OPTIMIZATION OF RING-STIFFENED CYLINORICAL SHELLS FOR PRACTICAL HYDROSPACE APPLICATIONS

Edward Stillman McGinley
OPRIMTKARIOH OF RIEG-SMIFREMEDCYJIMDRICAL SHEIS EOR PGACRICAIHyORCSFACE APPTHCADICNSBy
EDWAD SHILTALHECGEIJTY, II
LIEUMDANT COMANDER, UHITED SMATES NAVY
B. S. UNTDED SHATES WAVAI, ACBDMH
(7.961)

DEGPER OF HAVAL ETGJNEEP
AND THE DJGREA OE HASTEA OF SCTEMCE
IN NAVAT, APCHITECTUE AID HAMINE FHGINEERTIG
at the

Hay, 197.0

OPMIMIZADIOL OF RIIG-STTFFENED CYITMDRICAL SHELTS FOR PRACMCAI HYDFOBRACE APPLYCRIOTS

By Edward stillman mocinley. IJ.

Submitted to the Department or Naval Aschitecture and Harine Enstneexing on liay 6 , 1970, in partial fulriliment of the requirement for the degree of waval. Engineer and the degree or llaster of Science in liaval Architecture and varine Enginecring.

ABSTRACT

All present stiffened cylindrical shell design fommas for the case of extemal hydrostatic pressure were surveyed. This also included present design practices for allowances due to pressure hull imperfections, and actual test data when available. Formulations for all.threc basic hull failure modes were then selceted. first for accuracy, and secondly for corapatibility with both elasticopexfeotly plastic and strain-hardenjns metals, whenever posibie.
the formulas vere then inserted in a loeical flow pattern to desich elastic-perfectly plastic scontings for fajlure at the rost erficient collanse mode the process was programmed in FonTRAN IV and designed to iterate, varying several scantling bamaneters systomatically. The "optimun" design, based on a simple hull weight/ouoyenoy
ratio was selected at the completion of the run.
Program jnputs are: collapse depth, hull diameter, huli length, internal bulkhead specing (specified or unspeciried), framing (internal or extemal), wind metal propertics. Outputs are: shell thickness, typlcal frame spacing, typical frane size, heavy rrame (bulkhead) spacing, and heavy frame size for each design, and an optimun design designation. Simple directions are given for conversion of the program to one compatible with strain-hardening métals,

> Thesis Supervisor: J. Harvey Evans Title; Professor of Naval Architecture

ACHOMEDGUM'S

I would Ithe to sraterully acmomledes the heln of two people, without whon this thesis could not have been successfully completed: my advisor, Professor J. Harvey Evans, and my wire, Connie.

To the forner, roy thanks are, first of all, for jntroducing re to such an interestine and applicable topic. Secondy, for his knowledgeable, petient manner, which made working for hin a pleasure and an education.
fo the lattex, my thanks are not only for her enthusiastic typing job, for which she gave up nany of her own activities. They are also for her solo performance as family manaere during those particularly long and busy thesis work periods, when 1 was at my absent-minded worst.

I believe a project such $2 s^{\prime}$ this can only be termed completely successful in one's own mind, when he has such people as these backine hirn up.

PABIE OF CODRETSS

Abstract 2
Acknowledgrents 4
rable or Contents 5
List of Figures 7
List of Symbols 10
Introduction 15

1. Deckiround Information and Teminology 18
2. Hull Stresses 25
3. Collapse Pressure Reduction 32
4. Asymmetric (Iober) Bucking 36
5. Axisymmetric (Yicla) Failure 41
6. Huli Thickness Increase 51
7. Genexal Instability 53
8. Heavy Frames 61
9. Weisht/Displacement Ratio 64
10. Lain Procrarn 66
11. Fesults and Conclusions 82
12. Reconnendations 90
Appendix
A. Frame Dimensions 94
B. Junchit's Plastic Hinge Analysis 99
C. Procram jisting 102
D. Sample Input Cards and Samole Output 121
E. Outline of ilethod for Converting to an 129 Optinization pioerarn for Strain-aradening liaterialsinererences145

ITS' OE PIGUSIS

Figure Pare

1. Failure $\mathrm{Hodes:} \mathrm{stifiched} \mathrm{Cylincirical} \mathrm{Shells}$ 22
2. Subroutine FRisie 29
3. Surroutino putos 30
4. Subroutine putosi 31
5. A Comparison of llodej. Basin Data on llachined
Ring-Stiffened Cylinders with Welded Cylinders 33
6. Function REDPR 35
7. Reynolds' Collapse Pressuro 37
8. Function misus 39
9. Function PLJCA 43
10. Subroutine elack 45
11. Subroutine Thmis 48
12. Shell Foilure Plot 50
13. Subroutine STrTin 52
14. Subroutine nalin 55
15.a.b.c. Subroutine GIMSI 57.58.59
15. Subroutine nivpli: 62
16. Function Widsp 65
17. Pressure Changes with Depth 68
18. Frame Dimension Curve 69
19. Relative Effects of T and SJ on Feynolds' Lobar ${ }^{2}$Bucking Collanse Prossure at ano Depths
20. Effect of Frame Size on Asymmetric Euclijing 74Pressure by nott
21. Effect of Frame Size on Axisymmetric (vicld) 75Friluxe by Lunchits
22. Simplified hain Program 78
24.3.b.c. WALH Progxan 79.80.81
23. Optimum $\quad 3 / D$ Fatios for Varying steels and Depths 83
24. Optimun W/D Ratjo Vs. Steel Strength 85
25. W/D vs. Thimess Pactor 86
26. T-Scction Frame Jdentjrication 96
27. First Input Data Card 122
28. Second Input Lata Card 123
29. Inird Input Data Card. 124
30. Ivpical Inelastic Stress Strajn Curve Showing 132
Nodulii of Interest
31. Graphical Detemination of Inelastic Buckling 1.32
Pressure
32. Fethod of Obtaining Fomberemosgood Input 134
Parameters for Computing \mathbb{E}_{S} and Et
33. Subroutine Roincs 135
34. Subroutine ITIVE 137
35. Function PCRP 138
36. Subroutine Firle 139
37. Iterative ilethod Used to Converge on Inelastio 141Collapse Prossure
38. Subroutine Rimis (Continued from Original.
(HLDD3)
142,143

IISTS OE SYTP

USED COLIOHY IN THE TEXP

1. a: shorthand for expression $\frac{(1-\gamma / 2) \alpha}{\alpha+\beta+(1-\beta) F_{1}}$; used in EJHiCh
2. i): displacement of pre-speciried length of hull, tons
3. Dm: hull mean diameter (to shell midwiber), in.
4. E: Young's Kodulus, psi
5. ÉS: secant modulus, psi
6. Et: tangent modulus, ysi
7. L: unsupported length of plating between frames, ino
8. D: applied hydrostatic pressure, psi
9. P_{10} : hull mean radius: f.nc
10. t: shell thickness, in.
11. W: weight of pre-speciricd length of hull, tons
12. Y : measure of bean-colunn effect (see chapter 2)
13. θ : shell fexibility parameter (sec chapter 10)
14. λ : "thinness" ractor, $\lambda=\sqrt[4]{\frac{\left(D_{m}\right)^{2}}{\left(\omega_{m}\right)}} \sqrt{\frac{\sigma_{y}}{E}}$
15. V: Pojsson's ratio
16. $\sigma_{b \notin}$: cixcumíerential bending stress, midbay, psi
17. $\sigma_{m x}^{d}:\left\{\begin{array}{l}\text { circumperentja } \\ \text { longitudienal }\end{array}\right\}$ menbrane stress, nidbay, psi
18. σ_{y} : yield stress, psi

USED TH PRUGRAE
19. A. ssme as (1) above.
20. AE: effective cross*bectional area of typical rranc, $s q$. in.
21. AF: actual crossmsceutonal orea of cyoical frame, sq. in.
22. AFH: actual cross-sectional area of heavy rrane, sq. in.
23. ALFif: AE/(Fiz*P), used in definition of A
24. B: typical frame web thickness, in.
25. BENA: B/FS, used in definition of A.
26. BH: heavy frame weo thickness, in.
27. BHEPA: Von SandenwGuther variable used in flimps
(included so as not to be conrused with Berif)
28. BS: Bulkhead spacine (i.e., heavy frame spacing), in.
29. CC: typical rrame dirnension paraneter (sce chapter 10 and Appendix A)
30. CCOP: typical frame monent of inertia perameter dorived from CC.
31. D1SP: same as (2) above
32. Du: same as (3) above
33. D1:: djstance froin shell mid...fiber to combined centroid of tyoical frame and offective lenfth of shell plating, inc
34. 101H: same as (33), for heavy rrames.
35. E, EBuC, Erant same as (4), (5) and (6) above.
36. EI: effective moment of inertia, or typical frame and effective lentin of shell pleting, in.
37. EL: erfective lenfth or shell plating, in. for typical rranes.
38. Ejti: effective length of shell platine, in. for heavy frames.
39. F1, F2, F3, F4: Salerno-Pulos "P.rfunctions" used jin computing shell stresses.
40. FC: distance from shell midrriber to centrold of typical frane, in.
41. FCA: same as (40), for heavy frames.
42. Fi: typical frarae depth, in.
43. Fit: typical rrane moment of inertia, in.
44. FiH: typical heavy frame monent of inertia, in.
45. FS: typical rrame spacinc. in.
46. Fif typical rlange width, in.
47. GAria: same as (1.2) above.
48. Giv: Poisson's retjo
49. HuLutit hull length, in.
50. ITF: number of tyoical frames
51. PC: desisn collapse pressure, vst
52. PCG: \&eneral instability collanse pressure, psi, reduced for imperfections.
53. PCGB1: general jnstability elestic collanse pressure, psi
54. PCLE1: axisymetric yield collapse pressure, psi
55. PCR: asymetric buckling pressure, psi, roduced fox imperfections.
56. PCRE ox PCRE1: asymatric elastic buckling pressure, psi

5\%. PEL: axisymetric elastic buckine pressure, psi.
58. po: operating depth pressure, psi
59. PRIT: Pe chapter 3
60. PRI: P_{i}, chapter 3
61. RC: hull radius to centroid of heary frame-effective Jength of shell plate combination, in.
62. RCG: same as (61), with typical frames
63. RF: hull radius to centroid of typical frame, in.
64. RFO: raterial density, lb/in. 3
65. Fin: hull mean radius (to mid.-fiber of shell), in.
66. RO: hull outer radjus (to outer fiber of shell), in.
67. SIGY: yield stress, psi
68. S1: same as (7) above
69. T: same as (10) above
70. TT: typical frane flange thiclmess, in.
71. THETA: same as (13), above
72. Vi: volume of typical ing rrames; in ${ }^{3}$
73. VFI: volune of heavy cing frames, in ${ }^{3}$
74. Wi: weight/displacement ratio
75. WDOPT: optirmum WD
76. WI: same as (11) above
77. $z: \quad$ input parametor specifying franc location
(i.c., $1.0 \Rightarrow$ intemal, anything else \Rightarrow externel)

INTRODUGTION

The amount of literature concerning the collapse of ring stiffened cylindrical shells under hydrostatic pressure accumulated in the last fifty years is voluninous. This is understandable; the subject is very involved. To this day, an exact solution for all aspects of the problem does not exist. Good solutions for the different failure modes do exist, though, modified in varying amounts by cropirical data. No attempt will be made here to list or sumanize this knowledge. Nany have already done this, and the finest revien to date in this author's knowledge has been done by J. G. Pulos ${ }^{16}$ for the Navy: It appeared that one should be able to integrate this albeit incomplete, yet extensive knowledge with the use of present generation computer science. Hand calculations for only one Eeometrical combination of shell thickness, frame size, frame spacing, hull diameter, hull length, etce are notoriously laborious, even for only one mode of railure. Submaxine design processes using the hard technique would achieve adequate structures, but with little or no idea if anything better existcd. Optinization, with the excention of a fev corminations tried at a Ereat cost in time, was out of the question: wile similar submarlnes could be designed on past knowledge, different hull geonctriei ox deeper operating depths meant a great deal of time and work. It was at the
suggestion of Professor Evans that the development of a computerized design optimization was undertaken. The basic design equations were there. The computing tools were readily available. All that needed to be done was an integration of the two into a practical, useable, and most of 0.11, reliable (in terms of latest empirical data, if necessary) program.

Shortly after the start of the project, it was discovered that a smiliar program had just been completed 22 for the laval Shjps Rescarch and Development Center (issDC). It is hoped that by using some different approaches and techniques, this program could be a valuable tool to use in conjunction with reference 22.

The description of the prograin development will be done by subprograms, each building on the other, and ending with the optimization scheme of the main program. While the program developed can be used only with elasticmperfectly plastic, isotropic materials (e.g., HY--80 steel), jt can easily be modiried so as to be apulicable also to strainhardening metels. such as HY-150 steel. Furthej discussion on this will follow later. Included also in the thesis will be various data obtained using the program or poritions thereof in parametric-type studies。

It is recommended that while reading through the various chapters on suburograms, reference be made to figure 23 (chapter 10), which is a simplified main flow diacran for the entire optimization.

CHIADMER ONE

BACKGEOUND ITFORMASIOE AND TETRIINOLOGY

The entire hull design program is based on the three fundamental failure modes for ring-stiffened cylindrical shells. Therefore, in order that teminology romain consistently clear throurhout the discussion, a brief description and catagorization of these modes rollows. Pefer to figure one for pictorial representetions.

A. AXISYMEPRIC FAIIURES BETWEI STHFPENEPS

All axisymmetric failures, whether elastic, plastic, or some mixture thereof, are characterized by one or more accordian..like pleats, or circumferentiel ripples between ring frames. For true axisymmetric failures, the stifreners remain underomed.

1. AXISYIHETAIC YIETD FATIUEE. This type of failure occurs only with elastic-perfectly plastic (plateau-type stress-strain curve) raterials。 It is regarded, then, as almost torally a yield-otype fajlure, althowrh it is initiated partially by instability phenomena.
2. AXISYMEPRIC.IITISTIC FAIJUE . Inelastic railure is also a roilure ebove the purely clastic rance, but in strainmhardoning materials. Thus, the rajlure is in the range where Young's modulus varies, and can intuitively be
considered a kind of combination elasticuolastic failure often this failure can be at a. lower pressure than a pure buckling (elastic) faslure, due to cextain combinations of low modulus and hull geometry. The pure yield rajlure (A.1.) carmot occur in stiainohardening materials.
3. AXISYMFTREIC EIASTIC EATLUPE. This is axisymetric failure in the linearly elastic range. Theoretically, this could occur, given proper geometry, in either of the two above types of matcials. Generally speaking, the requixed geometry is one of a thin shell relative to the hull dianeter and depth. In reality, this failure is, at this moting, a mathematical phenomenon only. other hujl faslure modes occux first, so this mode has nover been achieved in . actual testing. It is valuable, however. in determining effects of geometrical defecis on collapse pressure.
B. ASYWIETRIC (ICBAR) BUCKTIIG FAIJUFES BEINEEN SIJFFENEPS:

All lobar buckling falluxes are chasacterized by lobes of buckling distributed parily or completely around the shell circumifence. The frames remain intact.

1. ELASTIC OE IHEMSTIC MODES: Mhis is primarily a bucking failuxe. The collavse prossure is

为

dictated by the modulus (elestic or inelastic) and hull geometry.
C. GENEREI INSMABILTY (SHELI AND FHAKE) FAITUE General instability failures are chavacterized by fallure of both frames and shell simultaneously, sometines extending the entire length of the cylinder.

1. EIASMIC OF INEIESIIC MODES. These are also buckling failures, except that lobes extend longjtudinally as well as circumferentially. It is normally assumed that only a one-half wave extends betwcen heavy frames (bulineads), since these heavy framos are desisned heavy enough not to deform at the feneral instability collapse pressure. This combination failure of frames and shell is not as $N e l l$ understood or fommlated mathematically as the other two nodes, especially In the inelastic resion. Thus, larger safety factors are employed when checking hull dosigns in this mode.

It should be erphasized at the outset that the prosram to be described designs the stiffened cylindrical shells to fail in the axisymmetric yield failure node. For the untested inelastic portion of the program, the desien failure mode nould be axisymetric inelastio fallure this philosonhy is used today in submarine design and is
adyocated by most naval archietects. It has two basic reasons:

1) Failure by yielding of the shell utilizes full material (i.e., yeld) strength. Stressos in buckling type failuros aro usually below yield stress, with failure depending mainly on the value of loung's modulus and geometry of the failing structure. More efficient structures should thus result from designing to a yiolding failuse.
2) Imperfections in construction (e.g., hull outworroundness) effect bucking fallures far more seriously than yicld railures. ${ }^{2}$ Thus, hulls desiened foz yield fajluxe would have less stringent requixements for building, and less chance of failure, given that imperfections might exist.

The optimization criterion used is a simple hull mejght to hull displacement ratio, which appears to be the best general measure of desiocn erficiency ros this type of structure.

FALLUBE MODES: STMFFENED CYITNDRICAL SHELLS

ASYMMETRIC(IOBAR)BUCKIIAG (BETWEEN FRAMES) COLIAPSE FORMULA: REYNOIDS (DTMBH1392)

GENERAL INSTABIIINY (CONCURRENT FAILURE OF SHELL AND FRAMES)
COLLAPSE PORNULA: KRENZKEmKIERNAN(DTHEAF 1677)

TABLE 1. LIST OF PROGRAMS USED IN THE OPTIMIZATION				
MAIN	MAIN	-	D, F	CONDUCTS OPTIMIZATION USIIVG ALL SUBPROGRANS LISTED BELOW
RNLDS	FUNCTION	T, SL	D, F	COMPUTES CRITICAL ASYMAEIRIC (LOBAR) BUCKCING PRESSURE
THKNS	SUBROUTINE	TT, SL, FI, PC,*	D	CONVERGES ON THICKNESS TO SATISFY AXI SYMRIRIC FAIIURE AT DESIGN DEPTH
SIRTIHK	SUBROUTINE	T,ST, FI, PC	D	ADJUSTS SHELL THICKNESS AS NECESSARY TO MEET 0.75 YIELD STRESS AT OPERATING DEPTH
GIITST	SUBROUTIIE	$\begin{aligned} & \text { T,SL, FI, PC, PCG,N, } \\ & \text { BS, L, HULNM } \end{aligned}$	D,F,U	COMPUTES GENERAL IMTSTABILITY FRESSURE AID HEAVY FRANE SPACINC
FVYFRM	SUBROUTINE	$\begin{aligned} & \mathrm{T}, \mathrm{SL}, \mathrm{FI}, \mathrm{HULNTH}, \mathrm{PC}, \\ & \mathrm{PCG}, \mathrm{BS}, \mathrm{APH}, \mathrm{BH}, \mathrm{AF}, \\ & \mathrm{FCH} \end{aligned}$	D, F, V	COMPURES DIMENSIONS OF RRAVY FRANES REZUIRED
VTDSP	FUNCTION	$\begin{aligned} & \mathrm{T}, \mathrm{SL}, \mathrm{FI}, \mathrm{BS}, \mathrm{AFH}, \\ & \mathrm{FCH}, \mathrm{AF} \end{aligned}$	D, F	COMPUTES WEIGHT/DISPLACEMEITT RATIO
ELITCK	SUBROUTINE	$T, S L, F I, P C, P$	D	COMPUTES CRITICAL AXISYMMETRIC YIELDING PRESSURE
FRAIE	SUBROUTINE	I,SL, FI	D, F, U	COMPUTES FRAME/FRAME-SHELL CONSTNTS AID DIMENSIONS
PULOS	SUBROUTINE	$\begin{aligned} & \text { T, SL ,FI, P, F1,F2, } \\ & \text { F3, } 4, A \end{aligned}$	D,U	CONPUTES SALERNO PULOS STRESS FUNCIIONS FOR GIVEN qRESSURE AND STIFFENED SHRLL GEOMETRY(USED WITH ELINCK)

TABLE I. (CONTINUED)
COMMON BLOCKS REMARKS

PULOSI	SUBROUTINE	$\begin{aligned} & \mathrm{T}, \mathrm{SL}, \mathrm{FI}, \mathrm{P}, \mathrm{FI}, \mathrm{~F}^{\prime}, \\ & \mathrm{F} 3, \mathrm{~F}^{\prime}+\mathrm{A}, * \end{aligned}$	D, U	SAME AS PULOS, EXCEPT USED IN GINST
PLIVCK	PUNCRION	T, SL, FI, PC	D	COMPUTES CRITICAL AXISYMEIRIC BUCKUING PRESSURE
REDPR	FUNCTITON	PRE, FRI	-	COMPUTES REDUCED FRESSURE DUE TO RESIDUAL STRESSES AID FABRICATION IMPEREECTIONS
KRNZK	SUBROUITIE	$\begin{aligned} & \text { T,RM,FS ,EI,RO, } \\ & \text { RCG,GAMMA, ESEC, } \\ & \text { ETAT, PCG , } \end{aligned}$	-	COMPUTES ELASTIC/INELASTIC GENERAL INSTABILITY COLIAPSE PRESSURE AND IUMBER of CIRCUMTRENTAL iAVES

CHAPRER TMO

HULI STRESSES

Numerous subprograms throughout the optimization require the values of various stresses in the hull. These stresses include eircumerential and longitudinal stresses, at the frames and at midvay, at the inner and outer sholl surfaces. Several solutions for stresses due to external hydrostatic pressure on ring-stiffened cylinders have appeared in the past. The most famous was due to the Germans, Von Sanden and Gunther, in 1920. Portions of their analysis are still in use today. In 1930, the Italian Vitervo modified their analysis to include the so-called stiffencr-expanston effect (a result of axial stresses in the shell). Neither of these carly analyses, however, included the "beam column" effect. This erfect, introduced by Salerno and Pulos ${ }^{18}$ in 1951. is caused by the interaction of longitudinal bending and longitudinal compression in the hull caused by the axial portion of the hydrostatic pressure acting on it. The Salerno-pulos stresses are an exact solution, and the beamcolum effect accounts fox any nom-linearities between pressure and strain in the cylinders. In ajl cases except one (sce chapter foux), the prozram uses the nore accurate Salerno-pulos (hereafter S-P) stresses.

The beara-column effect is represented in the Su? analysis by the parameterr(hereafter: GAMA), where:

$$
\gamma \equiv \frac{P}{P^{*}}=\frac{P}{2 E} \sqrt{3\left(1-\nu^{2}\right)}\left(\frac{R_{m}}{t}\right)^{2}
$$

$$
p * \text { is deffned }{ }^{16.18} \text { as the "critical load ror }
$$

exisymmetric elastic bucking or an unciffened cylindsical shell under the action of uniform axial pressure." GArA=0 corresponds to a zero beam-colum effect (i.e., the stress solution of Von Sanden and Gunther, hereafter V-G). As GAMA grows larger, the bean-oolumn efrect, and thus the nonlinearity between pressure and hull stresses, jncreases. When GAM $\geqslant 1$, then theoretically the between-rrame fallure mode shifts to axisymmetric elastic buckling (see chapter one for definition). As explained in Chapter 1, this appears to be a mathenatical phenomenon only, for it has never been achieved in actual testing, Other modes of failure (c.e., Jobar buckling) always appear to occur first, or else the axisymnetric failure is almas accompained by some yielding. ${ }^{13}$

The S-P stresses are calculated by placing various combinations of $S-P$ "F runctions" (see rerexence 18 for expressions and curves) into the s-p stress equations. Formerly, this was a very laborious process, far more timeconsuming than obtaining stresses through the simpler $V-G$ equations. The curves developed by M.A. Krenake and R. D. Short (included in reference 18) shortened the labor
consjderably. The computerized solution makes it almost mandatory to use the superior Sop stress solution.

The "F runctions" are obtained through the use of two basic subprograms (see rigures 2, 3 and 4). Subroutine FRAME essentially takes shell thickness, unsupported shell length, and frame moment of inertia and manipulates then to obtain the S..p variables THETA, ALFA, and BETA (see Appendix A for method of obteining frame dimensions). These variables are then transferred to the stress prosram puLOS via a COMMON statement. FRAME is separate from PULOS because in one program. (HVYFRM) PULOS is used in two different places with the same scantings. All varoables in Frave are computed in accordance with the smp stress analysis 18 , whath the exception of the expression for effective area, AE。 Fererence 18 lists this as (in prozraw cemms):

$$
\begin{aligned}
& A B=A F \%(A M / A F), \text { or } \\
& A E=A F \%(A M / F F) \% \% \text {, dependins on whether }
\end{aligned}
$$

the framing is internal or oxternal, respectively. Ihis is not strictly corcect, and has since been refined by shorter, who used the similar equation:

$$
A E=A F *(A N / R F) * * Q \text {, where } Q=1 \div 2 * G H U
$$

This equation is good for either internally or extemaliy framed cylinders with "reasonable" (i.e." sujtoble for this program's pumposes) frane depth/shell radius ratios. The subroutine PUIOS is a stralghtformard adavation
of the $S-p$ stress analysis. It produces the four "F functions" and the variable "a" (see reference 16), the various combinations of which are used in several parent programs to compute the hull stresses.

From the expression for GAM, it can be seen that an input pressure is required for PUEOS to computo its outputs. In other words, FPAME and PUIOS can be used to calculate the hull stresses, given scantlings, material properties, and hydrostatic pressure. hore often, however, the procram is attempting to find a critical failure pressure. This results in two unknown, the pressure and the stresseso GAMA thus becones the result of a transcendental procoss, in which PULOS calculates stresses, and the pressure input is from a parent program dealing wjen a particular huld railure mode.

Great difficulties mere experienced in this itexative process when GAmP $\geqslant 1.0$; this meant that ITAI (see figures 3 or 4) became imaginaxy (i.e., the fajlure mode had shified to axisymmetric elastic). To combat this, several methods were employed, each one being different fox diferent parent prosrans. This is the reason for PUIOS and PULOS 1. The mothods of validly cixcumventing this pitfajl will be explained separaiely under each individua? failure mode subprogram.

Figure 2


```
    , Pulcs1,
13.c9--->*
```

CUMPUTES
SAERAC PULCS STAESS
FLACTICNS FUR GIVEN
GALERAC-PULCS STAESS
FLACTIGNS FUR GIVEN
PRESSURE ANC
STIFFENEC CYLJMOER
GECMETRY

- cama .lt. 1.c. true í
-
- ExIT

RETURN 1

CHAPMER THREE

COLIAPSE PRESSURE FEDUCTION

Realistically speaking, no cylinder that is ranuractured -today can be considercd "perfect". There will always be some roductan in the collapse pressure due to manrecturing imperfections, such as shell or frame out-of-roundness, and to residual stresses from wolding. If, however, a pressure hull is hachined rather than rolled and welded, a structure that is "perfect" for all practical purposes may be attaincd. Of course, for large pressure hulls, the expense (or even impossibility) incurred due to size prohibits construction by machining only. Thus, sone allowancos must be made in scantling computation.

The best overall method (i.e., including periectly plastic and strain hardening materials) yet devised is presented as a graph in reference 10 (see fieure 5). Here. the lower curve represents an envelope of numexous model test resulits conducted over the years at the Hodel Basin. It may be observed that "the factor which is all important in determining imperfection sensitivity is the margin of stability $p_{e} \mathrm{p}_{\mathrm{i}}$, the abscissa on the plot. The lower the margin of stebility, the greater the sensitivity to imperfections". 21 The reduction factor (EEDFAC, or $P_{\text {Ex }} / P_{E x P}$ for machined models) located on the ordinate is applied to

Figure 5.
A COMPARISON OF MODEL BASIN DATA ON MACHINED RINGSTIFPENED CYLINDEFS WITH WEIDED CYLINDEPS . . .

(Note: Above rigure taken from reference 10)
PEXP: EXPERIMENTAL COLIAPSE PRESSURE
$P_{i}:$ MINIMUM INELASTIC SHELE BUCKLE PPESSURE
Pe : ELASTIC SHELI BUCKLE PRESSURE ASSOCTANED WJTH KINIMUM INEICSIIC SHELI BUCKLE PRESSURE
collapse pressures of all modes in the optimization progren (soe figure b).

The envelope curve is approximated by the equation:
REDPAC $=0.64667+0.11367 * 5 T 0-0.00967 * 190 * 2$, where

$$
\mathrm{RT}^{\prime}=p_{e} / p_{i}
$$

This equation and the general form of REDPR were adopted fron a similar progran in reference 22.

As tnentioned above, this safoty reduction factor is applicable not only to this optinization, but also to one for strain hardening metals as well. For this reason (i.e., the fact it is easily convertible to the strain hardening case) it was chosen above other existing out-of.moundness analyses for the strictily elastic bucking cases. No mathematical onalysis presently exists for the inelastic case, due to its complezity. 21 Puxther discussion on this is contained in chapter 13.

$$
=
$$

Ghart title - functich feoprgpregril

Figure 6

CHAPTER FOUR

ASYMEPBTC (IOBAB) BUCKLITG

The most widely used formulation for this fajure mode over the years has been the somealled "Imm Instability Formula", developed by Windenburg and Txiliing. The formula was good only for an elasticolly-perfectly plastic naterial. Fore recently, Reynolds ${ }^{20}$ has developed a more generalized formulation thich may be used for cither elasticmperectly plastic or strain-hardening matexials. In rererence 20 , Reynolds recommended using the $V-G$ stresses (longitudinal and circumferential at mid..bay). He stated that the accuracy of the analysis was not seriously impaired by not using the nore cumbersone, yet nore accurate $\mathrm{S}-\mathrm{P}$ stresses. This is graphically borne out by the cxample given in figure 7. In any case, the theory correlates veivy closely with experiment, to within four pexcent ${ }^{4}$.

The S..P stress programs (FRANE and PULOS) can easily be made comran with any other subprogram. Originally it was deciced that there would be redundancy involved i.t the less accurate V-G stresses wexe used fox the Reynolds lobax bucking subprogran (mins). Difficulties, however, were jmmedately encountered when the $S-p$ stresses vore utilized. MuLDS is used in the moin procram chierly os a checking function. Since the hull scantionss, as rentioned in

REYNOLDS' COLLAPSE PRESSURE

chapter one, are designed for yjeld railure, molds is used only to insure thet the scantling set under scrutjny does not fail by lobar buckling. ihus, since scantling sets being examined will usuaily fail first by axisymmetric yielding, failure by lobar bucking sometimes occurs at much greater pressuxes. In many cases, failure by axisymmetric elastic bucking will occur at a pressure betreen failure by yield and failure by lobar buckling. As noted in chapter two, this phenomenon causes Gailu (beam-colum eifect) to increase in value over 1.0, resulting in jmacinary values occuring Within the PULOS subprograns. Efforts to "force" convergence or RMDDS by inserting, for instrace, values of GALA $=0.95$, or of taking only absolute values of the radical $\sqrt{1.0-G A M A}$, were only mildly successrul. The velue of rinal convergence in any case was not accurate, and certainly was not that of lobar collapse pressure.

For these reasons, then, $V-G$ stresses vere used in RNLDS (see figure 8), as oricinally rocommended in referenco 20. One distinct advantage of the $V-G$ stresses is that they require no iteration for convergence. where is no separate stress prosram neaded, and the V-G stresses are djrectiy (and quickly) computed within FRLDS. Sjnce (see chapter ten) fuLDS is used itselr in an iterative process within the main program, this results in substantal savings

in computer time.
Function RMJDS, in this case for clasticoperfectly plastic material, predicts scrictiy an elastic type railure. Thus, the rull pressure reduction from RBDPR (see chapier three) js employed dixectly to compensate for imperiections and residual stresses.

CHAPRER FIVE

AXISYMEPRIC (YIIID) FEIIURE

The real core of the optwination program is the axisymmetric failure mode, for the program designs its scantlings to fail by yield (sec chapter one). Ihree subprograms in addition to FRAMT, PUIOS, and REDPR are included in this grouping: FMCR ELNCK and ThKNs (see figures 9, 10, and 11).

The rather farnous Von Sanden and Gunther formulas 92 and $92 A$ (utilizing the maximum shell stress theory of Rankine at the frame and mjdbay, xespectively) wero used in desicn for many vears. Recently, however, many more solutions have appeared. With the advent of $S-y$ stresses 18 , the stress analysis alone has improved in accuracy. the manner in which the stresses are used to predict collapse by axisymetric yield vamies greatly. Generally speaking, the moximum strain energy thoory of fises and Hencly provides the best manner of stress combination to predict failures within the various shell yield formulations. Jhe point at Which this is applied is also subject to discussion. Although it is generally agreed that the larcest stresses actually occus at the rrames, it is beconing ovident that data indicate the besi rocedictors use the midnoay area as
the initiation point of yiclding fajluxes. The most frequently acourate amalysis for axdsymetric yielding failure is that due to Junchix.t. Although his fommation has not been testcd through complete ranges of reomeiries and dopths, the tests that have bocn made indicate his solutions are at least as accurate as any others (to within 1\% of actual failure pressure in many cases), and much better than 92 or 92A. In reference 14 , Tunchik shows that very successful comelations were obtained with tests of xing.. stiffened cylinders ranging from λ (thinmess ratio) $=0.41$ to $\lambda=0.70$. He recommended his formation, however, only for "cylinders mere ecometries are in the rance of exisymmetric yielding", preoisely the case in this pxogran. Basically, lunchik assumes a standard threeminge railure mechanism, postulating that the frame plastic hioges fajl first, and prodicting the pressure at which the mid-bay hinge is complete. the basic difference between Iunchis's onalysis and others is his computation of "plastic reserve streneth". His structure does not fajl when some outer hull fiber at mid-bay has reached yield. stress. It fails only after.this plasticity has progressed through the shell at thet point fac enoush to produce a hinge and precipitate failure.
 three) requires hoth an elastic and an inelastic collapse

COMPLTES CRITICAL
AXISYMNETRIC EUCKLIAG
AXISYMNE
PRESSCRE

Figure 9
pressure for the particular failure mode under examination. For the elastic-perfectly plastic materials, there is no "inelastic failure pressure" as such, since no strain.. hardening is involved. rhus, the vicid failure pressure outlined above is substitutod. Fois the solution of the elastic axisymnetric fajlure pressure, there remain two possibilities. One is the "exact" solutjon offexed by the S-p stress analysjs. When GAMA $\geqslant 1.0$ the elastic axisymmetric mode occurs. Honever, the solution for this pressure is bound up in a new "F function" and requires a rather involved iteration. Because the REDPR method is approximate in any case, an exact elastic axisymmetric value js not required. Thus, the $S m$ solution $3 \pi s$ rejectod in favow of Lunchix's inelastic axisymmetric analysis ${ }^{13}$. This analysis is vexy similan to heynolds' analysis. for asymmetric buckling (see chapter foux), in that it can be applied in the strain hoxdening (inelostic case) using the secant and tangent moduli. By sotting ErAli=0 and EsEC=E, the solution breaks down to one for elastic axisymetric buckins. This is the pressure computed by Function PMCK, and the process is taken directly from reference 13.

SURFOUTTIF ETSCA The "inelastic" pressure used in
KEDPR (and also the pressure to be reduced itself) is computed in this subroutine. As explained above, ünchitis

Chart thte - Surroutine elnckit, Sl,fi, pC,f)

yield analysis for elastjc-perfectly plastic raterials ${ }^{14}$ is used. S-P stresses are used in the formulation (see figure 10). This of course, reant an iterative process. and occasionally convergence problems were encountered. If input geometries were satisfactory, convergence was accomplished in four or five cycles. Occasionally, the iterative program (THKNS) caling mirick juraped outside the range of convergent geometries in its search process. For such cases, an iteration limit of 10 was put into EDNCK. This meant that the pressure going back to THins was not entirely accurate, but good enough to continue with a search pattern to find a convergent georetry. An adoitional "safety valve" was búlt into subroutine pulos (sec chaviex two) to prevent GAMA $\geqslant 1.0$ and thus producing inaginary values. If G\&IA $\geqslant 1.0$, GAMA wos set equal to 0.95 , and the shell thickness adjusted to achieve this. Thus, depending on entcring geometries, occasionally shell thickness itself is adjusted within ELNCK. This is justifiable, in that the overall program is designing to a yield, not a buckling failure. Any bucking reometry, even if it could be converged upon, would not be desired. Junchik's "yield pressure", PY (reference 16, equation 35) is the result of the Sop stresses obtained, and is the pressure at which yieldins besins at the outer hull riber, at midrbey. His
plestic reserve strength ratio, PCLIT/PY (FCPR) is then computed and multiplied by PY to obtein Lunchik's final coltapse pressure, PCLE1. The arrival at certain of Lunchik's equations, made sonewhat conrusing by a risprint in rereience 14, is cione in detail in Appendix B. Berore sending the collapse pressure to THFNS, it is reduced for residual stresses and manufacturing derects by Redph.

At this point (see ficure 12), it is interesting to see, at least in one case, how the Junchik and Feynolds analyses compare with the log-log plot of hoop stress vs. the Windenbuxg-Trilling formula presented in reference 8. For the particular huld diameter chosen, Reynolds' pressures follow Windenburg's alnost cxactly. Lunchik's pressures show hoop stress, at least in this case, to be rather conservative.

SUBPCUMIE THES This subroutine uses EJNCR in an Iterative process to converee on an exact shell thickness which will fail by axisymetric yield at the desired collapse pressure. if thmin cannot converge on a thitwness. it is obvious that the input scantlings, despite chaneses in thiokness, are such that failure by elastic axisymotric bucking occuxs before axisymotric vield failure. Since the full strencth or this metal is not then heing used, this type of solution obviously is not desjred. In such

Chart title - surroltine tmonsitt. sl.fl.pg.*

a case, rirns transfers control to the next jtemation loop of the main progran (see chapter ten).

CHAPTER SIX

HULT THICRHESS JHCREASE

Generally speaking, the safoty factor introduced by REDPR (sce chapter three) to componsatc for "imporfections and residual stresses" will be adequate. However, it should be remenbered that the collapse pressures developed thus far all are "triggered" by stressvalues at midbay. The hishest stresses acturlly encomtered usually occur at the frame faying "flange". To account for this, stresses in that area are linited to 75% of yield stress at operatinc depth (assumed here to be $2 / 3$ collapse depth) by subroutine Sthrtik, as reconmended in reference 10. This is done to account for such things as lowoycle fatigue, creep, stress corrosion, and to insure a reasonable stress level in the frane flange prior to collapse for those rrames with an initial out-or-roundness ${ }^{10}$.

Subroutine smath (see figure 1.3) uses the Sup stress analysis ${ }^{18}$ to compute all four stresses of interest in the shell at the frames: inner and outer plate surfaces, and longitudinal and circumerential stress dircetions. If the largest of these is greater than 75, yield stress at 2/3 collapse pressure, shell thickness is increased in increments of 5% until the criterion is net.

CHART TITLE - SLEROUTINE STRTHKIT,SL,FI,PCI

Figure 13

Chapter seven

GERERAT IUSTABILTMY

The problem of finding accurate collanse pressures in the general instability mode has generally given analysts more trouble than the first two fallure modes. the most accurate elastic general instability failure analysis vas done by S. Kendrick in 1953 at Britain's Maval Construction Mescarch Establishment, and is generally known as the "Kendrick Part III" solution ${ }^{3}$. One year later, A. P. Bryant, working in the same establishment, developed a far simpler approach ${ }^{7}$ (Rendrick's was exceedingly complex). Bryant's solution was a single two-tern equation which could be (and hes been) used for design stuaies without extensive computerization, although its accuracy left something to be desired (it was non-wonservative). Basically speaking, Bryant's equation incoxporates the "split risidities concent", where one term roprosents the contribution of the shell, and the other the contribution of the frames and a frame-wength or shell plating. Although kendrick's solution was put in a simple granhical form by Reynolds ${ }^{19}$ (later extended by 3all ${ }^{3}$), it was rejected for use in this progron for two reasons:

> 1) since the seneral instability pressure is used merely to check the solution designed for yseld
\qquad

$$
5
$$

failure, extreme accuracy was not required; and 2) Kendrick's solution is cood only for elastic failure, and cannot be applied to strainhardenine materials. Since this prorrari is designed to be easily converted to one which can also handle strain-handenjng materials, Kendrick Part III was rejected.

Bryant's solution was also rejected for the second reason above. Hore recently, a very convenient and nore acourate formula has been developed by Krenzke and Kiernan ${ }^{11}$. It is very similar in structure to Bryant's formala, but can be used for cithor ideally plestic or stajn-haxdenins materials. At about the same time, a very similar solutjon was worked out by Junchik at the lodel Basin. Both the Krenzke-Wiernan and the Lunchik analyses give about the same results when compared with actuaj test data ${ }^{6}$. Krenzkemiernan vas some what arbitrerily sclected for this program, solely because it appeared to bo referencod more often in the literature.

SUBPOUTTE RBIZR This subroutine is called by the general instabjlity subprogren, and essentially computes fajlure prossure using the Kronzkemiernan formia. It also returns the value of "humber of circumferential collapsc lobes) which gives the lowest (nost critical)

wigure 14
failure pxessure. It misht be noted that this program, like some others in the optimjzation, is desioned for dual usase: by ideally plastic or by strainwhariening materials (see figure 14).

SUBIBOUIME GIHSI (sec idgure 15) GINEL iests the incoming scanting set from the man plogran for failure by general instablifty. Depending on mether the collapse pressure'is too shallon (test failed) or too deep (design. too conservative), heavy frame (3.e., bulkhead) spacing is adjusted so as to give a collapse pressure that is either:

1) greater than 1.05 times desixed collapse denth (this requirement for a small safety narsin is due to the uncertainties of seneral instability design, and comes from rererence 10). or
2) less than 2 tincs desired collapse depth. If, in this process, bulrhead spacing becomes longer than the entire pressure hull itself. $B S$ is set equal to the hull lensth (Huldrat), and the requirement for heavy frames is aropped (see chapter eight on Subroutine ivypmm). Incoming bulthead spacing may ejther be declared or undeclared in the invut data. in undeclered, starting bulkhead spacing is token as approximately trice the hull diarletex, but always a multjple of the small frame spacing. The frame term in the ixenzkemiexnan formua conteins,

CHART TITLE - SLARGLTINE GINSTGT,SL.FI,FC.PCG,N,PS,L,HULATH)

Figure 15 a

CHARI TITLE - SURRUUIIAE GINSTIT,SL,FI,PC,PCG.N.ES.L.HLLATHI

Figure 1.5 b

CHART TITLE - SUPRUUTINE GAT.STIT,SL,FI,PG.PGG,N,BS.L,HULNTHI

Figuxe 15 c
as one of its variables, the "efrective moment of inertia." EI. This is derined as the comined moment of inertia of a small frame and its effective lencth, EI, of shell plating. This differs sijghtly from the Bryant formula, which mexely uses a frame space (FS) of shell plating. The EL is determined via the S-P stress analysis ${ }^{18}$, using the equation:

$$
E L=S L * E I+B
$$

The' use of either BL or FS in the formula makes little difference in most cases; however, since all the tools were handy, the EI was used when possible. Problems or convergence, however, again developed in the PULOS subprogram. When general instability pressure became very large (and it does for many geometries), the value of GAin (see chatoter two) exceeded 2.0. Thus, a separate subprogram (PULOS1) was added, which set EI=FS when GAri $\geqslant 1.0$. This is totally acceptable, since this case occurs only when the general instability collapse pressure is far too deep to worry about (its accuracy is only slightly decraded anyway). When successive jterations of GINSI expand BS and brine this collapse rressure. to shallovex depths, El can again be accurately computed by pULOS1.

CHAPTER EIGHY

HEAVY EEATES

Subroutine EVYFth (see figure 16) computes the minimum size of heavy frames needed to insure the हeneral instability collapse pressure calculated by its preceeding subprogran GINSI. Until recently, heavy frames were desiched usinf the standard Lèvy romula. It was found after considerable testing, however, thet this formula often gave unspre estimates ${ }^{17}$. A new rormula was derived at the Kodel Basin by Blumenberg in 1965, which agrees much nore closely with tests. Fesults from testing indicated that the effectiveness of a particular size of heavy frames decreases as the cylinder is lengthened and also that the minimum size or heavy frames needed to localize fallure between heavy frames. is possibly not dependent upon their spacing ${ }^{5}$. Althourh adequate testing has not yet been published to positively conrirm Blumenberg's formula, initial results show it is better than wht was formerly üsed, and linus it was put into HVYFEF:

1) F may be substituted for EsAl with idoaliy plastic materials. ESAX actually is not in Blumenverg's formula, but ras placed there by the author to make HVYru useful in an inelastic optimization.

CHART TIILE - SUSRDUTINE HVYFRMIT,SL,FI, HULMJH, PL, PCG,BS, AFH, BR, AF, FCHI

2) Mis the critical buckling mode for elastic general instability failuxe of the cylinder when the heavy frames replaced by typical frames (i.e., a cylinder equal in length, but with no heavy framesi. (see "Jist of Symbols" for other variables)

In compliting FC , the radius to the combined centroid of the heavy frame and its effective leneth of shell plating, an ELH had to be determined. This was also provided in Blumenberg's report:

$$
E L H=\frac{S L * F 1 *(A F+S L * T)}{A R H \div S L \% T}+B H
$$

It can be seen to be a fomi of simple ratiojng of the original EL formula developed in the $S m$ analysis ${ }^{18}$. Another feature of HVYFRM is to send a value of zero bact to the main program if the heavy frame spacine computed by GINST is equal to (or greater than) the hull lengtho This, of course, would mean that heavy frames are not required, and that the hull end closures are used in thoix place.

WSIGHT-DISPIACEVETT RATIO

The simple weight/displacement ratio was selected for the optimization oxiterion. Not only was it the siraplest to use, but it also seemed to be the most gencral, all.. encompassing determinant of an optimum design. Due to the subprogram system utilized in the optimization, another form of criterion could easily be substituted if the need arose.

Essentially (see rigure 17). WTDSP computes the weight of a hull section, the length of which is coual to one heavy frame spacing, splitting the heavy frame on each end in half. Ihis weight, is divided by the same hull's displacement in sea water, taking into account internal or external frames.

CCMPLIES
WEIGHT OIS SPLACEMENT
RATIO.

Fiounc 17

CHAPTER TEL

MAIT PROGRAL

Essentially, the main program perporms very few calculations. Its pimary task is ranipulation of the various subprogrems and iteration control of the entire process so as to arrive at an optimum design. See figure 23 for a basic, easier-onofollon main flow diacran. Figure 24 is the complote main progam flow diagram. In adition, it computes "reasonable" entering scantlings for the fteration process, based on jnmut data and proven design practice. The objective of this type or main progran design was to obtain a system in which the various modos of failure and safety factors could be changed or interchanged easily as desired. As all fajlure modes are separated into subpiograms, it is possible cven to substitute on entirely different andysis fox any individual failure mode Sarety factors, which so often are subject to modirscation due to new test data, are also easily replaced or changed. The input data required (see Appendix D for fomat) are: overall hull length, bulkhoad spacins (ray ox may not be given; jif not, it conputes an optinua BS), internal or extexnal franing desired, young's modulus, netrl yicid stross, netal density, and Poisson's ratio. In addition, ass presenty set up, the progran mey be itcrated for various imput values
of depth and/ox hul diameter.
The depth input (in feet) is converted to a collapse pressure PC (in psi) requirement by using the quation of the mean line drawn in figure 18; this renresents an average depth vs. psi curve ron ine various oceans inciader. fine figure (minus the mean line) was taken fron the Fandbook of Ocean Engineering jables, published by the U. S. Waval Oceanographic Office, and compiled by E. L. Bialek.

The frame constant $C C$ is computed from the equation of the curve shom in figure 19. CC js used to determine rrame proportions to be used for various depths. The curve is an avenase of proportions of many ring stiffenecs used in present genexation subnersibles. The nethod of chiaining frame proportions is printed in the progran output (see Appendix D). A more detailed explanation may be found in . Appendix A.

The procram next computes its "datun point", or starting set of hull scantlings. Shell thickess, it is computed from the simple hoop stress formula:

$$
I_{i}=\frac{P C \% H}{2.0 \% D I G Y}
$$

Prame spacing, or, move accurately in this case, unsupported lensth of shell between franes (SI) is computed from the varameter θ, where:

$$
\theta=\sqrt[4]{3\left(1-\nu^{2}\right)} \frac{L}{\sqrt{R_{m} t}}
$$

FD/B, FW/B RATIOS

Reference 6 lists the usual range of θ for prescnt day submersibles as 1.0-2.5. The rain program (see bolow) is set up so that it starts at a maxnium frome spacing and then decreases it in further itexations. Thus, a high starting value of θ mould do desirable. Arter sevenal calculations at various depths and geometries, a value on θ $=5.0$ was used for the datum point. This gives a wide range of SL values. The iterative process of the procram produces values of θ that eventually go low enowsh to bracket the above range other methods of obtaining a starting sd were investiçated, such as the combined solution of hool stross and the Windenbergwnilling equation, but all gave too wide a range (usually too large a irane spaoing) as depth increased. Thus θ, which does not vary greatly, was selected.

A starting rame size is selected based on the ratio of frame cross-scctional area to the crossmsectional area of one unsupported length of shell plating. Reforence 6 lists the normal range of this ratio to be $0.2-0.8$. During rather extensive investigetion, however, it was round thet a ratio of Ereater than 0.5 gave frames that were grossly overdesigned. rinus, the strinting xatio ras set at 0.5 :

$$
\Lambda F=0.5 * S D * T
$$

Whe fxame monent of inertia is then computed in acordance with relations develonod in mpendix A. Originally, it
was intended to select a starting frame size by a more accurate approach. However, the only formula which could be solved in anything approaching a closed form was far too conservativo (i.e., Tokugavis formula, refexence 25). The advantage of a compuienized approach i.e. investigatior or a wide range of variables at great speed and low cost, was the deciding factor in using the more randon iterative method described above.

At this point the program goes jnto a double Joop, iterating on SL (outex loop) and ΔF (innex loop). The scantlings are tested by midids. If they do not fail in the lobar buckling mode at design collapse depth the mogram cocs on to Praids. If the scentiongs fail Rmabs. SL is decreased by nultiplying it by 0.0 , and the RidijS test js rerun. The decision to run Pijubs at tons point was inade in . order to start as near the "shoulder" (or at least: not to the risht of it) of figure 12 as possible. since this is generaljy acknonledsed to be an area of optimum design. Also, the decision to vary $3 \mathrm{~J}, \mathrm{rather}$ than J , to achieve a set of scantlings that would not fail the FivLDS test, was made for two reasons:

1) From figure 20, it can be seen that either If ox SH. could be successíully used to chance NowD dailuce pressure, with seine slightly moxe ofiective.

2) The next suburorram in line is Thrus. It is connected to FIMDS via another iteration loop. Tho have both proexans converging on different values of thould cause endless loops in almost every case. Thus. Rilus vas iterated on Sli.

The decision not to vary Ar to change RILDS fajure pressure is justified by ficure 21. The Nott buckling cquation is alnost identical to fridiss, and thus can be considexed the same for these qualitative investigations. It may be noted that for some geonetries, AF has no effect at all on PCR; thus, AP was not used in the RFiLDS loop. This sarae reasonjng (see risuxe 22) tias used in deoiding against using an AF vaxiation of any kind for convergence within the THRNS subprogram.

As stated above, once the scanting set (revised or unrevised) gets successfully past RMIDS, it goes on to THKNS. There, the hull thicknoss, T is adjusted so as to have the shell fail by axisymetric yield oxactly (within 1\%) at design collapse pressure. ht that point, the scantlings with revised 1 are again looped back through RNLDS to insure against lobar buckline, and si adusted again as necossary. If $S I$ has to be rewajusicd, the scantlinss asajn go through phoms. The proceṣs continues until eithor:

1) a set or the same scemthings pass without change through both RaIDS and THKils, or

EFFECT OF FRAME SIRE ON ASMMETRIC EUCKLING PRESSURE BY NOTT...

EFFECT OF RRAME SIZE ON AXISMMMETRIC 75 (MELD) FALURE PRESSURE BY LUNCHK . .

Ficure 22
2) Sli becomes so small that there is less than rour inches clearance betreen adjecent frame flanges.

In the latter case, the loop is skipped without printwout, and the next iteration is started, much the same as rhat occurs if drinis cannot internally converge on a shell thiclness (see chapter six).

Once the scantling set gets past ThiNS, T is again adjusted upraxd, if necessary, by SprPfí. A loop to romtest back through Rimils and Thoms is not used here, and would
 could maxely ever be made to converee (i.e., the largest 5 from both proprans. js used).

Prior to entering GINSr, the integer I isset equel to 0. Mhis, used as one of the entering axguments for Giwht, Is a conirol variable. jum insures nomal (iterative lis design) operation of GINBre ju=1 is usely solely to obtain a single-pass value of if for niverl (see chavter eight).

The scantring set then enters and is tested by GIvBM. BS is adjusied as necessary to insure PCG falls betmeen 1.05 PC and $2 P C$ the only exception being in $1 S$ becomes greater than total hull length (see chaptex seven). The reason that 33 , rather then 1 , $3 J^{\prime}$, or ik, is used here to convere on a satisfactory PCG, is because in virtually any
case, regardless of depin on Eeometrical proportions, BS has a much smaller effect on hull weight for the same pot reduction or increase. Sance hull woight already had been optimized for shell yicld failure (the desired situation), any fuxther 1 , SI, or ar changes would most probably take the design seriously off the optimum.

Once past Glifs, the scantlings pass through NVYFR: to obtain a suitable hoavy frane desisn and wips to calculate that particular scantling set's relative effociency ratio.

At this point, values of the scantings are printed out. Generally speaking, the print-out of each line of scantings can be said to be optimized on thickess of the shell. although cextainly other factors (SL, BS, etc.) change as necessary to keep the desicn on a yicld fajure basis.

Cnce out or the first loop cycle, AF is decreased by multiplying by 0.8 . This is done for ten cycles, so that the oxiginal AF is reduced to $0.108 \% A$ in the last cycle. SJ is reduced in the same maner in the outer loop, and ass described above, also may be reduced within each iteration as necessary to pass hajids. int the end of both loons (100 major f.terations) the progran teminates for that set of input parameters, and prints out the optimur (i.e., smallest) weight/disolacenent ratio.

CRAPRER HLEVEN

RESUTRS AID CONCTUSTOFS

Various parametsic studies were pexroxmed with the progran, once it was checked agajnst some conteranorary subnersible mulls to see if it indeed was "in the ball park". The most obvious study was to see how the W / D ratio varied with depth (riguse 25). This was done ror three common steels in use today, 0.11 with approximatoly "ideally plastic" stressmstrain choracteristics. The points obtained plotted into smooth curves on the semi-log plot used. It is fairly obvious that if a W/D greater than 0.5 is considered unsatiseactory, the following limits would apply:

STEET	
HIS	3500 FW
HX - 30	6200 FP.
HY-100	7400 FN

A second study was condueted to observe how the W/D ratio varied with hull diameter, all other factors (including depth) being constant. It was found that it varied very little if at all, as can be seen from the rollowing set of data:

Given: HY 80 stecl, collapse depth=5000 ft.	
HULI, DIAHEPE (FI.)	W/DHATIO
20	0.417
30	0.418
50	0.417
80	0.409

It could tentativcly be said then, that for a given depth, hull efficiency (W/I)) will be approximately the same regardjess of how large the hull djameter ney be.

Figure 26 shows the result of plotting the variance of W/D with metal yicld stress. This also plotted into a smooth curve un this case. It js probable, however, that for higher yield strenth (and therefore, strain-haxdening) netals roquixing a slightly different analysis, the curve would have a sharp break.

The third plot attempted (figure 27) at first appeared to be 2 hopeless scattering of data, but artor some analysis revealed rather fnteresting results. The points plotted wexe taken fron a single optimization (one diameter, one dopth) such as in the example printwout in Appendix D. A card computing thimess factor was inserted in the prosxam and printed out with the regular data.

The "St loop" is actuelly a series of W / D points computed for scentling sets with the same frame snacino,

OPTIMUM WT/A RATIO VS. STEEL. STRENGTH ${ }^{85}$
CONSTANTS:
COLLAPSE DEPTH: $1000 F T$
HULL DIAMETER: 30 FT
HULL I_ENGTH: 2OOFT
FRAMES : INTERNAL

Fisure 26
Figure 2?

buy varying frane size as an inout. In each case, it is strongly evident that a saddle point, or optimun W / D for that frame spacing, was reached. This means that for at least this particular set of inputs, the progran's frame size (AF) iteration range was large enough to bracket optimum values. One of these frame spacing minimuns, then, was the optirnura W/D ratio.

The "M/D envelope" encloses all W/D values computed in the progran. There seems to be good indication that the "optimurn W/D" indicated is a truc ontimum, since the lower portion of the envelope rises on either side of it. Another indication given by the plot is that the progran gives a much wider vaxlation in $h / 1$ ratios with Jarger frame spacings, for varying frame sizes. As frane spacing becomes smallex, the W/D ratios produced become moxe "convergent".

Perhaps the most obvious conclusion from figure 26 is that λ alone is certainly not an accurate indjcator of optimum W/D ratio, althouch it could be utilized (arter extensive data gathering) to indicate the general area in which to design.

It is interesting to note that average computation. time for each optimum computed was less than onewhanf minute. Also, it was interesting to note that the optinur solutions contajned as scantionss, generally
speaking, smalen rames, larcer heavy frame spacing, and slightly thicker sholls than subrersibles of present design. Evidently, this results in better W / D ratios.

One of the major advantages of this progran and its general method of computation and print out (see Appendix C) is that it gives a great variety of altematives from which to choose. For instance, perhaps the optinum W / D ratio for a certain hull configuxation and dopth contained scantlings which gave a vexy small frame spacing. Analytically, this may give a superior W / D ratio. But pxactically speaking, the cost of rabricating and installing a great number of frames may be out of the ouestion. Ihus (partioularly if the submersible js not critically wolght... Iimited): the teble of printouts may be "browsed" for more attractive scantling sets: ones with acceptible W / D ratios, but with inherently lower construction costs. It should be repeated here that each of these pinnted lines exe not mere randon choices. Tach line, prior to print-out, has already been through one of the main hurdies of the optimization progran. The desigh of shell thickness and frame spacing combination to sive failure by axisyractric yield, and thas most erficicnt use of the material's inheront strength, is completed prion to printing each line or the amswer tanle. Thus, the prosran may be used not only
as a structumal optimization, but also is an indispensible reference for any economic analysis of a particular desisn.

CLAPTER TWEJVE

BFCOMEMDTIONS

This Program.

1. Ranes of Varjation. One of the most common questions after a particular run complotion was " wonder if this is really the optinum, or djdn't I go far enough in frane (or frane spacing) variation?" it is believed that plots such as figure 27 for each run could prohably. give a definitive answer jn most cascs. iot only can one tell if each set of franes ran throuch an optimurn, but it. chould also usually be possible to tell if the "w/J envelope" passed through its optimum. This may be a rather peinful way to assure one's self that his run covered all the terxitory that was necessary, but at this writing, it appears to be the surest way. As an alternative, sone rather extensive studies could be conducted usine various depth and other inputs to test range validitics. Once determined, the progrem's range of $A F$ and $S i$ variation, governed by the indices K and $J, ~ r e s p e c t i v e l y$, could be controlled appropriately. From a rather cursory inspection hy the authon, it eppoarce trat in runs conductor
in data-mathering for this paper, the ranges of $J=k=10$ were adequate in all but a few quesitionable cases.
2. Effects of Fabrication Procedures. It is rother obvious that without any doubt, the Ereatest shortcoming in the optimization is in its allowances for such relative "unknowns" as residual weldine stresses, lommeycle fatigue, shell on frame outwormoundness, etc. the gross approximations made by REDPR and STRIFK certainly fall far short of the accuracy of the vaitious failuxe mode analyses. there is no doubt that more basic research must be accomplished in this region berore a completely dependable optimization proerran could be achieved. is it stands now, the safety ractors built into the progran could fall into two categories:
a) Completely sare design, in which all scantlings are overdesigned to the extent that desisn "optimization" is almost useless.
b) more realistic (i.e., loner) sarety factors based on scanty experimental data, which is not univexsally applicable, and thus mieht be considered umero.

It is hoped that the sarety devices employed in this program odnere to a "middle of the road" policy. REIPRR, it is believed, results in somewhat of an overacsich ror the two between.frome failure modes, but in underdesion for the general jnstability mode. This underdesign is hoperully picked up in STHPHK, which, as mentioned in Chapter 6: insures "a reasonnble stress level in the flane flange prior to collapse for those frames with an initial out..ofmroundess"io.

The only vay, i.t appears, to resolve these questions, is in extensive testing of models with deliberate, measurable defccts or all types. The most needed data or this type j.s in the failure mode most effected by derects: general instability. It is bolieved by some authors ${ }^{2}$ that the out or roundness analyses developed thus far are overly pessimisitic when applied to full sized submorsibles. Puture Prosrans.

The mosi obvious extension of this program is into strain-hardening natcrials. Because of the progran's general characteristics (i.e., a nain flow control program manipulating subprograns Which actually do pressure celculations), jt can
be easily transformed with.very few changes other than suburogram additions.

The need for such a transformation is obvious. when one observes hull steels projected for rutuxe (and in many cases, present) usage. Any steel with a yield strength greater than 100,000 psi can be considered to be a strainuhardening naterial. Details of the method of transforming the present proscam into one sultable for use with hish-strength steels may be found in Appendix E.

APPENDIX A

FRARE DIHEASIONS

appemidx a .

FRAME DHEVSIONS

TYPICAL FFAMES:

In order to arrive at reasonable frame crossesections, averages of a great varicty of rrane scantlincs used in a number of submersibles at various depths were obtained (see figure 19, chapter 10). The comon denominator for all of these frames is the web thichess. B. This method was taken from Adanchak in reference 1, who did the same thing for surface ship franes.

The ratios used in figure 19 were token from the following, derived from the averages computed (soo figure 28):

Flange width=Fi=CC*ib, where $C C=y$ of fjgure 19.
Flange depth $=\mathrm{Fl}=\mathrm{F}=\mathrm{A}=\mathrm{CC} \%$
Flange thickness=1.? $\%$ B
In addition to the above, the renaining terms in figure 28 axe defined as follows:

FC: Distance of frane centroid from plate neutral axis

DN: Distance or combined centroid fron plate neutral axis

The varlous formulas for frame and combined frame-mlate roments of inertid and for conter of ghation wore thet

T-SEGTION
 DIVENSION IDENTIFICATION

Figure 28
from a ereneral development of these in referonce 19. They are listed in easily prognammed form, and according to reference 19 , diferences rron values of actual standard production rranes due to fillets, etc. are alvays less than two per cent.

The combination of these two methods enables the computer to essily arrive at any variety of T-stiffenex charactesistics, each of which is proportioned according to present submersible design practice.

After substituting the expressions for $\mathrm{FD}, \mathrm{FW}, \mathrm{TF}$ and B into the equations for pofmames in reference 19, the following expressions result for typical (i.e., not heavy) framess and are used in the progran:

Frame acea, At:

$$
A F=F W \% D F+E D * B=2.7 * C C H B * 2
$$

Frame moment of inertje, FI:

$$
\begin{aligned}
\mathrm{FI}= & \mathrm{CCOP} * 13 *+4, \text { where }: \\
\mathrm{CCOP}= & (2.89 * \mathrm{CC} \% 4+11.34 * \mathrm{CC} \% 3+13.47 \div \mathrm{CC} \% 2 \\
& +4.36 \% \mathrm{CC}) /(12.0 \% \mathrm{CC}+20.4)
\end{aligned}
$$

Effective rrame-nlate moment of inertia (using effective lencth of sheli olating, EI, develooed In rerexence 18) , 1EI:

$$
\begin{aligned}
E I= & 0.225 * C C * B * 4 *(C C+1.7) * 2 *((1.07 * C C+0.562) / \\
& (C C+1.7)+3.0 \%(1.63 \div(1-1.7 \div 3) /((C C+1.7) * 3)) * 21 \\
& (1.0+(2.7 \cdots 2 * 3) /(21.1)))
\end{aligned}
$$

FC:

$$
\mathrm{FC}=\mathrm{B} *((\mathrm{CC}+1.7) / 1.227-1.0 / 1.176)+1 / 2.0
$$

DN:
$D=F C=2.7 \% C C * 13 * 2 /(2.7 * C C * 5 * 2+2 \pi * T)$

FgAV FIMISS:

Hoavy frames were averaged in the same manner as above, although less data exists. The relationships obtained did not depend upon depth, and were determined to be as rollows:

$$
\begin{aligned}
& \mathrm{FDH}=17.0 \% \mathrm{BH} \\
& \mathrm{FHH}=13.0 \% \mathrm{BH} \\
& \mathrm{TFH}=2.0 \% \mathrm{BH} \\
& \mathrm{CCOP}=1330.0 \\
& \text { Heavy reme area, } 4 \mathrm{FH} \text { : }
\end{aligned}
$$

$$
\mathrm{AFH}=43.0 * B H * 2
$$

Heavy frame moment or inertia, FIH:

$$
F I L=1330.0 \% 33 \% 4
$$

FCH:

$\mathrm{FCH}=1.4 .25 \% \mathrm{BH}+\mathrm{T} / 2.0$

$11 \mathrm{NH}:$

EIH=effective length of shell plate next to the heavy frame (see chanter 8)

EIH was not noodsd in the nrosran.

APPENDIX B

LUNCHIX'S PLASIIC HINGE AHATYSIS

APPENDIX B

LUHCHTKIS PLASTIC HING ANALYSIS

(Refer to reference 14 for this discussion)
Junchik's final. PopPy equation is developed through the use of his parameters 13 and. I. There are not solvable except by assumptions which Lunchik makes. Iwo of his assumptions (ie.. $k_{\phi}=\mu K_{x}$ and $\sigma_{m x} / \sigma_{m \varnothing}=K_{x} / K_{\phi}$) are easily worked out from substitutions in identities from his paper. However, one is less clear (i.e., $\sigma_{b \phi} / \sigma_{m \phi}=6 B_{\phi}$), particularly because B_{ϕ} is misprinted as β_{ϕ} in reference $1 \psi_{0}$

From Lunchik's definitions ${ }^{14}$ in his analysis of a one unit square element:
(1) $M_{\phi}=k_{\phi} P \equiv$ circumferential ede moment
(2) $N_{\phi}=K_{\phi} p h \equiv$ circumferential compressive membrane force
(3) $B_{\phi}=\frac{k_{\phi}}{h^{2} K_{\phi}}$
(4) $\sigma_{m,}=K_{\varphi} p \equiv$ circumferential membrane stress

Assuring (ie., approximating the circumferential bending stress to be elastic:

$$
\begin{equation*}
\sigma_{b \phi}=\frac{M_{\phi}}{I} \cdot y=\frac{12}{b h^{3}} M_{\phi} \cdot \frac{h}{2}=\frac{6 M_{\phi}}{b h^{2}}=\frac{6 M_{\phi}}{(1) h^{2}} \tag{5}
\end{equation*}
$$

From (2) and (4):

$$
\begin{equation*}
N_{\phi}=\sigma_{m \phi} h \Rightarrow \sigma_{m \phi}=\frac{N_{\phi}}{h} \tag{6}
\end{equation*}
$$

Using (5) and (6):

$$
\frac{\sigma_{b \phi}}{\sigma_{m \varphi}}=\frac{6 M \phi}{h^{2}} \cdot \frac{h}{N_{\phi}}=\frac{6 K_{\partial \rho} \rho}{h \cdot K_{\phi} \rho}=\frac{6 K_{\phi}}{h^{2} K_{\phi}}=6 B_{\phi} \quad Q_{0} E \cdot D
$$

To further rearrange these assumptions to obtain expressions for B_{x} and B_{b} to use in program EliNOr:
(7) $B_{\phi}=\frac{1}{6} \sigma_{b \phi} / \sigma_{m \phi}$
; (8) $K_{x} / K_{\varnothing}=\sigma_{m \times} / \sigma_{m \varnothing}$

$$
\begin{align*}
& K_{\phi}=h^{2} K_{\phi} B_{\phi}=h^{2} K_{\phi}\left(\frac{1}{\sigma} \sigma_{b \phi} / \sigma_{m \phi}\right) \\
& B_{x}=\frac{K_{x}}{h^{2} K_{x}}=\frac{K_{\phi} / \mu}{h^{2} K_{x}}=\frac{h^{2} K_{\phi}\left(\frac{1}{\sigma} \sigma_{b \phi} / \sigma_{m \phi}\right)}{\mu h^{2} K_{x}}=\frac{1}{\sigma \mu}\left(\frac{\sigma_{b \phi}}{\sigma_{m x}}\right) \tag{9}
\end{align*}
$$

(7), (8), and (9) axe then put into Lunchik's equations (12), (13), and (15) for θ_{1}, θ_{2} and θ_{4}, and these in turn are substituted in his (25) and (26), which are used to solve for the plastic reserve stench ratio pepPy (FCRI in program PinCh).

[^0]PROGRAL LISTITG
 （0．10） HULNTH，BS，$Z, E, S I G Y, R H C, G N U$
$N(D O P I(N N), N N=1, N)$ （DPTHI（NN），NN＝I，N） $M,(O M I(M N), N M=1, M)$

$10.0 /(7 F 10.0) 1$

SHELL CPTIMIZATION．

MAIN PROGRAM：STIFFENED CYIINCRICAL

いUの出世世Wの

$$
\begin{array}{lll}
00 & 0 & 0 \\
0 & 0 & \pm \\
\sim & H & H
\end{array}
$$

 -
∞
\times
N
i
in 0
∞
750
ω
DO $225 \mathrm{JJ=1}, \mathrm{M}$

2 z \vdots 2 0 0

F(SL.UT.(FW+4.0)) GO TO 19
PCR=RNLCS(T,SL)
F(I.NE. I) GO TO 7
CALL THKNS (T,SL,FI,PC, E19)
$=2$
O TO 3
$L=0.9 * S L$
(SL.GT. (FW+4.0))GO TO 3

$A F=C \cdot S * A F M(K)$
$\mathrm{P}=\mathrm{SQRT}(A F /(2 \cdot 7 * C C))$
$F I=C C O P * 8 * * 4$
$C C N T I N U E$
$S L=O .8 * S L M(J)$
$T=T I$
$A F=O .5 * S L * T$
$B=S O R T(A F /(2$.
$F I=C C C F * B * * 4$
$I=I$

の $\underset{\sim}{-1}$

$$
\Rightarrow \begin{array}{ccc}
a & \infty & \infty \\
-1 n & n & n \\
0 & 0 & N-1
\end{array}
$$

IFIWDOPT.
WRITEIG,
FORMATI/
GOTO 225
WRITE16.6
FOFMATI//
131

$$
\begin{aligned}
& \text { FORMATI///17X, PECOMMEND LONER YIELD STRENGTH MATERIAL: } \\
& \text { GO TO } 225 \\
& \text { WRITE } 6.650) \text { WDOPT } \\
& \text { FOFMAT }(/ / / 17 X, ~ O P T I M U M ~ N E I G H T / D I S P L A C E M E N T ~ R A T I O: ~ F S . ~
\end{aligned}
$$

CONTINUE
CONTINUE
CALL EXIT
FNO
FUNCTICN RNLDS:T,SL)
COMPUTES CRITICAL ASYMMETRIC (LOBAR) BUCKLING PRESSURE CCMMCN/C/E,GNU,DM, Z, CC,SIGY, CCOP,RHO COMMON/F/B,FC
(RNT) / SL
$Y=1.23 * S Q R T(R M * T) / S L$
$A F=2.7 \% C C \% B * 2$
H HETA1 = TETA/2.0*((SINH(TP2,TN2) +SIM(TETA/2.0))/(COSH(T P?.TN2)-COS(TETA/2.0))
$T P=T P 2 * * 2$

$$
e_{4}^{0}
$$

AXISYMMETRIC

* I I O IS
$0 T$
00
$C 0$

RHO $C C C P$

SUBROUTINE HVYFRMIT,SL,FI,HLLNTH,PC,PCG, BS,AFH, $8 H$,

COMPUTES DIMENSIONS OF HEAVY FRANES REQUIRED.
COMMON/D/E,GNU, ON,Z,CC,SIGY,CCOP,RHO/F/B,FC
CONMCN/V/ETAN
$I F(B S . E Q . H U L N T H) ~ G O ~ T O ~$
$R N=D M / 2 . O$
$I F(P C G . G T .2 . O * P C) ~ P C G=2 . O * P C ~$
$R C=R M ~$
$L=I$
$B S I=H U L N T H$
CALL CINSTIT,SL,FI,PC,PCU,M,PSI,L,HULNTH) $I=1$ OM,
$E T A N=E$
2
\sum_{i-1}^{2}
\vdots
2
0
$F I H=P C G * S S * R C * 3 /((M+2-1.0) * E T A N)$
$R H=(F I H / 1320.0)$ w 0.25
IF(I.EC.I) GO TO 2
RETURN
$B=(F I / C C O P) * \pi=25$
PULOS(T,SL,FI,PC,FI,F2,F3,F4, A) $E L H=S L \neq 1 *(A F+S L * T) /(A F H+S L * T)+B H$
ONH=FCHMAFH/(AFH+ELH*T)
IF(7.EQ.1) GO TO 3

$Q C=P M-C N H$

2
2
n
2
\vdots
0
\vdots
GUTO 1
5 AFH $=0.0$
$G H=0.0$

-

SUBROUTINE ELNCK(T,SL,FI,PC,P)
COMPUTES CRITICAL AXISYMMETRIC YIELDING PRESSURE CCMMON/E/E,GVU, DM, Z, CC,SIGY, CCOP,RHO CALL FRAME(T, SL, FI) RM=EM $/ 2.0$ $P C L E=0.0$
IF!ABS(PCLE-PCLEI)-0.01*PC) 2,2,3 $L=L+1$
IF (L.GT.IO) GO TO 2 2. $P E L=P L N C K(T, S L, F I, P C)$
m

> ENO

SURROLTINE PULOS(T,SL,FI,F,F1,F2,F3,F4,A)

PLNCK（T，SL，FI，PC）
心ルニ
Hト V N
ーつい・こと少
乙
4
S27
C＊ 11
SL－5

いいいがと

$F(E A L F A \div S L-5.44) 2,1,1$
$=3$
（EALFA ${ }^{(S L} S$ PI） $4,3,3$
5

14
2
11
11
\vdots
2
，R1C

θ
E
－4 Nत！
15.
$\sum_{<}^{0}$
STRESSES

$-N$
SUBROUTINE KRNZKIT,RM,FS,EI,RC,RCG,GANNA,ESEC,ETAN, N
$P 1$
A
10
10
$P C(I)=S Q R T(E S E C * E T A N) * T * G A N M A * * 4 /(R N *(E N * 2-1 . C+G A N M A$
$\approx 2 / 2.0)=(E N * * 2+G A N N A * 2)+2)+E T A N * E I *(E N * * 2-1, C) /$
COLLAPSE PRESSURE AND NUMEER CIRCUNF'L WAVES.
OINENSICN PC(5)
DO $10 \mathrm{I}=1,5$

$$
\pi N \quad \underset{-1}{2}
$$

APPENDIX I

SAMPIE TNPUT CABDS
GARPLE OUTPUT
Figure 29

 FIRST INPUT DATA CARD

$\operatorname{READ}(5,100)$ 100 FORMAT ('TFlO

O. $!$
EBE0.0
1.
0.898
EXAMPLE BS: UNSPECIFIED (O.O) 240 FT Z: INTMRIVAI ERANISS (I.O)
HULNTH: $240 \mathrm{FT} \mathrm{E}: 30 \mathrm{XI} 0^{\circ}$
HULNTH: $240 \mathrm{FT} \quad \mathrm{E}: 30 \mathrm{XI} 0^{6}$
\square
SIGY: 80000 PSI RHO: $0.285 \mathrm{IB} / I \mathrm{~N}^{3}$
$I B / I N^{3}$
RHO: 0.285

\qquad
SECOND INPUT DATA CARD

$\operatorname{READ}(5,200) \mathrm{N},(\mathrm{DPTHI}(\mathbb{N N}), \mathrm{NN}=1, \mathrm{~N})$ 200 Rarmat (I2, TEIO.0/(TT10.0))	
	exampie
(HS)	S) : $2000 \mathrm{FT}, 5000 \mathrm{FT}, 10000$

32000.9
E000.0 10000.0

Figure 30
THIRD INPUT DA'AA CARD
THIRD INPUT DATA CARD
READ $(5,200) \mathrm{N},(\mathrm{DMT}(\mathrm{MM}), \mathrm{MM}=1, \mathrm{M})$
200 FORMAT (I2, TFIO.0/(TPIO.0))
EXAMPLE
$M=4$ (DIAMETERS $): 20 \mathrm{FT}, 30 \mathrm{FT}, 50 \mathrm{FT}, 80 \mathrm{FT}$

464109

0.098

960.0
600.0

Figure 31
0001010000000101100000010100000000000 11

 sax 50001 \square

E.S.MCGINLEY,II

RING-STIFFENED CYLINDRICAL SHELL OPTIMIZATION ...Input parameters...

MATERIAL DENSITY=0.285 LBS/CU.IN. YIELD STRESS $=100000$ 。PSI YOUNGS MODULUS $=0.3 E$ O\& PSI POISSONS RAYIO $=0.30$

*FRAME DIMENSIONS MAY BE OBTAINED BY USIMG THE FRAME 126 CONSTANT B(WEB THICKNESS) AS FOLLOWS:

..olIGHT(TYPICAL) FRAMES.o.
FRAME OEPTH=FLANGE WIDTH $=6.6 \times \mathrm{B}$
FLANGE THICKNESS $=1.7 \times B$
...HEAVY FRAMES...
FRAME DFPTH $=17 \times B$
FLANGE WIDTH $=13 \times 8$
FLANGE THICKNESS $=2 \times B$

DEPTH $=5000.0$ FT. DIAMETER $=30.0$ FT. FRAMES:INTERNAL
...DESIGN OPTIONS...

4.1962	86.18	2.460	200.00	0.000	0.41 is
4.1138	85.92	2.200	194.23	3.082	0.433
3.7526	85.69	1.968	79.98	2.677	0.401
3.7247	85.48	1.760	65.73	2.651	0.390
3.5518	85. 29	1.574	44.41	2.399	0.374
3.5618	85.13	1.408	30.22	2.285	0.378
3.5228	84.98	1.260	23.14	2.154	0.376
3.5228	84.85	1.127	16.07	2.014	0.385
4.2901	69.73	2.750	200.00	0.000	0.505
4.0739	69.44	2.1460	200.00	0.000	0.460
3.8008	69.18	2.200	200.00	0.000	0.422
3.7266	68,94	1.968	190.39	2.956	0.401
3.5705	68.74	1.760	70.10	2.652	0.388
3.41 .43	68.55	1.574	58.67	2.514	0.365
3.4143	68.38	1.408	35.88	2.354	0.368
3.4143	68.24	1.260	24.51	2.198	0.372
3.4143	63.10	1.127	18.83	2.074	0.374
3.5850	67.98	1.008	13.17	1.998	0.402
4.0094	56.04	2.460	200.00	0.000	0.482
3.8607	55.78	2. 200	200.00	0.000	0.444
3.6871	55.55	1.968	199.97	3.068	0.416
3.5315	55.34	1.760	80.06	2.660	0.396
3.261 .1	55.16	1.574	66.27	2.596	0.362
3.3121	54.99	1.408	43.36	2. 385	0.362
3.4397	54.84	1.260	34.22	2.320	0.369
3.4535	54.71	1.127	25.10	2.153	0.370
3.4677	54.59	1.008	16.01	2.020	0.383
3.5216	54.48	0.901	11.47	1.971	0.404
3.6047	45.06	2.200	94.08	3.014	0.474
3.4426	44.83	1.968	94.08	2.845	0.430
3.3388	44.62	1.760	86.65	2.684	0.398
3.0832	44.44	1.574	68.13	2. 590	0.362
3.2879	$44 \cdot 27$	1.408	64.44	2.537	0.364
3.3768	$44 \cdot 12$	1.260	38.70	2. 335	0.369
3.3905	43.99	1.127	31.37	2. 222	0.365
3.4822	43.87	1.008	20.40	2.097	0.380
3.4963	43.77	0.901	16.75	1.971	0.379
3.5105	43.67	0.806	13.12	1.921	0.388
3.2294	36.26	1.968	67.50	2.849	0.449
2.9829	36.05	1.760	67.50	2. 708	0.398
2.9176	35.87	1.574	67.50	2.603	0.367
3.1114	35.70	1.408	67.50	2.549	0.363
3.1955	35.55	1.260	43.80	2. 359	0.362
3.2819	35.42	1.127	34.95	2.286	0.362
3.3706	35.30	1.008	26.12	2.130	0.366
3.3843	35.19	0.901	17.33	2.002	0.374
3.4757	35.10	0.806	14.40	1.928	0.332
3.4809	35.01	0.721	11.48	1.902	0.392
2.8816	29.19	1.760	60.14	2.755	0.420
2.8272	29,01	1.574	60.14	2.661	0.385

2.9036	28.84	1.408	60.14	2.600	0.370
3.0154	28.69	1.260	55.36	2.441	0.360
3.0969	28.55	1.127	38.70	2.282	0.358
3.1806	28.44	1.009	29.22	2.171	0.360
3.2666	28.33	0.901	22.13	2.071	0.365
3.4439	28.24	0.806	17.43	1.949	0.378
3.3788	28.15	0.721	12.73	1.890	0.382
3.4313	28.08	0.645	12.73	1.848	0.378
2.6059	23.52	1.574	55.86	2.683	0.399
2.6770	23.35	1.408	55.85	2.626	0.375
2.8109	23.21	1.260	55.86	2.488	0.360
2.8869	23.07	1.127	40.47	2.301	0.356
3.0312	22.95	1.003	34.74	2.238	0.355
3.1131	22.85	0.901	25.22	2.086	0.357
3.1973	22.75	0.806	17.63	1.969	0.367
3.2837	22.67	0.721	13.85	1.894	0.376
3.3725	22.59	0.645	11.87	1.865	0.384
3.4249	22.52	0.577	11.97	1.832	0.381
2.3498	18.97	1.408	37.26	2.531	0.389
2.5830	18.32	1.260	37.26	2.429	0.376
2.7121	18.68	1.127	37.26	2.327	0.360
2.8477	13.56	1.008	35.71	2.246	0.355
2.9901	19.46	0.901	28.02	2.130	0.356
3.1396	18.36	0.806	21.90	2.044	0.363
3.2245	18.28	0.721	15.81	1.914	0.371
3.3117	18.20	0.645	14.29	1.855	0.373
3.4012	18.13	0.377	12.78	1.830	0.379
3.4150	18.07	0.516	11.27	1.821	0.383
2.3059	15.31	1.260	31.68	2.425	0.337
2.5725	15.17	1.127	31.68	2.357	0.382
2.7011	15.05	1.008	31.68	2.283	0.366
2.8362	14.95	0.901	31.68	2.195	0.355
2.9780	14.85	0.806	24.25	2.059	0.357
3.1269	14.77	0.721	18.10	1.954	0.366
3.2114	14.69	0.645	14.43	1.874	0.372
3.2982	14.62	0.577	13.21	1.833	0.374
3.3873	14.56	0.516	12.00	1.817	0.380
3.4011	14.51	0.461	12.00	1.789	0.374

APPENDIX E

METHOD OF PROGZAN COIVEPSION
TO ACCOHODARE GMAMIN. HAPDELING NATERIALS
\qquad

APPEHDIX E
OUSLIAE OF HETIIOD FCR CONVEHRING TO AK

Strain-hardening netals diffex rrom clastic porfectly plastic metris, in that above the yicld point, the stress is not a constant value as strain increases, but increases (usually at progressively slower rates) as strain increases. This means that true plastic rlow is never achjeved; the metal contimues to retain a modulus of some value, albeit smajler than the original oonstant value. Thjs results in a type of combination elastic-plastic bucking feilure in stiffoned cylindrical shells temmed inclastic fajiure. It is particularly important to analyze subersibles constructed of strain-hardening matorials with gtrainm nardenjog analyses $11,13,20$. Hormally, a submarine hull is designed to have some plastic yielding (i.e., initially beginning in the hull adjacent to the frame flanges) sonewhere between operating and collapse depth; indeed, there must be yielding pxiox to collepse depth in order for the hull to crush there With ideally plastic materials, once the yielding point is reacher, generally speaking, buckling failure is ruled out (or it mould have occurred earlier, due to hull geonetry). With strain-hardening materials, homevar, once the hull basins to plasticanty deform.
buckling failure is not ruled out. In fact, there js a strong possibility that the buckling failure (which will occur) will happen at a lower pressure than the yield faflure calculated by an ioeally plastic analysis, due to the reducen metal modulus. Thus, to use an ideally plastic collapse pressure analysis on a strain hardening raterial might sive dangerously overoptimistic failure predictions, particularly if the metal has a very hich yicld point.

For convenience in analyses, strain hardening materjals ${ }^{1}$ stressmstrain curves are characterized not only by E, but also by Et (whim, tangent nodulus) and E_{S} (ESEC, secant modulus). See figuxe 32.

Because with this type of stressmstrain cuxve, the moduli are always dopendant upon the stress state when above yield stress, it is necessary for all sirain-hardening collapse pressures to be computed using an iterative process. It is generally the approach to the solution of this process, and an example pressure analysis by Reynolds 20 that will comprise the rest of Appendix E.

Essentially, the critical collapse pressure is obtained when the buckling equation (depending upon buckilng mode, references 1.1 . 13 , or 20) is solved simultaneously with the prembucking equation (stress intensity as a function of pressuro), where:

Figure 33

GBADHLCET DETERITHSTON OF INETASTLC BUCADTIG PRESSURE

$$
\text { Stress intensity }=\sigma_{i}=\sqrt{\sigma_{x}^{2}+\sigma_{s}^{2}-\sigma_{x} \sigma_{s}} \text { (see ficure 33) }
$$

Either V.-G or S-P stress theories could be used to calculate the stress intensity, S. V-G is less accurate, but $S-P$ might give convergence problems, depending upon hull geonetry and depth at which stress is calculated.

One difficulty, that of finding a way of describing a strain-hardening stress-ostrain curve with a rinimum or input data, is solved in reference 23. Ir this method, the entire curve nay be approximated with extreme accuracy by using only four inputs (see figure 34): $E, \sigma_{y}, \sigma_{a}$ and σ_{b}. By manipulating sone of the Romberg-ossood equations, it is nossible to obtain E_{t} and E_{s}, given any vajue or stress, via the following expressions:

$$
\begin{gathered}
n=\frac{1+0.3853}{10810\left(\sigma_{a} / \sigma_{b}\right)} \\
E / E_{t}=1+0.42857 n\left(\delta / \sigma_{a}\right)^{n-1} \\
E / E_{S}=1 \div 0.42857\left(\delta / \sigma_{a}\right)^{n-1}
\end{gathered}
$$

This will be assumed to be the content of a subprogram called Subroutine rohos (see rigure 35).

Both the prewbuckling equilibrium equation and the buckling equation will be appoximated in the rerion or interest with straight lines. This, and sone of the followim methors of determing the intersection of the two equetions, were patterned generally arter similar nethods used in referenco 22.

NETHOD OF OBTAINJNG POHBERG-OSGOOJ INPUT PABAMETERS FOR COMPUTTNG Es AND Et

Figure 34

FLOW DIAGRAL:
SUBPOUTAHE RONOS

Figure 35

Subroutine InNe This sumroutine computes Em, the line slope, and BEe, the line stress intercept of the pre. buckJing equation, using the swp analysis (see figure 36). The values given by ling will chonge only with scantijng changes. injs subprograra mould constitute the only deviation of the main flow progran fion the perfectly plastic case. It would be placed in the main prograrn directly after point 3 (i.e. prion to the MMDS call). It vould also be used within rimins whenever ir changes.

The folloving discussion will involve the solution of the asymmetric inelastic buckling mode as developed by Reynolds in roference 20. The same general itcrative process would be utjlized in the solvtion of the other two modes of hull failure.

Function pCRI. See figure 3\%. This smell subprogram merely computes asymmetric inelastic bucklins pressure, using as inputs FPAM and ESEC (computed by ROHOS), T, SI, and PCRE1 (computed as PCRE by the elastic portion or FCRD's calling progan, PMDS). The pressure is computed using Reynolds' equetions outlined in rererence 20 (for a simplifiek presentation, however, see reference 12, which Gives the axisymmetric node also).

Subroutine Hipg. Sce iigure 38. This subprogram obtains the intersection of the pre-ouchling equilibrium equation nith the line detemined oy the two inout gressures (fint

FJOW DIAGRAM: SUBROUTINE LINE

FLOW DIAGPAM:

FUNCIION PCRE

Figure 37

FLOW DJEGRAK:
SUBROUTINE RISPI
and PRS2) and stress intensities (StG1 and SIG2) in terms of the intersection coordinates, 3 and p. The values ena and Bee, which determine the prembuckling cquation, are pined into FiNP via a COIFDi stateraent, along with other normal progran data inputs, including SJGe and StGB. Input arguments include siG1, SIG2 and PRS1, which along with the inelastic buckling pressure at point 2, PRS2 (computed by RNPT from input ECRE1), describe end points of the buckling equation line aporoximation.

Function PNLDS. Ihis subprogram is the same as RNLDS used in the ideally plastic case (i.e., computation of elastic lobar buckling pressure, pCREi), with the addition of a programed iteration (rirure 39, as used in reperence 22) for the inelastic portion. The first two stresses used in the iteration are SIGY and $0.9 * S I G Y$. When the difference of computed inelastic railure pressure and assumed stress at which fajlure will occur in the next iteration becones less than one half of one per cont of the present predicted failure pressure, convergence is assumed. The iteration sequence may be followed by using the diagram of the inelastic portion of RiviDS (figuxe 40) with the plot (figure 39). As noted hefore, fdentical procedures would be rollowed in the axisymutric and general instability cases. The main asosmam would be unaltomed with the excoption, again as notch

OR INELASTIC (OILAPSE PIRESSURE . . .

COMPUTED INELASTIC FAITURE PRESSURES
ASSUMED STRESS AT WHICF PAIJURE WILE OCCUR IN THE NEXT ITERATION

NOTE: METHOD TAKEN FROM REFEREMCE 22

(Figure 40 Continued)
before, of insertion of subprogran IINE. It is obvious that an optimization usjng the inelastic analysis would take much longer (perhaos by five or six times) than the ideajly plastjecase.

$$
13
$$

4

REFERELCES

1. Adanchak, J. C., "A Ship Structural Synthesis Capability Utilizing Gross Fainel Zlements", D.Sc. Thesis, J. I. To, Sept., 1969, pp. 31-36.
2. Arentzen, E. S., and Fandel, P., "Maval frchitectural Aspocts of Subnarine Design", Sivale paper No. 9, Nov. 1960 Annual liceting, IVeri York, N. Y.
3. Hall, W. E.s Jr. "Pormulas and Curves for Determining the Elastic General-.Instabjlity Pressures of Ring.. Stiffened Cylinders", DIMB İeport No. 1570, Jan. 1962.
4. Basderas, N. Lu, "A Survey of Analytical fechniques for Determining the Static and Dynanic Strength of Fressurem Hull Shell Struetures", Jrits Feport No. 2208, Septo, 1966.
5. Blumenberg, W. F. , "The Effect of Intemmediate Fieavy Fxames on the Flastic General-linstability Strength of Ringwstiffened Cylinders Under External Hydrostatic Fressure", Drim Roport No. 1844, Feb. 1965.
6. Bojchot, I., and Reynolds, T. E. " "Inclastic Buckljng Tests or Ring. Stiffened Cylindexs Under Fiydrostatio Pressure", DMIB Feport No. 1092, liay 1965.
7. Bryant, A. R., "Hydrostatic Pressure Buckling of a Ring Stirfened tube", liChe Report No. NCPE/R 306, Oct.,1954.
8. Evans, J. H., and Adamchek, J. C. Doean Enoinoerins Structures, M.I.T. Psess, Cambridge, Vass. 1969, p. 109.
9. Hom, K., "Elastic Stresses in Ring Frames of Jmperecotly Circular Cylindrical Shejls Undes External Prossure Loading", DRnB Report 110.1505 , Lay 1962.
10. Krenzke, li., Hom, i. , and Prorfitt, J., "Potential Full Structures for Rescue and Soarch Vehicios of the Deep Subnergonce Systems Projoct", Dnib report 1085, Iarch 1965.
11. Krenzke, Ro, and Kiernan, H. Jo, "Structuxal Develommont of a ritaniura oceanosrabhic Vehicle for opexating Depths of 15,000 to 20,000 Fect", DTB Heport 1677, Sopt.1953.
12. Lunchik, N. E. "Graphical liethods for Determininc the Plastic Shell-3uckling Pressures of Ringostiffencd Cylinders Subjected to Extornal Hydrostatic Pressure", DIH Repori No. 1437, Nar. 1961.
13. Junchik, K. E. "Plastic Axisymnetric Buckling of fingo Stiffened Cylindrical Shells Fabricated From Stroinm Hardening Haterials and Subjected to Extemal Hydrostatic Pressure". DriB Ropoxt IVo. 1393, Jan. , 1961.
14. Lunchis, F . E., "Yield Failure of Stiffened Cylinders Under Hydrostatic Pressure", DTHB Report Io. 1291, Jan. 1959.
15. Nott, J. A., "Investigation of the Influence of Stiffener Size on the Fuckling pressures of Circular Cylindrical Shells Under Hydrostatic Pressure. Part II". Dilis Report No. 1688, Jan. 1963.
16. Pulos, J. G., "Structural Anajysis and Design Considerations for Cylindrical Pressure Hulls", DHMB Report No. 1639, Apr. 1963.
17. Pulos, J. G., and Krenzre, H. A., "Recent Developments in Pressure Hull structures and iaterials for Hydrospace Vehicles". DIHB Roport No. 2137. Dec. 1965.
18. Pulos, J. G. and Salemo. V. J., "Axisymuetric Elastic Deformations and Stresses in a Fing-Stiffened, Perfectly Circular Cylindrical Shell Under External Hydrostatic Pressure", Drif Report No. 1战7, Sept., 1961.
19. Reynolds, T. E. "A Graphical Iethod for Deternining the Goneral.oInstability Strongth of Stifiched. Cylindrical Shells". Drim Feport No. 11106. Sept.,1957.
20. Reynolds, T. E., "Inolastic Lobar Buckling of Cyindrical Shejls Under Fixternal Hydrostatic Pressure", DiNB Report 10.1391, Aus. 1960.
21. Heynolds. T. E., and krenzke, M. A. "Structual Rosearch on Submanine Pressure Fivils at DMis": Joumen of Fiydronautics, Vol.l., IVo. 1. July, 1967°
22. Rockweil. R. D. " A Computar Frorran for Concucting Tradoo Ofi Sudies for Doe? Summmones Vinioles of Various Wotorials and shapes (U)", HSRDJ Eeport C-. 3026, Ju1.1969.
23. Romberg, W., and Ossood, W. R., "Description or Stressm Strain Curves by Threc Parameters", MaA Til 902 (Jul. 1943).
24. Short, R. D. "Effective k rea of Ring Stiffeners for Axially Symmetric Shells", Drmb Report lio. 1894, Hax., 1964.
25. Irililing, C. "rine Influence of Stiffering fincs on the Strength of Thin Cylindrical Shells under txternal Pressure", Elis3 Report INo. 396, Fer., 1935.
tions.

Thesis 120034tions.

32768001884562
DUDLEY KNOX LIBRARY

[^0]: APPENDIX C

