV&V) of two mission and safety critical
projects: the Brazilian Satellite Launcher flight control system, and the Department of
Defense’s Multifunctional Information Distribution System (MIDS) controller. The
Specification, Validation, and Verification (SV&V) process begins with a system
requirement analysis and Natural Language (NL) specification. UML statechart-formal
specification assertions are then created using the StateRover SV&V specification
environment; these assertions formally capture the NL requirements. The assertions are
validated against the NL and cognitive requirements using JUnit-based testing within the
StateRover SV&V environment. Finally, Runtime Verification (RV) is performed on the
target system under test (SUT). The RV phase is based on log files created by
automatically instrumenting source code files, building and executing them on the
VxWorks-based target thereby creating log files, importing resulting log files into the
StateRover SV&V environment and executing them as JUnit tests against the assertions.

 5

THIS PAGE INTENTIONALLY LEFT BLANK

 6

1. I

ler. This is
the

 specification and validation of the part of the flight
control system was performed in California, execution and log file creation was
performed in Brazil, and subsequent log-file based RV was performed in California.

2. PRELIMINARIES - THE V&V PROCESS
The SV&V process consisted of the following activities:

1. Perform system requirement analysis and Natural Language (NL) specification in
California.

2. Create UML statechart-formal specification assertions using the StateRover SV&V
specification environment [6]; these assertions formally capture the NL requirements.
The assertions are then validated against the NL requirements using JUnit-based
testing within the StateRover SV&V environment. This activity was performed in
California.

3. Finally, Runtime Verification (RV) is performed on the target System Under Test
(SUT). The RV phase was

a. StateRover is used to automatically instrument the source code files; this activity
was performed in California.

f the software is built for the VxWorks-based target;

NTRODUCTION
Correctness of computer software is critical, especially for embedded software in

mission critical application domains such as space, transportation, military and medical.
These software systems perform the mission and safety-critical functions with complex
time-constrained sequencing behaviors that are difficult to specify correctly and to verify
using the prevailing manual SV&V techniques. Research has shown that formal
specifications and formal methods help improve the clarity and precision of requirements
specifications [1]. In particular, lightweight formal methods, when used in tandem with
rapid prototyping, help debug the requirements and identify errors earlier in the design
process [2]. In [3], we presented a continuous and proactive process for conducting V&V
of systems. The process involves using scenario-based testing to validate whether the
formal assertions correctly capture the intent of the natural language requirements, and is
automated through the use of statechart-assertions and runtime execution monitoring [4].

This paper presents the results of applying the method to the SV&V of two mission
critical, time-constrained systems: (i) the Satellite Launcher flight control system [5],
and (ii) the Multifunctional Information Distribution System (MIDS) control

first reported case of the application of the entire SV&V methodology using rapidly
developed UML-based formal specifications. It is also the first reported case of
“distributed verification”, where

based on log files, as follows:

b. The instrumented version o
in the case of the Brazilian Satellite Launcher flight control system, this activity
was performed in Brazil .

 7

an Satellite Launcher flight control

verts log files into an equivalent JUnit test.

variables namespace to the

assertions, using the

involves the following steps:

 given a set of natural language requirements, statechart-
ey represent the understanding of the cognitive requirements

c. The resulting program was executed on the VxWorks-based target thereby
creating log files; in the case of the Brazili
system, this activity was performed in Brazil.

d. The log files are imported into the StateRover SV&V environment using the
StateRover “Import” tool that con
Such JUnit tests are called JUnit verification tests, thereby distinguishing them
from validation tests discussed in activity No. 2. This activity was performed in
California.

e. A namespace mapping is created, using the StateRover namespace mapping tool.
This mapping translates the C functions and
namespace used in the assertions. This activity was performed in California.

f. The JUnit verification tests are executed against the
StateRover’s assertion repository tool, a plug-in that dispatches events
(corresponding to function calls or variables assignments logged in the log file) to
all assertions. This activity was performed in California.

Requirements validation, as established in activity No. 2, follows a abstract-validate-
refine strategy (Figure 1) and

1. Requirements Modeling:
assertions are created. Th
model.

2. Validation: for every requirement, a set of scenarios is created to check whether the
assertion satisfies the desired system behavior as specified in the NL requirements.
Some scenarios will satisfy, or conform the requirement, and other scenarios will fail
it.

Figure 1. The valid

•

ation activities.

 Failure Scenarios: the scenario that leads the assertion to fail is examined to
determine whether it is illegitimate. This examination is done by evaluating the

 8

 case, the problem is
to the next

liminate the
e

fy, or

n tests that fail an assertion are examined to determine

rmal operational conditions. In the latter case, the problem is

d implementation
 step 1.

requirement, using the failure scenario as a guide, to find out if the scenario
represents a valid behavior of the system. If this is the
reported (requirement was not validated). Otherwise, the loop proceeds
step.

• Assertion Refinement: the set of statechart assertions is changed to e
wrong behavior and possibly other illegitimate behaviors introduced in th
abstraction process. Given the update set of statechart assertions, the loop
proceeds to step 1.

Figure 2 describes the verification process framework based on the abstract-verify-
refine strategy. It uses the following steps to gather data produced by the runtime
execution in the log files and then verifies the test results via automated generated JUnit
tests based on these log files.

1. Runtime execution monitoring: data is gathered in a log file by observing the system
behavior in real time execution.

2. Log-file based Verification: a set of JUnit verification tests is created from the log-
files. They are executed against the assertions; some scenarios will satis
conform the corresponding requirements, while other scenarios will not.

3. Failure tests: verificatio
whether they are due to an implementation error or perhaps the log files were
generate under abno
reported. Otherwise the process proceeds.

4. Assertion Refinement: feedback is given to the system design an
team. Given the update design and code, the loop proceeds to

Figure 2. The verification activities

 9

ered and

vents: reference

t named C: ThrustDrop_2Stage.

ct relative

hen in state

gned to work with the JUnit Java testing

3. FLIGHT CONTROL SYSTEMFORMAL SPECIFICATION
The SUT has algorithms and control loops that operate during the pow

ballistics flight phases to direct the actuators, so as to keep the launcher sufficiently close
to its reference launching trajectory. The sequence of flight events characterizes the
different stages of the flight and determines when the algorithms and control loops have
to be executed during the flight [7]. There are two different types of e
events and relative events.

The flight control system, in a pre-determined timeframe, must detect the four
reference events:

• Reference event named A: LiftOff.

• Reference event named B: ThrustDrop_1Stage.

• Reference even

• Reference event named D: ThrustDrop_3Stage.

Once a reference event is detected, the flight control system has to dete
events in a pre-determined time in order to activate and/or deactivate controlling
algorithms and electrical systems (e.g. actuators, ignition devices, stage separation
dispositive).

Figure 3 shows the statechart-assertion formalization for the reference event A
requirement:

 “Req_Ref_A: Once the navigation starts (time=0), A must occur within the
interval [lA,uA].”

The statechart-assertion in Figure 3 will enter the Error_A state if it observes the
event A when in state Nav_On, before its lower limit time (timer_LA=) or w
Waiting_A, it observes that the upper limit of the time interval (timer_UA) has been
reached and A was not detected.

StateRover’s code generator generates a Java class Req_Ref_A for the statechart-
assertion file. The generated code is desi
framework [8].

Figure 3. Statechart-assertion for the Req_Ref_A

Once the reference event A is detected, eleven other relative events associated with
the event A must be detected after a time interval pre-established for each relative event,
with X milliseconds of tolerance. This tolerance tends to be readjusted for each assertion
as much as we learn about the system performance. Let us generically consider the
relative event Ax, and its detection time DAx, x=0,1,..10. Therefore, the relative event
requirement is written as:

“Req_Rel_Ax: illisec
afterwards.”
A single statechart-assertion formalization for these requirements was used as a

pattern, as shown in Figure 4. The associated Java class generated by StateRover was
then re-factored for each of the relative requirements and a special Java function was
created to set the corresponding DAx for each Ax.

The first part of the statechart-assertion in Figure 4 formalizes the detection of the
event A (If A is detected), as explained previously. The remaining part formalizes the
generic relative event detection (R_E) after A has been detected (then Ax must be
detected DAx millisecs, within X millisecs afterwards). The statechart-assertion will enter
the Error_Rel state if it observes the R_E event when in state A, before its DAx
milliseconds timeout (timer2) has expired or when in state Waiting_Relative for more
than X milliseconds (timer3).

If A occurs, then Ax must occur DAx millisecs within X m

 10

 11

The statechart-assertion for the reference event B requirement is presented in Figure
5:

“Req_Ref_B: B must be detected within interval [lB,uB] of the detection of A.”

The statechart-assertion in Figure 5 will enter the Error_B state if it observes the B
event when in state A, before its lower limit time (timer_LB) or when in state Waiting_B,
it observes that the upper limit of the time interval (timer_UB) has been reached and B
was not detected.

Figure 4. Statechart-assertion for the Req_Rel_Ax

The requirements for the other reference events C and D were established as follow:

“Req_Ref_C: C must be detected within interval [lC,uC] of the detection of A.”

“Req_Ref_D: D must be detected within interval [lD,uD] of the detection of C.”

The statechart-assertion for the requirements Req_Ref_C uses the same pattern
showed in Figure 5 and the statechart-assertion for Req_Ref_D is illustrated in Figure 6.

 12

One can observe that this requirement has a similar formalization as the reference event
B, but D also depends on C.

The relative events requirements associated with the reference events B, C and D
follows the same pattern as the ones associated with reference event A, as showed
previously in Figure 4.

Figure 5. Statechart-assertion for the Req_Ref_B

Up to this point, 44 requirements associated with the flight events sequence, including
reference e
StateRov k
accomplished, as they both contributed

 and relative events, were formalized as statechart-assertions. The support of th
er tool and the reuse of statechart-assertions were fundamental to have the wor

to the rapid creation of assertions.

Figure 6. Statechart-assertion for the Req_Ref_D

To assure that the statechart assertions accurately represent the requirements, their
t cases created as follows:

•

4. FLIGHT CONTROL SYSTEM VALIDATION

behaviors were tested using JUnit tes

Obvious success: test a trivial scenario that conforms to the NL requirement;

• Obvious failure: test a trivial scenario that violates the NL requirement.

 13

 14

•

nal JUnit tests were created to guarantee that all the states in

for the relative event A0 requirement
espective timeline associated
here A0 is supposed to occur

Full scenario success: test a nontrivial scenario that goes through the entire basic
scenario while in agreement with the NL requirement.

• Full scenario failure: test a nontrivial scenario that goes through the entire basic
scenario while violating the NL requirement.

When necessary, additio
the state-assertion diagram were covered.

Listing 1 shows the JUnit test case A0_test1
(statechart-assertion in Figure 5), and Figure 7 shows the r
with this test. This test represents a full scenario success, w
15 milliseconds after A occurs.

package req_ref_timer_A0;

import junit.framework.TestCase;

public class A0_test1 extends TestCase {

 req_rel_A0 A0;

 protected void setUp() throws Exception {

 super.setUp();

 A0=new req_rel_A0();

 }

 protected void tearDown() throws Exception {

 super.tearDown();

 }

 public void testExecTRreset(){

 A0.incrTime(5000);

 A0.A();

 A0.incrTime(15);

 A0.R_E();

 A0.incrTime(1);

 assertTrue(A0.isSuccess());

 }

}

Listing 1. JUnit test case A0_test1

 15

 timelines associated with two failure scenario tests for the
ere the event R_E

 events where R_E

StateRover for Eclipse animation was used to visualize the behavior of the statechart-
ng the validation tests. It also helped to analyze the statechart-

asse

Figure 8 shows two
relative event A0 requirement: the first one is a full scenario failure wh
(A0) occurred too late (A0_test2); the second one shows a sequence of
occurred too early (A0_test3).

assertions while runni
rtion state coverage. Figure 9 presents the statechart-assertion view when the

animation of A0_test2 was done. The last two visited states of the statechart-assertion are
highlighted.

Figure 7. A full scenario success sequen

ce of events

Figure 8. Two event sequences that violates requirement A0

Figure 9. Statechart-assertion animation for a full scenario failure.

As of January 2011, around 220 JUnits validation tests were run to validate 44
requirements.

5. FLIGHT CONTROL SYSTEMVERIFICATION

A simplified scheme of the laboratory environment where the runtime execution
monitoring took place is presented in Figure 10. The flight control system is embedded
in a target computer running a specific RTOS (VxWorks) connected to a Host computer
where the log files are created.

 16

Figure 10. The lab setup scheme for runtime execution monitoring

In the specific case of this study, adaptations in the automatic instrumentation had to
be done in order to optimize the execution of the instrumented code. This was necessary
due to the very tight time constraints imposed to the flight control system execution. In
the first simulations, the overhead of getting extra data interfered in the results of the
simulated flight. Therefore, changes were made in the instrumented code to cope with
the restrictions imposed by the flight control system environment.

As the initial main goal was monitoring the flight events sequence, the code
instrumentation was optimized to collect certain variables assignments that flagged the
events occurrence and their cu

While still working in the generation of additional log files, we have created three log
worth mentioning that because log files generation took place in Brazil,

ect to the availability of the Flight Dynamics Lab [9][10]. In
ord

rrent time of occurrence.

files to date. It is
their throughput was subj

er to generate JUnit verification tests to verify the statechart-assertions, the log file
was imported by StateRover, which generates a XLM equivalent file and a
JUnitFromLogs Java class. This class contained the log file-based verification tests for
the statechart-assertions.

The next step, prior to running the verification tests, was to create a namespace
mapping that mapped the SUT name space to the assertion namespace. Figure 11 shows a
namespace mapping for one of the log files.

 17

Figure 11. Namespace mapping for verification testing

The left hand side of the Namespace Mappe shows nodes consisting of events from
the log file; The right hand side of the Namespace Mapper shows nodes consisting of

s in the assertion repository, namely statechart
asse

s attributed to the
execution overhead caused by the tight timing on the target that was perturbed by the
instrumented code causing a cascade effect that results in the late detection of the relative
events as well. This situation was rather expected, considering the strict real time
requirements of the flight control system and its operation environment.

However, the assertions violations in certain scenarios uncover the lack of well-
defined requirements to deal with recovery of failures and adequate treatment for missing
time deadlines. Table 1 summarizes the tests and their results for the V&V process. The
results also showed that the adopted process was possible due to the support of a
computer-aided tool, and more efficient when compared to traditional and manual
techniques. It significantly improved the requirement understanding, validation and
verification.

r

events and conditions for assertion
rtions and propositional assertions (outside the scope of this report. The connectors

connecting both sides can be created manually or algorithmically – using built in or
custom algorithms. In this study some of the connectors were created automatically and
others were created manually, using a drag-and-drop user interface.

The verification tests were executed according to the scheme shown in Figure 12. It
could be observed that approximately 50% of the assertions were violated due to late
reference events detection. The reason behind this high number i

 18

Figure 12. Verification tests execution from log files

Table 1. Summary of the Validation and Verification tests.
 Validation Tests

(% of assertions)
Verification Tests
(% of assertions)

Success 60% 50%

Violated 40% (*) 50%

Total of tests 220 (5 tests per
assertion)

220 JUnit classes
- 1 JUnit class per

3 log files (3 tests
per assertion)

3 JUnit class- 1
JUnit class per log

test file

(*) obvious failure and full scenario failure

 19

 20

6. THE MIDS CONTROLLER SYSTEM UNDER TEST (SUT)
The EA-6B mission supports Suppression of Enemy Air Defenses (SEAD) and

Destruction of Enemy Air Defenses (DEAD ission includes detecting, locating,
identifying, correlating on-board and off-boa
against enemy communication and weapon systems. It also includes employing or
directing the employment of weapons to emy assets. The modern battle space is
complex and dynamic, requiring timely and clear information and decisions by all levels
of military command. Link-16 supports the onstraints by enabling exchange of real-
time tactical data among US Navy, Joint Service, and North Atlantic Treaty Organization
(NATO) ships and aircraft. Link-16 provides for the rapid and reliable exchange of
tactical data at all levels of command, control and operational engagement. It consists of
a specialized communications network infrastructure operating in the UHF part of the
Radio Frequency (RF) spectrum. The Multifunctional Information Distribution System
(MIDS) is a hardware communication device that enables Link-16 data and voice
communication and access to the Link-16 network. It implements Link-16 tactical
communication by providing integrated position determination, navigation and present
position identification as well as voice and data communication capabilities. Any system
requiring Link-16 network capabilities has to interface with a MIDS terminal.

On the EA-6B host computer to
terface with a MIDS terminal.

). The m
rd data, and employing jamming techniques

en

se c

aircraft, MIDS Controller (MC) is a designated
in

Figure 13. MC components and connections

6.1 SYSTEM ARCHITECTURE

MC is developed in C++ with about 60K source line of code. MC is hosted on
PowerPC single board computer running VxWorks real time operating system. The
system architecture from the MIDS Controller (MC) perspective includes the components
and connections depicted in Figure 13. The MC components are:

 21

● Tactical Display System (TD r controls and displays, Link-16
tracks management and MIDS terminal control.

● Information Manager (IM): Manages distributed databases, coordinates Link-16 data
betw d

al programs, mission database
and

network
k-16 messages.

 RF

● MID d
to

age
Maintains Link-16 all active tracks, local and remote tracks management

and

een participating Link-16 platforms are called J-series
messag ve

 one

l circuit (surveillance, air control, Electronic Warfare (EW), etc.) it supports. These
virtual

 to these NPGs. MC categorizes incoming J-series
messag

irecting/requesting either the MC or the aircrew to act. Alerts
and

The NL requirements were taken directly from MC Software Requirement
pecification (SRS) document. The NL requirements described in this paper capture two

ct functional areas: MC Power Up Initialization and HARM (High Speed Anti-
Radar Missile) Hand Off (HHO).

6.3.1 MC Power Up Initialization Sequence

S): Provides operato

een MC and TDS, distributes data to multiple TDSs, mission recording an
mission database loading and storage.

● Data Storage Memory Unit (DSMU): Stores operation
 mission recording data.

● Multifunctional Information Distribution System (MIDS): Link-16
participation, receive and transmit Lin

● Central Mission Computer (CMC): RF jamming management and control of the
synthesizers and transmitters. Aircraft navigation data control.

S Controller (MC): Intermediary between MIDS terminal and EA-6B integrate
distributed systems. Provides data exchange protocol with a MIDS terminal
process Link-16 messages. Implements Link-16 message formatting and mess
decoding.

 track filtering.

6.2 LINK-16 MESSAGES
The messages exchanged betw

es. Each J-series message is composed of one or more words. All messages ha
an initial word (I). In addition, they may have one or more extension words (E), and
or more continuation words (C). Each J-series message is mapped to the functional
virtua

circuits are called Network Participation Group (NPGs) and are the building
blocks of the network. Various types of operational information are exchanged among
users through assigned access

es into two broad categories:

1. Situational Awareness (SA) messages providing data regarding Track/Point entities.

2. Command messages d
 warnings are included in this category. Some of these messages will be Link-16

Receipt Compliance (R/C) messages requiring an Operator Response (OR) message.

6.3 NL REQUIREMENTS

S
distin

 22

Note that in the NL specifications below, numbered actions must be performed in
sequence while subsidiary actions may be performed in any order.

1. The MC shall obtain results of the PowerPC power-on Built-in Test (BIT)

2. The MC will perform the following actio s (order is irrelevant):

a. The MC shall begin transmitting its UDP Broadcast Client Status message-2541

b. The MC shall attempt to establish IL-STD-1553B communications with the
MIDS LVT and shall continue to do so until communications are established.

c. When communications are established, MC shall obtain the results of the
terminal's power-on BIT

d. When communications are established, MC shall set the LVT Terminal State
(AP004) to Time Division Multiple Access (TDMA) Only

e. When communications are established, MC shall obtain the terminal's current
load and net entry states

f. The MC shall attempt to establish a T P connection with the IM processor

g. The MC shall set up an VME bus interrupt capability to receive an external
interrupt fro

. Once the TCP socket is established, MC will send the following messages to the TDS
(order is irrelevant):

a. MC shall send the On-Demand BIT (ODB)/Power-On BIT Results message-2544,
containing results of PowerPC and MIDS LVT power-on BIT.

b. MC shall send the MC Software Version message-2547.

c. MC shall send the Link-16 Network Status message-2545.

4. In addition, MC shall complete entire initialization sequence within 10 seconds.

6.3.2 HARM Hand Off (HHO)

High Speed Anti-Radar Missile is used against detected radar sites. Link-16 is used to
coordinate HARM missile launch between platform with surveillance capabilities and
HARM shooters. For example, EA-6B has a sophisticated surveillance system, but might
not have HARM on board. F-16 has HARM launching capabilities but does not have a
sophisticated surveillance detection system. In this case, Link-16 is using a series of J-
Messages J3.5 (radar location), J12.6 (HARM parameters) and J12.0 (actual command to
shoot HARM missile) to coordinate HARM shot between EA-6B and F-16.

HHO Requirements include:

● Upon receiving from IM message-2572 (Local Track Report) with HHO field set to
true, MC shall: create local track in the database, assign loopbackID to a track
number, setup retry count to one and transmit J3.5 (Land Point) message to MIDS
terminal.

n

M

C

m CMC.

3

 23

● MC shall receive loo S terminal for the J3.5
message. If loopbackID from MIDS indicating transmit status failure, MC shall re-
transmit J3.5 message once. If loopbackID from MIDS indicating transmit status

C shall abort HHO processing.

● Upon receiving loopbackID from MIDS indicating transmit success for the J3.5
message, MC shall assign loopbackID to a track number, setup retry count to one and

 parameters) message to MIDS terminal.

● MC shall receive loopbackID response message from the MIDS terminal for the J12.6
message. If loopbackID from MIDS indicating transmit status failure, MC shall re-

 MIDS indicating transmit status
fail ort HHO processing.

● Upon receiving loopbackID from MIDS indicating transmit success for the J12.6
message, MC shall wait for the IM to send to MC Message-5362 (Mission

● Upo ge-5362 (Mission Assignment), and only if MC had
already successfully processed J3.5 and J12.6, MC shall assign loopback to a track

d transmit J12.0 Mission Assignment.

● MC from IM only if MC had successfully sent J3.5 and
J12

62 prior to Message-2572, MC must wait for Message-
it J3.5 (Land Point) and J12.6 (HARM DA

par ansmit J12.0 (Mission Assignment).

● MC shall receive loopbackID response message from the MIDS terminal for the J12.0
 MIDS indicating transmit status failure, MC shall re-

tra MIDS indicating transmit status
fai

● Upon receiving loopbackID from MIDS indicating transmit success for the J12.0
essage from the MIDS terminal with a Receipt

Co ponse: either Will Comply or Cannot
Com

● Up ssage from MIDS terminal with Cannot Comply response,
MC shall remove local track from the database.

7. MC FORMAL SPECIFICATION AND VALIDATION

Figure 14 depicts the statechart assertion diagram for the MC Power Up Initialization
Sequence described in section 6.4.1. It captures the following NL concerns:

1. The NL requirement specifies a strict sequence order for sub-requirements 1, 2, and 3.

2. There exists a 10 seconds upper bound time constraint for the entire initialization
sequence.

pbackID response message from the MID

failure from the re-transmit J3.5 message, M

transmit J12.6 (HARM DA

transmit J12.6 message once. If loopbackID from
essage, MC shall abure from re-transmit J12.6 m

Assignment).

n receiving from IM messa

number, setup retry count to one an

 shall process message-5362
.6 messages.

● In case IM sends Message-53
2572 from IM, in order to transm

ameters) messages prior to tr

message. If loopbackID from
nsmit J12.0 message once. If loopbackID from

age, MC shall abort HHO processing. lure from re-transmit J12.0 mess

message, MC shall wait for the J12.0 m
mpliance fields indicating the following res

ply status.

on receiving J12.0 me

 24

3. The order of events within numbered NL requirements 2(BIT) and 3(Interfaces
Initialization) is irrelevant, except for MC having to first establish 1553
communication with a MIDS terminal and only then get MIDS terminal BIT, set
TDMA and get terminal load and net status.

Figure 15 depicts the statechart assertion diagram for the HHO requirement set
described in section 6.4.1.

Figure 14. Statechart assertion for NL requirement 6.4.1.1

 25

Figure 15. Statechart assertion for NL requirement 6.4.1.2

Based on the validation methodology described in [5], we created a plurality of JUnit
validation tests for each statechart assertion. Two such tests, for the MC Power Up
Initialization statechart assertion, are depicted using the timeline diagrams of Figure 16.
A timeline diagram captures events and their associated time stamp of occurrence. The
timeline diagrams of Figures 16a and 16b depict success and failure cases, respectively.
Specifically, Figure 16a depicts a test for a scenario the developer believes conforms to
the NL whereas Figure 16b depicts a test for a scenario the developer believes violates to
the NL. Additional validation tests were created according to the validation testing
patterns methodology of [5].

 26

a. Timeline diagram rendering of a validation test expecting a success.

b. Timeline diagram rendering of a validation test expecting a failure (i.e.,

violation of a NL requirement).

Figure 16. Two validation tests for the MC Power Up Initialization statechart
assertion.

The statechart assertions were developed and validated inside a special container
called the assertion repository. This is a special Eclipse project that provides the

 27

environment for subsequent verification described in section 8. Figure 17 depicts the
Eclipse view of the assertion repository for the MC controller.

Figure 17. The assertion repository view for MC

13B8. VERIFICATION USING SOURCE CODE INSTRUMENTATION AND LOG
FILES
Verification was performed on the VxWorks-based target system using the steps

similar to those presented in section 5.

17B8.1 Source Code Instrumentation

Using an instrumentation GUI within the StateRover we selected the project and
individual files for instrumentation. The source code instrumentation tool then
automatically inserted instrumentation code snippets into the source file, resulting in
instrumented code as in Listing 2.

 28

Note that although the instrumentation tool, like all other StateRover tools, is an
Eclipse plug-in, the source code was not developed and is not required to be built in the
Eclipse environment. The MC source code was developed using VxWorks development
environment and is built there. The source code files were imported into Eclipse solely
for the purpose of instrumentation. They were subsequently used to rebuild the project in
the VxWorks environment.
void TerminalCtrl::periodicTask()
{
 int iCycleCount = 0;
 int cmcCycleCount = 0;
 unsigned int mstrRadValidFlags01;
 unsigned int mstrRadValidFlags02;
 MHCLANMsg *mhcLANMsg, *mstrRadLANMsg;
 MHCLANMsg *rpLAN;
 STATUS result = OK;

 /* @instrumented Maya-Software. */
 MAYA_INSTRUMENT((char *)
 "<sig><![CDATA[TerminalCtrl::periodicTask()]]></sig>",
 (char *)"",(char *)
 "<sourcefile><![CDATA[C:/mcWorkSpace/verificationMC/
 terminalctrl.cpp]]></sourcefile>",
 (char *)"<pos val=\"47965\" instrval=\"54507\" />");

 pCMC = new CMCDATAMsg;
 CMCDATAMsg * airStatus_CMC = new CMCDATAMsg;
 airStatus_CMC->id = CMCIN_AIRCRAFT_STATUS;
 CMCin_AircraftStatus airStatus;

 d1553StatusInfo_t statusInfo;

 int tickDelayBeforeStart =
 sysClkRateGet() / 20 - TC_DELAY_TICK;
 periodicTaskStarted = true;

Listing 2. A source code file snippet with source code instrumentation.

The snippet is automatically inserted to the source code file using the instrumentation
tool.

The instrumentation snippet makes calls to customizable utility methods that log the
following information in a log file. The information being logged is:

● Per every method (or C function) call:

○ Method signature and actual arguments.

 29

○ Method call time.

○ Location of instrumentation point in source code file (optional).

● Per variable assignments: name and value of variable being assigned.

18B8.2 Log file Creation

After instrumentation, the MC application was re-built in the VxWorks environment
and then executed on the target using the existing test harness. A resulting log file snippet
(one of a plurality of log files created by a plurality of test runs) is depicted in Listing 3.

<newtest>
<event>
<sig><![CDATA[TerminalCtrl::snd1553_BIMA01()]]></sig>
<time lang="c" unit="sec" val="430" />
</event>
<event>
<sig><![CDATA[TerminalCtrl::snd1553_BIMA04()]]></sig>
<time lang="c" unit="sec" val="430" />
</event>
<event>
<sig><![CDATA[CMCInterface::getReadDataReadyFlag(
 map<unsigned short,
 cmc_data_info>::iterator& pos)]]></sig>
<time lang="c" unit="sec" val="430" />
</event>
<event>
<sig><![CDATA[TerminalCtrl::get1553_BOMA01()]]></sig>
<time lang="c" unit="sec" val="430" />
</event>
<event>
<sig><![CDATA[TerminalCtrl::get1553_BOMA08()]]></sig>
<time lang="c" unit="sec" val="430" />
</event>

Listing 3. A log file snippet

19B8.3 Log File Import and JUnit Conversion

Log-files were imported into the assertion repository using the StateRover’s import
plug-in. This tool converts the log file from XML format to an equivalent verification
JUnit test. Listing 4 contains a snippet of the verification JUnit test that corresponds to
the log file of Listing 3.

public void testMe1() throws Exception {

assertions.reset(
 "assertionrepository.HHO_namespace_map");

 30

nBaseTime = (int)(430L * nFactor_LogUnitsAreSec);
assertions.fire("TerminalCtrl::snd1553_BIMA01()");
assertions.incrTime(
 (int)(430L * nFactor_LogUnitsAreSec - nBaseTime));
nBaseTime = (int)(430L * nFactor_LogUnitsAreSec);
assertions.fire("TerminalCtrl::snd1553_BIMA04()");
assertions.incrTime(
 (int)(430L * nFactor_LogUnitsAreSec –
 nBaseTime));
nBaseTime = (int)(430L * nFactor_LogUnitsAreSec);
…

}
Listing 4. A snippet of the verification JUnit test created from the log file depicted

in Listing 2.

20B8.4 Namespace Mapping

The next step in the MC verification process was to match the namespace used by the
assertions to the C++ namespace of the MC code base, namely, to the namespace of the
method calls logged in the log file. This mapping is done using a namespace mapping
GUI, part of the StateRover’s namespace plug-in. This GUI allows manual and
algorithmic mapping (using built-in as well as customizable mapping algorithms) of the
two namespaces. An instance namespace map used for MC verification is depicted in
Figure 18. For example, it maps ProcessLoopbackResponse to Loopback_J12_0. The
namespace mapping plug-in also generates Java code (denoted executable namespace
translation) that implements this mapping.

 31

Figure 18. MC Namespace mapping.

21B8.5 Verification
The final step is of-course, verification. In this step the verification JUnit test (the

JUnit equivalent of the log file) was executed in the assertion repository. It operates as
follows. Every event in the verification Junit test (such as assertions.
fire("TerminalCtrl::snd1553_BIMA01()"); in Listing 4) corresponds to a method that
fired and subsequently logged. This event is translated, using the executable namespace
translation code, into the namespace of the assertion repository, and then dispatched to all
assertions in the repository. Every assertion that contains that event responds by possibly
changing states, while all others simply ignore it.

The assertion repository also keeps track and reports the following information, as
depicted in Figure 19:

● Names of all assertions that failed (ended with bSuccess=false) during this
verification JUnit test

 32

● All SUT events the fired (and hence present in the log file and subsequently in the
verification JUnit test) but no assertion with such an event name was detected. This
situation could indicate an error in the namespace mapping.

Figure 19. The assertion repository viewer showing all assertions that failed and all SUT

events that fired but were not mapped to an assertion event.

22B8.6 Assertion Coverage Animation
We executed the verification JUnit test using the StateRover’s animation using a

special coverage animation option. The results of this execution, depicted in Fig. 20,
color all states that were visited during the test as well as all transitions that were
traversed during the test. This is done for all assertions of interest. Such coverage
animation provides the following devil’s advocate information: absence of animation
coloring indicates interesting scenarios that could potentially cause an assertion to fail;
such scenarios can then be coded as new on-target tests for the SUT.

 33

Figure 20 Coverage animation after the execution of a verification JUnit test

14B9. CONCLUSIONS
In this report, we presented an approach for formal validation and verification for

mission- and safety-critical systems, and illustrated the approach with two case studies, a
flight control system of the Brazilian Satellite Launcher and controller of the US
Multifunctional Information Distribution System (MIDS), where UML statechart
assertions are used to formally capture the complex mission-critical behaviors of these
systems. The assertions are first validated via scenario-based testing and then used to
automatically instrument the target software. The instrumented software are executed on
the VxWorks-based target to generate log files, which are then imported into the
StateRover SV&V environment and executed as JUnit tests against the assertions. This is
the first reported cases of the application of the entire SV&V methodology using rapidly
developed UML-based formal specifications. It is also the first reported case of
“distributed verification”, where specification and validation of assertions for the
Brazilian Satellite Launcher was performed in California, execution and log file creation
were performed in Brazil, and subsequent log-file based RV was performed in California.
The StateRover SV&V tool supports all the activities involved in this approach, from the
statechart assertions creation to the runtime verification against real data log files.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

1BREFERENCES

[1] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton,
“Experiences Using Lightweight Formal Methods for Requirements Modeling,” IEEE
Trans. Software Eng., vol. 24, no. 1, pp. 4-14, Jan. 1998.

[2] D. Drusinsky and M. Shing, “Verification of Timing Properties in Rapid
System Prototyping”, Proc.14th IEEE International Workshop in Rapid Systems
Prototyping, 9-11 June 2003, pp. 47-53.

[3] J.B. Michael, D. Drusinsky, T. Otani and M. Shing, “Application of UML
Statechart-based Verification and Validation for Trustworthy Software Systems”,
manuscript, Sept. 2010.

[4] D. Drusinsky, M. Shing and K. Demir, “Creating and Validating Embedded
Assertion Statecharts,” IEEE Distributed Systems Online, vol. 8, no. 5, 2007, art. no.
0705-o5003.

[5] Hhttp://en.wikipedia.org/wiki/VLS-1#ReferencesH.

[6] D. Drusinsky, Modeling and Verification Using UML Statecharts – A
Working Guide to Reactive System Design, Runtime Monitoring and Execution-based
Model Checking, Elsevier, 2006.

[7] LEITE FILHO, W. C. . Control System of Brazilian Launcher. In: 4th ESA
International Conference on Spacecraft Guidance, Navigation and Control Systems,
1999, Noordwijk, The Netherlands. Proc. of 4th ESA Inter. Conf. on GNC, 1999. p. 401-
405.

[8] K. Beck and E. Gamma, “Test infected: Programmers love writing tests”, Java
Report, 3(7), pp. 37-50, 1998.

[9] LEITE FILHO, W. C. ; HCARRIJO, D. S.H . Hardware in the Loop Simulation of
Brazilian Launcher VLS. In: 3rd ESA International Conference on Spacecraft Guidance,
Navigation and Control Systems, 1996, Noordwijk. Proc. of 3rd ESA Inter. Conf. on
GNC, 1996. p. 355-358.

[10] LEITE FILHO, W. C. ; HCARRIJO, D. S. H ; HOLIVA, A. P. H . Hybrid Simulation
Software Development for Assessment of a Satellite Launcher Control System. In:
IASTED International Conference on Modelling and Simulation, 1998, Pittsburgh. Proc.
Inter. Conf. on Modelling and Simulation, 1998. p. 245-249.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

2BINITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Research Sponsored Programs Office, Code 41
Naval Postgraduate School
Monterey, CA 93943

4. Professor Peter Denning
Naval Postgraduate School
Monterey, California

5. Professor Doron Drusinsky

Naval Postgraduate School
Monterey, California

6. Professor Man-Tak Shing

Naval Postgraduate School
Monterey, California

7. Mr. Konstantin Beylin
 Naval Air Warfare Center, Weapons Division
 Point Mugu, CA 93042, USA

8. Dr. Miriam C. B. Alves
 Institute of Aeronautics and Space - Brazil
c/o Naval Postgraduate School
Monterey, California

	ABSTRACT
	1. INTRODUCTION
	2. PRELIMINARIES - THE V&V PROCESS
	3. FLIGHT CONTROL SYSTEMFORMAL SPECIFICATION
	4. FLIGHT CONTROL SYSTEM VALIDATION
	5. FLIGHT CONTROL SYSTEMVERIFICATION
	6. THE MIDS CONTROLLER SYSTEM UNDER TEST (SUT)
	6.1 SYSTEM ARCHITECTURE
	6.2 LINK-16 MESSAGES
	6.3 NL REQUIREMENTS
	6.3.1 MC Power Up Initialization Sequence
	6.3.2 HARM Hand Off (HHO)

	7. MC FORMAL SPECIFICATION AND VALIDATION
	8. VERIFICATION USING SOURCE CODE INSTRUMENTATION AND LOG FILES
	8.1 Source Code Instrumentation
	8.2 Log file Creation
	8.3 Log File Import and JUnit Conversion
	8.4 Namespace Mapping
	8.5 Verification
	8.6 Assertion Coverage Animation

	9. CONCLUSIONS

	REFERENCES
	INITIAL DISTRIBUTION LIST

