
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2011-01-01

MVC-based content management on

the cloud

Drusinsky, Doron

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/15278

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36708561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS-CS-11-001

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited

 Prepared for: Office of the DoD Chief Information Officer

1851 S. Bell St., Suite 600
Arlington, VA 22202

MVC-based Content Management on the Cloud

by

Doron Drusinsky

January 2011

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President and
 Provost

This report was prepared for and funded by the Office of the Department of Defense
Chief Information Officer.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Doron Drusinsky
Associate Professor of Computer Science

Reviewed by: Released by:

___________________________ ____________________________
Peter J. Denning, Chairman Karl A. van Bibber
Department of Computer Science Vice President and Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
January 2011

2. REPORT TYPE
Technical Report

3. DATES COVERED (From - To)
Oct 1 – Nov 30, 2010

4. TITLE AND SUBTITLE
MVC-based Content Management on the Cloud

5a. CONTRACT NUMBER
 DWAM00390

 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Doron Drusinsky

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The Naval Postgraduate School
1411 Cunningham Road, Monterey, CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER
NPS-CS-11-001

 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of the Department of Defense

10. SPONSOR/MONITOR’S
ACRONYM(S)

Chief Information Officer DoD CIO
1851 S. Bell Street, Suite 600 11. SPONSOR/MONITOR’S
Arlington, VA 22202 REPORT NUMBER(S)
 12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
The views expressed in this report are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

14. ABSTRACT
Cloud computing describes a new distributed computing paradigm for IT data and services that
involves over-the-Internet provision of dynamically scalable and often virtualized resources.
While cost reduction and flexibility in storage, services, and maintenance are important
considerations when deciding on whether or how to migrate data and applications to the cloud,
large organizations like the Department of Defense need to consider the organization and
structure of data on the cloud and the operations on such data in order to reap the full
benefit of cloud computing. This report describes a cloud adaptation of Model View Controller
(MVC) software engineering architectural pattern and its effect on content management in the
cloud. We propose an architecture that separates the model, view, and controller aspects of a
document thereby allowing greater flexibility, portability, and interoperability for document
objects.

15. SUBJECT TERMS
Cloud computing, model view controller, architecture, object and content management, document
sharing
16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON
Doron Drusinsky

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

UL 19

19b. TELEPHONE NUMBER (include
area code)
831-656-2168
 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK

 1

ABSTRACT
Cloud computing describes a new distributed computing paradigm for IT data and

services that involves over-the-Internet provision of dynamically scalable and often
virtualized resources. While cost reduction and flexibility in storage, services, and
maintenance are important considerations when deciding on whether or how to migrate
data and applications to the cloud, large organizations like the Department of Defense
need to consider the organization and structure of data on the cloud and the operations on
such data in order to reap the full benefit of cloud computing. This report describes a
cloud adaptation of the Model View Controller (MVC) software engineering architectural
pattern and its effect on content management in the cloud. We propose an architecture
that separates the model, view, and controller aspects of a document thereby allowing
greater flexibility, portability, and interoperability for document objects.

http://en.wikipedia.org/wiki/Internet�
http://en.wikipedia.org/wiki/Scalability�
http://en.wikipedia.org/wiki/Virtualization�

 2

1. Introduction
Model–View–Controller (MVC) is a software architecture and an architectural

pattern used in software engineering. The pattern isolates domain logic (the logic of a
software application) from the user interface (input and presentation), permitting
independent development, testing and maintenance of each (separation of concerns).

The model is used to manage information and notify observers when that
information changes. The model is the domain-specific representation of the data upon
which the application operates. Domain logic adds meaning to raw data (for example,
calculating whether today is the user's birthday, or the totals, taxes, and shipping charges
for shopping cart items). When a model changes its state, it notifies its associated views
so they can be refreshed.

The view renders the model into a form suitable for interaction, typically a user
interface element. Multiple views can exist for a single model for different purposes. A
viewport typically has a one to one correspondence with a display device and knows how
to render to it.

The controller receives input and initiates a response by making calls on model
objects. A controller accepts input from the user and instructs the model and viewport to
perform actions based on that input.1

Figure 1 depicts the workflow sequence diagram using MVC for web-based
applications

2

• The Web browser is not the view; rather, it is but a canvas on which the view is
rendered, similar to the monitor not being the view, but just a display device. This
explains the reason the entry point to the MVC triad in the sequence diagram is the
controller and not the view, the view being just a painting (albeit dynamic) on a
canvas.

. Its workflow begins with an http request to the controller; the controller
then assembles a composite view that consists of model data and formatting data and
sends it back to the browser via http for end user presentation. Note the following:

• Although Fig. 1 refers to a database as the storage medium for the model, the model
can be implemented using raw files, such as structured XML files. Likewise, the
DML class box (Data Manipulation Language within SQL) is specific to the choice of
a database in Fig. 1.

• The controller is the entry point to the MVC triad. This may be a confusing point,
because often, readers expect the view to be the entry point. The view however, has
no intelligence; all intelligence is embedded in the controller.

1 http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
2 http://www.tonymarston.net/php-mysql/model-view-controller.html

 3

This report describes the benefit of applying MVC principles to content

management in the cloud. As with traditional software engineering, MVC provides the
following benefits when applied to document objects: flexible, late-binding of a view to
the data, improved separation of concerns for storage and query purposes (e.g. storing
data separate from views) With the advent of the anticipated transition to the cloud, we
believe it to be the right time to consider such an approach.

It is important to note that our suggested MVC approach is not a mere recycling
of the older component document approach, in which content components are
dynamically assembled for different business requirements. While the two approaches
share the promise of catering for dynamic creation of documents, the MVC approach
contains more advantages as well as a proven track record in the software engineering
world.

2. MVC for Documents
Consider a typical MS Word, MS Excel, MS Power Point, or Adobe PDF

document. It packages all three MVC aspects namely, the model, the view, and the
controller, in a single file. The model part is the raw data, the view part is rendering
information such as color, positioning and font size, and the controller part is business
logic, such as overhead rates or county tax rate formulae within a spreadsheet.

Recent changes to some file formats (most noticeably the Office Open XML
format for recent versions of Microsoft Office such as .docx, .pptx, and .xlsx) use an open
standard thereby making those files accessible through a plurality of applications; – a
step that is seemingly in concert with the MVC pattern. Office Open XML files are
actually zipped directories with various information aspects recorded in separate files
within that directory. Nevertheless, even with such recent document file formats, most of

Figure 1. Sequence diagram for MVC based workflow for a web application

 4

the benefits of MVC are missed out, as discussed below. The structure of Office Open
XML and its drawbacks as it pertains to MVC are discussed in section 3.

We first introduce the MVC controller aspect to the document world. Suppose
Alice has data for an expense report (ER), while Bob has data for a purchase order (PO).
Clearly, state and county sales taxes are used in both documents. The prevailing approach
is for those tax rates to be embedded in each document. This is clearly a rigid, brute force
approach that requires changing each document whenever state or county tax rates
change; it is also an obvious duplication of effort. In addition, if Alice and Bob want to
create reusable templates for their respective documents, each end user will need to
customize those tax rates according to their geographical location, requiring further
manual changes to each document. It is easy to see how such ER’s and PO’s become
obsolete after a short period of time, especially in a large organization with frequently
changing business rules. We normally view the existence of such obsolete documents as
something that goes with the territory, so to speak, and we often keep them for auditing
purposes.

In contrast, an MVC approach to this situation would separate the tax related
business logic from the data. Consequently, neither PO template nor ER template will
contain any verbatim tax rate. Rather, they would refer to a business logic application
(denoted as TaxRateApp) that automatically calculates the tax rates for the respective
end-user depending on her location, time, and other relevant parameters. Note that tax
rate can be considered as data, but for TaxRateApp, not for the PO or ER templates Note
that business logic is calculated using a context-sensitive approach, namely in the context
of a parameterized time and location; hence, when the end-user’s county changes its sales
tax rate, the end user will automatically benefit from templates that use an updated tax
rate - because TaxRateApp automatically grabs the latest and greatest tax rate, without
Bob and Alice needing to make any change to their respective templates. In addition, the
end user is still able to render their documents in an auditing mode, i.e., based on older
tax rates, by providing TaxRateApp with the appropriate time and location parameters.

The view aspect in the MVC approach is about separating the presentation of the
enhanced data, namely data (model) enhanced with business rules (controller), from the
model and controller. While it is possible to render contemporary documents using more
than one application (e.g., Word documents in Acrobat, Google Docs, or Open Office),
MVC offers greater flexibility, as follows. With the prevailing situation, all rendering
information is part of the document (whether in a single file or a zipped directory),
resulting in almost identical representation of the document whether opened by one
application or by the other. In contrast, contemporary users (and other data readers, e.g.
Business Intelligence document aggregators) need viewing capability that uses the
intelligence and business logic embedded in the controller. For example, consider three
instances of Alice’s ER template, in the U.S, Japan, and India. The Japanese viewer will
highlight travel dates that overlap Japanese holidays in red, i.e., the viewer is informed by
the controller as to which dates represent holidays. Similarly, the Indian viewer will
highlight travel dates that overlap an Indian holiday in some color other than red, red
symbolizing purity in India, much like white does in western cultures. It is important to
note that while modern applications use localization to potentially achieve a similar local-

 5

based flexibility, they really do so for two types of properties only, namely location
(using localization), and time (using localized calendars). They are devoid of an ability
to integrate custom business logic based on other parameters such as the size of the
organization (e.g., a government policy aimed at small business), locality (e.g., cost of
living local), gender, and age groups (e.g., age based lingo).

The benefits of applying the MVC pattern to cloud content are:

1. Improved robustness. Having externalized (outside the document) business logic,
means that fewer documents become stale, obsolete, and incorrect as they move within
geographical and temporal spaces.

2. Improved flexibility. Custom business logic enables automated document-level
integration of flexible concerns such as organization locals, weather, age groups, gender,
election year information, etc.

3. Improved collaboration. Externalized business logic enables collaborative group-level
decisions.

3. Microsoft Office Open XML (OOXML)
Every OOXML file is a ZIP archive containing many other files. Office-specific

data is stored in multiple XML files inside that archive. This is in direct contrast with the
old WordML and SpreadsheetML formats which were single, non-compressed XML
files.

The Office Open XML specification has been standardized by Ecma in 2006.3

In Microsoft’s terminology, an OOXML ZIP file is called a package. Files inside
that package are called parts. Every part has a defined content type and there are no
default type presumptions based on the file extension. The content type can describe
anything; application XML, user XML (see discussion in section 3.1), images, sounds,
video, or any other binary objects. Every part must be connected to some other part using
a relationship. Inside package are special XML files with a “.rels” extension which
defines relationship between parts. There is also a start part (sometimes called “root”,
although the graph containing all parts isn’t necessarily a tree structure). Fig. 2 depicts
the structure of a package.

 A
later edition was standardized in 2008 by ISO and IEC as an International Standard
(ISO/IEC 29500); this edition is still not implemented in any products.

4

3 http://www.ecma-international.org/publications/standards/Ecma-376.htm

4 http://www.codeproject.com/KB/office/OpenXML.aspx

 6

3.1 Microsoft “Custom XML” Tag in Office Open
Custom XML markup is about embedding custom XML defined outside of Office

Open XML to support solution which aim to structure a document using business
semantics, not only using formatting.5

For example, the following listing adds a custom element named lorem.

 For example, suppose we want to annotate a
certain element using a CustomerName element, so that a separate tool can easily locate
the customer name information afterwards. Because Office Open XML files conform to
XML rules, a custom element would violate the schema, not being mentioned there.
Hence enters the standard CustomXML element, with an attribute that points to the real
custom XML element.

<w:customXml w:element="lorem">
 <w:r>
 <w:t xml:space="preserve">Lorem ipsum dolor ... pharetra eget, diam.</w:t>
 </w:r>
 </w:customXml>
Conceptually, custom tags could provide a jumping point to business logic from

within the document. In practice however, this is not a satisfactory solution of the
ultimate MVC architectural goal, for the following reasons:

1. The customXML element is only supported by .docx, not by .pptx or .xlsx files.

2. Even for those .docx documents that benefit from a customXML element, the document
cannot share the controller (business logic) with other documents.

5 http://www.zdnet.com/blog/microsoft/custom-xml-the-key-to-patent-suit-over-microsoft-word/3712

Figure 2. The structure of an Office Open XML package

 7

4. Implementation Issues

4.1 Implementation Objectives
1. Cater for a thin client web-based capability. A naive implementation towards this goal
would be a web based MVC solution using a workflow similar to the one depicted in Fig.
1 (probably using raw XML model files instead of a DB).

2. Backward compatibility using techniques such as virtualization and “thin-app”
delivery of existing applications. A thin-app solution has a preconfigured image of an
application, such as MS Word 2010, available on the cloud or intranet. It is transferred to
the client whenever they choose to open a .docx file6

3. Enjoy the improved robustness, flexibility, and coordination features promised by an
MVC architecture, as discussed in section 2.

.

4.2 Envisioned MVC Relationships
We envision the view-controller and controller-model relationships depicted in the class
diagram of Fig. 3. Accordingly:

a. The controller is capable of picking up one of many possible rendering views,
based on its business logic and user inputs; this is the prevailing approach with
modern software development environments such as Eclipse.

b. A controller can be shared by many model files, such as all NPS PO’s sharing the
same tax rate calculation controller.

Clearly, to be able to calculate complex business logic, the controller must be able to
access an executing application, process, or thread. Note that the controller application is
distinct from the document application; the later is akin to the contemporary MS Word,
MS Excel, or Adobe Acrobat which obviously do not work on MVC storage documents.
In contrast, the controller application can be developed by the user’s organization and is
independent of the document application.

Note that both the model and the controller can have relationships with other entities:

• The model can extend and have relationships to other model files7

6 Note that virtualization is mostly concerned with the location of the application and machine, not the

data, which can reside on the client.

7 D. Drusinsky, J.B. Michael, T.W. Otani and M. Shing, Putting Order Into the Cloud: Object-oriented
UML-based Rule Enforcement for Document and Application Organization, NPS-CS-10-009.

View Controller Model * *

Figure 3. Envisioned MVC relationships.

 8

• The controller can use services provided by other executables.

4.3 Serialization
Serialization is the process of converting a data structure or object into a sequence of bits
to be stored in a file. We envision two primary approaches to serialization:

a. Storing the model, view, and controller as separate entities on the cloud. The model
and view are envisioned as being but raw XML files. The controller is envisioned to
be serialized as an XML file (called the controller file) with:

• A specially marked element that points to the corresponding controller application
or executable. This is similar to the way JSP points to the class
com.devsphere.examples.mapping.simple.SimpleBean executing JSP calls in
listing 1 below.

• Slots to be populated by the controller, such as tax rate. This is similar to the way
web applications work with JSP and ASP, having marks html so called slots to be
populated by a server side computation, which are shown in bold in listing 1.
<%@ page language="java"%>
<jsp:useBean id="simpleBean" scope="request"
 class="com.devsphere.examples.mapping.simple.SimpleBean"/>
<HTML>
<HEAD><TITLE>Simple bean</TITLE></HEAD>
<BODY>
<H3>Simple Example</H3>
<P> SimpleBean properties:
 <P> string = <jsp:getProperty name="simpleBean"
 property="string"/>
 <P> number = <jsp:getProperty name="simpleBean"
 property="number"/>
 <P> integer = <jsp:getProperty name="simpleBean"
 property="integer"/>
 <P> flag = <jsp:getProperty name="simpleBean"
 property="flag"/>
 <P> colors = <%= toString(simpleBean.getColors()) %>
 <P> list = <%= toString(simpleBean.getList()) %>
 <P> optional = <jsp:getProperty name="simpleBean"
 property="optional"/>
</BODY>
</HTML>

Listing 1. JSP populating slots within html code.

• URI’s to the corresponding model and view files as prescribed by the
relationships of Fig. 3.

For lack of a better name, we call this option the MVC storage option.

b. The monolithic file approach whereby the model, view, and controller are stored as a
single file, as done with contemporary .doc, .docx, .pdf documents and others.

Clearly, the MVC storage approach is superior because the monolithic file approach
suffers from the disadvantages specified in section 3.1.

 9

With the MVC storage approach however, support for backward compatibility (i.e.
the objectives discussed in section 4.1) requires an ability to compose a monolithic file
from an MVC storage representation and vice-versa.

4.4 Thin Client Implementation Approach
This implementation approach is but a mirror image of the current MVC architecture

for Web based applications depicted in Fig. 1, with the following exceptions:

1. The protocol isn’t necessarily http.

2. The canvas isn’t necessarily a web browser, although using the browser as the canvas
works well for other objectives of the DoD cloud effort.

3. The model is stored as a raw XML file.

4.5 Short-term, Backward Compatible Implementation
This implementation approach composes a conventional document file (e.g., a .docx

file) from the MVC storage prior to the invocation of the application (e.g., MS Word),
and converts it to an MVC storage representation on the back end, whenever the
application performs a save operation. A proof of concept of this workflow is underway.

4.6 Thin-data
The term thin-data was coined by the author to resemble the thin-app term described

earlier. With a thin-app, the application is stored on the cloud, loaded as an image to the
desktop on demand , and executed on the desktop, using the desktop’s file system; when
the application terminates the application’s image is cleared from the desktop (while data
persists).

 Similarly, a thin-data application stores its data on the cloud, loads it on the desktop
on demand, and saves the data back to the cloud when the application terminates.
Whether the data clears from the desktop after the application terminates is probably not
a hardwired property, but parameterized, depending on security concerns and
connectivity, as discussed in Section 4.7.

To demonstrate thin-data, consider Google Docs. In its current configuration, an end
user can open an MS Word document that is stored on Google Docs using MS Word.
Missing towards the thin-data goal however, is the capability to automatically upload the
saved Word document back to the cloud whenever the user saves the document or when
Word terminates.

As the Google Docs Example shows, thin-app and thin-data are orthogonal
capabilities. Clearly, as discussed in section 4.5, thin-data is well suited for backward
compatibility.

Another important feature of thin-data is that it can work hand in hand with the thin
client solution in that a user can seamlessly interleave and interchange the use of thin-
client and a backward compatible desktop application (or thin-app; e.g. MS Word) on the

 10

same data, provided that when the user uses the desktop application they use the thin-data
approach so the data is serialized on the cloud.

4.7 Flexibility and Lack of Connectivity
The integration of thin client, thin-app, and thin-data provides some flexibility that can

prove useful when the system is stressed. For example, consider the situation where a
certain organization is disconnected from the internet. Suppose the organization has a
small pool of licenses for Office applications that are deployable via thin-app from a local
server, without needing full connectivity to the cloud; we call these instances emergency
instances. Recall now that thin-app has an option in which the local instance of the data is
not erased after the application terminates; this instance is like an emergency version of
the data. Hence, when the user uses emergency thin-app instances of the application
together with the emergency version of the data, they can operate while connectivity is
unavailable. When connectivity is resumed, the end user resumes using the thin-client
application; it senses that the emergency version of the data is more recent than the MVC
storage version, and therefore makes the appropriate decision as to which version of the
data to use. When the thin-client terminates, the MVC storage is updated and becomes
the most recent.

An alternative implementation of emergency license instances is ticket-based
instances, which operate a limited number of times, and can only be used with a
supervisor’s authorization.

 11

THIS PAGE INTENTIONALLY LEFT BLANK

 12

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Research Sponsored Programs Office, Code 41
Naval Postgraduate School
Monterey, CA 93943

4. Professor Peter Denning
Naval Postgraduate School
Monterey, California

5. Professor Doron Drusinsky

Naval Postgraduate School
Monterey, California

6. Professor Bret Michael

Naval Postgraduate School
Monterey, California

7. Professor Thomas Otani
 Naval Postgraduate School
 Monterey, California

8. Professor Man-Tak Shing

Naval Postgraduate School
Monterey, California

9. Mr. John Shea

Office of the DoD CIO
Arlington, Virginia

10. COL Kevin Foster, USA

Office of the DoD CIO
Arlington, Virginia

11. Professor George Dinolt
Naval Postgraduate School
Monterey, California

 13

12. Professor Loren Peitso
Naval Postgraduate School
Monterey, California

13. Mr. Alex Nelson
Naval Postgraduate School
Monterey, California

14. Mr. Scott J Dowell
Computer Science Corporation
San Diego, California

15. Mr. Michael Lee
Touchstone Consulting Group
Washington, D.C.

16. Ms. Karen Gordon
Institute for Defense Analyses
Alexandria, Virginia

17. Dr. Jeffrey Voas
National Institute of Standards and Technology
Gaithersburg, Maryland

18. Dr. Mark Lee Badger
National Institute of Standards and Technology
Gaithersburg, Maryland

19. Dr. Tim Grance
National Institute of Standards and Technology
Gaithersburg, Maryland

	THIS PAGE INTENTIONALLY LEFT BLANK
	THIS PAGE INTENTIONALLY LEFT BLANK
	Abstract
	1. Introduction
	INITIAL DISTRIBUTION LIST

