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ABSTRACT

Cost models are developed to show the relationship

between inventory and maintenance policies when one component

of one item of equipment is replaced in accordance with the

maintenance policy and the components are stocked in accord-

ance with the inventory policy. A (Q,r) inventory policy and

failure replacement and age replacement maintenance policies

are used. The necessary conditions for determining optimum

values of the reorder quantity, the reorder point, and time

to replacement are derived.
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I. INTRODUCTION

The situation to be considered is as follows: There is

one piece of equipment which will not operate only if a

certain component has failed. Otherwise it will operate

satisfactorily. The component fails according to a known

probability distribution. There is a maintenance policy

which dictates when the component will be replaced and a

stock of these components is kept available for use as

replacements. There is an inventory policy which determines

the procedures for replenishing the stock of components.

When the maintenance policy dictates that the component

is to be replaced, it is replaced if there is a component in

inventory. If the stock on hand is zero, the equipment be-

comes inoperative and the time during which the equipment is

inoperative is called downtime.

The subject of inventory and inventory policies has been

examined in considerable depth in many books and papers. In

this paper only one type of inventory policy will be con-

sidered, namely a (Q,r) inventory policy. (See Hadley and

Whitin [1]). This policy is characterized by specifying a

reorder quantity (Q) and a reorder point (r) . The policy

requires that an order for a quantity Q of the item be placed

whenever the stock on hand reaches level r. The length of

time from the placing of an order to its receipt is called

the lead time and may be fixed or variable. The demand on

the inventory system is stochastic and is dependent on the



probability distribution of failures and the maintenance

policy

.

A maintenance policy determines when a piece of equip-

ment will be inspected, repaired or replaced. McCall [2]

has published a survey of maintenance policies for stoch-

asticly failing equipment. In what follows, only two types

of maintenance policies will be considered, failure replace-

ment and age replacement policies. In a failure replacement

policy, a component is replaced upon failure; in age re-

placement the component is replaced upon failure or after it

has been in use a prescribed length of time, whichever comes

first. If an item has a continuous, strictly increasing

failure rate, Barlow and Proschan [3] have shown that there

exists a unique replacement age which may be infinite,

(i.e., use failure replacement).

It is easily seen that if the time to replacement of an

item is shortened, the quantity used in a given length of

time will increase. This means that the demand on the

inventory system will increase. It also demonstrates that

there is at least one easily seen connection between mainte-

nance and inventory policies. McCall [2] states that the

interaction between maintenance and inventory models has

never been analyzed and suggests that the question merits

additional research. Falkner [4] considered this inter-

action in the case in which there is a fixed planning horizon

and the time to replacement is recalculated after every

replacement; i.e., a sequential maintenance policy is used.



The problem is formulated as a dynamic programming problem

and methods of determining the optimal values for initial

inventory and times to replacement are given.

Although all equipment certainly has a finite life span,

and optimal sequential replacement policies have been shown

to be superior to optimal periodic policies for a finite life

span (see Barlow and Proschan [5]) , sequential replacement

policies often prove to be impractical. Equipment life span

in the military is usually of indefinite length and is suf-

ficiently long that it may be considered infinite. The

application of a sequential maintenance policy requires an

excessive amount of administrative overhead and requires

techniques that are usually not known to individuals perform-

ing maintenance on anything but the most sophisticated

equipment. For these reasons the infinite horizon models

considered in this paper are more realistic in many military

situations. The decision variables are expressed in such a

way that they can be more easily understood and applied.

The first case considered is the use of a (Q,r) inventory

policy and a failure replacement policy. A cost model is

developed which is used to determine a minimum cost inventory

policy. For those cases in which cost is not considered to

be the proper criterion (or sole criterion) for optimization,

constraints on the length of downtime and the percentage of

downtime are considered.

The second case to be considered is the use of a (Q,r)

inventory policy and an age replacement maintenance policy.



A cost model is developed which is similar to the cost model

for the first case. The model does contain an additional

decision variable, the length of time to scheduled replace-

ment of a component. The first case is actually a special

case of the second case in which the age to replacement is

infinite. However for clarity we present the two cases

separately.



II. COST MODEL WITH FAILURE REPLACEMENT

A. DEFINITION OF TERMS

Reorder Quantity (Q) - The quantity of parts that is

ordered each time stock is replenished.

Reorder Point (r) - The inventory level at which the

order for the reorder quantity is placed.

Lead Time (T) - The time lag from the time an order is

placed until it is received.

Cycle Length (L) - The time from placing of one order to

the placing of the next.

Fixed Reorder Cost (A) - The fixed costs of placing an

order for more inventory.

Holding Cost (h) - The cost per item per unit time

charged on all items used during a cycle over the length of

a cycle.

Downtime Cost (ir) - The cost of downtime for one unit of

time

.

Purchase Cost (C) - The cost to buy one item of inventory

Failure Replacement Cost (C
f )

- The cost of replacing

the failed component on the equipment. This cost is in

addition to the purchase cost C.

Length of Downtime (D) - The length of time in one cycle

during which the equipment cannot be operated.



B. SITUATION AND ASSUMPTIONS

Consider the situation as described in the introduction,

in which a piece of equipment is maintained under a failure

replacement policy and a (Q,r) inventory policy is used to

supply the replacement parts. The lifetimes of the components

are independent, identically distributed random variables

with a known distribution function, F(x). This function is

assumed to have an increasing failure rate, that is

f(t) .——— is increasing in t,
F(t)

where f(t) is the density function and F(t)=l-F(t). The

probability of failure of an item with an increasing failure

rate increases with time in service, i.e., it exhibits wear-

out.

In the development of the model further assumptions are

made. It is assumed that the time required for component

replacement is zero, thus downtime occurs only when the stock

of replacement parts is exhausted. The lead time is assumed

to be fixed. The cost of downtime is assumed to be constant

throughout the length of the downtime. Figure 1 illustrates

the inventory level in a system using a (Q,r) inventory

policy and a failure replacement maintenance policy. It is

assumed that Q>_ r+1, this insures that when an order is

received, the quantity on hand is at least r.

10
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C. MODEL FORMULATION

In formulating the model, an expression is first devel-

oped for the costs for one cycle; these costs are then

averaged over an infinite horizon.

1

.

Costs for One Cycle

The costs for one cycle are expressed as:

cost of placing one order + purchase cost + holding

costs + costs of downtime + cost of replacing the component.

Thus, the total cost, K , for one cycle is:

K=A+CQ+hQL+7TD+C
f
Q (1)

In the above equation, the quantities L, cycle

length, and D, length of downtime, are random variables.

Expressions for the expectations of these random variables

are now found.

2

.

Expected Length of Downtime

As previously stated, downtime will occur if the

component in service fails when the inventory level is zero.

Since the inventory level is r when an order is placed, r+1

failures must occur prior to the end of the leadtime T for

downtime to occur. An example of this can be seen in

figure 1.

Let X. = time to failure of the ith component,

Y = length of downtime in a cycle

.

Since downtime cannot be less than zero and the

leadtime T is a fixed quantity, then

12



r+1
Y = Max[0,T- EX.].

i = l
X

n
Defining S = EX., then Y = Max 0,T-S ,,] .^ n n 1 r+1

i=l

Let the distribution of Y be G(y) = P[Y<y]. Then

G(y) = P[S
r+1

>T-y]=F
r+1

(T-y) y<T , (2)

where F (x) is the n-th convolution of F(x) with
n

itself.

Let 6 = E[Y] = expected length of downtime per cycle/

5 = E[Y]
-'/J

[1-G(y)]dy =
/J

[1-F
r+1

(T-y) ] dy =
/J

F
r+1

(x)dx.

(3)
3. Expected Length of a Cycle .

A cycle has been defined as the length of time from

the placing of one order to the placing of the next order.

During a cycle there are exactly Q failures, each preceded

by a length of time X- , during which the equipment is

operating.

During a cycle the length of time the equipment is

Q
operating is EX., the length of time the equipment is not

i=l
x

operating is D, the downtime. Thus the length of a cycle is

Q
L = Z X.+D.

i = l
X

Taking expectations and letting £. = E[L]

Q
I = E[L] = I E[X. ]+E[D] .

i=l
x

13



Let E[X]=u the mean time between failures (MTBF)

.

Thus, £ = Qp+/q F
r+1

(x)dx .

4 . Costs for an Infinite Horizon

From equation (1) , the average costs per cycle may

be determined by taking expected values. That is, the costs

are averaged over an infinite horizon. Letting K = the cost

for one cycle,

E[K] = A + CQ + hQE[L] + ttE [D] + C
f
Q

= A + CQ + hQl + tt6 + C
f
Q .

The sequence of cycles is a renewal process since the

cycle lengths are independent, identically distributed random

variables. Let the expected number of renewals in [0,t] be

H(t) . The expected cost for the interval [0,t] will then be

E[Cost] = H(t)E[K] + e(t), where e (t) /t-* as t-*» ,

since e(t) represents the cost in the part of a cycle in

[0,t] and hence is bounded.

The average cost per unit time is

lim E[C25tL = llm [
SCtL E[K] +

CM
j

=E[K]^^- + .

Since lim .;
= — the average cost per unit

time is:

t->0
t *•

E[K ]
A + CQ + C

fQ
+ 1T6 + hQ a (4)

A -
1 1

14



Since X is a function of Q and r equation (4) may

be written

A +(C+C f )Q +7r/n F (x) dx
X(Q,r) = ^— ^ iii +hQ . (5)

Qy + /
Q

F
r+1

(x)dx

5 . Properties of Cost Function

T
6(r) = f n F

,
, (x) dx is a decreasing function of r.

•'O r+1 3

It follows from this that ft(Q,r) is either monotone increas-

ing or monotone decreasing in r, depending on the relative

magnitudes of certain costs in equation (5). Let C'=C
f
+C.

A+C ' QIf —_ > 1, K is monotone increasing in r.
TTQy — 3

A+C ' QIf —=c— < 1, K is monotone decreasing in r.

Since -1< r <Q-1 the optimum value of r is

! • * A+C'Q . .

r =
- 1 lf "W > x

'

r = Q-l if ^Q < 1 .

A+C ' QIf —_ = 1 the function is constant in r.
TrQy

At r = -1, 6=T, thus

K(Q,-1>
A^y T

+ hQ .

Assuming % i.s continuous and different! able in

Q the optimum value of Q is the solution to dK/dQ=0. From

the above

,

aj( C _ A+C'Q+TTT
dQ - Qy+T "

(Qy+T)
2

'

after solving for Q ,

(6)

15



~ J Ay+(TTU-C' ) T T
Q - / 2

u
'

For large values of r, 6-0, thus

fc(Q,r) = ^£ + hQ '

In the same manner as above, the optimum Q for large

values of r is:

Q=/^ • (7)

This is nearly identical to the well known lot-

formula [1] and would be identical if the assumption had

been made that holding costs were proportional to Q/2

.

For large values of r, the second derivative of K

with respect to Q is

d
2
K _ 2y (yA+yC'Q) 2yC

dQ
2

(Qy)
3

(Qy)
2

Q y

Thus K(Q/ r ) is convex in Q for large r. For r =-1,

the second derivative of is

d
2
ft _ 2y(yA+yCQ+ y tt.T ) _ 2y C '

dQ
2

(Qy+T)
3 (Qy+T)

2

2y
2
A+2 7Ty

2T-2yC'T

(Qy+T)
2

This will be positive if y (A+ttT) > C'T which is then

the necessary condition to have convexity in Q.

16



D. DOWNTIME RESTRICTIONS

It is frequently desirable, particularly in the military,

to maintain the length of downtime or the percentage of

downtime below a certain level. The necessary conditions for

applying these restrictions have been developed and the

problem of applying them subject to cost constraints has been

considered.

1

.

Restrictions on the Length of Downtime

If D = downtime then, from equation (2)

,

P[D<y] = F
r+]_

[T-y] 0<y<T

= 1 y>T

Note that the length of downtime is a function of r

alone , given T as fixed. If it is desired to control the

length of downtime this can be done by varying r. For

example, since downtime will always be a fraction of T, to

keep this fraction less than or equal to a, with probability

at least 3/ we must choose a and 3 such that P[Y<_aT]>_3.

That is, 1-3 > F
+

, [(l-a)T].

Since F
,

, (x) is a decreasing function of r and
r+1 3

-i
•

F
, , (x) = 0, there is a minimum value of r for which the

2f->oo r+1

abovc inequality holds.

2

.

Fraction of Downtime

The expected fraction of time during which the item

of equipment will be down is:

17



expected length of downtime
fraction downtime = . =

expected length of cycle

6 / F
r+1 (x)dx

tzttx = m • We wish to investigate
Qy+6

Qy+/J
F
r+1

(x)dx

how this function varies with r and Q.

The following lemma will be needed: If A>0 and B>0,

then BTAilTfe for e>0 -

Proof: assume

< D
^~ £

, then A(A+B) -Ae<A(A+B) - Ae-Be andB+A B+A-e

< -Be , but this contradicts the fact that e>0 and B>0,

therefore, 5—-r- >
B+A - B+A-e

*

The maximum amount of downtime that can occur is T.

This will occur when r= -1. For any r>-l, 6<T.

Thus , from the above lemma

T
fraction downtime < ^

—

-=? .- Qy+T

It can be seen from the above that by increasing q

the fraction of downtime may be made as small as desired.

Note also that 6 is a decreasing function of r, so, subject

to the constraint Q>r, by increasing r, the fraction down-

time may be made as small as desired.

3 . Cost Constraints on Downtime

By increasing Q and r and keeping Q>r both the

expected length of downtime and the fraction of downtime may

be made as small as desired. Normally there will be a cost

18



constraint of some type; the problem can then be expressed

as

Minimize (fraction downtime) =
Qy+6

subject to ft(Q,r)<b

where b is a cost constraint;

or,

Minimize H(Qr^)

subject to -

—

rr <P- 0<p<lJ Qu+o — —

T ...
in this case if ^r—r-=- <p the constraint is not active and

need not be considered in the minimization.

If the length of downtime is of concern the problem

is

Minimize X(Q/ r )

subject to l-3^_ F +1 [(l-a)T]

or

Minimize F ,,[(l-a)T]
r+1

subject to ^<(Q,r)<b .

19



III. COST MODEL WITH AGE REPLACEMENT

The cost model with age replacement is a generalization

of the model with failure replacement presented in II.

A. DEFINITION OF TERMS

The following definitions are required in addition to

those given in II. A.

Time to replacement (t ) - The time between the placing

of a component in service and its scheduled removal assuming

the component does not fail before t .

Scheduled Replacement Cost (C ) - The cost of replacing

a component at the scheduled time to replacement (t )

.

B. SITUATION AND ASSUMPTIONS

The situation is the same as previously described. The

same assumptions still hold. In addition, it is assumed that

the cost of scheduled replacement of a component is less than

the cost of failure replacement, C <C^.c s f

C. MODEL FORMULATION

The development of a cost model for an age replacement

policy follows very closely the development in II. There are

some additional costs to consider and in addition to the

distribution of failures F(x), the distribution of time

between replacements must be known.

20



1. Distribution of Time Between Replacements

The use of an age replacement policy means that an

item in service will be replaced upon failure or if the time

in service reaches t , whichever occurs first. The distri-
o'

bution of time between failures is still F(x) , a continuous

function with an increasing failure rate. Defining F(x) =

distribution of time between replacements with an age

replacement policy, F(x) has the following distribution:

F(x) = F(x) 0<x<t (8)

F(x) - 1 . x>t— o

Let y be mean time between replacements, then

- to
y = r [l-F(x) ]dx .

2

.

Expected Costs for One Cycle

The expected costs for one cycle are:

ordering cost + purchase cost + expected holding

costs + expected costs of downtime + expected costs of

replacing items upon failure + expected costs of replacing

items upon schedule at time t .

If X is the time to failure of a component, then

the probability of the item failing before the scheduled

replacement is P [X<_t ] = F(t ) . For one cycle, the expected

cost of replacing items upon failure is the cost of a failure

replacement times the expected number of items that will

fail, which is the number of items used in a cycle, Q, times

the probability of failure, F(t ). Thus, the expected cost

of replacing items upon failure = C
f
QF(t ) . Similarly,

the expected cost of replacing items upon schedule is

C
s
Q[l-F(t

o
)].

21



The expected costs for one cycle =

A + CQ + hQl + tt6 + C
f
QF(t

Q ) + C Q(l-*FCt )) .

3. Costs for an Infinite Horizon

Using the same argument as in II. C. 4 the costs per

unit time averaged over an infinite horizon are obtained.

A + CQ + C.QF(t ) + C Q(l-F(t )) + tt 6

% = 2- 5 2 +hQ .

^ /\

Recalling that t and F
, , are functions of t , thisr+1 o

may be written

A+Q(C+C,)F(t )+Q(C+C )F(t )+TT/ n F. .. (x) dx
M//-nj_\ X O oOU ITT X . . ,*(Q,r,t ) = =-^ +hQ .

Qy + f
l

Q
F
r+1

(x)dx

4

.

Properties of the Cost Function

Since 6(r) = / n
F , (x) dx is a decreasing function

of r, the same type of argument as in II. C. 5 gives the

following for optimum values of r;

letting C'=C+C
f

as before and letting C '=C+C
g

A+C'QF(t )+C* 'QF(t )

r=-l if ^_ — >i ,

fTQy

A+C'QF(t )+C 'QF(t )

r=Q-l if 2_ 2_ <i .

TTQy

Note that the optimum value of r is dependent on

both Q and t .

At r=-l 6 = T, using this fact and assuming X is

continuous in Q, by taking partial derivatives of

ft(Q,-l,t ) with respect to R and t the required conditions

for optimum Q and t can be found.

22



.„ C*F(t )+C ,, F(t ) A+QC'F(t )+QC"F(t ) +ttT
pA _ h ,

o 2_ _ 2 2
y Qy+T (Qy+T)

z

setting this equal to zero, we find

y(A+7TT)-(C'F(t )+C''F(t ))T

Xj
2 ° X- (9)

hy y

Taking partial derivatives with respect to t

at, QC'f(t )-QC"f(t ) ^,A+QC'F(t )+QC"F(t )+ T
oK o o « o o
di" ^ "2

o Qy+T (Qy+T)

note that y=/
n

F(x)dx

/V /s.

and y
1 = 9y/9t = f(t ) by Leibnitz ruleo o

Q(C'-C ,l )f(t ) A+QC'F(t )+QC'F(t )+ T
= 2- - QF(t )

2. 2 _ .

Qy+T ° (Qy+T)^

The optimal t is the solution to the above equation

Providing the necessary conditions for r=-l hold

throughout the region under consideration, an iterative

procedure may be used to determine the optimum Q and t .

Assuming that r =Q-1 and Q is sufficiently large,

the necessary conditions for a minimum ?^(Q,r,t ) are:

Q = ^~
i hy and

Q(C'-C' ')f (t ) F(t )

s
2

T2
2- (A+QC'F(t

o
)+QC f F(t

o
))= .

Qy Qy

23



Rearranging this equation we get

~ '
fc
o^ — C ' A

y — " F(t ) = Sh „,, +
o' C'-C' ' QtC'-C') '

This is very similar to the equation given in refer-

ence [2] for determining the optimum t when an age replace-

ment policy is used. The above equation differs only by the

inclusion of the term q-twi _c , r\ on tne right hand side. If

A is zero, it is identical to the equation in [2] which does

not consider costs due to purchasing and holding inventory.

Note also that for large Q or large C the effect of this term

is small.

Following the same procedures as in II. C. 5 it can be

shown that 7{(Q/ r rt ) is convex for large values of r and that

for r=-l the following condition must hold for convexity in

Qf

y(A+7T) >(C'F(t )+C ,, F(t ))T .

D. DOWNTIME RESTRICTIONS

1 . Length of Downtime

Using the same reasoning as in II.D.l but with the

distribution of time to replacement given by (8), to keep

the downtime less than or equal to a fraction a of T, the

lead time, with probability 3; the following must hold.

l-3> F
r+1

[(l-cOT] .

For any r, and letting k= 1-a
,

24



F
r+1

(kT) = 1 . kT >(r+l)t
Q

= F .. (kT) . kT <(r+l)

t

r+1 o

Thus, if (l-a)T > (r+l)t , 3 must equal zero, that

is if aT < T-(r+l)t then 3=0. This means that the lower
o

limit on downtime is T- (r+l)t
o

setting T-(r+l)t less than or equal to zero

T
we get t > —rr-3 o — r+1

T
This implies that if t < —rr- downtime will occur

f o — r+1

every cycle and it will be no less than T- (r+l)t

This result indicates that a strict age replacement

policy is defective in some manner. This is the case and

this defect will be discussed further in V, where the

effects of a more realistic policy will be examined.

For (1-a) T<(r+1) t ,

1 - 3 >F ,,[(l-a)T] must hold and as in— r+1

II.D.l there is an r' such that

for all r>r'

1-3>F ,[(l-a)T] for all a and 3 .

2 . Fraction of Downtime

The expected fraction of downtime is

T /s

/ ?
r+1

(x)dx

Qy+6 Q ^+/ n
^
r+1

(x)dx

25



in a manner similar to II. D. 2 it can be shown that

Tfraction downtime

<

Qy+T

Since 6 is nonincreasing in t and y is increasing

in t , the fraction of downtime is decreasing in t . This
o o

follows from the above lemma. The fraction of downtime will

reach a minimum with respect to t at t = °°, i.e., when ac o o

failure replacement policy is used.

This means that the fraction of downtime can be

decreased by increasing Q or r as was seen in II. D. 2 and in

addition a decrease in downtime can be brought about by

increasing t .3 o

3. Cost Constraints on Downtime

Constrained minimization problems similar to those

given in II. D. 3 can easily be developed if required.
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IV. NUMERICAL EXAMPLES

A. INCREASING VALUES OF r

Since the optimal solutions for large values of r

obtained in II. C. 5 and III.C.4 are based on the assumption

that the expected value of downtime is close to zero, it is

desirable to see how rapidly this value approaches zero as

r increases. Figure 2 contains graphs of the expected value

of downtime for increasing r for two different failure

distributions with the same mean. The values are graphed

for different values of T. Note that in all cases for r

greater than 7 the value is negligible.

B. DETERMINING OPTIMA

The following values are used in this example:

A=$5.0 0,TT=$50.00,C=$2.00,C
f
=$1.0 0,C =$0.25,

h=$0.10,T=3 months or .25 year,y=l month or .0833 years.

The failure distribution of the component being replaced

is uniform.

The optimum value of r will be Q-l for all Q greater

than or equal to 5 if a failure replacement policy is used.

This follows from equation (6) . The optimum value of Q was

determined from ( 7) to be 24 . 40 . A computer routine that

searched for the Q that gave a minimum cost found an optimum

Q of 25 and a cost of $42.90 for a failure replacement

policy.
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Using the computer search routine the optimum values of

Q,r, and t were determined to be Q=25, r=24, t =0.145 years

or about 5 3 days with a cost of $42.26.

C. SENSITIVITY ANALYSIS

Using the values given above a sensitivity analysis was

conducted to determine the effect of changes in the para-

meters and the variables. Using the optimal Q of 25 the

following costs are obtained for the values of t shown:
o

t
o

Cost

.08 50.039

.09 47.736

.10 45.248

.11 44.084

.12 43.238

.13 42.474

.14 42.260

.15 42.343

.16 42.659
oo 42.896

As can be seen from the table it is better to have a

failure replacement policy than to replace components too

frequently. A failure replacement policy entails a cost

increase of 1.2 percent whereas monthly replacement

(t =.0833) will increase the cost by approximately 18 percent,

The cost increase caused by varying Q plus or minus 5

while t was held constant at .145 was less than 0.5 percent/

indicating relative insensitivity to changes in Q.

The following table shows costs and downtime percentages

at the optimum values of Q and t when r is varied through

the range of values for which it has an effect on the model.
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r Cost Percent
Downtime

-1 43.43 11.3
43.07 7.8

1 42.69 4.2
2 42.43 1.6
3 42.31 0.4
4 42.28 0.1
5 42.27 0.02
6 42.27 0.00
7 42.26 0.00

The effect of varying the parameters in the model was as

follows:

Varying h, the holding cost, had a significant effect on

the optimum Q and a small effect on the optimum t . The

changes in cost were significant.

Varying A, the fixed reorder cost, affected the optimum

Q and the cost but did not have any sigificant effect on the

optimal t .

The cost K varies inversely with changes in y, the mean

time between failures and there are significant changes in

optimal t . The optimal Q varies by only a small amount as

y changes.

Varying it, the cost of downtime, has no effect until it

is low enough that the optimal value of r is -1.

Varying the costs, C,C
f
and C has a direct effect on ft

and causes a significant change in the optimum t . The

optimum Q changes only slightly.
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V. AN IMPROVED AGE REPLACEMENT POLICY

A. DESCRIPTION OF POLICY

The age replacement policy under which the model in III

was developed requires that a component be replaced upon

failure or when the time in service reaches t . This policy

is followed regardless of the inventory level, even if the

inventory level is zero. This means that the component in

service will be removed and the equipment will go down. As

was seen in III.D.l this can lead to a situation in which

downtime will occur every cycle.

It is not reasonable to expect that a serviceable

component will be removed forcing a piece of equipment to go

down when there is no replacement available. For this reason

the following improved policy is set forth:

Follow the age replacement policy as set forth in III

unless the inventory level is zero. In that case remove the

component in service only upon failure or upon receipt of

more inventory if the component has more time in service

than t .

o

B. MODEL FORMULATION

Figure 3 depicts the inventory levels when such a policy

is followed. Comparing this policy with the previous policy,

the following can be noted:

(1) Cycle lengths will be identical if r is greater

than -1.
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(2) The distribution of downtime will be different.

(3) The distribution of time to replacement of one

of the components used in a cycle will be different if the

inventory level reaches zero.

1. Identity of Cycle Lengths

If the inventory level does not reach zero or if the

level reaches zero, but the age of the item in service does

not reach t , the length of a cycle will be the same under

either policy.

If the inventory level is zero and the age of the

item in service reaches t before more inventory is received
o *

the two policies require different actions: under the

previous policy the item in service will be removed, downtime

will begin and last until a new component is received; under

the improved policy the item will be left in service until

failure or receipt of a new component. Note that in both

cases the cycle ends when more inventory is received; thus

the cycle lengths will be identical although the lengths

of downtime will differ.

Since the cycle lengths are identical to the case

previously considered, the distributions of cycle lengths

are the same and the expected length of a cycle (&) will be

the same.

If r=-l and the item in service when the inventory

level is zero is not removed until it fails, the cycle length

will be greater than or equal to the cycle length in the

previous case. This case will be considered separately.
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2 . Distribution of Downtime

Let Y = life of item in service when inventory level

is zero.

Y is distributed as F(x) if downtime occurs.

Letting D = downtime for a cycle

D = Max[0,T-S -Y] ,

P [D<t] = P [T-S -Y<t]

= P[S +Y>T-t] .

r —

Letting G(t)= F *F(t), where the * denotes

convolution

P[D<t] = G(T-t)

,

0<t<T

P[D>t] = G(T-t)

.

0<t<T

The expected length of downtime using this policy is

then:

T T
6'=E[D] = f

Q
G(T-t)dt = / G(x)dx .

Note that lim 6'=0 .

r->°°

3 . Expected Length of a Cycle

As a result of V.B.I the expected length of a cycle

must equal Qy + 6

.

Using the improved policy an expected cycle length

using the same reasoning as in II. C. 2 is

(Q-l)U + E[Y] + 6' .
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Equating the two cycle lengths;

Qy + 6 = (Q-l)y + E[Y] + <5» ,

/\ /\ /\

E [Y] = y + 6 - 6 '

= y + f
Q

F
r+1

(t)dt - / F
r
*F(t)dt

= y + / F
r
*(F(t)-F(t))dt .

Note that: lim E [Y] = y .

£ — >00

The expected length of a cycle can be expressed as:

Qy + / F
r
*(F(t)-F(t) )dt + 6'

or Qy + 6 .

4. Cost Model

In the same manner as in III.C.3 we can develop the

following cost model:.

A+C'QF(t )+C'QF(t )+tt6'

K(Q,r,t) = 2__ 2 +hQ .

Qy+6

5

.

Properties of the Cost Model

As in the previous models % is either monotone

increasing or monotone decreasing in r, so the optimum r

will be either -1 or Q-l.

For large r the model is identical to the model in

III.D.4 and the necessary conditions for optimum Q and t

are the same.
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For r=-l, 6
1 = T and the expected length of a cycle

will be: (Q-l) y + y + T .

As mentioned previously, this is not identical to

the cycle length under the previous policy, a situation that

can arise only if r=-l.

Under this expected length of a cycle and the

expected length of downtime from 2, we can determine an

optimum value of Q by assuming continuity in Q. It is

y(A+TTT)-(C'F(t )+C 'F(t )).(T+y-u) ~
+T

hy y

Since \1-\1 is positive, Q will be less than in

equation (9)

.

The optimal t will be the solution to the following

equation

:

Q(C'-C ,, )f(t ) A+QC'F(t )+QC"F(t )+ttT

= —_ 2 QF (t ) ^-2 5-2
Qy+T+(y-y) (Qy+T+(y-y))

An iterative solution of these two equations will

yield the optimal Q and t for the improved policy when the

optimum r is -1.
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VI. SUMMARY AND CONCLUSIONS

A. SUMMARY

Cost models are developed to show the relationship

between inventory and maintenance policies when one component

of one item of equipment is replaced in accordance with the

maintenance policy and the components are stocked according

to the inventory policy. The necessary conditions for

determining optimum values of Q, the reorder quantity; r,

the reorder point; and t , the time to replacement are

derived.

The models are monotonic increasing or decreasing in r,

thus the optimal r is either -1 or Q-l. If Q is large

(approximately 8) further changes in r have little effect,

thus r could be considered constant. When r is large the

necessary conditions for optimal Q and t are very similar to

well-known conditions for determining optimal values of Q

and t .

o

B. CONCLUSIONS

The cost models can be used to determine optimal values

of Q, r, and t . The optimal values of Q and t are not very

sensitive to changes in each other or changes in the para-

meters. The optimum value of r, having only two values, is

very sensitive to changes in Q or t or the parameters when

near the boundary between increasing and decreasing f{. The
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cost, however, does not appear to vary much even with changes

in r and it might be best to use an r large enough to con-

strain downtime in a specified manner when in this region.
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