



**Calhoun: The NPS Institutional Archive** 

Reports and Technical Reports

All Technical Reports Collection

1986-06-01

# Parameterization of overwater horizontal wind variability

Schacher, G. E. (Gordon Everett)

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/15251



Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library



NPS-61-86-014

AD-A169 33

# NAVAL POSTGRADUATE SCHOOL Monterey, California



20030122037

PARAMETERIZATION OF OVERWATER

HORIZONTAL WIND VARIABILITY

by

Gordon E. Schacher

June 1986

ITIC FILE COPY

Approved for public release; distribution unlimited

Prepared for: Naval Surface Weapons Center Dahlgren, VA 22448 NAVAL POSTGRADUATE SCHOOL Monterey, California

RADM R.H. Shumaker Superintendent D.A. Schrady Provost

The work reported herein was supported in part by the Naval Surface Weapons Center and the NPS Research Foundation, Monterey, California.

Reproduction of all or part of this report is authorized.

This report was prepared by:

G.E. SCHACHER Professor of Physics

Approved by:

SCHACHER

G.E. SCHACHER Chairman, Dept. of Physics

Released by:

J.N/ DYER

Dean of Science and Engineering

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. GOVT ACCESSION NO          | 1 RECIPIENT'S CATALOG NUMBER                                                                                                                  |  |
| NPS-61-86-014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                                                                                                                                               |  |
| . TITLE (and Substitio)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · ·                         | S. TYPE OF REPORT & PERIOD COVERED                                                                                                            |  |
| Parameterization of Overwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Horizontal                    | Oct. 1984 - Mar 1986                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                               |  |
| Wind Variability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | - PERFORME ORS. REPORT HUNSER                                                                                                                 |  |
| AUTHOR(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | S. CONTRACT OR GRANT NUMBER(+)                                                                                                                |  |
| Cordon F. Schacher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                               |  |
| Gordon L. Schlener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                             |                                                                                                                                               |  |
| PERFORMING ORGANIZATION NAME AND ADDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C35                           | 10. PROGRAM ELEMENT, PROJECT, TAME                                                                                                            |  |
| Naval Poetaraduate School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | AREA & WORK UNIT HUMBERS                                                                                                                      |  |
| Code 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | N60921-25-110-00059                                                                                                                           |  |
| Monterey, California 93943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | 61152N. BOOD_01_10 .NOOD1494                                                                                                                  |  |
| CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 12. REPORT DATE                                                                                                                               |  |
| Naval Surface Weapons Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | June 1986                                                                                                                                     |  |
| G51 (Attn. Tom Yencha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                             | 13. NUNGER OF PAGES                                                                                                                           |  |
| Dahlgren, VA 22448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | · · · · · · · · · · · · · · · · · · ·                                                                                                         |  |
| . MONITORING AGENCY NAME & ADDRESS(I WIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | runt true Controlling Office) | IL SECURITY CLASS (of the report)                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Muclassified                                                                                                                                  |  |
| <i>.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                             |                                                                                                                                               |  |
| • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 15. OECLASSIFICATION/ DOWNGRADING                                                                                                             |  |
| Approved for public release; d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | listribution unlimi           | ted                                                                                                                                           |  |
| Approved for public release; of the metroes metro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | istribution inlimi            | ted<br>Rapping                                                                                                                                |  |
| Approved for public release; of the metric o | listribution inlimi           | ted<br>Rapport                                                                                                                                |  |
| Approved for public release; of DISTRIBUTION STATEMENT (of the electron min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | istribution inlimi            | ted<br>Aquarij                                                                                                                                |  |
| Approved for public release; of DISTRIBUTION STATEMENT (of the electron of mining)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | listribution inlimi           | ted<br>- Accerty                                                                                                                              |  |
| Approved for public release; of<br>DISTRIBUTION STATEMENT (of the metrics mini-<br>SUPPLEMENTARY NOTES<br>This work was funded by t<br>the NPS Research Foundati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | he Naval Surface              | ted<br>• Award)<br>• Weapons Center and                                                                                                       |  |
| Approved for public release; of<br>DISTRIBUTION STATEMENT (of the electrons mice<br>SUPPLEMENTARY NOTES<br>This work was funded by t<br>the NPS Research Foundati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | he Naval Surface<br>on.       | ted<br>Agent)<br>e Weapons Center and                                                                                                         |  |
| Approved for public release; of<br>DISTRIBUTION STATEMENT (of the electrons mini-<br>supplementary notes<br>This work was funded by t<br>the NPS Research Foundati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | he Naval Surface<br>on.       | ted<br>• Ament)<br>• Weapons Center and                                                                                                       |  |
| Approved for public release; of<br>DISTRIBUTION STATEMENT (of the electrons mini-<br>supplementary notes<br>This work was funded by t<br>the NPS Research Foundati<br>XEY WORDS (Centimes on reverse side if necessary<br>Diffusion<br>Wind Variability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | he Naval Surface<br>on.       | ted<br>• Award)<br>• Weapons Center and                                                                                                       |  |
| Approved for public release; of<br>DISTRIBUTION STATEMENT (of the electrons entropy<br>SUPPLEMENTARY NOTES<br>This work was funded by the<br>the NPS Research Foundati<br>KEY WORDS (Continue on former side II necessary<br>Diffusion<br>Wind Variability<br>Turbulence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | he Naval Surface<br>on.       | ted<br>• Annon<br>• Weapons Center and                                                                                                        |  |
| Approved for public release; of<br>DISTRIBUTION STATEMENT (of the element mine<br>SUPPLEMENTARY NOTES<br>This work was funded by th<br>the NPS Research Foundati<br>XEY WORDS (Continue on reverse offer if necessary<br>Diffusion<br>Wind Variability<br>Turbulence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | listribution inlimi<br>       | ted<br>Report                                                                                                                                 |  |
| Approved for public release; of<br>DISTRIBUTION STATEMENT (of the element mini-<br>SUPPLEMENTARY NOTES<br>This work was funded by to<br>the NPS Research Foundati<br>KEY WORDS (Continue on former of the II necessary<br>Diffusion<br>Wind Variability<br>Turbulence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | he Naval Surface<br>on.       | ted<br>Report                                                                                                                                 |  |
| Approved for public release; of<br>DISTRIBUTION STATEMENT (of the element mini-<br>SUPPLEMENTARY NOTES<br>This work was funded by to<br>the NPS Research Foundati<br>KEY WORDS (Continue on former elde if necessary<br>Diffusion<br>Wind Variability<br>Turbulence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | listribution inlimi<br>       | ted<br>Reports<br>Weapons Center and                                                                                                          |  |
| Approved for public release; of<br>DISTRIBUTION STATEMENT (of the electrons entropy<br>SUPPLEMENTARY NOTES<br>This work was funded by the<br>the NPS Research Foundati<br>KEY WORDS (Centimes on formers side if necessary<br>Diffusion<br>Wind Variability<br>Turbulence<br>ABSTRACT (Centimes on reverse side if necessary<br>Data from four overway<br>been analyzed to parameter<br>variability. The parameter<br>mechanisms: shear, buoyar<br>loosly refered to as mesor<br>been parameterized for ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | he Naval Surface<br>on.       | xperiments have<br>er horizontal wind<br>ves three production<br>er scale process<br>ee processes have<br>com 1 min to 1 hour.<br>(continued) |  |

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

Item 20. (continued)

The variability has also been parameterized in term of the surface layer stability, which we find to be an insufficient parameter. The results are applicable to the overwater coastal regime.



S N 0102- LF- 014- 6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

5 . St.

# TABLE OF CONTENTS

2

ランクシンシン

とんためのからの重要なではないない

| · · ·                                                                                                 | page               |
|-------------------------------------------------------------------------------------------------------|--------------------|
| I. INTRODUCTION                                                                                       | 1                  |
| II. EXPERIMENTAL DETAILS                                                                              | 4                  |
| III. METEOROLOGICAL CONDITIONS                                                                        | 9                  |
| IV. PARAMETERIZATIONS                                                                                 | 15                 |
| V. THEORY                                                                                             | 18                 |
| VI. DESCRIPTION OF THE DATA                                                                           | 25                 |
| VII. PARAMETERIZATION ANALYSES                                                                        | 49                 |
| Mesoscale and Shear Production, o <sub>G</sub> vs. U,<br>Stationary and Non-stationary Conditions     | 57                 |
|                                                                                                       |                    |
| Buoyancy Production, Sorting $\sigma_{\Theta}$ vs. U with<br>Stationary Conditions and All Conditions | w*,<br>71          |
| Buoyancy Production, $\sigma_{\Theta}$ vs. U for                                                      | •                  |
| Stable and Unstable Conditions                                                                        | 80                 |
| Buoyancy Production, $\sigma_{\Theta}$ vs. w* and $\sigma_{\Theta}$ vs.<br>Stationary Conditions      | w*/U,<br>. 89      |
| Stability Dependence, $\sigma_{\Theta}$ vs. Z/L                                                       | 94                 |
| Onshore/Offshore Influence                                                                            | 109                |
| VIII. PARAMETERIZATION RESULTS                                                                        | 116                |
| IX. SUMMARY AND DISCUSSION                                                                            | 128                |
| APPENDIX A - WIND TIME SERIES                                                                         | A – 1              |
| APPENDIX B - CROSS WIND SPEED FLUCTUATIONS,<br>RECULATORY CONSIDERATIONS                              | B~1                |
| APPENDIX C - METEOROLOGICAL DATA AND HALF HOUR                                                        | ° <sub>O</sub> C-1 |
| APPENDIX D - WIND DIRECTION STANDARD DEVIATION                                                        | DATA D-1           |
| APPENDIX E - LISTING OF DATA FILES                                                                    | E-1                |

i

# LIST OF FIGURES

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

| Locations on the central California coast<br>where tracer experiments were performed and<br>wind variability data obtained, BLM-1,2.                                           | 5  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Locations on the central California coast<br>where tracer experiments were performed and<br>wind variability data obtained, BLM-3,4.                                           | 6  |
| Wind speed, wind direction, and wind direction standard deviation as functions of time.                                                                                        | 27 |
| Dependence of wind direction standard deviation,<br>30 min averages, on wind speed.                                                                                            | 30 |
| Dependence of wind direction standard deviation,<br>30 min averages, on the ratio of the convective<br>mixing velocity to the wind speed.                                      | 31 |
| Dependence of wind direction standard deviation,<br>30 min averages, on the surface layer stability<br>parameter.                                                              | 32 |
| Dependence of wind direction standard deviation,<br>1 min and 30 min averages, on the wind speed for<br>stationary conditions.                                                 | 33 |
| Dependence of wind direction standard deviation<br>on the ratio of the convective mixing velocity<br>to the wind speed for 1, 3, 10, and 60 min<br>averaging times.            | 34 |
| Dependence of wind direction standard deviation,<br>1 min averages, on the surface layer stability<br>parameter.                                                               | 35 |
| Dependence of wind direction standard deviation<br>on the natural log of the absolute value of the<br>surface layer stability parameter for stable<br>and unstable conditions. | 36 |
| Dependence of wind direction standard deviation<br>on wind speed for averaging times of 1, 10, 30,<br>and 60 min.                                                              | 42 |
| Dependence of wind direction standard deviation,<br>30 min averages, on wind speed for onshore and<br>offshore flow conditions.                                                | 43 |

page

ii

| Figure 13. | Dependence of wind direction standard deviation,<br>30 min averages, on wind speed for unstable and<br>stable conditions.                                                                                                                                                                              | 44 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 14. | Dependence of wind direction standard deviation,<br>1 min and 30 min averages, on wind speed. The<br>data is sorted into cases with the convective<br>mixing velocity below, circles, and above, dots,<br>0.1 m/sec.                                                                                   | 45 |
| Figure 15. | Dependence of wind direction standard deviation,<br>30 min averages, on convective mixing velocity.                                                                                                                                                                                                    | 46 |
| Figure 16. | Dependence of wind direction standard deviation<br>on the convective mixing velocity, BLM-1 and BLM-3,<br>1 and 30 min averages, stationary conditions.                                                                                                                                                | 47 |
| Figure 17. | Dependence of wind direction standard deviation,<br>1 min and 30 min averages, on wind speed. The<br>data is sorted into cases with the mixing depth<br>less than, circles, and above, dots, 50m.                                                                                                      | 48 |
| Figure 18. | Means over wind speed ranges of the wind<br>direction standard deviations (sigma). Upper<br>plot has means for each experiment, lower plot<br>means over the total data set. The table is<br>for the total data set. The standard deviations<br>of the data about the means are given in the<br>table. | 52 |
| Figure 19. | Means over wind speed ranges of the wind<br>direction standard deviations (sigma);<br>Comparison of stationary and non-stationary<br>conditions.                                                                                                                                                       | 61 |
| Figure 20. | Means over wind speed ranges of the wind<br>direction standard deviations (sigma);<br>Comparison of stationary and non-stationary<br>conditions, stable only.                                                                                                                                          | 66 |
| Figure 21. | Means over wind speed ranges of the wind<br>direction standard deviations, for stationary<br>conditions, sorted into convective mixing                                                                                                                                                                 |    |
|            | velocity ranges of < 0.1 m/sec (0), $0.1-0.3$ m/sec (2), and > 0.3 m/sec (4).                                                                                                                                                                                                                          | 73 |
| Figure 22. | Means over wind speed ranges of the wind<br>direction standard deviations, for unstable<br>conditions, sorted into convective mixing<br>velocity ranges of <0.1 m/sec (0), 0.1-0.3<br>m/sec (2), and > 0.3 m/sec (4).                                                                                  | 75 |

Figure 23. Means over wind speed ranges of the wind direction standard deviations for stable and 84 unstable conditions. Figure 24. Dependence of the horizontal wind direction standard deviation on the convective mixing 92 velocity. Figure 25. Dependence of the horizontal wind direction standard deviation on the ratio of the convective velocity to the wind speed. 93 Figure 26. Dependence of the horizontal wind direction standard deviation on the stability parameter 98 Z/L. Figure 27. Dependence of the horizontal wind direction standard deviation on the stability parameter Z/L, stationary conditions. 103 Figure 28. Dependence of the horizontal wind direction standard deviation on the stability parameter Z/L sorted into the wind speed ranges U  $\leq$  2 m/sec (1), 2 < U  $\leq$  4 m/sec (3), U  $\geq$  6 m/sec (8). 104 Figure 29. Dependence of the horizontal wind direction standard deviation on wind speed for onshore and offshore flow. 111 Fig.res 30. Fits of the theory (dots) to the  $\sigma_{\Theta}$  vs. U data for stable, stationary, and all conditions. 119 Figures 31. Attempts to fit 1 min and 60 min average  $\sigma_\Theta$  vs. U data with only mesoscale production. 124 Figures 32. Variation of the theoretical fits to  $\sigma_{\Theta}$  vs. U with stability, 1 min and 30 min averages. 126 Figures A-1. Log of the horizontal wind direction standard deviation vs. log of the wind speed with solid line indicating the minimum observed cross wind variabilitiy. A-2 Figures B-1. Log of the horizontal wind direction standard deviation vs. log of the wind speed with solid line indicating the B-3 minimum observed cross wind variabilitiy.

# LIST OF TABLES

|       | •         |                                                                                                                                                                                                                    | P-0. |
|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table | 1.        | Correction factors for shear produced turbulence<br>due to the presence of the temperature inversion.                                                                                                              | 20   |
| Table | 2.        | Stability correction factor as a function of wind speed and stability.                                                                                                                                             | 23   |
| Table | 3.        | Mean wind direction standard deviations for high<br>wind speed (> 9 m/sec), with stable and stationary<br>conditions.                                                                                              | 57   |
| Table | 4.        | Shear production contributions to the wind<br>direction standard deviations as functions of wind<br>speed for various averaging times.                                                                             | 59   |
| Table | <b>5.</b> | Mesoscale forcing contributions to the wind<br>direction standard deviations as functions of wind<br>speed for various averaging times.                                                                            | 60   |
| Table | 6.        | Differences in the wind direction standard<br>deviations for large and small convective mixing<br>velocities.                                                                                                      | 72   |
| Table | 7.        | Differences in the wind direction standard deviations for unstable and stable conditions.                                                                                                                          | 80   |
| Table | 8.        | Differences in the wind direction standard<br>deviations for unstable conditions, with the<br>convective mixing velocity greater than 0.3 m/sec<br>and stable conditions.                                          | 83   |
| Table | 9.        | Fitting parameters for the dependence of the wind direction standard deviation on buoyancy, w* and $w*/U$ .                                                                                                        | 91   |
| Table | 1,0.      | Linear regression fitting parameters for the<br>dependence of the wind direction standard<br>deviation on the stability parameter, Z/L.<br>The correlation and the uncertainty in the<br>slope are also shown.     | 95   |
| Table | 11.       | Linear regression fitting parameters for the dependence of the wind direction standard deviation on the stability parameter, $2/L$ , sorted into wind speed ranges of $U \le 2$ , $2 < U \le 4$ , $U \ge 6$ m/sec. | 97   |

page

Table 12. Differences in the horizontal wind direction standard deviation for onshore and offshore flow. 109

vi

- Table 13. Fitting parameters for buoyancy, shear and mesoscale production.
- Table 14. Comparison of the ratios of wind direction standard deviation for buoyancy, shear, and mesoscale production for various averaging times with the 0.2 power law.
- Table B-1. Model predicted and minimum observed cross wind speed standard deviations.

130

B-2

3 MH 1 3 5 1

#### ACKNOWLEDGEMENTS

Several people have contributed significantly to various aspects of the work reported here. Don Spiel was responsible for much of the data asquisition. Steve Crain spent months working on a parameterization which, unfortunately, did not work out. Chuck Skupniewicz helped the author with many valuable conversations and Torben Mikkelsen provided inspiration and help with the parameterization that did work.

## I. INTRODUCTION

One of the main difficulties in developing over water diffusion models is the lack of an extensive data base. The Environmental Physics Group of the Naval Postgraduate School has participated in several at-sea, coastal, transport and diffusion experiments(Schacher, et. al. 1982). The design of the experiments was such that diffusion data were obtained only during periods of onshore winds. Thus, although the data is extremely valuable, only a limited set of meteorological conditions were tested.

During the diffusion experiments, horizontal wind variability wis determined over a much wider range of conditions. Since wind variations drive diffusion, these data can augment direct diffusion measurements. These data are especially valuable when one considers the high cost of field tracer measurements.

The data have been obtained off the California coast, at one location in the Santa Barbara Channel and another north of Pt. Conception. The northern Decation is an open coastal area, well exposed to the prevalent north westerlies. The Channel location is strongly influenced by surrounding land areas, as is readily seen from the frequent eddies in the whole area. At both locations, data were obtained during the Summer and the Winter, an attempt being made to obtain data over as wide a range of conditions as possible. The wind variability experiments were run for nearly 24 hours a day, yielding over 400 hours of usable data.

The purpose of the work reported here is to determine the proper parameterization to use to characterize the horizontal wind variability. If we can correctly do this, it should ultimately lead to the correct parameterization for overwater diffusion modeling. The measurements were made at an offshore location, with a single set of sensors, so only the local turbulence was determined. The local turbulence is driven by a number of forces, which must be considered in developing the parameterization. The obvious forces are:

surface wind shear (U or U\*)
convection (H or w\*)
mesoscale activity

swell and wind waves.

The parameters shown in parentheses will be described later in this report. It may also be necessary to have the atmospheric stability (Z/L) as a parameter.

The local measurements are sufficient to determine the parameters shown in parentheses. The only way we have of determining mesoscale activity is through the times of occurence and strength of the sea-breeze cycle. Such an analysis is an important part of this report.

We have attempted to determine affects due to swell and wind-wave heights. However, the quality of wave data was poor and no usable results were obtained.

Synoptic data are available for the periods we are using. This information is mostly useful for assessing the large scale forcing that drives the more local conditions. The parameterization we develop must depend on local measurements. Later studies of synoptic data could be useful in developing a predictive scheme.

#### II. EXPERIMENTAL DETAILS.

Complete descriptions of the experiments from which these data were obtained can be found in other reports (Schacher, 1981, 1983). This section will contain only a brief description of those details needed to clarify the results presented here. Rough charts of the central California coast, showing the two locations where data were obtained, are shown in Figures 1.

At both locations tracer experiments were performed in the vicinity of a fairly flat beach with several miles of low profile inland terrain. The majority of the wind variability data was obtained within 3-5 miles of the beach, but some data was obtained at other nearby locations. No effects due to ship location or motion have been detected in these data, so these influences will not be discussed in this report.

The data were obtained from the ship R/V Acania, which was equipped with a complete suite of meteorological equipments so that the following data were obtained:

sea surface temperature,

air temperature (17ft and 60ft), wind speed and direction (17ft and 60ft), dewpoint temperature (17ft and 60ft), micro-turbulence (hot-films at 60ft), inversion height (acoustic sounder), boundary layer structure (radiosonde), wave height (observation estimates).





wind variability data obtained, BLM-3,4.

The low profile, narrow beam configuration of the ship is such that ship influence on the flow is minimal. Also, data obtained when the relative wind was from the aft where ship influence could be a factor have been rejected, and are not included in these analyses.

The basic sampling rate for all temperature and wind data was approximately 1 second. Wind data were processed into 10 sec averages and temperature data into one-half hour averages. The 10 sec wind data were recorded in separate files. Every half hour averages of all meteorological parameters were produced, including calculated quantities such as water vapor mixing ratio, Monin-Obukhov length, friction velocity, etc.

Since it is difficult to unambiguously determine the boundary layer depth from acoustic sounder records in real time, this parameter was only approximately known during the cruise. Accurate analyses, including the radiosonde results, were performed at a later time and all results recalculated. It was during the post-cruise analysis that rejection criteria were applied, such as a bad relative wind direction, and a clean data set produced.

A pendulum system was used to detect ship roll so that this velocity component could be removed from the wind direction results. Analyses of data with and without this correction applied showed little difference in the results.

For the analyses reported here, the 10 sec average wind data were processed into means and standard deviations for 1 min, 3 min, 10 min, 1/2 hour and 1 hour periods. Then, the 1, 3, and 10

- 7

min results were each averaged over the same 1/2 hour periods and the bulk meteorological parameters averaged for those same periods. This yielded sets of mean conditions and short and long term average wind statistics over the same periods for direct comparison purposes. It is these data that are presented in this report.

# III. METEOROLOGICAL CONDITIONS.

Complete descriptions of the meteorological conditions are included in the former reports. As in the former section, the descriptions included here are brief and presented in order to clarify the results. Descriptions of the areas where the experiments were carried out and local influence on the meteorology are also included. できたいないと言いななどのでは

#### Ventura: BLM 1 and 2

Ventura lies within the Los Angeles Bight, an embayment formed by the Santa Barbara Channel, Santa Monica Bay, and the Gulf of Santa Catalina. Pt. Conception, the surrounding hills, and the Channel Islands strongly affect the local flow and produce conditions controlled by the interplay of numerous local influences and mesoscale features which are typical of the general coastal area. The air flow in this area is quite different than over the majority of the California coast where an air mass reaches the shore after a long over-water fetch.

Immediately to the north, the coastline runs in a generally east-west direction to Pt. Conception, which is approximately 50 miles away. The geographic features cause many effects, the major ones being:

1. The mountains to the north act as a partial barrier to the normal movement of air from the northwest.

2. These mountains and the east-west orientation of the shore turn the wind to a westerly direction and produce a complex pattern of eddies.

3. The surrounding high hills contain the cool, moist marine air. Only infrequent, strong, synoptic air mass changes displace the marine air.

4. Due to nighttime downslope drainage from the surrounding hills, the diurnal land-sea breeze cycle is very strong, being enhanced by the local topography.

#### Pismo Beach: BLM 3 and 4

Pismo Beach is approximately 50 miles north of Pt. Conception, in a fairly open coastal area. Pt. Buchon, with 1000 to 2000 foot hills, lies immediately to the north, projecting some 5 miles out to sea. The point influences the local flow somewhat but the influence appears to be slight. The immediate inland hills are low, giving a weaker land-sea-breeze cycle than near Ventura. The experiments were carried out at the mouth of the Santa Maria valley, which steers the local flow slightly. The entrance to the valley at the beach is approximately 8 miles wide and the immediate hills on each side of the valley are only one to two hundred feet high, so their effect is small. The area is representative of an open California region where air mass predominantly northwest flow with a long over-water fetch, and by the land-sea breeze cycle.

General Meteorological Conditions:

10

During the Summer, the North Pacific semipermanent high lies to the west of the area and controls the synoptic scale flow. Clockwise flow around the high produces northwesterlies along much of the coast, with the local sea-breeze turning the wind more westerly. The general onshore flow is aided by the inland thermal trough which is created by overland heating. Strong subsidence creates the prevalent capping inversion and the occasional passage of weak upper level troughs will dissipate or lift the inversion for periods of 12-24 hours.

During the Fall, the building of high pressure in the Great Basin causes frequent Santa Ana conditions. The pattern of storms and upper level westerlies moves further south breaking up the summer pattern. Frontal passage becomes more frequent and the subtropical high becomes displaced or shrinks, resulting in a break up of the marine inversion.

During the Winter, frontal passage becomes much more frequent and strong surface westerlies often follow the passage. Santa Ana winds can still occur when the surface pressure in the Great Basin becomes sufficiently high. Also, the Pacific High and capping inversion can reform between frontal passage occurrences.

During the Spring, the storm pattern moves north, the Pacific High again becomes the dominant feature. Cold lows pass frequently, followed by strong westerlies.

When the synoptic pressure gradient is weak, local heating plays a dominant role, producing the sea-breeze cycle. Heating of the land during the day induces convection, and the rising air causes onshore flow, the sea-breeze. During the night the situation, and flow, are reversed. The cycle is strong only when solar heating is strong. Thus the cycle is more likely to be present during the warmer months of the year and will be supressed by clouds.

The following are general descriptions of the meteorological conditions during the test periods.

#### BLM-1 (September 1980)

The whole period was dominated by the Pacific high. All frontal activity was to the north of California. The thermal low over Mexico was not strong enough to produce a dominant onshore flow. The surface pressure gradients in the coastal region were weak, so that the local flow was dominated by the diurnal land-sea-breeze cycle. Low subsidence inversions were present under the dominant high pressure. Weak Santa Ana conditions can occur under these conditions.

# BLM-2 (January 1981)

The Pacific high was unusually strong, producing a mini-drought for what is normally the beginning of the rainy season for California. Frontal passages were again far to the north. There was no well established onshore flow regime except for a short period during 1/12-1/13 when the surface gradient in the Southern California area increased. As before, the land-sea breeze cycle should dominate, however, fairly persistent highs

over the inland western U.S. strengthened the offshore flow so that periods of sea breeze were shortened.

BLM-3 (December 1981)

Synoptic scale features and associated West Coast flow patterns were typical for this time of the year. An upper air North-South ridgeline over the western states was the dominant feature and led to generally weak surface pressure gradients off the southern California coast. The Mexican thermal low and afternoon sea breeze determined the flow associated with the passage of a fast moving upper wave, and associated precipitation and moderate northwest winds.

BLM-4 (June 1982)

The synoptic scale conditions and resulting precipitation and coastal wind regimes were atypical for the early summer season. The Mexican thermal trough should dominate this region, with resulting light coastal winds influenced by the sea-breeze during this period. Two upper level troughs passed over the West Coast during the period. The first (22 June) was a fast moving short wave and the second (28-30 June) was a deep system associated with a closed low at 500 mb, which became nearly stationary over central California. Both systems had considerable north-south extent which led to the southern California surface pressure patterns reflecting their passage. This resulted in a greater than normal onshore pressure gradient

and a fairly steady onshore wind, lacking the usual strong land-sea breeze cycle. Hence, strong onshore winds occurred.

## IV. PARAMETERIZATIONS.

In this work we are attempting to parameterize the wind variance in terms of some easily used schemes based on local meteorological measurements. We have investigated the use of the wind speed, U, the friction velocity, U\*, the convective mixing velocity, w\*, and a measure of stability, using the Monin Obukhov length (10/L), and a modified Pasquill Gifford class. This section describes each of these parameters.

All of the parameters needed, with the exception of the wind speed, require the surface layer scaling parameters or the momentum and heat fluxes. We determine these quantities from the bulk-aerodynamic method, which uses fairly easily measured air-surface differences of wind, temperature, and moisture. For surface values, we measure the temperature and assume zero wind speed and 100% relative humidity.

The quantities we wish to determine, and their relations to the scaling parameters, are:

Monin-Obukov length, L = (T/kg)(U\*'/H), (1) surface virtual heat flux, H =  $\rho C_p U*\Theta_v*$ , (2) and, convective mixing velocity(Kaimal, et. al.,1976)  $w* = [(g/T) H/Z]^{1/3}$ . (3)

In these equations, T= absolute temperature, g= acceleration due to gravity, k= von Karman's constant, p= air density,  $C_p=$ specific heat at constant pressure, and  $Z_1=$  the boundary layer

- ----

depth.  $\Theta_{V*}$  is the virtual potential temperature scaling parameter,

 $\Theta_{v} = T + 0.0098Z + 0.00061Tq,$  (4)

where q is the water vapor mixing ratio.

In order to use these equations, the scaling parameters are needed. For some quantity X, the relation between the air and surface values of X and its scaling parameters is

 $X_z - X_s = (X_*/\alpha_X k) [ln (Z/Z_{oX}) - \Psi_X(L)].$  (5)

 $Z_0$  is the roughness length and  $\Psi$  the stability correction function to the logarithmic profile, which is normally written as a function of L, as indicated.  $\alpha$  is the turbulence diffusivity ratio.

Self consistent constants and functions must be used in these equations if correct results are to be obtained. These quantities have been discussed at length in the literature (Businger,1973). For the quantities used in this work and a description of the iterative procedure used to obtain solutions, see Schacher, et. al. 1982.

All of the above parameters are local variables, which means that they can be determined from locally measured meteorological parameters (wind speed, air-sea temperature difference, dewpoint temperature, and inversion height). They only account for turbulence which is generated by shear and buoyancy. Turbulence is also generated by mesoscale motions and, if this source makes an important contribution to the scales of

motion investigated here, our parameterization will only account for a portion of the turbulence energy. This will be discussed more fully later in this report.

# V. THEORY.

The following treatment is from the work of Hojstrup (1982), where he developes expressions for the turbulence intensity as functions of U\* and w\*. He considers the two sources of turbulence we mentioned in the previous section, shear production and buoyancy production, models their contributions to the velocity spectra, and integrates the spectra over the appropriate frequency range to determine the velocity variances. The following will be a brief description of the Hojstrup treatment, refer to his paper for a more complete description.

The horizontal, transverse velocity spectrum has two components

$$fS(f) = A(\alpha)w*^2 + B(\beta)U*^2,$$
 (6)

where f is the frequency, S(f) the spectral intensity, w\* and U\* were described in the former section, and  $A(\alpha)$  and  $B(\beta)$  are functions of the variables

 $\alpha = fZ_1/U, \quad \beta = fZ/U.$  (7)

The functions, A and B, were determined by matching model results to the Kansas (Kaimal et. al. 1978) and Minnesota (Kaimal et.al., 1976) data. A complete description in the methodology is contained in Hojstrup (1981). Note that Hojstrup wrote the first term of Equation 6 as a function of  $(-Z_i/L)$  and we have converted it to w\*. Upon integration of the spectral intensity, the velocity variance becomes

$$\theta_v^2 = 0.7 \ \kappa^{2/3} w_*^2 + 2.7 \ \frac{(1-Z/Z_i)^2}{(1+2.8 \ Z/Z_i)^{2/3}} \ U_*^2,$$
 (8)

where k = 0.35 is von Karman's constant. We use 0.35 rather than the more conventional 0.4 in order to be consistent with the calculations we made to determine U\* and W\* from our data. The first term is normally written as

$$0.7 (-Z_{i}/L)^{2/3} U_{*}.$$
 (9)

This clearly points out that the first term only contributes during unstable conditions, when convection is present.

It is obvious that the first term in Equation 8 contains  $Z_i$ , through w\*, because the strength of convective mixing depends on the mixing depth. The second term contains  $Z_i$ , through the ratio  $Z/Z_i$ , which is present to account for the decrease in surface shear produced turbulence with height above the surface. The correction factor is 1 at the surface. Since our measurements are all within the surface layer, this factor may not be appropriate. However, for a very low inversion it may play a roll in indicating supression of turbulence at our measurement height (20m). This will be explored later in the results section. Values of this correction for various  $Z_i$  are given in the following table.

19 -

| $Z_{1}(m)$ | $F(Z_{i})$ |
|------------|------------|
| 1000       | 0.926      |
| 700        | 0.896      |
| 500        | 0.859      |
| 300        | 0.777      |
| 100        | 0.476      |

Table 1. Correction factors for shear produced turbulence

due to the presence of the temperature inversion.

Our results are the variances of the horizontal wind direction, which can be simply related to the velocity variance with

 $\sigma_{\theta}^{2} = \sigma_{V}^{2}/U . \qquad (10)$ 

For what follows we drop the height correction in the second term of Equation 8. Also, we recognize that the overland sprectra from which Hojstrup's model was obtained probably do not adequately represent the overwater case we are dealing with. Thus, the whole formulation reduces to

 $\sigma_{\theta}^{2} = C_{w} k^{2/3} (w*/U)^{2} + C_{u} (U*/U)^{2}, \qquad (11)$ 

or,

 $= [c_w (-z_i/L)^{2/3} + c_u] (u*/u)^2, \qquad (12)$ 

where  $C_w$  and  $C_u$  are constants to be determined from the overwater

data. Note that we have supressed the factor  $F(Z_i)$  in the U\* term; we may need to add it later if it proves to be needed. Both forms will be used in what follows. For simplicity we will write  $C_w' = C_w k^{2/3}$ .

Note that what we have done at this point is to show the manner in which the variance should depend on the scaling parameters, and leave the final form to evaluating the constants  $C_{\rm u}$  and  $C_{\rm w}$  from the data.

It may be convenient to write the scaling velocity as a function of the wind speed and drag coefficient

$$U_* = C^{1/2}U.$$
 (13)

Following Equation 5, the drag coefficient can be written as

$$C^{1/2} = C_N^{1/2} [1 - C_N^{1/2} \psi/k]^{-1}, \qquad (14)$$

with the neutral stability drag coefficient

$$C_{\rm N}^{1/2} = k/\ln(Z/Z_{\rm O}).$$
 (15)

For unstable conditions(Businger, 1973)

$$\Psi = 2 \ln[(1+x)/2] + \ln[(1+x^2)/2] - 2 \tan^{-1}x + \pi/2, (16a)$$

 $x = (1 - 15z/L)^{-1/4}$ 

21

with

and for stable conditions

$$r = -4.7(Z/L)$$
 (16b)

At this point, the parameterization reduces to using the stability (L), inversion height  $(Z_1)$ , wind speed (U), and roughness length  $(Z_0)$  or neutral drag coefficient  $(C_N)$  to obtain the proper parameterization.

The roughness length, or the drag coefficient, over water depends on the wind speed through wind-wave interaction. We have used the Kondo (1975) formulation in determining the scaling velocity and Monin-Obukhov length from our data. In what follows we will use the Garrett (1977) formulation:

$$10^{3}C_{N} = 0.75 + 0.067 \text{ U.}$$
 (17)

Using a different formulation (Garrett) for the subsequent calculations will introduce a slight scatter in the results. The two formulations are very close except at low wind speeds so there will be little effect except in that region. At low wind speeds the shear produced turbulence is a very small fraction of the total so the formulation used is unimportant there. We now have

$$(U*/U)^2 = (7.5\times10^{-4} + 6.7\times10^{-5} U) F(I)$$
(18)

with

$$F(L) = [1 - C_N^{1/2} \Psi/k]^{-2}.$$
 (19)

Obviously, this is not a closed form solution since L depends on U. All coefficients were determined by an iterative calculation when the data was obtained.

Rather than do another iterative calculation for the results presented here, and in order to clarify the results, we calculate F(L) using the old value of L and Equation 19. Representative values of F(L) are given in the following table.

| Z <u>/L</u> | U=1m/sec | U=10m/sec | U=20m/sec |
|-------------|----------|-----------|-----------|
| 10          | 0.04     | 0.03      | 0.02      |
| 2           | 0.31     | 0.25      | 0.20      |
| 1           | 0.52     | 0.44      | 0.38      |
| - 0.1       | 0.93     | 0.91      | 0.89      |
| 0           | 1.0      | 1.00      | 1.00      |
| -0.1        | 1.04     | 1.06      | 1.07      |
| -1.0        | 1.20     | 1.28      | 1.36      |
| -2.0        | 1.28     | 1.39      | 1.49      |
| -10.0       | 1.58     | 1.87      | 2.21      |

F(L)

Table 2. Stability correction factor as a function of wind speed and stability.

シンド言いたたたたい

Note that  $\Psi$  for stable conditions is given by -4.7 Z/L. The range of conditions chosen in Table 3 is not realistic. At wind speeds of 10 m/sec or higher Z/L will be near zero since the air-sea temperature difference can never be large enough for buoyancy to overcome shear production at these high wind speeds.

Equations 11 and 12 can now be rewritten as

$$\sigma_{\Theta}^{2} = C_{W}'(W_{*}/U)^{2} + C_{L}F(L)(7.5 \times 10^{-4} + 6.7 \times 10^{-5}U),$$
 (20)

where  $C_w' = k^{2/3} C_w = 0.497 C_w$ .

$$\sigma_{\theta}^{2} = [C_{w}(-Z_{i}/L)^{2/3} + C_{u}] F(L)(7.5 \times 10^{-4} + 6.7 \times 10^{-5} U)$$
 (21)

The first form is used for w\* and U parameterizations and the second for stability parameterization and for the effects due to inversion height. Recall that we may need to use the inversion height correction to  $C_u$  (see equation 8) for low inversions. Another form of Equation 21 is useful for examining the dependence on stability. It is found by writing the term in square brackets as

 $C_{w}[(Z_{1}/Z)(-Z/L)]^{2/3} + C_{u}$  (21a)

Of course, equations 21 and 21a leave both L and U as parameters, stability does not appear as a sufficient variable.

We must reemphasize that none of the above addresses sources of turbulence other than shear and buoyancy production.
## VI. DESCRIPTION OF THE DATA.

As will be shown in the following section, successful parameterization of the wind variability depends on segmenting the data into wind regimes. The situations are different when the wind is dominated by synoptically dr'ven, northwest flow or by the sea-breeze cycle. The means by which the separation into these two regimes is made is by examination of the wind direction records.

Figure 3 shows an example of a time history of the wind direction, wind speed, and wind direction standard deviation. The full set of time histories is in Appendix A. The dark bars on the graphs indicate when a stable onshore flow is present. All other periods of time are characterized by large variability in both wind speed and wind direction. Note that the onshore flow could be the result of either synoptic forcing or a well established sea-breeze. As can be seen from the strong diurnal cycle in Figure 3, our data were obtained during periods when the sea-breeze cycle was a major factor. In what follows, we divide the data into cases where a well established onshore flow is present (stationary) and when it is not.

The direction standard deviation figures show two different one-hour averages. One, open circles, are the one-hour average standard deviations over the hour preceeding the time shown. The second, solid dots, are the averages of all one minute standard deviations for that hour.

In the analyses that follow, we will be dealing with the following data

wind direction standard deviations:

one-hour averages

1/2 hour averages

1/2 hour averages of 1min, 3 min, and 10 min averages

that occur in that 1/2 hour

wind speed

wind direction

stability

inversion height

convective mixing velocity

friction velocity (surface layer scaling velocity)

For the four operations, there are a total of 859 1/2-hour files of these data. The voluminous printouts of these data are contained in Appendices A and B.

There are rather substantial difficulties in interpreting these data. What is needed is to have available subsets of the data when the conditions are well known and where a single parameter can be identified as the dominant factor in determining the wind variability. For example, one would like to determine variability as a function of wind speed. The dependence may be different for onshore or offshore flow and for different inversion heights and different stabilities. Thus, one needs d vs. U for an onshore flow and for an offshore flow case where the inversion heights and stabilities are the same. Such clean data



sub-sets are probably not available even with the large amount of data being used here. In order to determine the dependences on the individual parameters, one must look for self-consistency among the dependences found for various sub-sets when more than one parameter is a determining factor.

There are shipboard conditions which may cause some data to be more unreliable than others. These conditions are:

ship underway

poor relative wind direction

ship motion due to swells and waves.

Corrections for ship motion have been applied to these data and found not to be a significant factor. If the relative wind is from the stern of the ship, the data will be suspect. These data have been removed from the results. Having the ship underway while taking data should not be a problem unless significant additional ship motion is involved. Also, being underway allows one to keep the ship headed into the wind, which is an advantage. Thus, the only data we reject is for bad relative wind direction. We define bad to be for the direction within 40 degrees of the stern.

Dividing the data into the stationary and non-stationary wind regime is simple using Figure 3. By stationary we mean that the one-hour average wind direction remains constant within about 40 degrees and the wind speed is fairly constant. These criteria were used to determine stationarity, indicated by the dark bars on Figure 3. Note that stationarity only occurs when the wind is fairly strong and from a westerly to northwesterly direction.

Weak winds are marked by large meander.

The analyses will focus on dependences on the wind speed, convective mixing velocity, and stability, with inversion height and wind direction as important auxiliary paramenters. For illustrative purposes we include Figures 4-6 here to show the appearance of the data as functions of these parameters and how data for the various experiments compare. Not all of the data are shown in order to conserve space. Each of the figures, 4-6, show all of the 30 sec average data for each of the four experiments. The large variability that is normally present in fluctuation data is evident. Even though there is considerable scatter, trends in the data and that there is consistency between the various cruises are easily seen. In what follows we will use the term "variability" to mean the wind direction standard deviation.

The least wind direction variance occurs for BLM-1. This appears to be due to the conditions being more stationary during this experiment since those data were obtained almost exclusively when there was a well established onshore breeze. This restriction was not applied to the other experiments. For similar conditions, all experiments show the same results. This can be seen in Figure 7 where only data obtained during stationary periods are plotted.

Plots of the variability verses the convective mixing velocity divided by the wind speed, w\*/U, are shown in Figures 5 and 8. w\*/U is used because it is the natural buoyancy variable according to the theory presented in the former section. The

- 29





言語のないななな言語のことれたため言語

Figure 5. Dependence of wind direction standard deviation, 30 min averages, on the ratio of the convective mixing velocity to the wind speed.



•

.



gure 7. Dependence of wind direction standard deviation, 1 min and 30 min averages, on the wind speed for stationary conditions.



Figure 8. Dependence of wind direction standard deviation on the ratio of the convective mixing velocity to the wind speed for 1, 3, 10, and 60 min averaging times.



Figure 9. Dependence of wind direction standard deviation, 1 min averages, on the surface layer stability parameter.



gure 10. Dependence of wind direction standard deviation on the natural log of the absolute value of the surface layer stability parameter for stable and unstable conditions.

.



plots show a clear increase in variability with the parameter which suggests that convection plays a major role in turbulence production. As we shall see in what follows, the dependence shown is probably almost entirely due to dependence on the wind speed.

Whether convection plays a roll can also be determined by examining the dependence on stability. Dependences of wind variability on stability are shown in Figures 6 and 9. Figure 6 shows the 30 min and Figure 9 the : min average data for all experiments. One would expect the variability to be larger for unstable conditions, and there is a slight indication of this in the plots (eg. BLM-3, 1 min average). However, it would be difficult to draw any conclusions from these figures.

The range of stabilities encountered over water is small due to the small air-sea temperature differences that occur. Thus, stability dependence can be more easily seem from the dependence on ln(Z/L), using the absolute value of Z/L. Plots of this type are shown in Figure 10. The figure shows the 1 min and 30 min average data for unstable and stable conditions for BLM-3 and 4. For both averaging times it is apparent that a dependence on stability exists and that the turbulence is larger for unstable conditions, although the effect is small.

It is important to establish which are the dominant parameters to consider when developing the needed parameterization. Examples of how this was done are shown in the wind direction standard deviation versus wind speed plots presented in Figures 11-15. The parameters shown are

38

いたが、またでは、「「「「」」というでは、「「「」」というためないでは、「「」でいくべん」へん。「」」でいったのでは、「」」でいくためでは、「」」でいくため、これでは、「」」でいくため、これでは、「」」

averaging time, onshore/offshore flow, stability, w\*, Z1.

Averaging time obviously is an important parameter, which is confirmed in Figure 11. There is about a 4-fold increase in variability for a change in averaging time from 1 min to 60 min.

There is no apparent difference in the turbulence seen for onshore and offshore conditions, Figure 12.

We already discussed the dependence on stability. Figure 13 shows that the dependence is weak, only being marginally apparent when plotting the dependence on wind speed.

The weak dependence on stability leads us to reexamine the dependence on the convective mixing velocity, w\*. As was discussed above, Figures 5 and 8 show strong dependences on w\*/U. If this were due to w\* dependence, turbulence during stable conditions should be considerably less than during unstable because convective activity is absent. This is not the case. We examine this further by sorting the data into cases where w\* < 0.1 m/sec and cases for which it is greater. These data are shown in Figure 14 for BLM-2 and 3. No apparent dependence on w\* is seen. Finally, we have plotted the dependence on w\* directly in Figure 15, for all experiments, for 30 sec averages. Again, any dependence on w\* is masked by other effects although BLM-1 does show a possible trend for those mostly stationary conditions. In the next section we show a method for determining

this weak contribution due to buoyancy production.

Since shear produced turbulence goes to zero at low wind speeds. the source of the large wind direction variability at low speeds must be another mechanism. Our original explanation was that the source is buoyancy but, as can be seen from the discussion immediately above, this seems not to be the case. Figure 15 does show that there is some w\* dependence for BLM-1 (turbulence was weak) and recall that mostly stationary conditions were encountered for that experiment. Thus, the large values of variability at low wind speed are associated with non-stationary conditions. Non-stationarity occured during transition periods associated with the land-sea-breeze cycle. The forcing for the cycle is differential heating between the land and the sea, which is a mesoscale process. In what follows we will refer to the low wind speed turbulence produced by other than buoyancy as "mesoscale" production. No more definitive description of this process is possible from these data.

The above discussion suggests that it may be possible to observe the dependence on w\* during stationary conditions when mesoscale forcing is weak. Figure 16 shows data for stationary conditions, for 1 min and 30 min averages, for BLM-1 and BLM-3. BLM-2 and BLM-4 are not shown because the coincidence of stationarity and unstable conditions (w\*=0 for stable conditions) seldom occured for those experiments. Note, the scales have been changed in these plots because the turbulence is much weaker for stationary conditions. It is apparent from Figure 16 that there is a weak dependence on w\*. We will use stationary conditions to

examine w\* dependence in the following section.

The other parameter we wish to discuss specifically is the mixing depth (inversion height,  $Z_1$ ). As we indicated in the theory section, one can include a supression factor that depends on  $Z/Z_1$  in the shear production term. We feel that this factor should not be included for turbulence in the surface layer, which is where these data were obtained. If the factor is important, it would be felt for low inversion heights. Fortunately, there were wide ranges of inversion heights during BLM-2 and 3, with some very low inversions. We have sorted into cases where the inversion was lower than 50m and cases where it was higher, and present these results in Figure 17. 50m is a very low inversion and its effects should be strongly felt if the suppression factor is appropriate. Figure 17 shows no effect so we assume that factor should not be included in what follows.

It is difficult to obtain quantitative information from scatter plots of the type we have discussed in this section. They are mainly useful for identifying trends. In the next section we present averaged data, which are used for fitting theory to experiment. We have used the general results discussed above to guide the subsequent analyses.



Figure 11. Dependence of wind direction standard deviation on wind speed for averaging times of 1, 10, 30, and 60 min.





ure 13. Dependence of wind direction standard deviation, 30 min averages, on wind speed for unstable and stable conditions.







Figure 16. Dependence of wind direction standard deviation on the convective mixing velocity, BLM-1 and BLM-3, 1 and 30 min averages, stationary conditions.



Figure 17. Dependence of wind direction standard deviation, 1 min and 30 min averages, on wind speed. The data is sorted into cases with the mixing depth less than, circles, and above, dots, 50m.

. .

.

.

· · ·

## VII. PARAMETERIZATION ANALYSES

The various presentations of the data in the previous section allow some conclusions to be drawn about the mechanisms driving horizontal wind variability and the methodologies needed to determine the correct parameterization. Three mechanisms can be identified from the data, buoyancy and shear production as expected and a larger scale forcing, which we associate with mesoscale processes. The following association between these production mechanisms and conditions can be used to separate the processes for purposes of developing the parameterization.

> Shear production: Dominates at high wind speed, insignificant at low

Buoyancy: Absent for stable conditions,

decreases as 1/U

Mesoscale: Largely absent during stationary conditions

In the analyses that follow we average all data that falls within various ranges of the parameter being examined. This leads to considerable smoothing of the results, as can be seen in Figures 18. The upper graphs in Figures 18 show the average o vs. wind speed results for all four experiments, with data points plotted using a number that indicates the experiment. The lower graphs show results averaged over all of the experiments, which is the form used for the following parameterization analyses. The first graphs show the degree of consistency that exists in the data

and is therefore useful as an indicator of the quality of the results.

The figures also contain a print out of the results averaged over all data, giving: the value of the parameter for the center of that range, the number of points found in that range, the mean standard deviation of the horizontal wind direction over the averaging period indicated (sigma), and the standard deviations of the data about the mean sigmas.

Each set of graphs in what follows contains captions indicating the meteorological conditions, averaging time, and experiment during which the data was taken (total is the average over all experiments).

Figures 18 show o vs. U, using the format described above, for averaging times from 1 to 60 min. The consistency between the results for the various cruises is good, with a minor inconsistency occuring for BLM-1 at low wind speeds. This effect may be real because, as noted in the previous section, conditions when data were obtained for BLM-1 were somewhat more stationary than for the other experiments. The graphs indicate that it is appropriate to average over all cruises for the analyses, which was the method used.

The most difficult task is to separate the weak buoyancy dependence from the large contribution being made by mesoscale processes. We do this in two ways. One is to determine the differences in results for stable and unstable conditions. The other is to determine the dependence on w\* for stationary conditions where the large scale meander is mostly absent. The

remainder of this section will be divided into subsections, each dealing with a specific analysis and presenting the data used and results for that analysis.

51



U

\$

14

- 34 : 39

: ]: : ]:

999747 14799 SIGMA

: . . 2 5. 2

Means over wind speed ranges of the standard deviations (sigma). Upper plot has means for each experiment, lower plot means over the total data set. The standard deviations of the data about the means are given in the table. ううううううる

「おいていたい」というないである。 かくはない アンドウ アンドロ たいりつ いたい とんかい イナナイ アンド

おうたんたんのと言葉 マンマンマント 目



Std Dev

5.9



(Figure 18. - continued)

12220

States and States

è



|     | .5    | 14    | 25.9 | 10.5         |
|-----|-------|-------|------|--------------|
| 1   | .5    | 34    | 14.3 | 10.:         |
|     | 2.5   | 139   | 9.4  | <b>~</b> . כ |
| -   | 7.5   | 130   | 5.2  | 4.3          |
|     | 4.5   | 125   | 4.5  | 2.4          |
| 5   | 3.3   | 22    | 3.0  | 2.2          |
| ŧ   | 5.5   | Sā    | 3.1  | ÷.2          |
| -   | 7.5   | ÷3 ·  | 2.7  | 1.2          |
|     | 9.J   | 31    | 2.5  | .3           |
| • • | · . J | ; ; ; |      | · . •        |
|     | s     | 14    | 2.1  | . 2'         |

## (Figure 18. - continued)



Sec. 2 1 15 Card

(Figure 18. - continued)

55

Eller Markey

Sec. No.







(Figure 18. - continued)

Presented and

•

## MESOSCALE AND SHEAR PRODUCTION, $\sigma_{\Theta}$ vs. U, stationary and non-stationary conditions

The contribution to the variability made by mesoscale processes is determined by comparing data for stationary and non-stationary conditions. The shear production contribution is determined from stationary, stable conditions. Plots of stationary and non-stationary data are presented in Figures 19 and in Figures 20 for stable conditions.

Shear production is dominant at high wind speeds. Mesoscale forcing will be largely absent for stationary conditions and buoyancy production absent for stable conditions. Thus, we average the high wind data (the three highest speeds) from Figures 20 to obtain the shear production contribution. The results are given in the following table.

| Tave(min) | <o<sub>0&gt;(deg)</o<sub> |
|-----------|---------------------------|
| 1         | •                         |
| 1         | 1.5                       |
| 3         | 1.9                       |
| 10        | 2.1                       |
| 30        | 2.5                       |
| 60        | 3.0                       |
| 1         |                           |

Table 3. Mean wind direction standard deviations for high wind speed (>9 m/sec), with stable and stationary conditions.

Differences in the variability for stationary and non-stationary conditions will yield only an estimate of the mesoscale contribution because it is not true that this contribution is absent during the times we judge to be stationary, only that it is considerably less. Thus, the procedure will tend to underestimate the contribution. Also, combining data for stable and unstable conditions (Figures 19), mixes results for various values of w\*; if the mean w\* are not the same for stationary and non-stationary conditions a small error will be introduced.

Of course, the shear production term must also be removed from the data in order to isolate the mesoscale production. This occurs automatically when subtracting stationary and non-stationary results. It is also possible to obtain a good estimate of mesoscale production by subtracting the shear production contribution from the non-stationary, stable results. This method has the advantage that it gives results at low wind speeds, which cannot be done when stationary data, which exists only at higher wind speeds, is used. In order to do this, the shear contribution at all wind speeds must be known.

We have measures of shear production at about 11 m/sec presented in Table 5. We can use the second term of Equation 20,

$$\sigma_{A}^{2}(\text{shear}) = C_{U} F(L)(7.5 \times 10^{-4} + 6.7 \times 10^{-5} \text{U}),$$
 (23)

to estimate the shear contribution over a range of wind speeds. This has been done and the results are presented in the following

table. We assume F(L)=1.0.

| Tave | CII  | U= <u>0</u> | <u>3m/sec</u> | <u>7m/sec</u> | 11m/sec | 15m/sec |
|------|------|-------------|---------------|---------------|---------|---------|
| 1    | 0.46 | 1.1         | 1.2           | 1.4           | 1.5     | 1.6     |
| 3    | 0.74 | 1.3         | 1.5           | 1.7           | 1.9     | 2.1     |
| 10   | 0.90 | 1.5         | 1.7           | 1.9           | 2.1     | 2.3     |
| 30   | 1.28 | 1.8         | 2.0           | 2.3           | 2.5     | 2.7     |
| 60   | 1.84 | 2.1         | 2.4           | 2.7           | 3.0     | 3.3     |
|      |      |             |               |               |         |         |

o<sub>A</sub>(deg) for

Table 4. Shear production contributions to the wind direction standard deviation as functions of wind speed and averaging time.

The estimates of the mesoscale production contribution are presented in Table 5. There are three columns of numbers for each averaging time. They are calculated using the three methods described above. Examination of the table shows that subtracting the shear production contribution from the non-stationary, stable results leads to consistently higher values for mesoscale production than do the other two methods. We believe that this is due to the fact that the other two methods do not completely seperate the mechanisms and, hence, we accept the higher values as the most nearly correct.

α<sub>θ</sub> (mesoscale) (deg) for averaging time -

の日にないい

| of        |
|-----------|
| times     |
| averaging |
| 54        |

| 60 min.       | 52.2 | 25.2 | 15.7 18.9    | 8.6 7.9 ID.8 | 4.6 4.2 7.7 | 3.5 3.3 522 | 2.8 2.5 3.8 | 1.6 1.0 2.1 |             |             | 6.0  |
|---------------|------|------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| 30 min.       | 38.7 | 20.6 | 7.5 1.9 11.1 | 6.9 7.1 8.4  | 2,6 2.0 5.1 | 2.3 2.5 3.6 | 1.2 1.6 2.6 | 1.3 1.1 1.8 | 0.4 1.6 1.7 | 0.3 1.0 0.9 | 0.3  |
| 10 min.       | 24.1 | 12.9 | 4.5 2.8 7.8  | 3.4 4.4 5.0  | 1.4 1.1 2.9 | 1.0 1.3 2.0 | 1.30.8 1.4  | 0.5 0.5 0.8 | 0.10.4 0.5  | 0.3 1.0 1.0 | 0.5  |
| 3 min.        | 17.0 | 8.5  | 2.2 1.4 4.6  | 2.13.13.3    | 1.1 0.7 1.8 | 0.40.91.3   | 0.4 0.2 0.5 | 0.30.30.5   | 0.10.3 0.2  | 0.5 0.9 0.9 | 0.4  |
| <u>l min.</u> | 11.3 | 4.9  | 0.9_0.4_2.4  | 0.3 1.1 1.1  | 0.5 0.4 0.8 | 0.1 0.3 0.3 | 0.2 0.1 0.1 | 0.30.30.2   | 0.3 0.3 0.2 | 0.2 0.3 0.4 | 0.3  |
| Tave =        |      |      |              |              |             |             |             |             |             | ·           |      |
| U (m/sec)     | 0.5  | 1.5  | 2.5          | 3.5          | 4.5         | 5.5         | 6.5         | 0 7.5       | 0.6         | 11.0        | 13.5 |

calculated from 1) differences in stationary and non-stationary results, 2) differences in stationary and non-stationary results for stable conditions, 3) subtracting shear production from the stable, Associate forcing contributions to the wind direction standard deviations. The three columns are non-stationary results. Table 5:


Figure 19. Means over wind speed ranges of the wind direction standard deviations (sigma); Comparison of stationary and non-stationary conditions.







(Figure 19. - continued)

.





(Figure 19. - continued)





W. LAND STATE STATES

Was march states and

| υ    | 2   | SIGMA  | Std Cav |
|------|-----|--------|---------|
| .5   | 4   | 52.5   | 15.5    |
| 1.5  | 43  | - 33.5 |         |
| 2.5  | 54  | 21.7   | 15.2    |
| 3.5  | 51  | 14.0   | 10.7    |
| 4.5  | 37  | 10.5   | 4.3     |
| 5.5  |     | 7.3    | 2.4     |
| 5.5  | 7   | 7.3    | 2.1     |
| 7.5  | 5   | 5.5    | 2.4     |
| 3.3  | · 3 | ·Ə. Ə  | 2.2     |
| 11.3 | ð   | 3.3    | 3 2.2   |
| 13.5 | 1   | 3.7    | 3.2     |
|      |     |        |         |
|      |     |        |         |

(Figure 19. - continued)

20 1 min Ave Total U 8 SIGMA Std Dev + STRBILLTY NON-STRTION .5 7 12.4 7.7 15 1.5 41 6.0 SIGNA (deg) 4.4 2.5 3.5 62 3.5 1.8 57 2.3 1.1 4.5 54 2.0 10 .7 5.5 31 1.7 .6 6.5 19 1.5 .4 7.5 10 1.5 .2 9.0 2 5 1.7 .7 11.0 1 1.9 0.0 13.5 0 0.0 3.0 0 j 10 5 15 WIND SPEED (mrsec)

3.0

9.9

1.3

.4

.5

.s

.3 .3

.4

. 3

.1

ε.



Means over wind speed ranges of the wind Figure 20. direction standard deviations (sigma); Comparison of stationary and non-stationary conditions, stable only.





(Figure 20. - continued)



(Figure 20. - continued)

**69** -

W. W. Asta

60 min Ave Total U # SIGMA Std Dav + STABILITY

3





(Figure 20. - continued)

BUOYANCY PRODUCTION, SORTING  $\sigma_{\partial}$  VS. U WITH w\*, STATIONARY CONDITIONS AND ALL CONDITIONS

The  $\sigma$  versus U data have been sorted into three convective mixing velocity ranges:  $0 \leq w* < 0.1$ ,  $0.1 \leq w* < 0.3$ ,  $0.3 \leq w*$ , m/sec. This has been done for stationary conditions and for no restrictions other than that w\* exists, which means neutral or unstable conditions. The results for stationary conditions are shown in Figure 21, for unstable conditions in Figures 22.

Using only stationary conditions data to determine the buoyancy contribution should yield good results since mesoscale production is minimal. The results in Figure 21 are labeled with a 0, 1, or 3 to indicate the w\* range. The printed presentation of the results is the same as for the former figures, except here there are three sets of data, one for each w\* range. The results presented in the figure are rather disappointing since the data are not clearly seperated into w\* ranges. This is probably due to the fact that the mesoscale contribution is not completely absent. However, the figure does clearly show that the variability is increased by convective activity and that the contribution decreases with increasing wind speed, as expected from the first term in Equation 20.

The estimated contribution of buoyancy to the variability is roughly

 $\sigma_9$ (buoyancy) = 5 deg at 4 m/sec.

This value appears to be independent of the wind speed.

The results for sorting into the w\* ranges, with the only restriction being unstable conditions, are shown in Figures 22. This method is not as clean as restricting to only stationary data since the mesoscale forcing is included. However, it is the only way to obtain low wind speed data. If the mean mesoscale forcing was different for the different w\* ranges, errors would be introduced into the results.

The results show that buoyancy production is apparent only at wind speeds below about 7 m/sec, with shear production dominating above that speed, as expected.

The results are difficult to quantify with any accuracy, allowing only an estimate of the dependence on w\*. The following table gives our best estimate of the w\* dependence from these data. Note that the table only includes the difference in  $\sigma$  for w\* < 0.1 and w\*  $\geq$  0.3 because we cannot estimate any finer scale without inserting imagination into the process.

 $\sigma_{\rm H}(w* \ge 0.3) - \sigma_{\rm H}(w* < 0.1)$  (deg)

| U(m/sec)                                                                           | Tave - | <u>1 m</u> | 3m | 10m | <u> 30 m</u> | 60 m |
|------------------------------------------------------------------------------------|--------|------------|----|-----|--------------|------|
| <2                                                                                 |        | 3          | 4  | 4   | ?            | 8    |
| 2 <u<5< th=""><th></th><th>1.5</th><th>3</th><th>5</th><th>6</th><th>5</th></u<5<> |        | 1.5        | 3  | 5   | 6            | 5    |
| 5<3<7                                                                              |        | 1          | 2  | 4   | 4            | 5    |

Table 6. Differences in the wind direction standard deviations for large and small convective mixing velocities.



Figure 21. Means over wind speed ranges of the wind direction standard deviations, for stationary conditions, sorted into convective mixing velocity ranges of < 0.1 m/sec (0), 0.1-0.3 m/sec (2), and > 0.3 m/sec (4).



3.

(Figure 21. - continu



|       | . U |     | *    | SIGMA | Sto | d Oev |      |      |     |
|-------|-----|-----|------|-------|-----|-------|------|------|-----|
| .5    | 0   | 0.0 | 0.0  | 5     | 7.9 | 5.1   | 2    | 15.5 | 2.7 |
| 1.5   | Z   | 3.7 | , .2 | 32    | 5.5 | 4.0   | . 19 | 7.7  | 4.5 |
| 2.5   | 2   | 1.9 | .7   | 38    | 3.0 | 2.0   | 35   | 4.3  | 2.2 |
| 3.5   | 3   | 2.2 | '.8  | 23    | 2.0 | . 8   | 41   | 2.9  | 1.5 |
| 4.5   | 0   | 0.0 | 0.0  | . 23  | 1.6 | . 4   | 33   | 2.6  | .7  |
| 5.5   | 1   | 1.5 | 0.0  | . 9   | 1.5 | .3    | 31   | 2.2  | 7   |
| 6.5 · | 1   | 1.3 | 0.0  | 4     | 1.5 | .2    | 10   | 2.2  | .7  |
| 7.5   | 1   | 2.0 | 0.0  | S     | 1.5 | .2    | 13   | 1.9  | .5  |
| 9.0   | 0.  | 0.0 | 0.0  | 1     | 1.5 | 0.0   | 10   | 1.7  | .3  |
| 11.0  | Ø   | 0.0 | 0.0  | Ø     | 0.0 | 0.0   | 2    | 1.8  | . 1 |
| 13.5  | Ø   | 0.0 | 0.0  | 9     | 0.0 | 0.0   | 1    | 1.3  | 0.0 |

Figure 22.

Means over wind speed ranges of the wind direction standard deviations, for unstable conditions, sorted into convective mixing velocity ranges of <0.1 m/sec (0), 0.1-0.3 m/sec (2), and > 0.3 m/sec (4).





(Figure 22. - continue)



|      | ,   | 5    | •   | 27.014 |      | 1 744 |    |      |      |
|------|-----|------|-----|--------|------|-------|----|------|------|
| . 5  | 9   | 8.8  | ð.ð | 5      | 25.6 | 5.9   | 2  | 27.5 | - ,  |
| 1.5  | 2   | 13.2 | 6.0 | 32     | 12.0 | 9.5   | 19 | 16.7 | 10.2 |
| 2.5  | 2   | 5.1  | . 9 | 38     | 8.9  | 5.5   | 35 | 13.3 | 5.5  |
| 3.5  | 3   | 4.5  | 1.2 | 23     | 5.5  | 3.6   | 40 | 5.3  | 4.6  |
| 4.5  | 9   | ð.ð  | 9.9 | 23     | 3.6  | 2.3   | 33 | 5.5  | 2.4  |
| 5.5  | 1   | 2.1  | ð.ð | 3      | 2.7  | .5    | 31 | 4.3  | 2.4  |
| 5.5  | ۲., | 2.1  | ð.ð | 4      | 2.5  | . 4   | 19 | 5.0  | 3. J |
| 7.5  | ţ   | 2.9  | ð.ð | 5      | 2.0  | . 1   | 13 | 3.7  | '.`  |
| 9.ð  | 9   | 8.8  | ð.ð | 1      | :.3  | 8.8   | 10 | 3.1  | ۰. c |
| 6.'' | 9   | ð.ð  | ð.ð | 9      | 8.6  | 9.9   | 2  | 2.3  | . 5  |
| 13.5 | 9   | 6.6  | 9.9 | 9      | 9.9  | 9.9   | t  | 2.5  | ð. i |
|      |     |      |     |        |      |       |    |      |      |

(Figure 22. - continue)



|      | ι   | J    | 8    | SIGMA | 51   | d Dev |      |       |             |
|------|-----|------|------|-------|------|-------|------|-------|-------------|
| . 5  | Э   | ð.ð  | ð.ð  | 5     | 57.9 | 19.1  | 2    | 48.0  | 24.4        |
| '.5  | 2   | 33.4 | 32.9 | 30    | 17.1 | 11.3  | 19   | 23.3  | 15.1        |
| 2.5  | 2   | 5.7  | . 4  | 37    | 18.6 | 17.4  | 34   | 14.5  | 12.3        |
| 3.5  | • 3 | Э.2  | 5.0  | 23    | 10.0 | 9.9   | 19   | 11.5  | 11.5        |
| 4.5  | . ð | ð. ð | 8.8  | 21    | 5.1  | 3.5   | 31   | 8.9   | 4.3         |
| 5.5  | •   | 2.1  | ð.ð  | Э     | 3.3  | . 9   | 50   | S., 1 | 4.2         |
| 5.5  | ð   | 8.8  | ð.ð  | 4     | 3.0  | . 6   | י פּ |       | <b>7</b> .5 |
| 7.5  | 1   | 3.7  | 3.3  | 5     | 2.2  | . 1   | 13   | 4.2   | · . 1       |
| 9.0  | 9   | 8.8  | 8.8  | 1     | 2.5  | 9.9   | 6 :  | 3.9   | 2.1         |
| 11.3 | Э   | 8.8  | 8.8  | Э     | 8.8  | 6.6   | 2    | 2.4.  | .5          |
| 13.5 | 9   | 5.5  | ð.ð  | 9     | 8.8  | ð.ð   | 1    | 2.6   | J. J        |

(Figure 22. - continue)



|   | 2                                                             | •                                                                  | 5101.0                                                                                                                                                                                                                                                                                                                                    | 3.                                                                                                                                                                                                                                                                                                                                             | 1 264                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                   |
|---|---------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ð | ð. Ø                                                          | ð.ð                                                                | . 2                                                                                                                                                                                                                                                                                                                                       | 57.0                                                                                                                                                                                                                                                                                                                                           | 19.3                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                           | 8.8                                                                                                                                                                                                                                                                                                                                                                        | 8.8                                                                                                                                                                                                                                                                                                                                                                               |
| 1 | 32.7                                                          | ð.ð                                                                | 13                                                                                                                                                                                                                                                                                                                                        | 33.8                                                                                                                                                                                                                                                                                                                                           | 25.9                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                          | 40.9                                                                                                                                                                                                                                                                                                                                                                       | 20.3                                                                                                                                                                                                                                                                                                                                                                              |
| б | 3.0                                                           | ð.ð                                                                | 23                                                                                                                                                                                                                                                                                                                                        | 19.1                                                                                                                                                                                                                                                                                                                                           | 15.6                                                                                                                                                                                                                                                                                                                                                        | 17                                                                                                                                                                                                                                                                                                                                                                          | 23.6                                                                                                                                                                                                                                                                                                                                                                       | 19.3                                                                                                                                                                                                                                                                                                                                                                              |
| 1 | 10.7                                                          | ð.ð                                                                | 9                                                                                                                                                                                                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                            | 9.0                                                                                                                                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                          | 15.3                                                                                                                                                                                                                                                                                                                                                                       | 13.3                                                                                                                                                                                                                                                                                                                                                                              |
| Э | 0.0                                                           | 0.0                                                                | 100                                                                                                                                                                                                                                                                                                                                       | 5.4                                                                                                                                                                                                                                                                                                                                            | 4.8                                                                                                                                                                                                                                                                                                                                                         | 12                                                                                                                                                                                                                                                                                                                                                                          | 12.8                                                                                                                                                                                                                                                                                                                                                                       | 4.3                                                                                                                                                                                                                                                                                                                                                                               |
| 9 | ð.ð                                                           | 8.8                                                                | 3                                                                                                                                                                                                                                                                                                                                         | 4.7                                                                                                                                                                                                                                                                                                                                            | . а                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                          | 9.2                                                                                                                                                                                                                                                                                                                                                                        | 3.4                                                                                                                                                                                                                                                                                                                                                                               |
| б | 8.8                                                           | 0.3                                                                | 1                                                                                                                                                                                                                                                                                                                                         | 3.8                                                                                                                                                                                                                                                                                                                                            | ð.ð                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                           | . 9. 4                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 | 3.4                                                           | 8.8                                                                | 4                                                                                                                                                                                                                                                                                                                                         | 3.0                                                                                                                                                                                                                                                                                                                                            | . 5                                                                                                                                                                                                                                                                                                                                                         | .4                                                                                                                                                                                                                                                                                                                                                                          | 5.5                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                   |
| Э | 8.8                                                           | 8.8                                                                | 9                                                                                                                                                                                                                                                                                                                                         | 8.8                                                                                                                                                                                                                                                                                                                                            | 8.8                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                           | 3.3                                                                                                                                                                                                                                                                                                                                                                        | . 3                                                                                                                                                                                                                                                                                                                                                                               |
| Э | 8.8                                                           | 8.8                                                                | 9                                                                                                                                                                                                                                                                                                                                         | 8.8                                                                                                                                                                                                                                                                                                                                            | 8.8                                                                                                                                                                                                                                                                                                                                                         | . 3                                                                                                                                                                                                                                                                                                                                                                         | ð. ð                                                                                                                                                                                                                                                                                                                                                                       | à. J                                                                                                                                                                                                                                                                                                                                                                              |
| 9 | ð. ð                                                          | 9.9                                                                | 9                                                                                                                                                                                                                                                                                                                                         | 8.8                                                                                                                                                                                                                                                                                                                                            | 8.8                                                                                                                                                                                                                                                                                                                                                         | . 1                                                                                                                                                                                                                                                                                                                                                                         | 3.7                                                                                                                                                                                                                                                                                                                                                                        | J. J                                                                                                                                                                                                                                                                                                                                                                              |
|   | 0<br>1<br>2<br>2<br>3<br>3<br>1<br>0<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0.0 0.0   1 32.7 0.0   0 0.0 0.0   1 10.7 0.0   0 0.0 0.0   1 10.7 0.0   0 0.0 0.0   0 0.0 0.0   1 10.7 0.0   0 0.0 0.0   0 0.0 0.0   1 2.0 0.0   1 2.1 0.0   1 2.4 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 0.0 0.0   0 | 0 0.0 0.0 2   1 32.7 0.0 13   0 0.0 0.0 23   1 10.7 0.0 3   0 0.0 0.0 23   1 10.7 0.0 10   0 0.0 0.0 10   0 0.0 0.0 10   0 0.0 0.0 10   0 0.0 0.0 10   0 0.0 0.0 10   0 0.0 0.0 10   0 0.0 0.0 10   0 0.0 0.0 10   0 0.0 0.0 10   0 0.0 0.0 10   0 0.0 0.0 0.0   0 0.0 0.0 0.0   0 0.0 0.0 0.0   0 0.0 0.0 0.0   0 0.0 0.0 0.0   0 0.0 0.0 0.0 | 0 0.0 0.0 2 57.0   1 32.7 0.0 13 33.0   0 0.0 0.0 23 19.1   1 10.7 0.0 9 9.5   0 0.0 0.0 10 5.4   0 0.0 0.0 10 5.4   0 0.0 0.0 10 5.4   0 0.0 0.0 10 5.4   0 0.0 0.0 10 5.4   0 0.0 0.0 10 5.4   0 0.0 0.0 10 5.4   0 0.0 0.0 10 5.4   0 0.0 0.0 10 5.4   0 0.0 0.0 10 5.4   0 0.0 0.0 10 5.4   0 0.0 0.0 1 3.0   0 0.0 0.0 0.0 0.0   0 0.0 0.0 0.0 0.0   0 | 0 0.0 0.0 2 57.0 19.3   1 32.7 0.0 13 33.0 25.9   0 0.0 0.0 23 19.1 15.6   1 10.7 0.0 9 9.5 9.0   0 0.0 10 5.4 4.0   0 0.0 10 5.4 4.0   0 0.0 10 5.4 1.0   0 0.0 10 5.4 1.0   0 0.0 10 5.4 1.0   0 0.0 10 5.4 1.0   0 0.0 1.0 5.4 1.0   0 0.0 1.0 5.4 1.0   0 0.0 1.0 5.4 1.0   1 1.4 0.0 1 3.0 0.0   1 3.1 0.0 1.0 0.0 0.0   1 3.1 0.0 0.0 0.0 0.0   1 3.1 0.0 0.0 0.0 0.0 | 0 0.0 0.0 2 57.0 19.3 0   1 32.7 0.0 13 33.0 25.9 10   0 0.0 0.0 23 19.1 15.6 17   1 10.7 0.0 9 9.5 9.0 19   0 0.0 0.0 10 5.4 4.0 12   0 0.0 0.0 10 5.4 4.0 12   0 0.0 0.0 10 5.4 4.0 12   0 0.0 0.0 10 5.4 4.0 12   0 0.0 0.0 10 5.4 4.0 12   0 0.0 0.0 10 5.4 4.0 12   0 0.0 1.0 3.0 3.0 5.4 4   0 0.0 1.0 3.0 3.0 5.4 4   0 0.0 0.0 0.0 0.0 3.0 3.0 3.0   1 3.0 0.0 0.0 | 0 0.0 0.0 2 57.0 19.3 0 0.0   1 32.7 0.0 13 33.0 25.9 10 40.9   0 0.0 0.0 23 19.1 15.6 17 23.6   1 10.7 0.0 3 9.5 9.0 19 15.3   0 0.0 10 5.4 4.8 12 12.8   0 0.0 10 5.4 4.8 12 12.8   0 0.0 10 5.4 4.8 12 12.8   0 0.0 10 5.4 4.8 12 12.8   0 0.0 10 5.4 4.8 12 12.8   0 0.0 10 5.4 4.8 12 12.8   0 0.0 10 5.4 4.9 12 12.8   0 0.0 1 3.0 5 4 5.5   0 0.0 0.0 0.0 0.0 12.3 0.0   0 |

(Figure 22. - continue)

## BUOYANCY PRODUCTION,

σ<sub>α</sub> VS. U FOR STABLE AND UNSTABLE CONDITIONS

Dividing the wind speed dependence data into unstable and stable catagories allows another estimate of the buoyancy production. Graphs and printouts of the data are presented in Figures 23. Since the data are not segmented into w\* catagories, only the increase in turbulence due to buoyancy averaged over all w\* values encountered can be determined. The following table lists the differences in o for unstable and stable conditions.

| U(m/sec) | Tave= | <u>1m</u> | <u>3</u> m | 10m  | 30m  | _60m |
|----------|-------|-----------|------------|------|------|------|
|          |       |           |            |      |      |      |
| 0.5      |       | 2.3       | 3.0        | 0.5  | 11.0 | 12.7 |
| 1.5      | •     | 0.3       | 0.2        | -0.7 | -2.1 | 11.0 |
| 2.5      |       | 0         | 0.1        | -0.1 | 2.7  | -0.3 |
| 3.5      |       | 0.3       | 0.1        | 0.1  | 1.5  | 0.9  |
| 4.5      |       | 0.3       | 0.5        | 0.3  | 0.5  | 0.9  |
| 5.5      |       | 0.4       | 0.7        | 0.8  | 0.7  | 0    |
| 6.5      |       | 0.5       | 1.0        | .0.8 | 0    | 1.6  |
| 7.5      |       | 0.4       | 0.7        | 0.9  | 0.5  | 0.6  |
| 9.0      |       | 0.3       | 0.7        | 0.8  | 1.0  | -0.3 |

 $\sigma_{A}(unstable) - \sigma_{A}(stable) (deg)$ 

100

Table 7. Differences in the wind direction standard deviations for unstable and stable conditions.

These results are rather peculiar. The 10 min average results at low wind speeds are anomously low (little buoyancy contribution). Also, one would expect a smooth decrease with wind speed, proportional to 1/U as in Equation 20. The decrease seems much too rapid, and there appears to be a minimum around 2 m/sec. We have no explanation for these affects.

Another disturbing aspect of the data is that the lowest  $\sigma$ do not occur for stable conditions. Comparison of these figures with Figures 22 shows that the lowest  $\sigma$  occur for unstable, low wind speed conditions. For example, the values found in Figure 20 and 21, for 1 min averages, 1.5 m/sec, compared to Figure 23 results are:

|     | W# = | 0-0.1 | 0.1-0.3 | 0.3+ | unstable | stable |
|-----|------|-------|---------|------|----------|--------|
| e - | •    | 4.2   | 5.7     | 7.7  | 6.3      | 6.0    |

and for 30 min ave 3.5 m/sec

|                | ¥# | • | 0-0.1 | 0.1-0.3 | 0.3+ | unstable | stable |
|----------------|----|---|-------|---------|------|----------|--------|
| э <sub>ө</sub> | -  |   | 8.2   | 10.0    | 11.8 | 11.0     | 9.5    |

The only conclusion that can be reached here is that comparing the unstable data to the stable can be very difficult because the strength of the mesoscale forcing may be different for the various data periods. This analysis relies on being able to take

the differences between unstable and stable conditions to find the buoyancy contribution, which can only be done accurately i? other production terms remain constant. Since we use wind speed as a parameter, shear production automatically is subtracted out.

Because of the above mentioned difficulties it is advisable to have as large a w\* contribution as possible for this method. Thus, in Table 8 we present results for the same analysis, but restricting to w\* values greater than or equal to 0.3 m/sec from Figures 22. There is some reduction in the number of data points used, and resultant reduction in statistical validity, but this is more than compensated for by not mixing together a wide range of w\* values.

60m U(m/sec) 10m 30 m Tave-1 m 3m 4.0 1.9 8.0 3.1 0.5 1.7 2.6 2.3 1.4 1.5 13.3 2.5 1.0 0.6 1.5 2.3 1.1 0.7 2.9 0.5 0.7 2.3 3.5 4.5 0 - 7 1.1 2.3 3.8 1.2 0.2 5.5 0.6 1.1 < 11.3 1.3 6.5 0.8 2.2 0.4 2.3 1.5 2.5 7.5 0.5 1.0 1.4 1.0 9.0 0.3 0.8 0.9 1.2 -0.3 0.2 0.3 -0.1 11.0 0.1 0.5 13.5 0.3 0.4 0.3 0.9

 $\sigma_{\theta}$ (unstable)  $\stackrel{\sim}{\rightarrow} c_{\theta}$ (stable) (deg)

Table 8. Differences in the wind direction standard deviations for unstable conditions with the convective mixing velocity greater than 0.3 m/sec, and stable conditions.



くいんとう

4.4

1.3

1.1

.7

.3 4 5 U) . . . . .

. 3

State State State





 Means over wind speed ranges of the wind direction standard deviations for stable and unstable conditions.



Berger al Constant

Same of the 220 The

alager Aller





(Figure 23. - continue)



37

49

13

53

43

45

24 22 14

12

40.5

22.4

13.1 9.5

5.5

4.9

3.7 3.2 2.7 2.5 2.3 13.5

9.7.3.1.3.5.3 7.3.1.3.5.3

.з .s

÷



(Figure 23. - continue)



## BUOYANCY PRODUCTION,

 $\sigma_{\Theta}$  vs. w<sub>\*</sub> and  $\sigma_{\Theta}$  vs. w<sub>\*</sub>/U, STATIONARY CONDITIONS

Ideally, the dependence of the variability on buoyancy should be determined directly from the dependence of a on w\*. As has been pointed out above, this can only be done for stationary conditions because the effect is obscured by mesoscale forcing for other conditions. Of course, restricting to stationary conditions restricts the range examined to low wind speeds. Also, it is difficult to seperate w\* and U dependence for any conditions since w\* depends on the surface heat flux, which depends on the wind speed. In spite of all of this the situation is not hopeless, as we have seen, and in what follows we extend the buoyancy analysis one step further.

The dependences of  $\sigma$  on w\* and on w\*/U are presented in Figures 24 and 25, respectively. The mean wind speeds for the various w\* and w\*/U ranges are:

| ¥    | <u></u> | 10(w*/U) | <u></u> |
|------|---------|----------|---------|
| .15  | 5.9     | .25      | 6.9     |
| .25  | 4.3     | .50      | 6.9     |
| • 35 | 6.0     | .75      | 6.1     |
| .45  | 7.4     | 1.00     | 4.8     |
| .55  | 6.1     | 1.25     | 3.8     |
| mean | 5.9     | 1.50     | 3.0     |

The mean wind speed is fairly constant over the w\* ranges and there is no systematic variation. The w\*/U results have a fuctor of 2 monatonic change in mean wind speed over the factor of 6 change in w\*/U. From these results we conclude that the w\* dependence is not contaminated by wind speed dependence and that it can be obtained directly from the plots in Figure 24. Of course, the results may only be valid for the conditions for which the data were obtained, U - 6 m/sec. The w\*/U dependence from Figure 25 can also be used to find the dependence on w\*.

The dotted lines in the figures are theoretical curves derived from Equation 20.

 $\sigma_{\Theta}^2 = C_W k^{2/3} (w*/U)^2 + C_U F(L)(7.5 \times 10^{-4} + 6.7 \times 10^{-5} U)$  (20) This equation was used directly to fit the w\*/U curves in Figure 25, with U in the second term coming from a fit to the <U> data presented above. The w\* curves, Figure 24, were fit with Equation 20, using U = 5.9 m/sec from the mean U which was found; this gives

 $\sigma_{\rho}^2 = 0.014 \ C_W W *^2 + 0.00114 \ C_U F(L)$  (22)

We have assumed F(L)=1 in fitting theory to data and used  $C_W$  and  $C_U$  as fitting parameters. The results for the parameters are

|      | W* re:   | sults              | w∗/U results |     |  |
|------|----------|--------------------|--------------|-----|--|
| Tave | <u> </u> | _C <sub>11</sub> _ | Cu           | CU  |  |
| 1 m  | •35      | . 45               | .25          | .45 |  |
| 3m   | 1.1      | 0.9                | 0.7          | 1.0 |  |
| 10m  | 1.5      | 1.2                | 1.1          | 1.0 |  |
| 30m  | 1.7      | 2.4                | 1.5          | 1.4 |  |
| 60m  | 1.9      | 3.4                | 1.4          | 2.8 |  |

Table 9. Fitting parameters for the dependence of the wind direction standard deviation on buoyancy, w\* and w\*/U.

Obviously, the values of the parameters  $C_W$  and  $C_U$  found by fitting the  $\sigma$  vs w\* and  $\sigma$  vs. w\*/U data should be the same. Table 9 shows some difference between them. The discrepency is not surprising considering the use of mean wind speeds, F(L)=1.0, and with there being some mesoscale production contamination in the stationary data.

In the next section we will reach the final parameterization by fitting to the non-restricted data, so final discussions about these results will be postponed until that point.





## STABILITY DEPENDENCE,

σ<sub>A</sub> vs. Z/L

There is some question as to whether stability is a good parameter for scaling overwater horizontal wind variability. In what has gone before in this section, we have analysed these data to produce parameterizations for shear, buoyancy, and mesoscale produced turbulence. The calculation of stability involves both the momentum and heat fluxes, thus includes the first two production mechanisms. Thus, examining stability adds no new information, but can be used to combine two effects into one parameter. In what follows we only examine stability as a parameter, judgements as to its usefulness appear in the next section.

This analysis can proceed in two ways: one is to produce a parameterization for Z/L and the other is to find  $C_W$  for Equation 21 using  $Z_1/L$  as the parameter. We do not take the second approach since we are fitting using w\* as a parameter in what follows and  $Z_1/L$  and w\* are directly related.

Plots of the variability as a function of Z/L (for Z=10m) are shown in Figures 26. The solid lines through the averaged data are the linear regression fits to the original data. We see that the dependence on Z/L for unstable conditions is somewhat steeper than for stable, but not nearly as much greater as one would expect. The results are mainly due to the dependence on wind speed rather than on the surface heat flux (buoyancy). The

parameters for the linear regression fits are presented in the following table.

| Ave Time |      | Intercept | Slope | Correlation | <u>Delta Slope</u> |
|----------|------|-----------|-------|-------------|--------------------|
| 1 m      | +Z/L | 1.8       | 0.6   | 0.36        | 0.07               |
|          | -Z/L | 2.0       | -1.8  | 0.67        | 0.11               |
| 3≖       | +Z/L | 3.0       | 1.1   | 0.36        | 0.14               |
|          | -Z/L | 3.6       | -2.6  | 0.60        | 0.18               |
| 10m      | +Z/L | 3.8       | 2.5   | 0.43        | 0.27               |
|          | -Z/L | 4.9       | -3.7  | 0.54        | 0.30               |
| 30m      | +Z/L | 5.9       | 3.5   | 0.39        | 0.45               |
|          | -Z/L | 8.9       | -5.2  | 0.37        | 0.69               |
| 60m      | +Z/L | 7.7       | 6.2   | 0.57        | 0.72               |
|          | -2/L | 11.0      | -8.4  | 0.48        | 1.22               |

Table 10. Linear regression fitting parameters for the dependence of the wind direction standard deviation on the stability parameter, Z/L. The correlation and the uncertainty in the slope are also shown.

Even if Z/L is a good parameter for buoyancy and shear production, it cannot be expected to parameterize mesoscale production. Illustration of this fact is shown in Figure 27, where a versus Z/L is plotted for stationary conditions. The ranges of the data is small because stationarity does not

coincide with low wind speeds for these experiments. The figure clearly shows that  $\sigma$  is significantly less for stationary conditions due to the absence of mesoscale production. Thus, we should not expect Z/L to correctly parameterize the variability since it cannot account for mesoscale processes.

The assumption that stability parameterization cannot fully account for the variability has been checked by sorting the Z/L dependence into wind speed bins, see Figures 28. If Z/L were a sufficient parameter the results would not show any wind speed dependence. The  $\sigma$  versus Z/L data is sorted into three ranges, 0-2 m/sec, 2-4 m/sec and above 6 m/sec. The averaged data points are labeled with a 1, 3, or 6 to indicate the wind speed range. The lines are linear regression fits to the data for the first two ranges and the linear regression fitting parameters are presented in Table 13.

Figure 28 clearly shows that there is a significant contribution to a which cannot be accounted for by stability. It would be possible to use a scheme where both U ard Z/L are seperate (but not independent) parameters. This would not be very satisfying, but Table 11 contains the information to allow one to do so.
|                  |              | Ŭ ≨ 2 m   | /sec  | 2 < ប 🛓 4 | m/sec | U ≥ 6 m/sec |
|------------------|--------------|-----------|-------|-----------|-------|-------------|
| Ave Time         |              | Intercept | Slope | Intercept | Slope | Intercept   |
| 1 m              | +Z/L         | 3.9       | 0.2   | 2.0       | 0.4   | 2           |
|                  | -Z/L         | 3.6       | -1.3  | 2.0       | -1.1  | 2           |
| 3 <b>m</b>       | +Z/L         | 6.7       | 0.3   | 3.7       | 0.5   | 2           |
|                  | <u>-</u> Z/L | 6.2       | -1.9  | 3.7       | -1.5  | 3           |
| 1 Cm             | +Z/L         | 9.2       | 1.3   | 4.9       | 1.8   | . 3         |
| · · ·            | -Z/L         | 9.1       | -2.5  | 5.3       | -2.0  | 4           |
| 30m <sup>(</sup> | +Z/L         | 14.7      | 1.0   | 8.5       | 1.8   | 4:          |
|                  | -Z/L         | 15.4      | -3.4  | 9.8       | -2.1  | 7           |
| 60m              | +Z/L         | 21        |       | 9         |       | , <b>6</b>  |
|                  | -Z/L         | 25        | -4    | 12        | -5    | 6           |

Unstable Conditions

Table 11. Linear regression fitting parameters for the dependence of the wind direction standard deviation on the stability parameter, Z/L, sorted into wind speed ranges of  $U \le 2m$ ,  $2 \le U \le 4$ ,  $U \ge 6$  m/sec.





(Figure 26. - continued)

.:2



(Figure 26. - continued)



(Figure 26. - continued)



(Figure 26. - continued)



Figure 27.

そうちょうからう 日本 スススクレイン 日本 ひとうかい ひとう マンシン ひとう 日本 アイン・シング 日本 アイン・シート かんたい アイト アイン ないたい 一手 アイン・シート

Dependence of the horizontal wind direction standard deviation on the stability parameter Z/L, stationary conditions.



Figure 28. Dependence of the horizontal wind direction standard deviation on the stability parameter Z/L sorted into the wind speed ranges U  $\leq$  2 m/sec (1),  $2 < U \leq 4$  m/sec (3),  $U \geq 6$  m/sec (8).

.6

.5



|      | Z. | /L   | <b>#</b> SI | GMA St | d Oev |     |     |     |     |
|------|----|------|-------------|--------|-------|-----|-----|-----|-----|
| -5.0 | 10 | 18.0 | 8.7         | Ø      | 0.0   | 0.0 | 0   | 0.0 | 0.0 |
| 3.5  | 7  | 15.1 | 5.7         | 1      | 4.2   | 0.0 | 0   | 0.0 | 0.0 |
| 2.5  | 14 | 9.3  | 3.3         | 7      | 8.2   | 4.4 | Ö   | 0.0 | 0.0 |
| 1.8  | 9  | 7.2  | 4.7         | 12     | 6.7   | 2.3 | 0   | 0.0 | 0.0 |
| 1.3  | 16 | 10.2 | 7.2         | 7      | 4.6   | 1.5 | 0   | 0.0 | 0.0 |
| 8    | 18 | 8.5  | 2.0         | 47     | 4.8   | 3.4 | 0   | 0.0 | 0.0 |
| 3    | 11 | 5.7  | 5.5         | 144    | 4.1   | 2.3 | 63  | 3.3 | 2.0 |
| .3   | 14 | 5.2  | 3.5         | 119    | 4.0   | 2.5 | 172 | 2.2 | .9  |
| . 8  | 3  | 15.8 | 4.9         | 33     | 3.7   | 2.4 | 2   | 3.1 | .7  |
| 1.3  | 2  | 7.5  | . 1         | 18     | 4.3   | 2.7 | 1   | 3.5 | 0.0 |
| 1.9  | 4  | 5.1  | 2.4         | 9      | 3.5   | 1.3 | 0   | 0.0 | 0.0 |
| 2.5  | 2  | 5.8  | 4.5         | 8      | 4.7   | 1.4 | 0   | 0.0 | 0.0 |
| 3.5  | t  | 19.2 | 0.0         | 2      | 7.9   | 0.0 | Ø   | 0.0 | 0.0 |
| 5.0  | 3  | 6.9  | 2.5         | 8      | 6.1   | 2.5 | 0   | 0.0 | 0.0 |
|      |    |      |             |        |       |     |     |     |     |

|   |   |         | INTERCEPT | SLOPE             | CORRELATION | DELTA SLOPE |
|---|---|---------|-----------|-------------------|-------------|-------------|
| U | - | 1 m/sec | •         |                   |             |             |
|   | ÷ | Z/L     | 8.73      | .31               | 13          | . 14        |
|   | - | Z/L     | 6.17      | -1.38             | 49          | .37         |
| U | - | 3.m/sec |           |                   |             |             |
|   | + | Z/L     | 3.69      | . 52              | . 23        | .16         |
|   | - | Z/L     | 3.73      | <del>~</del> 1.53 | 33          | .30         |

(Figure 28. - continued)



Std Dev SIGMA #

| -5.0 | 10 | 24.3 | 9.9  | 0   | 0.0  | 0.0  | 0   | 0.0 | 0.0 |
|------|----|------|------|-----|------|------|-----|-----|-----|
| -3.5 | 7  | 20.8 | 9.4  | 1   | 4.9  | 0.0  | 0   | 0.0 | 0.0 |
| -2.5 | 14 | 13.0 | 6.4  | 7   | 11.2 | 8.0  | 0   | 0.0 | 0.0 |
| -1.8 | 9  | 13.4 | 12.3 | 12  | 9.5  | 5.3  | 0   | 0.0 | 0.0 |
| -1.3 | 16 | 14.3 | 10.9 | 7   | 6.7  | 3.1  | Ø   | 0.0 | 0.0 |
| 8    | 18 | 8.9  | 3.0  | 46  | 6.1  | 4.8  | Ø   | 0.0 | 0.0 |
| 3    | 11 | 9.7  | 8.2  | 144 | .5.9 | 4.1  | 63  | 4.3 | 4.2 |
| .3   | 14 | 7.2  | 4.2  | 119 | 5.7  | 4.0  | 172 | 2.8 | 2.0 |
| . 8  | 3  | 23.0 | 9.4  | 33  | 6.3  | 6.2  | 2 1 | 3.7 | 1.1 |
| 1.3  | 2  | 9.9  | 1.8  | 18  | 6.5  | 3.8  | 1   | 5.3 | 0.0 |
| 1.8  | 4  | 7.3  | 5.8  | 9   | 4.9  | 1.6  | Ø   | 0.0 | 0.0 |
| 2.5  | 2  | 13.9 | 13.0 | 8   | 8.9  | 2.5  | Ø   | 0.0 | 0.0 |
| 3.5  | 1. | 35.0 | 0.0  | ÷ 2 | 10.5 | 2.1  | . 0 | 0.0 | 0.0 |
| 5.0  | 3  | 12.9 | 10.2 | , 8 | 14.3 | 18.8 | 0   | 0.0 | 0.0 |
|      |    |      |      |     |      |      |     |     |     |

|    |           | INTERCEPT | SLOPE | CORRELATION | DELTA SLOPE |
|----|-----------|-----------|-------|-------------|-------------|
| IJ | = 1 m/sec |           |       |             |             |
|    | + Z/L     | 9.17      | 1.25  | .30         | .76         |
|    | - Z/L     | 9.14      | -2.47 | 44          | .56         |
| U  | = 3 m/sec |           |       |             |             |
|    | + Z/L     | 4.93      | 1.78  | .34         | .36         |
|    | - Z/L     | 5.31      | -1.98 | 25          | .52         |

(Figure 28. - continued)



Z/L

#

SIGMA Std.Dev

-5.0 -3.5 -2.5 -1.8 -1.3 -.8 -.3 10 33.3 16.7 0 0.0 0.0 0 3.0 0.0 7 32.8 22.1 1 5.2 0.0 0 0.0 0.0 22.4 14.0 7 12 18.4 20.7 0 0.0 0.0 9 28.2 26.9 13.4 11 9.4 0 0.0 0.0 17.5 7 13.4 15 13.6 10.5 0 0.0 0.0 9.2 13.6 18 5.0 46 9.9 .0 0.0 0.0 19.5 21.1 139 11.2 10 10.8 60 7.4 13.7 .3 .8 1.3 1.8 2.5 3.5 7.3 14 11.7 33 8.9 5.0 150 3.7 2.3 10.2 3 2 32.9 15.4 23 5.8 2 5.0 .2 0.0 13.5 2.0 17 9.5 0 0.0 6 7 3 11.5 8.1 2.9 0 0.0 0.0 ١ 9.3 0.0 11.8 8.5 0 0.0 0.0 1 58.5 0.0 2 21.2 12.1 0 0.0 0.0 5.0 2 10.0 Z.8 5 15.1 11.2 0 0.0 0.0

|   |           | INTERCEPT | SLOPE | CORRELATION | DELTA SLOPE |
|---|-----------|-----------|-------|-------------|-------------|
| U | = 1 m/sec |           |       |             |             |
|   | + Z/L     | 14.66     | . 97  | .13         | 1.54        |
|   | - Z/L     | 15.35     | -3.42 | 34          | 1.07        |
| U | = 3 m/sec | *         |       |             |             |
|   | + Z/L     | 8.49      | 1.78  | .25         | .56         |
|   | - Z/L     | 9.78      | -2.13 | tt          | 1.31        |

(Figure 28. - continued)



SIGMA

#

27L

にいいいです

アインシンシュ 豊くとうため 豊大 マン

| -5.0 | 7  | 44.8 | 21.6 | 0    | 0.0  | 0.0   | 0  | 0.0  | 0.0 |
|------|----|------|------|------|------|-------|----|------|-----|
| -3.5 | 2  | 63.3 | 31.2 | 0    | 0.0  | 0.0   | Ø  | 0.0  | 0.0 |
| -2.5 | 5  | 38.3 | 23.4 | 5    | 23.2 | 19.5  | 0  | 0.0  | 0.0 |
| -1.8 | 5  | 32.1 | 15.4 | 9    | 23.9 | 23.8  | 0  | 0.0  | 0.0 |
| -1.3 | 9  | 31.7 | 29.6 | 4    | 15.1 | 15.9  | 0  | 0.0  | 0.0 |
| 8    | 5  | 17.6 | 7.4  | 17   | 15.8 | 13:7  | 2  | 7.8  | 2.1 |
| 3    | 7  | 23.7 | 29.9 | 60   | 12.9 | 10.9  | 25 | 6.1  | 5.4 |
| .3   | 10 | 20.1 | 6.9  | - 41 | 11.2 | 8.5   | 69 | 5.4  | 4.8 |
| .9   | 1  | 37.7 | 0.0  | 16   | 13.2 | 7.0   | 1  | 12.9 | 0.0 |
| 1.3  | 1  | 9.5  | 0.0  | 5    | 14.9 | 6.8   | 9  | 0.0  | 0.0 |
| 1.8  | 2  | 16.5 | 10.5 | 2    | 8.2  | 4.2   | 0  | 0.0  | 0.0 |
| 2.5  | Ø  | 0.0  | 0.0  | . 2  | 13.4 | 12.1  | Ø  | 0.0  | 0.0 |
| 3.5  | Q  | 0.0  | 0.0  | 1    | 13.8 | 0.0   | Ø  | 0.0  | 0.0 |
| 5.0  | 2  | 13.5 | 14.7 | 3    | 47.0 | 11.5. | 0  | 0.0  | 0.0 |
|      |    |      |      |      |      |       |    |      |     |

Std Dev

|             | INTERCEPT | SLOPE | CORRELATION | DELTA SLOPE |
|-------------|-----------|-------|-------------|-------------|
| U F I M/Sec |           |       |             |             |
| + Z/L       | 20.66     | 61    | 14          | 1,17        |
| - Z/L ·     | 24.50     | -4.18 | 35          | 1.86        |
| U = 3 m/sec |           |       |             |             |
| + Z/L       | 9.01      | 8.17  | . 61        | .37         |
| - Z/L       | 12.10     | -4.99 | 24          | 2.07        |

(Figure 28. - continued)

## ONSHORE/OFFSHORE INFLUENCE

One would expect that, all else being equal, the turbulence would be larger for offshore flow due to enhancement by the terrain and the transition from the overland to the over water regime. Here we compare onshore and offshore flow; the analysis is not very reliable because only a small amount of offshore data exist and none of it is for high wind speeds.

Variabilities as functions of wind speed for onshore and offshore flow are shown in Figures 29. The following table presents the differences in  $\sigma$  for these conditions.

| J(m/sec) | Tave = <u>1m</u> | <u>3</u> . | <u>10m</u> | <u>_30m</u> _ | 60m  |
|----------|------------------|------------|------------|---------------|------|
| 0.5      | -0.3             | 3.1        | -0.2       | 17.9          | 7.8  |
| 1.5      | 2.4              | 4.3        | 5.9        | 8.4           | 4.8  |
| 2.5      | -0.6             | -1.2       | -1.8       | -0.8          | -1.5 |
| 3.5      | 0                | -0.4       | 0          | 3.0           | 0.4  |
| 4.5      | -0.1             | -0.9       | -1.3       | -1.3          | 3.7  |
| 5.5      | 0.3              | 0.1        | 0.4        | 2.1           | 6.7  |
| 7.5      | 0.3              | 0.8        | 1.3        | 1.8           | 2.1  |
| 9.0      | 0.3              | 0.9        | 0.6        | 2.4           | 0.5  |

σ<sub>θ</sub>(offshore) - σ<sub>θ</sub>(onshore) (deg)

NASARAAN INDONAAN INDONAAN INDONAAN INGAADARAAN

Table 12. Differences in the horizontal wind direction

standard deviations for onshore and offshore flow.

The results in the table are not very encouraging. There is a pattern of increasing averaging time and decreasing wind speed. The percent differences are small and we feel that no attempt should be made to take this effect into account unless one is near the shore. We do not have any near shore, offshore flow data.



/ 30



(Figure 29. - continued)



(Figure 29. - continued)



(Figure 29. - continued)



(Figure 29. - continued)

115

ŝ

## VIII. PARAMETERIZATION RESULTS.

The results in the previous section show the wind direction variability magnitudes that can be attributed to the three production mechanisms, shear, buoyancy, and mesoscale processes. We have shown that it is not possible to unambiguously separate the mechanisms. We now develope the parameterization by fitting Equation 20 to the data, adjusting  $C_W$  and  $C_U$  to find the best fit. This is done for all five averaging times, 1 min, 3 min, 10 min, 30 min, and 60 min.

The mesoscale process cannot be parameterized with  $C_W$  and  $C_U$ , so another term must be added to Equation 20. We have seen that the mesoscale influence decreases with increasing wind speed, and we use

PRODUCED AT GOVERNMENT EXPENSE

 $\sigma_{\alpha}$ (mesoscale) =  $C_{ms} / U^{N}$ .

If N = 2,  $C_{mS}$  can be interpreted as the square of an effective mixing velocity, equivalent to the convective mixing velocity, w\*, and the friction velocity U\*. Understanding this new velocity is not easy, and here we only evaluate the new constants with no explanation of their meaning. Figures 30 show the theoretical fits to the  $\sigma$  vs. U data for stable, stationary, and unrestricted conditions. Sorting on w\* ranges of 0-0.2, 0.2-0.4, and > 0.4 m/sec is done for the latter two cases and the values of the fitting parameters used are shown on the graphs.

These particular conditions have been chosen because a) w\* = 0for stable conditions and  $C_{ms}$  can be determined, b) mesoscale production is low for stationary conditions and  $C_w$  can be determined, and c) the whole procedure can be checked for unrestricted conditions. For each set of curves the parameters are evaluated by the following procedure.

1. Choose an initial value of  $C_{ij}$  from Table 9.

- 2. Adjust  $C_{ms}$  and N to fit the low wind speed portion of the stable data.
- 3. Adjust  $C_U$  to correctly fit the high wind speed portion of the stable data.
- 4. Choose  $C_W$  from Table 9 and adjust to fit the stationary data.
- 5. The above procedures utilize data for which  $C_W = 0$ and  $C_{ms} = 0$ , respectively. Now check the results by checking the fit that all parameters combined give to the unrestricted data.

There are two fitting curves for those cases where  $C_W = 0$ . The lower one is for w\* = 0.1 and the upper 0.5 m/sec. These curves correspond reasonably well to the values of a found for the low and high w\* ranges, 0-0.1 m/sec and 0.4 m/sec and greater.

We have found that the best value of N for the mesoscale term is N = 2. This is convenient since it may allow future development of a model with a new scaling velocity. Such modeling is well beyond the scope of this report.

We have discovered during the course of fitting the data that the short-time average results are strongly dependent on the value of  $C_U$  while the long-time average results are not. This is illustrated in Figures 31 where we attempt to fit the 1 min and 60 min data with only slight changes in the parameters. For the 1 min data, such fitting is not possible. The low wind speed data can be fit by slightly raising  $C_{ms}$ , or the high wind speed data by lowering N. Both ranges cannot be fit without including  $C_U$ . The conclusion is that shear production is not important for large averaging times, large scale processes dominate. For short averaging times, shear production dominates at high wind speeds.

The formulation we are using to fit the data takes stability into account through the term F(L), which we have assumed to be 1.0 to this point. This correction has been applied and the effect is illustrated in Figures 32. The figures use the parameters determined above, and plot the theoretical results for Z/L = -4, 0, and +4. For a 1 min averaging time, the theory predicts and the plots show supression of variability for stable conditions and enhancement for unstable. The effect is negligible for a 30 min averaging time. Even for short averaging times the effect is only noticible for high wind speeds, and oversea conditions do not support stability far from nuetral for high winds. Thus, we conclude that the stability correction is not needed for the values of  $C_U$ ,  $C_W$  and  $C_{ms}$  that correctly fit these data and will continue to use F(L) = 1.

The next section summarizes these results and discusses their meaning.

アンジャンチ





(Figure 30. - continued)





(Figure 30. - continued)



4

LL.















(Figure 32. - continued)



## IX. SUMMARY AND DISCUSSION.

We have parameterized the horizontal wind variability with the equation

Sector 20

$$\sigma_{\theta}^{2} = C_{w} k^{2/3} (w*/U)^{2} + C_{U} (U*/U)^{2} + C_{ms} / U^{2}.$$
(23)

The three fitting parameters are functions of the averaging time used to evaluate the variance. The values of the parameters are given in the following table.

| Ave | Time | Cu  |      | C <sub>ms</sub> |
|-----|------|-----|------|-----------------|
| 1   | min  | 0.3 | 0.45 | 0.02            |
| 3   | min  | 0.6 | 0.6  | 0.06            |
| 10  | min  | 1.2 | 0.8  | 0.12            |
| 30  | min  | 1.6 | 1.2  | 0.25            |
| 60  | min  | 2.5 | 1.5  | 0.5             |

Table 13. Fitting parameters for buoyancy, shear, and mesoscale production.

Some care must be exercised in using the equation and parameters. The following caveats apply:

 These results are only applicable to the coastal, overwater regime.

- 2. These results may be location specific (although two reasonably different locations were utilized for data collection).
- 3. The mesoscale production term was obtained by examining data when the flow was driven by a sea-breeze cycle. It cannot be expected to apply to other conditions.
- 4. The mesoscale term must be set to zero,  $C_{ms} = 0$ , for stationary conditions.

We have reasonable confidence that the buoyancy and shear production terms are transportable to other conditions and locations. There may be some difficulty with the buoyancy term because we cannot be sure that all mesoscale influence was absent when it was determined, but it's use as given should not lead to significant error. We have no confidence that the mesoscale term is transportable. The effect is large and we expect it to be site specific.

Flat terrain overland can often be characterized by an 0.2 power law relation for  $\sigma$  vs.  $T_{ave}$ . We can easily check that relationship for these conditions using the parameters presented in Table 13. The results are presented in the following table.

|                                                     | 10  | <u>3m</u> | <u>10m</u> | <u>30 m</u> | <u>60m</u> |
|-----------------------------------------------------|-----|-----------|------------|-------------|------------|
| $(T/T_1)^{0.2}$                                     | 1.0 | 1.25      | 1.58       | 1.97        | 2.26       |
| $(C_{W}/C_{W}(1))^{1/2}$                            | 1.0 | 1.4       | 2.0        | 2.3         | 2.9        |
| (C <sub>U</sub> /C <sub>U</sub> (1)) <sup>1/2</sup> | 1.0 | 1.15      | 1.3        | 1.6         | 1.8        |
| $(C_{m_{S}}/C_{m_{S}}(1))^{1/2}$                    | 1.0 | 1.7       | 2.4        | 3.5         | 5.0        |

Table 14. Comparison of the ratio of wind direction standard deviation for buoyancy, shear, and mesoscale production for various averaging times with the 0.2 power law.

It is obvious that none of the terms follow the 0.2 power law. Each term does follow a power law fairly well, with the following exponents:

| Buoyancy  | 0.27 |
|-----------|------|
| Shear     | 0.13 |
| Mesoscale | 0.38 |

The right combination of shear and buoyancy production can lead to an 0.2 power law. Of course, depending on the conditions, any value between the extremes shown above can be found, or non-power law behavior. This indicates that there is a significant difference in the shape of the turbulence spectra for flat overland terrain and a coastal region, a not unexpected result.

It is also possible to parameterize the wind variability

with the surface layer stability. This parameterization was presented in section VI and will not be repeated here. We do want to reemphasize that Z/L can only be a good parameter for stationary conditions, which restricts its usefulness to near neutral conditions. This is due to the inability to parameterize mesoscale production in this way.

The purpose of this work is to parmeterize wind variability for use in diffusion estimates and modeling. For what types of diffusion conditions are the results we have obtained applicable? First, note that no detrending has been applied when determining the standard deviations reported here. This means that a given averaging time's results contain scales of motion larger than L = U T<sub>ave</sub> and a fraction of the variance is due to motions that would not be considered to be turbulence. This is of no consequence if one is interested in the total spread of a plume during the averaging time, including center of mass movement. If one is attempting to predict puff dispersion (relative diffusion) then inclusion of large scales of motion can lead to incorrect results.

Whether these results can be applied to puff dispersion or not can be determined from Table 14, or by examining the curves in Figures 30. At U = 5 m/sec, the 1 min average and 30 min average standard deviations are about 2 deg and 5 deg, respectively. If we assume that a slow turning of the wind (meander) is responsible for the variability, the ratio of the standard deviations would be the ratio of the averaging times.

This would lead to a 1 min standard deviation of about 0.1 deg, scaling to the 30 min average. Thus, the large 1 min standard deviation can be ascribed to turbulence and will result in relative diffusion for puff sizes of the order of  $L = (5 \text{ m/sec}) \times$ (60 sec) = 300 m. This conclusion is only approximate without looking at spectra, but does give us confidence that the results can be used for both puff and plume dispersion.

■「スティンシンは■というにした」の「おいりつつ」となっていた。

● アンドビンドを見ていたいという。● アンドンドは 着われた

When using the results of this report to parameterize wind variability one must first determine if the situation is stationary. In this context, stationary means that there is a well established wind, that one is not in a land-sea-breeze transition period. If it is stationary,  $C_{ms} = 0$  and if non-stationary the full Equation 23 or 20 is used to calculate the appropriate  $\sigma^2$ .

We do not expect these results to apply far from a coastline. In that case we expect  $C_{ms} = 0$ , however, we recommend that at-sea data be collected to verify this opinion so that a universal parameterization can be confirmed.
# Appendix A

# WIND TIME SERIES

The following graphs are time series of the wind directions, wind speeds, and wind direction standard deviations. In the upper graphs, the dots are the wind direction and the length of the bars attached to the dots show the wind speed. In the lower graphs, the open circles are the one-hour average wind direction standard deviations, the dots the one-hour average of all 1 min average standard deviations that occured during that period.









•••••

• . • . • . • . • . • . • . •

「アンシンシン」と言うないないで、

いたいためたち

ファイ・シンシン



a kina kina kina kina kina kina s

.



i fan de fan Is de



A-- 8





terie hours

### Appendix B

#### CROSS WIND SPEED FLUCTUATIONS, REGULATORY CONSIDERATIONS

This appendix follows correspondence from Steve Hanna to Walter Dabbert, where he originally presented many of the thoughts contained here. This appendix is included so that these considerations will be contained with the data used and compared to modeling we have done.

The cross wind speed fluctuations can be found directly from the wind direction fluctuations from

$$\tan \sigma_{u} = U \sigma_{A}$$
.

The centerline concentration of a plume (Gaussian model) depends inversely on  $\sigma$  and a function of the downwind distance. Thus, this parameter is of central importance in determining impact of a pollutant cloud.

In the absence of measuring  $\sigma$  directly, regulations specify methods for its estimation. Clearly, estimating a small  $\sigma$ predicts a high concentration and large impact. Worst case will be for low wind speed stable conditions. Common practice is to estimate, for stable conditions, that

 $\sigma_{\Delta} = 2.5 \text{ deg and } U = 1 \text{ m/sec},$ 

from which one has, upon converting o to radians,

#### $\sigma_v = 0.04 \text{ m/sec.}$

This is a very low value, and it is instructive to compare it to the results contained in this report.

Our parameterization for a can be written as

 $(U\sigma_{o})^{2} = C_{W} k^{2/3} W k^{2} + C_{U} U k^{2} + C_{ms}$ 

From this and the results for the parameters contained in the body of this report it is a simple matter to compute values of Ug for various conditions. Such results are contained in Table B-1 for stable conditions ( $w_{*}=0$ ).

Of course, there is also considerable interest in the worst case senario, which occurs for the minimum value of Us. We show the straight line shows the minimum value of Us observed. These minima are also listed in Table B-1.

| Jo <sub>A</sub> ( | <b>m/</b> | Se | c) |
|-------------------|-----------|----|----|
|-------------------|-----------|----|----|

|       |         | Model Pr      | ediction | Mimimum O         | bserved   |
|-------|---------|---------------|----------|-------------------|-----------|
| Tave  | U =     | <u>1m/sec</u> | 10m/sec  | <u>Stationary</u> | All Cond. |
| imin  |         | C.14          | 0.29     | .06               | .04       |
| 3min  |         | 0.25          | 0.38     | .07               | .07       |
| 10min |         | 0.35          | 0.48     | .06               | .06       |
| 30min |         | 0.50          | 0.65     | .15               | :09       |
| 60min |         | 0.71          | 0.84     | .17               | .15       |
| •     | _ • _ • | ·             |          | •                 |           |

NI PANANANA MANJALA PANANANA

Table B-1. Model predicted and minimum observed cross wind speed standard deviations.

Table B-1 shows that the observed worst case scenarios are far "less worst" than that recommended for used by the regulatory agencies. For one-hour average impact from a plume, Figures B-1 show that a sensible worst case scenario would be:

Uc<sub>A</sub>(60min, worst case) = 0.2 m/sec.

The factor of at least 4 difference in the accepted and observed worst case scenarios is significant. The reason for the difference is undoubtedly the fact that the low value currently used was determined during very stable, overland conditions. Such conditions do not occur overwater. Of course, a factor of 4 underestimate of  $\sigma_V$  translates into a factor of 4 over estimate of plume concentration.

B-2



S Log (U)

2

ø

221

2



1.5



F

B-4



B-5

121



B-6



B-7

# Appendix C

# METEOROLOGICAL DATA AND HALF-HOUR de

The following tables list half hour average meteorological data and the half hour averages of the average  $\sigma_{\Theta}$  over 4 averaging times, and the 60 m average. Data is averaged over the half hour preceeding the time indicated. The following are the data included:

| Code           | 1 - non-stationary, 2 - stationary,       |
|----------------|-------------------------------------------|
| Zi             | inversion height (m)                      |
| Rēl            | wind direction relative to ship bow (deg) |
| WD .           | true wind direction (deg)                 |
| 10/L           | 10 m divided by Monin-Obukhov length      |
| U              | true wind speed (m/sec)                   |
| <b>U #</b>     | friction velocity (m/sec)                 |
| W#             | convective mixing velocity (m/sec)        |
| ₫ <del>9</del> | horizontal wind direction standard        |

| BLM-1 |     |      |     | METE | EOROLOGIC | AL DAT         | <b>`</b> A |           | 1.           | /2 hr      | AVE SI      | SMA TH     | IETA |
|-------|-----|------|-----|------|-----------|----------------|------------|-----------|--------------|------------|-------------|------------|------|
| Time  | Cod | e Zi | Rel | ພບ   | 10/L      | . <u>U</u>     | U+         | <u>u+</u> | 1.0          | <u>3</u> m | 10m         | 30m        | 60m  |
| 9/2   | 3   |      |     |      |           |                |            |           |              |            |             |            |      |
| 1642  | 1   | 310  | 357 | 258  | 425       | 4.5            | , 156      | .525      | 3.5          | 5.9        | 8.1         | 8.5        |      |
| 1717  | 1   | 260  | 353 | 257  | 507       | 4.8            | .165       | .554      | 3.0          | 8.8        | 9.4         | 10.4       |      |
| 1749  | 1   | 250  | 354 | 258  | 629       | 4.7            | .162       | .585      | 4.3          | 6.9        | 6.9         | 9.1        | 9.8  |
| 9/2   | 4   |      |     |      |           |                |            |           |              |            |             |            |      |
| 1137  | 1   | 330  | 55  | 238  | -2.381    | 2.1            | .073       | .444      | 4.6          | 7.9        | 10.2        | 10.3       |      |
| 1205  | 1   | 360  | 209 | 42   | -2.554    | 2.1            | .073       | .469      | 5.1          | 8.4        | 13.5        | 12.9       | 13.2 |
| 1233  | 1   | 350  | 36  | 236  | -2.782    | 2.0            | .068       | .442      | 4.7          | 6.8        | 9.9         | 10.1       |      |
| 1301  | 1   | 350  | 18  | 227  | -1.911    | 2.3            | .078       | .448      | 3.7          | 6.2        | 12.0        | 13.9       | 12.9 |
| 1329  | 1   | 340  | 25  | 246  | -2.967    | 1.9            | .065       | .430      | 5.1          | 7.1        | 9.4         | 9.0        |      |
| 1357  | 1   | 330  | 17  | 260  | -1.665    | 2.8            | .093       | .503      | 4.2          | 9.1        | 10.3        | 9.6        | 11.5 |
| 1425  | 1   | 300  |     | 263  | - 746     | 3.9            | .131       | .525      | 3.6          | 5.8        | 7.1         | 7.9        |      |
| 1453  |     | 280  | 358 | 261  | - 687     | 3.9            | 133        | .506      | 4.0          | 5.7        | 6.9         | 7.5        | 7.7  |
| 1571  | 2   | 750  | 345 | 255  | - 854     | 36             | 123        | 490       | 3.4          | 7.7        | 7.5         | 8.8        |      |
| 1549  | 2   | 240  | 779 | 255  | - 513     | 4 6            | 156        | 513       | 3.1          | 5.7        | 6.6         | 7.3        | 8.1  |
| 1040  | 2   | 240  | 333 | 200  | - 275     | <pre>4.0</pre> | 206        | 557       | 3.0          | 5 5        | R 1         | 8.8        | •••  |
| 1017  | 2   | 230  | 3+2 | 233  | - 709     | 5.5            | 275        | .337      | 7 9          | A 1        | 5 7         | 5 9        | 70   |
| 1040  | 4   | 200  | 342 | 200  | 203       | <b>E</b> 0     | 200        | .302      | 2.0          | <b>E</b> E |             | 2.0<br>c c |      |
| 1/13  | 2   | 270  | 348 | 267  | 2/3       | 5.0            | .200       | .330      | 4.0          | 3.3        |             | 7 0        |      |
| 1803  | _'  | 290  | 349 | 276  | 053       | 7.0            | .240       | . 392     | 2.3          | 4.2        | 5.4         | 7.0        |      |
| 9/2   | 7   |      |     |      |           |                |            |           |              |            |             |            |      |
| 743   | 1   | 280  | 64  | 45   | -2.514    | 2.8            | .096       | .562      | 3.5          | 4.5        | 5.5         | 5.7        | 6.2  |
| 859   | 1   | 340  | 282 | 289  | -1.712    | Z.9            | .098       | .540      | 5.2          | 8.5        | 8.1         | 8.7        |      |
| 945   | 1   | 200  | 275 | 270  | 561       | 4.6            | .156       | .496      | 3.0          | 5.1        | 5.7         | 6.2        |      |
| 1013  | 1   | 200  | 283 | 287  | 744       | 3.9            | .132       | .460      | 2.8          | 3.8        | 4.5         | 5.1        | 10.2 |
| 1041  | 1   | 230  | 281 | 285  | 641       | 4.1            | .138       | .481      | 2.5          | .2.9       | 4.2         | 5.4        |      |
| 1138  | 2   | 230  | 23  | 271  | 371       | 5.1            | .175       | .509      | 2,9          | 5.8        | 7.9         | 7.4        |      |
| 1206  | 2   | 220  | 21  | 271  | 420       | 5.1            | .176       | .523      | 2.6          | 4.3        | 5.4         | 5.8        | 6.7  |
| 1234  | 2   | 200  | 17  | 275  | 335       | 5.5            | .190       | .508      | 2.6          | 4.8        | 5.6         | 5.4        |      |
| 1302  | 2   | 220  | 11  | 275  | 274       | 5.9            | .207       | .535      | 2.8          | 4.2        | 4.9         | 5.7        | 5.6  |
| 1330  | 2   | 210  | 3   | 273  | 204       | 5.4            | .226       | .521      | 2.0          | 3.6        | 4.4         | 4.5        |      |
| 1358  | 2   | 200  | 1   | 274  | - 180     | 6.6            | .229       | .499      | j <b>.</b> 9 | 2.5        | 3.4         | 4.9        | 4.8  |
| 1426  | 2   | 200  | 356 | 272  | 119       | 7.6            | .270       | .512      | 1.9          | 3.2        | 4.2         | 4.5        |      |
| 1454  | 2   | 130  | 355 | 274  | 088       | 8.3            | .298       | . 444     | 1.6          | 3.3        | 3.3         | 3.3        | 4.1  |
| 1522  | 2   | 120  | 351 | 275  | 062       | 8.9            | .337       | .433      | 1.5          | 2.2        | 2.5         | 2.5        |      |
| 1550  | 2   | 110  | 351 | 276  | 071       | 8.0            | .284       | . 372     | 1.2          | 1.8        | z. 1        | 2.0        | 2.4  |
| 1618  | 2   | 110  | 351 | 273  | 064       | 7.8            | .274       | .348      | 1.5          | 2.7        | 2.7         | 2.8        |      |
| 1646  | 2   | 110  | 347 | 274  | 059       | 7.9            | .277       | .341      | 1.2          | 2.0        | z.7         | 3.0        | 2.9  |
| 1714  | 2   | 110  | 342 | 259  | 074       | 7.4            | .257       | .341      | 1.3          | 2.0        | <b>z</b> .7 | 2.9        |      |
| 1742  | 2   | 140  | 342 | 269  | 072       | 8.0            | .282       | . 402     | 1.4          | 2.3        | z.7         | 2.7        | 2.8  |
| 1810  | 2   | 140  | 344 | 270  | 101       | 7.0            | .243       | .387      | 1.5          | 2.7        | 3.0         | 4.1        |      |
| 1838  | 2   | 160  | 340 | 268  | 147       | 5.8            | .200       | .378      | 1.5          | 2.7        | 2.8         | 2.8        | 3.6  |
| 1906  | Z   | 160  | 343 | 271  | 158       | 5.6            | . 192      | .372      | 1.8          | 2.9        | 3.0         | 3.1        |      |
| 9/28  | 3   |      |     |      |           |                |            |           |              |            | 1           |            |      |
| 1307  | 1   | 210  | 25  | 235  | -1.774    | 2.0            | .067       | . 320     | 3.7          | 5.7        | 8.2         | 11.4       |      |
| 1335  | 1   | 200  | 15  | 230  | -1.429    | 2.3            | .075       | .331      | 3.4          | 5.7        | 6.9         | 8.5        | 10.3 |
| 1408  | 1   | 160  | 14  | 246  | 935       | 2.9            | . 094      | . 328     | 2.2          | 3.9        | 4.7         | 7.6        |      |
| 1436  | 2   | 140  | 21  | 253  | -1.744    | 2.5            | . 084      | .347 .    | 3.6          | 6.1        | 6.0         | 6.3        | 7.7  |
| 1504  | 2   | 120  | 11  | 256  | -1.080    | 3.0            | .100       | . 333     | 3.5          | 5.2        | 5.0         | 8.7        |      |
| 1532  | 2   | 120  | 7   | 263  | - 741     | 3.5            | 115        | 347       | 1.9          | 2.8        | 4.0         | 5 1        | 79   |

METEOROLOGICAL DATA

BLM-1

1/2 hr AVE SIGMA THETA

1-1442-1411 || 144-44

N. C. C. C. C. C.

.

. . . .

| Time | Cod | e Zi | Rel  | WD  | 10/L   | U   | U+    | <u>u+</u> | tm  |     | 10m | 30m_ | 60m |
|------|-----|------|------|-----|--------|-----|-------|-----------|-----|-----|-----|------|-----|
| 1600 | 2   | 120  | 352  | 258 | 672    | 3.4 | .111  | .317      | 1.7 | 2.6 | 3.6 | 3.5  |     |
| 1628 | 2   | 140  | 347  | 255 | 532    | 3.3 | . 105 | .295      | 2.2 | 4.7 | 5.6 | 6.1  | 5.1 |
| 1740 | 2   | 120  | 342  | 266 | 582    | 3.1 | .102  | .277      | 1.4 | 2.4 | 2.4 | 4.1  |     |
| 1808 | 2   | 110  | 335  | 261 | 486    | 3.5 | .114  | .283      | 1.3 | 1.7 | 2.0 | 3.9  | 4.5 |
| 1836 | 2   | 110  | 332  | 259 | 808    | 2.7 | .089  | .259      | 1.7 | 2.2 | 2.4 | 3.8  |     |
| 1904 | 2   | 110  | 325  | 257 | -1.147 | 2.3 | .075  | .248      | 1.6 | 2.4 | 3.4 | 4.7  | 4.3 |
| 9/2  | 29  |      |      |     |        |     |       |           |     |     |     |      |     |
| 1217 | 1   | 100  | 32   | 232 | -2.195 | 2.4 | .079  | .316      | 2.7 | 4.3 | 4.2 | 5.1  |     |
| 1245 | 1   | 100  | 35   | 234 | -1.759 | 2.2 | .072  | .266      | 2.6 | 3.5 | 4.6 | 4.9  | 5.1 |
| 1347 | 2   | 90   | 33   | 258 | 485    | 3.3 | .106  | .247      | 1.6 | 2.8 | 2.8 | 2.7  | 4.8 |
| 1415 | 2   | 80   | - 32 | 266 | 427    | 3.5 | .114  | . 243 -   | 1.3 | 1.9 | 3.0 | 3.1  |     |
| 1443 | 2   | 80   | 28   | 263 | 285    | 4.0 | .129  | .243      | 1.5 | 2.0 | 3.0 | 3.0  | 3.3 |
| 1511 | 2   | 70   | 21   | 254 | -,096  | 4.7 | .154  | .193      | 1.3 | 2.0 | 3.2 | 4.2  |     |
| 1540 | 2   | 60   | 5    | 262 | 023    | 5.5 | .179  | .134      | 1.5 | 2.0 | 2.2 | •    |     |
| 1626 | 2   | 60   | 344  | 268 | 053    | 4.8 | .154  | .155      | 1.2 | 2.6 | 2.0 | 2.5  |     |
| 1654 | 2   | 50   | 333  | 267 | 052    | 4.6 | .149  | .137      | 1.1 | 1.5 | 1.8 | 2.0  | 2.4 |
| 1722 | 2   | 50   | 327  | 266 | 077    | 4.9 | .162  | .168      | .9, | 1.6 | 2.0 | 2.3  |     |
| 1750 | Z   | 40   | 326  | 274 | 079    | 5.4 | .180  | .175      | 1.1 | 1.8 | 2.1 | 3.9  | 5.2 |
| 1818 | 2   | 40   | 331  | 285 | 086    | 5.1 | .169  | .169      | .9  | 1.3 | 2.5 | 3.6  |     |
| 1846 | 2.  | .30  | 328  | 288 | 120    | 4.5 | .146  | .149      | .9  | 1.1 | 1.8 | 3.5  | 3.8 |
| 1902 | 2   | 30   | 322  | 287 | 113    | 4.3 | .137  | .136      | 1.0 | 1.1 | 1.5 |      |     |

| BLM-2 METEOROLOGICAL DATA 1/2 hr AV |          |       |     |     |        |     |             |          |     | AVE SI      | IGMA TI    | IETA  |             |
|-------------------------------------|----------|-------|-----|-----|--------|-----|-------------|----------|-----|-------------|------------|-------|-------------|
| <u>Time</u>                         | Coc      | ie Zi | Rel | WD  | 10/L   | U   | <u>U+</u>   | <u> </u> |     | <u>3r</u> : | <u>10m</u> | 30m   | 60m         |
| 304                                 | 1        | -1    | 191 | 116 | .100   | 2.3 | .064        |          | 6.9 | 9.4         | 12.0       | 20.9  |             |
| 1/0                                 | 96       |       |     |     |        |     |             |          |     |             |            |       |             |
| 1155                                | 1        | 30    | 214 | 283 | .027   | 6.1 | .200        |          | 3.2 | 6.0         | 100.0      | _     | •           |
| 1225                                | 1        | 30    | 233 | 289 | .028   | 6.1 | .200        |          | 1.2 | z.3         | 2.5        | 5.1   | 14.0        |
| 1355                                | 1        | 30    | . 5 | 298 | .074   | 5.6 | .175        |          | 1.9 | 4.2         | 6.7        | 13.2  | _           |
| 1425                                | 1        | 30    | 3   | 296 | .098   | 5.3 | .163        |          | 3.3 | 5.5         | 5.8        | 9.4   | 11.5        |
| 1455                                | 1        | 30    | 12  | 305 | .265   | 4.3 | .118        |          | 2.9 | 4.7         | 5.6        | 7.8   |             |
| 1542                                | 1        | 30    | 342 | 280 | .739   | 2.6 | .057        | ÷        | 7.1 | 12.2        | 26.8       | 25.6  |             |
| 1612                                | 1        | 30    | 8   | 313 | .205   | 5.4 | .157        |          | 2.7 | 4.9         | 5.9        | 8.5   | 1           |
| 1642                                | 1        | . 30  | 350 | 291 | .235   | 4.7 | .132        |          | 2.7 | 4.7         | 4.7        | 6.7   |             |
| 1712                                | 1        | 30    | 344 | 282 | .140   | 5.3 | .159        |          | 2.7 | 5.5         | 5.6        | 7.4   | 8.5         |
| 1742                                | 1        | 30    | 341 | 277 | . 224  | 4.5 | .128        |          | 2.5 | 5.5         | 8.4        | 10.9  |             |
| 1812                                | 1        | 30    | 343 | 274 | .272   | 4.9 | .137        |          | 2.3 | 4.1         | 3.7        | 6.4   | 5.1         |
| 1842                                | 1        | 30    | 354 | 288 | .265   | 3.7 | .101        |          | 2.6 | 6.1         | 11.2       | 20.7  |             |
| 1912                                | 1        | 30    | 356 | 294 | . 474  | 2.7 | .068        |          | 3.2 | 6.7         | 11.1       | 15.0  | 18.3        |
| 1942                                | 1        | 30    | 77  | 29  | 762    | 1.5 | .053        | .100     | 5.2 | 9.5         | 14.9       | 21.3  |             |
| 1/0                                 | 7        |       |     |     |        |     |             |          |     |             |            |       |             |
| 1202                                | 1        | 50    | 25  | 161 | 304    | 4.7 | .160        | .262     | 1.5 | 2.8         | 4.4        | 5.4   |             |
| 1232                                | 1        | 100   | 67  | 157 | - 476  | 3 2 | 104         | 249      | 1 8 | 24          | 25         | 38    | 5 1         |
| 1370                                | 1        | 100   | 27  | 200 | -1 197 | 1 0 | 000         | 101      | 7.1 | 4 7         | 7 5        | 1 / 0 | 2.1         |
| 1350                                | •••      | 100   | 0.7 | 275 | -1 745 | 1.0 | .U30<br>057 | 170      | 2.7 | ÷./         | 17 7       | 17 5  | 10 4        |
| 1420                                | 1        | 100   | 61  | 233 | -1.343 | 1.5 | .034        |          | 3.1 | 4.0         | 72.3       | 13.3  | 13.4        |
| 1420                                | 1        | 100   | 200 | 213 | -1 775 | 1.0 | .954        | .155     | 3.4 | 4.4         | 1.3        | :5.4  | <b>70 0</b> |
| 1450                                | <u>,</u> | 100   | 200 | 345 | -1.2/5 | 1.5 | .050        | .15/     | 2.3 | 8.1         | 14.5       | 0.0   | 29.9        |
| 1/0                                 | Ч.       |       |     |     |        |     |             | 700      |     |             |            |       | •           |
| 1149                                | 1        | 100   | 276 | 2/6 | 550    | 3.1 | . 122       | .305     | 2.5 | 4.0         | 10.0       | 12.3  |             |
| 1221                                | 1        | 100   | 352 | 282 | 394    | 4.1 | .134        | . 301    | 1.7 | 3.8         | 4.8        | 7.5   | 10.7        |
| 1309                                | -        | 190   | 540 | 278 | 342    | 4.1 | .137        | .293     | Z.1 | 3.4         | 3.6        | 4.0   |             |
| 1339                                | I        | 100   | 348 | 270 | 253    | 4.5 | .154        | .299     | 1.7 | 2.8         | 4.5        | 5.3   | 6.7         |
| 1409                                | 1        | 100   | 352 | 283 | 230    | 4.7 | .156        | .292     | 1.9 | 2.9         | Z.9        | 3.4   |             |
| 1439                                | 1        | 100   | 353 | 281 | 213    | 4.5 | .153        | .279     | 1.8 | 2.5         | 3.1        | 3.3   | 3.4         |
| 1509                                | 1        | 100   | 351 | 282 | 145    | 5.0 | .166        | .258     | 1.4 | 1.7         | 2.6        | 5.4   |             |
| 1539                                | 1        | 100   | 348 | 277 | 179    | 4.2 | .136        | .235     | 1.4 | 2.1         | 2.0        | 2.5   | 4.8         |
| 1609                                | 1        | 100   | 347 | 274 | 243    | 3.2 | .101        | .193     | 1.8 | 3.Z         | 3.3        | 4.9   |             |
| 1639                                | 1        | 100   | 347 | 279 | 210    | 2.9 | .091        | .167     | 2.5 | 5.8         | 6.7        | 11.6  | 9.2         |
| 1709                                | 1        | 100   | 338 | 273 | 107    | 4.1 | .131        | .191     | 1.5 | 2.2         | 2.5        | 2.7   | •           |
| 1739                                | 1        | 100   | 338 | 272 | 092    | 4.7 | .154        | .214     | 1.4 | 1.7         | 2.3        | 3.4   | 3.0         |
| 1809                                | 1        | 100   | 345 | 278 | 073    | 5.2 | .170        | .217     | 1.7 | 2.7         | 3.0        | 4.4   |             |
| 1713                                | 3        |       |     |     |        |     |             |          | ,   |             |            |       |             |
| 852                                 | Ŧ        | 30    | 73  | 27  | 314    | 3.9 | .129        | .180     | 2.6 | 8.7         | 10.2       | 12.8  |             |
| 948                                 | 1        | 30    | 74  | 356 | 106    | 3.0 | .090        | .089     | 1.7 | 3.4         | 5.8        | 15.0  |             |
| 1049                                | 1        | 30    | 243 | 302 | .086   | 3.3 | .096        |          | Z.0 | 4.0         | 24.1       | 11.1  |             |
| 1119                                | 1        | 30    | 236 | 296 | .003   | 4.5 | .141        |          | 1.7 | 4.1         | 7.0        | 10.5  | 11.1        |
| 1239                                | 1        | 30    | 345 | 294 | .048   | 4.9 | .152        |          | 1.4 | 2.7         | 2.9        | 3.1   |             |
| 1309                                | 1        | 40    | 348 | 304 | .034   | 5.4 | .172        |          | 1.4 | 1.9         | 2.6        | 2.6   | 5.7         |
| 1339                                | 1        | 40    | 346 | 290 | .065   | 5.3 | .167        |          | 1.3 | 2.1         | 3.9        | 6.6   |             |
| 1409                                | 1        | 40    | 350 | 285 | .088   | 6.1 | .194        |          | 1.1 | 2.1         | 2.2        | 3.9   | 5.9         |
| 1439                                | 1        | 40    | 346 | 282 | .110   | 5.5 | .171        |          | 1.3 | 2.1         | 2.5        | 5.3   |             |
| 1509                                | 1        | 50    | 349 | 262 | .080   | 5.6 | .176        |          | 1.3 | 2.7         | 3.0        | 5.8   | 11.8        |

8LM-2

## METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

| Time Code Zi | Rel   | WD    | 10/L   | <u> </u>   | U+    | W.*   | Im    | 3m          | 10m           | 30m  | 60m            |
|--------------|-------|-------|--------|------------|-------|-------|-------|-------------|---------------|------|----------------|
| 1521 1 50    | 356   | Z61   | .081   | 5.1        | .157  |       | 1.1   | 2.0         | 4.6           |      |                |
| 1559 1 50    | 346   | 253   | .056   | 5.4        | .169  |       | 1.3   | 3.9         | 5.1           | 7.0  |                |
| 1629 1 50    | 338   | - 242 | .057   | 4.0        | .120  |       | 1.4   | 3.4         | 3.6           | 5.8  | 8.5            |
| 1659 1 50    | 336   | 239   | .033   | 4.3        | .132  |       | 1.4   | 4.1         | 5.6           | 10.6 |                |
| 1729 1 50    | 349   | 241   | 015    | 4.4        | 137   |       | 1.5   | 2.7         | 2.6           | 7.7  | 9.3            |
| 1/14         | J-J . | 441   |        | 7.7        |       |       |       | <u> </u>    | 2.0           | •••  | 5.5            |
|              | 747   | 171   | - 100  | 7 1        | AGE   | 157   | 70    | 4 2         | <b>z</b> a    | 15 7 |                |
| 1130 1-130   | 343   | 100   | - 267  | 2.1        | 001   | 171   | 12.0  | 77 0        | 21 7          | 0.0  | AG A           |
| 1200 1 100   | 2()   | 100   | 202    | 2.0        | .001  | 121   | 12.10 | 22.0        | 31.7          | 10.0 | 40.4           |
| 1230 1 80    | 223   | 200   | 250    | 2.3        | .073  | 137   | 3.1   | 6.7         | 17.1          | 71.7 | 77 6           |
| 1300 1 30    | 316   | 195   | 482    | 4.3        | .072  | . 115 | 4.7   | <b>5</b> ./ | 12.1          | 21.3 |                |
| 1330 1 70    | 269   | 190   | 533    | 1.8        | .058  | .157  | 4.0   | 5.1         | 5.4           | 0.0  | 1              |
| 1400 1 100   | 282   | 199.  | 576    | 117        | .054  | .138  | 2.5   | 5.8         | 8.4           | 20.5 | 13./           |
| 1430 1 120   | 283   | 230   | 404    | 1.8        | .057  | .137  | 4.5   | 7.9         | 8.1           | 8.8  |                |
| 1500 1 150   | 347   | 262   | 234    | Z.6        | .079  | .171  | 3.4   | 7.8         | 8.9           | 22.0 | 22.7           |
| 1/15         |       |       |        |            |       |       |       |             |               |      |                |
| 1441 1 150   | 11    | 194   | 423    | 3.3        | .106  | .279  | Z.3   | 5.0         | 4.7           | 15.1 |                |
| 1500 1 200   | 19    | 220   |        | 4.8        | .160  | .355  | 2.0   | 3.5         | 4.0           |      |                |
| 1552 1 200   | 55    | 271   | 187    | 4.0        | .128  | .284  | 2.2   | 6.4         | 11.9          |      |                |
| 1522 1 200   | 49    | 294   | 132    | 5.3        | .176  | .346  | 1.9   | 2.7         | 4.1           | 5.8  | ,              |
| 1652 1. 200  | 29    | 294   | 096    | 6.2        | .210  | .370  | 2.0   | 3.2         | 3.5           | 3.6  |                |
| 1722 1 200   | 46    | 285   | 102    | 5.9        | .201  | .362  | 2.1   | 4.4         | 4.5           | 5.2  | 6.6            |
| 1/16         |       |       |        |            |       |       |       |             |               |      |                |
| 938 1 390    | 346   | 355   | 814    | 2.8        | .092  | .415  | · . i | . 2         | .4            | .6   |                |
| 1008 1 380   | 335   | 335   | 843    | 2.8        | .089  | .404  | 2.4   | 5.9         | 5.3           | 9.0  | 12.7           |
| 1050 1 380   | 354   | 322   | 340    | 4.0        | .130  | .433  | 2.3   | 3.5         | 3.8           | 3.9  | •              |
| 1120 1 370   | 10    | 327   | 460    | 3.5.       | .113  | .413  | 2.0   | 4.5         | 5.4           | 6.0  | 5.5            |
| 1156 1 360   | 13    | 333   | 561    | 3.3        | .109  | .420  | 2.4   | 4.0         | 4.5           | 5.0  |                |
| 1220 1 380   | 16    | 341   | 701    | 3.1        | .102  | .434  | 3.0   | 4.3         | 4.4           | 4.6  | 6.2            |
| 1250 1 380   | q     | 339   | 791    | 3.1        | . 101 | 446   | 2.5   | 4.3         | 4.8           | 6.5  |                |
| 1320 1 360   | 360   | 331   | 710    | 3.2        | .104  | .436  | 2.4   | 4.2         | 6.8           | 9.1  | 8.9            |
| 1350 1 340   | 1     | 332   | - 972  | 2.8        | .092  | .412  |       | . 1         | .3            | .5   |                |
| 1420 1 320   | 342   | 307   | - 733  | 3.1        | 101   | 409   | 2.8   | 5.0         | 5.6           | 6 5  | 17.8           |
| 1520 7 330   | 346   | 298   | - 170  | 5.3        | 179   | 452   | 1 5   | 3.4         | 4 0           | 4 2  |                |
| 1550 2 320   | 345   | 295   | - 175  | 5.1        | 172   | 434   | 1 5   | 3.7         | 28            | 35   | 4 1            |
| 1520 2 320   | 345   | 233   | - 146  | 5 2        | 175   | A15   | 1 9   | 3.4         | A 1           | 1 9  | <b>~</b> • • • |
| 1620 2 310   | 349   | . 299 | - 104  | 55         | 195   | 391   | 1 9   | 3.4         | 37            | 4 5  | 4 9            |
| 1770 2 310   | 343   | 202   | - 094  |            | 100   | 705   | 1.3   | 2.1         | ν.γ<br>γ. ή τ | 7.5  | 4.0            |
| 1720 2 310   | 240   | 200   | - 117  |            | 170   | 701   | 1 7   | 2.4         | 2 7           | 3.3  |                |
| 1730 2 300   | 342   | 200   | - 117  | 3.3        | 1 4 1 | .301  | 1.5   | 5.2         | 3.4           | 3.5  | 4.0            |
| 1820 2 300   | 220   | 202   | - 140  | 4.4        | . 141 | .344  | 1.7   | 2.0         | 2.3           | 4.8  | - · ·          |
|              | 352   | 230   | 175    | J.8<br>777 | .122  | .238  | 1.7   | 2.5         | 2.1           | 4.4  | 5.4            |
| 1920 1 290   | 2.2   | 202   | 226    | 3.3        | .105  | .280  | 2.7   | 4.2         | 6.3           | 0./  | · · ·          |
| 1950 1 280   | 540   | 276   | 591    | 2.3        | .073  | .265  | 2.0   | 4.0         | 5.0           | 5.1  | 14.9           |
| 2020 1 280   | 355   | Z93   | -3.804 | .8         | .032  | .218  | 11.7  | 21.8        | 33.8          |      |                |
| 2050 1 270   | 269   | 157   | -2.035 | 1.3        | .044  | .239  | 5.0   | 10.4        | 13.5          | 19.7 | 78.2           |
| 2120 1 270   | 351   | 238   | 832    | Z.1        | .069  | .278  | 1.8   | 3.1         | 4.8           | 7.8  |                |
| 2150 1 260   | 14    | 272   | 207    | 4.0        | .127  | .317  | 1.5   | 2.8         | 3.6           | 8.5  | 18.8           |
| 2220 1 250   | 8     | 283   | 103    | 5.3        | .176  | .347  | 1.3   | 2.4         | 2.8           | 4.5  |                |
| 77CA 1 7CA   | 17    | 200   | - 057  | <b>c</b> 7 | 311   | 771   | 1 7   |             | 2 0           | 7 0  | <b>E A</b>     |

# METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

| Time | Cod  | de Zi | Rel | αw   | 10/L    | U       | <u>U+</u> | ¥     | Im             | 3m   | 1 0 m      | 30m  | <u>60m</u> |
|------|------|-------|-----|------|---------|---------|-----------|-------|----------------|------|------------|------|------------|
| 12.  | /05  |       |     |      |         |         |           |       |                |      |            |      |            |
| 1448 | 1    | 333   | .31 | 319  | 203     | 4.5     | .148      | .397  | 1.9            | 2.2  | 2.4        |      |            |
| 12.  | /05  |       |     |      |         |         |           |       |                |      |            |      |            |
| 1116 | 1    | 400   | 148 | 342  | .015    | 6.1     | . 199     |       | .9             | 1.7  | 2.8        | 4.9  |            |
| 1146 | Ť    | 420   | 163 | 325  | 0.000   | 5.8     | 0.000     |       | 1.5            | 1.8  | 2.1        | 2.6  | 6.8        |
| 12   | 107  |       |     |      |         |         |           |       |                |      | -          |      | 0.0        |
| 748  | 1    | 100   | 78  | 45   | 1 158   | 7 5     | 070       |       | 30             | 6 8  | 11 7       | 35 8 |            |
| 818  | i    | 80    | 280 | 135  | 74 490  | 2 0     | 005       |       | 1.0            | 9.0  | 17 7       | 10 0 | 75 7       |
| 949  | ÷    | 20    | 240 | 50   | A AAA   | 1 4     | 000       |       | 7.0            | 5.7  | 0 0        | 12.3 | 23.7       |
| 17   | //10 | 00    | 240 | . 04 | 0.000   | 1.4     | 0.000     |       | 2.3            | 0.4  | 0.0        | 10.0 |            |
| 1100 | 100  | 50    | 70  | 771  | a aga   | ~ .     | à 200     |       |                |      | <b>.</b> . |      |            |
| 1103 |      | 30    | 70  | 201  | 0.000   | 5.4     | 0.000     |       | 1.2            | 1.9  | <u> </u>   |      |            |
| 1113 | 1    | 20    | 70  | 243  | .600    | 3.8     | .091      |       | 1.5            | 2.4  | 5.1        |      |            |
| 1129 | E.   | 30    | 68  | 244  | .875    | 3.5     | .079      |       | .9             | 1.1  | 1.3        |      |            |
| 1139 | 1    | 30    | 22  | 244  | 5.975   | 2.4     | .020      |       | 8.2            | 10.4 | 55.1       |      |            |
| 1159 | 1    | 30    | 63  | 306  | 33.870  | 2.8     | ,005      |       | 8.9            | 14.0 | 16.8       |      |            |
| 1209 | 1    | 30    | 72  | 331  | 5.118   | 2.5     | .023      |       | 4.9            | 6.7  | 8.6        |      |            |
| 1219 | 1    | 30    | 40  | 310  | 2.638   | 2.0     | .028      |       | 4.2            | 10.0 | 23.1       |      |            |
| 1252 | 1    | 30    | 343 | 226  | 104.100 | 1.0     | .001      |       | 18.7           | 31.8 | 46.5       | 66.2 |            |
| 1322 | 1    | 30    | 30  | 265  | 103.600 | 1.5     | .001      |       | 4.0            | 5.7  | 7.7        | 8.0  | 51.7       |
| 1352 | 1    | 30    | 18  | 267  | 1.561   | 2.0     | 035       |       | 1.8            | 2 9  | 31         | 7 2  |            |
| 1422 | 1.   | 30    | 10  | 263  | 6 840   | 1 9     | 014       |       | 2 5            | A 1' | 5 6        | Q 1  | <b>Q</b> 1 |
| 1457 | t .  | 30    | 17  | .271 | 200 400 | · · · · | 0 000     |       | 37             | 5 5  | 7 0        | 11 0 | 0.1        |
| 1522 | 1    | 40    | 10  | 265  | 19 160  | 1 7     | 0.000     |       | 2.7            | 3.3  | 1.3        | 11.3 |            |
| 1557 | ÷    | 50    | 344 | 242  | 775 700 | 0.1     | 0.004     |       | - 0 0          | 2.4  | 4.0        | 4.0  | 3.0        |
| 1532 | 1    | 00    | 244 | 202  | 236.700 | .0      | 0.000     |       | 3.8            | 21.9 | 23.3       | 40.5 | 47 0       |
| 1657 | 1    | 100   | 24  | 262  | 0.000   |         | 0.000     |       | 13.1           | 10.1 | 20,0       | 31.3 | 42.0       |
| 1777 | 1    | 170   | 10  | 200  | 0.000   |         | 0.000     |       | 77.0           | 74.7 | 12.0       | 10.9 |            |
| 1752 | 1    | 130   | 700 | 232  | 0.000   |         | 0.000     |       | 27.3           | 34.3 | 34.5       | 33.4 | 44.1       |
| 1077 | 1    | 130   | 200 | 100  | 0.000   |         | 0.000     |       | 14.2           | 17.8 | 21.8       | 33.5 |            |
| 1057 |      | 170   | 204 | 122  | 0.000   | 1.3     | 0.000     |       | 3.7            | 6.3  | 10.5       | 1/.1 | 41.8       |
| 1032 | 1.   | 130   | 2/3 | 152  | 0.000   | 1.0     | 0.000     |       | 11.5           | 17.8 | 27.6       | 31.9 |            |
| 1922 |      | 130   | 212 | 115  | 1.855   | 2.0     | .033      |       | 3.0            | 3:7  | 3.7        | 6.5  | 23.9       |
| 1352 | 1    | 130   | 338 | 115  | 021     | 2.1     | .051      | .064  | 2.4            | 3.4  | 5.7        | 7.0  |            |
| 2022 | 1    | 130   | 350 | 103  | 303     | Z.8     | .087      | .197  | 1.7            | 2.5  | 3.6        | 4.1  | 6.4        |
| 2052 | 1    | 130   | 334 | 101  | 237     | 2.6     | .079      | .164  | 1.5            | 2.5  | 3.1        | 5.5  |            |
| 2122 | 1    | 130   | 295 | 65   | 605     | 1.6     | .053      | .151  | 2.9            | 4.4  | 6.8        | 12.9 | 20.3       |
| 2152 | 1    | 80    | 354 | 146  | -1.314  | 1.3     | .046      | .144  | 5.0            | 9.7  | 18.4       | 29.6 |            |
| 2222 | 1    | 125   | 44  | 208  | -1.071  | 2.1     | .067      | .227  | 4.6            | 6.8  | 12.3       | 21.1 | 40.2       |
| 2252 | 1    | 160   | 60  | 227  | -2.232  | 1.9     | .065      | .305  | 4.8            | 7.4  | 9.2        | 16.5 |            |
| 2322 | 1    | 180   | 22  | 181  | -5.216  | 1.3     | .047      | . 304 | 8.9            | 11.9 | 15.9       | 20.1 | 27.7       |
| 2352 | 1    | 200   | 20  | 180  | -2.770  | 1.9     | .067      | .361  | 4.8            | 6.9  | 9.2        | 15.1 |            |
| 12/  | 09   |       |     |      |         |         |           |       |                |      |            |      |            |
| 22   | 1    | 210   | 49  | 238  | 707     | 3.8     | .128      | .447  | 3.9            | 6.2  | 9.6        | 15.8 |            |
| 52   | 1    | 220   | 48  | 272  | 917     | 3.4     | .112      | .434  | 3.9            | 8.4  | 8.4        | 11.3 |            |
| 122  | 1    | 240   | 311 | 154  | -4.400  | 1.5     | .054      | . 365 | 17.6           | 29.4 | 37.9       | 50 9 | 37 1       |
| 152  | 1    | 220   | 163 | 356  | -7.248  | 1.1     | .044      | .337  | 8 5            | 10 9 | 11 4       | 16 1 |            |
| 222  | 1    | 220   | 266 | 105  | -7.726  | 1.1     | .043      | .336  | 15 5           | 77 2 | 37 4       | S1 9 | 70 1       |
| 252  | 1    | 220   | 339 | 190  | -5,417  | 1.4     | 051       | 360   | , <u>с</u> , с | 17 3 | 15 7       |      | (10.1      |
| 322  | 1    | 220   | 283 | 128  | -3.965  | 1 5     | 052       | 760   | 9 5            | 15 1 | 27 1       | 74 6 | 41 7       |
| 352  | 1    | 220   | 292 | 132  | -3.728  | 1.7     | .050      | .372  | 5.9            | 12 2 | 13 5       | 16 0 | →1•£       |

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

| Time | Cod | e Zi | Rel   | WD   | 10/1    | U   | U+    | <b>u</b> * | 1m         | <u>3m</u> | 10m        | 30m   | 60m  |
|------|-----|------|-------|------|---------|-----|-------|------------|------------|-----------|------------|-------|------|
| 422  | 1   | 250  | 290   | 110  | -1.733  | 2.6 | .087  | .433       | 4.7        | 7.2       | 9.5        | 14.1  | 18.5 |
| 452  | 1   | 250  | 313   | 123  | -3.840  | 1.8 | .065  | .424       | 6.6        | 11.1      | 13.9       | 27.8  |      |
| 522  | 1   | 270  | 332   | 172  | -8.891  | 1.1 | .044  | .387       | 9.0        | 11.4      | 12.4       | 15.2  | 32.9 |
| 557  | 1   | 300  | 342   | 192  | -11,920 | . 9 | .036  | .367       | 13.6       | 16.5      | 22.4       | 30.7  |      |
| 622  | i   | 310  | 342   | 200  | -7 721  | 2.1 | .071  | . 441      | 9.8        | 17.1      | 28.1       | 62.9  | 49.7 |
| 644  | 1   | 350  | 17    | 234  | -3 315  | 1 8 | 962   | 431        | 5.8        | 10.5      | 14.7       | 18.3  |      |
| 777  | 1   | 220  | 345   | 100  | -7 617  | 7 0 | .002  | 434        | 5 0        | 10.3      | 15 9       | 33.3  | 36.1 |
| 722  | ,   | 330  | 343   | 100  | -2.017  | 1 0 | .005  | 433        |            | 10.5      | 17 0       | 131   |      |
| 152  | 1   | 320  | 221   | 112  | -3.213  | 1.3 | .003  | .400       | 3.0        | 177       | 70.7       | 73 4  | 25 a |
| 822  | 1   | 510  | 354   | 147  | -4.025  | 1.7 | .000  | .421       | (.4<br>C 4 | 13.5      | 10.0       | 10 0  | 20.0 |
| 852  | 1   | 330  | 7     | 171  | -4.319  | 1.5 | .059  | .435       | 0.4        | 9.7       | 13,3       | 19.2  |      |
| 922  | . 1 | 360  | . 8   | 175  | -2.287  | 2.4 | .081  | .502       | 3.3        | 8.8       | 11.2       | 14.8  | 18.4 |
| 952  | 1   | 410  | 311   | 115  | -17.760 | .7  | .031  | .398       | 17.4       | 28.1      | 32.5       | 65.3  |      |
| 1022 | 1   | 540  | 347   | 177  | -3.414  | 1.7 | .059  | .480       | 14.9       | 24.4      | 31.1       | 43.8  | 85.5 |
| 1052 | 1   | 500  | 7     | 213  | +.312   | 4.0 | .130  | .461       | 3.3        | 5.8       | 8.3        | 9.2   | _    |
| 1122 | 1   | 540  | 352   | 198  | +.242   | 4.4 | .145  | .491       | 3.1        | 4.5       | 5.9        | 7.6   | 11.5 |
| 1152 | 1   | 580  | 355   | 197  | +.509   | 3.1 | .101  | .445       | 3.0        | 4.4       | 5.9        | 9.4   |      |
| 1222 | 1   | 600  | 359   | 203  | +.278   | 3.9 | .126  | .460       | -3.7       | 6.5       | 8.6        | 12.3  | 11.3 |
| 1252 | 1   | 610  | 336   | 175  | +.288   | 3.5 | .113  | .418       | 3.3        | 5.6       | 7.1        | 9.7   |      |
| 1322 | 1   | 630  | 333   | 172  | +.280   | 3.6 | .116  | .432       | 2.1        | 4.2       | 5.4        | 9.7   | 9.8  |
| 1352 | ١.  | 650  | 327   | 152  | 313     | 3.5 | .112  | .435       | 2.3        | 4.3       | 5.5        | 7.1   |      |
| 1422 | Ĩ   | 620  | 319   | 142  | 304     | 3.4 | .107  | .405       | 2.1        | 3.5       | 4.6        | 7.8   | 12.8 |
| 1452 | 1   | 560  | 297   | 111  | 355     | 2.6 | .081  | .312       | 2.5        | 5.6       | 10.2       | 15.3  |      |
| 1522 | 1   | 520  | 236   | 79   | -2.364  | .7  | .025  | .175       | 10.2       | 17.5      | 31.9       | 41.9  | 35.0 |
| 1552 | 1   | 470  | 225   | 61   | +.174   | 1.5 | .048  | .141       | 2.3        | 3.8       | 6.5        | 11.8  |      |
| 1622 | 1   | 430  | 260   | 68   | 112     | 1.9 | .054  | • • • •    | 1.5        | 3.3       | 5.1        | 6.1   | 10.1 |
| 1657 | 1   | 360  | 261   | 75   | 374     | 21  | .053  |            | 1.7        | 3.4       | 5.3        | 8.2   |      |
| 1777 | 1   | 370  | 281   | - 96 | 088     | 37  | 093   |            | 1.2        | 2.0       | 3.0        | 7.6   | 9.6  |
| 1757 |     | 750  | 377   | 101  | - 012   | 5.2 | 171   | 167        | 1 5        | 2 7       | 3 0        | 4 2   | 515  |
| 1077 | 1   | 230  | 770   | 170  | 037     | 2.5 | 200   | 171        | 2 6        | 7.5       | 43         | 0 7   | 15 5 |
| 1022 | +   | 230  | 710   | 123  |         | 2.3 | .000  | • • • •    | 1 0        | 3.3       | 1.0        | 12 0  | 10.0 |
| 1052 |     | 220  | 215   | 120  | .002    | 2.4 | .071  |            | 1.0        | 2.1       | +.0<br>E 7 | 0,1   | 17 7 |
| 1922 |     | 210  | 210   | 107  | .231    | 5.4 | .000  | 077        | 1.0        | 2.4       | 3.2        | 0.4   | 14.4 |
| 1352 | 1   | 200  | 290   | 84   | 018     | 2.2 | . 200 | .075       | 1.4        | 2.0       | 4.4        |       |      |
| 2022 | 1   | 190  | 322   | 128  | .373    | 1.4 | .057  |            | 3.8        | 7.0       | 8.7        | .13.1 | 40.0 |
| 2052 | 1   | 180  | 25    | 213  | .582    | .8  | .020  |            | 13.7       | 17.3      | 23.8       | 38.9  |      |
| 2122 | 1   | 170  | 85    | 281  | -1.084  | 1.4 | .047  | .176       | 2.5        | 5.5       | 10.3       | 13.1  | 40.5 |
| 2152 | 1   | 170  | 278   | 115  | -1.888  | 1.1 | .038  | .174       | 5.5        | 7.5       | 9.2        | 23.2  |      |
| 2222 | 1   | 150  | 173   | 8    | -Z.580  | 1.0 | .038  | .189       | 4.0        | 5.0       | 7.0        | 9.Z   | 25.8 |
| 2252 | 1   | 150  | 227   | 47   | +.964   | 1.9 | .052  | .214       | 3.3        | 4.1       | 5.5        | 6.3   |      |
| 2322 | 1   | 140  | 233   | 63   | -2.130  | 1.2 | .043  | .188       | 5.8        | 7.2       | 9.4        | 9.6   | 11.6 |
| 2352 | 1   | 140  | 166   | 14   | -3.774  | .9  | .035  | .189       | 6.1        | 8.9       | 10.5       | 12.0  |      |
| 12   | /10 |      |       |      |         |     |       |            |            |           |            |       |      |
| 22   | 1   | 130  | 188   | 35   | -2.497  | 1.2 | .044  | .197       | 5.1        | 6.9       | 9.1        | 14.4  |      |
| 52 - | - 1 | 120  | 224   | 54   | -1.061  | 2.0 | .065  | .217       | 3.2        | 4.4       | 4.2        | 4.3   |      |
| 122  | 1   | 100  | 247   | 69   | 929     | 2.2 | .072  | .215       | 2.8        | 3.5       | 5.0        | 9.3   | 10.3 |
| 152  | 1   | . 80 | - 216 | 56   | -).366  | 1.8 | .059  | .187       | 4.5        | 5.6       | 7.1        | 14.8  |      |
| 222  | 1   | 70   | 227   | 55   | 768     | 2.4 | .075  | .190       | 3.2        | 4.2       | 6.4        | 6.6   | 11.5 |
| 252  | 1   | 50   | 199   | 48   | -2.435  | 1.3 | .047  | .153       | 15.3       | 17.5      | 20.3       | 27.1  |      |
| 322  | 1   | 40   | 157   | - 26 | 937     | 1.4 | .049  | .139       | 6.2        | 8.7       | 11.7       | 28.3  | 29.3 |
| 352  | 1   | 30   | 172   | 39   | -2.601  | 1.1 | .039  | .110       | 5.6        | 7.2       | 9,7        | 11.0  |      |

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

|       |        |             |           | •        |        |             |               |             |            |                |             |            |       |
|-------|--------|-------------|-----------|----------|--------|-------------|---------------|-------------|------------|----------------|-------------|------------|-------|
| Time  | Coc    | le Zi       | Rel       | WD       | 10/L   | U           | <u>U+</u>     | W#          | <u>1 m</u> | <u> </u>       | 10m         | <u> </u>   | 50m   |
| 422   | 1      | 30          | 155       | 25       | -1.664 | 1.3         | .045          | .112        | 5.3        | 6.8            | 10.2        | 22.5       | 18.9  |
| 452   | 1      | 40          | 231       | 108      | 976    | 1.8         | .059          | .132        | 4.2        | 6.0            | 10.6        | 25.7       |       |
| 522   | 1      | 60          | ·73       | 313      | 231    | 2.2         | .067          | .107        | 2.5        | 4.2            | 6.5         | 9.1        | 19.5  |
| 552   | 1      | 90          | 70        | 311      | 038    | 3.2         | .098          | .099        | 1.8        | 3.3            | 4.1         | 5.7        |       |
| 622   | 1      | 110         | 61        | 315      | .032   | 4.1         | .125          |             | 1.8        | 2.3            | 3.1         | 5.6        | 6.0   |
| 652   | 1      | 120         | 58        | 315      | 062    | 3.8         | .118          | .153        | 1.5        | 2.5            | 3.9         | 8.6        |       |
| 722   | 1      | 150         | 48        | 311      | .024   | 4.2         | .128          |             | . 1.6      | 2.2            | 2.9         | 4.3        | 7.1   |
| 752   | 1      | 170         | 41        | 309      | .077   | 4.3         | ,129          |             | 1.3        | 2.9            | 3.4         | 5.0        |       |
| 822   | 1      | 120         | 42        | 308      | .057   | 3.6         | .106          |             | 1.3        | 2.0            | 2.3         | 5.2        | 5.2   |
| 852,  | 1      | 120         | 253       | 133      | -1.592 | 2.0         | .066          | .251        | 8.6        | 16.8           | 37.3        | 55.1       |       |
| 922   | 1      | 120         | 287       | 160      | -1.702 | 2.5         | .083          | .321        | 6.0        | 10.2           | 24.1        | 36.6       | 51.5  |
| 952   | 1      | 120         | 325       | 279      | -1.027 | 3.1         | .102          | .675        | 2.5        | 4.8            | 9.4         | 33.6       |       |
| 1,022 | 1      | 120         | 249       | 122      | -1.550 | 2.3         | .076          | .579        | 2.2        | 3.5            | 4.1         | 7.5        | 26.2  |
| 1052  | 1      | 120         | 285       | - 133    | -1.391 | 2.2         | .072          | .531        | 2.6        | 3.5            | 5.2         | 12.1       |       |
| 1122  | 1      | 120         | 53        | 155      | 879    | 2.5         | .079          | .500        | 1.7        | 2.7            | 4.5         | 6.0        | 14.5  |
| 1152  | 1      | 120         | 106       | .144     | 520    | 3.0         | .095          | .510        | 1.9        | 3.0            | 3.5         | 4.0        |       |
| 1222  | 1      | 120         | 184       | 157      | -2.064 | 1.2         | .043          | .360        | 5.5        | 8.2            | 6.5         |            |       |
| 1252  | · 1    | 120         | 178       | 173      | -1.380 | 1.1         | .039          | .285        | 8.0        | 10.7           | 14.9        | 15.5       |       |
| 1322  | 1      | 120         | 203       | 143      | 200    | 2.4         | .072          | .280        | 12.2       | 21.4           | 31.6        | 44.2       | 37.1  |
| 1352  | L.     | 120         | 216       | 47       | .086   | 1.4         | .041          |             | 9.0        | 9.9            | 14.8        | 20.4       |       |
| 1422  | 1      | 120         | 169       | 359      | .338   | 1.0         | .027          |             | 11.2       | 14.2           | 20.6        | 53.2       | 46.5  |
| 1452  | 1      | 0           | 107       | 298      | .430   | 2.5         | .064          |             | 2.3        | 3.5            | 5.0         | 7.8        |       |
| 1522  | t      | Ø           | 122       | 327      | .675   | 4.0         | .095          |             | 2.4        | 4.0            | 6.2         | 14.5       | 18.9  |
| 1552  | 1      | 0           | 133       | 345      | 1.375  | 3.5         | .066          |             | 1.8        | 2.6            | 4.5         | 5.6        |       |
| 1622  | 1      | 0           | 246       | 71       | 74.850 | 1.7         | .002          |             | 4.3        | 5.3            | 11.4        | 15.4       | 44.5  |
| 1652  | 1      | Ø           | 214       | 47       | 0.000  | 1.1         | 0.000         |             | 6.3        | 10.4           | 16.4        | 22.7       |       |
| 1722  | 1      | 0           | 77        | 5        | .746   | 3.9         | .091          |             | 2.1        | 4.5            | 6.6         | 24.6       | 25.9  |
| 1946  | 1      | Ø           | 173       | 177      | .367   | 3.9         | .103          | ,           | 2.5        | 3.1            | 4.0         | 5.1        |       |
| 2016  | 1      | 500         | .305      | 3        | . 434  | 3.9         | .100          |             | 2.0        | 3.8            | 7.1         | 10.7       | 19.2  |
| 2046  | 1      | 500         | 340       | 29       | . 332  | 4.5         | .123          |             | 2.3        | 4.1            | 4.8         | 9.8        |       |
| 2130  | 1      | 450         | 327       | 46       | . 487  | 2.4         | .056          |             | 2.7        | 4.2            | 6.2         | 8.4        |       |
| 2200  | 1      | 400         | 30Z       | 40       | .289   | 3.2         | .085          |             | 3.5        | 6.5            | 6.5         | 8.8        | 9.0   |
| 2230  | 1      | 410         | 323       | 25       | .211   | 4.4         | .124          |             | 3.1        | 4.9            | 7.4         | 12.4       |       |
| 2300  | I      | 420         | 308       | 350      | .211   | 3.7         | .104          |             | 4.2        | 6.7            | 8.0         | 10.3       | 20.7  |
| 2330  | 1      | 430         | 9         | 338      | .091   | 4.7         | .144          |             | 2.2        | 3.0            | 4.1         | 7.4        |       |
| 12/   | 11     |             |           |          |        |             |               |             |            |                | _           |            |       |
| 0     | 1      | 440         | <b>60</b> | 354      | .108   | 4.0         | .117          |             | 1.7        | 2.6            | 4.7         | 8.3        |       |
| 200   |        | 460         | 5         | 349      | 040    | 5.3         | .175          | .311        | 1.7        | 2.5            | 2.7         | 3.5        |       |
| 100   | •      | 460         | 40        | ช<br>ว   | 147    | 4.2         | .137          | . 371       | 3.4        | 5.0            | 7.9         | 18.1       | 16.2  |
| 130   | ۶<br>۱ | 400         | 21        | 74       | 179    | 4.5         | .138          | .408        | 3.1        | 4.4            | 7.0         | 12.5       |       |
| 200   | 1      | 400.<br>CAA | 23        | 4        | - 101  | 4.0         | .151          | .451        | 3.0        | 5.3            | 7.4         | 15.5       | 18.1  |
| 200   | 1      | 510         | 7         | 40<br>EE | - 770  | 3.J<br>E 0  | 167           | .338        | 2.5        | 4.2            | 5.0         | 1.1        |       |
| 330   | 1      | 570         | 757       | 20       | - 171  | 3.0         | 107           | . 340       | 2.2        | 5.5            | 5.0         | 12.4       | 12.0  |
| 100   | 1      | 520         | 777       | . 20     | - 714  | 4.3<br>7 1  | נייו.<br>מפלי | ・ササゼ<br>スツワ | 2.3        | 4.3            | 5.4         | 0.5        |       |
| 430   | 1      | 540         | 77        | 29       | - 777  | י. ב<br>קיב | .03/          | 300         | J.0<br>0 1 | 4.4            | 3.5<br>70 7 | 77 6       | 12.2  |
| 500   | 1      | 550         | 72        | 354      | - 783  | 2.3         | 124           |             | 0.J<br>7 / | 10.3           | 20.2        | 11 0       | · 1 0 |
| 530   | 1      | 540         | 40        | 359      | - 205  | 4 7         | 1/1           | I<br>A A Q  | 2.4        | د . د.<br>۱۰ ۸ | +./<br>E 0  | 101.7      | 14.3  |
| 500   | 1      | 520         | 20        | 333      | - 149  | J<br>- 7    | 716           | 611         | <u> </u>   | 4,4<br>7 E     | 3.8<br>77   | 10./<br>JO | 17 0  |

8LM-3

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

| Time Code Z:           | Rel              | WD          | 10/L   | U   | U+    | <b>u</b> + | 1 m                    | 3m         | 10m  | 30m  | 50m  |
|------------------------|------------------|-------------|--------|-----|-------|------------|------------------------|------------|------|------|------|
| 630 1 490              | 23               | 343         | 183    | 5.5 | ,186  | .550       | 2.2                    | 3.0        | 4.0  | 4.6  |      |
| 700 1 480              | 18               | 351         | 172    | 6.0 | .209  | . 600      | 1.8                    | 2.7        | 3.2  | 3.4  | 5.5  |
| 730 1 440              | 27               | 358         | - 238  | 5.1 | .174  | .541       | 1.8                    | 3.5        | 4.4  | 8.8  |      |
| 800 1 420              | A 61             | 39          | - 700  | 3.4 | .114  | .500       | 4.7                    | 7.2        | 8.5  | 14.9 | 24.2 |
| 970 1 790              | , 377            | 295         | -7 553 | 2 0 | 968   | 447        | 5,9                    | 7.4        | 7.1  | 13.7 |      |
| BAA 1 750              | 3 117            | 233         | -1 774 | 2.0 | 068   | 385        | 57                     | 8 2        | 85   | 90   | 11.9 |
| 970 1 301<br>970 1 301 | N 771            | 100         | -1.605 | 2.0 | 000   | .303       | A 7                    | 9.2        | 10 5 | 24 5 |      |
| 1000 1 37              | 170              | 100         | -1.800 | 1 0 | .070  |            | ·<br>/                 | 9.7        | 7 3  | 19 9 | 79 F |
| 1000 1 230             | 9 130            | 107         | -1.300 | 1.3 | 005   | 201        | J. <del>4</del><br>6 0 | 5.5        | 0 7  | 10.0 | 55.0 |
| 1030 1 200             |                  | 102         | -2.3/3 | 1.0 | .030  | .231       |                        | 77 7       | 75.0 | 47 4 | 70 0 |
| 1100 1 200             |                  | 144         | ~4.352 | 1.1 | .040  | .233       | 23.7                   | 33.2       | 5.0  | 47.4 | 20.3 |
| 1130 1 200             | 0 342            | 228         | -2.231 | 1.5 | .050  | .257       | 0.5                    | 8.1        | 9.0  | 14.0 |      |
| 1200 1 200             | 0 357            | 254         | 845    | 2.4 | .075  | .279       | 3.3                    | 4.5        | 4.9  | 7.5  | 10.0 |
| 1230 1 200             | ð 24             | Z48         | 251    | 4.5 | .151  | .368       | 2.9                    | 8.8        | 12.5 | 18.3 |      |
| 1300 1 200             | 348              | 257         | 169    | 4.5 | .151  | .323       | 1.9                    | 2.5        | 3.0  | 5.2  | 15.1 |
| 1330 1 200             | 356              | 267         | 181    | 4.0 | .127  | .278       | 1.9                    | 2.7        | 3.3  | 3.8  |      |
| 1400 1 200             | 359              | 289         | 149    | 3.9 | .125  | .258       | 1.6                    | 2.5        | 3.1  | 5.3  | 7.9  |
| 1430 1 200             | 358              | 281         | 086    | 4.3 | .136  | .235       | 1.7                    | 2.2        | 2.2  | 2.4  |      |
| 1500 2 200             | 0 0              | 290         | 004    | 5.9 | .194  | .131       | 1.5                    | 2.3        | 2.4  | 2.5  | 5.1  |
| 1530 2 200             | 357              | 285         | .005   | 7.0 | .234  |            | 1.6                    | 2.1        | 2.9  | 3.5  |      |
| 1600 2. 200            | 355              | 282         | 007    | 7.4 | .255  | .192       | 1.5                    | 1.9        | 2.0  | 2.3  | 3.2  |
| 1530 2 200             | 355              | 285         | 008    | 7.7 | .267  | .207       | 1.8                    | 2.0        | 2.2  | 2.5  |      |
| 1657 2 200             | 9 1              | 288         | 005    | 7.7 | .267  | .180       | 1.4                    | 1.9        | 1.9  | 2.3  | 2.9  |
| 1724 2 200             | 357              | 292         | 005    | 8.4 | .293  | .193       | 1.5                    | 1.8        | 1.8  | 2.5  |      |
| 1751 Z 200             | 3 2              | 293         | 004    | 7.7 | .264  | .173       | 1.6                    | 2.0        | 2.0  | 2.2  | 2.3  |
| 1818 2 200             | <b>)</b> 1.      | 295         | 006    | 6.8 | .230  | .163       | 1.8                    | 2.2        | 2.5  | 2.7  |      |
| 1845 2 200             | 9.3              | 298         | .003   | 5.8 | .188  |            | 1.5                    | 2.2        | 2.3  | 2.4  | 2.9  |
| 1912 2 200             | 10               | 306         | .009   | 4.6 | .144  |            | 2.0                    | 3.1        | 3.5  | 4.7  |      |
| 1939 1 200             | 334              | 262         | 125    | 2.5 | .080  | .156       | 5.8                    | 12.5       | 22.8 | 58.3 | 46.1 |
| 2006 1 200             | 185              | 92          | -1.085 | 2.5 | . 080 | .318       | 2.1                    | 3.7        | 3.6  | 4.4  | •    |
| 12/12                  |                  |             |        |     |       |            |                        |            |      |      |      |
| 901 1 200              | 217              | 64          | -2.770 | 2.5 | .084  | . 455      | 3.4                    | 4.3        | 4.3  | 4.7  |      |
| 931 1 200              | 307              | 69          | -1.779 | 2.9 | . 100 | 466        | 2.5                    | 3.9        | 4.8  | 8.8  | 7.3  |
| 1001 1 100             | 29               | 20          | 977    | 3.8 | .128  | .389       | 3.0                    | 7.5        | 13.1 | 37.7 |      |
| 12/13                  |                  |             |        | ••• |       |            |                        |            |      |      |      |
| 730 1 380              | 249              | 57          | 239    | 2.0 | .063  | .187       | 3.8                    | 4.5        | 5.1  |      |      |
| 801 1 350              | 249              | 67          | -1.394 | .8  | .029  | .150       | 18.9                   | 23.4       | 25.8 | 27.6 |      |
| 831 1 340              | 262              | 76          | -1.297 | 1.2 | .040  | .203       | 11.3                   | 12.7       | 13.7 | 13.7 |      |
| 900 1 350              | 235              | 52          | -1.121 | 1.5 | .052  | .250       | 5.6                    | 7.1        | 9.5  | 12.7 | 17.9 |
| 978 1 320              | 253              | 67          | 510    | 2.4 | .073  | .265       | 2.0                    | 3.3        | 2.9  | 4.1  |      |
| 1000 1 280             | 255              | 74          | 567    | 1.9 | .051  | .213       | 4.9                    | 6.7        | 8.3  | 17.2 | 13.7 |
| 12/10                  |                  | •••         |        |     |       |            |                        | •••        | •••  |      |      |
| 1857 1 100             | 49               | 343         | 1.554  | 2.6 | .045  |            | 2.8                    | -3.8       | 5.2  | 11.1 |      |
| 12/13                  | . <del>,</del> , | <b>u</b> +u |        | ~   | 1979  |            |                        |            |      |      |      |
| 1030 1 160             | 290              | 113         | 845    | 1.6 | .053  | .179       | 5.2                    | 8.0        | 101  | 11.3 |      |
| 1130 1 100             | 207              | 7           | 788    | 2.0 | .064  | .181       | 9.3                    | 12.7       | 23.6 | 76.4 |      |
| 1200 1 80              | 339              | 257         | - 277  | 2 7 | .084  | 155        | 3.6                    | 8 7        | 12 2 | 25 1 | 61 2 |
| 1230 1 50              | 1 336            | 270         | - 540  | 1 8 | 057   | 113        | 3.3                    | 4 5        | 6 1  | 6 9  |      |
| 1700 1 90              | פרג ו            | 757         | - 777  | 2 7 | 094   | 155        | 3.3<br>7 0             | u<br>u     | 12 7 | 75 1 |      |
| 1230 1 50              | 336              | 270         | - 540  | 1 9 | 057   | 117        | 3.0                    | <b>5.0</b> | 5.0  | 50   |      |

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

|   | <u>Time</u> | Coc      | te Zi | Rel  | <u>UW</u> | 10/L   | <u> </u> | <u>U•</u> | <u> </u> | <u>1</u> | <u> </u>   | 10m        | <u>30m</u>    | 60m      |
|---|-------------|----------|-------|------|-----------|--------|----------|-----------|----------|----------|------------|------------|---------------|----------|
|   | 1300        | 1        | 160   | 345  | 281       | 218    | 3.7      | .120      | .258     | 1.9      | 3.0        | 4.0        | 6.2           | 8.4      |
|   | 1330        | 1        | 180   | 346  | 286       | 193    | 5.0      | .169      | .363     | 1.8      | 3.2        | 3.5        | 3.6           |          |
|   | 1400        | 2        | 120   | 341  | 287       | 089    | 5.0      | .166      | .240     | 1.9      | 3.8        | 4.0        | 4.0           | 3.9      |
|   | 1430        | 2        | 100   | 335  | 284       | 130    | 5.5      | .184      | .285     | 1.8      | 2.6        | 2.6        | 3.6           |          |
|   | 1500        | 2        | 100   | 337  | 284       | 057    | 5.4      | .217      | .256     | 1.4      | 2.1        | 2.4        | 2.4           | 3.0      |
|   | 1530        | 2        | 100   | 342  | 296       | 038    | 6.8      | .233      | .241     | 1.5      | 2.2        | 2.3        | 3.0           |          |
|   | 1600        | 2        | 100   | 341  | 292       | 003    | 7.1      | .240      | .105     | 1.3      | 2.1        | 2.0        | 2.4           | 3.8      |
|   | 1630        | 2        | 100   | 338  | 291       | .020   | 7.0      | .234      |          | .1.2     | 2.0        | 1.9        | 1.9           |          |
| ' | 1700        | 2        | 100   | 340  | 295       | .031   | 6.4      | .208      |          | 1.6      | 2.0        | 2.3        | 2.7           | 2.9      |
|   | 1730        | 2        | 60    | 339  | 293       | . 278  | 5.4      | .166      |          | 1.5      | 2.4        | 2.5        | 3.3           |          |
|   | 1800        | 2        | 100   | 339  | 293       | .070   | 5.5      | .172      |          | 1.2      | 1.9        | 1.8        | 2.7           | 3.0      |
|   | 1830        | 2        | 100   | 350  | 303       | .062   | 6.0      | .192      |          | 1.3      | 2.1        | 2.9        | 5.6           |          |
|   | 1900        | 2        | 100   | 349  | 307       | .105   | 4.9      | .150      |          | 1.8      | 2.9        | 3.2        | 3.9           | 5.2      |
|   | 1930        | 1        | 100   | 351  | 310       | 355    | 2.9      | 074       |          | .2.3     | 3.4        | 4.0        | 4.6           |          |
| • | 2000        | ,        | 100   | 21   | 340       | 1 488  | 2 2      | 039       |          | .39      | 7 1        | 11 4       | 21 6          | 22.0     |
|   | 2030        | ,        | 100   | 775  | 779       | 0 000  | 1 7      | a aaa     |          | 12 7     | 27 5       | 29 6       | 51 5          |          |
|   | 2130        |          | 100   | 149  | 114       | - 360  | 1 4      | 0.000     | 000      | 7 6      | 4 7        | 23.5       | <b>ب. ال</b>  |          |
|   | 2130        |          | 100   | 154  | 1 7 7     |        | 1.4      | .075      | 1030     |          | 4.J<br>7 0 | 3.3        | 10 7          |          |
|   | 2200        |          | 001   | 104  | 144       | +03    | 1.1      | .035      | .000     | 4.3      | (.3        | 1.2        | 10.7          | 1        |
|   | 2230        | 1        | . 60  | 160  | 111       | 327    | 1.2      | . 038     | .069     | 4.4      | 6.0        | (.(        | 14.3          |          |
|   | 2300        | 4.<br>•  | 150   | 149  | 100       | 5/9    | 1.1      | .035      | .104     | 3.4      | 5.8        | 6.8        | 18.5          | 18.5     |
|   | 2330        | 1        | 120   | 214  | 11        | -2.061 | • 3      | .031      | .129     | 11.4     | 12.3       | 17.5       | 21.9          |          |
|   | 12/         | 14       | 100   | 205  |           | 7 700  | -        | 0.00      |          |          |            |            | ·             |          |
| • | 20          | 1        | 100   | 205  | 53        | -3.365 |          | .025      | .119     | 7.0      | 10.6       | 9.8        | 25.1          |          |
|   | 23          | 1        | 100   | 217  | 67        | -2.941 | 1.0      | .035      | .157     | 7.5      | 10.4       | 10.4       | 16.7          | <b>.</b> |
|   | 58          |          | 100   | 200  | 42        | -1.328 | 1.1      | .039      | .152     | 5.8      | 7.1        | 8.8        | 17.5          | 21.4     |
|   | 127         | ,        | 100   | 185  | 17        | 845    | 1.5      | .053      | .155     | 4.3      | 3.8        | 5.9        | 9.4<br>7 0    | 10.7     |
|   | 130         | ,        | 100   | 70   | 755       | 022    | 3.0      | .005      | 175      | 3.1      | 3.3        | 2.3        | J.0<br>E E    | 10.1     |
|   | 223         |          | 100   | 17   | 333       | 200    | 2.1      | .038      | . 1 / 3  | 2.4      | 5.0        | 3.8<br>đa  | 3.0           |          |
|   | 234         |          | 100   | 70   | 777       | - 770  | 2.2      | .033      | 154      | 2.3      | 4.0        | 0.0        | 12.1          | 11.1     |
|   | 325         |          | 100   | 20   | 332       | 525    | 2.5      | 10/1      | 107      | 2.1      | 4.0        | 5.0<br>E 1 | 14.5          |          |
|   | 121         | <u>.</u> | 100   | 23   | 303       | - 075  | 4.0      | 171       | 170      | 2.0      | 3.0        | 3.0        | 0.4           | 1.7.44   |
|   | 460         | 1        | 100   | 23   | 759       | 0/5    | 7.0      | .131      | 1/10     | 2.0      | 3.3        | 4.5        | 3.4           | 77 5     |
|   | 430         | 1        | 100   | 162  | .07       | -1051  | 5.0      | .034      | .143     | 2.3      | 0.3<br>r 4 | 13.0       | JJ.4<br>      | J 0      |
|   | 515         | 1        | 100   | 102  | 07        | 7 7 9  | 1.0      | .044      | . 1 / 10 | 5.8      | 5.4        | 5.1        | 1.1           |          |
|   | 340         |          | 100   | 10/  | 87        | -2.710 | 1.4      | .043      | .185     | 5.2      | 10.1       | 14.2       | ,25.2<br>77 0 | 19.2     |
|   | 517         | 1        | 100   | 137  | 58        | -5.422 | .8       | . 033     | .175     | 7.5      | 13.1       | 22.7       | 35.9          |          |
|   | 545         | 1.       | 100   | .338 | 255       | -5.387 | . 8      | .030      | .163     | 16.7     | 18.3       | 29.9       | 42.4          | 80.5     |
|   | 728         | 1        | 100   | 98   | 32        | -2.227 | 1.4      | .049      | .195     | 5.4      | 13.5       | 15.0       |               |          |
|   | 800         | 1        | 100   | 88   | 32        | -1.114 | . 2.0    | .064      | .205     | 3.2      | 4.8        | 6.3        | 6.6           |          |
|   | 830         | 1        | 100   | 79.  | 27        | -1.022 | 1.7      | .055      | .174     | 3.9      | 6.0        | 6.6        | 7.1           | 7.2      |
|   | 900         | 1        | 100   | 58   | 359       | .204   | 1.4      | .038      |          | 5.5      | 9.2        | 11.2       | 20.0          |          |
|   | 930         | 1        | 100   | 29   | 327       | .024   | 1.4      | .042      |          | 4.7      | 7.0        | 8.3        | 11.7          | 23.1     |
|   | 1000        | 1        | 100   | 5    | 300       | 149    | 1.0      | .032      | .055     | 3.8      | 6.1        | 9.0        | 10.1          |          |
|   | 1030        | 1        | 100   | 13   | 503       | .279   | 2.9      | .078      |          | 3.0      | 10.9       | 16.1       | 25.0          | 19.1     |
|   | 0011        |          | 001   | 349  | 523       | .190   | 4.2      | .118      |          | 3.Z      | 8.0        | 9.1        | 14.1          |          |
|   | 1130        | 1        | 100   | 353  | 293       | .194   | 5.1      | .149      |          | 1.3      | 2.1        | 3.0        | 3.1           | 10.7     |
|   | 1200        | 2        | 100   | 35Z  | 293       | 166    | 5.8      | .176      |          | 1.3      | 2.4        | z.5        | 2.7           | _        |
|   | 1230        | Z        | 150   | 351  | 293       | .093   | 6.5      | .206      |          | 1.3      | 2.2        | 2.3        | 2.4           | 2.8      |
|   | 1300        | Z        | 200   | 349  | Z94       | .078   | 6.3      | .201      |          | 1.6      | 2.1        | 2.2        | 2.3           |          |

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

|   | _    | ·         | _           |           |      |         |             |       |         | •          | 7       | 10-         | 70-            | 60-        |
|---|------|-----------|-------------|-----------|------|---------|-------------|-------|---------|------------|---------|-------------|----------------|------------|
|   | Time | Cod       | <u>e Zi</u> | Rel       | 00   | 10/L    |             |       | W=      | <u> </u>   | <u></u> | 100         |                |            |
|   | 1330 | 2         | 150         | 349       | 294  | .045    | 7.1         | .235  |         | 1.4        | 2.1     | 1.3         | 4.1            | 4.4        |
|   | 1400 | 2         | 180         | 343       | 293  | . 023   | 8.7         | .314  |         | 1.6        | • 1.8   | 2.1         | 2.0            | <b>a</b> a |
|   | 1430 | 2         | 200         | 344       | 292  | .012    | 9.7         | .354  |         | 1.8        | 2.0     | 2.1         | 2.2            | 4.4        |
|   | 1500 | 2         | 200         | 344       | 294  | .005    | 9.8         | .358  |         | 1.4        | 2.2     | 2.1         | 2.2            |            |
|   | 1530 | 2         | 180         | 344       | 293  | .013    | 9.5         | .348  |         | 1.4        | 1.7     | 1.8         | 1.8            | 2.0        |
|   | 2300 | 1         | 240         | 348       | 301  | 225     | 4.2         | .137  | .343    | 2.2        | 3.4     | 3.1         | 5.2            |            |
|   | 2330 | 1         | 260         | 348       | 296  | 175     | 5.3         | .177  | .4'7    | 1.9        | 2.5     | 2.8         | 3.7            | 5.2        |
|   | 12   | /15       |             |           |      |         |             |       |         |            |         |             |                |            |
|   | 0    | 1         | 300         | 17        | 337  | 240     | 3.5         | .113  | .309    | 3.2        | 8.6     | 16.1        | 41.9           |            |
|   | 30   | 1         | 300         | 90        | 96   | 445     | 4.3         | .145  | .490    | 2.2        | 3.6     | 3.9         | 8.4            |            |
|   | 100  | 1         | 300         | 58        | 110  | 695     | 4.2         | .143  | .560    | 1.9        | 2.5     | 2.7         | 2.9            | . 9.3      |
|   | 130  | 1         | 300         | 18        | 120  | 891     | 3.8         | .128  | .544    | 2.1        | 2.5     | 31.0        | 5.6            |            |
|   | 200  | 1         | 300         | 327       | 114  | 778     | 4.1         | .141  | .572    | 2.2        | 2.3     | 3.0         | 5.5            | 8.3        |
|   | 230  | 1         | 300         | 318       | 98   | 781     | 4.0         | .135  | .549    | 2.3        | 3.1     | 3.2         | 3.2            |            |
|   | 300  | 1.        | 300         | 315       | 91   | -1.118  | 3.4         | .115  | .525    | 2.9        | 3.6     | 4.2         | 5.4            | 5.6        |
|   | 330  | 1         | 220         | 296       | 92   | -3.200  | 2.2         | .075  | .442    | 3.3        | 4.2     | 4.9         | 5.2            |            |
|   | 100  | 1         | 150         | 279       | 89   | -2 961  | 2.1         | 073   | 367     | 3.9        | 5.8     | 6.6         | 7.4            | 6.5        |
|   | 400  | •         | 150         | 200       | 37   | -6 259  | 1 7         | 049   | 316     | 12.0       | 20.2    | 27.8        | 59.0           |            |
|   | 430  |           | 150         | 200       | 219  | -1 694  | 74          | 078   | 374     | 4.6        | 7.1     | 9.5         | 12.9           | 74.7       |
|   | 500  | 1         | 150         | 27        | 213  | -7.034  | 4 0         | 132   | 338     | 4.4        | 5.3     | 7.0         | 10.5           |            |
|   | 530  | . њ.<br>1 | 1,50        | 21<br>· E | 200  | 555     | 7 9         | 790   | 379     | 2 8        | 3 5     | 4 3         | 5 7            | 9.1        |
|   | 500  | 1         | 130         | 20        | 230  | 037     | (,J<br>E /A | 100   | 257     | 7 4        | 7 7     | 10 9        | 22 0           |            |
|   | 530  |           | 150         | 29        | 333  | 7.223   | 3.0         | .100  | 100     | J.#<br>c c | 0 0     | 12 6        | 24 6           | 37 3       |
|   | 700  | 1         | 150         | 100       | · 21 | -2.003  | 4.4         | .0/3  | . 320   | 3.0        | 0.J.    | 7 7         | 17 7           | 54.5       |
|   | 730  | I         | 150         | 215       | 142  | -2.458  | 1.9         | .005  | - 31,07 |            | 4.4     | 20 4        | - 14.4<br>CC A | 67 7       |
|   | 800  | 1         | 150         | 326       | 285  | /14     | 3.1         | . 101 | . 318   | 6.7        | 13.1    | 20.4        | 30.4           | 00.0       |
|   | 930  | 1         | 150         | 358       | 157  | 154     | 5.1         | .212  | .398    | 1.9        | 2.5     | 2.3         | 4.0            | 70.0       |
|   | 1007 | 1         | 150         | 334       | 157  | -2.422  | 1.9         | .064  | . 301   | 7.4        | 12.9    | 17.5        | 44.2           | ఎర         |
|   | 1028 | 1         | 150         | 20        | Z11  | -2.997  | 1.7         | .059  | .299    | 6.2        | 1.2     | 8.5         |                |            |
| • | 1048 | 1         | 150         | 42        | 225  | -1.904  | 2.2         | .073  | .315    | 4.8        | 5.8     | 10.0        |                |            |
|   | 1108 | 1         | 150         | 14        | 288  | 193     | 5.6         | .190  | .384    | 4.6        | 8.3     | 13.4        |                |            |
|   | 1128 | - 1       | 150         | 330       | 297  | 138     | 4.3         | .141  | .255    | 2.4        | 2.8     | 3.3         | ٠              |            |
|   | 1148 | 1         | 150         | 349       | 287  | . 051   | 4.0         | .120  | •       | 2.5        | 2.8     | 3.5         |                |            |
|   | 1208 | 1         | 150         | 15        | 299  | .130    | 3.6         | .103  |         | Z.0        | 2.5     | 5.6         |                |            |
|   | 1228 | 1         | 150         | 23        | 324  | 183     | 2.2         | .067  | .135    | 6.8        | 8.0     | 9.5         |                |            |
|   | 1248 | 1         | 150         | 4         | 298  | .012    | 5.8         | .225  |         | 2.1        | 2.4     | 2.9         |                |            |
|   | 1308 | 1         | 150         | 355       | 299  | .023    | 8.3         | .284  |         | 2.2        | 2.6     | 3.2         |                |            |
|   | 1328 | 1         | 120         | 6         | 314  | .068    | 6.8         | .220  |         | 1.9        | 2.7     | 4.1         |                |            |
|   | 1348 | 1         | 100         | 48        | 10   | . 403   | 4.3         | .113  |         | 2.7        | 4.9     | 13.0        |                |            |
|   | 1408 | 1         | 100         | 36        | 4    | 1.403   | 4.3         | .081  |         | 2.0        | 3.5     | 5.3         |                |            |
|   | 1428 | 1         | 100         | 46        | 7    | 107.600 | 2.5         | .002  | ,       | 7.3        | 8.1     | 8.2         |                |            |
|   | 1448 | 1         | 100         | 37        | 350  | 58.830  | 2.8         | .003  |         | 3.4        | 5.2     | <b>6.</b> 7 |                |            |
| • | 1530 | 1         | 120         | 341       | 288  | .132    | 6.Z         | .192  |         | 1.4        | 2.0     | 2.6         | 4.1            |            |
|   | 1600 | 1         | 150         | 352       | 305  | . 171   | 6.7         | .207  |         | 1.7        | 2.5     | 3.9         | 5.5            | 10.1       |
|   | 1630 | 1         | 150         | 351       | 303. | .115    | 7.7         | .248  |         | 1.7        | 2.5     | 2.7         | 2.8            |            |
|   | 1700 | 1         | 150         | 347       | 297  | .138    | 7.4         | .234  |         | 1.4        | 1.8     | 1:9         | 2.0            | 3.6        |
|   | 1730 | 1         | 120         | 350       | 303  | . 199   | 8.2         | .187  |         | 1.6        | 2.3     | 2.3         | 4.1            |            |
|   | 1800 | 1         | 100         | 355       | 306  | 2.018   | 3.0         | .048  |         | 2.3        | 3.6     | 4.9         | 5.0            | 4.8        |
|   | 1830 | 1         | 100         | 331       | 286  | 121.400 | 1.6         | .001  |         | 13.8       | 24.1    | 37.2        | 46.1           |            |
|   | 1900 | 1         | 100         | 323       | 280  | 5.686   | 2.8         | .024  |         | 4.8        | 7.9     | 9.9         | 15.9           | 50.7       |

ĉ

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

| Time  | Coc   | te Zi | Rel  | WD   | 10/L    | U          | U•     | <u></u> | 1 m | <u>3</u> m | 10n   | 30m  | 60m  |
|-------|-------|-------|------|------|---------|------------|--------|---------|-----|------------|-------|------|------|
| 1930  | 1     | 100   | 344  | 300  | .135    | 5.9        | .182   |         | 1.3 | 2.0        | 3.0   | 10.0 |      |
| 2000  | 1     | 100   | 358  | 323  | .698    | 4,4        | .104   | •       | 1.7 | Z.2        | 3.9   | 5.6  | 14.0 |
| 2300  | 1     | 250   | 274  | 306  | .054    | 5.6        | .179   |         | 1.3 | 2.3        | 2.3   | 2.7  |      |
| 2330  | 1     | 270   | 278  | 312  | .045    | 5.8        | . 186  |         | 1.1 | 2.2        | 2.5   | 2.9  | 4.1  |
| 17    | /16   | - • • |      |      | • - · - |            |        | •       |     |            |       |      |      |
|       | 1     | 300   | 280  | 309  | 033     | 5.8        | . 187  |         | 1.1 | 1.8        | 2.4   | 2.7  |      |
| 30    |       | 700   | 291  | 377  | 054     | 4 5        | .139   |         | 1.9 | 3.2        | 3.6   | 5.5  |      |
| 100   | 1     | 100   | 231  | 2    | 407     | 2 3        | 055    |         | 3 5 | 5.0        | 9.0   | 19.8 | 74.8 |
| 170   | 1     | 100   | 121  | 74   | 7 475   | 1 0        | .030   |         | 25  | 3 5        | 4 6   | 93   |      |
| 100   |       | 100   | 761  | 70   | 1 167   | 3 2        | 023    |         | 1 7 | 23         | 3 7   | 3.5  | 73   |
| 200   |       | 100   | 331  | 20   | 4 100   | 2.1        | .000   |         | 7 9 | A 3        | 4 6   | 6 5  |      |
| 250   |       | 100   |      | - 23 | 4.100   | 2.0        | 043    | 1       | 2.3 | 7.5        | 4.U   | 0.0  |      |
| 231   | ,     | 100   | 14   | 20   | 2 070   | 4.0<br>7 c | .0-0   |         | 7 6 | 7 4        | 9.5   |      |      |
| 513   | •     | 100   | 32   | 90   | 2.870   | 2.3        | .032   |         | 5.5 | r.+        | 101   |      |      |
| 326   | 1     | 100   | 48   |      | . 350   | 2.4        |        | ,       | 2.4 | 7.3        | 10.1  |      | •    |
| 401   | 1     | 100   | 223  | 11   | 142.100 | 1.0        | 0.000  |         | 5.3 |            | 11.4  |      |      |
| 421   | 1     | 100   | 334  | 355  | 100.300 | 1.1        | .001   |         | 6.1 | 6.4        | 7.5   |      |      |
| 441   | 1     | 100   | 337  | 6    | 130.800 | 1.4        | .001   |         | 4.4 | 6.7        | 7.1   |      |      |
| 12/   | / 1.4 |       |      |      |         |            |        | '       |     | _          |       |      |      |
| 1559  | 2     | 100   | 349  | 297  | .095    | 7.7        | .250   |         | 1.2 | 1.6        | 1.7   |      |      |
| 1612  | 2.    | 100   | 340  | 294  | .086    | 7.5        | .243   |         | 1.4 | 1.7        | 1.8   |      | 1    |
| :525  | 1     | 130   | 345  | 294  | .045    | 7.5        | .249   |         | 1.5 | 1.6        | 2.2   |      |      |
| 1638  | 1     | 130   | 34 i | 296  | .030    | 7.6        | .255   |         | 1.2 | 1.5        | 1.7   |      |      |
| 1651  | 1     | 140   | 344  | 298  | . 027   | 7.8        | .264   |         | 1.5 | 1.7        | 2.8   |      |      |
| 1704  | 1     | 160   | .341 | 298  | .028    | 7.8        | .263   |         | 1.3 | 1.9        | 1.7   |      |      |
| 1717  | 1     | 160   | 350  | 305  | .048    | 6.8        | .223 · |         | 1.4 | 1.5        | 1.9   | •    |      |
| 1730  | 1     | 160   | 346  | 308  | .082    | 6.7        | .215   |         | 1.4 | 1.7        | 2.0   | •    |      |
| 1743  | 1     | 160   | 351  | 309  | .122    | 6.6        | .206   |         | 1.3 | 1.5        | 2.3   |      |      |
| 1756  | 1     | 160   | 347  | 306  | .118    | 6.1        | .190   |         | 1.3 | 4.6        | 2.5   |      |      |
| 1809  | 1     | 160   | 346  | 306  | .097    | . 5.9      | :183   |         | 1.2 | 1.8        | 2.3   |      |      |
| 1.822 | 1.    | 160   | 353  | 313  | .106    | 5.1        | .154   |         | 2.2 | 4.4        | 2.4   |      |      |
| 1835  | · 1·  | 160   | 352  | 319  | .067    | 4.9        | .150   |         | 3.2 | 5.8        | 100.0 |      |      |
| 1848  | 1     | 150   | 349  | 304  | 0.000   | 6.9        | •.233  | .074    | 1.3 | 1.8        | 2.1   |      |      |
| 1929  | 1     | 170   | 347  | 303  | 0.000   | 5.6        | .181   | .058    | 1.5 | 2.0        | 2.1   | 2.1  |      |
| 1958  | 1     | 200   | 349  | 302  | 029     | 7.7        | .287   | .316    | 1.3 | 2.0        | 2.3   | 2.5  |      |
| 2030  | 1     | 200   | 345  | 300  | 036     | 9.4        | .352   | .447    | 2.1 | 2.4        | 2.6   | 2.7  |      |
| 2100  | 1     | 200   | 344  | 298  | 822     | 10.1       | .379   | .409    | 1.7 | 2.1        | · 2.0 | 2.0  |      |
| 12/   | 16    |       |      |      |         |            |        |         |     |            |       |      | '    |
| 501   | 1     | 100   | 337  | 21   | 4.051   | 2.2        | .024   |         | 3.1 | 4.1        | 7.3   |      |      |
| 521   | 1     | 100   | 330  | 14   | 1.922   | 2.4        | .038   |         | 3.7 | 6.0        | 8.0   |      |      |
| 541   | 1     | 100   | 332  | 19   | 1.734   | 2.4        | .041   |         | 2.5 | 3.6        | 5.7   |      |      |
| 601   | 1     | 100   | 11   | 43   | 1.543   | 2.0        | .036   |         | 3.3 | 5.5        | 6.8   |      |      |
| 621   | 1     | 100   | 24   | 50   | .773    | 2.7        | .059   |         | 2.4 | 3.1        | 4.2   |      |      |
| 641   | 1     | 100   | 332  | 42   | .344    | 3.6        | .095   |         | 1.7 | 2.4        | 2.5   | •    |      |
| 701   | 1     | 100   | 318  | 41   | . 389   | 3.4        | .087   |         | 1.8 | 2.1        | 2.8   |      |      |
| 721   | 1     | 100   | 309  | 35   | .263    | 4.7        | .132   |         | 1.4 | 1.5        | 1.9   |      |      |
| 741   | 1     | 100   | 327  | 20   | .235    | 4.9        | .139   |         | 3.5 | 5.9        | 8.3   | ,    |      |
| 801   | 1     | 100   | 327  | 21   | .146    | 5.8        | .171   |         | 2.1 | 2.3        | 2.5   |      |      |
| 821   | 1     | 100   | 253  | 353  | . 424   | 3.4        | .086   |         | 2.5 | 6.7        | 13.9  |      |      |
| 841   | 1     | 100   | 289  | 29   | .264    | 4.1        | .114   |         | 1.6 | 2.5        | 2.5   |      |      |

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

| Time  | Code | <u>71</u> | Rel | WD           | 10/1   | U          | U+    | w*    | <u>     1 m  </u> | <u>3m</u> | 10m        | 30m   | 50m  |
|-------|------|-----------|-----|--------------|--------|------------|-------|-------|-------------------|-----------|------------|-------|------|
| 901   | 1    | 100       | 297 | 24           | .273   | 4.6        | .128  |       | 1.8               | 2.8       | 2.5        |       |      |
| 921   | 1    | 100       | 294 | 23           | .327   | 4.1        | .112  |       | 2.2               | 3.4       | 4.5        |       |      |
| 941   | 1    | 100       | 293 | 9            | . 423  | 4.5        | .121  |       | 1.8               | 2.0       | 2.7        |       |      |
| 1001  | 1    | 100       | 293 | 358          | .532   | 4.5        | .115  |       | 1.3               | 1.5       | 2.2        |       |      |
| 1021  | 1    | 100       | 290 | 345          | .739   | 4.5        | .104  |       | 1.5               | 2.2       | 3.6        |       |      |
| 1041  | 1    | 100       | 281 | 315          | .748   | 3.6        | .081  |       | 2.4               | 4.3       | 6.9        |       |      |
| 1101  | 1    | 100       | 280 | 308          | .464   | 3.7        | .092  |       | 1.2               | 1.8       | 2.3        |       |      |
| 1129  | 1    | 100       | 15  | 296          | .325   | 4.6        | .124  |       | 1.3               | 1.8       | 3.4        |       |      |
| 1144  | 1    | 100       | 13  | 291          | .488   | 4.2        | .105  | •     | 1.0               | 1.7       | 2.6        |       |      |
| 1159  | 1    | 100       | 3   | 279          | 1.245  | 3.0        | .058  |       | 2.5               | 3.1       | 4.1        |       |      |
| 1214  | 1    | 100       | 359 | 270          | .772   | 2.6        | .058  |       | 2.6               | 4.0       | 5.7        |       |      |
| 1229  | 1    | 100       | 1   | 273          | .555   | 2.9        | .070  |       | 2.1               | 2.6       | 5.2        |       |      |
| 1244  | 1    | 100       | 13  | 292          | .473   | 3.5        | .090  |       | 1.7               | 2.9       | 5.0        |       |      |
| 1259  | 2    | 100       | 14  | 293          | .311   | 4.2        | .113  |       | 1.2               | 2.0       | 2.3        |       |      |
| 1314  | 2    | 100       | 25  | 307          | . 103  | 6.5        | . 204 |       | 1.5               | 2.0       | 5.2        |       |      |
| 1329  | 2    | 100       | 20  | 299          | .064   | 7.9        | .261  |       | 1.4               | 1.9       | 3.4        |       |      |
| 1400  | 2    | 100       | 17  | 296          | 032    | 7 7        | 740   | ·     | 1 5               | 1 8       | 1 8        | 73    |      |
| 1430  | 2    | 100       | 19  | 300          | 927    | 6 8        | 225   |       | 1 3               | 15        | 1.8        | 3.0   | 30   |
| 1500  | 2    | 100       | 78  | 313          | 977    | 6 4        | 711   |       | . 1 4             | 1 5       | 23         | A 3   | 5.0  |
| 1630  | 2    | 100       | 77  | 321          | 020    | 5 2        | 701   |       | 1 5               | 7 1       | 2.5        |       | 57   |
| 1600  | 2    | 100       | 35  | 271          | .000   | 6.2        | 200   |       | 1.5               | 1 6       | 2.3        | J. 1  | J.,  |
| 1700  | 2    | 150       | 274 | 316          | .023   | 0.2<br>c c | 214   |       | 2.0               | 7 7       | 2.1<br>7 A | 7 1   |      |
| 1720  | 2    | 150       | 270 | 214          | .027   | 0.3        | 717   |       | 1 0               | 2.3       | 2.4        |       | 7.0  |
| 1720  | 2    | 150       | 270 | 214          | .034   | 77         | .213  |       | 1.0               | 2.2       | - <u>-</u> | 4.5   | 5.0  |
| 1000  | 4    | 150       | 273 | 771          | .017   | 7.2        | .240  |       | 1.7               | 2.1       | 2.3        | . 4.0 | e 7  |
| 1030  | 1    | 150       | 2/3 | 321          | .020   | 7.5        | .233  |       |                   | 4.7       | 3.0        | 3.7   | 3.1  |
| 1 300 |      | 150       | 200 | 322          | .028   | 5.1        | .323  |       | 1.4<br>1.4        | 1.3       | 2.0        | 4.2   | -    |
| 1320  | 1    | 150       | 2/8 | 222          | .061   | 8.3        | .224  |       | 2.0               | 3.0       | 3.4        | 7.5   | 1.0  |
| 2000  |      | 150       | 2/5 | 344          | .090   | 5.1        | .131  |       | 2.0               | 5.4       | 2.4        | 3.1   |      |
| 2030  | 1    | 150       | 282 | _ <u>341</u> | . 105  | 4./        | . [4] |       | 1.3               | 3.5       | 5.4        | 5./   | 12.7 |
| 12/   |      |           |     | ~~           |        |            |       |       |                   |           |            |       |      |
| 830   | 1    | 150       | 53  | 87           | 229    | 3.3        | .105  | .226  | 1.8               | 3.8       | 10.3       | 21.5  |      |
| 900   | 1    | 150       | 1/3 | 144          | 061    | 7.1        | .245  | . 340 | 1.9               | 3.9       | 5.9        | 0.0   | 18.1 |
| 930   | I    | 150       | 13  | 88           | 852    | 2.0        | .054  | .215  | 3.7               | 5.3       | 6.7        | 9.9   |      |
| 1000  | 1    | 150       | Z3  | 84           | 218    | 2.7        | .083  | .177  | 2.9               | 5.4       | 15.8       | 41.4  | 8.5  |
| 1030  | 1    | 150       | 38  | 79           | 119    | 3.3        | .101  | .176  | 2.0               | 3.5       | 12.8       | 25.0  |      |
| 1100  | 1    | 150       | 355 | 105          | 060    | 2.7        | .082  | .116  | 5.4               | 3.9       | 4.8        | 8.2   | 13.5 |
| 1130  | 1    | 150       | 339 | 119          | 111    | 2.7        | .080  | .137  | 2.0               | 6.0       | 11.1       | 20.1  |      |
| 1200  | 1    | 150       | 344 | 120          | 274    | 2.4        | .074  | .169  | 3.9               | 5.9       | 23.1       | 61.5  | 6.1  |
| 1230  | 1    | 170       | 5   | 65           | -2.895 | .7         | .027  | .140  | 4.5               | 7.6       | 15.2       | 42.9  |      |
| 1300  | 1    | 220       | 17  | 20           | -1.370 | 1.5        | .050  | .221  | 3.3               | 5.8       | 11.1       | 14.5  | 31.9 |
| 1330  | 1    | 220       | 25  | 37           | 931    | 2.1        | .067  | .261  | .6                | 1.1       | 1.8        | 3.2   |      |
| 1400  | 1    | 230       | 45  | 66           | 368    | 3.5        | .112  | .324  | 1.0               | 1.8       | 3.0        | 5.3   | 17.9 |
| 1430  | 1    | 180       | 25  | 69           | 343    | 3.0        | .095  | .249  | 1.3               | 2.3       | 3.8        | 6.8   |      |
| 1500  | 1    | 180       | 28  | 88           | 261    | 2.9        | .090  | .214  | 3.0               | 6.2       | 13.6       | 40.1  | 13.7 |
| 1530  | 1    | 180       | 20  | 94           | 151    | 1.8        | . 055 | .114  | 4.8               | 5.2       | 8.3        | 15.2  |      |
| 1600  | 1    | 150       | 342 | 271          | 040    | 1.6        | .048  | .065  | 3.6               | 8.5       | 17.4       | 56.7  | 92.7 |
| 1630  | 1    | 150       | 328 | 259          | 065    | 2.7        | .082  | .117  | 2.3               | 5.1       | 10.6       | 42.4  |      |
| 1700  | 1    | 170       | 331 | 251          | 212    | 2.4        | .072  | .158  | 2.2               | 7.5       | 15.1       | 46.2  | 10.3 |
| 1730  | 1    | 170       | 750 | 200          | -1 730 | a          | 077   | 1.4.1 | 77                | 77        | 71 7       | 40.0  |      |

| Time | Coc | <u>te Zi</u> | Rel | WD    | 10/L   | U    | U+    | <b>u</b> # | le   | 3m    | 1 Øm  | 30m  | <u> 60-</u> |
|------|-----|--------------|-----|-------|--------|------|-------|------------|------|-------|-------|------|-------------|
| 1800 | 1   | 200          | 14  | 99    | -1.013 | 1.2  | .040  | .157       | 11.5 | 26.0  | 46.7  | 58.2 | 39.9        |
| 1830 | 1   | 160          | 7   | 150   | 609    | 1.1  | . 938 | .116       | 2.4  | 5.3   | 9.4   | 16.9 |             |
| 1900 | 1   | 150          | 352 | 241   | -1.983 | .7   | .027  | .118       | 4.4  | 7.7   | 27.0  | 80.9 | 53.3        |
| 1930 | 1   | 150          | 60  | 58    | .725   | 1.8  | .040  |            | 7.0  | 19.7  | 32.0  | 44.4 |             |
| 2000 | 1   | 150          | 246 | 129   | .683   | 1.0  | .024  |            | 7.4  | 10.3  | 13.2  | 15.3 | 37.7        |
| 2030 | 1   | 150          | 5   | 335   | 1.781  | 1.5  | .025  |            | 3.5  | 8.3   | 15.8  | 20.9 |             |
| 2100 | 1   | 150          | 86  | 132   | .103   | 4.3  | .125  |            | 1.2  | 2.0   | 3.6   | 4.7  | 21.7        |
| 2130 | 1   | 150          | 76  | 137   | .088   | 5.2  | .159  |            | 1.0  | 1.4   | 1.8   | 2.6  |             |
| 2200 | 1   | 150          | 76  | 134   | .058   | 6.2  | .197  |            | .8   | 1.5   | 1.7   | 2.8  | 3.1         |
| 2230 | 1   | 150          | 76  | . 131 | .026   | 6.5  | .213  |            | .8   | 1.3   | 1.7   | 1.8  |             |
| 2300 | .2  | 150          | 79  | 135   | .010   | 7.0  | .233  |            | 1.1  | 1.8   | 2.1   | 5.1  | 4.1         |
| 2330 | 2   | 170          | 79  | 141   | 025    | 8.8  | .327  | .349       | 1.8  | 3.0   | 3.12  | 4.8  |             |
| 12/  | 18  |              |     |       |        |      |       |            |      |       |       |      |             |
| 0    | 2   | 170          | 80  | 139   | 055    | 8.6  | .306  | . 427      | 1.9  | 2.7   | 2.9   | 4.1  |             |
| 30   | 2   | 170          | 81  | 138   | 047    | 9.4  | .352  | .464       | 2.1  | 2.8   | 3.2   | 4.1  |             |
| 100  | 2   | 150          | 358 | 124   | 043    | 10.0 | .379  | .464       | 1.7  | 2.4   | Z.S   | 2.9  | 4.0         |
| 130  | 2   | 150          | 6   | 146   | 053    | 9.1  | .343  | .453       | 1.8  | 3.8   | 5.7   | 9.3  |             |
| 200  | 2   | 250          | 8   | 144   | 080    | 7.9  | .279  | .499       | 2.2  | 3.5   | 4.6   | 6.0  | 3.0         |
| 230  | 2   | 250          | 4   | 138   | 122    | 7.4  | .261  | .537       | 2.1  | 3.5   | 3.4   | 3.6  |             |
| 300  | 2.  | 250          | 10  | 147   | 123    | 7.5  | .267  | . 553      | 2.2  | 3.1   | 4.5   | 5.8  | 6.5         |
| 330  | 1   | 250          | 227 | 247   | 149    | 6.6  | .228  | .503       | 1.7  | 100.0 | 100.0 |      |             |
| 400  | 1   | 250          | 173 | 161   | 074    | 6.8  | .234  | .407       | 2.6  | 3.3   | 3.7   | 3.9  | 10.5        |
| 430  | 1   | 250          | 177 | 173   | 059    | 7.Z  | .250  | .405       | 2.2  | 2.8   | 3.7   | 7.0  |             |
| 500  | 1   | 250          | 242 | 193   | 097    | 6.6  | .228  | .437       | 4.7  | 100.0 | 100.0 | 0.0  | 12.7        |
| 530  | 1   | 250          | 173 | 174   | 053    | 7.0  | .243  | .379       | 3.0  | 100.0 | 100.0 |      |             |
| 630  | 1   | 250          | 343 | 239   | 079    | 6.0  | .202  | .361       | 3.8  | 7.2   | 12.4  |      |             |
| 700  | 1   | 250          | 328 | 151   | 075    | 6.3  | .213  | .375       | 2.5  | 5.2   | 8.1   |      |             |

C-14

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

| Time  | Coc   | ie Zi | Rel | WO   | 10/L        | U           | <u>U+</u> | <u>u*</u> | <u> </u> | <u>3</u> m  | 10m        | 30m     | 50m  |   |
|-------|-------|-------|-----|------|-------------|-------------|-----------|-----------|----------|-------------|------------|---------|------|---|
| 6/2   | 0     |       |     |      |             |             |           |           |          |             |            |         |      |   |
| 1851  | 1     | 750   | 30  | 165  | 0.000       | 3.3         | 0.000     |           | 6.9      | 12.7        | 21.4       |         |      |   |
| 1902  | 1     | 750   | 25  | 173  | 0.000       | 3.7         | 0.000     |           | 100.0    | 41.0        | 100.0      |         |      |   |
| 1957  | 1     | 750   | 68  | 308  | 0.000       | 4.3         | 0.000     |           | 4.2      | 6.9         | 12.0       |         |      |   |
| 2030  | t     | 750   | 6   | 320  | - 555       | 3.4         | .109      | .542      | 9.1      | 20.3        | 100.0      |         |      | Ż |
| 2714  | 1     | 750   | 305 | 341  | - 407       | 7 9         | 128       | 575       | 21       | 5.4         | 9 6        | 25.8    |      |   |
| 2300  | i     | 750   | 337 | 325  | 745         | 35          | 080       |           | 25       | 6.1         | 29.3       | 2010    |      |   |
| 6/7   | · • • |       | 551 | 77.7 |             | 2.3         |           |           |          | <b>U</b> ., | 2010       |         |      |   |
| a 072 |       | 750   | 314 | 354  | 7 777       | 2 2         | 034       |           | 77       | A 3         | 5 2        | 94      |      |   |
| 30    | 1     | 750   | 275 | 310  | 460         | A 1         | 105       |           |          | 5 1         | 100 0      | 71 9    |      |   |
| 100   | 1     | 750   | 200 | 207  | .480        |             | .103      |           |          | 2.1         | 7' 7       | 4 7     |      |   |
| 100   | 1     | 750   | 247 | 233  | .185        | 3.1         | .150      |           | 1.5      | 2.4         | 3.2        | 4.0     |      |   |
| 130   | I     | 750   | 95  | 291  | 003         | 4.6         | .146      | .140      | 1.6      | 2.(         | 4.5        | 8.1     | 5.3  |   |
| 200   | 1     | 750   | 96  | 336  | .005        | 6.3         | .209      | •         | 1.6      | 2.9         | 4.3        | 7.3     |      |   |
| 230   | 1.    | 750   | 66  | 316  | .188        | 3.9         | .112      |           | 2.2      | 4.0         | 5.0        | 8.4     | 13.9 |   |
| 300   | 1     | 750   | 90  | 305  | .128        | 3.8         | .109      |           | .9       | 1.4         | 1.8        | 2.3     |      |   |
| 330   | 1     | 750   | 89  | 297  | .045        | 4.2         | .129      |           | 1.0      | 2.0         | 2.5        | 4.0     | 5.5  |   |
| 400   | 1     | 700   | 87  | 299  | 056         | 3.8         | .119      | .258      | . 9      | 1.4         | 1.8        | 2.3     |      |   |
| 430   | 1     | 700   | 93  | 299  | 172         | 3.2         | .101      | .329      | 1.0      | 1.7         | 2.1        | 2.9     | 2.9  |   |
| 500   | 1     | 700   | 11  | 301  | 071         | 4.5         | .144      | .351      | 2.5      | 5.6         | 7.0        | 19.7    |      |   |
| 530   | 1     | 700   | 303 | 298  | .147        | 3.1         | .088      |           | 4.9      | 6.6         | 8.7        | 12.1    | 18.6 |   |
| 600   | 1     | 700   | 308 | 305  | .745        | 2.2         | .058      |           | 9.8      | 14.7        | 18.7       | 30.0    |      |   |
| 630   |       | 700   | 89  | 295  | 279         | 1.8         | .949.     |           | 1 8      | 3.4         | 7 9        | 22.9    | 33.6 |   |
| 700   |       | 200   | 27  | 275  | 377         | 1 0         | 051       |           | 1 7      | 2.7         | 7 6        |         |      |   |
| 700   | •     | 700   | 33  | 210  | .012        | 7 1         | .031      | 174       | 1.7      | 2           | J.a<br>7 c | 3.0     |      |   |
| 130   | 1.    | 700   | 74  | 203  | 034         | 2.1         | .003      | .124      | 1.3      |             | 3.0        | 4.0     | 3./  |   |
| 070   | 1     | 700   | 74  | 247  | 104         | 2.0         | .080      | .444      | 4.4      | 7.4         | 14.2       | 24.4    |      |   |
| 830   | 1     | 750   | 18  | 265  | 818         | 2.1         | .057      | .3/5      | 3.9      | 8.4         | 17.7       | 30.8    | 48.1 |   |
| 935   | -1    | /50   | 337 | 295  | 325         | 3.9         | .128      | .527      | 2.3      | 5.0         | 9.3        | 13.7    |      |   |
| 1030  | I     | 850   | 81  | 275  | .438        | <b>Z</b> .7 | .065      |           | 1.3      | 2.0         | 2.5        | 2.8     |      | ' |
| 1100  | 1     | 820   | 18  | 275  | .415        | 3.4         | .085      |           | 1.8      | 3.2         | 4.5        | 6.7     | 5.1  |   |
| 1130  | 1     | 850   | 327 | 271  | 18.170      | 1.9         | .006      |           | 2.4      | 3.7         | 4.2        | 4.8     | •    |   |
| 1200  | 1     | 810   | 266 | 275  | 12.650      | .2.1        | .010      |           | 2.7      | 3.7         | 4.9        | 9.2     | 8.6  |   |
| 1300  | 2     | 340   | 25  | 278  | 1.152       | 3.3         | .065      |           | 2.1      | 2.4         | 2.8        | 3.0     |      |   |
| 1330  | 2     | 860   | 12  | 281  | :563        | 4.2         | .105      |           | 1.7      | 1.9         | 2.4        | 2.8     | 3.3  |   |
| 1400  | 2     | 850   | 3   | 285  | .377        | 4.5         | .121      | •         | 1.4      | 2.2         | 2.7        | 3.4     |      |   |
| 1430  | 2     | 800   | 358 | 280  | .283        | 5.0         | .141      |           | 1.3      | 2.2         | 2.5        | 2.9     | 3.7  |   |
| 1500  | 2     | 850   | 354 | 279  | .258        | 5.1         | .145      |           | 1.3      | 1.9         | 2.6        | 3.1     |      |   |
| 1530  | 2     | 862   | 349 | 277  | .312        | 4.6         | .128      |           | 1.1      | 1.6         | 2.0        | 2.0     | 2.8  |   |
| 1600  | 2     | 870   | 336 | 272  | .426        | 4.2         | .128      | •         | 1.1      | 1.9         | 2.3        | 4.1     |      |   |
| 1630  | z     | 870   | 332 | 272  | .630        | .3.6        | .085      |           | 1.0      | 1.2         | 2.2        | 4.8     | 4.5  |   |
| 1700  | z     | 870   | 327 | 281  | .805        | 3.2         | .072      |           | 1.1      | 1.5         | 1.7        | 2.8     |      |   |
| 1730  | 2     | 860   | 320 | 270  | 552         | 3.3         | 080       |           | 1 01     | 1 4         | 1 4        | 37      | 5 9  |   |
| 1800  | -     | 850   | 319 | 273  | 485         | 77          | 002       |           | · · · ·  | 1 4         | 7 9        | <b></b> | 2.2  |   |
| 1870  | 2     | 800   | 371 | 797  |             | 2.5         | 000       |           |          | 7 5         | c 7        | 10 7    |      |   |
| 2020  | - 2   | 2000  | 310 | 202  | 170         | 7 0         | 117       |           | 1 7      | J.J<br>1 E  | 3.1        |         |      |   |
| 2100  | ÷     | 000   | 371 | 200  | 143         | J.J         | 145       |           | 1 7      | 1.0         | 1.3        | 4.4     |      |   |
| 2120  | 2     | 000   | 321 | 200  | ,002<br>060 | 4.0         | 143       |           | 1.4      | 1.3         | 4.0        | 2.4     | ڊ. ۲ |   |
| 2130  | 4     | 000   | 320 | 200  | .002        | 3.3         | . 1/5     |           |          | 1.2         | 1.8        | 2.2     |      |   |
| 2200  | 4     | 000   | 323 | 233  | . 080       | 4.9         | .151      |           | د. ا     | 2.1         | 2.2        | 2.7     | ۵.5  |   |
| 2230  | 2     | 800   | 223 | 100  | .048        | <b>b.</b> ] | .197      |           | .8       | 1.8         | 2.5        | 2.9     |      |   |
| 2300  | 2     | 800   | 318 | 296  | .070        | 5.5         | .171      |           | 1.1      | 1.7         | 1.8        | 2.8     | 3.6  |   |

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

1

24

ł

たたとと さいふき

第三アンシン ノインショー

1

| Time  | Cod      | le Zi.     | Rel          | ωD       | 10/L          | U             | U+          | u÷.      | Im          | 3m           | 1 Øm                 | 30m          | <u>60m</u>  |
|-------|----------|------------|--------------|----------|---------------|---------------|-------------|----------|-------------|--------------|----------------------|--------------|-------------|
| 2330  | 2        | 800        | 296          | 299      | .084          | 5.2           | . 160       |          | 1.1         | 1.6          | 2.1                  | 2.9          |             |
| 6/2   | 22       |            | -            |          |               |               |             |          |             |              |                      |              |             |
| 0     | 2        | 800        | 289          | 291      | .105          | 5.1           | .156        |          | .9          | 1.3          | 1.4                  | 2.9          | 3.1         |
| 30    | 2        | 800        | 299          | 301      | .129          | 4.7           | .139        |          | 1.0         | 1.4          | 2.4                  | 5.9          |             |
| 100   | 2        | 800        | 311          | 306      | .208          | 3.7           | . 101       |          | 1.3         | 2.1          | 3.0                  | 3.8          | 5.4         |
| 130   | 1        | 800        | 301          | 303      | .294          | 3.1           | .083        |          | 2.5         | 4.1          | 4.6                  | 5.7          |             |
| 200   | 1        | 800        | 306          | 306      | .317          | 3.2           | .084        |          | 2.1         | 3.9          | 4.4                  | 10.0         | 8.2         |
| 230   | 1        | 800        | 371          | 345      | 894           | 2.1           | .045        |          | 4.8         | 7.2          | 11.0                 | 14.6         |             |
| 300   | 1        | 250        | 331          | 350      | . 773         | 2.2           | .047        |          | 1.9         | 3.2          | 5.2                  | 7.9          | 11.9        |
| 330   | ť        | 750        | 313          | 345      | .411          | 2.0           | .050        |          | 1.7         | 2.3          | 3.1                  | 3.5          |             |
| 400   | i        | 700        | 298          | 323      | 270           | 1.8           | .048        |          | 1.8         | 3.0          | 4.4                  | 5.6          | 11.3        |
| 430   | ;        | 700        | 296          | 320      | - 078         | 1.7           | .050        | .129     | 1.9         | 3.3          | 3.4                  | 9.3          |             |
| 520   | 1        | 680        | 310          | 332      | - 033         | 71            | .063        | .120     | 1.4         | 2.3          | 4.0                  | 5.3          | 9.5         |
| 530   | í        | 680        | 304          | 374      | - 091         | 2.3           | .068        | .179     | 1.2         | 2.0          | 3.0                  | 7.3          |             |
| 600   | 1        | 670        | 314          | 307      | - 021         | 2 9           | 085         | 140      | 1.4         | 1.7          | 2.0                  | 2.5          | 9.9         |
| 630   | ÷        | 550        | 315          | 207      | 014           |               | 097         |          | 1 5         | 23           | 3 2                  | 5.2          | 0.0         |
| 700   |          | 660        | 377          | 200      | 140           | 7 1           | .032        |          | 1 9         | 3.7          | 4 8                  | 5.2          | 57          |
| 000   |          | 660        | 333          | 233      | 679           | 2.1<br>7 a    | .000        |          | 3 7         | 5.2          | <del>т.</del><br>с л | 13.0         | <b>.</b> ., |
| 070   | 1        | 500        | 70           | 13       | .02J<br>E 207 | 1 0           | .000        |          | 1.2         | 7 2          | 95                   | 11 9         | · 70 0      |
| 000   | 1        | 690        | 20           | 756      | 167 000       | 1.3           | 0 000       |          | 4.0<br>a 7  | 16 0         | 70.3                 | 77 6         | 20.3        |
| 900   | <u>.</u> | 600        | 10           | 230      | 103.000       | 1.0           | 0.000       |          | 3.4         | 7 7          | 14 0                 | 37.8<br>76 E | 67 6        |
| 920   | 1        | 600        | 223          | 243      | 104 100       | 1.0           | .001        |          | · 3.0       | (.J          | 0 7                  | 40.0         | 0 <b></b> 0 |
| 000   | 1        | 500        | 766          | 213      | 184,100       | 1.0           | .001        |          | 3.0         | 0.1          | 6.5                  | 3.0          | 07          |
| 1000  | 1        | 500        |              | 218      | 104.300       | 2.3           | .002        |          | 2.0         | 4.3          | 7 6                  | 7.4          | 6.4         |
| 1700  | 1        | 600        | 335          | 201      | 4.033         | 2.1           | .020        |          | 1.1         | 2.7          | 2.3                  | J. (         |             |
| 1200  |          | 800        | 71           | 221      | 37.180        | 1.8           | 100.        |          | 4.0         | 0.3          | 0.1                  | 95           | 10 5        |
| 12.30 | 1        | 650        | 75           | 228      | 22.300        | 1.5           | .004        | · •      | 9.1         | u.u<br>71    | 0.1                  | 0.3          | 10.0        |
| DUCI  |          | 520        |              | 231      | 1.314         | 2.3           | .047        |          | 2.3         | 5.1          | 4.5                  | 3.3          |             |
| 1400  | 1        | 400        | . (          | 249      |               | 4.0           | .104        |          | . 2.4       | 3.0          | 0.0                  | 14.4         | 10.0        |
| 1430  | 1        | 340        | 750          | 282      | .4!!          | 4.0           | 177         |          | 1.2         | 2.1          | 3.0<br>7 C           | 3.3          | 10.0        |
| 1500  | 4        | 200        | 358          | 200      | , 347         | 5.0           | -127        |          | 1.3         |              | 2.3                  | +.1<br>-7 4  | 7 6         |
| 1500  | 2        | 000        | 343          | 200      | .130          | 0.3           | .200        |          | 1.2         | 1.3          | 4.1                  | 4.4<br>7 E   |             |
| 1600  | 4        | 200        | 341          | 258      | .231          | 6.2           | 175         |          | 1.4         | 1.0          | 2.0                  | 4.3<br>7 0   | 7 7         |
| 1200  | <u> </u> | 250        | 331          | 270      | .439          | 3.1           | .135        |          | 7.0         | 2.3          | 4.5                  | J.3<br>1 C   | د.د         |
| 1700  | 4        | 400        | 200          | 271      | .400          | 4.5           | 120         |          | 4.1         | 1.0          | 4.0                  | 4.0          | <b>-</b>    |
| 1000  | 1        | 450        | 323          | 2/3      | .300          | 4.8           | 110         |          | 7.0         | 7.5          |                      | 2.5          | 3.0         |
| 1000  | 1        | 480        | 210          | 274      | . 203         | 4.4           | .110        |          | 2.0         | 3.1          | J.J                  | 5.7          | 0 E         |
| 1830  | 1        | 540        | 321          | 200      | .450          | 2.1           | .055        |          | 2.1         | 2.0          | 5.1                  | 3.3          | 9.3         |
| 1300  | 1        | 540        | 304          | 272      | .285          | 3.8           | .100        | ,        | 5.2         | 4./          | 6.1<br>a c           | 8.8          |             |
| 1330  | •        | 5/5        | 207          | 200      | , 287         | 5.4           | .050        |          | 4.1         | 7.0          | 3.0                  | 11.0         | ا، سرا      |
| 2000  | •        | 000        | 202          | 2/0      | ,434          | 2.0<br>7 c    | .005        |          | 4.0         | 3.0          | - 0. (<br>           | 1.0.4        | 17 4        |
| 2030  | 1        | 020<br>E90 | 230          | 274      | . 338         | 1.0<br>7 0    | .000        |          | 4.0         | 11 7         | 14 2                 | 101          | 14          |
| 2120  | 1        | 500        | 201          | 200      | . 201<br>100  | 10            | ·U(0<br>017 |          | 4.D<br>C 0  | 00           | 14.4<br>a a          | ו.כו<br>ד מכ | 201 0       |
| 2130  | н<br>1   | 620        | 231          | 203      | ,403<br>760   | 7 1           | .₩47<br>Ω⊂7 |          | 5.V<br>C 7  | 1011         | יש.כ<br>ות ב         | 16 0         | 20.3        |
| 2220  | ,<br>†   | 630        | 231          | 203      |               | 7 01          | 019         |          | 4 3         | 7 /          | 13.3                 | 16.0         | 15 9        |
| 2200  | 1        | 630        | 200          | 316      | 070           | 2.0           | 053         |          | 4.1         |              | 9.0                  | 17 0         | تت ، ت ا    |
| 2330  | 1        | 620        | 255          | 264      | - 771         | 2.2           | 075         | 277      | 7 A         | 4 Q          | J.5<br>Q Z           | 75 4         | 30 7        |
| E /7  | ז'       | 92.0       | <u>ب</u> س م | <b>.</b> | . 4. 1 1      | <u>د</u> . با |             | • 4. [ ] | <b>L</b> .0 | <b>→</b> • J | 4.4                  | 4            | 30.2        |
| n 3/2 | J.,      | c 0.0      | 774          | 771      | - 100         | <b>-</b>      | 000         | 774      | 1 0         | 77           |                      | <b>~ ~</b>   |             |

# METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

「おおおおろろの記録」のためとなった。「たたのななななな」というというです。

| Tir   | me         | Cod            | e Zi | Rel   | WD  | 10/L   | U          | U+   | <del>ب</del> اينا 🗧 | <u>1 m</u> | <u>3m</u>    | 10m  | 30m        | 60m        |
|-------|------------|----------------|------|-------|-----|--------|------------|------|---------------------|------------|--------------|------|------------|------------|
| 30    |            | 1              | 590  | 358   | 317 | -1.143 | 2.0        | .066 | .380                | 10.4       | 20.3         | 25.8 | 29.5       |            |
| 10(   | 0          | 1              | 590  | 351   | 307 | 254    | 3.9        | .125 | .444                | 2.4        | 3.3          | 4,9  | 5.2        | 21.8       |
| 130   | 0          | 1              | 590  | 357   | 314 | 940    | . 2.1      | .069 | .372                | 4.9        | 8.4          | 13.2 | 14.4       |            |
| 20(   | 0          | 1              | 590  | 6     | 350 | -1.069 | 1.5        | .053 | .298                | 8.2        | 16.0         | 17.5 | 23.0       | 25.1       |
| 23(   | 0          | 1              | 590  | 358   | 329 | 37.610 | 1.0        | .002 |                     | 8.5        | 14.2         | 20.1 | 20.0       |            |
| 300   | 2          | 1              | 590  | 354   | 345 | .080   | 1.9        | .054 |                     | 8.5        | 12.9         | 15.9 | 17.6       | 20.8       |
| 33(   | 0          | 1              | 590  | 335   | 72  | 617    | 2.1        | .066 | .313                | 4.5        | 9.7          | 13.1 | 19.1       |            |
| 400   | 8          | 1              | 590  | 339   | 45  | .188   | 1.9        | .052 |                     | .1         | 2.5          | 4.7  | 8.6        | 17.6       |
| 43(   | 0          | 1              | 590  | 343   | 29  | -1.249 | 2.0        | .065 | .385                | 3.3        | 5.1          | 6.0  | 7.1        |            |
| 500   | 0          | 1              | 590  | 358   | 0   | -1.849 | 1.9        | .063 | .428                | .5         | 1.3          | 3.0  | 5.5        | 29.2       |
| 53(   | 2          | 1              | 570  | 39    | 312 | 629    | 3.0        | .096 | .450                | . 8        | 2.4          | 4.4  | 8.0        |            |
| - 500 | 0          | 1              | 560  | 306   | 319 | 392    | 3.9        | .130 | .516                | 1.1        | 2.0          | 3.0  | 5.3        | 16.3       |
| 63(   | 2          | 1              | 560  | 316   | 340 | 565    | 3.5        | .115 | .519                | .5         | .9           | 1.3  | 2.3        | · ·        |
| 700   | 0          | 1              | 560  | 342   | 324 | -1.749 | 1.5        | .053 | .347                | . 4        | .7           | 1.1  | 1.9        | 26.4       |
| 830   | 2          | 1              | 580  | 315   | 165 | 714    | 1.1        | .036 | .179                | 5.5        | 10.2         | 14.5 | 22.0       |            |
| 900   | 8          | 1              | 600  | 17    | 207 | 743    | 1.5        | .050 | .252                | 7.5        | 10.4         | 14.8 | 17.0       | 28.9       |
| 102   | 20         | 1              | 600  | 356   | 355 | 832    | 1.6        | .052 | .270                | 4.9        | 6.3          | 8.4  | 10.5       |            |
| 105   | 50         | 1              | 520  | 357   | 343 | -1.150 | 1.3        | .043 | .257                | 3.7        | 5.5          | 7.2  | 7.6        | 11.3       |
| 120   | 84         | 1              | 550  | 357   | 290 | 096    | 4.4        | .143 | .355                | 2.1        | 3.4          | 4.3  | 7.8        |            |
| 123   | 34         | 1              | 550  | 1     | 296 | .029   | 3.3        | .099 |                     | 2.0        | 3.0          | 3.8  | 3.9        | 5.6        |
| 144   | 44         | 1              | 450  | 15    | 248 | 25.850 | 2.5        | .006 | i.                  | 2.5        | 3.8          | 6.0  | 9.8        |            |
| 152   | 24         | 1              | 450  | 349   | 240 | 1.900  | 3.5        | .060 | 1                   | 1.9        | 3.4          | 4.2  | 5.2        |            |
| 203   | 34         | 1              | 510  | 358   | 291 | .025   | 7.0        | .232 | •                   | 1.7        | 3.1          | 3.7  | 6.0        |            |
| 214   | 10         | 1              | 400  | 42    | 346 | 059    | 5.3        | .175 | .332                | 2.5        | 4.8          | 7.1  | 13.0       |            |
| 221   | 0          | 1              | 420  | .14   | 314 | 072    | 4.9        | .160 | .331                | 3.1        | 5.3          | 7.5  | 8.8        | 20.0       |
| 233   | 37         | 1              | 300  | 16    | 4   | 164    | 3.1        | .096 | .234                | 5.0        | 9.5          | 11.8 | 14.1       |            |
| 8     | 5/2        | 4              |      |       |     |        |            |      |                     |            |              |      |            |            |
| 7     |            | 1              | 260  | 13    | 32  | 068    | 5.8        | .188 | .324                | 2.4        | 3.6          | 4.8  | 8.3        |            |
| 158   | 3          | 1              | 420  | 344   | 285 | 057    | 5.7        | .190 | .363                | 1.4        | <b>2.</b> Ø. | 2.4  | 2:5        |            |
| 228   | 3          | 1              | 500  | 357   | 294 | 072    | 5.8        | .195 | .425                | 1.5        | 2.5          | 3.1  | 3.2        | 4.7        |
| 401   | ١.         | .1             | 600  | 354   | 295 | 065    | 5.9        | .198 | .443                | 2.0        | 3.1          | 5.1  | 8.7        |            |
| 431   |            | 1              | 550  | 2     | 302 | 115    | 4.7        | .154 | .406                | 1.7        | 2.5          | 4.2  | 5.9        | 8.3        |
| 525   | 5          | 1              | 500  | 6     | 316 | 209    | 4.2        | .138 | .428                | 2.0        | 3.3          | 3.9  | 5.1        |            |
| 648   | 3          | 1              | 550  | 357   | 285 | 185    | 4.1        | .130 | .386                | 3.3        | 8.3          | 9.2  | 19.2       |            |
| 748   | 3          | 1              | 500  | 276   | 188 | 195    | 3.7        | .116 | .353                | 3.4        | 5.5          | 7.7  | 8.9        |            |
| 830   | )          | 1              | 450  | 64    | 306 | .234   | 2.3        | .051 |                     | 3.6        | 7.0          | 14.3 |            |            |
| 858   | 3          | 1              | 460  | 15    | 343 | .323   | <b>Z.4</b> | .060 |                     | 3.0        | 5.7          | 8.9  | 15.4       |            |
| 927   | 7          | t              | 460  | 88    | 254 | .220   | 3.2        | .086 |                     | 3.5        | 8.8          | 16.3 | 17.0       | 45.2       |
| 100   | 0          | ï              | 400  | 79    | 254 | .258   | 2.7        | .072 |                     | 4.3        | 9.0          | 17.4 | 21.6       |            |
| 103   | 50         | 1              | 380  | 102   | 289 | .111   | 2.7        | .075 |                     | 4.1        | 11.2         | 15.1 | 28.8       | 31.2       |
| 110   | 0          | 1              | 340  | 49    | 298 | .043   | 5.2        | .163 |                     | 2.6        | 5.9          | 13.5 | 13.6       |            |
| 113   | 50 ·       | 1              | 300  | 99    | 314 | .192   | 3.4        | .095 |                     | 3.6        | 7.7          | 12.4 | 21.4       | 19.8       |
| 115   | <b>i</b> 4 | 1 -            | 240  | 307   | 286 | .005   | 3.7        | .112 |                     | 2.8        | 6.4          | 15.4 |            |            |
| 123   | 0          | 1              | 240  | 338   | 286 | .054   | 5.4        | .169 |                     | 1.5        | 3.5          | 5.2  |            |            |
| 130   | 0          | 2              | 240  | 339   | 297 | .129   | 4.7        | .140 |                     | 1.8        | 3.8          | 4.7  | 5.7        | 14.7       |
| 133   | 0          | 2              | 240  | 315 - | 270 | .051   | 4.0        | .118 |                     | 2.4        | 4.9          | 8.0  | 14.2       |            |
| 140   | 0          | 2              | 240  | 319   | 267 | 007    | 4.9        | .156 | .127                | 2.2        | 4.5          | 7.3  | 9.3        | 12.1       |
| 143   | 0          | 2 <sup>.</sup> | 240  | 324   | 271 | 002    | 6.2        | .205 | .119                | 1.6        | 2.3          | 3.1  | •3.8       |            |
| 150   | 0          | 2              | 240  | 323   | 279 | .021   | 8.5        | 214  |                     | 17         | 7 9          | 77   | <b>C</b> 1 | <b>E</b> 7 |

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

| Time | Cod | e Zi | Rel | WD  | 10/L    | U    | <u>U+</u> | W.#-     | <u>Im</u> | <u>3</u> m | 10m  | <u>30m</u> | <u>60m</u> |
|------|-----|------|-----|-----|---------|------|-----------|----------|-----------|------------|------|------------|------------|
| 1530 | 2   | 240  | 321 | 273 | .025    | 6.3  | .204      |          | 1.3       | 1.9        | 2.2  | 2.5        |            |
| 1500 | 2   | 240  | 316 | 273 | .015    | 5.3  | .193      |          | 1.4       | 2.1        | 2.5  | 2.8        | 2.7        |
| 1630 | 2   | 240  | 317 | 269 | .026    | 5.9  | .191      |          | 1.4       | 1.9        | 2.0  | 2.9        |            |
| 1700 | 2   | 240  | 319 | 267 | .039    | 6.1  | .197      |          | 1.4       | 2.3        | 2.6  | 3.2        | 3.3        |
| 1730 | 2   | 260  | 316 | 262 | .041    | 6.1  | .198      |          | 1.4       | 2.2        | 2.3  | . 2.4      |            |
| 1800 | 2   | 270  | 323 | 267 | .035    | 6.6  | .217      |          | 1.5       | 2.1        | 2.5  | 2.7        | 3.4        |
| 1830 | 2   | 280  | 328 | 272 | .037    | 7.2  | .240      |          | 1.5       | 2.4        | 2.8  | 3.8        |            |
| 1900 | 2   | 300  | 342 | 284 | .044    | 8.4  | .284      |          | 1.5       | 2.3        | 2.9  | 4.4        | 7.3        |
| 1930 | 2   | 240  | 339 | 286 | . 06 1  | 7.6  | .253      |          | 1.6       | 2.2        | 2.2  | 2.6        |            |
| 2000 | 2   | 200  | 340 | 284 | .069    | 6.9  | .223      |          | 1.4       | 1.8        | 1.9  | 2.0        | 2.5        |
| 2030 | 2   | 200  | 342 | 289 | .035    | 5.9  | .191      |          | 2.1       | 2.9        | 3.3  | 3.4        |            |
| 2100 | 2   | 200  | 344 | 292 | .002    | 5.2  | .205      |          | 2.1       | 4.0        | 3.5  | 4.5        | 4.4        |
| 2130 | 2   | 300  | 347 | 295 | .049    | 6.1  | .197      |          | 1.2       | 1.8        | 2.3  | 2.4        |            |
| 2200 | 2   | 400  | 344 | 310 | .194    | 4.9  | .142      |          | 3.0       | 4.1        | 5.7  |            |            |
| 2230 | ຊ່  | 500  | 331 | 302 | .312    | 4.0  | .107      |          | 1.7       | 3.0        | 4.9  | 8.6        |            |
| 2300 | 2   | 500  | 336 | 313 | .268    | 4.5  | .127      |          | .4        | 2.1        | 3.7  | 6.6        | 9.5        |
| 2330 | 1   | 750  | 351 | 335 | .761    | 3.4  | .075      |          | 5.9°      | 8.5        | 9.5  | 20.5       |            |
| 6/2  | :5  |      |     |     |         |      |           |          | •         |            |      |            |            |
| 0    | 1   | 800  | 343 | 332 | 2.305   | 2.7  | . 040     |          | 3.0       | 4.7        | 5:4  | 5.9        |            |
| 30   | 4.  | 800  | 329 | 325 | 2.243   | 2.7  | .041      |          | 2.2       | 4.1        | 5.5  | 7.0        |            |
| 100  | 1   | 800  | 18  | 23  | 4.431   | 2.1  | .022      | ( )<br>( | 3.2       | 7.2        | 13.3 | 25.4       | 34.1       |
| 130  | 1   | 820  | 63  | 72  | 110.400 | 1.0  | .001      |          | 2.8       | 5.5        | 9.1  | 20.3       |            |
| 200  | 1   | 820  | 64  | 86  | 313.500 | .5   | 0.000     |          | 9.1       | 21.3       | 31.1 | 82.9       | 66.5       |
| 230  | 1   | 820  | 250 | 280 | 162.400 | .9   | 0.000     |          | 6.0       | 13.0       | 17.3 | 27.5       |            |
| 300  | 1   | 820  | 259 | 297 | .524    | 2.4  | .056      |          | 4.3       | 7.9        | 11.3 | 14.7       | 23.5       |
| 330  | 1   | 820  | 307 | 310 | .158    | 4.3  | .126      |          | 1.8       | 3.6        | 5.8  | 6.5        |            |
| 400  | 1   | 750  | 309 | 319 | .292    | 3.8  | .095      |          | 2.0       | 3.7        | 5.0  | 6.4        | 7.7        |
| 430  | 1   | 700  | 314 | 327 | .358    | 3.0  | .075      |          | 2.4       | 4.1        | 5.6  | 5.7        |            |
| 500  | 1   | 700  | 291 | 323 | 1.145   | 1.8  | .035      |          | 3.3       | 7.4        | 8.7  | 12.1       | 9.5        |
| 530  | 1   | 740  | 272 | 312 | 1.149   | 1.9  | .037      |          | 4.9       | 7.6        | 11.2 | 15.0       |            |
| 600  | 1   | 740  | 285 | 313 | 3.020   | 2.1  | .027      |          | 4.1       | 7.9        | 9.0  | 12.6       | 13.8       |
| 630  | I   | 730  | 318 | 313 | 1.426   | 2.8  | .052      |          | 2.3       | 4.4        | 5.5  | 6.0        | 1          |
| 700  | 1   | 740  | 337 | 312 | .328    | 4.2  | .112      | •        | 2.7       | 5.2        | 5.8  | 10.3       | 8.9        |
| 730  | 1   | 740  | 351 | 311 | .166    | 5.1  | .152      |          | 2.1       | 4.0        | 5.9  | 6.5        |            |
| 800  | 1   | 650  | 1   | 326 | .176    | 5.5  | .165      |          | 1.6       | 2.9        | 3.7  | 7.1        |            |
| 830  | t.  | 580  | 17  | 350 | .682    | 3.8  | .090      |          | 2.8       | 4.8        | 7.7  | 15.3       | 16.7       |
| 900  | 1   | 580  | 43  | 20  | 16.560  | 2.4  | .009      |          | 2.2       | 3.6        | 5.4  | 6.3        |            |
| 930  | 1   | 580  | 22  | 331 | 132.400 | 1.4  | .001      |          | 3.7       | 5.6        | 7.7  | 14.7       | 28.1       |
| 1000 | 1   | 550  | 353 | 293 | 44.890  | 2.9  | .004      |          | 3.2       | 4.8        | 5.6  | 10.8       |            |
| 1030 | 1   | 500  | 357 | 297 | 1.586   | 4.2  | .075      |          | 2.8       | 3.2        | 4.2  | .5.9       | 9.0        |
| 1100 | 2   | 380  | 329 | 286 | .372    | 6.2  | .175      |          | 1.2       | 1.5        | 1.7  | 2.0        |            |
| 1130 | 2   | 320  | 325 | 284 | .264    | 6.6  | .196      |          | 1.1       | 1.5        | 1.8  | 2.0        | 2.1        |
| 1200 | 2   | 300  | 321 | 283 | .212    | 6.9  | .210      |          | .9        | 1.2        | 1.5  | 2.5        |            |
| 1230 | 2   | 200  | 315 | 279 | .139    | 7.5  | .239      |          | 1.1       | 1.4        | 1.5  | 1.7        | 3.5        |
| 1300 | 2   | 250  | 315 | 277 | .097    | 8.4  | .278      |          | 1.2       | 1.5        | 1.6  | 1.6        |            |
| 1330 | 2   | 210  | 317 | 278 | .069    | 9.3  | .328      |          | 1.5       | 1.9        | 2.0  | 2.2        | 2.0        |
| 1400 | 2   | 220  | 319 | 281 | .054    | 10.8 | . 388     |          | 1.3       | 1.5        | 1.6  | .2.0       |            |
| 1430 | 2   | 180  | 320 | 291 | .062    | 10.8 | .388      |          | 1.3       | 16         | 1.6  | 1.6        | 1.8        |
| 1500 | 7   | 150  | 374 | 796 | Ø57     | 11 4 | 417       |          | 1.4       | 17         | 7 0  | 7 7        |            |

METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

| Time       | Coc      | e Zi         | Rei   | ωO        | 10/L        | U         | U+          |   | 1.m         | <u>3</u> m    | 10m           | 30m          | 60m      |
|------------|----------|--------------|-------|-----------|-------------|-----------|-------------|---|-------------|---------------|---------------|--------------|----------|
| 1530       | 2        | 150          | 322   | 286       | .073        | 10.4      | .372        |   | 1.4         | 1.6           | 1.7           | - 1.9        | 2.1      |
| 1600       | 2        | 150          | 322   | 285       | .077        | 10.5      | .376        |   | 114         | 1.4           | 1.5           | 1.5          |          |
| 1630       | 2        | 150          | 320   | 285       | .075        | 11.1      | .396        |   | 1.5         | 1.6           | 1.6           | 1.8          | 1.7      |
| 1700       | 2        | 250          | 324   | 288       | .063        | 12.3      | .445        |   | 1.5         | 1.7           | 2.0           | 3.1          |          |
| 1730       | 2        | 320          | 327   | 294       | .069        | 12.5      | .452        | • | 1.7         | 1.9           | 2.1           | 3.3          | 4.5      |
| 1800       | 2        | 330          | 325   | 296       | .080        | 12.4      | .448        |   | 1.4         | 1.7           | 1.8           | 2.1          |          |
| 1830       | 2        | 400          | 325   | 294       | .111        | 10.8      | .379        |   | 1.4         | 1.9           | 1.9           | 2.1          | z.2      |
| 1913       | 2        | 400          | 274   | 283       | .077        | 11.0      | .393        |   | 2.5         | 3.7           | 4.2           |              |          |
| 1955       | 2        | 400          | 343   | 286       | .075        | 11.9      | .430        |   | 1.6         | 2.3           | 3.0           | 4.2          |          |
| 2025       | 2        | 400          | 356   | 303       | .078        | 9.8       | .346        |   | 1.1         | 1.6           | 1.8           | 3.5          |          |
| 2055       | 2        | 400          | 353   | 311       | .087        | 10.5      | .371        |   | 1.5         | 1.8           | 2.0           | 2.9          | 5.:      |
| 6/         | 27       |              |       |           |             |           |             |   |             |               |               |              |          |
| 1130       | 2        | 150          | 350   | 293       | .078        | 11.0      | . 391       |   | 1.5         | 2.0           | 1.9           | 2.1          |          |
| 1200       | 2        | 150          | 348   | 289       | .090        | 12.0      | .427        |   | 1.6         | 1.9           | 2.5           | 3.9          | 3.       |
| 1230       | 2        | 150          | 346   | 286       | .042        | 14.9      | .559        |   | 1.7         | 1.8           | 1.8           | 1.8          |          |
| 1300       | 2        | 150          | 345   | 284       | .060        | 14.3      | .530        |   | 1.4         | 1.9           | 1.8           | 1.8          | 2.       |
| 1330       | 7        | 150          | 345   | 786       | 047         | 14.2      | 579         |   | 1 5         | 1.9           | 2.1           | 2.3          |          |
| 1400       | 2        | 150          | 345   | 284       | .049        | 13.9      | 517         |   | 1 7         | 2.1           | 2.7           |              |          |
| 1430       | 2        | 90           | 342   | 797       | 045         | 14 3      | 571         |   | 1 7         | ·             | 1 9           | 1 9          |          |
| 1500       | 2        | 90           | 340   | 786       | .043        | 14.5      | 554         | • | 1.7         | 20            | 2.1           | 7.2          | 2        |
| 1570       | 2        | 90           | 340   | 286       | 048         | 14.3      | 549         |   | 1 5         | 2 1           | 2 4.          | 2 7          | A. 4     |
| 1500       | 2        | 90           | 770   | 285       | 040         | 15 6      | 585         |   | 1.5         | , <u>,</u> ,, | 2.7           | 2 1          | 2        |
| 1670       | 2        | 90           | 340   | 200       | 047         | 15 5      | 292         |   | 1 5         | 2 2           | 21            | 2 3          | <b>A</b> |
| 1700       | 2        | 100          | 340   | 203       | 075         | 13.0      | 171         |   | 1.5         | 1 9           | 7 1           | 2.5          | 2        |
| 2000       | 2        | 250          | 331   | 200       | .073        | 10.7      | 360         |   | 1.0         | 7 7           | 2.1           | 7 0          | ÷.,      |
| 2000       | 2        | 250          | 331   | 232       | 079         | G 1       | 371         |   | 20          | 2.2           | 2.7           | 2.0          | -        |
| 2000       | 2        | 200          | 229   | 234       | 019         | 20        | 251         |   | 2.0         | 2.5           | 2.7           | 2 2          | -        |
| 2130       | 2        | 100          | 777   | 200       | .010        | 0.0       | 204         |   | 1 9         | 2.0           | 2.3           | 3.3          | -        |
| 2100       | 2        | 400          | 333   | 200       | .000        | 0.1       | 270         |   | 1 0         | 2.5           | 2.0           | 3.4          | 2        |
| 2200       | 2        | 400          | 341   | 305       |             | 7 5       | 745         |   | 1.2         | -7 0          | 7 7           | 1.0          | 4        |
| 2230       | 2        | 400          | 247   | 310       | 175         | ()<br>c c | 200         |   | 7.0         | 7.0           | J. 2<br>A 7   | <br>/        | -        |
| 2300       | 20.      | 430          | 949   | 210       | . 128       | 0.0       | .200        |   | 6.5         | 2.0           |               | 4.3          |          |
| 2          | 20·<br>7 | 400          | 347   | 295       | 177         | 6 7       | 197         |   | 1 6         | 1 0           | 7 7.          | <b>5</b> /   |          |
| 30         | 1        | 500          | 354   | 305       | 151         | 5.2       | 170         |   | 1.0         | 2 4           | 3.2           |              | ,        |
| 100        | 1        | 500          | 204   | 370       | 401         | 17        | 1010        |   | 1.0         | 2.7           | , J. J<br>7 a | 4.0          | i.       |
| 130        | 1        | 500          | 355   | 300       | 333         | 4.2       | 1103        |   | · · · ·     | 2.2           | 2.3           | 4.3          |          |
| 200        | 1        | 750          | 11    | 313       | 428         | 4.5       | 114         |   | 2 7         | J. 3<br>A 3   | 2.1           | 7 6          | •        |
| 200        | 1        | 750          | 7     | 700       | .420<br>E17 | 4.1       | 1011        |   | 2+2.<br>7 A | 7 6           | 4 5           |              | I        |
| 200        | 1        | 250          |       | 303       | 2 030       | 7.1       | 040         |   | 2.7         | 5.0           | 11 /          | 70 0         | 7        |
| 220        | ,        | 0.30         | 37    | 320       | 2.000       | 2.0       | .040<br>07C |   | 0.2<br>A E  | 7 0           | 11.44         | 20.0         | 4        |
| 100        | . (      | 000          | 32    | 160       | 175 500     | 1 1       | 020         |   | 4.3         | 7.3           | 77 A          | 23.7         | c        |
| 400        | 1        | 750          | 364   | 775       | 7 907       | 1 0       | .001        |   | 11.0        | 10 7          | 36.4          | 03.3<br>C0 E | с        |
| ~00<br>⊏00 |          | (3)U<br>2017 | 757   | 170       | 5.303       | 1 5       | 0020        |   | 17 5        | 70.7          | 90.0<br>70.0  | 20.2         | £        |
| 500        | ;        | 700          | 237   | 7371      | 38.000      | 17        | .002        |   | 7 0         | 20.7          | 20.0          | a            | :        |
| 520        | 1        | 700          | 170   | 100       | 0.300       | 1 7       | 011         |   | (.V)<br>A Q | 3.2           | 17 0          | <b>701 0</b> |          |
| 000        | 1        | 100          | 1 (3) | 43<br>70C | 3.341       | 7 6       | 010         |   |             | 11 7          | 13.0          | 20.3         |          |
| 700        | 1        | 500<br>500   |       | 200       | 1.231       | <u> </u>  | 1043        |   | ·0.0<br>7 A | 7.4           | 1917<br>G. A  | 1974<br>0 19 |          |
| 770        | 1        | 200          | 70    | 200       | .217        | 3.4       | 107         |   | ∠.V<br>1 4  |               | 3.U<br>17     | 0.0<br>c 1   |          |
| 200        | 1        | 600          | 20    | 294       | .30J<br>707 | 7.4       | . 100       |   | 1 0         | 4.3<br>7 E    | 4.4<br>E 7    | 0.1<br>C 1   |          |
|            |          | 000          | 1     | C C) ~    | المقال م    |           |             |   | 1.0         |               |               |              |          |
# METEOROLOGICAL DATA

1/2 hr AVE SIGMA THETA

| <u>fime Co</u> | <u>ode Zi</u> ( | Rel Mn  | 100     |               |           |         |               |             |       |           |            |
|----------------|-----------------|---------|---------|---------------|-----------|---------|---------------|-------------|-------|-----------|------------|
| 830 1          | 680             | 38 301  | 1 717   |               | <u>U+</u> | W.*     | 1 m           |             | 1 Øm  | 70-       | 6.0        |
| 900 1          | 660             | 17 287  | 1 107   | 5.0           | .059      | •       | 4.4           | 7.5         | 11 7  | 20 7      | <u></u>    |
| 930 1          | 660             | 33 376  | 1.107   | 3.5           | .071      |         | 1.8           | 4.4         | 8 9   | 10.7      | 17.2       |
| 1000 1         | 650             | 2 790   | .735    | 3.9           | .090      |         | 2.0           | 3.9         | 4 4   | 10.3      | <b>.</b>   |
| 1030 1         | 660 3           | 2 200   | .289    | 5.3           | .150      |         | 2.0           | 37          |       | 5.4       | 21.4       |
| 1100 1         | 550 7           | 71 292  | .182    | 7.5           | .234      |         | 1.6           | .7 0        | 0.0   | 7.9       |            |
| 1130 1         | 500 5           | 51 275  | .263    | 6.4           | .188      |         | ,<br>771      | 2.5<br>00 0 | 3.5   | 4.1       | 6.3        |
| 1200 1         | 100 2           | 68 276  | .650    | 4.5           | .110      |         |               | 90.00       | 8.5   |           |            |
| 1300 2         | 750 3           | 08 244  | .344    | 6.3           | .180      |         |               | 2.5         | 2.9   | 4.8       | 12.9       |
| 1330 2         | 250 3           | 23 275  | .396    | 5.8           | .159      |         |               | 2.6         | 5.9   | 7.3 -     |            |
| 1400 2         | 250 3           | 15 263  |         | 6.5           | 191       |         | ) I           | 4.5         | 5.7   | 6.9       | •          |
| 1430 2         | 250 32          | 20 270  | .339    | 6.3           | 178       |         | · b·          | 3.1         | 3.1   | 3.4       | 7.8        |
| 1430 2         | 500 32          | 24 278  | .354    | 6.5           | 183       | 1       | ·2            | 2.1         | 2.6   | 4.8       | -          |
| 1500 2         | 400 32          | 20 272  | .377    | 6.3           | 175       | 1       | .5            | 2.4         | 2.5   | 2.8       | 5.6        |
| 1530 2         | 450 32          | 2 274   | .293    | 70            | 200       | 1       | .2            | 1.7         | 1.9   | 3.1       | 4.4        |
| 1600 2         | 500 32          | S 276   | .199    | 0 7           | 200       |         | .9            | 1.4         | 1.8   | 2.1       | <b>~</b> 0 |
| 1530 2         | 500 32          | 7 279   | 221     | 0. <u>2</u> . | 259       | 1       | .0            | 1.5         | 1.7   | 1.9       | - L . O    |
| 1700 2         | 500 32          | 7 281   |         | 8.1           | 251       |         | . 9           | 1.4         | 1.6   | 1 6       | <b>-</b> - |
| 1730 2         | 500 32          | 3 279   | .223    | $(\cdot)$     | 237       | 1       | . Ò           | 1.4         | 1 7   | 7.0       | 2.5        |
| 1800 2         | 500 32          | 7 270   | .263    | 7.0 .:        | 2.10      |         | 9             | 1 4         | 1 0   | 4.1<br>   | <b>_</b> . |
| 1830 2         | 500 376         | 5 200   | .191    | 7.8 .:        | 243       | 1       | Ø             | 1 9         | 7.0   | 3.3       | 3.2        |
| 1900 2         | 500 325         | 7 200   | .173 8  | 3.2 .2        | 281       |         | â             | 1.1         | 4.3   | 4.0       |            |
| 6/29           | JUU J21         | 230     | .171 8  | 3.3 .2        | 63 /      | •       | ġ.            | './<br>' -7 | 1.5   | 2.2       | 4.7        |
| 800 1          | 500 77          |         |         |               |           | •       |               | 1.4         | 1.8   | 3.0       |            |
| 830 1          | 500 53          | 167     | 1.012 3 | .3 .0         | 68        |         | ·,            |             |       |           |            |
| 900 1          | 500 42          | 182     | .594 3  | .8 .0         | 93        | 1.      | r 4           | .0 8        | 5.6   | 3.3       |            |
| 930 1          | 500 35          | 174 1   | .237 3  | .1 .0         | 60        | 1.      | · 2           | .03         | 5.5 3 | 3.9 10    | ).6        |
| 1000 1         | 500 52          | 174 1   | .364 3  | .0 .0         | 56        |         | 2 2           | . 2 4       | .0 4  | L.1       |            |
| 1030 1         | 32              | 195 2   | .570 z. | .7 .0         | 38        |         | 24            | .z 5        | .8 10 | .6 5      | 1.1        |
| 1200 1 5       | 53              | 196     | .859 4. | .3 .0         | 37        | 1.      | 3             | .5 4        | .8 7  | .2        |            |
| 1230 1 5       | 246             | 171 1   | .190 4. | 0 .08         | 30        |         | 2             | .3 3        | .4 3  | .6 5      | . 9        |
| 1300 1 5       | 00 325          | 191 1   | .679 3. | 9 .06         | 8         | 1.6     |               | .73         | .5 7  | . 2       |            |
| 1320 1 5       | 00 9            | 211 1   | .810 4. | 0 .06         | 8         | 1.7     | 3.            | .2 5        | .0 7  | .1 11     | . 2        |
| 1430 1 5       | 00 260          | 228 .   | .765 4. | 3 .10         | 0         | 1.7     | , 3,          | .5 5        | .5 10 | .0        |            |
| 1430 1 5       | 00 299          | 221 1.  | 231 4   | 0 07          | е.        | 1.0     | 1.            | 5 2.        | 3 7.  | 0 13      | . 7        |
| 1570 1 50      | 00 293          | 229 1.  | 824 3.  | 7 0E          | <b>、</b>  | . 8     | 1.            | 7 2.        | 2 3.  | .1        |            |
| 1500 1 50      | <i>20</i> 300   | 242 1.  | 344 3.  | າ 100<br>7 ທາ | 1         | . 5     | 1.            | 0 1.        | 9 3.  | 2 5.      | 7          |
| 1000 1 50      | 00 309          | 263 .   | 744 4   | 1 1/0-        | י<br>ר    | .9      | 1.            | 5 1.        | 7 2.  | 9         |            |
| 1030 1 50      | 00 327          | 233 .   | 382 5   | 10,           | <u>^</u>  | 1.4     | 2.            | 4 3.        | 5 11. | 5 17      | 5          |
| 1700 1 50      | 0 333           | 278     | 808 A 0 | 14.           | <u>-</u>  | 1.0     | 1.1           | 6 2.        | 6 4   | 7         | 5          |
| 1/30 1 50      | 0 14            | 322 2   | 435 3 4 |               |           | 1.1     | 2.            | 1 3.        | 1 5   | ,<br>9 c  | •          |
| 1800 1 50      | 0 121           | 58 d.   |         | .044          |           | 1.4     | 3.9           | 3 8.        | 1 19  | ບ ສ.<br>ຈ | 3          |
| 6/30           |                 |         | -24 2.3 | .025          |           | 2.0     | 5.6           | 5 12 9      |       | 2 ~~      | . '        |
| 552 1 30       | 0 352           | 303 - 1 |         |               |           |         |               |             | 3.,   | , ac.     | I          |
| 722 1 300      | 0 350           | 301 0.0 | 145 /.8 | .254          | .415      | 2.3     | 30            |             | · -   | _         |            |
| 26 1 200       | 2 350           | 316 -   | 7.5     | .257          |           | 2.0     | 2.0           | , J.K.      | 1 5.2 | )         |            |
| 008 1 150      |                 |         | 55 5.8  | .168          |           | 1.4     | 2.3           | 2.9         | - 3.7 | ' 3       | L          |
| 038 1 150      | - (<br>}        | JZ4 .3  | 20 5.3  | .147          | •         | 1 9     | ا . د<br>م رح | <u>4.5</u>  | 2.5   |           |            |
| 248 1 150      | י ביבי ו        | .2      | 52 5.4  | .158          |           |         | ~ ~ 4         | 2.3         | 2.7   |           |            |
| 318 2 150      | , 722 (         | 234 1.0 | 65 3.0  | .061          |           | - · · · | 4.4           | 2.5         | 2.9   | 3.0       |            |
| 348 2 200      |                 | 269.2   | 54 6.5  | .192          |           |         | 0.4           | 11.0        | 23.5  |           |            |
|                | 200 2           | 275 .21 | 70 6.5  | .191          |           | . /     | 1.4           | 1.9         | - 5.9 |           |            |
|                | 1               |         |         | <b>.</b> .    |           | 1.5     | 2.1           | 2.2         | 4.9   |           |            |

| BLM-4 | L    |      |     | MET | EOROLOGIC | AL DA | TA    |       | 1   | /2 hr | AVE SI | GMA TH | ETA |
|-------|------|------|-----|-----|-----------|-------|-------|-------|-----|-------|--------|--------|-----|
| Time  | Cod  | e Zi | Rel | WD  | 10/L      | U     | U+    | lui # | lm  | 3m    | 1 0 m  | 30m    | 60m |
| 1504  | 2    | 280  | 356 | 259 | .279      | 6.7   | . 198 |       | . 8 | 1.4   | 1.8    | 2.3    |     |
| 1543  | - 2  | 350  | 3   | 268 | .245      | 7.3   | .222  |       | 1.0 | 1.6   | 1.7    | 2.7    |     |
| 1613  | 2    | 400  | 5   | 274 | .188      | 8.5   | .270  |       | 1.0 | 1.5   | 2.3    | 2.9    | 5.2 |
| 1725  | 2    | 400  | 350 | 273 | .113      | 9.3   | .322  |       | 1.1 | 2.0   | 2.3    | 2.4    |     |
| 1755  | 2    | 400  | t   | 282 | .169      | 8.5   | .272  |       | 1.0 | 1.8   | 2.2    | 2.6    | 3.8 |
| 1825  | 2    | 450  | 3   | 287 | .288      | 7.3   | .217  |       | 1.0 | 1.9   | 1.9    | 2.1    |     |
| 2012  | 2    | 750  | 6   | 313 | .047      | 6.4   | .209  |       | 1.5 | 2.1   | 2.5    | 3.0    |     |
| 2042  | 2    | 750  | 1   | 310 | .032      | 7.0   | .233  |       | 1.4 | 2.0   | 2.3    | 2.7    | 3.4 |
| 2233  | 2    | 700  | 350 | 307 | 036       | 7.3   | .254  | .491  | 2.7 | 3.5   | 4.1    | 4.2    |     |
| 7/0   | 31 . |      |     |     |           |       |       |       |     |       |        |        |     |
| 545   | 1    | 780  | 2   | 296 | .130      | 6.0   | .187  |       | 1.6 | 2.7   | 3.8    | 5.9    |     |
| 833   | 1    | 780  | 351 | 285 | 228.800   | 1.3   | 0.000 |       | 4.5 | 6.0   | 7.7    | 11.8   |     |
| 833   | 2    | 580  | 351 | 292 | 124.800   | 2.3   | .001  |       | 4.5 | 6.0   | 7.7    | 11.9   |     |
| 923   | Ź    | 500  | 12  | 289 | .366      | 5.8   | .161  |       | 1.3 | 2.1   | 3.6    | 5.8    |     |
| 953   | 2    | 440  | 9   | 298 | .197      | 7.6   | .236  |       | 1.4 | 2.4   | 2.3    | 2.5    | 7.0 |
| 1023  | 2    | 590  | 3   | 299 | .112      | 8.7   | .299  |       | 1.4 | 2.0   | 2.3    | 2.8    |     |
| 1131  | 2    | 400  | 7   | 314 | .033      | 10.1  | .367  |       | 1.6 | 1.9   | 1.9    | 2.1    |     |
| 1312  | 2    | 400  | 8   | 311 | 006       | 10.2  | .382  | .334  | 1.8 | 2.5   | 2.7    | 2.7    |     |
| 1342  | 2    | 500  | 5   | 308 | .007      | 10.0  | .369  |       | 1.9 | 2.6   | 3.0    | 3.3    | 3.4 |
| 1452  | 1.   | 500  | 8   | 308 | .017      | 10.5  | .384  |       | 1.9 | 2.8   | 3.1    | 3.4    |     |
| 1577  | 1    | 100  | 740 | 317 | - 005     | 13 7  | 577   | 473   | 1 8 | 7 3   | 25     | 2 6    | マブ  |

C-21

#### Appendix D

#### WIND DIRECTION STANDARD DEVIATION DATA

The following tables contain all of the horizontal wind direction standard deviation data. The times indicate the end of the half hour period during which the data were accumulated. Averaging times of 1, 3, 10, 30, 60 m were used for processing the data. The tables contain the following averages:

> 60 m average, 30 m average, % hour average of the 3 10 min averages, % hour average of the 10 3 min averages, % hour average of the 30 1 min averages, the 3 10 min averages, \*he 3 10 minutes averages of the corresponding 3 3 min averages, the 3 10 minute averages of the corresponding 10

1 min averages.

This rather extensive list of averages is included here because of their usefulness in determining the quality of the data and because they can be used to see how rapidly equilibrium is reached after a change in meteorological conditions.

WIND DIRCTION STANDARD DEVIATION (deg)

|      | <b> </b>   |        |          | 10mi        | n Per      | -iod       |            |            | {   |            |                       |       |            |
|------|------------|--------|----------|-------------|------------|------------|------------|------------|-----|------------|-----------------------|-------|------------|
|      | 1          | min Av | ve       | 3м          | in A       | ve 🛛       | 16         | Omin A     | ve  | · 1        | /2hr                  | Perio | d          |
| Time | #1         | #2     | #3       | #1          | #2         | #3         | #1         | #2         | #3  | 1 m        | 3m                    | 10m   | 1/2h       |
| 9/23 | 3          |        |          |             |            |            |            |            |     |            |                       |       |            |
| 1542 | 3.4        | 4.0    | 3.1      | 7.2         | 4.9        | 5.3        | 8.0        | 6.8        | 9.6 | 3.5        | 5.9                   | 8.1   | 8.5        |
| 1717 | 3.3        | 3.7    | 1.7      | 5.1         | 12.1       | 9.4        | 10.4       | 10.9       | 6.9 | 3.0        | 8.8                   | 9.4   | 10.4       |
| 1749 | 4.3        | 4.0    | 4.9      | 5.9         | 6.5        | 9.1        | 6.6        | 7.2        |     | 4.3        | 6.9                   | 6.9   | 9.1        |
| 9/24 | 4          |        |          |             |            |            |            |            |     |            |                       |       |            |
| 1137 | 5.1        | 4.2    |          | 7.5         | 6.9        |            | 14.3       | 6.2        |     | 4.5        | 7.9                   | 10.2  | 10.3       |
| 1205 | 4.2        | 6.0    |          | 6.7         | 9.6        |            | 10.5       | 16.5       |     | 5.1        | 8.4                   | 13.5  | 12.9       |
| 1233 | 5.1        | 4.0    |          | 5.5         | 6.0        |            | 10.8       | 8.9        |     | 4.7        | 6.8                   | 9.9   | 10.1       |
| 1301 | 2 5        | 4.2    |          | 4.0         | 8.8        |            | 8 0        | 15.9       |     | 37         | 6.2                   | 12 0  | 13.9       |
| 1329 | 1 9        | 5 5    |          | 57          | 77         |            | 10 7       | 8 0        |     | 5 1        | 7 1                   | 9 A   | 9 0        |
| 1357 | 4 7        | A A    |          | 8 5         | 11 5       |            | 1011       | 10 6       |     | 4 7        | 91                    | 10 3  | 9.0        |
| 1475 | 4.7        | 3 1    |          | 5 4         | 5 6        |            | 6 9        | 7 3        |     | 3 5        | 5.1                   | 7 1   | 7.3        |
| 1453 | 7.5        | A .9   |          | A 3         | 5.0        |            | 6.3        | 75         |     | 4 0        | 5.0                   |       | 7.5        |
| 1571 | 2.5        | 7.5    |          |             | 5.0<br>E 0 |            | 2.5        | 7.0        |     | 7 4        | 3.1                   | 7 6   | 7.0<br>0 0 |
| 15/0 | 3.0        | 3.0    |          | 5.5         | 5.0        |            | G. 4       | c 0        |     |            | = 7                   |       |            |
| 1517 | 2.0        | 3.7    |          | 3.7         | c . a      |            | J.4<br>E 0 | 0.J<br>5 5 |     | 7.0        | 3./<br>c c            | C 1   | ()         |
| 1017 | 7 0        | 2.1    |          | 4.3         | 4.5        |            | 5.0        | 5.3        |     | J.U<br>7 0 | 3.0                   | 5.1   | 0.0<br>5 0 |
| 1717 | J.U<br>7 E |        |          | 9.(<br>5.1  | 4.0        |            | 3.5        | 5.1        |     | 2.0        | 4.1                   | 5.5   | 5.3        |
| 1()2 | 2.3        | 2.1    |          | 7.4         | 3.0        |            | D. I       | 0.2<br>7.4 |     | ۲.8<br>۲.7 | 3.3                   | 6.1   | 0.0        |
| 1303 | . 4 . 4 .  |        |          | 2.4         | 4.9        |            | 5.4        | 7.4        |     | 4.0        | 4.4                   | 5.4   | 1.2        |
| 3/2/ |            | 7 4    | 7.4      |             |            |            | <b>-</b> . | <b>c</b> 7 |     |            | ·                     |       | ~ ~        |
| 743  | 2.5<br>. 5 | 2.4    | 5.4      | 3.1         | 5.4        |            | 5.1        | 5.7        |     | 3.5        | 4.6                   | 5.9   | 5.7        |
| 353  | 4.5        | 5.5    | 5.8      | <b>b</b> .1 | 8.5        | 14.1       | 0.4        | 3.7        |     | 5.2        | 8.5                   | 8.1   | 3.7        |
| 343  | 3.2        | 2.3    | <u> </u> | 4.1         | 5.1        | 5.4        | 5.6        | 5.8        |     | 3.0        | 5.1                   | 5.7   | 5.2        |
| CIDI | 3.1        | 2.1    | 3.8      | 3.4         | 3.1        |            | 5.5        | 3.4        |     | 2.8        | 3.3                   | 4.5   | 5.1        |
| 1041 | 1.7        | 2.4    | 4.2      | 2.5         | 4.0        | <b>.</b> . | 3.2        | 5.1        |     | 2.5        | 2.9                   | 4.2   | 5.4        |
| 1138 | 2.2        | 3.4    | 3.1      | 5.0         | 7.3        | 5.2        | 7.5        | 8.2        |     | 2.9        | 5.8                   | 7.9   | 7.4        |
| 1205 | 3.6        | 2.3    | 2.5      | 3.5         | 5:3        |            | 4.7        | 5.0        | •   | Z.6        | 4.3                   | 5.4   | 5.8        |
| 1234 | 2.8        | 2.7    | 1.9      | 4.9         | 5.0        |            | 5.3        | 5.9        |     | 2.5        | 4.8                   | 5.5   | 5.4        |
| 1302 | 2.7        | 5.1    | 2.5      | 3.1         | 4.7        |            | 3.5        | 5.Z        |     | 2.8        | 4.2                   | 4.9   | 5.7        |
| 1330 | 2.1        | 1.9    | 2.0      | 5.4         | 3.5        |            | 3.9        | 5.1        |     | 2.0        | 3.5                   | 4.4   | 4.5        |
| 1358 | 1.9        | 1.8    | Z.1      | 2.1         | 3.1        |            | 3.4        | 3.4        |     | 1.9        | 2.5                   | 3.4   | 1.3        |
| 1425 | 1.9        | 1.7    | Z.4      | 3.1         | 2.5        |            | 5.3        | 3.2        |     | 1.9        | 3.2                   | 4.2   | 4.5        |
| 1454 | 1.5        | 1.8    | 1.4      | 1.9         | 3.9        |            | 2.7        | 3.9        |     | 1.5        | 3.3                   | 3.3   | 3.3 '      |
| 1522 | 1.4        | 1.4    |          | 2.3         | 2.0        |            | 3.0        | .2.1       |     | 1.5        | $2.2^{\circ}_{\circ}$ | 2.5   | 2.5        |
| 1550 | 1.4        | 1.2    |          | 1.8         | 1.7        |            | 2.0        | 2.2        |     | 1.2        | 1.8                   | 2.1.  | 2.0        |
| 1618 | 1.5        | 1.4    | 1.6      | 2.8         | 1.8        |            | 2, 9       | 2.6        |     | 1.5        | 2.7                   | 2.7   | 2.3        |
| 1546 | 1.3        | 1.2    | 1.2      | 2.3         | 1.9        |            | 2.8        | 2.5        |     | 1.2        | 2.0                   | 2.7   | 3.0        |
| 1714 | 1.4        | 1.3    | .9       | 2.4         | 1.6        |            | 3.1        | 2.3        |     | 1.3        | 2.0                   | 2.7   | 2.9        |
| 1742 | 1.6        | 1.0    |          | 2.3         | 2.6        |            | 3.3        | 2.0        |     | 1.4        | 2.3                   | 2.7   | 2.7        |
| 1810 | 1.6        | 1.2    |          | 2.3         | 2.5        |            | 3.3        | 2.7        |     | 1.5        | 2.7                   | 3.ð   | 4.1        |
| 1938 | 1.4        | 1.5    |          | 2.5         | 2.8        |            | 2.7        | 2.9        |     | 1.5        | 217                   | 2.3   | 2.8        |
| 1905 | 1.9        | 1.6    |          | 2.6         | 2.6        |            | 3,2        | 2.3        |     | 1.8        | 2.9                   | 3.0   | 3.1        |
| 9/28 |            |        |          |             |            | •          | • •        |            |     |            |                       |       |            |
| 1307 | 2.7        | 4.9    | 3.5      | 4.0         | 5.5        | 8.4        | 5.9        | 5.4        |     | 3.7        | 5.7                   | 5.2   | 11.4       |
| 1335 | 2.9        | 3.6    | 4.0      | 6.0         | 4.5        |            | 8.5        | 7.1        |     | 3.4        | 5.7                   | 5.3   | 8.5        |
| 1408 | 1.7        | 2.5    | 2.4      | 1.9         | 5.8        | 4.1        | 3.9        | 5.4        |     | 2.2        | 3.9                   | 4.7   | 7.5        |
| 1435 | 4.1        | 3.2    | 3.4      | 5.3         | 7.9        |            | 5.1        | 6.0        |     | 3.6        | 5.1                   | 6.ð·  | 6.3        |
| 1504 | 2.8        | 3.6    | 4.7      | 3.4         | 7.2        |            | 3.5        | 8.5        |     | 3.5        | 5.2                   | 6.0   | 3.7        |
| 1522 | 1 0        | 2 1    | 1 7      | ~ ~         | 7 0        |            | 7 0        | ~ 0        |     |            |                       |       | · .        |

WIND DIRCTION STANDARD DEVIATION (deg)

|      |       |       |     | 10mi | n Per | -iod |      |        |      |      |          |       |             |
|------|-------|-------|-----|------|-------|------|------|--------|------|------|----------|-------|-------------|
|      | 1.    | in Av | /e  | 3,   | in Av | /e   | 10   | )min A | lve  | 1    | /2hr     | Perio | d           |
| Time | #1    | #2    | \$3 | \$1  | #2    | #3   | #1   | #2     | \$3. | 1 m  | <u> </u> | 10m   | <u>1/2h</u> |
| 1600 | 1.5   | 2.1   |     | 2.5  | 2.7   |      | 4.4  | 2.9    |      | 1.7  | 2.6      | 3.6   | 3.5         |
| 1628 | 2.1   | 2.3   |     | 4.0  | 5.8   |      | 5.0  | 6.2    |      | 2.2  | 4.7      | 5.6   | 6.1         |
| 1740 | 1.4   | 1.4   | 1.7 | 1.8  | 2.3   | 3.4  | 2.6  | 2.3    |      | 1.4  | 2.4      | 2.4   | 4.1         |
| 1808 | 1.1   | 1.1   | 2.1 | 1.8  | 1.5   |      | 2.4  | 1.5    |      | 1.3  | 1.7      | 2.0   | 3.9         |
| 1836 | 1.1   | 1.9   |     | 1.6  | 2.8   |      | 1.7  | 3.1    |      | 1.7  | 2.2      | 2.4   | 3.8         |
| 1904 | 1.6   | 1.2   |     | 2.3  | 2.5   |      | 2.5  | 4.4    |      | 1.6  | 2.4      | 3.4   | 4.7         |
| 9/2  | 9     |       |     |      |       |      |      |        |      |      |          |       |             |
| 1217 | 1.9   | 3.3   | 2.9 | 3.6  | 4.4   | 5.0  | 3.9  | 4.4    |      | 2.7  | 4.3      | 4.2   | 5.1         |
| 1245 | 2.8   | 2.7   | 2.3 | 2.9  | 3.5   | 4.5  | 5.7  | 3.6    |      | 2,6  | 3.5      | 4.6   | 4.9         |
| 1347 | 1.4   | 1.8   | 1.6 | 2.2  | 3.0   | Z.4  | 2.5  | 3.0    |      | 1.6  | 2.6      | 2.8   | 2.7         |
| 1415 | 1,1   | 1.7   | 1.2 | 1.2  | 2.1   | 2.4  | 3.0  | 3.0    |      | 1.3  | 1.9/     | 3.0   | 3.1         |
| 1443 | 1.5   | 1.6   | 1.4 | 2.1  | 2.1   | 1.6  | 3.5  | 2.4    |      | 1.5  | 2.0      | 3.0   | 3.0         |
| 1511 | 1.3   | 1.3   | 1.2 | 1.5  | 2.4   | 2.4  | 1.9  | 4.5    |      | 1.3  | 2.0      | 3.2   | 4.2         |
| 1540 | 1.3   | 5.7   |     | 1.6  | 3.0   |      | 2.2  |        |      |      |          |       |             |
| 1626 | 1.2   | 1.3   | 1.1 | 1.3  | 1.7   | 3.4  | 2.2  | 1.5    | 2.2  | 1.2  | 2.0      | 2.0   | 2.6         |
| 1654 | 1.2   | 1.1   | 1,1 | 1.3  | 1.5   | 1.9  | 1.4  | 2.1    |      | 1.1  | 1.5      | 1.9   | 2.0         |
| 1722 | 1.0   | . 8   | . 9 | 1.7  | 1.9   | 1.1  | 2.4  | 1.7    |      | .9   | 1.6      | 2.0   | 2.3         |
| 1750 | .1.1_ | 1.1   | . 9 | 1.5  | 1.7   | 2.5  | 1.8  | 2.3    |      | 1.1  | 1.8      | 2.1   | 3.9         |
| 1818 | . 9   | 1.0   | . 8 | 1.0  | 1.2   | 1.8  | 3.4  | 1.7    |      | · .9 | 1.3      | 2.5   | 3.6         |
| 1846 | .7    | .9    | 1.0 | . 8  | 1.4   | 1.2  | F. 1 | 2.5    |      | .9   | 1.1      | 1.8   | 3.5         |
| 1902 | . 9   | 4.1   |     | 1.1. | С,    |      | 1.5  | 、 ·    |      |      |          |       |             |

D-3

.

### WIND DIRCTION STANDARD DEVIATION (deg)

|      |     |       |      | 1 0m : | in Per | -iod |      | ****   | !     |       |        |       |      |
|------|-----|-------|------|--------|--------|------|------|--------|-------|-------|--------|-------|------|
|      | 1.  | nin A | ve   | 34     | ain A  | ve   | 1.0  | ðmin í | Ave   | 1     | /2hr   | Perio | d    |
| Time | #1  | #2    | #3   | \$1    | #2     | #3   | #1   | #2     | #3    | Im    | Зm     | 10m   | 1/2h |
| 1/05 | 5   |       |      |        |        |      |      |        |       |       |        |       | ,    |
| 904  | 4.4 | 5.9   | 10.7 | 4.5    | 8.5    | 15.0 | 6.3  | 9.7    | 20.0  | . 6.9 | 9.4    | 12.0  | 20.9 |
| 1/06 | i   |       |      |        |        |      | ,    |        |       |       |        |       |      |
| 1155 | 5.1 | 1.7   | 1.2  | 10.0   | 2.9    | 4.6  | 28.1 | 2.8    |       | 3.2   | 5.0    | 15.4  | 19.0 |
| 1225 | 1.4 | 1.3   | .7   | 1.4    | 2.2    | 3.6  | 1.5  | 3.4    |       | 1.2   | 2.3    | 2.5   | 5.1  |
| 1355 | 1.5 | 1.9   | 2.3  | 3.7    | 4.2    | 4.8  | 4.6  | 8.7    |       | 1.9   | 4.2    | 6.7   | 13.2 |
| 1425 | 1.6 | 2.4   | 7.1  | 2.2    | 3.9    | 12.8 | 2.4  | 9.3    |       | 3.3   | 5.5    | 5.8   | 9.4  |
| 1455 | 3.7 | 2.7   | 2.1  | 4.6    | 4.3    | 5.6  | 6.4  | 4.9    |       | 2.9   | 4.7    | 5.6   | 7.8  |
| 1542 | 7.0 | 9.4   | 4.2  | 7.9    | 16.8   | 12.0 | 21.6 | 32.0   |       | 7.1   | 12.2 3 | 26.8  | 25.5 |
| 1612 | 2.7 | 3.0   | 2.3  | 3.9    | 7.0    | 3.2  | 3.9  | 7.8    |       | 2.7   | 4.9    | 5.9   | 8.5  |
| 1642 | 3.8 | 1.9   | 2.1  | 5.6    | 2.8    | 5.0  | 6.2  | 3.3    |       | 2.7   | 4.7    | 4.7   | 6.7  |
| 1712 | 1.4 | 4.5   | 1.9  | 2.0    | 7.1    | 12.2 | 2.4  | 8.7    |       | 2.7   | 6.5    | 5.8   | 7.4  |
| 1742 | 2.4 | 2.6   | 2.6  | 4.3    | 4.9    | 8.7  | 8.4  | 8.3    |       | 2.5   | 5.6    | 8.4   | 10.9 |
| 1812 | 1.3 | 1.2   | 5.3  | 2.0    | 3.4    | 8.3  | 4.0  | 3.4    |       | 2.3   | 4.1    | 3.7   | 5.4  |
| 1842 | 2.9 | 2.7   | 1.9  | 4.8    | 8.4    | 4.5  | 10.3 | 12.1   |       | 2.8   | 6.1    | 11.2  | 20.7 |
| 1912 | 2.3 | 4.0   | 3.4  | 5.0    | 9.3    | 6.9  | 10.2 | 12.1   |       | 3.2   | 6.7    | 11.1  | 15.0 |
| 1942 | 6.9 | 5.7   | 2.0  | 9.6    | 9.9    | 8.7  | 12.8 | 17.0   |       | 5.2   | 9.5    | 14.9  | 21.3 |
| 1/07 |     |       |      |        |        |      |      |        |       |       |        |       |      |
| 1202 | 1.2 | 1.3   | 1.6  | 1.7    | 3.6    | 3.4  | 4.3  | 4.6    |       | 1.5   | 2.8    | 4.4   | 5.4  |
| 1232 | 1.7 | 1.8   | 2.1  | 2.1    | 2.3    | 2.9  | 2.3  | 2.5    |       | 1.8   | 2.4    | 2.5   | 3.8  |
| 1320 | 2.9 | 2.7   | 3.8  | 4.0    | 5.1    | 5.2  | 6.6  | 8.3    |       | 3.1   | 4.7    | 7.5   | 14.0 |
| 1350 | 3.7 | 2.4   | 5.4  | 5.6    | 7.7    | 7.2  | 9.3  | 15.3   |       | 3.7   | 6.8 1  | 2.3   | 13.5 |
| 1420 | 2.4 | 3.6   | 3.7  | 3.2    | 5.7    | 4.5  | 3.6  | 11.1   |       | 3.2   | 4.4    | 7.3   | 13.4 |
| 1450 | 3.5 | 4.8   | 3.1  | 4.3    | 11.8   | 8.3  | 4.8  | 23.8   |       | 3.9   | 3.1 1  | 4.3   | 34.8 |
| 1/09 |     |       |      |        |        |      |      |        |       |       |        |       |      |
| 1149 | 3.1 | 1.8   | 1.9  | 5.6    | 2.4    | 4.0  | 16.4 | 3.7    |       | 2.3   | 4.0 1  | 0.0   | 12.3 |
| 1221 | 1.8 | 1.9   | 1.2  | 2.7    | 3.2    | 6.5  | 4.6  | 4.9    |       | 1.7   | 3.8    | 4.9   | 7.5  |
| 1309 | 2.4 | 2.2   | 1.6  | 3.9    | 2.9    | 3.4  | 4.5  | 2.6    |       | 2.1   | 3.4    | 3.6   | 4.0  |
| 1339 | 2.0 | 1.6   | 1.4  | 2.6    | 2.3    | 3.8  | 5.4  | 3.9    |       | 1.7   | 2.8    | 4.5   | 5.3  |
| 1409 | 1.9 | 2.0   | 1.9  | 2.9    | 2.8    | 3.4  | 3.3  | 2.6    |       | 1.9   | 2.9    | 2.9   | 3.4  |
| 1439 | 2.1 | 1.7   | 1.4  | 2.9    | 2.2    | 2.4  | 4.1  | 2.2    |       | 1.8   | 2.5    | 3.1   | 3.3  |
| 1509 | 1.4 | 1.6   | 1.2  | 1.4    | 2.1    | 1.7  | 1.4  | 3.8    |       | 1.4   | 1.7    | 2.5   | 5.4  |
| 1539 | 1.3 | 1.4   | 1.5  | 1.3    | 1.8    | 3.9  | 1.9  | 2.2    |       | -1.4  | 2.1    | 2.0   | 2.5  |
| 1509 | 1.6 | 1.6   | 2.3  | 1.9    | 3::1   | 5.5  | 3.6  | 3.0    |       | 1.8   | 3.2    | 3.3   | 4.9  |
| 1639 | 3.1 | 2.3   | 1.8  | 3.9    | 7.5    | 5.0  | 5.5  | 6.9    |       | 2.5   | 5.8    | 6.7   | 11.5 |
| 1709 | 1.7 | i.4   | 1.3  | 2.2    | 2.2    | 2.1  | 3.1  | ż.0    |       | 1.5   | 2.2    | 2.5   | 2.7  |
| 1739 | 1.0 | 1.9   | 1.3  | 1.4    | 2.2    | 1.5  | 1.5  | 2.9    |       | 1.4   | 1.7    | 2.3   | 3.4  |
| 1909 | 1.6 | 1.9   | 1.4  | 2.2    | 2.7    | 3.3  | 2.3  | 3.8    |       | 1.7   | 2.7    | 3.0   | 4.4  |
| 1/13 |     |       |      |        |        |      |      |        |       |       |        |       |      |
| 352  | 1.9 | 1.4   | 4.6  | 3.8    | 5.7    | 16.7 | 5.4  | 8.7    | 16.13 | 2.5   | 3.7 1  | 0.2   | 12.9 |
| 948  | 1.3 | 1.9   | 1.8  | 2.8    | 4.1    | 3.2  | 9.0  | 5.4    | 3.1   | 1.7   | 3.4    | 5.9   | 15.0 |
| 1049 | 3.2 | 1.5   | 1.1  | 6.1    | 3.3    | 2.5  | 7.1  | 3.4    | 1.7   | 2.0   | 4.0    | 4.1   | 11.1 |
| 1119 | 1.3 | 1.5   | 2.3  | 2.5    | 4.0    | 5.9  | 4.7  | 9.3    | 7.1   | 1.7   | 4.1    | 7.0   | 10.5 |
| 1239 | 1.5 | 1.3   |      | 2.8    | 1.9    |      | 3.9  | 1.7    | 2.9   | 1.4   | 2.7    | 2.9   | 3.1  |
| 1309 | 1.3 | 1.5   | 1.4  | 1.5    | 1.9    | 2.2  | 2.0  | 2.9    | 2.9   | 1.4   | 1.9    | 2.6   | 2.6  |
| 1339 | 1.5 | 1.2   | 1.3  | 2.0    | 2.4    | 2.0  | 3.2  | 6.2    | 2.3   | 1.3   | 2.1    | 3.9 ' | 5.8  |
| 1409 | 1.3 | 1.0   | 1.2  | 1.5    | 1.9    | 2.8  | 1.6  | 2.8    | 2.2   | 1.1   | 2.1    | 2.2   | 3.3  |
| 1439 | 1.2 | 1.2   | 1.4  | 1.3    | 1.7    | 3.3  | 1.6  | 2.7    | 3.5   | 1.3   | 2.1    | 2.6   | 5.5  |
| 1509 | 1.2 | 1.2   | 1.4  | 2.2    | 2.5    | 3.5  | 3.0  | 2.4    | 3.6   | 1.3   | 2.7    | 3.0   | 5.3  |

WIND DIRCTION STANDARD DEVIATION (deg)

|       | !          |            |            | 10m:        | in Pa        | riod       |            | وي جرد جرد جرد جرد |            |              |              |                   |                |
|-------|------------|------------|------------|-------------|--------------|------------|------------|--------------------|------------|--------------|--------------|-------------------|----------------|
|       | 1.         | nin A      | ve         | 31          | nin A        | ve         | 1          | Ømin               | Ave        |              | 1/2hr        | Perio             | d              |
| Time  | <b>#</b> 1 | #2         | #3         | #1          | *2           | #3         | #1         | \$2                | #3         | 1 m          | 3m           | 10m               | 1/2h           |
| 1521  | 1.1        | 3.0        |            | 2.0         |              |            | 4.5        |                    |            |              |              |                   | •              |
| 1559  | 1.2        | 1.4        | 1.3        | 2.2         | 3.2          | 6.2        | 2.7        | 4.5                | 8.2        | 1.3          | 3.9          | 5.1               | 7.3            |
| 1629  | 1.4        | 1.2        | 1.4        | 2.7         | 2.6          | 5.0        | 3.2        | 2.4                | 5.1        | 1.4          | 3.4          | 3.6               | 5.8            |
| 1659  | 1.7        | 1.5        | 1.4        | 2.0         | 5.4          | 5.1        | 5.7        | 7.0                | 4.1        | 1.4          | 4.1          | 5.6               | 10.6           |
| 1729  | 1.4        | 1.8        | 1.5        | 1,9         | 2.4          | 2.3        | 3.6        | 2.4                | 1.9        | 1.5          | 2.2          | 2.5               | 7.7            |
| 1/1   | 4          |            |            |             |              |            |            |                    |            |              |              |                   |                |
| 1130  | 1.6        | 2.1        |            | 2.5         | 3.4          |            | 7.2        | 4.5                | 6.1        | 2.0          | 4.2          | 5.9               | 15.7           |
| 1200  | 1.7        | 74.5       | 8.3        | 2.3         | 24.0         | 42.2       | 7.2        | 63.7               | 24.1       | 12.0         | Z2.8         | 31.7              | 61.6           |
| 1230  | 5 2        | 4.3        | 5.8        | 5.4         | 6.1          | 8.6        | 5.6        | 7.5                | 10.3       | 511          | 6.7          | 8.1               | 10.4           |
| 1300  | 3 1        | 4.9        | 4.2        | 11.4        | 5.7          | 7.9        | 14.5       | 11.2               | 10.4       | 4.1          | 8.7          | 12.1              | 21.3           |
| 1330  | 3.1        | 4.3        | 3 9        | 5 1         | 5.7          | 4.5        | 6.8        | 7.5                | 4.9        | 4.0          | 5.1          | 5.4               | 5.5            |
| 1400  |            | 7.J        | 3.3        | 4 6         | 7 7          | 57         | 6.1        | 14.1               | 5.2        | 3.5          | 5.8          | 8.4               | 20.3           |
| 1470  | 1.3        | 5.7        | 3.4        |             | 7 7          | 9 4        | 9 6        | 2.9                | 7 7        | 4.5          | 7.9          | 8.1               | 8.6            |
| 1430  | 4.7        |            | 2.4        | 2.3         | 17 7         | J. 4       | 4 6        | 17 7               | 9 4        | 7.1          | 7 8          | a a .             | 77 0           |
| 000   | - ···      | 5.0        | 4.0        | 4.3         | ا شده م<br>ش | 0.4        | 4.0        | 12.1               | <b>.</b>   |              | 1.9          | 0.5               |                |
| 1/1   | 5          | 2.0        | - ·'       | <b>с</b> 0  |              | 4 0        |            | 1.7                | 7 1        | 7 7          | 50           | 7                 | 15 1           |
| 144.1 | 2.9        | 2.0        | 2.1        | 3.0         | . 4 . 1      | 4.3        | 7 0        |                    | ·          | 2.5          | 3.0          |                   | , <u>, ,</u>   |
| 1500  | 2.0        | 2.1        | •          | 3.5         | 3.5          |            | 2.3        | 4.0                | <b>-</b> - | 2.0          | 5.5          | 4.0               | 47 7           |
| 1552  | .2.5       | 2.4        |            |             | 11.6         |            | 8./        | 21.9               | 3.4        | <u> </u>     | 0.4<br>7 7   | 4 1               | 42.5           |
| 1622  | 1.7        | 1.8        | Z.2        | 2.1         | 2.5          | 3.3        | 5.5        | 4.0                | 2.9        | 1.9          | 2.1          | 4.1               | . 5.8          |
| 1652  | 2.1        | 1.7        | 2.0        | 2.4         | 3.5          | 3.5        | 2.8        | 3.1                | 4.0        | ú.V          | 3.2          | 3.5               | 5.8            |
| 1722  | 2.0        | 2.4        | 1.9        | 2.1         | د.4          | 6.1        | 5.0        | 5.4                | 5.0        | 2.1          | 4.4          | 4.5               | <b>D</b> .ć    |
| 1/1   | 5          |            |            |             |              |            |            |                    |            |              | -            | · *               |                |
| 938   |            |            |            |             |              |            | 1.1        | 7 0                | 6 9        |              |              | .4                | . <del>.</del> |
| 1008  | 2.9        | 2.2        | 2.1        | 3.1         | 3.5          | 7.2        | 5.5        | 3.3                | 5.0        | 2.4          | <br>         | 3.2               | 3.0            |
| 1050  | 2.2        | 2.0        | 2.1        | 2.0         | 2.8          | 5.4        | 2.1        | 3.3                | 3.3        | 2.3          | 3.3          | ).0<br>E 4        | 5.3            |
| 1120  | 1.8        | 1.3        | 2.5        | 4.4         | 4.5          | 5.5        | 2.0        | 6.4                | (.5        | 2.0          | 4.3          | 3.4               | 5.U<br>E 3     |
| 1150  | 2.5        | 2.4        | 2.3        | 3.8         | 2.3          | 4.0        | 5.0        | 4.4                | *.J<br>7 0 | 2.4          | 4.0          | 4.5               | 3.0            |
| 1220  | 2.1        | 3.1        | 2.4        | <b>4</b> .1 | 4.1          | 4.7        | 4.4        | 5.1                | 3.0        | J.U<br>7 E   |              | 4.4               | e.e            |
| 1250  | 2.5        | 2.0        | 2.4        | 2.7<br>7 m  | <b>D</b> . 7 | 5.5        | 4.0<br>r r | 9.J                | 5.4        | 2.3          | 4.5          | *.0<br>c 0        | Q.O            |
| 1320  | . <u>.</u> | ć. 4       | · 2.3      | 2.5         | 4.8          | 5.4        | 3.5        | 3.3                | 3.3        | <del>-</del> | 4.1          | 0.0               | 3.I.<br>E      |
| 1350  |            | 7 0        | <b>-</b> . | . 5         | - '-         |            | .5         |                    | 7 6        |              | = a          |                   |                |
| 1420  | 2.1        | 2.0        | 2.4        | <b>4</b> ./ | 3.1          | 4.3        | 0.1        |                    | J.0<br>7 0 | 1.0          | 3.0          | 3.0               | 0.J            |
| 1520  | 1.7        | 1.3        | 1.5        | 2.4         | 3.3          | 2.5        | 4.4        | <b>4</b> ./        | 2.3        | 1.5          | 3.4          | .v<br>- 0         | 7 5            |
| 1550  | 1.5        | 1.7        | 1.2        | 2.5         | 3.3          | 3.3        | 2.5        | 2.5                | 4.4<br>7 C | 1.3          | 7 4          | 2.5               | 2.3            |
| 1620  | 1.5        | 1.7        | 2.3        | 3.5         | 2.9          | 4.2        | 4.4        | 4.3                | 3.5        | 1.3          | 3.4          |                   | 4.3            |
| 1050  | 1.3<br>1.7 | 1.5        | 1.3        | J.5         | J.5          | 5.2        | 5.5        | 3.1<br>7 c         | 4.0        | 1.3          | 2.3          | 2.7               | 4.3            |
| 1720  | 1.5        | 1.0        | 1.5        | 1.3         | 3.4          | 4 7        | 1.3        | 2.0                | 2.2        | 1 7          |              | 2 · · ·           |                |
| 1/50  | 1.0        | 1.4        | 1.5        | 1./         | 3.2          | 4.7        | 1.0        | 3.1                | 4.0        | 1.3          | 7.4          | J.L<br>7 0        | 1.5            |
| 1020  | 1.6        | 1.0        | 1.3        | 2.1         | 2.0<br>7 •   | 5.5        | ם.כ<br>זר  | J. <br>7 1         | v<br>      | 1.7          | 0<br>7 E     | - 7               | •.3            |
| 1920  | 1.5        | 1.5        | 1.3        | 2.4         | 2.4          | 2.1        | 2.5        | 3.1                |            | · · /        |              | (<br>             | *              |
| 1929  | 2.1        | э.э<br>. г | 2.5        | 3.5         | +.4          | 5.0        | 0.0        | 4.3                | 7.3<br>E 0 | 4.(<br>7 3   | 4.0          | 5.J<br>5.0        | о.,<br>с,      |
| 1320  | 2.5        | 1.5        | 2.3        | 4.0         | 3.3<br>7 0   | 4.2        | 5.3        | 3.3<br>7 0         | ວ.ຽ<br>ລາວ | £.0<br>11.7  | 4.0          | 5.0<br>77 =       | 72 5           |
| 2020  | 4.5        | 5.0        | 20.0       | 3.4         | 1.0          | 34.3       | 5.1        | 7.0                | 10.7       | 5.0          | 101.0        | 12.0              |                |
| 2050  | 11.0       | 4.3        | 4.0        | 12.8        | 5.0<br>20    | 13.4       | 13.0       | ש.ק                | 13./       | V.0          | 10.4         | <u>د</u> .د،<br>م |                |
| 2120  | 2.0        | 1.8        | 1.0        | 3.3<br>7 A  | 4.0          | 3.2        | 0.3        | 2.1                | 2.1        | 1.8          |              | 4.0<br>3.C        | (.5<br>2 E     |
| 2130  | 1.2        | 1.4<br>1.4 | 1.0        | 4.0<br>1 0  | 1 0          | *.0<br>7 E | 4.4<br>7 C | J.1<br>7 7         | J.J<br>7 C | 1.3          | 2.0          |                   | 3.3            |
| 2220  |            | 1.4        | ש.ו<br>ייי | 1.0         | 1.3          | ב. כ<br>זי | 2.0        | J.4<br>7 c         | 2.0        | 1.3          | <del>-</del> | 0<br>7 ]          |                |
| 2230  | 1.4        | 1.4        | 1.4        | 1.3         | <u> </u>     | 2.4        | 4.0        | . 4.0              | 2.3        | 1.3          | L.J          | L . J             | 2.0            |

LLM-3

WIND DIRCTION STANDARD DEVIATION (deg)

|      | !           |        |      | 10m  | in Pe | riod |      |       | ;    |        |       |       | · ·  |
|------|-------------|--------|------|------|-------|------|------|-------|------|--------|-------|-------|------|
|      | 1           | lmin A | lve  | 3    | min A | ve   | 1    | 0m1n  | Ave  | 1      | /2hr  | Perio | d    |
| Time |             | \$2    | #3   | #1   | #2    | #3   | #1   | \$2   | \$3  | lm     | 3m    | 10m   | 1/2h |
| 12/  | 05          |        |      |      |       |      |      |       |      |        |       |       |      |
| 1448 | 1.9         | 3      |      | 2.2  |       |      | 2.4  |       |      |        |       |       |      |
| 12/  | <b>′0</b> 6 |        |      |      |       |      |      |       |      |        |       |       |      |
| 1115 | 2.8         | 3      |      | 5.1  |       |      | 8.4  |       |      | .9     | 1.7   | 2.9   | 4.9  |
| 1146 | 1.7         | 7 1.1  | 1.8  | 1.9  | 1.5   | 1.8  | 2.6  | ं । ह | 2.2  | 1.5    | 1.8   | 2.1   | Z.6  |
| 12/  | '07         |        |      |      |       |      |      |       |      |        |       |       |      |
| 748  | 1.7         | 4.1    |      | 3.0  | 8.0   |      | 4.2  | 23.1  | 6.1  | 3.0    | 6.8   | 11.2  | 35.8 |
| 818  | 2.8         | 3.9    | 5.5  | 8.0  | 11.5  | 9.5  | 15.9 | 24 5  | 12:8 | 4.0    | 9.7   | 17.7  | 18.9 |
| 848  | 2.2         | 2.1    | 3.1  | 3.4  | 4.5   | 10.8 | 3.8  | 4     | .7.9 | 2.5    | 6.2   | 8.8   | 13.3 |
| 12/  | 08          |        |      |      |       |      |      |       | ,    |        |       |       |      |
| 1109 | 1.2         | 1      |      | -1.9 |       |      | 2.1  |       |      |        |       |       |      |
| 1119 | 1.3         |        |      | 2.4  |       |      | 3.1  |       |      |        |       |       |      |
| 1129 | .9          |        |      | 1.1  | ·     |      | 1.3  |       |      |        |       |       |      |
| 1139 | 8.2         |        |      | 10.4 |       |      | 55.1 |       |      |        |       |       |      |
| 1159 | 8.9         | 1      |      | 14.0 |       |      | 16.8 |       |      |        |       |       |      |
| 1209 | 4.9         |        |      | 6.7  |       |      | 8.6  |       |      |        |       |       |      |
| 1219 | 4.2         |        |      | 10.0 |       |      | 23.1 |       |      |        |       |       |      |
| 1252 | 6.8         | 30.5   | 18.8 | 11.1 | 55.5  | 28.9 | 14.5 | 89.9  | 35.1 | 18.7   | 31.9  | 46.5  | 66.2 |
| 1322 | 5.2         | 3.2    | 3.4  | 7.7  | 3.9   | 5.6  | 10.3 | 5.1   |      | 4.0    | 5.7   | 7.7   | 3.0  |
| 1352 | 2.0         | 2.0    | 1.5  | 3.0  | 2.6   | 3.2  | 3.9  | 3.4   | 2.0  | 1.8    | 2.9   | 3.1   | 7.2  |
| 1422 | 2.6         | 2.5    | 2.3  | 3.5  | 4.6   | 4.2  | 4.1  | 5.4   | 7.2  | 2.5    | 4.1   | 5.6   | 9.1  |
| 1452 | 3.4         | 4.3    | 3.5  | 4.1  | 6.5   | 6.0  | 5.5  | 11.4  | 6.9  | 3.7    | 5.5   | 7.9   | 11.9 |
| 1522 | 2.8         | 2.4    | 2.7  | 3.3  | 3.1   | 3.7  | 3.9  | 4.4   | 3.7  | 2.6    | 3.4   | 4.0   | 4.0  |
| 1552 | 3.0         | 10.1   | 17.1 | 4,4  | 11.1  | 50.3 | 5.7  | 18.9  | 65.3 | 9.8 2  | 21.9  | 79.9  | 40 5 |
| 1622 | 31.7        | 7.5    | 5.0  | 32.5 | 11.9  | 9.9  | 48.5 | 10.3  | 10.2 | 15.1   | 18.1  | 23.0  | 31.3 |
| 1652 | 5.5         | 6.8    | 13.0 | 7.0  | 9.Z   | 14.8 | 12.4 | 9.0   | 14.5 | 8.3    | .0.3  | 17.0  | 16.9 |
| 1722 | 21.4        | 32.0   | 30.8 | 23.9 | 39.5  | 39.5 | 49.2 | 45.0  | 63.7 | 27.9   | 34.3  | 52.6  | 53.7 |
| 1752 | 33.0        | .5.1   | 2.2  | 40.8 | 8.4   | 3.7  | 47.8 | 11.9  | 5.8  | 14.2   | 7.6   | 21.8  | 39.5 |
| 1822 | 2.4         | 3.7    | 5.2  | 4.5  | 4.1   | 10.4 | 12.4 | 5.8   | 13.7 | 3.7    | 8.3   | 10.5  | 17.1 |
| 1852 | 11.1        | 14.7   | 6.5  | 16.0 | 20.7  |      | 18.1 | 37.2  |      | 11.5   | 7.8   | 7.5   | 31 9 |
| 1922 | 3.8         | 2.7    | 2.5  | 3.7  | 3.3   | 4.1  | 4.6  | 3.4   | 3.1  | 3.0    | 3.7   | 3.7   | 5 5  |
| 1952 | 2.7         | 2.5    | 1.8  | 4.8  | 2.6   | 2.8  | 9.8  | 3.7   | 3.7  | 2.4    | 3.4   | 5.7   | 7.0  |
| 2022 | 2.0         | 1.7    | 1.5  | 3.2  | 2.3   | 2.0  | 4.4  | 4.3   | 2.0  | 1.7    | 2.5   | 3.8   | 4.1  |
| 2052 | 1.4         | 2.0    | 1.4  | 1.9  | 2.3   | 3.2  | 2.9  | 4.4   | 2.1  | 1.5    | 2.5   | 3.1   | 5.5  |
| 2122 | 3.5         | 2.4    | 2.8  | 4.7  | 3.1   | 5.4  | 11.2 | 3.0   | 6.3  | 2.9    | 4.4   | 6.8   | 12.9 |
| 2152 | 8.7         | 4.7    | 4.4  | 15.1 | 8.0   | 5.9  | 42.5 | 6.9   | 5.8  | 6.0    | 9.7   | 19.4  | 29.6 |
| 2222 | 4.8         | 4.3    | 4.5  | 8.4  | 5.4   | 5.5  | 22.5 | 8.2   | 5.1  | 4.5    | 5.8   | 12.3  | 21.1 |
| 2252 | 4.7         | 5.0    | 4.8  | 7.1  | 5.3   | 9.8  | 7.6  | 7.3   | 12.8 | 4.8    | 7.4   | 9.2   | 16.5 |
| 2322 | 5.1         | 11.2   | 6.0  | 10.5 | 14.7  | 10.6 | 17.9 | 18.4  | 11.5 | 8.9 1  | 1.9   | 5.9   | 79.1 |
| 2352 | 4.3         | 4.4    | 5.2  | 5.ð  | 5.8   | 8.9  | 10.5 | 7.7   | 9.4  | 4.5    | 6.9   | 9.2   | 15.1 |
| 12/0 | 89          |        |      |      |       |      |      |       |      | -      |       |       |      |
| 22   | 4.9         | 2.9    | 3.7  | 8.1  | 5.1   | 5.5  | 14.6 | 6.6   | 7.6  | 3.8    | 5.2   | 9.6   | 15.3 |
| 52   | 3.2         | 4.0    | 4.5  | 8.5  | 7.0   | 9.8  | 10.2 | 6.8   | 8.2  | 3.9    | 8.4   | 9.4   | 11.3 |
| 122  | 3.8         | 13.1   | 38.4 | 4.9  | 18.9  | 64.4 | 6.5  | 33.3  | 73.8 | 17.5 2 | 9.4   | 87.9  | 50.9 |
| 152  | 8.9         | 9.7    | 6.6  | 9.0  | 13.2  | 10.5 | 10.9 | 12.9  | 10.3 | 8.5 1  | 0.9 I | 1.4   | 16.1 |
| 222  | 7.3         | 29.2   | 9.3  | 12.8 | 32.5  | 36.3 | 28.4 | 48.5  | 35.3 | 15.5 2 | 7.2 7 | 7.4   | 61.9 |
| 252  | 8.3         | 8.0    | 10.7 | 12.3 | 12.0  | 12.4 | 14.2 | 17.4  | 14.1 | 8.9 1  | 2.3 1 | 5.3   | 16.5 |
| 322  | 9.8         | 10.9   | 7.7  | 17.0 | 17.0  | 11.2 | 37.2 | 33.1  | 10.9 | 9.5 1  | 5.1 7 | 7.1   | 34.5 |
| 352  | 5.4         | 6.7    | 8.7  | 5.6  | 10.3  | 20.5 | 8.0  | 11.6  | 21.0 | 6.8 1  | 2.2 1 | 3.5   | 16.0 |

いいい間になっ

### WIND DIRCTION STANDARD DEVIATION (deg)

|      | ;           |            |            | 10mi        | n Pe                        | riod       |             |             |        |            |             |            |             |
|------|-------------|------------|------------|-------------|-----------------------------|------------|-------------|-------------|--------|------------|-------------|------------|-------------|
|      | 1           | min A      | ve         | 3,          | in A                        | ve         | 1           | Ømin        | Ave    |            | 1/Zhr       | Perio      | bd          |
| Time | = #1        | \$2        | #3         | #1          | _ #2                        | #3         | #1          | #2          | #3     | 1 m        | <u>3</u> m  | 10m        | 1/2h        |
| 422  | 5.6         | 4.1        | 4.3        | 8.3         | 7.7                         | 5.6        | 12.0        | 11.1        | 5.5    | 4.7        | 7.2         | 9.5        | 14.1        |
| 452  | 4.3         | 7.8        | 7.8        | 4.8         | 10.4                        | 18.0       | 5.1         | 13.8        | 5 22.9 | 6.5        | 11.1        | 13.9       | 27.8        |
| 522  | 8.3         | 7.8        | 11.1       | 11.7        | 9,4                         | 13.0       | 12.7        | 9.4         | 11511  | 9.0        | 111.4       | 12.4       | 15.2        |
| 552  | 9.8         | 8.8        | 23.3       | 10.2        | 12.9                        | 25.3       | 11.2        | 18.2        | 37.9   | 13.6       | 16.5        | 22.4       | 30.7        |
| 622  | 16.7        | 5.0        | 7.3        | 25.8        | 7.8                         | 16.8       | 63.2        | 9.5         | 117    | 9.8        | 17.1        | 28.1       | 62.9        |
| 652  | 6.5         | 7.1        | 6.7        | 11.7        | 8.1                         | 11.8       | 17.3        | 12.8        | 141    | 6.8        | 10.5        | 14.7       | 18.3        |
| 722  | 5.9         | 7.3        | 4.8        | 9.7         | 9.7                         | 11.6       | 15.9        | 19.0        | 1117   | 5.0        | 10.3        | 15 9       | 33.3        |
| 757  | 5.5         | 3 9        | 85         | 10 2        | 5 6                         | 16 4       | 11 7        | 8 7         | 16 5   | 5 9        | 10.7        | 12 0       | 13.1        |
| 827  | 4 Q         | 5.5        | 12 2       | 17 1        | 9.0<br>9.0                  | 19 9       | 74 5        | 1.4.4       | 77 1   | 77         | 13 3        | 70 3       | 77 1        |
| 857  | 5 8         | 77         | 5.0        | 11 7        | 10.7                        | 7 6        | 21 1        | 100         |        | 6 4        |             | 10.0       | 10.2        |
| 277  | 47          |            | 5.0        |             | 0.2                         | 11 1       | 41.1        | 13.0        | 12 0   | , 0.4      | 3./         | 13.3       | 17.4        |
| 322  | 70.7        | 10 0       | 11 5       | 17.0        | 1.00                        | 11.1       | 3.3         | 76.2        | 77 4   | 3.5        | 3.0         | 70 0       | 1           |
| 1077 | 20.7        | 10.0       | 7,         | 17.10       | 42.1                        | 43.1       | 33.3        | 35.8        | 22.4   | 17.4       | 20.1        | 32.5       | 65.3        |
| 1022 | 28.5        | 8.3        | 7.1        | 43.0        | 9.5                         | 18.3       | 61.4        | 12.6        | 19-3   | 14.9       | 24.4        | 31.1       | 45.8        |
| 1052 | 5.0         | 3.0        | 3.3        | 4.4         | 7.8                         | 5.3        | 11.7        | 8.5         | 416    | 3.5        | 5.8         | 8.3        | 9.2         |
| 1122 | 4.2         | 2.2        | 2.8        | 5.4         | 2.8                         | 4.3        | 9.0         | 3.3         | 5.5    | 3.1        | 4.5         | 5.9        | 7.5         |
| 1152 | 3.1         | 3.0        | 2.8        | 5.4         | 4.7                         | 3.1        | 8.2         | 5.9         | 3.6    | 3.0        | 4.4         | 5.9        | . 9.4       |
| 1222 | 3.3         | 4.5        | 3.2        | 5.6         | 6.8                         | 7.2        | - 9.9       | 10.4        | 5.6    | 3.7        | 6.5         | 8.6        | 12.3        |
| 1252 | _3.6        | 2.9        | 3.4        | 5.9         | 3.3                         | 7.5        | 7.9         | 4.8         | 8.5    | 3.3        | 5.6         | 7.1        | 9.7         |
| 1322 | 2.0         | 2.1        | 2.3        | 2.7         | 4.0                         | 5.9        | 5.2         | 5.5         | 5.5    | 2.1        | 4.2         | 5.4        | 9.7         |
| 1352 | 2.2         | 1.9        | 2.8        | 2.5         | 2.5                         | 8.1        | 2.6         | 4.0         | 9.9    | 2.3        | 4.3         | 5.5        | 7.1         |
| 1422 | 3.0         | 1.4        | 1.9        | 4.1         | 2.3                         | 4.1        | 7.5         | 2.6         | 3.6    | 2.1        | 3.5         | 4.6        | 7.8         |
| 1452 | 1.8         | 3.0        | 2.5        | 3.3         | 5.8                         | 7.9        | 3.8         | 16.2        | 10.7   | 2.5        | 5.6         | 10.2       | 15.3        |
| 1522 | 9.8         | 16.3       | 3.8        | 14.5 2      | 28.3                        | 9.8        | 34.1        | 45.0        | 16.5   | 10.2       | 17.5        | 31.9       | 41.3        |
| 1552 | 3.5         | 1.9        | 1.6        | 5.0         | 3.0                         | 3.5        | 11.1        | 3.9         | 4.5    | Z.3        | 3.8         | 6.5        | 11.3        |
| 1622 | 1.2         | 1.5        | 1.8        | 2.8         | 3.4                         | 3.5        | 5.8         | 6.0         | 3.4    | 1.5        | 3.3         | 5.1        | 5.1         |
| 1652 | 2.0         | 1.8        | 1.4        | 3.9         | 3.9                         | 2.4        | 7.3         | 4.8         | 3.9    | 1.7        | 3.4         | 5.3        | 8.2         |
| 1722 | 1.4         | 1.1        | 1.1        | 1.9         | 2.0                         | 2.1        | 2.8         | 2.9         | 3.2    | 1.2        | 2.0         | 3.0        | 7.6         |
| 1752 | 1.3         | 1.5        | .1.9       | 2.3         | 2.9                         | 3.0        | 3.0         | 2.8         | 3.2    | 1.5        | 2.7         | 3.0        | 4.2         |
| 1822 | 2.9         | Z.5        | 2.3        | 3.5         | 2.9                         | 4.2        | 6.0         | 2.5         | 4 4    | 2.6        | 3.5         | 4.3        | 8.3         |
| 1852 | 2.6         | 2.0        | 1.1        | 2.7         | 3.9                         | 2.7        | 3.8         | 5.4         | 43     | 1.9        | 3.1         | 4.8        | 12.8        |
| 1922 | 1.1         | 1.2        | 2.7        | 2.5         | 1.8                         | 5.3        | 5.2         | 1.7         | 75     | 1.5        | 3.2         | 5.2        | 5.4         |
| 1952 | 1.4         | 1.4        | 1.3        | 3.1         | 8                           | 2.9        | 5.8         | 2.4         | 5[2    | 1.4        | 2.6         | 4 4        | 5 5         |
| 2022 | 2.7         | 7.5        | 7.4        | 2.9         | 8.1                         | 9.8        | 5.3         | 17.8        | 8.7    | 5.8        | 7 3         | 97         | 191         |
| 2052 | 23.5        | 10.4       | 6.4        | 15.2 1      | 7.4                         | 8.1        | 50.0        | 14.8        | 8.7    | 13 7       | 17 3        | י          | 3.9         |
| 2122 | 3.1         | 2.5        | 1.9        | 6.3         | 4.7                         | 5.6        | 13.3        | 7 5         | 10 0   | 2 5        | 5.5         | 101 3      | 12.1        |
| 2152 | 4.7         | 5.7        | 8.9        | 4.8         | 7 7                         | 121        | 5.7         | 12 7        | 11 7   | 5 5        | 7 5         | a -        | - U<br>     |
| 2722 | 3.8         | 3.8        | 4 3        | ▲ B         | 3 9                         | 5.7        | 5.0         | 7 9         | 9 9    | 1.0        | с. Э<br>с а | 7 7        | 40.4<br>3 7 |
| 2252 | 3.4         | 2.8        | 3.8        | 4 1         | 3.3                         | 5 7        | 5.0         | 7.0         | 5 1    | 33         | 3.4         |            | 5.2         |
| 7777 | 37          | 5 9        | g 1        | 5 3         | 7 1                         | а.<br>ч.   | 7 6         | 7.1         | 17 =   | J.J<br>E 0 |             | 3.3        | 0.0         |
| 7757 | 5.4         | 2.3        | 5.7        | 3.0         | 7. I<br>D 1                 | J.J<br>2 0 | 15 5        | 2.1         | 7 0    | 3.3        |             | 3.4        | 3.5         |
| 12/1 | a           | 3.5        | <b></b>    | 4.1         | 3.1                         | 5.0        | 13.3        | 0.1         | 1.0    | G.I.       | 0.9         | 9.5        |             |
| 77   | 45          | < c        | 5 7        | 5 7         | c 0                         | 95         |             | 0 0         | 0 -    | <b>E</b> 1 | <b>6</b> 0  | <b>n</b> . | · · · ·     |
| 57   | 7 9         | 47         | 7 5        | 7 6 4       | 0.J                         | 4.0        | 0.3         | 2.0         | 0.5    | ם.!<br>ייי | 0.3         | 3.1        | [4,4<br>• 7 |
| 177  | 2.5         | 7.2<br>7 a | 2.3        | J.J<br>7 0  | 0<br>7 7                    | 4.0<br>4 7 | 0           | <b>4.</b> / | - 3    | 3.2        | 4.4         | 4.2        | 4.5         |
| 167  | ć.4         | 2.3        | J.I<br>7 7 | 6.3         | 3.2                         | 4.3        | 2.4         | 0.5         | 5.1    | 2.8        | 3.5         | 5.0        | 9.5         |
| 136  | <b>4</b> ./ | 3.(        | 2.1        | <b>]</b> ./ | (.5                         | J.D        | <b>b</b> .2 | 10.7        | 4.4    | 4.5        | 5.5         | 7.1        | 14.8        |
| 222  | J.I         | J.J<br>    | 3.2        | 5.5         | ລ.4<br>ຕໍ່.                 | 5./        | 5.0         | 5.1         | 91.2   | 5.2        | 4.2         | 5.4        | 5.5         |
| 232  | р.)<br>лг   | 5.5        | 20.4       | 7.1         | <b>u</b> .i.<br><b>u</b> .a | 23.2       | 1.0         | 5.8         | 48.Z   | 15.3       | 17.5 2      | 0.3        | 27.1        |
| 322  | 1.5         | 5.5        | 5.4        | 7.9         | 1.0                         | 11.3       | 9.1         | 8.4         | 17.7   | 6.2        | 8.7 1       | 1.7        | 28.3        |
| 352  | 8.2         | 2.9        | 4.ь        | 9.Z         | ວ.0                         | 6.3        | 13.8        | 9.2         | 5.0    | 5.6        | 7.2         | 9.7        | 11.0        |

D-7

WIND DIRCTION STANDARD DEVIATION (deg)

|            |            |            |               | 10m        | in Per     | -iod             |             |      | !            |            |          |            |              |
|------------|------------|------------|---------------|------------|------------|------------------|-------------|------|--------------|------------|----------|------------|--------------|
|            | 1 m        | 11 A       | ve            | 30         | min A      | ve               | 1           | 0min | Ave          |            | 1/2hr    | Perio      | bd -         |
| Time       | #1         | #2         | #3            | #.1        | #2         | #3               | <u> </u>    | #2   | \$3          | <u>Im</u>  | <u> </u> | 10m        | 1/2h         |
| 422        | 4.8        | 6.4        | 4.7           | 5.7        | 9.9        | 4.9              | 8.3         | 17.3 | 5.2          | 5.3        | 6.8      | 10.2       | 22.5         |
| 452        | 4.5        | 5.3        | 2.5           | 6.2        | 8.7        | 3.3              | 9.2         | 18.4 | 4.1          | 4.2        | 6.0      | 10.6       | 25.7         |
| 522        | 3.1        | 2.1        | 2.0           | 4.4        | 2.7        | 5.5              | 7.7         | 5.0  | 7.0          | 2.5        | 4.2      | 6.6        | 9.1          |
| 55Z        | 2.5        | 1.8        | .9            | 3.8        | 4.5        | 1.7              | 6.0         | 3.8  | 2.5          | 1.8        | 3.3      | 4.1        | 5.7          |
| 522        | 1.3        | 2.1        | 1.9           | 1.9        | 2.7        | 2.3              | 3.7         | 3.8  | 2.0          | 1.8        | 2.3      | 3.1        | 5.6          |
| 652        | 1.4        | 1.6        | 1.5           | 1.7        | 2.8        | 2.9              | 2.1         | 5.0  | 4.5          | 1.5        | 2.5      | 3.9        | 8.6          |
| 722        | 1.4        | 1.8        | 1.6           | 2.1        | 2.0        | 2.4              | 2.6         | 2.9  | 3.3          | 1.6        | 2.2      | 2.9        | 4.3          |
| 752        | 1.1        | 1.2        | 1.7           | 1.7        | 2.8        | 4.4              | 2.9         | 4.0  | 3.3          | 1.3        | 2.9      | 3.4        | 5.0          |
| 822        | 1.4        | 1.3        | 1.3           | 1 9        | 1 5        | 7 6              | 2.6         | 25   | 1.9          | 1 3        | 7 7      | 23         | 5 2          |
| 852        | 13.8       | 5 9        | 3 4           | ד רכ       | 13 9       | 5 4              | 59.8        | 14 8 |              | 8 6        | 16.9     | 37 3       | 55 1         |
| 977        | 1 2        | 2.9        | 1 4 4         | 7 7        | 7 6        | 74 6             | 33.3        | A C  | 5A 1         | 5.0<br>E 0 | 10.0     | 24 1       | 75 6         |
| J22<br>057 | 2 6        | 2.0        | 7 0           | 2.5        | 7 0        | 7 7              | 0.0         | 17 7 | 4 5          | 0.0<br>7 c | 4 0      | <u> </u>   | 77 6         |
| 1022       | 2.0        | 2.0        | 7 4           | 7 5        | 7.0        | 3.3              | 3.3<br>'7.4 | 27   | = -0<br>= -7 | 2.3        | 4.5      | 3.4        | ມມ.<br>ອີ    |
| 1022       | 2.0        | 2.1        | 2.4           | 2.5        | 2.1        | 4.3              | 5.4         | .5.4 | ⊐.(<br>,     | ć.2        | 3.5      | 4.1        | 1.3          |
| 1032       |            | 2.4        | 5.1           | 4.0        | 2.0        | 5.8              | 0.4         | 2.3  | 2.1          |            | 2.5      | 5.2        | 1 <u>.</u> 1 |
| 1122       | 2.0        | 1.5        | 1.7           | 3.3        | 2.2        | 2.5              | 5.3         | 4.1  | 3.2          | 1.7        | 2.1      | 4.5        | 0.0          |
| ,1152      | 2.0        | 1.6        | 2.1           | 2.5        | 2.2        | 4.2              | 3.9         | 2.5  | 4.1          | 1.9        | 5.0      | 3.5        | 4.0          |
| 1222       | 5.5        |            |               | 6.2        |            |                  | 5.5         |      |              |            |          |            |              |
| 1252       | .6.0.      | 8.5        | 9.4           | 10.0       | 11.1       | 11.1             | 14.5        | 17.7 | 12.4         | 8.0        | 10.7     | 14.9       | 15.5         |
| 1322       | 9.8        | 15.1       | 10.5          | 11.5       | 20.1       | 32.6             | 12.8        | 53.5 | 28.4         | 12.2       | 21.4     | 31.6       | 44.2         |
| 1352       | 17.4       | 4.5        | 4.5           | 18.9       | 6.5        | 4.4              | 31.7        | 7.7  | 5.1          | 9.0        | 9.9      | 14.8       | 20.4         |
| 1422       | 6.8        | 19.1       | 7.4           | 7.1        | 25.0       | 9.6              | 7.1         | 42.0 | 12.7         | 11.2       | 14.2     | 20.6       | 53.2         |
| 1452       | 1.8        | 2.1        | 3.2           | 3.0        | 2.9        | 4.4              | 5.8         | 3.1  | 6.0          | 2.3        | 3.5      | 5.0        | 7.3          |
| 1522       | 3.4        | 1.6        | 2.3           | 4.2        | 2.7        | 5.2              | 4.7         | 5.9  | 8.0          | 2.4        | 4.0      | 5.2        | 14.5         |
| 1552       | 2.1        | 1.8        | 1.4           | 2.3        | 2.0        | 3.0              | 5.0         | 3.6  | 4.8          | 1.8        | 2.6      | 4.5        | 5.6          |
| 1622       | 6.3        | 2.7        | 3.7           | 8.1        | 3.3        | 6.0              | 16.8        | 5.2  | 12.3         | 4.3        | 5.8      | 11.4       | 15.4         |
| 1652       | 2.9        | 4.8        | 11.7          | 5.3        | 6.7        | 19.4             | 7.8         | 8.1  | 33.5         | 6.3        | 10.4     | 16.4       | 22.7         |
| 1722       | 3.0        | 2.3        | 1.1           | 5.8,       | 5.5        | 2.0              | 12.3        | 4.2  | 3.3          | 2.1        | 4.5      | 6.6        | 24.5         |
| 1946       | 2.3        | 2.8        | 2.2           | 2.4        | 3.7        | 3.2              | 2.7         | 5.0  | 4.4          | 2.5        | 3.1      | 4.0        | 5.1          |
| 2016       | 2.3        | 2.0        | 1.7           | 4.4        | 2.8        | 4.3              | 10.9        | 3.1  | 7.4          | 2.0        | 3.8      | 7.1        | 10.7         |
| 2846       | 1.9        | 2.4        | 2.6           | 2.3        | 2.7        | 5.5              | 5.7         | 4.3  | 4.3          | 2.3        | 4.1      | 4.3        | 9.3          |
| 2130       | 1.9        | 2.4        | 3.3           | 2.4        | 4.5        | 5.7              | 4.3         | 8.1  | 6.2          | 2.7        | 4.2      | 5.2        | 9.4          |
| 2200       | 2.2        | 3.4        | 5.0           | 4.5        | 6.5        | 8.4              | 6.4         | 5.8  | 7.4          | 3.5        | 5.5      | s.5        | 9.8          |
| 2230       | 2.4        | 2.2        | 5.0           | 3.5        | 3.9        | 7.4              | 4.4         | 5.1  | 12.8         | 3.1        | 4.9      | 7.4        | 12.4         |
| 2300       | 5.7        | 2.4        | 3.4           | 7.3        | 4.0        | 8.9              | 9.4         | 8.7  | 5.8          | 4.2        | 6.7      | 3.0        | 12.3         |
| 2330       | 1.7        | 2.5        | z.3           | 2.0        | 3.9        | 3.0              | 2.1         | 7.2  | 3.1          | 7.7        | 3.0      | 1.1        | 7 1          |
| 12/1       | 11         |            |               |            |            |                  |             |      | 5.,          |            | 2.4      |            |              |
| 9          | 1,9        | 1.4        | 2.0           | 2.7        | 2.1        | 7.9              | 8.7         | 2.1  | 3.3          | 17         | 2.6      | 17         | 23           |
| 30         | 1.4        | 1.9        | 1.8           | 17         | 2 4        | 37               | 77          |      | 3.7          | 1 7        | - 5      |            | 7 G          |
| 1 20       | 2.5        | 3.8        | 3 9           | 75         | 8 7        | 5 9              | 2 7         | 15 4 | 5.2          | 7.1        | = .J     | 7 9        | 10 1         |
| 130        | 5.2        | 2.6        | 1 5           | 5 4        | 4 1        | 27               | 1.71 4      | 7 1  | 3.0          | 3.4        |          | 7 0        |              |
| 200        | 2 5        | 7 9        | 7 A           | 3.5        | 4 7        | 2 7              | a c         | c ,  | 2.3          | . 7 3      | <b>.</b> |            | 10.0         |
| 230        | 7 9        | 71         | 1 9           | 10.        | 4.7        | 0. <u> </u>      | 11 2        |      | 0.0          | 3.0        | 5.5      | 1.4        | 13.5         |
| 300        | 2.3<br>7 1 | 7 6        | 7.3           | 7.4        | י.י<br>ר צ | ן גע<br>די די    | Z           | 4.3  | 4.J<br>7 F   | 6.D        | 4.2      | 5.V<br>- 1 | 1            |
| 330        | 2.1        | 1 0        | 5.)<br>7 1    | J.4<br>7 7 | 1.2        | J.J<br>7 7       | 0.:<br>• •  | 3.3  | J.3<br>7 7   | L.J        | 3.3      | 3.J        | 10.4         |
| 300        | 7 3        | 7.0        | 4.4           | J.2        | 7.7        | <u>ک</u> .د<br>م | 4.0         | 2.4  | 3.2<br>      | <u></u>    | 2.5      | 3.2        | 5.5          |
| 430        | J.U<br>J.U | J.0<br>7 c | 4,J<br>0 0    | *<br>11 4  | J.3        | 5.0              | (.5         | 4.2  | 5.0          | 3.8        | 4.2      | 5.5        | 1.1          |
| +30<br>500 | 3.4<br>7 E | 1.0        | J.8<br>7 C    | 7 5        | 13.0       | 14.5             | .5.4        | 10.1 | - B - T      | 8.9        | 12.9     | 20.2       | 22.6         |
| 570        | 2.3        | 6          | 0 د نه<br>۱ = | 2.0        | 5.0        | 4.4              | 4.2         | 4.5  | 5.7          | 2.4        | د.د      | 4.7        | 11.0         |
| 500        | 4.4        | 4.0        | 1.0           | 2.1        | 0.5        | 4.5              | 3.3         | 0.9  | 6.5          | 4.2        | 4.4      | 5.8        | 10.7         |
| 0,0,0      | 1.5        | 1.1        | 1.3           | ÷.0        | 2.5        | ۵.4              | £.1         | ۱.د  | 2.9          | 1.7        | 2.6      | 2.7        | 2.8          |

2.8

### WIND DIRCTION STANDARD DEVIATION (deg)

|       | :    |             | ~~~~~ | 10m  | in Pe | riod |       | ~ ~ ~ ~ ~ | !     |          |           |        |      |
|-------|------|-------------|-------|------|-------|------|-------|-----------|-------|----------|-----------|--------|------|
|       | 1    | min A       | ive   | 3    | min A | ve   | 1     | Ømin      | Ave   |          | 1/2hr     | Perio  | bd   |
| Time  | #1   | <u>#2</u>   | #3    | #1   | #2    | \$3  | #1    | #2        | \$3   | 1.m      | <u>3m</u> | 10m    | 1/2h |
| 630   | 2.5  | 2.2         | 1.8   | 3.5  | 3.1   | 2.5  | 3.7   | 4.1       | 4.2   | 2.2      | 3.0       | 4.0    | 4.6  |
| 700   | 1.7  | 2.3         | 1.4   | 2.2  | 2.6   | 3.4  | 2.4   | 3.3       | 4.0   | 1.8      | 2.7       | 3.2    | 3.4  |
| 730   | 2.0  | 1.5         | 1.8   | 3.5  | 3.1   | 3.9  | 4.5   | 4.4       | 4.4   | 1.8      | 3.5       | 4.4    | 8.8  |
| 800   | 3.7  | 6.9         | 3.1   | 4.5  | 10.4  | 6.5  | 5.7   | 12.5      | 6.1   | 4.7      | 7.2       | 8.5    | 14.9 |
| 830   | 7.4  | 5.6         | 4.6   | 8.0  | 7.3   | 6.9  | 8.4   | 7.5       | 5.3   | 5.9      | 7.4       | 7.1    | 13.7 |
| 900   | 4.0  | 6.1         | 7.2   | 5.0  | 8.2   | 10.3 | 7.6   | 8.4       | 9.6   | 5.7      | 8.2       | 8.5    | 9.0  |
| 930   | 5.3  | 4.9         | 3.9   | 9.2  | 5.9   | 10.9 | 16.7  | 8.4       | 6.4   | 4.7      | 9.0       | 10.5   | 24.5 |
| 1000  | 3.3  | 7.1         | 5.5   | 3.5  | 13.5  | 10.9 | 4.8   | 8.7       | 8.3   | 5.4      | 9.3       | 7.3    | 19.9 |
| 1030  | 4.6  | .4.4        | 9.1   | 5.1  | 4.6   | 9.5  | 5.8   | 6.2       | 12.9  | 6.0      | 6.4       | 8.3    | 10.0 |
| 1100  | 19.6 | 29.5        | 21.4  | 24.6 | 33.7  | 41.3 | 26.8  | 35.9      | 42.3  | 23.7     | 33.2      | 35.0   | 47.4 |
| 1130  | 8.0  | 5.9         | 5.5   | 10,4 | 7.4   | 6.6  | 12.0  | 8.5       | 8.5   | 6.5      | 8.1       | 9.0    | 12.6 |
| 1200  | 4.7  | 3.4         | 1.9   | 5.1  | 3.5   | 4.5  | 5.9   | 3.8       | 5.2   | 3.3      | 4.3       | 4.9    | 7.6  |
| 1230  | Z.4  | 3.1         | 3.3   | 3.1  | 9.3   | 14.0 | 4.1   | 19.6      | 13.8  | 2.9      | 8.8       | 12.5   | 18.3 |
| 1300  | 2.5  | 1.7         | 1.6   | 3.0  | 2.4   | 2.5  | 3.0   | 3.4       | 2.5   | 1.9      | 2.6       | 3.0    | 3.2  |
| 1330  | 2.0  | 1.9         | 1.8   | 2.3  | 2.0   | 3.7  | 3.5   | 3.0       | 3.3   | 1.9      | 2.7       | 3.3    | 3.8  |
| 1400  | 1.9  | 1.2         | 1.8   | 2.5  | 2.5   | 2.5  | 2.9   | 3.9       | 2.6   | 1.5      | 2.6       | 3.1    | 5.3  |
| 1430  | 1.8  | 1.8         | 1.6   | 1.9  | 1.9   | 2.9  | 2.2   | 2.2       | 2.3   | 1.7      | 2.2       | 2.2    | 2.4  |
| 1500  | 1.5  | 2.0         | 1.3   | 1.9  | 2.1   | 2.8  | 2.0   | z.9       | 2.3   | 1.6      | 2.3       | 2.4    | 2.5  |
| 1530  | 1.5  | 1.4         | 1.9   | 2.1  | 2.0   | 2.2  | 4.2   | 2.3       | 2.0   | 1.6      | 2.1       | 2.9    | 3.5  |
| 1600  | 1.4  | 1.5         | 1.7   | 1.5  | 1.8   | 2.4  | 1.5   | 2.4       | 1.9   | 1.6      | 1.9       | 2.0    | 2.3  |
| 1630  | 1.6  | 1.9         | 1.9   | 1.9  | 2.1   | 2.2  | 2.0   | 2.4       |       | 1.8      | 2.0       | 2.2    | 2.5  |
| 1657  | 1.2  | 1.5         | 1.5   | 1.7  | 2.0   | 2.2  | 1.8   | 1.9       |       | 1.4      | 1.9       | 1.9    | 2.3  |
| 1724  | 1.7  | 1.2         | 1.6   | 2.0  | 1.8   | 1.6  | 2.0   | 1.6       |       | 1.5      | 1.8       | 1.8    | 7.5  |
| 1751  | 1.6  | 1.4         | 1.8   | 2.0  | 1.8   | 2.3  | 2.1   | 1.9       |       | 1.5      | 2.0       | 2.0    | 2.7  |
| 1818  | 1.9  | 1.7         | 1.9   | 2.3  | 2.1   | 2.2  | 2 5   | 2.5       |       | 1 8      | 7 7       | 7 5    | 2 7  |
| 1845  | 1.4  | 1.2         | 2.4   | 2.1  | 2.0   | 2.6  | 2.5   | 1 9       |       | 1 5      | 2.2       |        | 7 4  |
| 1912  | 2.0  | 1.8         | 2.5   | 3.4  | 2.2   | 3.9  | 4 6 . | 25        |       | 7 0      | 3 1       | τ<br>τ | 4 7  |
| 1939  | 2.2  | 7.5         | 12.4  | 2.7  | 17.2  | 20.3 | 3.4   | A2 2      |       | 5 8      | 12 5      | 77 8   | 58 3 |
| 2005  | 1.8  | 2.4         | 1.9   | 3.1  | 35    | 4.9  | - 3.6 | 3 5       |       | 7 1      | 37        | 7 6    | 4.1  |
| 12/   | 12   |             |       |      | 5.5   | 713  | 5.0   | 2.3       |       | <b>A</b> | J.,       | J.U    |      |
| 901   | 4.9  | 3.4         | 2.0   | 5.4  | 3.8   | 2.8  | 6.3   | 4.7       | 2.3   | 3 4      | 4 3       | 4 3    | 4 7  |
| 931   | 2.8  | 2.3         | 1.7   | 4.0  | 4.1   | 3.5  | 4.4   | 5.1       | 3.7   | 25       | 3 9       | 4.5    | 2.9  |
| 1001  | 4.9  | 1.5         | 2.4   | 13.4 | 2.7   | 6.5  | 28.7  | 3.6       | 5.9   | 30       | 75        | 17.1   | 37 7 |
| 12/   | 13   |             |       |      |       | •••  |       | 5.5       | 0.5   | 2.0      |           |        | 37.1 |
| 730   | 3.5  | 18.1        |       | 4.4  | 4.7   |      | 5.1   |           |       |          |           |        |      |
| 901   | 10.7 | 12.6        | 35.7  | 13.7 | 14.1  | 42.3 | 14.7  | 28.4      | 42.2  | 18.9     | 23.4      | 25.8   | 27.5 |
| 931   | 13.5 | 11.1        | 9.3   | 12.7 | 12.8  | 12.6 | 15.0  | 11.8      | 14.3  | 11.3     | 12.7      | 13.7   | 13.7 |
| 900   | 7.7  | 5.7         | 2.9   | 8.3  | 6.8   | 5.8  | 10.2  | 8.8       |       | 5.6      | 7.1       | 9.5    | 12.7 |
| 928   | 2.1  | 2.3         | 1.4   | 2.9  | 2.7   | 4.8  | 3.0   | 2.9       |       | 2.2      | 3.3       | 2.9    | 4.1  |
| 1000  | 4.9  | 6.2         | 3.5   | 5.8  | 8.9   | 5.4  | 5.4   | 12.5      | 6.2   | 4.9      | 6.7       | 8.3    | 17.7 |
| 12/1  | 0    |             |       |      |       |      |       |           |       |          |           | •••    |      |
| 1857  | 1.9  | 2.6         | 4.0   | 2.3  | 4.3   | 4.8  | 2.8   | 5.7       | 6.2   | 2.8      | 3.8       | 5.2    | 11.1 |
| 1.271 | 3    |             |       |      | -     | -    |       |           | - • • |          |           |        |      |
| 1030  | 8.0  | 4.6         | 5.0   | 9.9  | 7.8   | 5.5  | 10.0  | 11.3      | 8.9   | 6.2      | 8.0       | 0.1    | 11.3 |
| 1130  | 5.7  | 18.8        | 2.8   | 7.3  | 25.2  | 5.8  | 9.7 9 | 55.0      | 5.0   | 9.3      | 2.7       | 23.6   | 76.4 |
| 1200  | 3.2  | 5.5         | 1.9   | 5.1  | 16.3  | 3.6  | 7.6   | 24.4      | 4.5   | 3.6      | 8.3 1     | 2.2 .  | 25.1 |
| 1230  | 2.7  | <b>4</b> .2 | 3.2   | 3.7  | 5.4   | 4.7  | 5.0   | 8.6       | 4.7   | 3.3      | 4.6       | 6.1    | 5.8  |
| 1200  | 2.9  | 4.2         |       | 4.8  | 8.7   |      | 7.3 2 | 24.8      | 4.8   | 3.0      | 9.0 1     | 2.3    | 25.1 |
| 1230  | 2.8  | 3.9         |       | 3.6  | 6.5   |      | 4.5   | 8.6       | 4.5   | 3.5      | 5.3       | 5.0    | 6.8  |

WIND DIRCTION STANDARD DEVIATION (deg)

ļ

|       |            |       |      | 10m     | in Pe        | -iod        |            |            | }           |      |            |          |              |
|-------|------------|-------|------|---------|--------------|-------------|------------|------------|-------------|------|------------|----------|--------------|
|       | 1          | min A | ve / | 3       | min A        | ve          | 10         | Ømin (     | Ave         |      | 1/Zhr      | Perio    | d            |
| Time  | #1         | #2    | #3   | #1      | #2           | #3          | #1         | #2         | \$3         | Im   | 3m         | 10m      | 1/2h         |
| 1300  | 2.6        | 1.6   | 1.4  | 3.0     | 2.8          | 3.0         | 4.5        | 4.4        | 3.0         | 1.9  | 3.0        | 4.0      | 6.2          |
| 1330  | 1.3        | 1.8   | 2.2  | 2.4     | 3.1          | 4.0         | 2.6        | 3.8        | 4.3         | 1.8  | 3.2        | 3.5      | 3.6          |
| 1400  | 1.7        | 1.9   | 2.3  | 3.8     | 3.5          | 4.2         | 3.8        | 3.5        | 4.7         | 1.9  | 3.8        | 4.0      | 4.0          |
| 1430  | 1.7        | 2.1   | 1.6  | 1.8     | 3.5          | 2.4         | 2.4        | 2.7        | 2.6         | 1.8  | 2.5        | 2.6      | 3.5          |
| 1500  | 1.5        | 1.7   |      | 2.3     | 1.6          |             | 2 5        | 21         | 2 5         | 1 4  | 21         | 2 4      | 24           |
| 1530  | 1 1        | 1 9   |      | 2 4     | 2 2          |             | 2 6        | 2 2        | 7 1         | 1 5  | 7 7        | 2 3      | 3.0          |
| 1500  | 1 7        | 1.0   |      | 1 4     |              |             | 2.0        | 2.2        | 1 0         | 1.3  | 2.2        | 2.5      | 2.0          |
| 1670  | 1.5        | 1.4   |      | 1.4     | 5.6          | 2 0         | 2.0        | 2.5        | 1.3         | 1.3  | 2.1        | 2.0      | 4.4          |
| 1000  | 1.5        | 1.2   | 1.1  | 1.4     | 1.7          | 2.8         | 1.3        | 1.3        | 4.4         | 1.2  | 2.0        | 1.9      | 1.3          |
| 1700  | 1.5        | 1.5   | 1.8  | 1.5     | 2.3          | 2.4         | 1.5        | 2.1        | 2.(         | 1.5  | 2.0        | 2.3      | 2.1          |
| 1730  | . 1.7      | 1.1   | 1.8  | 2.4     | 1.9          | - 2.9       | 2.6        | 1.9        | 2.9         | 1.5  | 2.4        | 2.5      | 3.3          |
| 1800  | .9         | 1.4   | 1.3  | 1.4     | 2.0          | 2.2         | 1.8        | 1.7        | Z.0         | 1.2  | 1.9        | 1.3      | 2.7          |
| 1830  | 1.1        | 1.4   | 1.3  | • • 1.4 | 2.5          | 2.4         | 2.5        | 3.9        | 2.5         | 1.3  | 2.1        | 2.9      | 5.6          |
| 1900  | 1.5        | 1.8   | 2.2  | 2.0     | 2.4          | 4.3         | 2.2        | 2.5        | 4.7         | 1.8  | 2.9        | 3.2      | 3.9          |
| 1930  | 1.8        | 1.9   | 3.1  | 2.2     | .3.3         | 4.5         | 3.0        | 3.9        | 5.2         | 2.3  | 3.4        | 4.0      | 4.6          |
| 2000  | 2.9        | 2.9   | 5.0  | 5.0     | 4.4          | 11.9        | 11.8       | 6.0        | 16.5        | 3.9  | 7.1        | 11.4     | 21.6         |
| 2030  | 11.6       | 18.7  | 7.2  | 15.0    | 34.9         | 17.9        | 22.8       | 45.9       | 20.1        | 12.7 | 22.6       | 29.6     | 51.5         |
| 2130  | 2.6        | 4.0   |      | 2.9     | 5.1          |             | 3.5        | 8.4        |             | 3.6  | 4.3        | 5.9      | 0.0          |
| 2200  | 5.2        | 3.7   | 5.8  | 5.3     | 6.8          | 11.8        | 7.0        | 7.1        | 8.0         | 4.9  | 7.9        | 7.3      | 10.7         |
| 2230  | 4.1        | 5.3   | 3.7  | 5.2     | 6.2          | 7.4         | 7.3        | 8.3        | 7.5         | 4.4  | Έ.3        | 7.7      | 17.9         |
| 2300  | 2.7        | 3.4   | 4.1  | 4.7     | 4.9          | 7.8         | 7.4        | 5.2        | 7.9         | 3.4  | 5.8        | 6.8      | 18.5         |
| 2330  | 10.3       | 14.1  | 7.4  | 13.7    | 18.5         |             | 15.0       | 19.1       |             | 11.4 | 15.9       | 17.5     | 31.9         |
| 12/   | 14         |       |      |         |              |             |            |            |             |      |            |          |              |
| 0     | 5.6        | 6.7   | 8.7  | 6.8     | 9.1          | 15.8        | 7.2        | 8.7        | 13.0        | 7.0  | 10.6       | 9.6      | 25.1         |
| 29    | 8.1        | 6.7   | 7.3  | 8.9     | 9.4          | 14.0        | 9.8        | 11.2       | 10.2        | 7.3  | 10.4       | 10.4     | 18.7         |
| 58    | 4.9        | 5.5   | 7.3  | 5.8     | 6.7          | 9.6         | 5.4        | 9.2        | 10.9        | 5.8  | 7.1        | 8.8      | 17.6         |
| 127   | 4.0        | 5.0   | 3.9  | 5.2     | 5.4          | 7.2         | 5.9        | 5.9        | 8.9         | 4.3  | 5 9        | <u> </u> | g 7          |
| 156   | 3.5        | 3.2   | 2.5  | 3.5     | 3 6          | 30          | 3.3        | 4 0        | 7 6         | 3 1  | 7.0        | · 7 C    | 3 3          |
| 225   | 2.3        | 2.5   | 2.4  | 2.5     | 3 4          | 3.1         | 4 6        | 3 0        | 37          | 7 4  | 3.3        | 3.3      | 5.0          |
| 254   | 29         | 7 6   | 1 7  | 7.5     | 7 6          | 9.7         | 4.3        | 3.0<br>4 E | a 2         | 7 6  | 30         | 5.0      | 3.0          |
| 373   | 2 8        | 7 5   | 7 8  | 5.5     | - 4 6        | A 7         | Q A        | 4 5        | . 7 7       |      | 4.0        |          |              |
| 352 - | 7 9        | 1 5   | 1 5  | 4 7     | 7.0          | 7.1         | 0.4<br>0 0 | - a        | J. 1<br>7 7 | 7 0  | +.3<br>7 c |          | (+.3)<br>E + |
| 171   | 1 9        | 2.0   | 2 1  | 7 9     | 3 6          | 3.2         | 4.5        | 5.5        | 7.0         |      | 3.0        | 3.0      | 0.4<br>      |
| 150   | 1 5        | 2.0   | 4 9  | 2.0     | 5.0          |             | 4.0        | 3.7        | 5.0         | 2.0  | 2.3        | 4.3      | 3.2          |
|       | · 7 0      | 2.0   | 4.5  | 5.0     |              | 21.4<br>C 4 | 4.2        | 13.3       | 13.1        | 2.3  | 5.3        | 13.0     | 28.2         |
| 5,5   | J.0<br>7 0 | 3.3   |      | 5.0     | 5.1          | 10.4        | 4.5        | 5.5        |             | 2.8  | 5.4        | 5.1      | 7.1          |
| 340   | 2.3        | 4.0   | 07   | 3.1     | , <b>3.8</b> | 10.1        | 7.0        | 15.2       | 48.4        | 0.2  | 10.1       | 14.2     | 28.2         |
|       | 0.7        | 5.4   | 8./  |         | 10.2         | 15.4        | 33.9       | 17.5       | 15.5        | 1.5  | 13.1       | 22.7     | 35.9         |
| 770   | 11.0       | 13.7  | 4.3  | 15.5    | 23.1         | 11.7        | 24.5       | 35.4       |             | 15.7 | 18.5       | 29.9     | 42.4         |
| 128   | 5.5        | 4.7   |      | 11.9    | 15.1         |             | 13.4       | 16.6       |             | 6.4  | 13.5       | 15.0     | 0.J          |
| 900   | . <u> </u> | 4.0   | 2.0  | 5.7     | 5.4          | 5.3         | 9.2        | 5.8        | 4.8         | 3.2  | 4.3        | 5.3      | 6.6          |
| 830   | 4.5        | 3.9   | 3.3  | 4.3     | 3.9          | 9.Z         | 5.0        | 4.0        | 9.9         | 3.9  | 5.0        | 6.5      | , 7.1        |
| 900   | 4.4        | 6,9   | 5.0  | 5.0     | 15.7         | 7.1         | 9.0        | 16.8       | 7.7         | 5.5  | 9.2        | 11.2     | 20.0         |
| 330   | 5.4        | 4.1   | 3.7  | 7.5     | 5.3          | 8.1         | 9.2        | 6.4        | 9.2         | 4.7  | 7.0        | 8.3      | 11.7         |
| 1000  | 3.4        | 4.7   | 3.1  | 5.0     | 7.7          | 5.7         | 3.8        | 12.6       | 5.5         | 3.9  | 5.1        | 9.0      | 10.1         |
| 1030  | Z.5        | 2.1   | 4,4  | 4.3     | 6.9          | 21.3        | 7.4        | 11.0       | 29.8        | 3.0  | 10.9       | 16.1     | 25.0         |
| 1100  | 6.7        | 1.6   | 1.3  | 19.0    | 2.0          | 3.0         | 22.8       | 2.3        | 2.0         | 3.2  | 5.0        | 9.1      | 14.1         |
| 1130  | 1.5        | 1.4   | 1.1  | 2.4     | 2.1          | 1.9         | 3.1        | 3.4        | 2.4         | 1.3  | 2.1        | 3.0      | 3.1          |
| 1200  | 1.5        | 1.1   | ۱.2  | 2.5     | 1.8          | 2.9         | 3.3        | 2.0        | 2.4         | 1.3  | 2.4        | 2.5      | 2.7          |
| 1230  | 1.1        | 1.7   | 1.3  | 1.3     | 2.9          | 2.3         | 1.3        | 2.9        | 2.5         | 1.3  | 2.2        | 2.3      | 2.4          |
| 1300  | 1.7        | 1.5   | 1.6  | 2.4     | 1.9          | 1.9         | 2.4        | 2.5        | 1.8         | 1.6  | 2.1        | 2.2      | 2.3          |

### WIND DIRCTION STANDARD DEVIATION (deg)

.

|             |            |          |      | 10m :          | in Pe        | riod |            |      | {    |            |          | _     |             |
|-------------|------------|----------|------|----------------|--------------|------|------------|------|------|------------|----------|-------|-------------|
|             | 1          | min A    | ve   | 30             | nin A        | ve   | 1          | 0min | Ave  |            | 1/2hm    | Perio | bd          |
| <u>Time</u> | #1         | <u> </u> | #3   | #1             | #2           | #3   | #1         | \$2  | \$3  | <u>1 m</u> | <u> </u> | 10m   | <u>1/2h</u> |
| 1330        | 1.4        | 1.6      | 1.3  | 1.4            | 2.4          | 2.4  | 1.7        | 2.1  | 1.9  | 1.4        | 2.1      | 1.9   | 2.1         |
| 1400        | 1.4        | 1.6      | 1.7  | 1.5            | 1.8          | 2.2  | 1.8        | 2.0  | 2.4  | 1.6        | 1.8      | 2.1   | 2.1         |
| 1430        | 1.4        | 2.0      | 2.0  | 1.5            | 2.2          | 2.2  | 1.8        | 2.5  | 2.1  | 1.8        | 2.0      | 2.1   | 2.2         |
| 1500        | 1.5        | 1.5      | •    | 2.1            | 1.8          |      | 2.1        | 2.0  | 2.3  | 1.4        | 2.2      | 2.1   | 2.2         |
| 1530        | 1.6        | 1.6      |      | 1.5            | 1.7          |      | 1.6        | 1.9  | 1.7  | 1.4        | 1.7      | 1.8   | 1.3         |
| 2300        | 2.5        | 2.0      | 2.0  | 3.2            | 2.8          | 4.2  | 3.3        | 2.5  | 3.6  | 2.2        | 3.4      | 3.1   | 5.2         |
| 2330        | 1.8        | 1.8      | 2.1  | 2.6            | 1.9          | 2.9  | 3.2        | 2.0  | 3.2  | 1.9        | 2.5      | 2.8   | 3.7         |
| 12/         | 15         |          |      | •              |              |      |            |      |      |            |          |       |             |
| 0           | 1.4        | 2.8      | 5.7  | 1.8            | 4.2          | 19.9 | 3.3        | 8.7  | 36.3 | 3.2        | 8.6      | 16.1  | 41.9        |
| 30          | 2.8        | 1.7      | 1.9  | 4.0            | 2.9          | 4.1  | 4.6        | 3.0  | 4.1  | 2.2        | 3.8      | 3.9   | 8.4         |
| 100         | 1.8        | 2.0      | 1.8  | 1.9            | 3.0          | 2.6  | 2.2        | 3.6  | 2.4  | 1.9        | 2.5      | 2.7   | 2.9         |
| 130         | 2.1        | 2.3      | 1.9  | 2.5            | 2.7          | 2.3  | 3.7        | 2.9  | 2.4  | 2.1        | 2.5      | 3.0   | 5.6         |
| 200         | 2.2        | 1.7      | 2.8  | 2.2            | 1.9          | 2.9  | 3.4        | 2.0  | 3.8  | 2.2        | 2.3      | 3.0   | 5.5         |
| 230         | 2 5        | 70       | 2 5  | 3 4            | 2.6          | 3.2  | 3.9        | 2.8  | 2.9  | 2.3        | 3.1      | 3.2   | 3.7         |
| 200         | 27         | 2.8      | 3 1  | 3 5            | 3 6          | 3.6  | 4 6        | A A  | 3 4  | 2 9        | 3 5      | 4. 7  | 5 4         |
| 370         | 2.1        | A 7      | 3.1  | 3.3            | 4 7          | A A  | 5 9        | A 9  | 4 1  | 2.3        | 4 7      | 4 9   | 5.7         |
| 100         | 2.7        | 7.5      | 5.5  | 2.7            | 7.1          | 10 9 | A A        | 7.5  | 11 7 | 7 0        |          | 5 5   | 7 1         |
| 400         | £.3<br>c 0 | 10 5     | 10 5 | <u>2.</u> 1    | 17 7         | 34 7 | 17 6       | 70 5 | 77.3 | 17 0       | 70.7     | 27.0  | 50 0        |
| 400<br>E00  | .0.0       | 7 5      | 13.3 | 71             | 7 0          | 24.2 | 7.6        | 17 5 | 75   | 12.0       | 7 1      | 4/.0  | 17 0        |
| 500         | 0.0<br>5 5 | 3.3      | 4.6  | ( . )<br>C . ) | (.0<br>E 7   | 77   | /.u<br>o = | 10.0 | 7.3  | 4.0        | 67       | 3.3   | 10.5        |
| 500         | 3.3        | 4.0      | 5.0  | 0.1            | 7.0          | 3.7  | 0.3        | 3.2  | 3.3  | 4.4        | 3.3      | (.0   | 10.5        |
| 500         | 2.1        | 2.7      | 4.4  | 4.1            | 5.0          | 3.3  | 3.0        | 0.2  | 4.7  | 2.0        | 3.3      | 4.5   | 3.4         |
| 530         | 2.3        | 2.8      | 5.4  | 2.1            | ы.д.<br>13 л | 14.4 | 1.0        | 5.5  | 13.5 | 3.4        | 1.4      | 10.5  | 22.0        |
| 700         | 5.8        | 5.1      | 5.5  | 3.1            | 2.1          | 6.5  | 14-1       | 14.2 | 11.4 | 5.5        | 8.9      | 14.0  | 24.0        |
| /30         | 4.3        | 3.3      | 3.3  | 5.0            | 3.0          | 4.5  | 9.4        | /.5  | 4.7  | 3.8        | 4.4      | 1.2   | 12.2        |
| 800         | 14.4       | 1.8      | 3.1  | 27.9           | 3.3          | 4,(  | 63.1       | 3.3  | 5.8  | 6.7        | 13.1     | 28.4  | 35.4        |
| 930         | 2.4        | 1.5      | 1.9  | 3.4            | 1.7          | 2.5  | 5.2        | 2.9  | 3.6  | 1.9        | 2.5      | 3.9   | 4.0         |
| 1007        | 8.1        | 5.5      | 8.5  | 8,5            | 5.1          | 23.9 | 10.5       | 10.6 | 31.4 | 7.4        | 12.9     | 17.5  | 44.3        |
| 1028        | 7.3        | 5.0      |      | 8.4            | 5.9          |      | 10.5       | 6.3  |      | 6.2        | 7.2      | 8.5   | 0.0         |
| 1048        | 4.6        | 5.0      |      | 5.1            | 7.4          |      | 6.7        | 13.3 |      | 4.8        | 6.8      | 10.0  | 0.0         |
| 1108        | 6.7        | 2.3      |      | 10.6           | 6.0          |      | 18.4       | 8.5  |      | 4.5        | 8.3      | 13.4  | 0.0         |
| 1128        | 2.7        | 2.1      |      | 2.7            | 2.8          |      | 3.2        | 3.5  |      | 2.4        | Z.8      | 3.3   | 0.0         |
| 1148        | Z.4        | Z.5      |      | 2.5            | 2.9          |      | 3.0        | 3.9  |      | 2.5        | Z.8      | 3.5   | 0.0         |
| 1208        | 2.2        | 1.9      |      | 2.3            | 2.7          |      | 3.4        | 7.7  |      | 2.0        | 2.5      | 5.6   | 0.0         |
| 1229        | 5.2        | 8.2      |      | 6.4            | 9.7          |      | 9.0        | 9.9  |      | 6.6        | 8.0      | 9.5   | 0.0         |
| 1248        | Z.0        | Z.1      |      | 2.2            | 2.5          |      | 2.9        | 3.0  |      | 2.1        | 2.4      | 2.9   | 6.0         |
| 1308        | 2.1        | 2.3      |      | 2.6            | 2.6          |      | 2.6        | 3.8  |      | 2.2        | 2.6      | 3.2   | 0.0         |
| 1328        | Z.0        | 1.8      |      | 2.5            | 2.9          |      | 3.8        | 4.4  |      | 1.9        | 2.7      | 4.1   | 0.0         |
| 1348        | 3.2        | 2.0      |      | 7.3            | 2.5          |      | 22.5       | 3.5  |      | 2.7        | 4.9      | 13.0  | 0.0         |
| 1408        | 2.0        | 1.9      |      | 4.3            | 2.7          |      | 7.5        | 3.0  |      | 2.0        | 3.5      | 5.3   | Ø. D        |
| 1429        | 6.3        | 8.3      | ,    | 7.0            | 9.2          |      | 7.0        | 9.3  |      | 7.3        | 8.1      | 8.2   | 0.0         |
| 1448        | 4.1        | 2.5      |      | 5.3            | 5.0          |      | 6.4        | 7.1  |      | 3.4        | 5.2      | 6.7   | 0.0         |
| 1530        | 1.5        | 1.2      | 1.3  | 2.0            | 1.9          | 2.0  | 2.5        | 3.3. | 2.1  | 1.4        | 2.0      | 2.5   | 4.1         |
| 1600        | 1.5        | 1.8      | 1.8  | 2.1            | 2.9          | 2.4  | 4.0        | 4.2  | 3.5  | 1.7        | 2.5      | 3.9   | 5.5         |
| 1630        | 1.8        | 1.5      | 1.6  | 2.5            | 1.9          | 3.0  | 2.7        | 2.2  | 3.1  | 1.7        | 2.5      | 2.7   | 2.8         |
| 1700        | 1.2        | 1.5      | 1.5  | 1.5            | 2.0          | 1.8  | 1.7        | 2.0  | 1.9  | 1.4        | 1.8      | 1.9   | 2.0         |
| 1730        | 1.5        | 1.7      | 1.5  | 2.3            | 2.0          | 2.5  | 2.5        | 2.3  | 2.2  | 1.6        | 2.3      | 2.3   | 4.1         |
| 1800        | 1.9        | 2.1      | 2.9  | 2.5            | 2.9          | 5.3  | 3.0        | 5.3  | 6.5  | 2.3        | 3.6      | 4.9   | 5.0         |
| 1830        | 9.7        | 6.8      | 26.3 | 17.5           | 11.6         | 43.3 | 32.4       | 11.4 | 68.0 | 13.8       | 24.1     | 37.2  | 46.1        |
| 1900        | 7.7        | 3.9      | 2.4  | 11.5           | 5.1          | 6.7  | 18.6       | 6.0  | 5.1  | 4.8        | 7.9      | 9.9   | 15.9        |

D-11

BLM-3

2

へんさいでは 豊富 ビジト・トロ 自己 たいたい いい いい 見たい たんたい

「キャーテム」と言語になった。

### WIND DIRCTION STANDARD DEVIATION (deg)

|               | ¦          |            |            | 1 0m i | in Per | ·iod       |               |            | :         |            | •            |            |            |
|---------------|------------|------------|------------|--------|--------|------------|---------------|------------|-----------|------------|--------------|------------|------------|
|               | 1 1        | nin Av     | /e         | 31     | in Av  | /e         | 10            | Omin A     | ìve       | · 1        | /2hr         | Perio      | d          |
| Time          | #1         | #2         | #3         | #1     | #2     | \$3        | #1            | #2         | <u>‡3</u> | 1 m        | 3m           | 10m        | 1/2h       |
| 1930          | 1.4        | 1.0        | 1.3        | 1.8    | 1.6    | 3.0        | 3.3           | 2.6        | 2.9       | 1.3        | 2.0          | 3.0        | 10.0       |
| 2000          | 1.1        | 2.0        | 2.2        | 1.6    | 2.0    | 3.3        | 1.9           | 3.2        | 6.5       | 1.7        | 2.2          | 3.9        | 5.6        |
| 2300          | 1.6        | 1.4        | 1.0        | 2.6    | 2.3    | 2.1        | 2.8           | 2.3        | 1.9       | 1.3        | 2.3          | 2.3        | 2.7        |
| 2330          | .9         | 1.4        | 1.1        | 2.5    | 1.8    | 2.3        | 2.7           | 2.2        | 2.5       | 1.1        | 2.2          | 2.5        | 2.9        |
| 12/           | 15         |            |            |        |        |            |               |            |           |            |              |            |            |
| 0             | 1.4        | 1.1        | .9         | 1.9    | 2.1    | 1.1        | 3.1           | 2.5        | 1.4       | .1.1       | 1.8          | 2.4        | 2.7        |
| 30            | 1.4        | 1.9        | 2.4        | 2.6    | 2.6    | 4.4        | 3.5           | 3.2.       | 4.1       | 1.9        | 3.2          | 3.6        | a.6        |
| 100           | 3.0        | 3.5        | 4.1        | 5.2    | 4.1    | 10.0       | 11.8          | 5.0        | 9.3       | 3.5        | 6.0          | 9.0        | 18.8       |
| 130           | 3.2        | 2.2        | 2.0        | 3.2    | 4.6    | 2.7        | 3.4           | 7.6        | 3.0       | 2.5        | 3.5          | 4.6        | 9.3        |
| 200           | 1.7        | 1.3        | 2.3        | 1.5    | 2.4    | 3.0        | 2.4           | 3.2        | 4.2       | 1.7        | 2.3          | 3.2        | 3.6        |
| 230           | 3.1        | 3.Z        | 2.2        | 4.1    | 5.0    | 3.7        | 4.7           | 5.4        | 3.6       | 2.9        | 4.3          | 4.5        | 6.5        |
| 251           | 1.9        | 3.5        |            | 3.3    | 3.5    |            | 3.8           | 6.1        |           | 2.7        | 3.4          | 4.9        | ลิด        |
| 313           | 6.7        |            |            | 14.8   |        |            | 19.3          |            |           |            | •••          |            | •••        |
| 326           | 3.0        |            |            | 5.9    |        |            | 10.1          |            |           |            | •            |            |            |
| 401           | 5.6        | 6.4        | ,'         | 8.3    | 7.4    |            | 14.8          | 8.0        |           | 6 5        | 78           | 11 4       | aa         |
| 421           | 5.4        | 6.9        |            | 6.3    | 6.5    |            | 8.1           | 7.7        |           | 6.1        | 5 4          | 7 9        | 0.0<br>0 0 |
| 441           | 4.0        | 4.8        |            | 5.7    | 5.6    |            | 8.0           | 63         |           | 4 4        | 6.7          | 7 1        | 0.0<br>0 0 |
| 12/           | 14         |            |            | •••    | 0.0    |            | 9.0           | 0.2        |           | ····       | <b>U</b> . / |            | 0.0        |
| 1559          | 1.2        | 2.5        |            | 1.5    | 1.7    |            | 1.7           |            |           |            |              | e.)        |            |
| 1612          | 1.4        | 3.4        |            | 1.7    | •••    |            | 1.8           |            |           |            |              |            |            |
| 1825          | 1.4        | 4.0        |            | 1.5    | 2.0    |            | 2 2           |            |           |            |              |            |            |
| 1638          | 1 1        | 4 1        |            | 1 7    | 2 3    |            | 1 7           |            |           |            |              |            |            |
| 1651          | 1 4        | 3 7        | ,          | 1 5    | 2.5    |            | 2 9           |            |           |            |              |            | •          |
| 1704          | 1 7        | 3 6        |            | 1 8    | 2 1    |            | 1 7           |            |           |            |              |            | ·          |
| 1717          | 1 3        | 36         |            | 1 4    | 1 9    | ,          | 1 0           |            |           | •          |              |            |            |
| 1730          | 1 3        | 7 8        |            | 1 9    | 1.3    | i.         | 7 0           |            |           |            |              |            |            |
| 1743          | 1 3        | 1 2        |            | 1.0    | 1.2    |            | 2.0           |            |           |            |              |            |            |
| 1755          | 1.7        | 1.0        |            | 1.0    |        |            | 4.3           |            |           |            |              |            |            |
| 1000          | 1.2        | 2.1        |            | 1.5    | 2.5    |            | 4.5           | ,          |           |            |              |            |            |
| 1003          | 1.0        | 10 0       |            | 1.8    | 1.5    | ,          | 2.3           |            |           |            |              | •          |            |
| 1044          | 7.5        | 7 6        |            | 1.0    | 12.3   |            | 2.4           |            |           |            |              |            |            |
| 1040          | 1.7        | 2.0        |            | 1.1    | 1.8    |            | 13./          |            |           |            |              |            |            |
| 1040          | 1.2        | 5.2        |            | 1.5    | 2.3    | <b>-</b> - | 2.11          |            |           |            |              | <b>-</b> . |            |
| 1000          | 1.6        | 1.0        | 1.3        | 1.5    | 2.0    | , 2 . 3    | 2.0           | 2.3        |           | 1.5        | 2.0          | 2.1        | 2.1        |
| 2020          | 7 1        | 1.4        | <b>~</b> ~ | 2.4    | 1.0    | ~ .        | 5.V           | 1.5        | ~ ~       | 1.0        | 2.0          | 2.3        | 2.5        |
| 2030          | 1 6        | 1.3        | 2.2        | 2.0    | 2.5    | 2.4        | 2.5           | 2.5        | 2.3       | 2.1        | 2.4          | 2.6        | 2.7        |
| 12/1          | 1.0        | 1.3        | 1.3        | 1.0    | 4.1    | 2.4        | 1.9           | 4.2        | 1.3       | 1.7        | 2.1          | 2.0        | 2.0        |
| 5.01          | ~ ~ ~      |            |            | 4 7    | 7 7    |            | - '.          | -          |           | <b>-</b> . |              |            |            |
| 521           | 3.1<br>A E | 2.2        |            | 4.0    | 3.1    |            | 5.4           | 7.5        |           | 3.1        | 4,1          | 7.0        | 0.0        |
| 521           | 4.3        | 2.0        |            | 8.8    | 2.1    |            | الاية.        | 3.8        | · · .     | 3.7        | 6.0          | 9.0        | 0.0        |
| 501           | 2.4        | 4 1        |            | 2.0    | 4.3    |            | 3.3           | 1.3        |           | 2.5        | 5.5          | 5.7        | 0.0        |
| 671           | 4.3        | 4.I<br>7.0 | •          | 2.1    | 8.2    |            | <u>ی</u> . د  | 10.1       |           | 3.3        | 5.5          | 6.8        | 0.0        |
| 041<br>641    | 4.0        | 1.0        |            | 3.3    | 4.3    |            | 4./           | ງ.ອ<br>ງ.ອ |           | 2.4        | 3.1          | 4.2        | 0.0        |
| 701           | 7.0        | 1.8        |            |        | 2.6    |            | 2.4           | 2.5        |           | 1.7        | 2.4          | 2.5        | 0.0        |
| י טי<br>ר כיד | 2.0        | 1.0        |            | 2.4    | 1.5    |            | 2.8           | Z.9        |           | 1.8        | 2.1          | 2.8        | 0.0        |
| 741           | 1.5        | 1.5        |            | 1.7    | 1.5    |            | Z.0           | 1.7        |           | 1.4        | 1.6          | 1.9        | 0.0        |
| (4)<br>201    | 3.I<br>3.0 | 1.1        |            | 3.5    | 2.5    |            | 13.5          | 3.1        |           | 3.5        | 5.9          | 8.3        | 9.0        |
| 071           | 2.0        | 4.4        |            | 4.1    | 2.6    |            | 2.2           | 2.8        |           | 2.1        | 2.3          | 2.5        | 0.0        |
| 041           | ¢∠         | 1.7        |            | 2.9    | 3.5    |            | 8.5           | 19.3       |           | 2.5        | 6.7          | 3.9        | 0,0        |
| 041           | 1.4        | 1.8        |            | 1.9    | ۵.۵    |            | ् <b>ट</b> .1 | 3.0        |           | 1.5        | 2.5          | 2.5        | 0.0        |

WIND DIRCTION STANDARD DEVIATION (deg)

|      | !     |       |         | 1 0m  | in Per | -iod  |       |            |      |            |          |          |             |
|------|-------|-------|---------|-------|--------|-------|-------|------------|------|------------|----------|----------|-------------|
|      | 1.6   | nin A | ve      | 3     | min Av | /e    | · 10  | Omin       | Ave  |            | 1/2hr    | Perio    | bd          |
| Time | #1    | \$2   | #3      | #1    | #2     | #3    | #1    | \$2        | \$3  | <u>1 m</u> | <u> </u> | 10m      | <u>1/2h</u> |
| 901  | 1.7   | 1.9   |         | 2.2   | 3.3    |       | 2.4   | 2.9        |      | 1.8        | 2.8      | 2.6      | 0.0         |
| 921  | 2.1   | 2.3   |         | 3.7   | 3.2    |       | 4.3   | 4.8        |      | 2.2        | 3.4      | 4.5      | 0.0         |
| 941  | 1.9   | 1.7   |         | 2.0   | 2.0    |       | 3.6   | 1.9        |      | 1.8        | 2.0      | 2.7      | 0.0         |
| 1001 | . 1.2 | 1.4   |         | 1.7   | 1.6    |       | 2.0   | 2.3        |      | 1.3        | 1.6      | 2.2      | 0.0         |
| 1021 | 1.6   | 1.4   |         | 2.1   | 2.3    |       | 2.9   | 4.4        |      | 1.5        | 2.2      | 3.6      | 0.0         |
| 1041 | 2.3   | 2.6   |         | 3.2   | 5.3    |       | 7.9   | 5.0        |      | 2.4        | 4.3      | 6.9      | 0.0         |
| 1101 | 1.3   | 1.0   |         | 1.8   | 1.7    |       | 2.6   | Z.0        |      | 1.2        | 1.8      | 2.3      | 0.0         |
| 1129 | 1.4   | 4.3   |         | 2.0   | 1.1    |       | 3.4   |            |      |            |          |          |             |
| 1144 | 1.0   | 3.3   |         | 1.7   | 1.6    |       | 2.6   |            |      |            |          |          |             |
| 1159 | Z.8   | 6.5   |         | 2.9   | 3.9    |       | 4.1   |            |      |            |          |          |             |
| 1214 | 2.8   | 6.5   |         | 4.3   | 3.1    |       | 5.7   |            |      | ,          |          |          |             |
| 1229 | 2.1   | 6.4   |         | 2.6   | 2.8    |       | 5.2   |            |      | · .        |          |          |             |
| 1244 | 1.5   | 5.9   |         | 3.3   | 1.9    |       | 5.0   |            |      |            | •        |          |             |
| 1259 | 1.4   | 2.1   |         | 2.1   | 1.5    |       | 2.3   |            |      |            |          |          |             |
| 1314 | 1.6   | 3.8   |         | 2.0   | 1.9    |       | 5.2   |            |      | •          |          |          |             |
| 1379 | 1.6   | 3.4   |         | 2 2   | 1.2    |       | 3.4   |            |      |            |          |          | '           |
| 1400 | 1 6   | 1 5   | 14      | 2.2   | 1 7    | 1 4   | 2.4   | 15         | 1.8  | 15         | 1.8      | 1 9      | 23          |
| 1430 | 1 2   | 1 4   | 1 7     | 1 . 3 | 1 9    | 1 5   | 1 5   | 75         | 1 5  | 1 3        | 1 5      | 1 9      | 3.0         |
| 1500 | 1 4   | 1.7   | 1 7     | .15   | 1.0    | 1 4   | 7 4   | . 7 7      | 1 2  | 1.5        | 1.5      | J<br>7 Z | A 3         |
| 1530 | 1.5   | 1 9   | 1 7     | 1 4   | 2 2    | 27    | 1 8   | 2.1        | 3 1  | 1 5        | 7 1      | 2.5      | 37          |
| 1600 | 1 7   | 1 3   | 1.9     | 1.4   | 1 5    | 1 9   | 7.0   | 3 6        | 2 4  | 1 5        | 1 5      | 2.3      | J. 1        |
| 1700 | 1 6   | 20    | 2 3     | 1 9   | 7 4    | 2 6   | 1 9   | 7 9        | 25   | 7 0        | 2 3      | 2.1      | <b>7</b> 1  |
| 1730 | 20    | 1 8   | 1 9     | 2 7   | 7 3    | 21    | 7.5   | 2.5        | 20   | 1 8        | 2.3      | 2 4      | 2 5         |
| 1800 | 1.9   | 1 9   | 1 2     | 2 1   | 2.2    | 1 8   | 2.3   | 2.9        | 2 3  | 1 7        | 2 1      | 2.7      | 4 6         |
| 1830 | 1.8   | 7 3   | 1 7     | 2.1   | 2.8    | 3 2   | 2.5   | A A        | 3.8  | 1 9        | 2 7      | 7 6      | 57          |
| 1900 | 1.2   | 1.1   | 1 4     | 1 2   | 1.3    | 25    | 1 3   | 1 5        | 3.0  | 1 2        | 1 5      | 20       | 4 7         |
| 1930 | 1 6   | 2 2   | 7 1     | 79    | 37     | 2 4   | g 5   | <u>4</u> 9 | 77   | 7 0        | 7.0      | 5 A      | 75          |
| 2000 | 2 2   | 1 8   | 7 3     | 3 5   | 2 9    | 3 8   | · 7 9 | 34         | .7 9 | 2.0        | 3 4      | 3.7      | 7.3         |
| 2030 | 2.4   | 1.4   | 1.7     | 5.1   | 1.7    | 27    | 10 6  | 1 9        | 3.7  | 1 9        | <br>र द  | 5 4      | 5 7         |
| 17/  | 17    | • • • | • • • • | 0.1   | •••    |       |       |            |      |            |          | 3.4      |             |
| 830  | 5.1   |       |         | 11.4  |        |       | 30.8  |            |      | 1.8        | 3.8      | 10.3     | 21.8        |
| 900  | 5.2   |       |         | 10.3  |        |       | 17.7  |            |      | 1.9        | 3.9      | 5 9      | 10 7        |
| 930  | 3.6   | 3.4   | 4.3     | 6.1   | 5.0    | 4.8   | 9.4   | 5.2        | 5.8  | 3.7        | 5.3      | 67       | q q'        |
| 1000 | 3.3   | 5.0   |         | 3.6   | 15.6   | * • • | 4.8   | 42.5       |      | 2 9        | 6.4      | 15.8     | 41.4        |
| 1030 | 5.9   |       |         | 10.5  |        |       | 38.5  |            |      | 2.0        | 3.5      | 12.8     | 25.0        |
| 1100 | 3.5   | 3.4   | 3.2     | 3.5   | 4.7    | 3.5   | 5.3   | 5.5        | 3.8  | 3.4        | 3.9      | 4.8      | 8.2         |
| 1130 | 5.8   | •••   |         | 18.1  |        |       | 33.3  | 0.0        |      | 2.0        | 5.0      | 11.1     | 20.1        |
| 1200 | 4.2   | 7.1   |         | 4.5   | 16.1   |       | 6.6   | 62.7       |      | 3.9        | 6.9      | 23.1     | 61.5        |
| 1230 | 6.9   | 6.3   |         | 8.1   | 14.8   |       | 12.0  | 36.7       |      | 4.5        | 7.6      | 16.2     | 47.9        |
| 1300 | 3.3   | 3.7   | 2.8     | 5.3   | 4.4    | 7.8   | 8.7   | 7.6        | 15.8 | 3.3        | 5.8      | 11.1     | 14.6        |
| 1330 | 1.8   | - • • |         | 3.2   |        |       | 5.4   |            |      | .6         | 1.1      | 1.8      | 3.2         |
| 1400 | 3.0   |       |         | 5.4   |        |       | 8.9   |            |      | 1.0        | 1.8      | 3.0      | 5.3         |
| 1430 | 3.8   |       |         | 6.9   |        |       | 11.5  |            |      | 1.3        | 2.3      | 3.8      | 6.8         |
| 1500 | 2.5   | 5.1   |         | 2.8   | 15.7   |       | 5.4   | 35.3       |      | 3.0        | 6.2      | 13.6     | 40.1        |
| 1530 | -1.9  | 2.5   | 10.8    | 2.2   | 3.4    | 9.9   | 2.3   | 3.7        | 18.9 | 4.8        | 5.2      | 8.3      | 15.2        |
| 1600 | 10.4  |       |         | 25.4  |        | •     | 52.3  |            |      | 3.6        | 8.5      | 7.4      | 56.7        |
| 1630 | 6.5   |       |         | 15.4  |        |       | 31.8  |            |      | 2.3        | S.1 1    | 0.6      | 42.4        |
| 1700 | 6.0   |       |         | 20.0  |        |       | 45.4  |            |      | 2.2        | 7.5      | 5.1      | 46.2        |
| 1730 | 65    |       |         | 71 9  |        |       | 67 6  |            |      | 7 7        | 77-      | ,, ,     | 16 6        |

WIND CIRCTION STANDARD DEVIATION (deg)

|      |      |        |     | 10m   | in Pe | riod     |      |        |      |       |          |       |      |
|------|------|--------|-----|-------|-------|----------|------|--------|------|-------|----------|-------|------|
|      | 1.   | nin Av | e   | 3     | min A | ve -     | 14   | Əmin ( | Ave  |       | 1/2hr    | Perio | d    |
| Time | #1   | #2     | \$3 | #1    | #2    | <u> </u> | #1   | #2     | \$3  | 1 m   | <u> </u> | 10m   | 1/2h |
| 1800 | 16.0 | 9.7    | 8.3 | 31.1  | 18.8  | 23.0     | 56.9 | 31.3   | 51.8 | 11.5  | 25.0     | 46.7  | 58.2 |
| 1830 | 6.8  |        |     | 15.9  |       |          | 28.3 |        |      | 2.4   | 5.3      | 9.4   | 16.9 |
| 1900 | 3.9  | 8.8    |     | 4.2   | 18.7  |          | 5.4  | 75.7   |      | 4.4   | 7.7      | 27.0  | 80.9 |
| 1930 | 4.0  | 9.6    | 7.3 | 7.4   | 4.0   | 47.7     | 14.9 | 26.5   | 54.7 | 7.0   | 19.7     | 32.0  | 44.4 |
| 2000 | 3.9  | 12.8   | 5.2 | 5.2   | 11.8  | 13.0     | 15.0 | 13.1   | 11.6 | 7.4   | 10.3     | 13.2  | 15.3 |
| 2030 | 3.6  | 5.0    | 1.8 | 7,2   | 8.9   | 8.8      | 19.3 | 15.7   | 12.2 | 3.5   | 8.3      | 15.8  | 20.9 |
| 2100 | 1.5  | 1.0    | .9  | 2.2   | 1.5   | 2.1      | 5.3  | 3.1    | 2.5  | 1.2   | 2.0      | 3.8   | 4.7  |
| 2130 | .9   | .9     | 1.1 | 1.0   | 1.4   | 2.0      | 1.5  | 1.8    | 1.5  | 1.0   | 1.4      | 1.8   | 2.6  |
| 2200 | .7   | .7     | 1.0 | 1.0   | 1.4   | 2.1      | 1.0  | 1.9    | 2.2  | . 8   | 1.5      | 1.7   | 2.8  |
| 2230 | . 8  | . 8    | 1.0 | .9    | 1.1   | 1.7      | 1.3  | 1.5    | 2.2  | .8    | 1.3      | 1.7   | 1.8  |
| 2300 | 1.1  | 1.2    | 111 | 1.3   | 1.6   | 2.4      | 1.6  | 1.9    | 2.8  | 1.1   | 1.5      | 2.1   | 5.1  |
| 2330 | 1.5  | 1.6    | 2.4 | 2.9   | 2.0   | 4.2      | 3.2  | 2.8    | 3.4  | 1.8   | 3.0      | 3.1   | 4.9  |
| 12/  | 18   |        |     |       |       |          |      |        |      |       |          |       |      |
| Ø    | 1.8  | 1.5    | 2.3 | 2.8   | 2.2   | 3.0      | 3.2  | 2.3    | 3.3  | 1.9   | 2.7      | 2.9   | 4.1  |
| 30   | 2.3  | 2.0    | 1.9 | 2.2   | 3.3   | 2.9      | 3.3  | 3.1    | 3.3  | 2.1   | 2.8      | -3.2  | 4.1  |
| 100  | 1.9  | 1.5    | 1.6 | 2.4   | 2.8   | 2.0      | 2.5  | 2.8    | 2.4  | 1.7   | 2.4      | 2.5   | 2.9  |
| 130  | 1.6  | 1.6    | 2.4 | , 2.0 | 4.3   | 5.1      | 2.1  | 7.6    | 7.4  | 1.9   | 3.8      | 5.7   | 9.3  |
| 200  | .2.4 | 2.4    | 1.9 | 3.5   | 4.3   | 2.8      | 3.6  | 6.2    | 4.0  | , 2.2 | 3.5      | 4.5   | 6.0  |
| 230  | 2.1  | 2.8    | 1.4 | 2.8   | 4.8   | 2.8      | 3.1  | 4.6    | 2.4  | 2.1   | 3.5      | 3.4   | 3.6  |
| 300  | 2.2  | 1.8    | 2.7 | 2.5   | 2.5   | 4.4      | 4.5  | 4.1    | 4.7  | 2,2   | 3.1      | 4.5   | 5.8  |
| 330  | 4.0  | . 8    |     | 5.2   | 28.5  |          | 6.6  | 51.5   |      | 1.7   | 11.3     | 19.4  | 71.3 |
| 400  | 2.2  | 2.9    | Z.8 | 2.6   | .3.3  | 4.1      | 3.5  | 4.1    | 3.5  | 2.6   | 3.3      | 3.7   | 3.9  |
| 430  | 2.4  | 2.1    | 2.0 | 2.9   | 2.4   | 3.1      | 4.3  | 3.5    | 3.3  | 2.2   | 2.8      | 3.7   | 7.0  |
| 500  | 2.5  | 10.5   |     | 3.8   | 30.8  |          | 6,1  | 78.5   |      | 4.7   | 13.0     | 28.2  | 81.6 |
| 530  | 8.8  |        |     | 30.4  |       |          | 61.0 |        |      | 3.0   | 10.1     | 20.3  | 37.5 |
| 630  | 10.8 |        |     | 21.6  |       |          | 37.1 |        |      | 3.8   | 7.2      | 12.4  | 22.1 |
| 700  | 2.5  | 2.4    | 2.6 | 4.2   | 5.7   | 5.8      | 4.5  | 11.8   | 7.9  | 2.5   | 5.2      | 8.1   | 22.1 |

WIND DIRCTION STANDARD DEVIATION (deg)

|      |      |          |      | 10m: | in Pe | riod       |           |          |              |              |          |            |             |
|------|------|----------|------|------|-------|------------|-----------|----------|--------------|--------------|----------|------------|-------------|
|      | 1.0  | nin A    | ve 🛛 | 31   | nin A | ve         | 1 (       | ðmin     | Ave          |              | 1/2hr    | Perio      | d           |
| Time | #1   | #2       | \$3  | #1   | #2    | #3         | <u>#1</u> | #2       | #3           | <u>im</u>    | <u> </u> | 10m        | <u>1/2h</u> |
| 6/2  | 0.   |          |      |      |       |            |           |          |              |              |          |            |             |
| 1851 | 6.9  |          |      | 12.7 |       |            | 21.4      |          |              |              |          |            | ,           |
| 1902 | 74.0 |          |      | 41.0 |       |            | 0.0       |          | •            |              |          |            |             |
| 1957 | 4.2  |          |      | 6.9  |       |            | 12.0      |          |              |              |          |            |             |
| 2030 | 36.5 |          |      | 20.3 |       |            | 0.0       |          |              |              |          |            |             |
| 2214 | 2.0  | 3.8      |      | 2.5  | 12.0  |            | 3.5       | 25.4     |              | 2.1          | 5.4      | 9.6        | 25.8        |
| 2300 | 3.6  |          |      | 8.1  |       | •          | 29.3      |          |              |              |          |            |             |
| 6/2  | 1 -  |          |      |      |       |            |           |          |              |              |          |            |             |
| 0    | 4.7  | 2.8      | 2.2  | 5.3  | 4.1   | 3.5        | 5.2       | 5.3      | 4.9          | 3.3          | 4.3      | 5.2        | 9.4         |
| 30   | .5   |          |      | 11.9 |       |            | 31.9      |          |              | .2           | 5.1      | 16.0       | 21.9        |
| 100  | 1.7  | 1.3      | 2.0  | 2.0  | 2.4   | 2.8        | 2.5       | 3.6      | 3.3          | 1.5          | 2.4      | 3.2        | 4.3         |
| 130  | 4.5  |          |      | 8.2  |       |            | 13.7      |          |              | 1.6          | 2.7      | 4.5        | 8.1         |
| 200  | 1.0  | 1.4      | 2.6  | 1.6  | 1.8   | 5.0        | 3.3       | 1.8      | 8.0          | 1.6          | 2.8      | 4.3        | 7.8         |
| 230  | 3.8  | 1.4      | 1.2  | 5.3  | 3.5   | 3.0        | 7.0       | 5.1      | 1.8          | 2.2          | 4.0      | 5.0        | 8.4         |
| 300  | 7    | 1 01     | q    | 9    | 17    | 1 7        | 1 3       | 1.6      | 7 4          |              | 1 4      | 1 8        | 2 3         |
| 330  | 1 4  | <b>.</b> |      | 70   | 7 0   | 2 1        | 3 1       | 24       | 2 1          | 1 0          | 7 0      | 7 5        | 4 0         |
| 100  | 1.4  |          | .0   | 1 0  | 1 2   | 1 7        | 2.1       | 1 7      | 1 5          | 1.0          | 1.1      | 1 0        | 7.0         |
| 400  | 1.4  | 1 7      | ••   | 1.0  | 7 0   | 1.4        | 2.5       | 7 4      | 1.0          | 1.0          | + 7      | 7 1        | 2.2         |
| 430  | 1.0  | 1.3      | 7.0  | 1.5  | 2.0   | 7 5        | 2.0       | <u> </u> | 1.5          | 1.0<br>7 C   |          | 2.1        | 4.3         |
| 500  | .1.4 | 3.3      | 5.0  | 2.1  | (.)   | 1.3        | 4.1       | 0.0      | 0.1          | 2.0          | 3.0      | 7.0        | 1.3.7       |
| 500  | 2.0  | 4.0      | 8.4  | 2.2  | 17 4  | 11.2       | 3.4       |          | 14.4         | 4.5          |          | 0.7        | 70.0        |
| 600  | 17.7 | 5.5      | 2.1  | 25.7 | 13.4  | 5.0        | 40.2      | 7 7      | 5.4          | 9.8          | 14.7     | 18.7       | 30.0        |
| 200  | 2.4, | 1.8      | 1.1  | 3.1  | 3.8   | 1.1        | 14.8      | 7.5      | 1.0          | 1.8          | 3.4      | 7.5        | 22.9        |
| 700  | 1.5  | 2.0      | 1.2  | 2.1  | 2.4   | 3.8        | 2.1       | 2.3      | 4.0          | 1.7          | 2.1      | 3.5        | 3.0         |
| 100  |      | 1.9      | .8   | 2.5  | 5.1   | 2.2        | 5.4       | 4,1      | 3.8          | 1.5          | 2.5      | 3.5        | 4.0         |
| 800  | . 5  | 1.0      | 5.5  |      | 1.4   | 20.4       | 71.0      | 1.7      | 39.8         | 2.4          | 7.4      | 14.2       | 24.4        |
| 830  | 3.2  | 2.1      | 4.5  | 14.0 | 2.9   | 6.9        | 24.0      | 5.4      | 13.8         | 3.3          | 8.2      | 17.7       | 30.8        |
| 303  | 1.0  | 2.3      | 1.3  | 5.1  | 10.0  | 4.9        | 7.2       | 12.3     | 8.4          | 2.3          | 6.0      | 3.3        | 13.7        |
| 1050 | 1.4  | 1.1      | 1.4  | 2.0  | 1.3   | 1.3        | 5.8       | 2.0      | 2.0          | 1.3          | 2.0      | 4.5        | 2.8         |
| 1100 | . 9  | 2.2      | 2.2  | 1.4  | 2.9   | 4.3        | 1.7       | 5.4      | 5.7          | 1.8          | 3.2      | 4.6        | 6.7         |
| 1150 | 1.3  | 2.5      | 2.1  | 2.0  | 5.5   | 3.1        | 2.1       | 5.9      | 4.1          | 2.4          | 3.7      | 4.2        | 4.8         |
| 1200 | 2.4  | 3.4      | 2.2  | 3.3  | 4.7   | 3.1        | 3.7       | 7.8      | 3.3          | 2.7          | 3.7      | 4.9        | 9.Z         |
| 1300 | 2.9  | 2.1      | 1.3  | 3.0  | 2.5   | 1.7        | 3.3       | 3.3      | 1.8          | 2.1          | 2.4      | 2.8        | 3.0         |
| 1330 | 1.7  | 1.6      | 1.9  | 1.7  | 1.8   | 2.2        | 2.2       | 2.4      | 2.7          | 1.7          | 1.9      | 2.4        | 2.8         |
| 1400 | 1.5  | 1.4      | 1.4  | 1.9  | Z.2   | 2.4        | 3.4       | 2.7      | 2.1          | 1.4          | Z.2      | 2.7        | 3.4         |
| 1430 | 1.3  | 1.3      | 1.4  | 1.9* | 1.8   | 2.8        | 2.2       | Z.4      | 2.7          | 1.3          | 2.2      | 2.5        | 2.9         |
| 1500 | 1.5  | 1.2      | 1.2  | 1.8  | 1.8   | 2.3        | 2.9       | 2.5      | 2.4          | 1.3          | 1.9      | 2.6        | 3.1         |
| 1530 |      | 1.3      | 1.2  | 1.5  | 1.8   | 1.5        | 1.7       | 2.3      | 1.9          | 1.1          | 1.5      | 2.0        | 2.0         |
| 1500 | 1.4  | .9       |      | 1.9  | 1.4   | 2.4        | 2.9       | 1.5      | 2.3          | 1.1          | 1.9      | 2.3        | 4.1         |
| 1230 |      | 1.0      | 1.2  |      | 1.5   | 1.3        | 2.1       | 3.0      | 1.5          | 1.0          | 1.2      | 2.2        | 4.8         |
| 1700 | 1.2  | 1.0      | 1.1  | 1.4  | 1.7   | 1.5        | 2.0       | 1.9      | 1.3          | 1.1          | 1.5      | 1.7        | 2.8         |
| 1730 | 1.0  | 1.0      | .9   | 1.1  | 1.4   | 1.8        |           | 1.4      | 1.7          | , <b>1.0</b> | 1.4      | 1.4        | 3.2         |
| 1800 |      |          |      | 1.4  |       | <b>~</b> . | 2.9       |          | <b>a</b> . = |              |          | <b>-</b> - |             |
| 1830 | 1.5  | 1.3      | 2.7  | 1.8  | 3.5   | 51         | 2.0       | 1.5      | 7.5          | 2.0          | 3.5      | 5.7        | 10.7        |
| 2030 | 1.5  | 1.2      | . 9  | 1.8  | 1.7   | 1.4        | 2.1       | 1.7      | 1.5          | 1.2          | 1.6      | 1.8        | 2.4         |
| 2100 | 1.5  | 1.2      | 1.0  | 1.5  | 1.4   | 1.5        | 2.5       | 1.3      | Z.1          | 1.Z          | 1.5      | Z.Ø        | 2.2         |
| 2130 | .8   | .8       | 1.2  | 1.Z  | 1.1   | 1.4        | 2.3       | 1.5      | 1.5          | .9           | 1.2      | 1.8        | 2.2         |
| 2200 | 1.2  | 1.5      | 1.1  | Z.0  | 1.8   | Z.4        | Z.4       | z.0      | Z.1          | 1.3          | 2.1      | 2.2        | 2.7         |
| 2230 | .8   | .8       | 1.0  | 1.2  | 1.9   | 2.2        | 1.4       | 3.3      | Z.7          | .8           | 1.8      | 2.5        | 2.9         |
| 2300 | . 9  | 1.Z      | 1.1  | 1.4  | 1.8   | 2.0        | 2.3       | 1.7      | 1.5          | 1.1          | 1.7      | 1.8        | 2.8         |

#### WIND DIRCTION STANDARD DEVIATION (deg)

|      |      |              |            | 10mi | n Per       | 10d  |            |               |            |              |           |            |            |
|------|------|--------------|------------|------|-------------|------|------------|---------------|------------|--------------|-----------|------------|------------|
|      | 1 m  | in Av        | e          | 3m   | in Av       | /e   | 10         | min A         | lve        | 1            | /2hr      | Perio      | d          |
| Time | #1   | #2           | #3         | \$1  | #2          | \$3  | #1         | \$2           | #3         | 1 m          | <u>3m</u> | 10m        | 1/2h       |
| 2330 | 1.1  | 1.1          | 1.0        | 1.4  | 1.8         | 1.5  | 1.5        | 2.7           | 1.9        | 1.1          | 1.6       | 2.1        | 2.9        |
| 6/22 |      |              |            |      |             |      |            |               |            |              |           |            |            |
| 0    | 1.2  | . 8          | .7         | 1.2  | 1.2         | 1.3  | 1.6        | 1.6           | 1.2        | .9           | 1.3       | 1.4        | 2.9        |
| 30   | 1.1  | .9           | 1.2        | 1.4  | 1.2         | 1.7  | 2.8        | 1.8           | 2.7        | 1.0          | 1.4       | 2.4        | 5.9        |
| 100  | 1.5  | 1.3          | 1.1        | 1.8  | 2.0         | 2.5  | 2.0        | 2.3           | 4.6        | 1.3          | 2.1       | 3.0        | 3.8        |
| 130  | 1 6  | 27           | 35         | 2.0  | 3.1         | 7.3  | 2.0        | 4.6           | 7.3        | 2.6          | 4.1       | 4.6        | 5.7        |
| 200  | 2.1  | 2.2          | 2.1        | 3.2  | 3.6         | 5.1  | 4.5        | 4.2           | 4.5        | 2.1          | 3.9       | 4.4        | 10.0       |
| 230  | 5 0  | 4 8          | 4 5        | 7 8  | 7 7         | 5 5  | 18.0       | 9.3           | 5.6        | 4.8          | 7.2       | 11.0       | 14.6       |
| 200  | 7 9  | 1.7          | 1 6        | 4 3  | 7 A         | 1 9  | 7 9        | 4 7           | 3 0        | 1 9          | 3.2       | 5.2        | 7.9        |
| 220  | 1 7  | 1.5          | 1 7        | 1 0  | 1 9         | 3.7  | 3 5        | 2 3           | 3.6        | 1 7          | 23        | 3.1        | 7 4        |
| 100  | 1.1  | 1.0          | 1.7        | 1.3  | 7.3         | 7.6  | 5.5        | 2.5           | 7.0        | 1 0          | 2.5       | J 4        | 5.5        |
| 400  | 2.1  | 1.0          | 1.7        | 2.1  | 2.3         | 3.0  | с.<br>с. 7 | 4.3           | 5.0        | 1.0          | 3.0       | 7 4        | 0.0<br>0 7 |
| 430  | 2.4  | 1.5          | 1.0        | 4.2  | 2.8         | 5.0  | 5.7        | 2.1           | <u> </u>   | 1.3          | 3.5       | 2.4        | 5.5        |
| 500  | 1.5  | 1.3          | 1.5        | 2.0  | 2.5         | 4.4  | 0.5        | 2.5           | 4.5        | 1.4          | 4.0       | 4.0        | 3.2        |
| 530  | 1.4  | 1.3          | 1.0        | 1.9  | 2.0         | 2.2  | 2.2        | 3.4           | 3.3        | 1.2          | 2.0       | 5.0        | 1.5        |
| 600  | 1.7  | 1.3          | 1.2        | 1.9  | 1.5         | 1.8  | Z.4        | 1.5           | 1.9        | 1.4          | 1.7       | 2.0        | 2.5        |
| 630  | 1.1  | 1.3          | 2.2        | 1.3  | 2.1         | 3.4  | 4.0        | 2.3           | 5.5        | 1.5          | Z.3       | 5.2        | 5.2        |
| 700  | 1.5  | 1.9          | 2.2        | 3.7  | 3.3         | 2.5  | 7.2        | 4,8           | 2.5        | 1.9          | 3.2       | 4.8        | 5.8        |
| 800  | .3.6 | 3.2          | 2.8        | 5.7  | 5.4         | 6.2  | 8.4        | 6.0           | 4.8        | 3.2          | .5.7      | 5.4        | 13.4       |
| 830  | 5.2. | 3.6          | 5.8        | 10.7 | 4.6         | 6.4  | 12.6       | 5.7           | 7.2        | 4.8          | 7.2       | a.s        | 1.1.8      |
| 900  | 10.9 | 9.8          | 7.7        | 19.7 | 14.3        | 16.4 | 25.4       | 33.4          | 20.7       | 9.2          | 16.8      | 26.5       | 37.6       |
| 930  | 5.0  | 4.1          | 6.1        | 8.8  | 4.9         | 8.3  | 27.9       | 6.4           | 9.6        | 5.0          | 7.3       | 14.5       | 26.5       |
| 1000 | 5.2  | 5.7          | 4.2        | 7.1  | 8.8         | 8.4  | 8.5        | 8.9           | 7.6        | 5.0          | 8.1       | 8.3/       | 9.0        |
| 1030 | 3.2  | 2.1          | 2.3        | 5.5  | 3.5         | 4.7  | 7.6        | 6.2           | 4.4        | 2.6          | 4.5       | 6.0        | 7.4        |
| 1100 | 1.4  | 1.5          | 2.1        | 2.2  | 2.6         | 3.2  | 3.5        | 2.5           | 4.5        | 1.7          | 2.7       | 3.5        | 3.7        |
| 1200 | 4.2  | 7.3          | 2.4        | 5.6  | 10.8        | 4.2  | 9.1        | 13.0          | 5.1        | 4.8          | 6.9       | 8.7        | 11.1       |
| 1230 | 5.7  | 3.2          | 3.3        | 7.3  | <b>S</b> .2 | 4.3  | 9.8        | 8.0           | 6.5        | 4.1          | 6.0       | 8.1        | 8.5        |
| 1300 | 2.5  | 2.7          | 2.3        | 2.5  | 3.3         | 3.4  | 5.7        | 4.1           | 3.3        | 2.5          | 3.1       | 4.3        | 5.9        |
| 1400 | 8.0  | . 9          | 1.1        | 13.5 | 2.0         | 2.0  | 20.5       | 2.7           | 2.7        | 3.4          | 5.8       | 8.6        | 12.4       |
| 1430 | 1.2  | 1.2          | 1.3        | 1.7  | 2.1         | 2.4  | 2.0        | 4.0           | 3.2        | 1.3          | 2.1       | 3.0        | 5.5        |
| 1500 | 1.4  | 1.3          | 1.3        | 2.0  | 1.9         | 2.0  | 2.5        | 2.9           | 2.0        | 1.3          | 1.9       | 2.5        | 4.1        |
| 1530 | 1.4  | 1.3          | 1.1        | 2.0  | 2.0         | 1.7  | 2.6        | 2.1           | 1.7        | 1.3          | 1.9       | 2.1        | 2.4        |
| 1500 | 1.4  | 1.1          | 1.0        | 1.9  | 1.7         | 1.9  | 2.2        | 2.1           | 1.8        | 1.2          | 1.8       | 2.0        | 2.5        |
| 1630 | 1.0  | 1 9          | 2.0        | 1.1  | 3.1         | 2.5  | 1.9        | 4.4           | 2.5        | 1.6          | 2.3       | 2.9        | 3.9        |
| 1700 | 7 4  | 2 0          | 1 9        | 3.2  | 3 9         | 2 9  | 3 2        | 5 2           | 5 1        | 21           | 33        | 4 6        | , T E      |
| 1730 | 1 4  | 1 1          | 1 4        | 1 6  | 1 7         | 2 3  | 1 9        | 26            | 21         | 1 3          | 1 9       |            | · · · ·    |
| 1930 | 1 7  | ` <b>7</b> 0 | 7 6        | 1 0  | 3 4         | 4 2  | 1 9        | 37            | A A        | 20           | 3 1       | 77         | 2.5        |
| 1070 | 7 7  | 1.6          | 2.0        | 4 1  | 7 7         | 7.4  | - 1<br>- 1 | J. 7<br>A . 1 | <br>       | 2.0          |           | 5.5        |            |
| 1000 | 2.5  | 4 0          | 1 0        | * 7  | J.J<br>E C  |      | 7 3        | 7 1           | 7.3        | 2.1          | 1.0       | 6.1        | J.J<br>0 0 |
| 1000 | 3.4  | 7.0          | 1.0<br>c c | 4.4  | 5.0         |      | 7.3        | 10.1          | 10 5       | یک، ت<br>۸۱۱ | *./       | 0.I        | 1, 5       |
| 1920 | 3.1  | 3.5          | 3.0        | 9.C  | <b>a</b> .s | 3.0  | 0.1        | 10.1          | 0.5        | 4.1          | 7.0       | 3.0        |            |
| 2000 | 3.2  | 4,1          | 4.5        | 4.3  | 1.4         | 7.2  | 4.8        | 10.2          | 3.3        | 4.0          | 5.0       | 8.1<br>0 C | 13.4       |
| 2030 | 5.3  | 3.0          | 4.7        | 7.3  | 4.2         | 8.0  | 14.1       | 4.8           | 5./        | 4.0          | 5.5       | 8.5        | 11.1       |
| 2100 | 2.1  | 5.1          | 5.1        | 3.5  | 3.5         | 20.4 | 10.0       | 11.4          | ا، آک<br>م | 4.5          | 11.2      | 14.2       | 19.1       |
| 2130 | 4.Z  | 5.8          | 4.8        | 5.1  | 12.7        | 8.7  | 6.7        | 14.1          | 6.3        | 5.0          | 8.9       | 9.0        | 20.3       |
| Z200 | 3.9  | 5.1          | 5.7        | 10.3 | 6.7         | 13.4 | 10.9       | 10.9          | 18.8       | 5.2          | 10.1      | 13.5       | 15.0       |
| 2230 | 4.3  | 3.9          | 4.7        | 6.9  | 7.6         | 7.5  | 15.7       | 12.9          | 11.9       | 4.3          | 7.4       | 13.5       | 16.0       |
| 2300 | 6.7  | 2.6          | 2.7        | 13.7 | 4.9         | 5.3  | 14.4       | 8.7           | 6.1        | 4,1          | 8.0       | 9.8        | 12.9       |
| 2330 | 2.3  | 3.5          | 2.8        | 2.7  | 8.0         | 4.0  | 6.9        | 15.8          | 511        | 2.8          | 4.9       | 9.3        | 25.4       |
| 6/23 |      |              |            |      |             |      |            |               |            |              |           |            |            |
| 0    | 5.5  |              |            | 9.8  |             |      | 16.4       |               |            | 1.9          | 3.3       | 5.5        | 9.7        |

 $(\mathbf{x}_{i})$ 

WIND DIRCTION STANDARD DEVIATION (deg)

al.

|        | :    |        |      | 10m   | in Pe | riod- | ***** |      |      |           |           |       |      |
|--------|------|--------|------|-------|-------|-------|-------|------|------|-----------|-----------|-------|------|
|        | - 10 | min Av | ve 🛛 | 31    | min A | ve    | 1     | Ømin | Ave  |           | 1/2hr     | Perio | bd   |
| Time   | \$1  | \$2    | \$3  | #1    | #2    | #3    | #1    | #2   | #3   | <u>Im</u> | <u>3m</u> | 10m   | 1/2h |
| 30     | 12.1 | 12.0   | 6.7  | 22.5  | 25.2  | 13.4  | 32.3  | 34.0 | 10.9 | 10.4      | 20.3      | 25.8  | 29.5 |
| 100    | 2.0  | 2.9    | Z.3  | 3.0   | 3.6   | 3.2   | 5.2   | 5.0  | 4.5  | 2.4       | 3.3       | 4.9   | 5.2  |
| 130    | 6.3  | 3.1    | 5.2  | 8.5   | 4.9   | 11.7  | 11.1  | 9.2  | 19.4 | 4.9       | 8.4       | 13.2  | 14.4 |
| 200    | 6.3  | 9.0    | 9.4  | 9.3   | 21.7  | 17.0  | 12.1  | 25.5 | 15.2 | 8.2       | 16.0      | 17.5  | 23.0 |
| 230    | 7.5  | 9.1    | 8.8  | 11.3  | 11.5  | 19.6  | 19.6  | 18.1 | 22.5 | . 8.5     | 14.2.     | 20.1  | 20.0 |
| 300    | 13.2 | 5.4    | 6.7  | 18.4  | 7.5   | 12.8  | 24.2  | 9.2  | 14.2 | 8.5       | 12.9      | 15.9  | 17.6 |
| 330    | 7.1  | 2.5    | 3.9  | 16.1  | -3.8  | 9.1   | 24.7  | 4.9  | 9.8  | 4.5       | 9.7       | 13.1  | 19.1 |
| 400    | .2   |        |      | 7.4   |       |       | 14.2  |      |      | .1        | 2.5       | 4.7   | 8.5  |
| 430    | 4.2  | 4.0    | 1.5  | 5.6   | 5.3   | 2.8   | 7.7   | 8.2  | 2.0  | 3.3       | 5.1       | 5.0   | 7.1  |
| 500    | 1.5  |        |      | · 3.9 |       |       | 8.9   |      |      | .5        | 1.3       | 3.0   | .5.5 |
| 530    | 2.3  |        |      | 7.2   |       |       | 13.3  |      |      | .8        | 2.4       | 4.4   | 8.0  |
| 600    | 3.0  |        |      | 5.4   |       |       | 8.9   |      |      | 1.1       | 2.0       | 3.0   | 5.3  |
| 630    | 1.3  |        |      | 2.3   |       |       | 3.9   | •    |      | .5        | . 9       | 1.3   | 2.3  |
| 700    | 1.1  |        |      | 2.0   |       |       | 3.3   |      |      | .4        | .7        | 1.1   | 1.9  |
| 830    | 7.1  | 4.9    | 4.3  | 11.9  | 5.9   | 12.9  | 12.2  | 7.8  | 23.3 | 5.5       | 10.2      | 14.5  | 22.0 |
| 900    | 3.5  | 10.0   | 9.1  | 5.4   | 10.9  | 14.8  | 9.7   | 19.1 | 15.4 | 7.5       | 10.4      | 14.8  | 17.0 |
| 1020   | 5.8  | 3.9    | 4.8  | 7.9   | 6.0   | 5.1   | 13.8  | 5.0  | 5.4  | 4.9       | 6.3       | 8.4   | 10.5 |
| 1050   | 2.9  | 3.6    | 4.8  | 4.6   | 4.5   | 7.2   | 4.5   | 6.4  | 10.5 | 3.7       | 5.5       | 7.2   | 7.5  |
| 1204   | 2.9  | 2.0    | 1.4  | 5.3   | 3.3   | 1.6   | 5.2   | 4.6  | 2.2  | 7.1       | -3.4      | 4.3   | 7.8  |
| 1234   | 1 9  | 1.9    | 21   | 2.2   | 3.3   | 3.7   | 3.8   | 3.3  | 4.2  | 2.0       | 3.0       | 3.8   | 3 9  |
| 1444   | 2.5  | 2.1    | 3.0  | 3.7   | 4.7   | 3.4   | 4.4   | 9.7  | 4.0  | 2.5       | 3.8       | 5.0   | 9 8  |
| 1574   | 1 9  | 2.1    | 1.6  | 2 7   | 3.7   | 4.9   | 31    | 5.3  | 3.9  | 1.9       | 3.4       | 4.2   | 6.2  |
| 2034   | 2.2  | 1.5    | 1.5  | 3.1   | 2.7   | 3.4   | 3.8   | 4.2  | 3.2  | 1.7       | 3.1       | 3.7   | 8.0  |
| 2140   | 3 7  | 7 4    | 23   | 5.1   | 4 6   | 35    | 10 5  | 6 5  | 4.3  | 2 6       | 4 8       | 7 1   | 13.0 |
| 2210   | 3.6  | 2 9    | 2.8  | 5.6   | 3.5   | 5.7   | 13.3  | 4.3  | 5.2  | 3.1       | 5.3       | 7.6   | 88   |
| 2337   | 8.3  | 3.5    | 2.9  | 12.8  | 5.5   | 10.1  | 15.1  | 8.4  | 10.8 | 5.0       | 9.5       | 11.8  | 14.) |
| 5/24   |      | 2.2    | 2    |       | 5.5   |       |       | 0.4  |      | 3.0       | 313       | ,     |      |
| 7      | 2.3  | 2.5    | 2.3  | 4.1   | 3.9   | 2.9   | 7.2   | 3.9  | 3.2  | 2.4       | 3.5       | 4.8   | 8.3  |
| 158    | 1.5  | 1.2    | 1.6  | 2.2   | 1.8   | 2.0   | 2.4   | 2.4  | 2.5  | 1.4       | 2.0       | 2.4   | 2.5  |
| 228    | 1.5  | 1.4    | 1.5  | 2.2   | 2.3   | 3.1   | 2.6   | 2.5  | 4.1  | 1.5       | 2.5       | 3.1   | 3.2  |
| 401    | 2.1  | 2.1    | 1.7  | 3.0   | 3.1   | 3.2   | 7.6   | 4.2  | 3.5  | 2.0       | 3.1       | 5.1   | 8.7  |
| 431    | 1.9  | 1.6    | 1.7  | 3.5   | 1.8   | 2.1   | 7.5   | 2.4  | 2.8  | 1.7       | 2.5       | 4. 7  | 5.9  |
| 526    | 1.8  | 2.3    | 1.8  | 2.3   | 3.0   | 4.4   | 2.4   | 5.6  | 3.8  | 2.0       | 3.3       | 3.9   | 5.1  |
| 648    | 2.9  | 3.2    | 3.9  | 3.9   | 9.1   | 11.9  | 6.6   | 9.5  | 11.3 | 3.3       | 8.3       | 9.2   | 19.2 |
| 748    | 3.6  | 2.3    | 4.4  | 5.1   | 4.4   | 6.9   | 7.1   | 7.5  | 8.6  | 3.4       | 5.5       | 7.7   | 8.9  |
| 830    | 3.5  | 3.7    |      | 7.3   | 6.7   |       | 14.9  | 13.6 |      | 3.6       | 7.0       | 14.3  | 0.0  |
| 858    | 2.2  | 2.4    | 4.8  | 4.4   | 5.8   | 11.4  | 8.9   | 8.8  |      | 3.0       | 5.7       | 8.9   | 15.4 |
| 927    | 3.8  | 3.8    |      | 7.1   | 11.8  |       | 13.9  | 18.6 |      | 3.5       | 8.8       | 16.3  | 17.0 |
| 1000   | 5.5  | 4.9    | 2.5  | 8.2   | 10.0  | 8.7   | 22.8  | 17.6 | 11.8 | 4.3       | 9.0       | 17.4  | 21.6 |
| 1030   | 4.2  | 3.5    | 4.8  | 8.7   | 8.4   | 16.5  | 14:5  | 15.4 | 15.5 | 4.1       | 11.2      | 15.1  | 28.8 |
| 1100 - | 2.7  | 2.0    | 3.3  | 4.0   | 4.5   | 9.2   | 13.8  | 11.1 | 15.6 | 2.6       | 5.9       | 13.5  | 13.6 |
| 1130   | 5.5  | 3.3    | 1.9  | 8.8   | 10.3  | 4.0   | 11.2  | 20.9 | 5.1  | 3.6       | 7.7       | 12.4  | 21.4 |
| 1154   | 2.8  | 2.6    |      | 6.4   |       |       | 15.4  |      |      |           |           |       |      |
| 1230   | 1.4  | 1.5    | 1.8  | 2.2   | 3.2   | 5.0   | 2.5   | 7.5  | 5.6  | 1.6       | 3.5       | 5.2   | 18.5 |
| 1300   | 1.4  | 1.4    | 2.7  | 1.5   | 3.S   | 6.5   | 1.7   | 6.5  | 5.9  | 1.8       | 3.8       | 4.7   | 5.7  |
| 1330   | 3.5  | 1.8    | 1.7  | 7.7   | 2.8.  | 4.3   | 15.5  | 3.6  | 3.7  | 2.4       | 4.9       | 8.0   | 14.2 |
| 1400   | 2.7  | 2.2    | 1.7  | 4.7   | 5.6   | 3.4   | 6.7   | 9.6  | 5.9  | 2.2       | 4.5       | 7.3   | 9.3  |
| 1430   | 1.7  | 1.6    | 1.4  | 2.2   | 1.6   | 3.1   | 3.9   | 2.8  | 2.6  | 1.6       | 2.3       | 3.1   | 3.9  |
| 1500   | 1.9  | 1.6    | 1.5  | 2.4   | 3.7   | 2.7   | 4.2   | 2.9  | 2.7  | 1.7       | 2.9       | 3.3   | 5.1  |

### WIND DIRCTION STANDARD DEVIATION (deg)

|            | ,          |               |              | <br>7       | 111 FC1<br>A | -100   | 1    | 2 m i n        | Av    |     | 176-           | Perio        | (d   |
|------------|------------|---------------|--------------|-------------|--------------|--------|------|----------------|-------|-----|----------------|--------------|------|
| <b>T</b> : |            | אם חוד<br>ביי | ·e, .<br>+7  | ار.<br>1 ++ | 47<br>*7     | *Z     | *1   | *7             | +7    | te  | ייי ביוו<br>אש | 100m         | 1/25 |
| 1570       | <u>*/</u>  | +6            | +            | <u>+</u>    | 1 5          |        | 27   | <del>*</del> * | 1 7   | 1 3 | 1 9            | 2 2          | 7 5  |
| 1530       | 1.3        | 1.2           | 1.1          | 2.2         | 7.3          | 2.0    | 2.1  | 2.2            | 7 5   | 1.0 | 2 1            |              | 7 0  |
|            | 1.5        | 1.7           | 1.4          | 1.0         | 2.0          | 2.1    | 1.3  | 2.0            | . 4.3 | 1.4 | 4.1            | 2.3          | 2.0  |
| 1630       | 1.5        | 1.3           | 1.5          | 1.7         | 1.0          | 2.4    | 2.0  | 1.9            | 2.4   | 1.4 | 1.3            | 2.0          | 2.3  |
| 1700       | 1.4        | 1.9           | . 9          | 2.2         | 2.5          | 1.9    | 2.5  | 2.8            | 2.4   | 1.4 | 2.3            | 2.5          | 3.2  |
| 1730       | 1.7        | 1.3           | 1.3          | 2.4         | 2.0          | 2.2    | 2.5  | 2.3            | 2.0   | 1.4 | 2.2            | 2.5          | 2.4  |
| 1800       | 1.5        | 1.4           | 1.5          | 2.1         | 1.8          | 2.3    | 2.5  | Z.4            | 2.5   | 1.5 | 2.1            | Z.5          | 2.7  |
| 1830       | 1.8        | 1.3           | 1.4          | 3.1         | 2.3          | 1.7    | 3.4  | Z.5            | 2.5   | 1.5 | 2.4            | 2.8          | 3.8  |
| 1900       | 1.5        | 1.7           | 1.7          | 2.3         | 1.8          | 2.8    | 3.6  | 2.1            | 2.9   | 1.6 | 2.3            | 2.9          | 4.4  |
| 1930       | 2.1        | 1.4           | 1.3          | 2.3         | 2.5          | 1.8    | 2.7  | 2.3            | 1.8   | 1.6 | 2.2            | 2.2          | 2.6  |
| 2000       | 1.3        | 1.4           | 1.3          | 1.6         | 1.9          | 2.0    | 1.8  | 2.4            | 1.4   | 1.4 | 1.8            | 1.9          | 2.0  |
| 2030       | 2.1        | 2.8           | 1.4          | 2.4         | 3.5          | 2.6    | 3.7  | 3.9            | 2.2   | 2.1 | 2.9            | 3.3          | 3.4  |
| 2100       | 2.0        | 2.5           | 1.9          | 2.0         | 4.1          | 6.9    | 3.9  | 3.8            | 2.8   | 2.1 | 4.0            | 3.5          | 4.5  |
| 2130       | 1.2        | 1.2           | 1.4          | 1.6         | 1.6          | 2.1    | 2.0  | 2.2            | 2.5   | 1.2 | 1.8            | 2.3          | 2.4  |
| 2200       | 3.0        |               |              | 4.1         |              | •      | 5.7  |                |       |     |                |              |      |
| 2230       | 2.2        | 1.7           | 1.3          | 3.0         | 3.1          | 2.8    | 8.4  | 3.0            | 3.3   | 1.7 | 3.0            | 4.9          | 3.6  |
| 2300       | 1.0        | 1.6           | 1.7          | 1.2         | 2.0          | 3.0    | 4.2  | 3.3            | 3.6   | 1.4 | 2.1            | 3.7          | 5.5  |
| 2330       | 3.1        | 4.5           | 3.9          | 4.4         | 7.7          | 7.4    | 8.9  | 11.1           | 8.6   | 3.9 | 6.5            | 9.5          | 20.5 |
| 6/25       |            |               | 0.0          |             | •••          |        | •••  |                | •••   |     |                |              |      |
| 0          | 3.4        | 2.5           | 3.2          | 4.5         | 5.9          | 3.7    | 5.0  | 6.8            | 3.4   | 3.0 | 4.7            | 5.4          | 5.9  |
| 30         | 3 4        | 1.5           | 1 7          | 37          | 2 9          | 5.7    | 4.3  | 6.4            | 5.1   | 2.2 | 4.1            | 5.6          | 7.0  |
| 100        | 7 9        | 7 9           | 7 5          | 7 1         | 6 7          | 8 4    | 15 9 | 11 6           | 11 3  | 3.2 | 7 7            | 13 3         | 25 4 |
| 130        | 7 5        | 2.5           |              | 4 A         | 4 2          | 8 0    | 4 7  | - a a          | 17 8  | 7 g | 55             | 91           | 20 3 |
| 700        | L.0<br>E 7 | 127           | 7 6          | 7 5         | 71 6         | 74 7   | 17.0 |                | 77 6  | 9 1 | 21 3           | 311          | 20.5 |
| 200        | 3.1        | 13.7          | (.0)<br>(.0) | 14 7        | 17 1         | 17 5   | 70.3 | 30.3           | 12 0  | 5.1 | 17.0           | 17 7         | 27 5 |
| 200        | 8.9<br>7 C | 4.3           | 4.3          | 14.2        | 12.1         | 14.3   | 17 0 | 7 0            | 177   | 0.0 | 13.0           | 17.2         | 27.3 |
| 200        | 3.3        | 4.4           | 3.4          | 0.4         | 5.3          | 3.4    | 15.0 | 1.0            | 13.7  | 4.5 | 7.3            |              | 14.7 |
| 220        | 2.4        | 1.1           | 1.1          | 5.5         | 4.8          | 2.6    | 8.5  | 4.9            | 3.1   | 1.8 | 3.5            | 5.8          | 5.5  |
| 400        | 1.1        | 1.4           | 3.5          | 1.7         | 1.5          | 7.9    | 4.5  | 2.5            | 7.9   | 2.0 | <u>، د</u>     | 5.0          | 5.4  |
| 430        | Z.9        | 1.8           | Z.5          | 5.0         | 3.4          | 3.9    | 7.0  | 4.1            | 5.6   | 2.4 | 4.1            | 5.8          | 5.7  |
| 500        | 3.3        | 4.0           | 2.7          | 8.3         | 8.7          | 5.3    | 9.9  | 10.6           | 5.6   | 3.3 | 7.4            | 8.7          | 12.1 |
| 530        | 5.2        | 3.5           | 5.2          | 8.7         | 4.5          | 9.5    | 10.4 | 9.7            | 13.4  | 4.9 | 7.5            | 11.2         | 15.0 |
| 500        | 5.7        | 3.7           | 2.5          | 13.3        | 4.7          | 4.7    | 15.5 | 5.4            | 6.1   | 4.1 | -7.9           | 9.0          | 12.6 |
| 630        | 2.2        | 3.0           | 1.7          | 4.2         | 5.2          | 3.8    | 4.9  | 6.1            | 5.3   | 2.3 | 4.4            | 5.5          | 6.0  |
| 700        | 3.7        | 2.6           | 1.6          | 6.7         | 4.5          | 3.8    | 8.4  | 8.7            | 3.3   | 2.7 | 5.2            | 6.8          | 10.8 |
| 730        | 2.0        | 2.0           | 2.5          | 3.0         | 3.1          | 5.8    | 3.8  | 7.0            | 6.8   | 2.1 | 4.0            | 5.9          | 6.5  |
| 800        | 1.7        | 1.1           | 2.0          | 2.3         | 2.1          | 4.2    | 3.1  | 2.6            | 5.5   | 1.6 | 2.9            | 3.7          | 7.1  |
| 930        | 3.0        | 2.0           | 3.4          | 4.1         | 3.9          | 7.3    | 5.3  | 8.0            | 9.9   | 2.8 | 4.8            | 7.7          | 15.3 |
| 900        | 2.2        | 1.8           | 2.6          | 2.6         | 2.8          | 5.5    | 3.9  | 4.1            | 8.1   | 2.2 | 3.6            | 5.4          | 6.3  |
| 930        | 5.2        | 2.6           | 3.2          | 8.0         | 3.7          | 5.0    | 11.6 | 3.8            | 7.5   | 3.7 | 5.8            | 7.7          | 14.7 |
| 1000       | 2.7        | 3.1           | 3.7          | 4.7         | 4.8          | 4.8    | 7.4  | 5.2            | 4.4   | 3.2 | 4.8            | 5.6          | 10.8 |
| 1030       | 2.9        | 3.1           | 2.2          | 3.3         | 3.5          | 2.9    | 4.0  | 4.6            | 4.1   | 2.8 | 3.2            | 4.2          | 5.9  |
| 1100       | 1.5        | 1.2           | . 9          | 1.8         | 1.4          | 1.5    | 2.2  | 1.5            | 1.4   | 1.2 | 1.6            | 1.7          | 2.0  |
| 1130       | 1.1        | 1.2           | 1.1          | 1.7         | 1.4          | 1.4    | 2.6  | 1.4            | 1.4   | 1.1 | 1.5            | 1.9          | 2.0  |
| 1200       | .9         | . 9           | 1.0          | 1.0         | 1.5          | 1.1    | 1.7  | 1.7            | 1.5   | .9  | 1.2            | 1.5          | 2.5  |
| 1230       | 1.2        | 1.2           | 1.0          | 1.5         | 1.5          | 1.3    | 1.6  | 1.7            | 1.3   | 1.1 | 1.4            | 1.5          | 1.7  |
| 1300       | 1.0        | 1.3           | 1.4          | 1.3         | 1.9          | 1.5    | 1.6  | 1.8            | 1.6   | 1.2 | 1.5            | 1.6          | 1.6  |
| 1330       | 1.4        | 1.9           | 1.3          | . 1.6       | 2.3          | 1.7    | 1.9  | 2.0            | 2.0   | 1.5 | 1.9            | 2.0          | 2.2  |
| 1400       | 1.4        | 1.1           | 1.5          | 1 5         | 1.2          | 1.9    | 1.8  | 1.5            | 1 7   | 1 3 | 1 5            | 1.6          | 7 0  |
| 1430       | 1.5        | 1.2           | 1.0          | 1.5         | 1.6          | 1.5    | 1 7  | 1 4            |       | 1 3 | 1 6            | 1.6          | 1 6  |
| 1500       | 1 2        | 1.4           | 1.4          | 1 4         | 1 7          | 1 9    | 1 8  | 7 5            | 17    | 1 4 | 1 7            | 7 0          | u    |
|            |            | ••-           | •••          |             |              | فب ه ا | 1.0  | ~              | · • / | ••• | • • (          | <u>د</u> . ۷ |      |

-----!Omin Period------!

BLM-4

#### WIND DIRCTION STANDARD DEVIATION (deg)

アバルムへいれる 豊力 シ

|              | !           |            |       | 10m                     | nin Pe      | riod  |      |      | ;          |      |           |               |          |
|--------------|-------------|------------|-------|-------------------------|-------------|-------|------|------|------------|------|-----------|---------------|----------|
|              | 1           | min (      | Ave . | 3                       | 3min A      | va    | 1    | Ømin | Ave        |      | 1/2hm     | Perio         | d .      |
| Time         | #1          | #2         | \$3   | #1                      | #2          | #3    | #1   | \$2  | #3         | 1 m  | <u>3m</u> | 10m           | 1/2h     |
| 1530         | 1.3         | 5 1.       | 4 1.5 | 1.5                     | 5 1.5       | 1.7   | 1.8  | 1.5  | 5 1.7      | 1.4  | 1.6       | 1.7           | 1.9      |
| 1600         | 1.3         | 5 1.!      | 5 1.4 | 1.3                     | 5 1.6       | 1.4   | 1.3  | 1.6  | 5 1.5      | 1.4  | 1.4       | 1.5           | 1.6      |
| 1630         | 1.2         | 2 1.       | 9 1.2 | 1.4                     | 2.1         | 1.4   | 1.4  | 2.1  | 1.4        | 1.5  | 1.6       | 1.5           | 1.8      |
| 1700         | 1.2         | 1.1        | 3 2.0 | 1.3                     | 5 1.4       | 2.4   | 1.9  | 1.6  | 2.5        | 1.5  | 1.7       | 2.0           | 3.1      |
| 1730         | 1.2         | 5 1.1      | 8 2.2 | 1.5                     | i 1.8       | 2.4   | 1.6  | 2.0  | 2.7        | 1.7  | 1.9       | 2.1           | 3.3      |
| 1800         | 1.4         | 1.3        | 3 1.6 | 1.6                     | : 1.6       | 2.0   | 1.6  | 1.9  | 1.8        | 1.4  | 1.7       | 1.8           | 2.1      |
| 1830         | 1.5         | i 1.3      | 2 1.5 | 2.1                     | 1.5         | 2.2   | .2.1 | 1.6  | 2.0        | 1.4  | 1.9       | 1.9           | 2.1      |
| 1913         | 1.4         | 2.1        | 5 3.6 | 1.8                     | 4.3         | 4.8   | 1.9  | 6.5  | 4.3        | 2.5  | 3.7       | 4.2           | 12.0     |
| 1955         | . 1.8       | 1.3        | 2 1.8 | 2.0                     | 1.8         | 3.0   | 3.0  | 1.8  | 4.1        | 1.6  | 2.3       | 3.0           | 4.2      |
| 7075         | 1 7         |            | 1 1 1 | 1 9                     | 1 4         | 1 5   | 23   | 1 7  |            | 1 1  | 16        | 1.8           | 35       |
| 2020<br>2025 | 1 .1        | 1 6        | - 17  | 1.0                     | 1 9         | 7 1   | 1 7  | 1 9  | 75         | 1 5  | 1 9       | · 7 0         | 2.0      |
| <br>         | ۰.۰۹<br>۲۰۶ |            | a (.( | 1.4.44                  |             | 4.1   | 1.1  | 1.0  | 2.3        | 1    | 1.4       | U             | 6.4      |
| 0/2          | <u> </u>    |            |       |                         |             | <br>- |      |      |            |      | 2.2       |               | <b>.</b> |
| 11.30        | 1.3         |            |       | 1.0                     |             | 2.7   |      | 1.9  | 2.3        | 1.3  | 2.0       | 1.3           | 2.1      |
| 1200         | 1.4         |            | 1.7   | 1.5                     | 2.2         | 2.0   | 2.2  | 5.1  | 4.1        | 1.5  | 1.9       | 2.5           | 3.9      |
| 1230         | 1.8         | 1.8        | 3 1.4 | 1.9                     | 1.9         | 1.7   | 1.9  | 2.0  | 1.7        | 1.7  | 1.8       | 1.8           | 1.8      |
| 1300         | 1.6         | : 1.E      | 5 1.0 | 1.7                     | 1.8         | 2.1   | 1.8  | 1.9  | 1.7        | 1.4  | 1.9       | 1.8           | 1.8      |
| 1330         | 1.5         | 1.4        | 1.7   | 2.0                     | 1.6         | 2.1   | 2.0  | 2.1  | 2.3        | 1.6  | 1.9       | 21            | 2.3      |
| 1400         | .).8        | , 1.7      | 7     | 2.2                     | 2.0         |       | 2.4  | 2.0  |            | 1.7  | 2.1       | 2.2           | 0.0      |
| 1430         | 1.3         | 1.3        | 5 1.4 | 1.7                     | 1.8         | 2.4   | 2.0  | 1.6  | 2.1        | 1.3  | 2.0       | 1.9           | 1.9      |
| 1500         | 1.6         | 1.7        | 1.7   | 1.9                     | 1.7         | 2.4   | 2.4  | 1.9  | 2.0        | 1.7  | 2.0       | 2.1           | 2.2      |
| 1530         | 1.5         | 1.5        | 5 1.6 | 2.4                     | 2.0         | 1.9   | 2.4  | 2.5  | 2.3        | 1.5  | 2.1       | 2.4           | 2.7      |
| 1600         | 1.7         | 1.8        | 1.6   | 1.9                     | . 2.2       | 1.6   | 1.9  | 2.3  | 1.9        | 1.6  | 1.9       | 2.0           | 2.1      |
| 1630         | 1.6         | 1.6        | 5 1.3 | 2.4                     | 2.0         | 2.3   | 2.4  | 2.4  | 1.7        | 1.5  | 2.2       | 2.1           | 2.3      |
| 1700         | 1.6         | 1.4        | 1.4   | 1.7                     | .1.9        | 2.2   | Ź.Ø  | 1.8  | 2.4        | 1.5  | 1.9       | Z.1           | 2.2      |
| 2000         | z.1         | 1.8        | 1.9   | 2.3                     | 2.0         | 2.3   | 2.4  | 2.5  | 2.2        | 1.9  | 2.2       | 2.4           | 2.8      |
| 2030         | 2.0         | 2.1        | 1.8   | 2.5                     | 3.2         | 2.9   | 3.1  | 2.9  | 2.6        | 2.0  | 2.9       | 2.9           | 3.0      |
| 2100         | 2.5         | 2.9        | 1.9   | 2.8                     | 3.0         | 2.7   | 2.8  | 3.3  | 2.7        | 2.5  | 2.8       | 2.9           | 3.3      |
| 2130         | 2.1         | 1.6        | 1.7   | 2.7                     | 2.4         | 1.8   | 3.6  | 2.3  | 2.0        | 1.8  | 2.3       | 2.6           | 3.2      |
| 2200         | 2.2         | 1.8        | 1.8   | 2.2                     | 2.2         | 3.2   | 2.3  | 2.4  | 3.3        | 1.9  | 2.5       | 2.7           | 3.0      |
| 2230         | 1.7         | 1.6        | 20    | 2.4                     | 2 8         | 37    | 2 6  | 3 2  | 37         | 1.8  | 3 0       | 3 2           | 10       |
| 2300         | 2 2         | 7 7        | 20    | 2 4                     | 4 1         | 2 5   | A 1  | 5.2  | र र<br>र र | 2 2  | 3.0       | 4 7           | 4 5      |
| 6/7          | 9           |            | 2.0   | <b>4</b> • <del>•</del> | <b>-</b> ., | 2.0   | 711  |      | 5.5        |      | 5.0       | <b>→</b> • 4. | J        |
| a 0,2        | ່ງຊ         | 1 6        | 1 4   | 20                      | 2 2         | 1 5   | 2 9  | ເສັ  | 1 7        |      | 1 0       | 3 7           | 5 4      |
| 30           | 1.0         | 1 0        | 1 7   | 2.0                     | 2.2         | 3 7   | 2.0  | 2.4  | 4 7        | 1.0  | 7.3       | 7.7           | 3.4      |
| 100          | 7 0         | 1.0        | 1 1   | - 2.1                   | 1 0         | 2.2   | 4 6  | 1 0  | 7.7        | 1.0  |           | J.J<br>7 9    | 4.0      |
| 170          | 2.0         | 1.3        |       | 2.5                     | 1.0         | 4.0   | 4.0  | 1.5  | 2.3        | 1.0  | 2.2       | 4.3           | 4.5      |
| 730          | 2.1         |            | 2.3   | 2.0                     | 2.1         | 4.0   | 14.1 | 7.8  | 3.3        | 2.1  | 3.9       | 3.1           |          |
| 200          | 1.9         | 2.3        | 1.8   | 3.0                     | 5.5         | 4.5   | 4.0  | 8.0  | 5./        | .2.2 | 4.3       | 6.4           | 7.5      |
| 200          | 1.5         | 3.5        | 2.1   | 2.5                     | 5.0         | 3.3   | 4.0  | 5./  | 3.1        | 2.4  | .3.5      | 4.5           | 5.1      |
| 200          | 1.5         | J.3<br>C 0 | 4.5   |                         | 8.3         | 8.7   | 2.1  | 22.0 | 3.5        | 3.4  | 5.3       | 11.4          | 28.0     |
| 330          | 3.2         | 5.9        | 4.4   | 5.7                     | 11.7        | 6.5   | 9.1  | 21.9 | 4.8        | 4.5  | 7.9       | 11.9          | 29.7     |
| 400          | 5.0         | 25.4       | 22.0  | 5.0                     | 38.1        | 26.9  | 6.5  | 73.0 | 32.9       | 17.3 | 23.4      | 37.4          | 89.9     |
| 430          | 13.9        | 9.3        | 4.3   | 36.7                    | 10.9        | 10.0  | 85.8 | 13.2 | 9.0        | 9.4  | 19.2      | 36.0          | 58.5     |
| 500          | 5.3         | 17.9       | 18.0  | 6.5                     | 26.4        | 29.3  | 11.8 | 48.9 | 25.8       | 13.5 | 20.7      | 28.8          | 53.4     |
| 528          | 9.6         | 18.4       |       | 13.0                    | 7.1         |       | 24.5 |      | •          |      |           |               |          |
| 500          | . 3.2       | 4.7        | 5.9   | 4.7                     | 7.4         | 9.5   | 13.3 | 13.8 | 13.8       | 4.8  | 7.2       | 13.6          | 20.9     |
| 630          | 8.2         | 7.1        | 9.7   | 9.2                     | 9.0         | 16.8  | 11.2 | 12.0 | 17.8       | 8.3  | 11.7      | 13.7          | 16.4     |
| 700          | 2.1         | 2.2        | 1.8   | 2.9                     | 3.ľ         | 4.3   | 6.9  | 2.8  | 5.2        | 2.0  | 3.4       | 5.0           | 8.0      |
| 730          | 1.7         | 1.3        | 1.2   | 2.1                     | 2.6         | 2.8   | 6.3  | 3.5  | 3.0        | 1.4  | 2.5       | 4.2           | 8.2      |
| 800          | 1.2         | 1.2        | 30    | 7.7                     | 1.7         | 57    | 3.5  | 2.5  | 9.7        | 1.8  | 35        | 5.2           | 64       |

BLM-4

1318

1348

. 5

. 9

1.4

. 9

.7

1.5

.8

9.2 1.3 2.2

| BLM-4 |      |       | WI  | NO DIRC | TION     | STAND | ARD DEL | IATI     | DN (c | ieg)      |          |       |             |
|-------|------|-------|-----|---------|----------|-------|---------|----------|-------|-----------|----------|-------|-------------|
|       |      |       |     | 10mi    | n Per    | iod   |         |          | !     |           |          |       |             |
|       | l m  | in Av | e   | 3m      | in Av    | e     | 1.6     | )min /   | Ave _ | 1         | /2hr     | Perio | đ           |
| Time  | #1   | #2    | #3  | * #1    | <u> </u> |       | #1      | <u> </u> | \$3   | <u>1m</u> | <u> </u> | 10m   | <u>1/2h</u> |
| 830   | 4.0  | 6.2   | 2.9 | 5.4     | 9.0      | 7.3   | 7.7     | 19.5     | 7.7   | 4.4       | 7.5      | 11.7  | 20.3        |
| 900   | 1.7  | 1.7   | 2.0 | 2.3     | 4.5      | 6.4   | 5.2     | 9.1      | 11.4  | 1.8       | 4.4      | 8.9   | 10.3        |
| 930   | 1.7  | 2.2   | 2.1 | 2.5     | 3.7      | 5.4   | 3.9     | 5.3      | 4.2   | 2.0       | 3.9      | 4.4   | 5.4         |
| 1000  | 1.9  | 2.4   | 1.7 | 4.5     | 2.9      | 3.8   | 11.3    | 4.0      | 2.7   | 2.0       | 3.7      | 6.0   | 7.9         |
| 1030  | 1.1  | 1.7   | 2.0 | 1.5     | 2.2      | 4.7   | 1.9     | 2,5      | 6.4   | 1.6       | 2.8      | 3.8   | 4.1         |
| 1100  | 1.0  | 4.1   | 1.4 | 1.9     | 15.6     | 1.6   | 3.2     | 20.8     | 1.9   | 2.2       | 6.4      | 8.6   | 17.7        |
| 1130  | 1.4  | 1.5   | 1.7 | 2.3     | 1.8      | 3.8   | 2,4     | 2.6      | 3.8   | 1.5       | 2.6      | 2.9   | 4.8         |
| 1200  | 3.9  |       |     | 7.0     |          |       | 11.8    | •        |       | 1.5       | 2.5      | 5.9   | 7.3         |
| 1300  | 4.5  | 2.3   | 2.2 | 5.9     | 3.1      | 3.9   | 9.1     | 4.1      | 3.8   | 3.1       | 4.6      | 5.7   | 5.3         |
| 1330  | 1.6  | 1.8   | 1.1 | 2.6     | 4.2      | 2.6   | 2.7     | 4.5      | 2.0   | 1.6       | 3.1      | 3.1   | 3.4         |
| 1400  | 1.1  | 1.1   | 1.5 | 1.6     | 1.9      | 2.8   | 2.9     | 2.5      | 2.4   | 1.2       | Z.I      | 2.6   | 4.9         |
| 1430. | 1.6  | 1.5   | 1.8 | 3.0     | 2.0      | 2.2   | 3.0     | 2.2      | 2.3   | 1.6       | 2.4      | 2.5   | 2.8         |
| 1500  | 1.1  | 1.2   | 1.2 | 2.0     | 1.7      | 1.4   | 2.2     | 2.1      | 1.4   | 1.2       | 1.7      | 1.9   | 13.1        |
| 1530  | .9   | .8    | 1.0 | 1.3     | 1.4      | 1.4   | 2.5     | 1.5      | 1.4   | .9        | 1.4      | 1.8   | 2.1         |
| 1500  | 1.1  | 1.0   | 1.0 | 1.6     | 1.3      | 1.6   | 1.8     | 1.5      | 1.8   | 1.0       | 1.5      | 1.7   | 1.3         |
| 1830  | 8    | .9    | .9  | 1.1     | 1.3      | 1.7   | 1.1     | 1.9      | 1.8   | .9        | 1.4      | 1.6   | 1.6         |
| 1700  | 1.2. | 1.0   | .9  | 1.4     | 1.5      | 1.3   | 1.6     | 1.9      | 1.5   | 1.0       | 1.4      | 1.7   | 2.7         |
| 1730  | 4.1. | 1.0   | .7  | 1.3     | 1.5      | 1.4   | 2.1     | 2.1      | 1.3   | .9        | 1.4      | 1.8   | 3.3         |
| 1800  | 1.2  | .9    | 7   | 1.8     | 2.1      | 1.7   | 1.9     | 2.6      | 2.3   | 1.0       | 1.9      | 2.3   | 4.0         |
| 1830  | . 3  | . 8   | .9  | .s      | 1.0      | 1.5   | 2.0     | 1.2      | 1.7   | . \$      | 1.1      | 1.5   | 2.2         |
| 1900  | .8   | . 8   | 1.0 | 1.0     | 1.5      | 1.1   | 1.9     | 2.3      | 1.1   | .9        | 1.2      | 1.8   | 3.0         |
| 6/29  |      |       |     |         |          |       |         |          |       |           |          |       |             |
| 800   | 1.3  | 2.0   | 1.9 | 2.3     | 4.5      | 5.4.  | 4.0     | 11.9     | 4.0   | 1.7       | 4.0      | 6.6   | 9.3         |
| 830   | 1.3  | 1.1   | .9  | 2.5     | 1.9      | 1.8   | 4.6     | 4.4      | 1.5   | 1.1       | 2.0      | 3.5   | 3.9         |
| 900   | 1.3  | 1.4   | 1.2 | 2.6     | 2.0      | 2.0   | 4.2     | 3.1      | 4.7   | 1.3       | 2.2      | 4.0   | 4.1         |
| 930   | 2.4  | 2.3   | 2.3 | 4.5     | 3.3      | 4.5   | 5.7     | 5.5      | 5.3   | 2.3       | 4.2      | 5.8   | 10.5        |
| 1000  | 1.9  | 1.7   | 1.4 | 2.4     | 2.6      | 5.6   | 5.9     | 4.7      | 3.7   | 1.7       | 3.5      | 4.3   | 7.2         |
| 1030  | 1.1. | 1.3   | .8  | 1.5     | 2.9      | 2.3   | 2.6     | 4.0      | 3.7   | 1.1       | 2.3      | 3.4   | 3.6         |
| 1200  | 1.1  | 1.1   | . 8 | 1.7     | 2.3      | 1.1   | 3.2     | 5.9      | 1.3   | 1.0       | 1.7      | 3.5   | 7.2         |
| 1230  | 2.3  | 1.3   | 1.5 | 3.3     | 2.5      | 3.7   | 8.2     | 3.2      | 3.5   | 1.7       | 3.2      | 5.0   | 7.1         |
| 1300  | 1.7  | 1.5   | 1.8 | 2.4     | 3.1      | 5.1   | 3.3     | 8.2      | 4.9   | 1.7       | 3.5      | 5.5   | 10.0        |
| 1330  | 1.1  | 1.0   | 1.0 | 1.2     | 2.1      | 1.2   | 2.2     | 3.0      | 1.8   | 1.0       | 1.5      | 2.3   | 7.0         |
| 1430  | .7   | .8    | . 9 | 1.5     | 1.4      | 2.1   | 2.6     | 2.2      | 1.7   | .8        | 1.7      | 2.2   | 3.1         |
| 1500  | .7   | .6    | . 4 | 1.2     | 1.0      | .7    | 3.2     | 1.7      | .7    | .5        | 1.0      | 1.9   | 3.2         |
| 1530  | 1.0  | . 8   | . 9 | 2.0     | 1.3      | 1.3   | 2.4     | 1.3      | 1.5   | .9        | 1.6      | 1.7   | 2.9         |
| 1600  | .9   | 1.9   | 1.4 | 1.1     | 3.0      | 3.2   | 2.8     | 5.3      | 2.6   | 1.4       | 2.4      | 3.5   | 11.6        |
| 1630  | . a  | 1.2   | 1.0 | 1.3     | 1.5      | 2.1   | 1.5     | 3.0      | 3.3   | 1.0       | 1.5      | 2.6   | 4.7         |
| 1700  | 1.2  | 1.0   | 1.1 | Z.0     | 1.8      | 2.5   | 4.0     | 2.7      | 2.7   | 1.1       | 2.1      | 3.i   | 5.8         |
| 1730  | 1.3  | 1.0   | 1.9 | 1.8     | 2.2      | 7.5   | 3.5     | 4.5      | 18.2  | . 1.4     | 3.8      | 8.1   | 19.0        |
| 1800  | 2.1. | 2.4   | 1.4 | 5.4     | 6.5      | 5.0   | 16.5    | 14.0     | 8.0   | 2.0       | 5.5      | 12.8  | 29.2        |
| 6/30  |      |       |     |         |          |       |         |          |       |           |          |       | · * .       |
| 652   | 2.5  | 2.2   | 2.3 | 3.7     | 2.5      | 2.7   | 3.6     | 2.9      | 2.7   | 2.3       | 3.0      | 3.0   | 3.0         |
| 722   | 2.3  | 1.4   | 2.2 | 2.6     | 1.3      | 4.5   | Z.9     | 1.9      | 3.5   | 2.0       | 2.9      | 2.9   | 3.7         |
| 926   | 1.4  | 1.4   | 1.5 | 2.3     | 1.9      | 2.1   | 3.1     | 2.3      | 2.2   | 1.4       | 2.1      | 2.5   | 2.6         |
| 1008  | 2.0  | 2.2   | 1.5 | 2.1     | 2.4      | 2.8   | 2.1     | 2.5      | 2.5   | 1.9       | 2.4      | 2:3   | 2.7         |
| 1038  | 2.1  | 1.8   | 1.7 | 2.2     | 2.5      | 2.5   | 2.5     | 2.9      | 2.4   | 1.9       | 2.4      | 2.6   | 2.8         |
| 1248  | 2.9  | 2.9   | 1.5 | 5.2     | 9.2      | 4.8   | 14.9    | 11.4     | 6.8   | 2.5       | 8.4      | 11.0  | 23.6        |

D-20

1.1 2.3

2.3

3.4 -

.7

1.4

2.1

1.9

2.2

23.6

4.9

2.0

2.9

### WIND DIRCTION STANDARD DEVIATION (deg)

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     | 10mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -iod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 m   | in Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / <b>e</b>                                                                                                                                                                                                                          | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /e-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                             | lmin A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /2hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Perio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | đ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| #1    | #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$3                                                                                                                                                                                                                                 | #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #1                                                                                                                                                                                                                                                                                                                                                                                                                                             | #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>3m</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| . 9   | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .9                                                                                                                                                                                                                                  | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.1   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 Ø                                                                                                                                                                                                                                 | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| .9    | . 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.1   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1                                                                                                                                                                                                                                 | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| .9    | . 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1                                                                                                                                                                                                                                 | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| . 8   | :.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.7   | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                 | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.5   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.5   | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5                                                                                                                                                                                                                                 | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.9   | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4                                                                                                                                                                                                                                 | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.0   | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2                                                                                                                                                                                                                                 | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.0   | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2                                                                                                                                                                                                                                 | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4                                                                                                                                                                                                                                 | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.3   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7                                                                                                                                                                                                                                 | .1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.4   | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                 | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.9   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0                                                                                                                                                                                                                                 | Z.Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| .2.0. | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4                                                                                                                                                                                                                                 | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.5   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3                                                                                                                                                                                                                                 | Z.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,9                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.4   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3                                                                                                                                                                                                                                 | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.9   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7                                                                                                                                                                                                                                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 1         .9         1.1         .91         .1         .91         .1         .91         .1         .91         .1         .91         .91         .91         .91         .91         .92         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93         .93 <tr td="">      &lt;</tr> | Imin A<br>*1 *2<br>.9 .8<br>1.1 1.0<br>.9 .9<br>1.1 1.0<br>.9 .9<br>.8 .0<br>1.7 1.3<br>1.5 1.4<br>2.5 2.9<br>1.9 1.3<br>7.0 4.0<br>7.0 4.0<br>1.0 1.5<br>1.3 1.2<br>1.4 1.3<br>1.9 1.8<br>2.0 2.1<br>1.5 2.0<br>1.4 2.0<br>1.9 1.8 | Imin Ave         #1       #2       t3         .9       .8       .9         1.1       1.0       1.0         .9       .9       1.1         1.1       1.0       1.1         .9       .9       1.1         1.1       1.0       1.1         .9       .9       1.1         1.1       1.0       1.1         .9       .9       1.1         1.7       1.3       2.0         1.5       2.9       2.5         1.9       1.3       1.4         7.0       4.0       2.2         7.0       4.0       2.2         1.0       1.5       1.4         1.3       1.2       1.7         1.4       1.3       1.5         1.9       1.8       1.0         2.0       2.1       1.4         1.5       2.0       2.3         1.4       2.0       2.3         1.9       1.8       1.7 | Imin Ave       3m         1min Ave       3m         .9       .8       .9       1.4         1.1       1.0       1.0       1.7         .9       .9       1.1       1.5         1.1       1.0       1.1       2.1         .9       .9       1.1       1.5         1.1       1.0       1.1       2.1         .9       .9       1.1       1.5         1.7       1.3       2.0       1.9         1.5       1.4       1.4       2.5         2.5       2.9       2.5       3.4         1.9       1.3       1.4       3.0         7.0       4.0       2.2       9.8         7.0       4.0       2.2       9.8         1.0       1.5       1.4       1.2         1.3       1.2       1.7       1.8         1.4       1.3       1.5       1.6         1.9       1.8       1.0       2.0         2.0       2.1       1.4       2.6         1.5       2.0       2.3       2.2         1.4       2.0       2.3       1.9         1. | Imin AveJmin Ave1min AveJmin Ave $3min Ave$ $1.5$ $1.6$ $1.7$ $1.7$ $1.8$ $1.9$ $1.8$ $1.7$ $2.2$ $2.2$ $2.3$ $3min Ave$ | Imin AveJmin Ave $1min$ AveJmin Ave $1 \pm 2 \pm 3$ $1 \pm 2 \pm 3$ .9.8.91.41.01.11.01.01.71.41.9.9.91.11.51.41.71.11.01.12.11.52.3.9.91.11.61.52.1.9.91.11.61.52.1.9.91.11.61.52.1.8.01.11.51.92.51.71.32.01.91.92.61.51.41.42.51.61.82.52.92.53.43.23.61.91.31.43.02.22.97.04.02.29.83.64.51.01.51.41.22.72.31.31.21.71.82.03.41.41.31.51.61.92.61.91.81.02.02.11.72.02.11.42.62.42.61.52.02.32.22.53.01.42.02.31.93.53.11.91.81.72.22.22.5 | Imin AveImin AveImin AveImin Ave1min Ave $3min Ave$ 101 $23$ $11$ $22$ 3 $11$ $12$ 3 $11$ $12$ 3 $11$ $12$ 3 $11$ $1.0$ 1.1 $1.0$ $1.7$ 1.4 $1.9$ 2.0.9.91.1 $1.0$ 1.1 $1.0$ 1.1 $1.0$ 1.1 $1.0$ 1.1 $1.5$ $1.4$ $1.7$ $3.9$ $9$ $9$ $9$ $1.1$ $1.5$ $2.3$ $2.8$ $.9$ $9$ $1.1$ $1.5$ $2.3$ $2.8$ $.9$ $9$ $1.1$ $1.5$ $1.9$ $2.5$ $1.8$ $1.1$ $1.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.5$ $2.9$ $2.6$ $2.9$ $1.9$ $1.8$ $1.9$ $2.6$ </td <td>Imin AveJmin AveJmin Ave10min Ave1min Ave<math>3min Ave</math>10min Ave*1*2*3*1*2*3*1*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*1.4*4*3*4*5*3*4*4*3*5*5*3*3*5*4*3*5*3*3*6*4*3*7*3*4*7*3*4*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*5*8*5*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*5*8*4*8*4*8*5*8*5*8*4*8*5*8*5*8*5*8*6*8*6<td>Imin AveImin AveImin AveImin AveImin Ave<math>12</math>10min Ave<math>11</math><math>12</math><math>3</math><math>11</math><math>12</math><math>3</math><math>11</math><math>1.1</math><math>1.0</math><math>1.0</math><math>1.7</math><math>1.4</math><math>1.9</math><math>2.0</math><math>1.2</math><math>2.0</math><math>.9</math><math>.9</math><math>1.1</math><math>1.5</math><math>1.4</math><math>1.7</math><math>3.0</math><math>1.8</math><math>2.0</math><math>.9</math><math>.9</math><math>1.1</math><math>1.5</math><math>1.4</math><math>1.7</math><math>3.0</math><math>1.8</math><math>2.0</math><math>1.1</math><math>1.0</math><math>1.1</math><math>2.1</math><math>1.5</math><math>2.3</math><math>2.8</math><math>2.1</math><math>2.1</math><math>.9</math><math>.9</math><math>1.1</math><math>1.5</math><math>1.4</math><math>1.7</math><math>3.0</math><math>1.8</math><math>2.0</math><math>1.1</math><math>1.0</math><math>1.1</math><math>1.5</math><math>1.4</math><math>1.7</math><math>3.0</math><math>1.8</math><math>2.0</math><math>1.1</math><math>1.6</math><math>1.5</math><math>2.1</math><math>2.8</math><math>1.5</math><math>2.1</math><math>.9</math><math>9</math><math>1.1</math><math>1.5</math><math>1.9</math><math>2.5</math><math>1.8</math><math>2.4</math><math>1.6</math><math>1.7</math><math>1.3</math><math>2.0</math><math>1.9</math><math>1.9</math><math>2.5</math><math>1.8</math><math>2.0</math><math>2.1</math><math>2.5</math><math>2.9</math><math>2.5</math><math>3.4</math><math>3.2</math><math>3.5</math><math>15.1</math><math>4.7</math><math>3.3</math><math>1.9</math><math>1.3</math><math>1.4</math><math>3.0</math><math>2.2</math><math>2.9</math><math>5.1</math><math>2.7</math><math>3.3</math><math>1.9</math><math>1.3</math><math>1.4</math><math>3.0</math><math>2.2</math><math>2.9</math><math>5.1</math><math>2.7</math><math>3.3</math><math>1.9</math><math>1.8</math><math>1.0</math><math>2.0</math><math>2.1</math><math>2.7</math><math>2.</math></td><td>10min Period1min Ave3min Ave10min Ave1<math>\frac{1}{2}</math><math>\frac{2}{3}</math><math>\frac{3}{21}</math><math>\frac{1}{2}</math><math>\frac{2}{3}</math><math>\frac{1}{1}</math><math>\frac{1}{2}</math><math>\frac{1}{3}</math>.9.8.91.41.01.72.01.42.1.81.11.01.01.71.41.92.01.22.01.0.9.91.11.51.41.73.01.82.01.0.9.91.11.51.41.73.01.82.01.0.9.91.11.52.32.82.12.11.1.9.91.11.52.32.82.12.11.1.9.91.11.51.92.51.82.41.61.01.71.32.01.91.92.52.92.12.41.61.01.71.32.01.91.92.62.92.12.41.61.01.51.41.42.51.61.82.82.02.11.42.52.92.53.43.23.64.64.03.82.71.91.31.43.02.22.95.12.73.51.67.04.02.29.83.64.515.14.73.34.51.01.61.41.22.72.31.46.52.</td><td>10min Period10min Ave10min Ave1/2hr<math>1 = 1 = 2 = 23</math><math>3 = 1 = 42 = 23</math><math>3 = 1 = 42</math><math>3 = 1 = 42</math><math>3 = 1 = 33</math><math>1 = 33</math><math>1 = 33</math><math>.9 = .8 = .9</math><math>.9 = 1.4</math><math>1.0 = 1.7</math><math>1.4 = 1.9</math><math>2.0 = 1.4 = 2.0</math><math>1.4 = 2.1</math><math>.8 = 1.4</math><math>1.1 = 1.0 = 1.0</math><math>1.7 = 1.4 = 1.9</math><math>2.0 = 1.2 = 2.0</math><math>1.0 = 1.6</math><math>1.9 = 2.9</math><math>1.2 = 2.0 = 1.0</math><math>1.6 = 1.5</math><math>.9 = .9 = 1.1</math><math>1.5 = 1.4 = 1.7</math><math>3.0 = 1.8 = 2.0 = 1.0</math><math>1.0 = 1.6</math><math>1.1 = 0 = 1.1</math><math>1.6 = 1.5 = 2.1</math><math>2.8 = 1.3 = 2.1 = 1.0 = 1.9</math><math>.8 = 0 = 1.1</math><math>1.5 = 1.9 = 2.5 = 1.8 = 2.4 = 1.6 = 1.0 = 1.9</math><math>1.7 = 1.3 = 2.0 = 1.9 = 1.9 = 2.6 = 2.9 = 2.1 = 2.4 = 1.6 = 2.1</math><math>1.5 = 1.4 = 1.4 = 2.5 = 1.6 = 1.8 = 2.8 = 2.0 = 2.1 = 1.4 = 2.0</math><math>2.5 = 2.9 = 2.5 = 3.4 = 3.2 = 3.6 = 4.6 = 4.0 = 3.8 = 2.7 = 3.5</math><math>1.9 = 1.3 = 1.4 = 3.0 = 2.2 = 2.9 = 5.1 = 2.7 = 3.5 = 1.6 = 2.7</math><math>7.0 = 4.0 = 2.2 = 9.8 = 3.6 = 4.5 = 15.1 = 4.7 = 3.3 = 4.5 = 0.0</math><math>7.0 = 4.0 = 2.2 = 9.8 = 3.6 = 4.5 = 15.1 = 4.7 = 3.3 = 4.5 = 0.0</math><math>1.0 = 1.5 = 1.4 = 1.2 = 2.7 = 2.3 = 1.4 = 2.8 = 1.3 = 2.1 = 1.3 = 1.2 = 1.7 = 1.8 = 2.0 = 3.4 = 2.0 = 2.2 = 2.5 = 1.4 = 2.4 = 1.4 = 1.3 = 1.5 = 1.6 = 1.9 = 2.6 = 1.8 = 2.2 = 3.0 = 1.4 = 2.0 = 1.9 = 1.9 = 1.0 = 2.0 = 2.1 = 1.7 = 2.1 = 2.1 = 1.5 = 1.5 = 1.9 = 2.0 = 2.1 = 1.4 = 2.6 = 2.4 = 2.6 = 3.7 = 2.8 = 2.3 = 1.8 = 2.5 = 1.5 = 2.0 = 2.3 = 2.2 = 2.5 = 3.0 = 2.9 = 2.8 = 3.3 = 1.9 = 2.6 = 1.4 = 2.0 = 2.3 = 1.9 = 3.5 = 3.1 = 2.0 = 4.3 = 3.1 = 9 = 2.8 = 1.9 = 1.8 = 1.7 = 2.2 = 2.2 = 2.5 = 2.7 = 2.2 = 2.5 = 1.6 = 2.3 = 1.9 = 2.8 = 1.9 = 1.8 = 1.7 = 2.2 = 2.2 = 2.5 = 2.7 = 2.2 = 2.5 = 1.6 = 2.3 = 1.9 = 1.8 = 1.7 = 2.</math></td><td>10min Period1min Ave3min Ave10min Ave1/2hr Period<math>\frac{1}{2}</math><math>\frac{2}{3}</math><math>\frac{3}{21}</math><math>\frac{2}{2}</math><math>\frac{3}{3}</math><math>\frac{1}{2}</math><math>\frac{2}{3}</math><math>\frac{1}{1}</math><math>\frac{2}{2}</math><math>\frac{3}{3}</math><math>\frac{1}{1}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math></td></td> | Imin AveJmin AveJmin Ave10min Ave1min Ave $3min Ave$ 10min Ave*1*2*3*1*2*3*1*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*2*3*1*1.4*4*3*4*5*3*4*4*3*5*5*3*3*5*4*3*5*3*3*6*4*3*7*3*4*7*3*4*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*5*8*5*8*4*8*4*8*4*8*4*8*4*8*4*8*4*8*5*8*4*8*4*8*5*8*5*8*4*8*5*8*5*8*5*8*6*8*6 <td>Imin AveImin AveImin AveImin AveImin Ave<math>12</math>10min Ave<math>11</math><math>12</math><math>3</math><math>11</math><math>12</math><math>3</math><math>11</math><math>1.1</math><math>1.0</math><math>1.0</math><math>1.7</math><math>1.4</math><math>1.9</math><math>2.0</math><math>1.2</math><math>2.0</math><math>.9</math><math>.9</math><math>1.1</math><math>1.5</math><math>1.4</math><math>1.7</math><math>3.0</math><math>1.8</math><math>2.0</math><math>.9</math><math>.9</math><math>1.1</math><math>1.5</math><math>1.4</math><math>1.7</math><math>3.0</math><math>1.8</math><math>2.0</math><math>1.1</math><math>1.0</math><math>1.1</math><math>2.1</math><math>1.5</math><math>2.3</math><math>2.8</math><math>2.1</math><math>2.1</math><math>.9</math><math>.9</math><math>1.1</math><math>1.5</math><math>1.4</math><math>1.7</math><math>3.0</math><math>1.8</math><math>2.0</math><math>1.1</math><math>1.0</math><math>1.1</math><math>1.5</math><math>1.4</math><math>1.7</math><math>3.0</math><math>1.8</math><math>2.0</math><math>1.1</math><math>1.6</math><math>1.5</math><math>2.1</math><math>2.8</math><math>1.5</math><math>2.1</math><math>.9</math><math>9</math><math>1.1</math><math>1.5</math><math>1.9</math><math>2.5</math><math>1.8</math><math>2.4</math><math>1.6</math><math>1.7</math><math>1.3</math><math>2.0</math><math>1.9</math><math>1.9</math><math>2.5</math><math>1.8</math><math>2.0</math><math>2.1</math><math>2.5</math><math>2.9</math><math>2.5</math><math>3.4</math><math>3.2</math><math>3.5</math><math>15.1</math><math>4.7</math><math>3.3</math><math>1.9</math><math>1.3</math><math>1.4</math><math>3.0</math><math>2.2</math><math>2.9</math><math>5.1</math><math>2.7</math><math>3.3</math><math>1.9</math><math>1.3</math><math>1.4</math><math>3.0</math><math>2.2</math><math>2.9</math><math>5.1</math><math>2.7</math><math>3.3</math><math>1.9</math><math>1.8</math><math>1.0</math><math>2.0</math><math>2.1</math><math>2.7</math><math>2.</math></td> <td>10min Period1min Ave3min Ave10min Ave1<math>\frac{1}{2}</math><math>\frac{2}{3}</math><math>\frac{3}{21}</math><math>\frac{1}{2}</math><math>\frac{2}{3}</math><math>\frac{1}{1}</math><math>\frac{1}{2}</math><math>\frac{1}{3}</math>.9.8.91.41.01.72.01.42.1.81.11.01.01.71.41.92.01.22.01.0.9.91.11.51.41.73.01.82.01.0.9.91.11.51.41.73.01.82.01.0.9.91.11.52.32.82.12.11.1.9.91.11.52.32.82.12.11.1.9.91.11.51.92.51.82.41.61.01.71.32.01.91.92.52.92.12.41.61.01.71.32.01.91.92.62.92.12.41.61.01.51.41.42.51.61.82.82.02.11.42.52.92.53.43.23.64.64.03.82.71.91.31.43.02.22.95.12.73.51.67.04.02.29.83.64.515.14.73.34.51.01.61.41.22.72.31.46.52.</td> <td>10min Period10min Ave10min Ave1/2hr<math>1 = 1 = 2 = 23</math><math>3 = 1 = 42 = 23</math><math>3 = 1 = 42</math><math>3 = 1 = 42</math><math>3 = 1 = 33</math><math>1 = 33</math><math>1 = 33</math><math>.9 = .8 = .9</math><math>.9 = 1.4</math><math>1.0 = 1.7</math><math>1.4 = 1.9</math><math>2.0 = 1.4 = 2.0</math><math>1.4 = 2.1</math><math>.8 = 1.4</math><math>1.1 = 1.0 = 1.0</math><math>1.7 = 1.4 = 1.9</math><math>2.0 = 1.2 = 2.0</math><math>1.0 = 1.6</math><math>1.9 = 2.9</math><math>1.2 = 2.0 = 1.0</math><math>1.6 = 1.5</math><math>.9 = .9 = 1.1</math><math>1.5 = 1.4 = 1.7</math><math>3.0 = 1.8 = 2.0 = 1.0</math><math>1.0 = 1.6</math><math>1.1 = 0 = 1.1</math><math>1.6 = 1.5 = 2.1</math><math>2.8 = 1.3 = 2.1 = 1.0 = 1.9</math><math>.8 = 0 = 1.1</math><math>1.5 = 1.9 = 2.5 = 1.8 = 2.4 = 1.6 = 1.0 = 1.9</math><math>1.7 = 1.3 = 2.0 = 1.9 = 1.9 = 2.6 = 2.9 = 2.1 = 2.4 = 1.6 = 2.1</math><math>1.5 = 1.4 = 1.4 = 2.5 = 1.6 = 1.8 = 2.8 = 2.0 = 2.1 = 1.4 = 2.0</math><math>2.5 = 2.9 = 2.5 = 3.4 = 3.2 = 3.6 = 4.6 = 4.0 = 3.8 = 2.7 = 3.5</math><math>1.9 = 1.3 = 1.4 = 3.0 = 2.2 = 2.9 = 5.1 = 2.7 = 3.5 = 1.6 = 2.7</math><math>7.0 = 4.0 = 2.2 = 9.8 = 3.6 = 4.5 = 15.1 = 4.7 = 3.3 = 4.5 = 0.0</math><math>7.0 = 4.0 = 2.2 = 9.8 = 3.6 = 4.5 = 15.1 = 4.7 = 3.3 = 4.5 = 0.0</math><math>1.0 = 1.5 = 1.4 = 1.2 = 2.7 = 2.3 = 1.4 = 2.8 = 1.3 = 2.1 = 1.3 = 1.2 = 1.7 = 1.8 = 2.0 = 3.4 = 2.0 = 2.2 = 2.5 = 1.4 = 2.4 = 1.4 = 1.3 = 1.5 = 1.6 = 1.9 = 2.6 = 1.8 = 2.2 = 3.0 = 1.4 = 2.0 = 1.9 = 1.9 = 1.0 = 2.0 = 2.1 = 1.7 = 2.1 = 2.1 = 1.5 = 1.5 = 1.9 = 2.0 = 2.1 = 1.4 = 2.6 = 2.4 = 2.6 = 3.7 = 2.8 = 2.3 = 1.8 = 2.5 = 1.5 = 2.0 = 2.3 = 2.2 = 2.5 = 3.0 = 2.9 = 2.8 = 3.3 = 1.9 = 2.6 = 1.4 = 2.0 = 2.3 = 1.9 = 3.5 = 3.1 = 2.0 = 4.3 = 3.1 = 9 = 2.8 = 1.9 = 1.8 = 1.7 = 2.2 = 2.2 = 2.5 = 2.7 = 2.2 = 2.5 = 1.6 = 2.3 = 1.9 = 2.8 = 1.9 = 1.8 = 1.7 = 2.2 = 2.2 = 2.5 = 2.7 = 2.2 = 2.5 = 1.6 = 2.3 = 1.9 = 1.8 = 1.7 = 2.</math></td> <td>10min Period1min Ave3min Ave10min Ave1/2hr Period<math>\frac{1}{2}</math><math>\frac{2}{3}</math><math>\frac{3}{21}</math><math>\frac{2}{2}</math><math>\frac{3}{3}</math><math>\frac{1}{2}</math><math>\frac{2}{3}</math><math>\frac{1}{1}</math><math>\frac{2}{2}</math><math>\frac{3}{3}</math><math>\frac{1}{1}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{1}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math><math>\frac{3}{2}</math></td> | Imin AveImin AveImin AveImin AveImin Ave $12$ 10min Ave $11$ $12$ $3$ $11$ $12$ $3$ $11$ $1.1$ $1.0$ $1.0$ $1.7$ $1.4$ $1.9$ $2.0$ $1.2$ $2.0$ $.9$ $.9$ $1.1$ $1.5$ $1.4$ $1.7$ $3.0$ $1.8$ $2.0$ $.9$ $.9$ $1.1$ $1.5$ $1.4$ $1.7$ $3.0$ $1.8$ $2.0$ $1.1$ $1.0$ $1.1$ $2.1$ $1.5$ $2.3$ $2.8$ $2.1$ $2.1$ $.9$ $.9$ $1.1$ $1.5$ $1.4$ $1.7$ $3.0$ $1.8$ $2.0$ $1.1$ $1.0$ $1.1$ $1.5$ $1.4$ $1.7$ $3.0$ $1.8$ $2.0$ $1.1$ $1.6$ $1.5$ $2.1$ $2.8$ $1.5$ $2.1$ $.9$ $9$ $1.1$ $1.5$ $1.9$ $2.5$ $1.8$ $2.4$ $1.6$ $1.7$ $1.3$ $2.0$ $1.9$ $1.9$ $2.5$ $1.8$ $2.0$ $2.1$ $2.5$ $2.9$ $2.5$ $3.4$ $3.2$ $3.5$ $15.1$ $4.7$ $3.3$ $1.9$ $1.3$ $1.4$ $3.0$ $2.2$ $2.9$ $5.1$ $2.7$ $3.3$ $1.9$ $1.3$ $1.4$ $3.0$ $2.2$ $2.9$ $5.1$ $2.7$ $3.3$ $1.9$ $1.8$ $1.0$ $2.0$ $2.1$ $2.7$ $2.$ | 10min Period1min Ave3min Ave10min Ave1 $\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{21}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ .9.8.91.41.01.72.01.42.1.81.11.01.01.71.41.92.01.22.01.0.9.91.11.51.41.73.01.82.01.0.9.91.11.51.41.73.01.82.01.0.9.91.11.52.32.82.12.11.1.9.91.11.52.32.82.12.11.1.9.91.11.51.92.51.82.41.61.01.71.32.01.91.92.52.92.12.41.61.01.71.32.01.91.92.62.92.12.41.61.01.51.41.42.51.61.82.82.02.11.42.52.92.53.43.23.64.64.03.82.71.91.31.43.02.22.95.12.73.51.67.04.02.29.83.64.515.14.73.34.51.01.61.41.22.72.31.46.52. | 10min Period10min Ave10min Ave1/2hr $1 = 1 = 2 = 23$ $3 = 1 = 42 = 23$ $3 = 1 = 42$ $3 = 1 = 42$ $3 = 1 = 33$ $1 = 33$ $1 = 33$ $.9 = .8 = .9$ $.9 = 1.4$ $1.0 = 1.7$ $1.4 = 1.9$ $2.0 = 1.4 = 2.0$ $1.4 = 2.1$ $.8 = 1.4$ $1.1 = 1.0 = 1.0$ $1.7 = 1.4 = 1.9$ $2.0 = 1.2 = 2.0$ $1.0 = 1.6$ $1.9 = 2.9$ $1.2 = 2.0 = 1.0$ $1.6 = 1.5$ $.9 = .9 = 1.1$ $1.5 = 1.4 = 1.7$ $3.0 = 1.8 = 2.0 = 1.0$ $1.0 = 1.6$ $1.1 = 0 = 1.1$ $1.6 = 1.5 = 2.1$ $2.8 = 1.3 = 2.1 = 1.0 = 1.9$ $.8 = 0 = 1.1$ $1.5 = 1.9 = 2.5 = 1.8 = 2.4 = 1.6 = 1.0 = 1.9$ $1.7 = 1.3 = 2.0 = 1.9 = 1.9 = 2.6 = 2.9 = 2.1 = 2.4 = 1.6 = 2.1$ $1.5 = 1.4 = 1.4 = 2.5 = 1.6 = 1.8 = 2.8 = 2.0 = 2.1 = 1.4 = 2.0$ $2.5 = 2.9 = 2.5 = 3.4 = 3.2 = 3.6 = 4.6 = 4.0 = 3.8 = 2.7 = 3.5$ $1.9 = 1.3 = 1.4 = 3.0 = 2.2 = 2.9 = 5.1 = 2.7 = 3.5 = 1.6 = 2.7$ $7.0 = 4.0 = 2.2 = 9.8 = 3.6 = 4.5 = 15.1 = 4.7 = 3.3 = 4.5 = 0.0$ $7.0 = 4.0 = 2.2 = 9.8 = 3.6 = 4.5 = 15.1 = 4.7 = 3.3 = 4.5 = 0.0$ $1.0 = 1.5 = 1.4 = 1.2 = 2.7 = 2.3 = 1.4 = 2.8 = 1.3 = 2.1 = 1.3 = 1.2 = 1.7 = 1.8 = 2.0 = 3.4 = 2.0 = 2.2 = 2.5 = 1.4 = 2.4 = 1.4 = 1.3 = 1.5 = 1.6 = 1.9 = 2.6 = 1.8 = 2.2 = 3.0 = 1.4 = 2.0 = 1.9 = 1.9 = 1.0 = 2.0 = 2.1 = 1.7 = 2.1 = 2.1 = 1.5 = 1.5 = 1.9 = 2.0 = 2.1 = 1.4 = 2.6 = 2.4 = 2.6 = 3.7 = 2.8 = 2.3 = 1.8 = 2.5 = 1.5 = 2.0 = 2.3 = 2.2 = 2.5 = 3.0 = 2.9 = 2.8 = 3.3 = 1.9 = 2.6 = 1.4 = 2.0 = 2.3 = 1.9 = 3.5 = 3.1 = 2.0 = 4.3 = 3.1 = 9 = 2.8 = 1.9 = 1.8 = 1.7 = 2.2 = 2.2 = 2.5 = 2.7 = 2.2 = 2.5 = 1.6 = 2.3 = 1.9 = 2.8 = 1.9 = 1.8 = 1.7 = 2.2 = 2.2 = 2.5 = 2.7 = 2.2 = 2.5 = 1.6 = 2.3 = 1.9 = 1.8 = 1.7 = 2.$ | 10min Period1min Ave3min Ave10min Ave1/2hr Period $\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{21}$ $\frac{2}{2}$ $\frac{3}{3}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{1}$ $\frac{2}{2}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Appendix E

#### LISTING OF DATA FILES

This listing of the data files used to process these data is presented only for possible future reference. The listing shows the following

Tape-Track-File on original HP9825 cassettes Date Start Time-End Time for the data collection period Total Elapsed Time Averaging Time for each wind average in the period Number of wind averages in the period

A line through a listing indicates that file was not used for these data. The "S"s indicate the files for which stationary conditions existed.

| らーら                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v                                                                                                                                                                                                                                                                               | i vv v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                 | // 80 8 / 8 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                           | 40000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1647:00-1717:00<br>1109:49-1137:00<br>1206:46-1233:03<br>1303:01-1329:01<br>1358:46-1425:00<br>1358:46-1425:00<br>1358:46-1233:03<br>1358:46-1233:03<br>1355:08-1535:00<br>1646:53-1713:00<br>1743:02-1809:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 071654-074301<br>091750-094500<br>101454-104101<br>1139554-120600<br>133155-120600<br>133155-130200<br>1331554-130200<br>1427554-145400<br>152403-1550000<br>1519559-17450000<br>151559-1742000000000000000000000000000000000000                                                | 1239:00-1307:00<br>1340:00-1307:00<br>1347:56-1504:00<br>1534:05-1600:01<br>1712:00-1740:00<br>1149:16-1217:01<br>1149:16-1217:01<br>1244:49-151:00<br>1344:49-151:01<br>1349:02-1415:00<br>1349:02-1415:00<br>1558:05-1626:02<br>1558:05-1626:02<br>1558:05-1626:02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 09/24<br>09/24<br>09/24<br>09/24<br>09/24<br>09/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09/27<br>09/27<br>09/27<br>09/27<br>09/27<br>09/27<br>09/27<br>09/27<br>09/27                                                                                                                                                                                                   | 09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/299<br>09/29<br>09/29<br>09/29<br>09/29<br>00/29<br>00/29<br>00/29<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/20<br>00/200000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11<br>994<br>1995<br>1945<br>1945<br>1945<br>1945<br>1945<br>194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0                                                                                                                                                                                                 | ο<br>ο<br>ο<br>ο<br>ο<br>ο<br>ο<br>ο<br>ο<br>ο<br>ο<br>ο<br>ο<br>ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25.98 1<br>1 1 2 2 2 2 1<br>2 2 2 2 2 2 1<br>2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30.0<br>286.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>266.2<br>2 | 2000 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                        | 0444003000000<br>044400300000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 | ស៊ីលីលីលីលីលីលីលីលីលីល៉ឺរ៉េណីលីលី                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23 1612:00-1642:00<br>24 1538:53-1205:00<br>24 1238:53-1205:00<br>24 1234:48-1301:02<br>24 1330:47-1357:00<br>24 1523:08-1549:00<br>24 1523:08-1549:00<br>24 1618:57-1645:03<br>24 1618:57-1645:03<br>24 1618:57-1645:03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27 0647.90 0715.00<br>27 0831:00-0859:00<br>27 0946:57-1013:02<br>27 1110:00-1138:02<br>27 1207:52-1234:02<br>27 1303:52-1234:02<br>27 1359:54-1426:00<br>27 1359:54-1426:00<br>27 1359:55-1236:00<br>27 1551:55-1214:03<br>27 1541:05-1714:03                                  | 27 1840:11-1906:02<br>28 1308:55-1335:00<br>28 1409:57-1335:00<br>28 1505:57-1335:00<br>28 1505:57-15325:00<br>28 1505:57-15325:00<br>28 1505:57-15325:00<br>28 1505:57-15325:00<br>29 1218:59-1245:00<br>29 1321:21-1347:00<br>29 1521:21-1347:00<br>29 1521:21-1443:00<br>29 1521:21-1560:02<br>29 1521:02-1550:02<br>29 1521:03-1560:02<br>29 1520:02<br>29 1520:03-1560:02<br>29 1520:03-1560:02<br>29 1520:03-1560:02<br>29 1520:03-1560:02<br>29 1520:03-1560:02<br>29 1520:03-1560:02<br>29 1520:03-1560:02<br>29 1520:03-1560:02<br>20 1520:03-1560:03<br>20 1520:03-1560:03<br>20 1520:03-1560:03<br>20 1520:03-1560:03<br>20 1520:03-1560:03<br>20 1520:03-1560:03<br>20 1520:03<br>20 |
| 09/23 1612:00-1642:00<br>09/23 1721:00-1749:03<br>09/24 1138:53-1205:00<br>09/24 1234:48-1301:02<br>09/24 1330:47-1357:00<br>09/24 1320:47-1357:00<br>09/24 1523:08-1549:00<br>09/24 1523:08-1549:00<br>09/24 1518:57-1645:03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09/27 0647:90-0715:00<br>09/27 0831:00-0859:00<br>09/27 0946:57-1013:02<br>09/27 1110:00-1138:02<br>09/27 1303:52-1330:02<br>09/27 1303:52-1330:00<br>09/27 1359:54-1426:00<br>09/27 1359:55-1426:00<br>09/27 1551:55-1618:01<br>09/27 1551:55-1714:03<br>09/27 1541:09-1810:01 | 09/27       1840:11-1906:02         09/28       1308:55-1335:00         09/28       1308:55-1335:00         09/28       1409:57-1436:01         09/28       1505:57-1436:01         09/28       1505:57-1532:00         09/28       1505:57-1532:00         09/28       1602:01-1628:00         09/28       1637:50-1904:00         09/29       1218:59-1245:00         09/29       1321:21-1347:00         09/29       1321:21-1347:00         09/29       1546:59-1443:00         09/29       1321:21-1347:00         09/29       1516:59-1443:00         09/29       1523:58-1750:00         09/29       1820:03-1640:00         09/29       1820:03-1640:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

WLN Cruise

GLM Cruise 2

14.7

|   | 29.3                                        | - A C             | 1 0 0<br>1 4    | 29.0              | 29.2              | 29.0              | 29.0              | 28.9              | 29.0              | 29.2              | 29.3              | 29.0              | 29.0              | 29.0              | 28,9              | 28.4            | 29.1              | 29.2              | 30.0            | 28,9            | 29.2                                   | 11.8              | 29.2              | 29.2            | 29.1              | 29.1              | 29.1              | 29.1                                                            | 18.8                 | 29.2              | 28.9              | 29.0                   | 29.1              | 29.1            | 29.0              | 29.0              | 29.1               | 29.0              |
|---|---------------------------------------------|-------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------|-------------------|-------------------|-----------------|-----------------|----------------------------------------|-------------------|-------------------|-----------------|-------------------|-------------------|-------------------|-----------------------------------------------------------------|----------------------|-------------------|-------------------|------------------------|-------------------|-----------------|-------------------|-------------------|--------------------|-------------------|
|   | 0834:47-0904:02                             | 1135552-1425101   | 1512126-1542.01 | 1612:59-1642:01   | 1712:47-1742:00   | 1812:59-1842:00   | 1912159-1942:00   | 1203108-1232100   | 00:050-03-1320:00 | 1420:51-1450:00   | 1151:45-1221:02   | 1310:02-1339:00   | 1410:03-1439:01   | 1510:02-1539:01   | 1610:08-1639:00   | 1710:35-1739:00 | 0822:55-0852:00   | 1019:47-1049:00   | 1269:00-1239:00 | 1310106-1339100 | 1409:51-1439:00                        | 1509151-1521:36   | 1559:50-1629:00   | 1659:51-1729:00 | 1130:54-1200:00   | 1230:54-1300:00   | 1330:55-1400:00   | 1430:54-1500:00                                                 | 1441:57-1500:44      | 1552:50-1622:02   | 1653:05-1722:00   | 0939:01-1008:00        | 1050:57-1120:02   | 1150:54-1220:00 | 1250:58-1320:00   | 1350:59-1420:00   | 1450:57-1520:00    | 1550:59-1620:00   |
|   | 01/02                                       | 01/10             | 01/06           | 01/06             | 01/06             | 01/00             | 01/06             | 01/02             | 01/07             | 01/07             | 01/09             | 01/09             | 01/09             | 0110              | 0110              | 01/09           | 01/13             | E1/10             | 01/13           | C1/10           | 01/13                                  | 01/13             | E1/10             | E1/10           | 01/14             | 01/14             | 01/14             | 01/14                                                           | 01/15                | 01/15             | 01/15             | 01/15                  | 01/16             | 01/16           | 01/16             | 01/16             | 01/16              | 01/16             |
| , | 202                                         | 2-0-22            | 2-0-27          | 2-0-29            | 2-0-31            | 2-0-33            | 2-0-35            | 2-0-37            | 2-0-39            | 2-0-41            | 2-0-43            | 2-0-45            | 2-0-47            | 2-0-49            | 2-0-51            | 2-0-23          | 2-0-52            | 2-0-57            | 2-0-59          | 2-1- 1          | 2-1-3                                  | 2-1-5             | 2-1-7             | 2-1-9           | 2-1-11            | 2-1-13            | 2-1-12            | 2-1-17                                                          | 2-1-19               | 2-1-21            | 2-1-23            | 2-1-20                 | 2-1-27            | 2-1-29          | 2-1-31            | 2-1-33            | 2-1-25             | 2-1-37            |
|   | r<br>                                       | 011               | 111             | 111               | 110               | 110               | 110               | 111               | 112               | 110               | 110               | 111               | 110               | 109               | 109               | 109             | 107               | 127               | 125             | 125             | 127                                    | 127               | 126               | 126             | 129               | 127               | 127               | 126                                                             | 128                  | 130               | 126               | 125                    | 127               | 126             | 126               | 126               | -91                | 125 5             |
|   | 4.9.17.4                                    | 29.8 15.8         | 9.1 15.7        | 29.1 15.7         | 29.0 15.8         | 29.1 15.9         | 29.0 15.8         | 29.4 15.9         | 29.5 15.8         | 27.1 15.9         | 9.4 16.0          | 9.5 16.0          | 29.1 12.B         | 28.9 15.9         | 9.8 15.9          | 4.9 15.9        | 28.4 15.9         | 29.4 13.9         | 28.9 13.9       | 18.9 13.9       | 9.2 13.8                               | 9.2 13.8          | 29.0 13.8         | 9.2 13.9        | 29.7 13.8         | 29.1 13.8         | 29.2 <b>1</b> 3.8 | 29.1 13.9                                                       | 27.4 13.8            | 54.9 13.8         | 29.0 13.8         | 29.2 14.0              | 29.3 13.8         | 29.0 13.8       | 29.1 13.8         | 29.1 13.B         | <del>.0100.9</del> | 29.0 13.9         |
|   | <u>+618+86-1624+85</u><br>+420-27-4455+00 5 | 1325114-1355100 2 | 1425:57-1455:03 | 1542:58-1612:02 2 | 1642:58-1712:00 2 | 1742:5/~1812:01 2 | 1842;58-1912:00 2 | 1132:35-1202:01 2 | 1250:35-2320:03 2 | 1350:54-/420:00 2 | 1119:39-1149:00 2 | 1239130-1309:01 2 | 1339:58-1409:01 2 | 1440:05-1509:00 2 | 1540:12-1609:00 2 |                 | 1740:35-1809:00 2 | 0918:39-0948:00 2 |                 | 1240:06-1309:00 | 1339159-1469103 2                      | 1439:49-1509:01 2 | 1529:59-1557:00 2 | 1629:51-1659:00 | 1100:17-1130:01 2 | 1200:52-1230:00 2 |                   | 2 00:020-042:00+1<br>2 00:020-020-020-020-020-020-020-020-020-0 | 1411:34-1441:00<br>2 | 2 10:2551-60:2251 | 1622159-1652:01 2 | 0908:47-0938:00 2      | 1020:43-1050:00 2 |                 | 1220:57-1250:01 2 | 1320:58-1350:01 2 | <u> </u>           | 1520:59-1550:00 2 |
|   | 40/40-                                      | 01/05             | 01/06           | 01/06             | 01/06             | 01/06             | 01/05             | 01/07             | 01/07             | 01/07             | 01/09             | 01/09             | 01/09             | 01/09             | 01/09             | 01/09           | 01/09             | 01/13             | 21/10           | 01/13           | E1/10                                  | 01/13             | 01/13             | 01/13           | 01/14             | 01/14             | 01/14             | 01/14                                                           |                      | 21/10             | 21/10             | 01/16                  | 01/16             | 01/10           | 91/16             | 01/16             | -#+/+6-            | 01/16             |
| : |                                             | 2-0-04            | 2-0-26          | 2-0-28            | 2-0-30            | 2-0-32            | 2-0-34            | 2-0-36            | 2-0-38            | 2-0-40            | 2-0-42            | 2-0-44            | 2-0-46            | 2-0-48            | 2-0-2             |                 | 2-0-24            | 2-0-26            | 2-0-28          | 2-0-00          | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 2-1-4<br>         | 2-1-6             | 2- <b>1</b> -8  |                   | 2-1-12            |                   |                                                                 |                      |                   |                   | 4 2 - 1 - 2<br>- 1 - 2 |                   |                 | 2-1-30<br>2-1-30  | NO-T-N            |                    | 2-1-36            |

SS

13.7 13.7 13.9 13.9 13.9

| N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 444444<br>199966<br>1999669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8 6 6 8<br>1 3 7 8 1 8 1 8 1 9 1 8 1 1 1 1 1 1 1 1 1 1 1 |
| 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 01/16 1650:59-1720:00<br>01/16 1751:00-1820:02<br>01/16 1851:01-1920:00<br>01/16 1951:03-2020:00<br>01/16 2051:02-2120:00<br>01/16 2151:02-2120:01<br>01/16 2151:02-2220:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1555<br>1555<br>1555<br>1555<br>1555<br>1555<br>1555<br>155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29.0 13.9<br>29.0 13.9<br>29.0 13.9<br>29.0 13.9<br>29.0 13.9<br>29.0 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 01/16 $1621:00-1650:0001/16$ $1721:00-1750:0001/16$ $1821:03-1850:0001/16$ $1921:03-1850:0001/16$ $2021:02-2050:0001/16$ $2121:03-2250:0001/16$ $2221:03-2250:00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22-1-38<br>22-1-38<br>22-1-40<br>22-1-40<br>22-1-44<br>24-44<br>24-45<br>1-46<br>84-45<br>1-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

ういた

2000000

Like Lund

President and

S.C.L.L.L.O

Ĩ.

сц Г

**BLM Cruise** 

- -

.

ł

シャンション 法律学会 シャン・マング 住職の人 たたい たいままたい

BLA Cruss

m

| i -0- 1                               | 12/05   | 1438:35-1448:00                                             | 9.4 14.1  | 40  | 1-0-2      | 12/06  | 1046.18-1116.00 | 1 41 6 66   | 761                 |
|---------------------------------------|---------|-------------------------------------------------------------|-----------|-----|------------|--------|-----------------|-------------|---------------------|
| í 0 3                                 | 12/06   | 1117:11-1146:01                                             | 28.8 14.1 | 123 | 1-0-4      | 12/07  | 0718:00-0748:00 |             | 0 0<br>0 7          |
| 1-0-2                                 | 12/07   | 0748:58-0818:01                                             | 29.1 13.9 | 125 | 1-0-6      | 12/07  | 0818:55-0848:00 | 29.1 14.0   | - 20<br>- 20<br>- 7 |
| 1-0-1                                 | 12/08   | 1059:53-1109:00                                             | 9.1 14.0  | 39  | I-0-8      | 12/08  | 1109:51-1119:00 |             |                     |
| 1-0- 9                                | 12/08   | 1119:51-1129:00                                             | 9.2 13.4  | 41  | 1-0-10     | 12/08  | 1129.51-1139.00 |             |                     |
| 1 - 0- 1 2                            | 12/08   | 1150:27-1159:00                                             | 8.6 13.5  | 38  | 1          |        |                 |             | 1                   |
| 1-0-13                                | 12/08   | 1159:54-1209:00                                             | 9.1 13.3  | 41  | - 1-0-14   | 12/08  | 1209153-1219100 | 5.1 13.3    | 41                  |
|                                       | 12/08   | 1222:24-1252:00                                             | 29.6 13.3 | 134 | 1-0-16     | 12/08  | 1256:23-1322:00 | 25.6 13.3   | 116                 |
| 1-0-1                                 | BU/21   | 1323:40-1352:00                                             | 28.3 13.2 | 129 | 1-0-18     | 12/08  | 1352:57-1422:00 | 29.1.13.2   |                     |
| 1-0-19                                | 12/08   | 1422:57-1452:00                                             | 29.1 13.2 | 132 | 1 - 0 - 20 | 12/08  | 1453:06-1522:00 | 2H. 9 43. 2 | 121                 |
| 1-0-21                                | 12/08   | 1522:59-1552:01                                             | 29.0 13.2 | 132 | 1-0-22     | 12/08  | 1552:57-1622:02 | 29.4 43.9   |                     |
| 1 - 0 - 2 S                           | 12/08   | 1623:15-1652:00                                             | 28.8 13.3 | 130 | 1-0-24     | 12/08  | 1653:10-1722:00 | 28.8 13.3   | 130                 |
| 1 - 0 - 5 N                           | 12/08   | 1723:06-1752:01                                             | 28.9 13.2 | 131 | 1-0-26     | 12/08  | 1753:09-1822:00 | 28.9 13.3   | UE I                |
| 1 - 0 - 27                            | 12/08   | 1826:46-1852:00                                             | 25.2 13.3 | 114 | 1 - 0 - 28 | 12/08  | 1853;24-1922;00 | 28.6 13.3   | 627                 |
|                                       | 12/08   | 1723:00-1952:00                                             | 29.0 13.3 | 121 | 1 - 0 - 30 | 12/08  | 1953:01-2022:00 | 29.0 13.3   | 121                 |
| 1-0-31                                | 12/08   | 2023:00-2052:00                                             | 29.0 13.3 | 131 | 1-0-32     | 12/08  | 2053:01-2122:00 | 29.0 13.3   | 121                 |
| 1-0-33                                | 12/08   | 2123:01-2152:01                                             | 29.0 13.3 | 131 | 1 - 0 - 34 | 12/08  | 2153:02-2222:00 | 29.0 13.3   | 121                 |
| 1 - 0 - 1<br>- 1                      | 12/08   | 2223:02-2252:01                                             | 29.0 13.3 | 131 | 1 - 0 - 36 | 12/08  | 2253:03-2322:01 | 29.0 13.3   | 121                 |
| 1-0-37                                | BU/21   | 2323:03-2352:01                                             | 29.0 13.3 | 121 | 1 - 0 - 38 | 12/08  | 2353:03-0022:01 | 29.0 13.3   |                     |
|                                       | 12/09   | 0023:04-0052:00                                             | 28.9 13.3 | 131 | 1 - 0 - 40 | 12/09  | 0053:04-0122:00 | 28.9 13.3   | 121                 |
| 1 - 0 - 1                             | 12/07   | 0123:04-0152:00                                             | 28.9 13.3 | 131 | 1-0-42     | 12/09  | 0153:05-0222:01 | 28.9 13.3   | 121                 |
| 1-0-43                                | 12/09   | 0223:05-0252:00                                             | 28.9 13.2 | 121 | 1-0-44     | 12/09  | 0253:05-0322:00 | 28.9 13.3   | . 024               |
|                                       | 12/09   | 0323105-0352100                                             | 28.9 13.2 | 131 | 1-0-46     | 12/09  | 0353:06-0422:01 | 28.9 13.3   | 130                 |
|                                       | 20/21   | 0423:06-0452:01                                             | 28.9 13.2 | 121 | 1 - 0 - 4B | 12/09  | 0453:07-0522:00 | 28.9 13.3   | 130                 |
| 1-0-5                                 | 12/07   | 0223:07-0552:00                                             | 28.9 13.2 | 131 | 1-0-50     | 12/09  | 0553:07-0622:01 | 28.9 13.3   | 130                 |
|                                       | 12/07   | U623:U/-U652:U0                                             | 28.7 13.2 | 131 | 1-0-52     | 12/09  | 0653:07-0722:01 | 28.9 13.3   | 130                 |
|                                       | 10/12   | 0/122/0-01/22/0                                             | 28.9 13.3 | 130 | 1-0-54     | 12/09  | 0753:15-0822:00 | 28,8 13,3   | 130                 |
|                                       | 12/07   |                                                             | 29,0 13,3 | 131 | 1-0-56     | 12/09  | 0853:09-0922:01 | 28.9 13.2   | 131                 |
|                                       | 10/01   | 0723:42-072:00                                              | 28.3.13.3 | 128 | 1-0-58     | 12/09  | 0953:02-1022:00 | 29.0 13.3   | 131                 |
|                                       |         | 00:2501-00:2201                                             | 28.9 13.2 | 131 | 1 - 0 - 60 | 12/09  | 1053:09-1122:00 | 28.9 13.3   | 130                 |
|                                       | 12/07   |                                                             | 28.9 13.2 | 131 | i-1- 2     | 12/09  | 1152:54-1222:01 | 29.4 13.2   | 132                 |
|                                       |         |                                                             | 29.2 13.3 | 132 | i-1- 4     | 12/09  | 1252:48-1322:00 | 29.2 13.3   | 132                 |
|                                       | 1 2/ 17 | 1322:47-1352:00                                             | 29.2 13.3 | 132 | 1-1-6      | 12/09  | 1353:02-1422:00 | 29.0 13.4   | 130                 |
|                                       | 12/09   | 1422:53-1452:00                                             | 29.1 13.2 | 132 | 1-1- B     | 12/09  | 1452:54-1522:01 | 29.4 13.3   | 121                 |
|                                       | 16/07   |                                                             | 29.1 13.2 | 132 | 1-1-10     | 12/09  | 1552:59-1622:00 | 29.0 13.3   | 121                 |
|                                       | 12/07   | 10/2/10/2/10/2/10/2/10/2/10/2/10/2/10/2                     | 29.2 13.3 | 132 | 1-1-12     | 12/09  | 1652:52-1722:00 | 29.1 13.3   | 121                 |
|                                       | 12/07   | 1/22:55-1/52:00                                             | 29.4 13.3 | 131 | 1-1-14     | 12/09  | 1752:55-1822:00 | 29.1 13.3   | 131                 |
|                                       | 12/07   |                                                             | 29.2 13.3 | 132 | 1-1-1¢     | 12/09  | 1852:58-1922:00 | 29.0 13.3   | 131                 |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12/07   | 2012541-/512241<br>20220 22 22 22 22 22 22 22 22 22 22 22 2 | 27.1 13.2 | 132 | 1-1-1B     | 12/09. | 1952:59-2022:00 | 29.0 13.3   | 131                 |
| 1-1-1                                 | 12/07   | どしだだ: シノードリング: ひり                                           | 27.1 13.2 | 132 | 1 - 1 - 20 | 12/09  | 2052:57-2122:00 | 29.1 13.2   | 132                 |

**HLM Cruise** 

m

|   | 521          | TET          | 151    | 121        |               |                                       |            |        |        |        | 1001             | 130               | 131    | 32           | 131                                                                | 130                | 130    | 130               | 130              | 131             | 137       | 130         | EE 1              | 771                 | 00<br>77<br>77 |                  | 132             | 132           | 133                   |                | 132         | 121         | 4 U<br>4 U            |              | 10     |
|---|--------------|--------------|--------|------------|---------------|---------------------------------------|------------|--------|--------|--------|------------------|-------------------|--------|--------------|--------------------------------------------------------------------|--------------------|--------|-------------------|------------------|-----------------|-----------|-------------|-------------------|---------------------|----------------|------------------|-----------------|---------------|-----------------------|----------------|-------------|-------------|-----------------------|--------------|--------|
|   | 13.3         | E ET         | 14.4   | 51         | 0 F<br>0 F    |                                       | 10.0       | 5 F    |        |        |                  | E . E .           | 5.2.2  | 13.3         | 13.3                                                               | 13.3               | £.5.1  | 13.3              | 13.3             | 13.3            | 13.1      | 13.2        | 1.51              | 1.51                |                | 13.2             | 13.2            | 13.2          | 13.1                  | ei e           | 13.2        | 13.3        | 14.0                  | 2 0 7<br>7 7 |        |
|   | 29.3         | 29.0         | 27.U   | 0.62       |               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.72       | 0.00   | 00.00  |        | 28.7             | 28.9              | 28.9   | 7.8          | 29.0                                                               | 28,8               | 28.9   | 28.9              | 28.7             | 29.4            | 30.0      | 28.6        | 1 6 N C           | 1.00                | 101            | 29.4             | 29.1            | 29,0          | 29.1                  | 0.00<br>200    | 27.0<br>1   | 27.0        | N C<br>BN<br>DO       | 200<br>200   |        |
|   | 22:01        | 22:00        | 00:22  | 00.00      |               | 00.00                                 |            | 20.00  |        | 22:01  | 22:00            | 22:00             | 22:00  | 22:00        | 22:00                                                              | 22:00              | 22:00  | 22:01             | 22:00            | 16:00           | 30:01     | 30:00       | 00:02             | 00102               | 30:00          | 130 : 00         | 30:00           | 30:00         | 30:01                 | 30:00          |             | 101105      | 30.00                 | 20:00        |        |
|   | : 45-22      | :59-23<br>   |        | C0-00.     | · 0 · 1 · 0 · |                                       |            | 20-20; | :04-V7 | :01-08 | 20-03            | 105-10            | :06-11 | 115-12       | :02-13                                                             | :15-14             | :08-15 | :09-16            | :17-17           | :52-20          | 100-21    |             | 01-40:<br>01-100: |                     | :56-02         | :57-03           | 156-04          | 50-851        | 158-06                | 70-75:         |             |             | :05-10<br>:01-11      | : 01-12      |        |
|   | 2152         |              |        |            |               | 0157                                  |            |        | 0653   | 0753   | 0853             | £560              | 1053   | 1214         | 1253                                                               | 1353               | 1453   | 1553              | 1653             | 1946            | 2100      | 2201        |                   | 0100                | 0200           | 0300             | 0400            | 0020          | 0000                  | 0.0 2 0 0      |             | 1040        | 1011                  | 1201         |        |
|   | 12/09        | 12/09        | 10/10/ | 12/10      | 12/10         | 12/10                                 | 12/10      | 12/10  | 12/10  | 12/10  | 12/10            | 12/10             | 12/10  | 12/10        | 12/10                                                              | 12/10              | 12/10  | 12/10             | 12/10            | 12/10           | 12/10     | 12/10       | 10/11             | 12/11               | 12/11          | 12/11            | 12/11           | 11/21         | 11/21                 | 10/11          | 11/11       | 11/01       | 12/11                 | 12/11        | 11107  |
|   | -1-5-<br>-1- | 1-24         |        | 1-30       | -1-32         | 1-34                                  | 1-36       | -1-38  | 1-40   | 1-42   | 1-44             | 1-46              | 1-48   | 1-50         | -1-1-1<br>-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                         |                    | 1-56   | 85- <b>1</b> -    | -1-60            |                 | 4 ·       |             | 0-<br>- 1 - 0-    | -1-12               | -0-14          | -0-16            | -0-18           | 0 V - 0 -     | ม<br>น<br>น<br>น<br>น |                |             |             | - 30<br>- 30-<br>- 0- | 42-0-        | 12.0   |
|   |              |              | 4      | ا<br>اسہ ا |               |                                       | ·          |        |        |        |                  | -                 | <br>   |              |                                                                    |                    | {<br>  | !<br>             | ן<br>איז         | i<br>V C        | ן<br>ז ני | 1<br>1<br>1 | 1 CJ              | 1 61                | å              | ן<br>איז         | ין<br>1         | ו<br>ער<br>נ  | មូន                   | ן ן<br>ער.     | 1 1         | 10          | 101                   |              | c      |
|   | 132          | 101          | 121    | 121        | 121           | 131                                   | 121        | TET    | 121    | 151    | 120              | 121               | 151    | 131          | 151                                                                | 101                |        |                   | 001              |                 |           | 101         | 132               | 132                 | 121-           | 132              |                 | 101           | 1001                  | 131            |             | VC F        | 124                   | 124          | • 0. • |
|   | 5. Et        | 13.3         | E E F  | 13.3       | 13.3          | 13.3                                  | 13.3       | 13.3   | 13.3   | 13.2   | 14.7             | 5.5               | 2.21   | 11.1         | 5.51                                                               | 10<br>10<br>17     |        | 0 F               | ין<br>היי<br>היי | ק יק<br>ק יק יק |           | 5.51        | 13.2              | 13.2                | 13.3           |                  | 2017            |               | 10<br>77              |                | E E F       | 14.0        | 14.0                  | 14.0         | 4 V V  |
|   | 29.0<br>20.0 | 20.0<br>20.0 | 29.0   | 29.0       | 29.0          | 29.0                                  | 29.0       | 29.0   | 28.9   | 28.9   | 29.4             | 58.9              | A      | 7.82<br>7.82 | ) (<br>) (<br>) (<br>) (<br>) (<br>) (<br>) (<br>) (<br>) (<br>) ( | N 0<br>0<br>0<br>0 |        | - C<br>- C<br>- C |                  |                 |           | <br>        | 29.1              | 29.1                | 29.0           | 1.62             | 100             |               |                       | 29.0           | 29.0        | 29.0        | 29.0                  | 29.0         |        |
| 4 | 2:00         | 2:00         | 2:00   | 2:00       | 2:00          | 2:00                                  | 2:00       | 2:00   | 2:00   | 2:00   | 2123             |                   |        |              |                                                                    | 10.0               |        |                   | A: 00            | 4:40            | 0.00      | 00:00       | 00:00             | 00:00               | 0:00           | 10:0             | 00:0            | 0.00          | 00:0                  | 0:00           | 0:00        | 0:00        | 0:01                  | 0:00         | 0.04   |
|   | 58-215       | 59-235       | 200-00 | 00-015     | 01-025        | 02 - 035                              | 0.30.45    | 03-022 | 04-065 | 12-075 | 11-085<br>280-10 | 17-171<br>1-1-1-1 |        | CT 1 _ D 0   |                                                                    | 18-14C             | 551-60 | 241-41            | 46-194           | 53-204          | 55-220    | 54-230      | 55-000            | 55-010              | 58-020<br>     | 070-75<br>070-75 | 57-050          | <u>58-060</u> | 59-070                | 59-0 <u>80</u> | 0.0 - 0.90  | 01 - 100    | 00-110                | 01 - 120     | 11-14  |
|   | 2122         | 2322         | 0023:  | 0123:      | 0223:         | 0323:                                 | 0423:      | 0523:  | 0.6231 | 07231  | 08231            | 1.5271            | 10201  | 1001         | 1224                                                               | 1423               | 1523   | 1623              | 1916:            | 2016.           | 2130:     | 2230 :      | 2330 1            | 0030:               | 0110           | 10220            | 0430            | 0230          | 0630:                 | 0230           | 0831:0      | 0931:0      | 1031:1                | 1131         | 1231   |
|   | 12/09        | 12/09        | 12/10  | 12/10      | 12/10         | 12/10                                 | 12/10      | 12/10  | 12/10  | 12/10  | 12/10            | 12/10             | 12/10  | 12/10        | 12/10                                                              | 12/10              | 12/10  | 12/10             | 12/10            | 12/10           | 12/10     | 12/10       | 12/10             | 12/11               | 11/21          | 11/21            | 12/11           | 12/11         | 12/11                 | 12/11          | 12/11       | 12/11       | 12/11                 | 12/11        | 12/31  |
|   | 1-61         | 1-25         | 1-27   | 1-29       | 1-31          | 1-33                                  | - <u>-</u> | 1-37   | 1-34   | 14-1   | 5 4 - 1<br>      |                   | -40    |              | -53-1                                                              | 55-1               | 1-57   | 1-59              | 1 - 0            | )- 3            | -<br>ا    | )- 7        | 6 -<br>-          | ) - 1<br>- 1<br>- 1 |                |                  | -19             | 12-(          | )-23                  | )-25           | )-27        | )-29        | 1-31                  | 201          | 000    |
|   |              |              |        |            | -             | <br>                                  | ۱<br>•     | -      | · ·    | -      | <br> <br> 4      |                   |        |              | ;<br>;                                                             |                    | -      |                   |                  | ی۔<br>بہ        | 1         | 5-0         | 0<br>1<br>0       |                     |                | 101              | <u>।</u><br>त्य | -<br>-<br>-   |                       | 5-0            | -<br>-<br>- | -<br>-<br>- | 7 .<br>N              | -<br>        | J      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | NN                                                                                                                                                                                                                                                   | <u>س</u> - ک                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14.0<br>14.0<br>14.0<br>14.0<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 444440M                                                                                                                                                       | 44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44                                                                                                                                                                           | 44444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.000000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                                                                                                                      | 66666666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>/11 1501:04-1530:01<br/>/11 1603:12-1630:00<br/>/11 1657:57-1724:00<br/>/11 1752:04-1818:01<br/>/11 1846:05-1912:00<br/>/11 1940:06-2006:00</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /12 0841:25-0701:00<br>/12 0731:55-0801:00<br>/13 0731:55-0801:00<br>/13 0832:40-0900:01<br>/13 1001:08-1030:00<br>/13 1200:45-1130:00<br>/13 1200:53-1230:00 | /13 1500:49-1330:00<br>/13 1500:55-1530:00<br>/13 1500:55-1530:00<br>/13 1500:51-1530:00<br>/13 1700:51-1730:01<br>/13 1900:59-1830:00<br>/13 2000:59-2030:00<br>/13 2000:59-2030:00                                                                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 000000<br>111110<br>10100<br>10100<br>10100<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000000 | 74000000000000000000000000000000000000                                                                                                                        |                                                                                                                                                                                                                                                      | 84444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>د</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                                                                                                             | نه م                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4 M J N J N J N J N J N J N J N J N J N J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124<br>124<br>124<br>124<br>124<br>124<br>124<br>124<br>124<br>124                                                                                            |                                                                                                                                                                                                                                                      | 44700-000000400000<br>000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 29.0 14.0<br>28.8 14.1<br>25.9 13.9<br>25.9 13.9<br>25.9 13.9<br>25.9 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.0 14.0<br>28.9 14.0<br>26.9 14.0<br>29.6 14.0<br>29.6 14.0<br>29.6 14.0<br>29.0 13.0                                                                       | 25.0 15.3<br>25.0 15.3<br>25.0 15.0<br>25.0 15.0<br>25.0 15.3<br>25.0 15.3<br>25.0 15.3<br>25.3<br>25.0 15.3<br>25.3<br>25.3<br>25.4<br>15.3<br>25.3<br>25.3<br>25.3<br>25.4<br>25.3<br>25.4<br>25.4<br>25.4<br>25.4<br>25.4<br>25.4<br>25.4<br>25.4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 111000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20000000000000000000000000000000000000                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1431:03-1500:<br>1531:11-1500:<br>1631:14-1657:<br>1725:04-1751:<br>1819:10-1845:<br>1913:05-1939:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0902:04-0931:0<br>0716:54-0730:0<br>0802:04-0831:0<br>0901:10-0928:<br>1027:24 1057:<br>130:58-1200:1                                                         | 1331:05-1400:00<br>1331:05-1400:00<br>1530:55-1500:00<br>1630:55-1500:00<br>1731:02-1800:00<br>1830:57-1900:00<br>1930:58-2000:01                                                                                                                    | 2131:00-2200:00<br>2230:59-2300:00<br>2331:18-0000:00<br>0.30:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00-0058:00<br>0.226:00<br>0.226:00-0058:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.226:00<br>0.22 |
| 12/11 1531:03-1500<br>12/11 1531:11-1500<br>12/11 1531:14-1657<br>12/11 1725:04-1751<br>12/11 1919:10-1845<br>12/11 1913:05-1939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/12 0902:04-0931<br>12/13 0716:54-0730<br>12/13 0802:04-0831<br>12/13 0802:04-0831<br>12/13 0901:10-0928<br>12/13 0901:10-0928<br>12/13 1130:58-1200        | 12/13 1331:05-1400:00<br>12/13 1331:05-1400:00<br>12/13 1530:55-1600:00<br>12/13 1530:55-1600:00<br>12/13 1530:55-1900:00<br>12/13 1930:57-1900:00<br>12/13 1930:58-2000:01<br>12/13 2104:05-2130:03                                                 | 12/13 $2131(0-2200(0)12/13$ $2331(9-2200(0)12/13$ $2331(8-000(0)12/14$ $0.30(0)-0058(0)12/14$ $0.226(0)-0155(0)12/14$ $0.226(0)-01554(0)12/14$ $0.226(0)-01554(0)12/14$ $0.226(0)-01554(0)12/14$ $0.226(0)-01554(0)12/14$ $0.226(0)-01554(0)12/14$ $0.226(0)-01554(0)12/14$ $0.226(0)-01554(0)12/14$ $0.520(0)-0252(0)12/14$ $0.520(0)-05646(0)12/14$ $0.520(0)-0500(0)12/14$ $1.231(0)-1100(0)12/14$ $1.231(0)-1100(0)12/14$ $1.231(0)-1100(0)12/14$ $1.231(0)-1100(0)12/14$ $1.231(0)-1100(0)12/14$ $1.231(0)-1100(0)12/14$ $1.231(0)-1100(0)12/14$ $1.231(0)-1100(0)12/14$ $1.231(0)-1100(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

BLM Cruise

М

| 1            | PE1                              | 130          | 121            | 130                                                                                              | 130            | 130           | 130                     | 0027             |                | 1              | 00.7           | H L L          |                | 82             | 58             | 83             | 84                        | 58                     | 128           | 721            |                                | 127                   | 129            | 129            | 120                              | 62             | 88                  | 84             | រ<br>រ         | 56             | 56             | 56             | 56             | 56             | 95                 | 122            | 139            |
|--------------|----------------------------------|--------------|----------------|--------------------------------------------------------------------------------------------------|----------------|---------------|-------------------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------------------|------------------------|---------------|----------------|--------------------------------|-----------------------|----------------|----------------|----------------------------------|----------------|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------|----------------|----------------|
|              | 28.9 12.9                        | 29.1 13.4    | 29.2 13.4      | 29.1 13.4                                                                                        | 29.1 13.4      | 27.1 13.4     | 4.51 13.4<br>-20 1 13 4 |                  | 29.1.13.6      |                | 29.3.43.5      | V E 1 0 61     | 19.2 13.5      | 19.1 13.5      | 19.1 13.5      | 19.0 13.4      | 19.0 13.6                 | 19.0 15.4              | 20 P 13.5     |                | 28.9 13.6                      | 28.5 13.4             | 28.9 13.4      | 28.9 13.4      | 28.9 13.3                        | 19.7 13.6      | 19.9 13.6           | 18.9 13.5      | 11.9 12.9      | 12,2 13,4      | 12.2 13.1      | 12.2 13.1      | 12.2 13.0      | 12.1.13.0      | 12.1 13.0          | 26.3 13.0      | 30.0 12.9      |
|              | DD:DCCICO:TDC:<br>00.0226CO:TDC: |              | 000:53-0030:05 |                                                                                                  | 200:53-0230:01 | UU:020-22:000 |                         | 600:56-0630:01   | 704:57-0730:00 |                | 937:41-1007:00 | 028:51-1048:01 | 108:52-1128:01 | 148:58-1208:02 | 228:56-1248:00 | 308:57-1328:01 | 00:0001-10:240<br>00:0007 | 574443-00<br>574443-00 |               | 731:04-1800:00 | 831:05-1900:00                 | 931:33-2000:00        | 301:06-2330:00 | 00:020-0030:00 | 201:07-0230:01                   | 253:18-0313:00 | 441:04-0401:00      | 422:08-0441:00 | 600:08-1612:00 | 625:49-1638:00 | 651:50-1704:02 | 717:50-1730:01 | 743:51-1756:01 | 809:52-1822:00 | 835:53-1848:00     | YUZ:40-1929:00 | 000:00-2030:00 |
| ,            |                                  |              |                | 12/15 0                                                                                          | 12/15          |               |                         | 12/15 0          | 12/15 0        |                | 12/15 0        | 12/15 1        | 12/15 1        | 12/15 1        | 1 21/21        |                |                           |                        | 12/15 1       | 12/15 1        | 12/15 1                        | 12/15 1               | 5 21/21        | 12/16 0        | 12/16 0                          | 12/16 0        | 12/16 0             | 12/16 0        |                | 12/14 1        | 12/14 1        | 12/14 1        | 12/14 1        | 12/14 1        | 12/14 1            | 1 41/21        | 2 61/21        |
| 0-1-6        |                                  |              |                | 0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                | 3-0-15        | 3-0-14                  | 3-0-16           | 3-0-18         |                | 3-0-22         | 3-0-24         | 3-0-26         | 5-0-28         |                | 7-0-20         | 10 0 C                    | 3-0-38                 | 3-0-40        | 3-0-42         | 3-6-44                         | 3-0-46                | 3-0-48         |                | 3-0-54                           | 3-0-56         |                     |                |                | य<br>          |                | <b>3-1-</b> E  | 01-1-6         | 5-1-12<br>7    | 0 [ - [ - <u>5</u> |                |                |
| Ś            | •                                |              |                |                                                                                                  |                |               |                         |                  |                |                |                |                |                |                |                | •              |                           |                        |               |                |                                |                       |                |                |                                  |                |                     | L              | 2              |                |                |                |                |                |                    |                |                |
| 134-         | EET                              |              |                | 107                                                                                              | 129            | 1 29          | 129                     | 129              | 129            | 128            | 134            | 85             | 80<br>40       | n v<br>n       |                | ម              | 84                        | 134                    | 130           | 130            | 129                            | R Z T                 | 1 U U          | 128            | 128                              | ים ני<br>ער ל  |                     |                | י<br>זע        |                | 0 .<br>n i     | n n<br>N       |                | 0 4<br>0 4     |                    | 105            | 7 2 7          |
| 13.0         | 13.5                             | 14.5         |                |                                                                                                  | 5.61           | 13.5          | 13.5                    | 13.5             | 13.5           | 5.51           | 13.4           | 13.4           | 13.6           | 4. P. 7        |                | 13.4           | 13.6                      | 13.4                   | 13.4          | 13.4           | 4.51                           | 10.4<br>11.4          | 0 5 M          | 5.51           | 5.21                             |                |                     |                |                |                |                |                |                |                | 10.01              | 13.0           | 1              |
| 29.0         | 30.0                             | 59.2         |                |                                                                                                  | 29.1           | 29.1          | 29.4                    | 29.1             | 29.1           | 28.9           | 30.0           | 19.1           | 19.0           |                |                | 19.0           | 19.0                      | 3.0.0                  | 29.1          | 29.0           | 5 8 0<br>5 0<br>6 1 0<br>6 1 0 | 0 0 0<br>0 0 0<br>0 0 | 28.9           | 28.9           | 6. BS                            |                | 1 0 .<br>0 .<br>0 . | 4.0.4          | . C.           | 10             |                | 40.<br>40.     | 1 - 1          | 10.            |                    | 22.7           |                |
| 59-1500:00   | 0-2300:00                        | 1-0000:00    | 5-0106:00      |                                                                                                  | -0300:01       | -0400:00      | -0500:00                | -0600:00         | -0700:00       | 10:0080.       | -0730:00       | 1028:01        | ·1108:00       | -1228:00       | -1308:00       | -1348:01       | -1428:00                  | -1530:01               | -1630:00      | -1730:00       | -1830:00                       | -2300:01              | -0000:000-     | 0100:010.      | -0200:00                         | -0326:09       | -0421:00            | 1559:00        | -1625:00       | 1651:00        | -1717:00       | -1743:00       | -1809:00       | -1835:00       |                    | -1958:00       |                |
| 12/14 1430:9 | 12/14 2230:0                     | 12/14 2330:5 | 12/15 0030:55  | 12/15 0130 54                                                                                    | 12/15 0230:55  | 12/15 0330:55 | 12/15 0430:56           | 12/15 0530 51/21 | -72:0530 21/21 | -/0110/0 51/21 | -00:0040 51/21 | -85:8001 51/21 | 12/15 1128-58- | 12/15 1209:00  | 12/15 1248:59  | 12/15 1329:00  | 12/15 1409:00             | 12/15 1500:00          | 12/15 1600:54 | 12/15 1701:03  | 12/15 1901.34                  | 12/15 2230:12-        | 12/15 2331:06- | 12/16 0031:07- | 12/16 0131:09-<br>12/16 0271:11- | 12/16 0314:07- | 12/16 0402:05-      | 12/14 1546:38- | 12/14 1612,48- | 12/14 1638:50- | 12/14 1704:52- | 12/14 1730:48  | 12/14 1756:52  | 12/14 1822152- | 12/14-1646-52      | 12/14 1935:19  |                |

HLM Cruise 3

Ч

E-8

ς

| 24                       |                            | ענ<br>שנ                      |                                | 84                                                                | 8                                | 8<br>4<br>4                        | ש<br>מ<br>מ                     |                                 |                                 | 19                              | 62                              | 62                                                                    | 132                             | 129                                     | 2 C<br>2 C<br>2 C               | 60.4                            | 129                                                              | 129                                                                         | 126                       | 100                             | 1 0 0 1<br>1 1                  | 130                             | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 129                                | 101                             | 129                             | 129                             | 129                             | 129                             | 129                                                                | 129                             | 129                                                              | 429<br>429                         |
|--------------------------|----------------------------|-------------------------------|--------------------------------|-------------------------------------------------------------------|----------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------------------------------------|---------------------------------|-----------------------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------|------------------------------------|
| 7.7.7                    |                            | 4.21                          | 8.61                           | 13.6                                                              | 9.61                             | 13.6                               | 0.01<br>4                       |                                 | 5.21                            | 4.61                            | 13.5                            | 13.5                                                                  | 13.5                            | 4 L                                     | 0 4<br>7 7                      | 4.54                            | 4.51                                                             | 13.4                                                                        | 6.Et                      | 4 10                            |                                 | 13.4                            | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                 | 5.51                            | 5                               | 13.5                            | 13.5                            | 5.51                                                               | 13.5                            | 13.5                                                             | 13<br>13<br>13<br>13               |
| 18.9                     | 19.1                       | 19.1                          | 19.0                           | 19.0                                                              | 19.0                             | 19.1                               | 0 . 6 F                         | 19.0                            | 14.0                            | -4-4-4-                         | 13.9                            | 14.0                                                                  | 29.7                            | 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 28.9                            | 28.9                            | 28.9                                                             | 28.9                                                                        | 28,8                      | 1 0 0                           | 29.1                            | 29.1                            | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.1                               | 28.9                            | 29.0                            | 29.1                            | 29.4                            | 29.0                            | 29.0                                                               | 29.0.                           | 29.0                                                             | 29.0<br>29.0                       |
| 0442:08-0501:01          | 0521:56-0541:01            | 0601:57-0621:00               | n641:59-0701:01                | 0721:59-0741:00                                                   |                                  | 0841:59-0901:02<br>0924:50-0044.00 | 1002:02-1024:01                 | 1042:03-1101:00                 | 1130:00-1144:00                 | 1159153-1214100-                | 1230:06-1244:00                 | 1300:02-1314:00                                                       | 1330:21-1400:00                 | 10:0051-/0:1641                         | 1761:07-1730:00                 | 1801:08-1830:00                 | 1901:08-1930:00                                                  | 2001:08-2030:00                                                             | 0831:11-3900:01           | 1030:54-1100:00                 | 1130:55-1200:01                 | 1230:55-1300:00                 | 1330:56-1400:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1430:57-1500:00<br>{530:56-1600.04 | 1631:05-1700:60                 | 1730:58-1800:60                 | 1830:58-1900:61                 | 1930:56-2000:00                 | 2030:59-2100:00                 | 2131:00-2200:00                                                    | 2231:02-2300:00                 | 2331:01-0000:00                                                  | 0030:59-0100:00<br>0131:02-0200:00 |
| 12/16                    | 12/16                      | 12/16                         | 12/16                          | 12/16                                                             | 12/10                            | 12/10                              | 12/16                           | 12/16                           | 12/16                           | 12/16                           | 12/16                           | 12/16                                                                 | 12/16                           | 12/10                                   | 12/16                           | 12/16                           | 12/16                                                            | 12/16                                                                       | 12/17                     | 12/17                           | 12/17                           | 12/17                           | 12/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/12                              | 12/17                           | 12/17                           | 12/17                           | 12/17                           | 12/17                           | 12/17                                                              | 12/17                           | 12/17                                                            | 12/18                              |
| 3-1-20                   | 3-1-22                     | 3-1-24                        | 3-1-26                         | 3-1-28                                                            |                                  |                                    | 3-1-36.                         | 3-1-38                          | 3-1-40                          | 3-1-42                          | 3-1-44                          | 3-1-46                                                                |                                 |                                         | 3-1-54                          | 3-1-56                          | 3-1-58                                                           | 3-1-60                                                                      |                           | <u>4</u> -1-6                   | 4-1-8                           | 4-1-10                          | 4-1-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-1-14                             | 4-1-18                          | 4-1-20                          | 4-1-22                          | 4-1-24                          | 4-1-26                          | 4-1-28                                                             | 4 - 1 - 30                      | 4-1-32                                                           | 4-1-34<br>4-1-36                   |
|                          |                            |                               |                                |                                                                   |                                  |                                    | •                               |                                 |                                 |                                 |                                 | <b>ら</b> -                                                            |                                 |                                         |                                 | n                               |                                                                  |                                                                             |                           |                                 |                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                 |                                 |                                 |                                 |                                 |                                                                    | l                               | <b>n</b> -                                                       |                                    |
| 134                      | 85                         | 84                            | 85                             | មិត                                                               |                                  |                                    | 99                              | 58                              | 66                              | 29.                             | 29                              | 2<br>2<br>2                                                           |                                 | 129                                     | 133                             | 128                             | 128                                                              |                                                                             |                           | 151                             | 130                             | 121                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121                                | 129                             | 130                             | 130                             | 130                             | 130                             |                                                                    | 130                             | 130                                                              | 130                                |
| 13.0                     | 13.5                       | <b>.</b>                      | ហ                              | <b>æ</b> û                                                        |                                  |                                    |                                 |                                 |                                 |                                 |                                 |                                                                       |                                 |                                         |                                 |                                 |                                                                  |                                                                             |                           |                                 |                                 |                                 | - 1×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | 1 <b>n</b>                      |                                 |                                 |                                 |                                 |                                                                    | <b>.</b>                        |                                                                  |                                    |
| -                        |                            | 51                            | 13.                            | M                                                                 | ר ם<br>ק ק<br>ק                  | 13.4                               | 13.6                            | 4.51                            | 13.6                            | 13.5                            | 13.4                            | 51                                                                    |                                 | 4.54                                    | 13.5                            | 13.5                            | 51                                                               | 10.1                                                                        | 10                        | 4.51                            | 13.4                            | E . E .                         | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 13.                             | 13.4                            | 13.4                            | 13.4                            | 13.4                            | 4.21                                                               |                                 |                                                                  |                                    |
| 29                       | 19.1                       | 19.1 13                       | 19.1 13.                       | 19.1 13.                                                          |                                  | 4.0.13.4                           | 9.013.6                         | 4.51 1.91                       | 14.9 13.6                       | 14.0-13.5                       | 14.1 13.4                       | 2.21 0.41                                                             |                                 | 28.9 13.4                               | 30.0 13.5                       | 28.9 13.5                       | 28.8 13.5                                                        |                                                                             | 29.1 13.4                 | 29.2 13.4                       | 29.1 13.4                       | 29.1 13.3                       | 24.1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.1 13.5                          | 29.1 13.9                       | 29.1 13.4                       | 29.0 13.4                       | 29.0 13.4                       | 29.0 13.4                       | 29.0 13.4                                                          | 27.0 13.                        | 29.0 13.                                                         | 29.0 13.4                          |
| 2030:57-2100:00 29       | 0501:56-0521:00 19.1       | 0541:57-0601:01 19.1 13       | 0621:57-0641:02 19.1 13.       | 0701:58-0721:01 i9.1 13.                                          | 0821:59-0841:00 10 10 12 2       |                                    | 0942:00-1001:01 19.0 13.6       | 1021:59-1041:02 19.1 13.4       | 1114:05-1129:00 14.9 13.6       | 1145:01-1159:00 14.0 13.5       | 1214:55-1229:01 14.1 13.4       | 2,51 0,41 00;YC21-20;CP21<br>7 7, 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1400:58-1430:00 PG 0 PG 13:5    | 1501:07-1530:00 28.9 13.4               | 1630:00-1700:00 30.0 13.5       | 1731:08-1800:60 28.9 13.5       | 1831:13-1900:00 28.8 13.5<br>1931:08-2000:00 20 21 5             | 2.51 7.85 NUTURE TOTAL OF A CONTRACT                                        | 0900:53-0930:00 29.1 13.4 | 1000:49-1030:01 29.2 13.4       | 1100:54-1130:01 29.1 13.4       | 1200:55-1230:00 29.1 13.3       | 21 1,42 10:0561-22:0051<br>21 7 92 10:0761-71:101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1500:54-1530:00 29.1 13.2          | 1600:57-1630:00 29.1 13.9       | 1700:57-1730:00 29.1 13.4       | 1800:58-1830:00 29.0 13.4       | 1900 59-1930:01 29.0 13.4       | 2000:59-2030:00 29.0 13.4       | ZIUI:UUZI3U:UU 29.0 13.4<br>9900.00-2130.01 50 0 13.4              | zeuliuo-zeulul 29.0 13./        | 2301:00-2330:00 29.0 13.<br>0001:00-070:03 30 0 33               |                                    |
| 12/14 2030:57-2100:00 29 | 12/16 0501:56-0521:00 19.1 | 12/16 0541:57-0601:01 19.1 13 | 12/16 0621:57-0641:02 19.1 13. | 12/16 0701:58-0721:01 19.1 13.<br>12/16 0741.58-0801.00 40 0 42 4 | 12/16 0821:59-0841:00 10 10 12 4 | 12/16 0901:58-0921:00 19.0 13.4    | 12/16 0942:00-1001:01 19.0 13.6 | 12/16 1021:59-1041:02 19.1 13.4 | 12/16 1114:05-1129:00 14.9 13.6 | 12/16 1145-01-1159:00 14.0 13.5 | 12/16 1214:55-1229:01 14.1 13.4 | 12/10 1240:02-1202/100 14/0 13/5<br>12/14 1215.02-1200.01 14 0 27 7   | 12/16 1400:58-1430:00 20 0 13 2 | 12/16 1501:07-1530:00 28.9 13.4         | 12/16 1630:00-1700:00 30.0 13.5 | 12/16 1731:08-1800:00 28.9 13.5 | 12/16 1831:13-1900:00 28.8 13.5<br>19/16 1971:00-2000:00 20 27 5 | 12/13 00/01/01/20/12/13/23/24/24/24/23/23/23/23/23/23/23/23/23/23/23/23/23/ |                           | 12/17 1000:49-1030:01 29.2 13.4 | 12/17 1100:54-1130:01 29.1 13.4 | 12/17 1200:55-1230:00 29.1 13.3 | . 21 C. 22 CONTRACTION CONTRACTION CONTRACTOR CONT | 12/17 1500:54-1530:00 29.1 13.3    | 12/17 1600:57-1630:00 29.1 13.9 | 12/17 1700:57-1730:00 29.1 13.4 | 12/17 1800:58-1830:00 29.0 13.4 | 12/1/ 1900/59-1930/01 29.0 13.4 | 12/1/ 2000:59-2030:00 29.0 13.4 | 12/1/ 2101:00-2130:00 29.0 13.4<br>19/17 9901.00-9970.01 50 0 13.4 | 12/17 2201100-2230101 27.0 13./ | 12/1/ 23U1:UU=233U:UU 29.0 13.<br>12/18 0001.00=0070.03 20 0 13. |                                    |

ELM Cruise 3

**BLM Cruise** 

m

| 0231:02-0300:00<br>0331:03-0400:00<br>0431:04-0500:01<br>0531:05-0600:01<br>0631:05-0600:01                               |
|---------------------------------------------------------------------------------------------------------------------------|
| 12/18<br>12/18<br>12/18<br>12/18<br>12/18                                                                                 |
| 4-1-38<br>4-1-40<br>4-1-40<br>54-1-40                                                                                     |
| Ś                                                                                                                         |
| 129<br>129<br>129<br>129                                                                                                  |
| 4 10 10 10 4<br>10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                  |
| 29.0<br>29.0<br>29.0                                                                                                      |
| 12/18 0200:57-0230:00<br>12/18 0301:02-0330:00<br>12/18 0401:03-0430:00<br>12/18 0501:04-0530:01<br>12/18 0501:03-0530:01 |
| 4-1-37<br>4-1-39<br>4-1-41<br>4-1-43<br>4-1-43                                                                            |

1

З

129 128 128 128

29.0 13.5 29.0 13.6 29.0 13.6 29.0 13.6 28.9 17.9 28.9 13.6

fiLrh Cruise

|   |                                                                                       | 1                                     |                                                     |                                         |                                                                                                                                                     |                             |                                            |                                     |                                        |                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                              |                                            |                                            |                                                                            |                                                                               |                         |                                            |                                            |                         | •                                                                                   |                                                                            |                                            |                                           |                                           |                                           |                                           |                                                         |                                            |                                              |                                            | 1                                          |
|---|---------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|-------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------|--------------------------------------------|--------------------------------------------|-------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|
|   | 61                                                                                    |                                       | 62                                                  | 110                                     | IET                                                                                                                                                 | 151                         | 132                                        | 121                                 | 151                                    | 121                                                                                   | 121                                                                                    | 551<br>1 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | 130                                          | 132                                        | 131                                        | 131                                                                        | 130                                                                           | 130                     | 130                                        | 130                                        | 130                     | 129                                                                                 | 129                                                                        | 1 20                                       | 121                                       | 128                                       | 129                                       | 131                                       | 130                                                     | 132                                        | \$                                           | 130                                        | 1                                          |
|   | 4                                                                                     | ~ 4                                   | 4.5                                                 | n<br>S                                  | n r                                                                                                                                                 | 1 CI<br>1 M                 | 2                                          | 5 ° 3                               | E E                                    | E E                                                                                   | ז <u>מ</u>                                                                             | ה ני<br>ה ני                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                                              | el<br>M                                    | E . E                                      | 5.3                                                                        | 3.4                                                                           |                         |                                            | 4                                          | E . E                   | 3.4                                                                                 |                                                                            | 0 M                                        | 4                                         | 4                                         | 5.5                                       | 2                                         | 5                                                       | el<br>M                                    | 5.8                                          | 3.3                                        | -0-0-                                      |
|   | 3.1                                                                                   |                                       | .0.                                                 | 3.0 1                                   |                                                                                                                                                     | <br>                        | <br>                                       | 9.0 1                               | 9.0 1                                  | 7.0.1                                                                                 | 9.0                                                                                    | <br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                              | 1.1.0                                      | 9.0                                        | 1.1.9                                                                      | ст.<br>С. С.                                                                  | 1<br>2<br>4<br>7        |                                            | 9. E                                       | 3.9.1                   | 3.9 1                                                                               | 6<br>6<br>7                                                                |                                            | 5.2                                       | 3.6                                       | a.7 1                                     | 9.1                                       | <b>B.9</b>                                              | 0 - 1 - 0                                  | 9-0-4                                        | B.9 1                                      | 30-6                                       |
|   | 0                                                                                     | =                                     | 0                                                   | <b>1</b>                                | 5 15<br>0 0                                                                                                                                         | น้ ผ้                       |                                            | 0                                   | 0                                      | ณ์ i<br>อ                                                                             | ~ ·                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | - <del>-</del>                               | ณ<br>ณ                                     | 1                                          | 0                                                                          |                                                                               | ম ন<br>০ ০              |                                            | ଭ<br>ପ                                     | 1 21                    | N<br>0                                                                              | ⊼ ⊼<br>• •                                                                 | ی<br>م<br>ہ                                | เ                                         | 0<br>0                                    | 0 20                                      | 0                                         | 1 2                                                     | <b>1</b>                                   | а<br> -<br>1                                 | 0<br>5                                     |                                            |
|   | 02:0                                                                                  |                                       | 500±0                                               | 0:020                                   | 3010                                                                                                                                                | 0:025                       | 130:0                                      | 30:0                                | 30:0                                   | 130 10                                                                                | 130:0                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 530:0                                        | 130:0                                      | 330:0                                      | 30:0                                                                       | 01020                                                                         | 01010                   | 200:0                                      | 500:0<br>500:0                             | 0:00                    | 00:00                                                                               | 200:0<br>200:0                                                             | 0:001                                      | 500:0                                     | 0:00                                      | 0:00.                                     | 130:0                                     | 0:020                                                   | 30:0                                       | 130+0                                        | 230 I 0                                    | 530-0                                      |
|   | 27-15                                                                                 | 12-26<br>5 <u>5-</u> 55               | 00-23                                               | 0 - 0 0                                 | 20-25<br>20-25                                                                                                                                      | - 95<br>- 95                | 57-04                                      | 58-05                               | 70-06                                  | 59-07<br>- 07                                                                         | 20-0E                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 19-13                                        | 56-14                                      | 00-15                                      | 55-16                                                                      | 0417                                                                          | 9224                    |                                            | 06-23                                      | 07-00                   | 0.7-01                                                                              | 20-30<br>- 0-0                                                             |                                            | 53-05                                     | 23-06                                     | 20-02                                     | 55-06                                     | 06 - 05                                                 | 55-10                                      | 1-1-1                                        | 06 - 12                                    | 1-85                                       |
|   | 120                                                                                   |                                       | 245                                                 | 0.02:                                   |                                                                                                                                                     | 100E                        | 4001                                       | 1005                                | 601:                                   | 700:                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 301                                          | 400:                                       | 501:                                       | 600:                                                                       | 701:                                                                          | 108.0                   | 131:                                       | 231:                                       | 334:                    | 031:                                                                                | 151                                                                        | 331                                        | 14361                                     | 531                                       | 1631:                                     | 8001                                      | 1901:                                                   | 500:                                       | ++0+-                                        | 201:                                       | 300:                                       |
|   | /20 4                                                                                 | 100-10<br>- 100-1<br>- 100-1          | /20 2                                               | 121 0                                   | /21 0                                                                                                                                               | 21.0                        | /21 0                                      | /21 0                               | /21 0                                  | /3 <b>1</b> 0                                                                         | 12/0                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 121 1                                        | /21 1                                      | 121 1                                      | 121                                                                        | 121                                                                           |                         | 121 22                                     | 121 2                                      | 121 2                   | 200<br>200<br>200                                                                   |                                                                            | 10<br>10<br>10<br>10                       | 122 0                                     | 122 0                                     | /22 0                                     | /22 0                                     | 122 0                                                   | 122 1                                      | F-2.2.                                       | 122 1                                      | 122-1                                      |
|   | 90                                                                                    |                                       | 0.6                                                 | 99                                      | 0.0                                                                                                                                                 |                             | 06.                                        | 06.                                 | 06.                                    | 00                                                                                    | 9.9                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 06                                           | 0.6                                        | 06                                         | 90                                                                         | 9.6                                                                           |                         | 06                                         | 96                                         | 0.6                     | 9.6                                                                                 | 0 P P                                                                      | 90                                         | 06.                                       | 0.6                                       | 0.0                                       | 0.6                                       | 06                                                      | 06                                         | 39                                           | . 06                                       |                                            |
|   |                                                                                       |                                       | 8 -0-                                               | -0-10                                   |                                                                                                                                                     |                             | -0-18                                      | -0-20                               | 신 - 0 - 0 - 0 -                        | -0-24                                                                                 | 9 2 - 0 -<br>9 2 - 0 -                                                                 | 0 2 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 |                                            | -0-34                                        | -0-36                                      | -0-38                                      | -0-40                                                                      | 0 - <b>4</b> - 0 -                                                            | -0-46<br>-0-46          | 84-0-                                      | 0.50                                       | NS-0-                   | -0-1<br>-0-1                                                                        | 0                                                                          | 00-                                        | -1                                        | -1-<br>-                                  | -1-6                                      | - <b>T</b>                                | -1-10                                                   | -1-12                                      |                                              | -1-16                                      |                                            |
|   | - ad - a                                                                              | - +                                   | هت                                                  |                                         | , , ,<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                           |                             | -                                          | -                                   |                                        |                                                                                       | )  <br>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • +                                        |                                              |                                            | -                                          |                                                                            | •<br>••••                                                                     | • • •                   |                                            |                                            | ;<br>••••               |                                                                                     | ۱ ۱<br>ست است                                                              | ي<br>يىپ ە                                 |                                           | -                                         |                                           | -                                         |                                                         |                                            | +                                            | <u>'</u>                                   | ł                                          |
|   |                                                                                       |                                       |                                                     |                                         |                                                                                                                                                     |                             |                                            |                                     |                                        |                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                              |                                            |                                            |                                                                            |                                                                               |                         |                                            |                                            |                         |                                                                                     |                                                                            |                                            |                                           |                                           |                                           |                                           |                                                         |                                            |                                              |                                            |                                            |
|   |                                                                                       |                                       |                                                     |                                         |                                                                                                                                                     |                             |                                            |                                     |                                        |                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | ч                                            |                                            |                                            |                                                                            |                                                                               |                         | -                                          |                                            |                         | 5                                                                                   |                                                                            |                                            |                                           |                                           |                                           |                                           |                                                         |                                            |                                              |                                            |                                            |
|   | 41                                                                                    | 120                                   | -8-1                                                | 557                                     | 150                                                                                                                                                 | 131                         | 131                                        | 130                                 | 721                                    | TET                                                                                   | 130                                                                                    | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130                                        | S IEI                                        | 130                                        | 121                                        | 130                                                                        | 1.50                                                                          | 1007                    | 130                                        | 130                                        | 1.0                     | 130 S                                                                               | 130                                                                        | 130                                        | 021                                       | 121                                       | 130                                       | 135                                       | 151                                                     | 131                                        | 130                                          | 130                                        | 130                                        |
|   | 41 41                                                                                 | 4.7 120                               | 3.7 18                                              | 5E1 E.E.                                | 151 4.5.<br>171 4 5                                                                                                                                 | 3.3 131                     | 3.3 131                                    | 3.4 130                             | 121 E.E.                               | 121 2.5                                                                               | 151 4.5<br>251 5 5                                                                     | 3.3 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3 130                                    | 3.3 131 5                                    | 3.3 130                                    | 121 2.2                                    | 3.3 130                                                                    | 3.4 1.50 J                                                                    | 1327                    | 3.3 130                                    | 3.3 130                                    | 3.3 1.00                | 3.3 130 S                                                                           | 010 130<br>3.3 130                                                         | 3.3 130                                    | 0E1 E.E                                   | 3.3 131                                   | 0E1 E.E                                   | 3.3 135                                   | 3.3 131                                                 | 3.4 131                                    | 3.4 130                                      | 3.4 130                                    | 3.4 130                                    |
|   | 7 14 1 41                                                                             | .4 14.7 120                           | -87-2-21-7-                                         | SET E.E.O.                              |                                                                                                                                                     | 121 2.2 131                 | 121 2.21 0.                                | 0 13.4 130                          | 121 2.21                               | 121 2 131                                                                             | 021 4.51 0.<br>8 7 7 7 8 8                                                             | 7 13.3 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .8 13.3 130                                | 2 1E1 E.EI 0.                                | 1 021 2.21 9.1                             | .0 13.3 131                                | . 9 13.3 130                                                               | 0 17 C 150                                                                    | 13.3 135<br>135         | 9 13.3 130                                 | .9 13.3 130                                | 9 13.3 150              | . 9 13.3 130 S                                                                      |                                                                            | 9 13.3 130                                 | .9 13.3 130                               | 121 2.21 1.                               | .9 13.3 130                               | .0.13.3 135                               | 151 5.51 1.                                             | .2 13.4 131                                | .0 13.4 130                                  | 0 13.4 130                                 | .0 13.4 130                                |
|   | 9.7 14.1 41                                                                           | 29.4 14.7 120                         |                                                     |                                         | 124 477 124 120 124 120 124 120 124 120 124 124 124 124 124 124 124 124 124 124                                                                     | 29.1 13.3 131               | 29.0 13.3 131                              | 29.0 13.4 130                       | 29.1 13.3 131                          |                                                                                       | 021 4.51 0.42<br>25 5 5 5 6 66                                                         | 28.7 13.3 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.8 13.3 130                              | 29.0 13.3 131 S                              | 28.9 13.3 130                              | 29.0 13.3 131                              |                                                                            |                                                                               | 30.0 13.3 135           | 28.9 13.3 130                              | 28.9 13.3 130                              | 28.9 13.3 1.0           | 28.9 13.3 130 S                                                                     |                                                                            | 28.9 13.3 130                              | 28.9 13.3 130                             | 29.1 13.3 131                             | 28.9 13.3 130                             | 30.0,13.3 135                             | 29.1 13.3 131                                           | 29.2 13.4 131                              | 29.0 13.4 130                                | 29.0 13.4 130                              | 29.0 13.4 130                              |
|   |                                                                                       |                                       | <del>-87-62-7-7-78</del>                            |                                         | 10:00 29:1 13.4 130<br>10:00 29 1 13 A 130                                                                                                          |                             | 0:00 29.0 13.3 131                         | 10:01 29.0 13.4 130                 | 0:01 29.1 13.3 131                     | 10:00 29.0 13.3 131<br>0.00 20 21 17 170                                              | 10:00 29:0 13.4 130<br>15:00 29 8 13 7 134                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00:02 28.8 13.3 130                        | 0:00 29.0 13.3 131 S                         | 10:00 28.9 13.3 130                        |                                            |                                                                            |                                                                               |                         | \$0:00 28.9 13.3 130                       | 50:00 28.9 13.3 <b>1</b> 30                | S0:01 28.9 13.3 100     | SUIUU 28.9 13.3 130 S                                                               | 0:00 28.9 13.3 130<br>0:00 28.9 13.3 130                                   | SO: 00 28.9 13.3 130                       | 10:00 28.9 13.3 130                       | 10:00 29.1 13.3 131                       | 0:00 28.9 13.3 130                        | 0:01 30.0 13.3 135                        | 0:00 29.1 13.3 131                                      | 0:00 29.2 13.4 131                         | 0:00 29.0 13.4 130                           |                                            | 0:01 29.0 13.4 130                         |
|   | 1-1851:01 9.7 14.1 41<br>                                                             |                                       | 4-2239+00-4+ <u>1-13,7-18</u> -                     |                                         | 5-0100100 29,1 13,4 130<br>5-0200.00 29,1 13 A 130                                                                                                  |                             | 3-0400:00 29.0 13.3 131                    | 7-0500:01 29.0 13.4 130             | 3-0600:01 29.1 13.3 131                | 7-0700100 29.0 13.3 131<br>2-0000100 20 0 27 2 270                                    | 3-0600100 29,0 13,4 130<br>4-0935,00 29 8 13 7 134                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-1200:02 28.8 13.3 130                    | 2-1300:00 29.0 13.3 131 5                    | P-1400:00 28.9 13.3 130                    |                                            |                                                                            | 4-1/00:00 28,9 13,4 130                                                       | 0-2030:00 30.0 13.3 135 | 5-2130:00 28.9 13.3 130                    | 5-2230:00 28.9 13.3 130                    | 3-2330:01 28.9 13.3 130 | 3-0030100 28.9 13.3 130 S                                                           | 3-0230:00 28.9 13.3 130                                                    | P-0330:00 28.9 13.3 130                    | 7-0430:00 28.9 13.3 130                   | 3-0530:00 29.1 13.3 131                   | 5-0630:00 28.9 13.3 130                   | <b>]-0800:01 30.0 13.3 135</b>            | 1-0900:00 29.1 13.3 131                                 | i-i000:00 29.2 13.4 131                    | P-1100:00 29.0 13.4 130                      |                                            | 1-1300:01 29.0 13.4 130                    |
|   | 41:21-1851:01 9.7 14.1 41<br>47:28-1957:01 0 4 14 7 7 20                              | 44:40-2214:01 29.4 14.7 120           | 34154-2239100-4,4-43,748-                           |                                         | 0,54,45,11,52,00,00,00,00,00,00,00,00,00,00,00,00,00                                                                                                | 30:56-0300:00 29.1 13.3 131 | 30:58-0400:00 29.0 13.3 131                | 30:59-0500:01 29.0 13.4 130         | 30:58-0600:01 29.1 13.3 131            | 30:59-0700:00 29.0 13.3 131<br>20:50-0000:00 20 20 27 2 27                            | 05:14-0975,00 29.0 13.4 130<br>05:14-0975,00 29.8 23 23 24                             | 31:20-1100:00 28.7 13.3 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31:12-1200:02 28.8 13.3 130                | 31:02-1300:00 29.0 13.3 131 5                | 31:09-1400:00 28.9 13.3 130                | 30:58-1530:00 29.0 13.3 131                | 31:U/-16UU:U1 28.9 13.3 130  <br>24.64-4760.04 70 70 7 13 130              | 51:04-1/00:00 28.9 13.4 130                                                   |                         | 01:06-2130:00 28.9 13.3 130                | 01:06-2230:00 28.9 13.3 130                |                         | 01:08-0030:00 28.9 13.3 130 S                                                       | 01:02-0120:00 28.7 13.3 130<br>01:08-0230:00 28.9 13.3 130                 | 01:09-0330:00 28.9 13.3 130                | 01:09-0430:00 28.9 13.3 130               | 10:53-0530:00 29.1 13.3 131               | 01:06-0630:00 28.9 13.3 130               | 30:00-0800:01 30.0 13.3 135               | 50:54-0900:00 29.1 13.3 131                             | 30:51-1000:00 29.2 13.4 131                | 30:59-1100:00 29.0 13.4 130                  |                                            | 51:01-1500:01 29.0 13.4 130                |
|   | ] 1841:21-1851:01 9.7 14.1 41<br>1 1947:28-1957:01 0 4 14 7 70                        |                                       |                                                     | J 2334100-000100 30.0 33.3 135          | 021 4.21 1.22 00:00010-22:00:00 0<br>021 4 21 20 20 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 |                             | : 0330:58-0400:00 29.0 13.3 131            | 0430:59-0500:01 29.0 13.4 130       |                                        | 1 U63U:59-U7UU:U0 29.0 13.3 131<br>0720.58-0000.00 20 0 17 2 170                      | 151 4.51 1.75 UUIUUUUTUSUSUU 1<br>051 7 7 7 8 6 6 003570-613500                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1131:12-1200:02 20.8 13.3 130              | 1231:02-1300:00 29.0 13.3 131 S              | 1331:09-1400:00 28.9 13.3 130              |                                            | 1 1531:U/~16UU:U1 28.9 13.3 130 1<br>1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 1031104-1/00100 28.9 13.4 130 1<br>1750.67-1000.00 0 0 17 5 13              |                         | 2101:06-2130:00 28.9 13.3 130              | 2201:06-2230:00 28.9 13.3 130              |                         | 2 0001:08-0030:00 28.9 13.3 130 S                                                   | 0201108-0230100 28.9 13.3 130<br>0201108-0230100 28.9 13.3 130             | 2 0301:09-0330:00 28.9 13.3 130            | 0401:09-0430:00 28.9 13.3 130             | : 0500:53-0530:00 29.1 13.3 131           | 0601:06-0630:00 28.9 13.3 130             | 0730:00-0800:01 30.0 13.3 135             | : 0830:54-0900:00 29.1 13.3 131                         | 20930:51-1000:00 29.2 13.4 131             | 2 1030:59-1100:00 29.0 13.4 130              |                                            | 1231:01-1300:01 29.0 13.4 130              |
| • | 06/20 1841:21-1851:01 9.7 14.1 41<br>06/20 1947:28-1957:01 9.4.4.7 70                 | 06/20 2144:40-2214:01 29.4 14.7 120   | <u> 46/20 2234154 2239100 4,4-13,7-18</u>           |                                         | 021 4.21 1.42 UUUUU10-22102UU 12/00<br>021 4 1 30 1 30 1 4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                      |                             | 06/21 0330:58-0400:00 29.0 13.3 131        | 06/21 0430:59-0500:01 29.0 13.4 130 |                                        | U6/21 U630:59-U7UU:U0 29.0 13.3 131<br>06/21 0720:58-0000.00 20 22 2 22               | 05/24 0/20128-0800100 27,0 13,4 130<br>06/24 0905:44-0935,60 29 8 27 27 224            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06/21 1131:12-1200:02 28.8 13.3 130        | 06/21 1231:02-1300:00 29.0 13.3 131 S        | 06/21 1331:09-1400:00 28.9 13.3 130        |                                            | 02/21 1531:07-1600:01 28.9 13.3 130 1<br>02/21 1231:02-1200:00 20 22 2 220 | 06/21 1031104-1/00100 28,9 13,4 130 1<br>06/21 1750.67-1000.00 0 0 17 5 13    |                         | 06/21 2101:06-2130:00 28.9 13.3 130        | 05/21 2201:06-2230:00 28.9 13.3 130        |                         | 05/22 0001:08-0030:00 28.9 13.3 130 S                                               | 06/22 0201:08-0230:00 28.9 13.3 130<br>06/22 0201:08-0230:00 28.9 13.3 130 | 06/22 0301:09-0330:00 28.9 13.3 130        | 06/22 0401:09-0430:00 28.9 13.3 130       | 06/22 0500:53-0530:00 29.1 13.3 131       | 06/22 0601:06-0630:00 28.9 13.3 130       | 06/22 0730:00-0800:01 30.0 13.3 135       | 06/22 0830:54-0900:00 29.1 13.3 131                     | 06/22 0930:51-1000:00 29.2 13.4 131        | 06/22 1030:59-1100:00 29.0 13.4 130          |                                            | U5/22 1231:01-1300:01 29.0 13.4 130        |
|   | - 1 06/20 1841:21-1851:01 9.7 14.1 41<br>3 06/20 1947:28-1957:01 0 6 44 7 7 20        | 5 06/20 2144:40-2214:01 29.4 14.7 120 | 7 - 06/20 - 2234154 - 2239100 - 4, 4, 4, 4, 4, 4, 9 | · 9 U6/2U 2330/U0-0000/00 30.0 13.3 135 | 13. 06/24 01301-321050 13.4 130<br>13. 06/24 01301-34-0200.00 29.4 14 4 420                                                                         |                             | 17 06/21 0330:58-0400:00 29.0 13.3 131     |                                     | 21 06/21 0530:58-0600:01 29.1 13.3 131 | 23 U6/21 U63U:59-U7UU:U0 29.0 13.3 131<br>25 06/21 0720:50-0000:00 20 0 27 1 27       | 22 06/24 0905144-0935100 02 02 02 02 02 02 02 02 02 02 02 02 0                         | 29 06/21 1031:20-1100:00 28.7 13.3 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31 06/21 1131:12-1200:02 28.8 13.3 130     | 33 06/21 1231:02-1300:00 29.0 13.3 131 5     | 35 06/21 1331:09-1400:00 28.9 13.3 130     | 37 U6/21 1430:58-1530:00 29.0 13.3 131     |                                                                            | 41 86/61 1631104-1/00100 28,9 13,4 130  <br>43 66/91 1950.67-1000.00 8 6 13 5 |                         | 47 06/21 2101:06-2130:00 28.9 13.3 130     | 49 06/21 2201:06-2230:00 28.9 13.3 130     |                         | 5-3 U5/72 UU1:U8-UU30:00 28,9 13,3 130 S<br>50 07/53 04/4.07 04/20.00 20 20 2 2 2 2 | 52 06/22 0201:08-0230:00 28.9 13.3 130                                     | 59 06/22 0301:09-0330:00 28.9 13.3 130     | 1 06/22 0401:09-0430:00 28.9 13.3 130     | 3 06/22 0500:53-0530:00 29.1 13.3 131     | 5 06/22 0601:06-0630:00 28.9 13.3 130     | 7 06/22 0730:00-0800:01 30.0 13.3 135     | 9 06/22 0830:54-0900:00 29.1 13.3 131                   | 11 06/22 0930:51-1000:00 29.2 13.4 131     | 13 06/22 1030:59-1100:00 29.0 13.4 130       |                                            | 17 06/22 1231:01-1300:01 29.0 13.4 130     |
|   | 10- 1 06/20 1841:21-1851:01 9.7 14.1 41<br>1-0- 3 06/20 1947:28-1957:01 0 4 44 7 7 20 |                                       | <u>-1-0-7-06/20-2234154-2239100-4,1-13,7-18</u>     |                                         | 1-0-13 06/21 013010-2210500 13/00 11-0-1<br>1-0-13 06/21 013074-02001010 23 130                                                                     |                             | 1-0-17 06/21 0330:58-0400:00 29.0 13.3 131 |                                     |                                        | 1-8-23 86/21 8538;59-8788;00 29,0 13,3 131<br>1-8-35 86/21 8538;59-8888;88 28 27 2 27 | 1-0-27 06/24 0/30/38-0800100 27/0 13/4 130<br>1-0-27 06/24 0905/14-0935/00 29 27 27 22 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-0-31 06/21 1131:12-1200:02 28.8 13.3 130 | 1-0-33 06/21 1231:02-1300:00 29.0 13.3 131 S | 1-0-35 06/21 1331:09-1400:00 28.9 13.3 130 | 1-0-3/ 06/21 1430:58-1530:00 29.0 13.3 131 | J=U=37 U6/21 1531:U/=16U0:U1 28,9 13,3 130 F                               | J=U=41 86/21 1031104=1/00100 28,9 13,4 130                                    |                         | 1-0-47 06/21 2101:06-2130:00 28.9 13.3 130 | i-0-49 06/21 2201:06-2230:00 28.9 13.3 130 |                         | 1.0.55 05/22 0001:08-0030:00 28.9 13.3 130 S                                        | 1-0-57 06/22 0201:08-0230:00 28.9 13.3 130                                 | 1-0-59 06/22 0301:09-0330:00 28.9 13.3 130 | i-i-1 06/22 0401:09-0430:00 28.9 13.3 130 | u=1-3 06/22 0500:53-0530:00 29.1 13.3 131 | u-1-5 06/22 0601:06-0630:00 28.9 13.3 130 | 1-1-7 06/22 0730:00-0800:01 30.0 13.3 135 | 1 - 1 - 9 - 06/22 - 0830:54 - 0900:00 - 29.1 13.3 - 131 | i-i-ii 06/22 0930:51-1000:00 29.2 13.4 131 | i 1-1-13 06/22 1030:59-1100:00 29.0 13.4 130 | 1-1-15 06/22 1130:58-1200:00 29.0 13.4 130 | 1-1-1/ 06/22 1231:01-1300:01 29.0 13.4 130 |

η\_\_\_\_\_

NOOS S

|                                                                          |                                                                            |                                     |                                                                            |                                     |                                     |                                                              |                                                                                          |                                              |                                     |                                     |                                     |                                                                 |                                               |                                             |                                     |                                     |                                                                |                                              |                                              |                                             |                                                                          |                                           |                                            |                                                    |                                     | •                                   |                                     |                                     |                                     |                                     |                                     |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| 129                                                                      | 130                                                                        | 121                                 | 130                                                                        | 130                                 | 130                                 | 131                                                          | 121                                                                                      | 121                                          | 151                                 | 027                                 | 130                                 | 128                                                             | 134                                           | 454                                         | 4 2 4<br>7 4 2 4                    | 134                                 | 130                                                            | 121                                          | 121                                          |                                             | 06                                                                       | 109                                       | 130                                        |                                                    |                                     |                                     | 4 10 4                              | 101                                 |                                     | 130                                 | 131                                 |
| 28.5 13.3                                                                | 28.8 13.3                                                                  | 29.1 13.3                           | 29.0 13.4                                                                  | 24.0 13.4<br>28.9 17 7              | 28.8 13.3                           | 29.0 13.3                                                    | 29.0 13.3                                                                                | 28:9 13.3                                    | 28.9 13.6<br>28.9 13.6              | 28.9 13.3                           | 28.9 13.3                           | 28.4 13.3                                                       | 30.0 13.4                                     | 27. 0 13.3                                  | 29.8 13.3                           | 29.9 13.4                           | 29.0 13.4                                                      | 29.2 13.4                                    | 4.51 3.42<br>20 4 43 3                       | E E L 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 20.0 13.3                                                                | 24.2 13.3                                 | 28.8 13.3<br>20 0 12 2                     | C. C. T. T. C. |                                     |                                     |                                     | 0.01 0.00                           |                                     | 29.0 13.4                           | 29.0.13.3                           |
| 6/22 1401:28-1430:00<br>6/22 1501:28-1430:00                             | 6/22 1601:10-1630:00                                                       |                                     | 6/22 1901:01-1930:01<br>4/23 3001.07 3070.00                               | 6/22 2101:06-2130:00                | 6/22 2201:10-2230:00                | 6/22 2301:03-2330:01                                         | 6/23 0001103-0030100                                                                     | 6/23 0101:05-0130:01<br>6/23 0201.05-0220.00 | 6/23 0301:05-0330:00                | 6/23 0401:07-0430:00                | 6/23 0501:07-0530:00                | 6/23 0601:35-0630:01                                            | 6/23 0800:00-0830:00<br>2 /33 0850 /f 1820 00 | 10:0201-SI:0520 S2/8<br>6/23 4134:00-120(0) | 6/23 1414:14-1444:01                | 6/23 2004:09-2034:00                | 6/23 2141:00-2210:00                                           | 6/23 2337:46-0007:00<br>4/24 0150:51.0220.00 | 00:9220-16:0610 62/9<br>9/24 0401:54-0471.00 |                                             | 6/24 0810:03-0830:00                                                     | 6/24 0902:50-0927:00<br>2/24 1001.15 1020 | UNINCHIESTINNT F2/0<br>UNINCHIESTINNT F2/9 | 6/24 1200.00-1230.00                               | 6/24 1301 DD-1730.00                | 6/24 1400.59-1430.00                | 6/24 1501:00-1530:01                | 6/24 1600:47-1630:02                | 6/24 1/01:01-1/30:00                | 6/24 1801:01-1830:00                | 6/24 1901:02-1930:00                |
| 1-1-20 0<br>1-1-22 0                                                     |                                                                            |                                     |                                                                            | 1-1-34 0                            | 1-1-36 0:                           | 1-1-38 0                                                     |                                                                                          |                                              | 1-1-46 0                            | 1-1-48 0                            | 1-1-50                              |                                                                 | 0 73-1-1                                      |                                             | 1-1-60 0                            | 0<br>0-0-<br>0-                     | 2-0-40                                                         |                                              | 2-0-10 0                                     | 2-0-12                                      | 2-0-14 0                                                                 |                                           |                                            | 2-0-22                                             | 2-0-24 0                            | 2-0-56                              | 2-0-28 0                            | 2-0-30                              | 2-0-32 0                            | 2-0-34 0                            | 2-0-36 0                            |
| 50 5                                                                     | 10                                                                         | 1                                   |                                                                            |                                     |                                     |                                                              |                                                                                          |                                              |                                     |                                     |                                     |                                                                 |                                               |                                             |                                     |                                     | <u>.</u>                                                       |                                              |                                              |                                             |                                                                          |                                           |                                            |                                                    | S                                   | 1-                                  |                                     |                                     |                                     |                                     |                                     |
| 44 M                                                                     | 027                                                                        | 130                                 | HZT                                                                        | 129                                 | 131                                 | 130                                                          | 124                                                                                      | 130                                          | 130                                 | 130                                 | 130                                 |                                                                 |                                               | 0ET                                         | 129                                 | EET                                 | 1.0                                                            |                                              |                                              | 135                                         | 136                                                                      |                                           | 1624                                       | 25                                                 | 130                                 | 130                                 | 130                                 | 130                                 | 130                                 | 130                                 | 130                                 |
| 28.7 13.3 12<br>28.9 13.3 13                                             | 28.9 13.3 130<br>28.8 13.4 129                                             | 29.0 13.4 130                       | 28.9 13.3 130<br>28.9 13.3 130                                             | 28.7 13.4 129                       | 29.2 13.4 131                       | 29.0 13.4 130                                                | 28.7 13.4 127<br>20 0 47 4 470                                                           | 28.9 13.3 130                                | 28.9 13.3 130                       | 28.9 13.4 130                       | 28.9 13.3 130                       | 28 0 13.4 128                                                   | 29.0 13.3 130                                 | 28.9 13.3 130                               | 28.7 13.3 129                       | 29.6 13.3 133                       | 30,0 13,3 135                                                  | 29.4 13.3 13.1                               | 29.5 13.4 132                                | 30.0 13.3 135                               | 30.0 13.2 136                                                            |                                           | 29.1 13.5 129                              | 11.8 13.3 53                                       | 28.9.13.3 130                       | 29.0 13.4 130                       | 29.0 13.4 130                       | 29.0 13.4 130                       | 29.0 13.4 130                       | 29.0 13.4 130                       | 29.0 13.4 130                       |
| [1331:20-1400:00 28.7 13.3 12<br>[1431:08-1500:01 28.9 13.3 13           | 2 1531:09-1600:00 28.9 13.3 130<br>2 1631:10-1700:00 28.8 13.4 129         |                                     | : 1931:08-2000:02 28,9 13,4 128                                            | 2031:17-2100:00 28.7 13.4 129       | 2130:51-2200:00 29.2 13.4 131       | 2221:02-2300:01 29.0 13.4 130<br>2221:05-0000:00 00 02 2 200 | V21 P.21 V.82 NUTUUUTCUITCE :<br>0034:04-0400.01 V.82 V.82 V.82 V.82 V.82 V.82 V.82 V.82 |                                              | 0231:07-0300:00 28.9 13.3 130       |                                     | 0431:06-0500:00 28.9 13.3 130       | 124 4.51 0.82 00:000-02:124 124 124 124 124 124 124 124 124 124 | 0831:01-0900:01 29.0 13 3 130                 | 1021:06-1050:00 28.9 13.3 130               | 1205:19-1234:01 28.7 13.3 129       | 1454:26-1524:00 29.6 13.3 133       | 2202:00-2140:00 30:0 13:3 135<br>2307:00-2777:00 20 0 13 2 135 | 0128:53-0158:00 29.1 13.3 13                 | 0331:30-0401:01 29.5 13.4 135                | 0456:00-0526:01 - 30,0 13,3 135             | · U/18:00-0748:00 30.0 13.2 136                                          | 0930:00-1000:00 30.0 13 3 135             | 1030:57-1100:01 29.1 13.5 129              | 1142:14-1154:00 11.8 13.3 53                       | 1231:10-1300:01 28.9 13.3 130       | 1330:59-1400:00 29.0 13.4 130       | 1430:59-1500:00 29.0 13.4 130       | 1531:01-1600:00 29.0 13.4 130       | 1631:02-1700:00 29.0 13.4 130       |                                     | 1431102-1700100 29.0 13.4 130       |
| 06/22 1331:20-1400:00 28.7 13.3 12<br>06/22 1431:08-1500:01 28.9 13.3 13 | 06/22 1531:09-1600:00 28.9 13.3 130<br>06/22 1631:10-1700:00 28.8 13.4 129 | 06/22 1730:59-1800:01 29.0 13.4 130 | 06/22 1931:08-2000:02 28.9 13.3 130<br>06/22 1931:08-2000:02 28.9 13.3 130 | 06/22 2031:17-2100:00 28.7 13.4 129 | 06/22 2130:51-2200:00 29.2 13.4 131 | U6/22 2231:U2-2300:01 29.0 13.4 130                          | 721 872 23311020100000 23700 23700 25700 2570 2570 2570 2570 2570 2570                   |                                              | 06/23 0231:07-0300:00 28.9 13.3 130 | 06/23 0331:05-0400:01 28.9 13.4 130 | U6/23 U431:U6-0500:00 28.9 13.3 130 | 05/53 0631:08-0700:02 28 0 13.4 128                             | 06/23 0831:01-0900:01 29.0 13 3 134           | 06/23 1021:06-1050:00 28.9 13.3 130         | 06/23 1205:19-1234:01 28.7 13.3 129 | 06/23 1454;26-1524;00 29,6 13,3 133 | 06/23 2307:00-2777:00 20 0 42 2 135                            | 06/24 0128:53-0158:00 29.1 13.3 13           | 06/24 0331:30-0401:01 29.5 13.4 135          | 06/24 0456:00-0526:01 - 30.0 13.3 135       | 06/24 0/18:00-0/48:00 30.0 13.2 136<br>06/24 083:32-0858.03 32 6 27 7 25 | 06/24 0930:00-1000:00 30.0 13.3 121       | 06/24 1030:57-1100:01 29.1 13.5 129        | 06/24 1142:14-1154:00 11.8 13.3 53                 | 06/24 1231:10-1300:01 28.9 13.3 130 | 06/24 1330:59-1400:00 29.0 13.4 130 | 06/24 1430:59-1500:00 29.0 13.4 130 | 06/24 1531:01-1600:00 29.0 13.4 130 | 06/24 1631:02-1700:00 29.0 13.4 130 | 06/24 1/31:01-1800:00 29.0 13.4 130 | 02/24 1831:02-1700:00 29.0 13.4 130 |

L.

国際のなどの問題

Ę

j

7

BLM Cruise

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J                                                    | <b>v</b> 1                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4444040000000000<br>000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      | 136<br>130                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                              |
| <ul> <li>***</li> <li>***</li></ul> | 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2              | 30.0<br>28.7<br>28.8                                                                                                                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 06/27 2330:00-0000:00<br>06/28 0031:18-0100:01<br>06/28 0131:13-0200:00                                                                                                                                                                                                                                  |
| 52200000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000000000000000000000000000000000000               | 2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-1-2<br>2-2<br>2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>ა</b> ო                                           | 1                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      | 133                                                                                                                                                                                                                                                                                                      |
| 2288 288 9 4 4 3 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | 29.1 13.15.1 133<br>29.1 13.1 133<br>28.9 13.1 132                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | <u>-06/27 2322141 2326:00 3,3 13,3 15</u><br>06/28 0000:55-0030:01 29.1 13.1 133<br>06/28 0101:08-0130:00 28,9 13.1 132                                                                                                                                                                                  |

¥

BLM Cruise 4
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11091011<br>11091011<br>110910111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 231 00<br>331 00<br>431 10<br>631 01<br>730 5<br>731 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130 55<br>130 55<br>500 45<br>700 45<br>730 10<br>831 39<br>931 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130 00<br>130 00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a na 113 ha na na ha ha ha ha na ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>ν</b> ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | w ol ol ol ol ol ol ol o mol o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 132<br>132<br>132<br>133<br>133<br>133<br>133<br>133<br>133<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13.2<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28.9 13.2 132<br>28.9 13.1 132<br>28.8 13.1 132<br>16.6 13.3 75<br>29.1 13.1 133<br>29.2 13.2 133<br>29.2 13.2 133<br>29.2 13.2 133<br>29.2 13.2 133<br>29.8 13.7 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.1       13.2         9.1       13.2         9.2       13.3         9.2       13.3         9.2       13.3         9.2       13.3         13.3       132         13.3       132         13.4       13.3         13.5       13.3         13.6       13.3         13.7       132         13.8       131         13.1       132         13.2       131         13.2       132         13.2       132         13.2       132         13.2       132         13.2       132         13.2       132         13.2       132         13.2       132         13.2       132         13.2       132         13.2       132         13.2       132                                                                                                                                                                                                                                           | 0         0         0         0         0         0         0         0         13         0         13         0         13         0         13         0         13         0         13         0         13         0         13         0         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13 <td< th=""><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11       28.9       13.2       132         10       28.9       13.1       132         10       16.6       13.1       132         10       29.1       13.1       132         10       29.1       13.1       132         10       29.1       13.1       132         10       29.2       13.1       133         10       29.2       13.1       133         10       29.2       13.1       133         10       29.2       13.2       133         10       29.2       13.2       133         10       29.2       13.2       133         10       29.2       13.2       133         10       29.2       13.2       133         10       29.2       13.2       133         10       29.2       13.2       133         10       29.2       13.2       133         10       29.2       13.2       133         10       29.2       13.2       133         10       29.2       13.2       133         10       29.2       13.2       133 <td< td=""><td>0       29.1       13.2         0       30       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         2       13.2       132         2       13.2       132         2       13.2       132         2       13.2       132         2       29.0       13.2         2       29.0       13.2         2       29.0       13.2         2       29.0       13.2         2       29.0       13.2         2       29.0       13.2         2       29.0       13.2         2       29.0       29.2</td></td<> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0       289       8       33         0       288       9       13       134         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         135       133       133       134       5         136       13       133       133       134         138       133       133       133       133         138       133       133       133       133         138       133       133       133       133         138       133       133       133       133         138       133       133       <t< td=""></t<></td> | 0       29.1       13.2         0       30       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         1       29.2       13.3         2       13.2       132         2       13.2       132         2       13.2       132         2       13.2       132         2       29.0       13.2         2       29.0       13.2         2       29.0       13.2         2       29.0       13.2         2       29.0       13.2         2       29.0       13.2         2       29.0       13.2         2       29.0       29.2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       289       8       33         0       288       9       13       134         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         0       29       13       134       5         135       133       133       134       5         136       13       133       133       134         138       133       133       133       133         138       133       133       133       133         138       133       133       133       133         138       133       133       133       133         138       133       133 <t< td=""></t<> |
| 30:01       28.9       13.2       132         30:02       28.9       13.1       132         30:02       28.8       13.1       132         26:00       16.6       13.3       75         30:00       29.1       13.1       132         30:00       29.1       13.1       133         30:00       29.1       13.1       133         30:00       29.2       13.2       133         30:00       29.2       13.2       133         30:00       29.2       13.2       133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30:00     29.2     13.2     133       30:00     29.0     13.2     133       30:00     29.0     13.2     132       30:00     29.0     13.2     132       30:00     29.0     13.2     132       30:00     29.0     13.2     132       30:00     29.0     13.2     132       30:00     29.0     13.2     132       30:00     29.0     13.2     132       30:00     29.0     13.2     132       30:00     29.0     13.2     132       30:00     29.0     13.2     132       30:00     29.0     13.2     132       30:00     29.0     13.2     134       30:00     29.0     13.2     134       30:00     29.0     13.2     134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5-0230:01 28.9 13.2 132<br>6-0330:00 28.9 13.1 132<br>2-0430:02 28.8 13.1 132<br>6-0526:00 16.6 13.3 75<br>2-0630:00 29.1 13.1 133<br>2-0730:00 29.3 13.1 134<br>9-0830:00 29.2 13.2 133<br>9-0930:00 28.8 13.2 133<br>5-1030:00 28.8 13.2 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-1030:00       29.2       13.2       133         8-1230:00       29.0       13.2       132         2-1330:00       29.0       13.2       132         1-1430:00       29.0       13.2       132         1-1430:00       29.0       13.2       132         1-1430:00       29.0       13.2       132         1-1430:00       29.0       13.2       132         1-1630:00       29.0       13.2       132         1-1630:00       29.0       13.2       132         5-1730:00       29.0       13.2       132         5-1730:00       29.0       13.2       132         5-0922:00       30.0       13.2       134         7-1316:00       29.0       13.2       134         7-1316:00       29.0       13.2       134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06/29 1200158-1230:00 29.2 13.2 133<br>06/29 1200158-1230:00 29.0 13.2 132<br>06/29 1301:02-1330:00 29.0 13.2 132<br>06/29 1501:03-1530:00 29.0 13.2 132<br>06/29 1501:03-1530:00 29.0 13.2 132<br>06/29 1701:05-1730:00 28.9 13.1 132<br>06/30 0622:03-0652:00 20.0 13.2 134<br>06/30 0656:29-0926:00 29.0 13.2 134<br>06/30 0656:29-0926:00 29.0 13.2 134<br>06/30 1009:01-1038:00 29.9 13.2 134<br>06/30 1209:01-1038:00 29.9 13.2 132<br>06/30 1209:01-1038:00 29.9 13.2 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

M

BLM Cruise

No. 1

4

. . .

E-14

**HLM Cruise** 4

## 132 3-1-14 07/01 1422:47-1452:00 29.2 13.3 5 EET **TET** 29.2 13.2 29.1 13.3 07/01 1312:51-1342:00 07/01 1452:56-1522:00 3-1-13

## REFERENCES

Businger, J.A., (1973), "Turbulent Transfer in the Atmospheric Surface Layer", Workshop on Micrometeorology, AMS, 67.

Garratt, J.R., (1977), "Review of Drag Coefficients over Oceans and Continents", Monthly Weather Rev., 105, 915.

Hojstrup, J., (1981), "A Simple Model for the Adjustment of Velocity Spectra in Unstable Conditions Downstream of an Abrupt Change in Roughness and Heat Flux", Bound.-Layer Meteor., <u>21</u>, 341-356.

,(1982),"Velocity Spectra in the Unstable Planetary Boundary Layer",J.Atmos.Sci.,<u>39</u>,2239.

Izumi,Y., and S.J. Caushey,(1976), "Minnesota 1973 Atmospheric Boundary Layer Experiment Data Report", AFCRL-TR-76-0038, Air Force Cambridge Research Laboratories, 23pp.

Kaimal, J.C., (1978), "Horizontal Velocity Spectra in an Unstable Surface Layer", J. Atmos. Sci., <u>35</u>, 18-23.

, et. al.,(1976),"Turbulence Structure in the Convective Boundary Layer", J. Atmos. Sci,33,2152-2169.

Kondo, J., (1975), "Air-Sea Bulk Transfer Coefficients in Diabatic Conditions", Boundary Layer Meteorlology, 9, 91.

Schacher, G.E., et. al.,(1982),"California Coastal Offshore Transport and Diffusion Experiments-Meteorological Conditions and Data", Naval Postgraduate School Report 61-82-007.

## DISTRIBUTION LIST

2

2

10

2

1

5

3

2

1

- Defense Technical Information Center Cameron Station Alexandria, Virginia 22314
- 2. Library, Code 0142 Naval Postgraduate School Monterey, California 93943

「たい」というというのである

- Professor G.E. Schacher, Code 61Sq Department of Physics Naval Postgraduate School Monterey, California 93943
- Mr. C.E. Skupniewicz Department of Physics Naval Postgraduate School Monterey, California 93943
- Professor K.L. Davidson, Code 63Ds Department of Meteorology Naval Postgraduate School Monterey, California 93943
- Professor W. Shaw, Code 63Sr Department of Meteorology Naval Postgraduate School Monterey, California 93943
- Mr. Tom Yencha, Code 351 Naval Surface Weapons Center Dahlgren, Virginia 22448
- Dr. Paul Tag Naval Environmental Prediction Research Facility Monterey, California 93943
- 9. Professor C.W. Fairall Department of Meteorology Penn State University State College, PA 16082
- Professor Eugene S. Takle Climatology/Meteorology 310 Curtiss Hall Iowa State University Ames, Iowa 50011

11. Dr. Soren E. Larsen
 Met-Physics Department
 RISØ National Laboratory
 DK-4000 Roskilde
 Denmark

2

1

1

1

1

1

1

1

1

1

- 12. Dr. Ron Cionco Atmospheric Sciences Lab WSMR, New Mexico 80002
- 13. Dr. Warren Johnson SRI International 333 Ravenswood Avenue Menlo Park, California 93025
- 14. Dr. Walter Dabbert NCAR PO Box 3000 Boulder, CO 80307
- 15. Dr. Donald L. Shearer TRC Environmental Consultants, Inc. 8775 E. Orchard Road, Suite 816 Englewood, Colorado 80111
- 16. Dr. Steven Hannah 533 Hill Road Boxborough, MA 01719
- 17. Mr. Dan Goddin
  ERT
  975 Business Center Circle
  Newbury Park, California 21320
- 18. Dr. Ann Berman ERT 7700 E. Araphue Road Englewood, CO 80112
- 19. Dr. Hans Panofsky
   6222 Agee Street
   Unit #5
   San Diego, California 92122
- 20. Dr. Robert Abbey Environmental Science Div. Office of Naval Research 800 N. Quincy Arlington, VA 22217

- 21. Dr. Ivar Tombach Aerovironment 145 Vista Ave. Pasadena, California 91107
- 22. Dr. Summer Barr Mail Stop D466 Los Alamos National Lab Los Alamos, N.M. 87545
- Dr. D.A. Venkatram
   ERT
   975 Business Center Circle
   Newberry Park, California 91320
- 24. Dr. Richard Londergan TRC Environmental Consultants 800 Conneticut BLvd. East Hastford, CT 06108
- 25. Dr. Bert Galloway, Code 3917 Naval Weapons Center China Lake, California 93555
- 26. Dr. Gloria Patton Theater Nuclear Warfard Project Office Department of Navy Washington, D.C. 20360
- 27. Dr. John Garino SEA 05R16 Naval Sea Systems Command Washington, D.C. 20362
- 28. CDR Raymond Chaput MAT 0723 Office of Naval Technology 600 N. Quincy Arlington, Virginia 22217
- 29. CDR S.G. Colgan, Code 420B Office of Naval Research 800 N. Quincy Street Arlington, Virginia 22217
- 30. LCDR James D. Branum 2682 Olivstone Way San Jose, California 95132

1

1

1

1

1

1

1

1

1

1

31. Dr. Ron Bywater The Aerospace Corporation Space Launch Vehicle Division P.O. Box 92957 Los Angeles, California 90009 1

1

1

1

1

2

1

- 32. Dr. William Ohmstede 1002 Cedardale Drive Las Cruces, N.M. 88001
- 33. Mr. Dirk Herkhof Minerals Management Service Pacific OCS Office 1340 West 6th Street Rm. 200 Los Angeles, California 90017
- 34. Mr. Morton C. Roman Environmental and Energy Conservation Atlantic Richfield Co. 515 Flower Street Los Angeles, California 90071
- 35. Mr. Robert Harrison Western Oil and Gas Assn. 727 West 7th Street Los Angeles, California 90017
- 36. Dr. Torben Mikkelsen Met-Physics Department RISØ National Laboratory DK-4000 Roskilde Denmark
- 37. Research Administration Office Code 012 Naval Postgraduate School Monterey, CA 93943-5000