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PREFACE

The information included in the following thesis was gathered while

assigned to work as a junior project engineer at Sanders Associates

Incorporated, Nashua, New Hampshire, as part of the industrial experience

program of the Electronics Curriculum, U. S. Naval Postgraduate School,

Monterey, California. While assigned to this duty during the Spring

term of 1953, visits were also made to the National Bureau of Standards,

Arlington, Virginia laboratory where the pilot production line for

evaluating the Tinkertoy system was in the final stages of installation

and adjustment before production was started. By the middle of this

year the machine production of the equipment selected to be produced

for evaluation of the system should have been started. Prior to

machine production a sufficient number of this equipment will have been

made by hand in the module form to permit testing under operational

conditions so that necessary modifications may be made before large

numbers are made in the machines.

Although the system is still under development at this writing so

that a detailed report may rapidly be made obsolete, it is felt that

for a better understanding of the system and the problems involved such

treatment is justified. For a more generalized treatment of the subject,

the reader is referred to a thesis by Lieutenant John E. Hart who was

assigned to duty at Sanders Associates at this same time.

The detailed information included herein is primarily based upon

the methods used at Sanders Associates where a small module facility

has been established to manually produce module circuitry as required by
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their project engineers who are redesigning a number of equipments for

machine production. Where major differences are known to exist between

the methods used by Sanders Associates and those to be used by the

National Bureau of Standards in the machines, an attempt will be made

to mention those differences.

Many problems have arisen in the redesign of complicated electronic

equipment which have required long hours of work on the part of both the

circuit and the component engineers to find solutions. The method is

still so new and for security reasons so few people have been brought in

to work on the project that many of the problems remaining unsolved only

await the engineers to find time to devote to their solutions.

I wish to acknowledge the invaluable assistance given me by the

engineers and technicians of Sanders Associates in giving freely of

their time and experience to provide the necessary information for

preparation of this thesis. Thanks are also due Mr. R. L. Henry and

Mr. A. Ripnitz of the National Bureau of Standards who have taken time

from their busy schedules to explain the Tinkertoy system and its con-

cepts and especially for providing the information on the pilot produc-

tion plant.

Monterey, California.

April 27, 1953.
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I. INTRODUCTION

Cheaper and more rapid methods of producing electronic equipment

have slowly evolved as the industry has been forced to meet close com-

petition. However, the methods developed have in general been designed

to speed up the production of only some particular part or some parti-

cular equipment. Assembly line methods in which large numbers of

relatively unskilled workers are assigned small repetitive tasks have

proven uneconomical, except where very large numbers of one particular

equipment is to be produced.

The greatly increased demand from the armed forces for large

quantities of many different types of electronic equipment during World

War II made apparent the shortcomings of the existing methods of pro-

duction. A method is needed which is readily adaptable to rapid pro-

duction of both large and small quantities of a given type of electronic

equipment and which at the same time will place less demand upon the

material and manpower resources of the country.

The National Bureau of Standards during World War II developed

printed circuits to permit rapid production of VT proximity fuzes

which were required in large numbers for use in gun projectiles. With

the methods used in this development it was found that the percentage

yield of acceptable circuits was undesirably low where several lumped

components were printed as part of the circuit. To partially offset

this shortcoming adhesive tape resistors which are described in

reference (4) were developed. Many different printed circuit tech-

niques have been used since information concerning the VT fuze





development was first released in February of 1946. A discussion of

these techniques may be found in references (1) to (3).

A widely publicized development by Sargrove Limited made use of

printed circuit methods in the automatic machine production of a

broadcast band radio receiver. The process which is described briefly

in references (7) and (8) was abandoned, at least temporarily, when the

anticipated market for the receivers failed and it was found to be

uneconomical to convert the machines for production of other equipment.

A method of machine assembly of electronic circuitry has been

developed for the Signal Corps which is described in references (6)

and (9) under the name Auto-Sembly. In this method the conducting

circuits are "printed" on insulated subassembly chassis cards. Con-

ventionally produced type components are machine inserted in holes

drilled through the cards and then dip-soldered to the conductors on

the cards. A machine assembly process making use of conventional

components is also being developed for the Air Force. At least one

company is known to be working on a machine production process for

their own use.

A somewhat different approach, where printed circuits were not

used, was developed for machine assembly of an airborne intercom

amplifier. This process is described in reference (5). All components

were reduced to a cylindrical form with radial leads. The components

were stacked in a cylindrical module with electrical connections to

each other and to external circuits made through nine riser wires

woven into an insulating wrapper which provided mechanical rigidity.





The cylindrical components were hopper fed to an automatic indexing and

soldering machine which required the one operator to perform only simple

steps.

Many other examples are available where machine processes have been

used to a limited extent, but with the exception of the Sargrove venture

in producing a relatively simple circuit no attempt has been made to

completly machine produce an equipment from bulk or slightly machined

materials. The Bureau of Aeronautics became aware of the possibilities

of developing such a system and in June 1950 inaugurated the Tinkertoy

project as an Industry Preparedness Measure Project. This project is

described in references (CI) and (C2)<, Technical direction was placed

under the National Bureau of Standards to take advantage of the expe-

rience of that group in basic components development. The objectives

of the Tinkertoy Project as stated in reference (CI) are:

a. Eliminate the availability of trained skilled labor as the

limiting function of the Nation's capacity to produce the large

quantities of military electronic equipment which will be required

with minimum delay in the event of mobilization, and replace it

with a like capacity in the form of machine tools in reserve.

b. Reduce the astounding cost to the Country's taxpayers of

military electronic equipment through savings in manpower and

materials.

Co Reduce the usage rate of several critical materials,

d. Simplify the maintenance problem on complex military elec-

tronic equipment and thereby improving the tactical usability and





reducing the requirements of almost unattainable numbers of highly

trained maintenance technicians.

To fulfill these objectives it appeared necessary to depart from

usage of conventionally produced components and instead to machine

produce the components needed. The system developed must provide for

rapid, economical conversion from production of one equipment to pro-

duction of another. Since rapid expansion of the production capacity

was required, it appeared desirable to use machines which could them-

selves be mass-produced and wherever possible to use standard machines

already in production which would require only minor modification at

the most. The machines should also be small and relatively inexpensive

so that large numbers could be stored in reserve, and so that if it

became necessary to use them they could be easily handled and rapidly

installed in small factories already built.

After a short period of analysis it was decided to use printed

circuit type components in the modular type of construction to be

described. Full emphasis was placed upon early establishment of a

pilot production facility which would permit evaluation of the system

on a production scale.

The system of construction chosen was required to be satisfactory

from an electronics aspect as well as being compatible with mechanized

production techniques. In this respect the resulting equipment must

be reliable, stable, and rugged. The machines must not be unduly

complicated so they would be difficult to manufacture. The system of

construction and the methods of production must provide for sufficient





flexibility so that changes necessary to shift from production of one

equipment to another are minimized and the changes that are required

may be made quickly and economically. This latter provision should

permit the production process to be readily adapted for production of

either large or small quantities of a particular equipment. The com-

ponents must be produced in the mechanized production facility in so

far as practical, and with minimum use of critical materials. Provision

must be made, however, for inclusion of non-machine produced components

in the assembly process with minimum disruption.

The system developed for use in Tinkertoy makes use of ceramic

wafers upon which the machine produced circuit components are mounted.

Riser wires are soldered to notches in the wafer edges for holding the

wafers in parallel stacks and for providing electrical connections

required to the various components. Each module, as the stacks of

wafers are called, generally includes the vacuum tube and associated

circuitry required by one stage of the circuit. The modules are

secured between top and bottom baseplates which are etched with the

necessary circuitry for connecting the modules electrically. The

Tinkertoy system at present is limited to production of these plate

assemblies which in general contain the circuitry of functional

subassemblies. A complete equipment will usually contain several

plate assemblies plus mechanical parts and any conventional components

which are not adaptable to modulization.

In the following two chapters the various components and the

machine methods of producing and assembling them will be described





in detail. This will be followed by a discussion of the design problems

peculiar to the Tinkertoy method of construction. The final chapter will

be devoted to a discussion of the effects which may be expected to result

from the development of the Tinkertoy system.





II. COMPONENTS

The development of components for the Tinkertoy system and the

machines to produce them has been advanced to the state where machine

production of electronic circuits appears reasonably certain of success.

Considerable effort is continuing to be expended towards improving the

present components as well as toward developing new components, adap-

table to machine production, which will further reduce the occasional

need to resort to components not produced in the Tinkertoy system.

Cataloging of commercially available components of a size adaptable to

being packaged in modules or modular size packages has been undertaken.

Frequent changes in the Tinkertoy system are still being made so

that any detailed report runs the hazard of rapidly becoming obsolete.

It is felt, however, that a better understanding can be obtained from

a consideration of the problems and details than from a generalized

discussion. For this reason the treatment followed will be that of

presenting the more important details of the present system. In this

chapter the methods of making the components will be discussed and in

the next chapter the machine processes will be described. The character-

istics to be considered by the designer will be included in the chapter

on design.

The information presented is primarily based on the methods used

at Sanders Associates where a small module assembly facility has been

established to manufacture the components and plate assemblies required

by the engineers redesigning electronic equipment for machine production

using the Tinkertoy system. The methods to be used in the pilot production
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line will also be indicated where different methods are known to be

used. References (4) and (CI) through (C3) have been consulted freely

to provide much of the following information.

1. Modular Wafer

The circuit components are mounted on the modular wafers which

are the key to the Tinkertoy system of construction. The wafer is a

square ceramic plate which is about seven-eighths of an inch on a side

and about one-sixteenth of an inch thick. Three equally spaced notches

on each edge are designed to receive the riser wires which are soldered

to the wafer in assembly of the module. A fourth notch placed between

two of the riser wire notches on one edge is provided for use in indexing

the wafers to the correct orientation during the assembling processes.

Several different variations of this basic wafer are made for specific

purposes as will be mentioned later. Pictures of the various forms of

wafers are shown in figures (1) to (3) and (7) to (9).

The wafers are made of steatite or talc which is thoroughly mixed

with water and then pressed dry into flat cakes. The caked steatite is

granulated to cornmeal size particles and hopper fed to a die -press which

compresses the steatite into the desired shape. The wafers which are now

strong enough to be handled are fired for eight hours at 2300°F.

The notches of the wafer are painted with silver paint to provide

a surface to which the riser wires may be soldered. As will be described

later, the conducting pattern which provides the electrical connection

between the components and the riser wire notches of a wafer are also

painted on with silver paint. The riser wires provide the electrical

connection between the components on different wafers.

L
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2. Capacitors

The basic capacitor of the Tinkertoy system is a flat ceramic disc

dielectric with the two plates silver painted on opposite faces. These

capacitors have been standardized to be about eighteen mils thick and

either thirty or fifty-five hundredths of an inch in diameter.

A second type which is adaptable to machine production has been

developed to provide a stable capacitor at high values of capacitance

where the ceramic dielectric becomes unstable with temperature. This

capacitor is wound or folded in modular size using aluminum foil plates

and a mylar film dielectric.

(a) Ceramic disc capacitors

The ceramic disc capacitor bodies are made of Barium Titanate mixed

with various metallic oxides to obtain a wide selection of dielectric

constants . Different dielectric constants are selected to provide a

complete range of capacitance values from 7 mmf up to .01 mf . The

specific mixtures used have been selected as being the most suitable in

the various ranges for making capacitors, and to provide some choice of

the temperature coefficient.

After a thorough mixing the selected mixture is formed into the

desired size capacitor discs and then fired at 2700°F.

Within the range of capacitance values available with each dielec-

tric the particular capacitance is determined by selection of the proper

size electrode areas which are silk-screened on the faces of the capaci-

tance bodies in silver paint. Typical capacitance values obtained with

different dielectrics and various diameter electrodes are given in table I.
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TABLE I

With back
Capacity in mmf for various electrode

Dielectric front electrode diameters diameter
Constant 4/16" 5/16" 6/16" 7/16" 8/16" in inches

10 4 6 8 12 7/16

13.6 5 18 — 7/16

16.7 15 22 27 33 — 7/16

28.4 12 ~ ~ 7/16

29.6 22 33 44 47 — 7/16

57.2 39 75 88 120 -- 7/16

64.9 45 70 92 120 — 7/16

88 — 68 — 120 150 8/16

317.5 180 270 — — — 5/16

~ 330 — — 6/16

200 — 430 530 — 7/16

508.3 330 500 625 880 — 7/16

544.5 220 — — — — 4/16

270 390 560 680 — 7/16

2000 1000 — -- — — 6/16

1100 1550 2440 2700 — 7/16

2136 1200 1500 -- -- ~ 7/16

5000 2200 3300 4700 6800 10,000 8/16

6000 — 3100 7500 10p00 — 7/16
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More than one capacitor can be placed on a single disc by dividing one

face into a number of sectors.

The silver is cured by firing for ten minutes at 1350°F with the

method used at Sanders Associates but will be a longer process in the

pilot production line. After this final high temperature process the

dielectric must age before a stable value of capacitance is reached.

Any appreciable increase in temperature such as in pre-tinning and

soldering the capacitor to the module wafer will result in a temporary

deviation from the stable value of capacitance.

The disc capacitor and the wafer upon which it is to be soldered

are both pre-tinned by dip-soldering. In manual assembly the capacitor

is soldered to the wafer in the dip-soldering process, but in the machine

process the previously pre-tinned components are soldered together by

heating the assembled parts to the melting point of the tinning solder.

One plate of the capacitor is electrically connected to one of the riser

wire notches of the wafer through the pattern silvered onto the wafer

and the other plate of the capacitor is connected to a second riser wire

notch by a thin silver ribbon.

The steps in assembly of the disc capacitor to a module wafer are

shown in figure 1. The various types of capacitors are pictured in

figure (2).

(b) Mylar film capacitors

The mylar film capacitor is made by placing the two plates of

aluminum foil ribbon between insulating layers of mylar film ribbon

and winding on a thin flat arbor the proper number of turns for the

12
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capacitance desired. Low voltage capacitors, for up to fifty volts,

require only single layers of mylar film, but higher voltage capacitors

require double layers of mylar film. Future developments are aimed

towards producing a "non-inductive" capacitor by folding the capacitor

rather than winding as at present.

After winding the arbor is removed and the capacitor is compressed

between two flat plates while being heated for two hours at 200°C to

thermoset the mylar film,, Tinned copper wire pigtails are tack-welded

to the two aluminum foil plates and soldered to the module wafer notches

for making electrical connections to the proper riser wires. The capaci-

tor is physically secured to the wafer with an adhesive cement.

The aluminum foil ribbon used in the mylar capacitor is about three-

tenths of a mil thick and of various widths as also is the mylar film

ribbon which is about one quarter mil in thickness. The maximum thick-

ness of the completed capacitor is about ninety mils. This permits

only tape resistor components on the face of the adjacent wafer. The

range of capacitance available with present mylar film capacitors

varies from about 680 mmf to .02 mf . Operation up to 125°C is permis-

sible.

Construction of the mylar capacitor is shown in figure (3) and a

completed capacitor is shown in figure (2).

(c) Capacitor developments

Recent investigations of the Nyobates for capacitor dielectrics

have shown considerable promise for obtaining high dielectric constant

bodies which are temperature stable o No attempt has yet been made to

14
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make ceramic disc capacitors for the Tinkertoy system using these

dielectrics; but if the early indications prove out it will become

possible to make high value stable disc capacitors in the Tinkertoy

system.

3. Resistors

The carbon film tape resistor developed by the National Bureau

of Standards for use in printed circuit applications has been adopted

as the standard resistor for use in the Tinkertoy system. For appli-

cations where carbon resistors do not provide the required precision

and stability a wire-wound modular resistor is being developed. A

miniaturized variable resistor has been mounted on a module wafer for

use where needed.

(a) The tape resistor, described in reference (4), is produced

by spraying a carbon-resin emulsion on asbestos paper tape. The

presently available range of values from forty ohms to ten megohms

is obtained by changing the resin to carbon ratio and by changing the

size of carbon particles used. The individual resistors are cut from

the tape and applied to the painted silver electrodes of the module

wafer. The resistor size has been standardized to be about one-eighth

of an inch wide and one-half of an inch long with the wafer electrodes

separated by three-tenths of an inch. The power dissipation rating has

been established to be one-quarter of a watt for operation up to 150°C

in one series of resistors and up to 200°C for another series.

The resistance obtained from a given formulation is affected by

a number' of factors such as the tape used, the spray adjustments of

the spray gun, and the characteristics of the spray emulsion. The

16





National Bureau of Standards has sufficient information that it is possible

for them to predict the value of resistance to be obtained with a given com-

bination within ten per cent. It is expected that with receipt of a more

accurate balance for determining the quantities to be placed in a given mix-

ture that a better accuracy of prediction will be possible. Sanders Asso-

ciates, due to relative inexperience in making the tape resistors and

inability to obtain the type asbestos tape used by the National Bureau of

Standards, have not yet been able to meet these results.

The tape used in producing the resistors is a short fiber asbestos

tape of a type similar to that available commercially for use in elec-

trical insulation. The tape is impregnated with a polyvinyl acetate or

with a silicone resin binder which gives the tape sufficient strength

to permit handling. The commercially available silicone resin tape has

a greater percentage of impregnant than does the special laboratory pro-

duced tape used by the National Bureau of Standards. The silicone resin

impregnant from the tape apparently goes into solution with the silicone

resin of the sprayed resistor mixture when the tape is heated in curing,

resulting in a higher value of resistance than would otherwise be obtained.

More important, the amount of impregnant entering into solution cannot be

accurately controlled, resulting in a loss of uniformity and in a decrease

of accuracy with which the resulting resistance value can be predicted.

This effect is minimized with the tape especially prepared for the National

Bureau of Standards. The necessity of using a specially prepared tape does

not present a great problem for even if the entire electronics industry

were to start using tape resistors, the small amount of asbestos tape

required could be easily made on a laboratory scale. The polyvinyl acetate





impregnated tape is limited to operation up to 150°C, but the silicone

resin impregnated tape permits operation up to 200°C.

The resistor mixture which is sprayed on the tape consists of a

carbon particle conducting medium with a silicone resin insulating

binder and a butyl cellusolve thinner. The binder which largely deter-

mines the operating temperature limit of the resistor serves: (1) to

hold the carbon particles in a fixed position to aid in fixing the

resistance value, (2) to secure the carbon conductor to the asbestos

tape and the tape to the module wafer, and (3) to provide some protec-

tion to the resistor from abrasion and the effects of humidity.

Major changes of resistance values are obtained by altering the

resin to carbon ratio, and smaller changes are obtained by using

different carbons having different size particles. The higher ranges

of resistance values are obtained with the higher resin to carbon

ratios. The lower values of resistance within a given range are ob-

tained using large particle size carbons such as graphite. The medium

resistance values are obtained using medium size particles such as the

furnace blacks and the high resistance values are obtained using small

size particles such as in the channel blacks. A change of particle

size tends to change the resistance value approximately in inverse

proportion to the ratio of the particle diameters.

Curves of resistance versus resin to carbon ratios for typical

carbons used in making tape resistors are given in figures (4) to (6).

Some of the characteristics of several carbons are given in table II.

The preferred carbons for various ranges of resistance, as determined by

the National Bureau of Standards in development of the tape resistor, are

given in table III.
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TABLE III

Resistance
in ohms

100
200
300
500
800

1,000
1,500
2,000
4,000
5,000
5,000
6,000
7,000

10,000
15,000
20,000
30,000
35,000
50,000
60,000
70,000

100,000
130,000
140,000
200,000
300,000
500,000
800,000

1,000,000
2,000,000
3,000,000

Max. Ambient
temp, in °C

200
200

200
200
200

200
200

200
150
200
150
200
150
200

200
200
200

200
200
150
200
200

150
200
200
150
150
150
150
150
150

Preferred
carbon

Dag 22
Dixon 200-09

tt

Dag EC-427
Dag 22
Dixon 200-09

ii

Excelsior Black
Statex A
Halo Black
Dixon 200-10

F

Halo Black
Statex A
Sterling K

Statex A
Dag EC-427
Statex A

Tt

Halo Black
Statex A

tt

Halo Black
Sterling 105
Statex A
Halo Black
Continental AA

tt

Halo Black
Continental AA

Ratio by weight
resin to carbon

1 to 1

2.5 to 1

3 to 1

to
to
to
to
to

4

2

2

5

6

8 to
4 to
8 to
5 to

to

to
to
to
to
to

7.5 to 1

14 to 1

8 to 1

8.5 to 1

15 to 1

14 to 1

9.5 to 1

22 to 1

7.5 to 1

8 to 1

26 to 1

9 to 1

10 to 1
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The carbon for the particular resistance mixture chosen is calcined

for three hours at 2250°F to remove the impurities. After the carbon has

been permitted to cool it is mixed in the proper proportions with the

silicone resin and the butyl cellusolve solvent. The ratio by weight of

the nonsoluble particles to the soluble particles and the solvent is kept

constant as the resin to carbon ratio is changed for different values of

resistance. The purpose of this is to maintain the apparent viscosity of

the spray mixtures the same.

Two typical mixtures for different values of resistance are given

below to illustrate this principle.

Resistance: 500 ohms 100,000 ohms

Carbon: Dixon 200-09 20 gm Statex A 10 gm

Binder: DC-996 Resin 160 gm DC-996 Resin 180 gm

Thinner: Toluene 120 gm Toluene 110 gm

Solids: 20 gm of carbon plus 80 gm 10 gm of carbon plus 90 gm
of resin = 100 gm of resin = 100 gm

Solubles: 80 gm of resin plus 120 gm 90 gm of resin plus 120 gm
of solvent added - 200 gm of solvent added = 200 gm

The mixture is poured into a cylindrical jar which is revolved at

80 rpm for two to three weeks on a ball milling machine. Porcelain balls

are placed in the milling jar with the mixture to insure complete emulsi-

fication. The one and one quarter inch wide asbestos tape is formed into

an endless belt about nineteen feet long which is placed over motor driven

rubber rollers in the resistor spray cabinet. The rubber rollers carry

the tape past the spray gun opening in the cabinet at about thirty-eight

feet per minute for thirty complete revolutions.
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The air operated spray gun containing the resistor mixture is motor

driven in simple harmonic motion back and forth across in front of and

about five inches away from the tape at about four-hundred oscillations

per minute, overshooting about the width of the tape on either side. It

is adjusted to spray about two and one half ounces of mixture at the tape

during the thirty revolutions of the tape belt. The large number of thin

coatings, the high speed of the tape, and the overshoot of the gun on

either side of the tape are used to obtain as uniform a coating as possible.

To further insure the tape to be used is uniform, only the center section

which is cut into five narrow strips is used. The widths of the strips

cut may be varied in ten mil steps to compensate for slight differences

from the desired value of resistance resulting from a given mixture. The

outer strips are normally made slightly wider than the center strip to

compensate for small variations in resistance across the width of the

tape, resulting from the method of spraying. Test strips are cut from

each tape to use in determining the proper width of strips required before

the entire tape is slit.

When the higher ratios of resin to carbon are used it is necessary to

partially dry the tape between spray coatings. Heat lamps are installed

in the cabinet to accomplish this during the spraying process. After the

last coating has been sprayed and before the resistor tape is removed from

the spray cabinet, polyethylene tape is rolled over the resistor coating

to protect it from damage in handling and storage.

If desired, the tape may be stored for months under refrigeration in

the uncured condition.
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As the tape is applied to the module wafer the protective coating is

stripped off and the tape is cut into individual one half inch long resis-

tors. The tape remains tacky until cured so that no additional adhesive

is required to attach the resistor to the face of the wafer. Silver

electrodes painted on the face of the wafers provide conducting paths

between the resistors and the proper riser wire notches. After it has been

applied to the wafer, the resistor is cured for four hours at 300°C to poly-

merize the resin. Progressive assembling of resistors to a wafer is shown

in figure (2).

The resistors are covered by a second tape which protects them from

damage by solder flux during a later dip-soldering process to pretin the

wafer notches. The protective tape is made in a spray process similar to

that used for the tape resistor but using a silicone alkyd spray mixture.

After curing, it is necessary to temperature cycle the resistor four or

five times. The protective tape is cured during this temperature cycling

of the resistor.

(b) Wire wound resistors have been made experimentally by winding the

resistor in two sections on a special type wafer, the direction of winding

being reversed between the two sections. It is planned to use "non-inductive"

resistor wire in two different sizes to provide precision resistors covering

the range of resistance from about one ohm to two megohms with a one per cent

tolerance. Although time has not permitted this to have been accomplished

yet, no difficulties appear to stand in the way when the need for such

resistors arise. Several possible forms of these resistors are shown in

figure (7).
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(c) A small variable resistor has been mounted on a special type

wafer with the shaft extending through a hole in the center of the wafer.

Initial work has been limited to modification of an existing resistor

rather than producing it. The components and an assembled resistor of

this type are pictured in figure (8).

4. Inductances

Various techniques have been used to produce module size inductances,

but no standard method has been adopted for incorporation into the pro-

duction facility. Coils on the order of a few microhenries have been

photo-etched on copper clad phenolic and mounted on module wafers for

use in circuits being modulized. Bifilar coils having a coefficient of

coupling as high as three-fourths have been made using similar techniques.

Attempts have been made to produce inductances by silk-screening spiral

coils directly upon the module wafer, but to date satisfactory results

have not been obtained. Examples of these various types are illustrated

in figure (9).

Inductances up to the order of sixteen millihenries have been obtained

by winding a coil on a core secured between two wafers as shown in figure (10)

Inductances have also been wound upon small spools, such as pictured in

figure (9), which are cemented to the wafer. The smallest such spool used

to date permits mounting up to five alongside each other upon one side of

a wafer and sufficiently thin to permit placing a capacitor on the adjacent

face of the next wafer. One such spool was used for winding an inductance

of about one hundred eighty microhenries. Number forty teflon covered wire

was used. An unloaded Q of thirty-one was obtained as determined with a
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Q-meter. Lower Q values were obtained, however, in similar coils made with

larger wire having a less satisfactory insulation.

Variable inductances have been obtained by using a rotatable disc to

short out part of the turns of an etched coil, and by slug tuning of coils

wound upon hollow forms. The slug-tuned inductance is mounted on a special

wafer with a hole in the center through which a threaded slug can be screwed

in and out of the threaded coil form. The slug-tuned coil is shown in

figures (3) and (9).

5. Tube sockets

Both seven and nine pin miniature tube sockets have been standardized

for use in the Tinkertoy system. The tube sockets are made of steatite in

a process similar to that used for making the module wafers. The pin

connectors of beryllium-copper extend out to the edge of the module wafer

for soldering directly to the riser wires. The tube socket is center

riveted to a special type wafer and is oriented so that one side which is

flat always lies parallel to an edge of the module wafer. The steps in

assembly of the tube socket to the wafer are illustrated in figure (l).

Some consideration has been given to inclusion of sub-miniature type

tube sockets in the system, but for the present where sub-miniature tubes

are used they are soldered into the circuit.

6. Conventional components

Large conventional components which cannot be eliminated from the

circuit such as power transformers, large tuning capacitors, high wattage

resistors, and mechanical parts are grouped together in one section if

possible. Smaller conventional components are placed in non-standard
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modules by eliminating one or more wafers, if necessary, to make room for

them. These components may be secured to a wafer, suspended between

wafers, or suspended between riser wires. Certain components may be

potted in module size blocks for fitting between the baseplates with the

standard modules.

7. Tinkertoy modules

Each module normally contains the tube and components associated with

one stage of the circuit being produced. The component wafers are assembled

in parallel stacks with at least one -eighth of an inch separation between

wafers. Size number twenty tinned copper riser wires are soldered into the

wafer notches to provide mechanical rigidity to the module and to provide

electrical connection between the circuit components on the several wafers

and to the top and bottom baseplates. The normal module has been standard-

ized to have five wafers although the pilot production line has been de-

signed to produce six-wafer modules, if desired. With moderate changes in

the assembling machines larger modules could be produced. Riser wires not

needed for mechanical strength or electrical connections may be cut at

the end of the modules or between wafers. In general, at least one riser

wire on each side of the module should be secured to the baseplates at the

top and bottom to provide mechanical rigidity even when not necessary for

making electrical connection.

8. Baseplates

The modules containing the various stages of a functional subassembly

are assembled between top and bottom baseplates. The baseplates provide

mechanical support and through the conducting circuit etched upon them
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provide electrical connections between the individual modules and to cir-

cuits external to the plate assembly. The Tinkertoy system at present

does not extend beyond the production of these plate assemblies. They

may be seen in various forms in the pictures of equipment included in

chapter IV.

The baseplates are made from sheets of one-sixteenth inch thick XXXP

Phenolic resin insulator to which two and seven-tenths mils thick copper

foil is bonded on one or both sides. The cheaper single clad sheets are

normally used for making the baseplates, but for special purposes double

clad sheets may be used.

The etching process used at Sanders Associates in making relatively

few plates of one kind differs somewhat from the process to be used in

the pilot production line where large numbers of one design plate are

to be made. The process used by Sanders Associates will be described

with the major differences in the two methods being indicated.

A double size drawing of the baseplate design is made and photo-

graphed, reducing the size back to normal in photographing for producing

a uniform negative to be used in exposing the baseplate. The copper-

clad surface of the phenolic is scoured to remove all copper oxides.

A uniform coating of cold top enamel which is sensitive to ultraviolet

light is then spread over the copper surface by spinning the baseplate

material at one hundred fifty revolutions per minute while the enamel

is being poured over it. The coating is dried by infra red heat lamps

placed over the spinning baseplate. Then a second coat is applied in

the same manner. The negative is held flat against the coated copper
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surface while it is being exposed for about three minutes under an ultra-

violet light. The exposed baseplate is placed in a cold top enamel deve-

loper for about thirty seconds and then washed in lukewarm water to remove

the water soluble unexposed areas of enamel. The remaining exposed enamel

is then set by drying under an infra red lamp.

The method to be used in the pilot production line differs from the

above in that the negative is used to produce a"silk-screenn for stenciling

the acid resist patterns on the baseplate material. After the negative has

been developed and the exposed emulsion has been washed away, the negative

is placed over a fine mesh non-corrosive metal screen and the remaining

soft emulsion is forced into the screen openings in the areas where the

pattern was not exposed. The emulsion is then fixed and the film is peeled

away, leaving the emulsion in the screen except for where the exposed pat-

tern left no emulsion on the negative to be transferred to the screen. The

silk-screen pattern may now be used for stenciling any number of baseplates

with an acid resisting coating.

The baseplates with the desired conducting pattern protected from the

etching acid by the acid-resist coating is placed above an etching solution

of ferric chloride in a rubber lined tank. Compressed air is used to bubble

the etching solution up on the plates for etching away the unprotected

copper foil. The etching process requires a period of from five to fifteen

minutes, depending upon the strength of solution used. After the baseplate

is etched, it is rinsed to remove the acid and then the acid-resist is

removed with steel wool.

The etched baseplate is completed by cutting to the final shape,
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punching the necessary openings for the tube sockets, and drilling holes

for the riser wires which are to extend through the baseplate. The con-

ducting pattern is pretinned by dip-soldering. The modules are then

assembled to the baseplates and secured in place by dip-soldering the

riser wires to the conducting patterns.

A protective insulating coating such as insl-X U-95 is brushed or

sprayed over the baseplates to provide protection from dirt and corrosion,

and to provide insulation between the conductors on the baseplates. The

remarkable advantages of this coating have been shown in tests. In one

test leakage between conductors on a coated plate was not detectable

down to a minimum spacing of thirteen and one-half mils, but on uncoated

plates leakage was noted for spacings below forty-six mils and breakdown

occurred in one case with a spacing of sixteen and one-half mils. In

these tests, run under ambient room conditions, a maximum voltage of one

thousand volts was used.

Other tests, conducted after the test plates had been immersed in

salt water for six hours, showed no measurable leakage or breakdowns

with coated plates. The breakdown voltage between conductors on un-

coated plates varied from nine hundred volts with a seventy mil spacing

to five hundred fifty volts with a twenty mil spacing.
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III. PRODUCTION LINE

The pilot production line for evaluation of the Tinkertoy system of

mechanized construction of electronic equipment is at this writing in the

final stages of adjustment of the machines. It has been designed to be

sufficiently large for evaluation of the system of construction on the

basis of production quantities. After completion of the evaluation and

any modifications shown by the tests to be necessary have been made, the

pilot line may be rapidly expanded to full scale production by the dupli-

cation of certain machines which do not have the capacity required for

the plant to operate at full capacity of all machines.

At full capacity the pilot line is expected to produce at the rate

of one thousand modules per hour. In terms of the first equipment to be

modulized this will amount to six or seven thousand equipments per month.

The pilot line is housed in a one-story building and only occupies about

fifteen thousand square feet of floor space. All of the machines are

small and of such a type that they may be mass produced if the need

should arise. Where possible, machines which are already in production

have been used, usually with some modification.

The line has been carefully designed with definite breaks in the

machine process to provide maximum flexibility in operation. After each

major process the components are manually transferred to the next step

with varying periods of storage in between as desired. This prevents

the possible breakdown, maintenance, or changing to a new setup in one

machine from stopping the entire line. With each machine independent of
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the immediate output of the machines preceding it great freedom in schedul-

ing is permitted.

At the completion of each major process automatic physical or elec-

trical testing of the components is performed to eliminate defective

components as soon as possible. Towards the end of the line where the

number of components involved becomes larger it is desired to have very

few rejects both to save in the materials being discarded but most

important to save the production capacity from being wasted.

The assembly machines are designed to automatically shut down when

jams occur or the supply of any component is exhausted. The testers may

be set to stop if a certain number of successive components are rejected.

The machines are extremely flexible in the ease with which new cir-

cuits may be set up for production. The major advantage of the system

selected is that the machines always handle the same physical components.

To change to a new circuit it is only necessary to change the easily made

silk-screens in the metallizing machines, the comparator heads in the

resistor and capacitor value checkers, and the punched cards in the

various testers. Of course, it is necessary to use the new correct

dielectric constant capacitor bodies, the new correct values of resistor

tape, and the correct type tube socket. However, as has been previously

pointed out, the line may continue production of other components while

each machine in its turn is being converted and started on production

of the new circuit. The necessary silk screens, punch cards, capacitor

bodies, and tape resistors may be prepared well in advance so that the

machines need be stopped for a minimum of time to complete the change.
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The processes involved in producing the components have been des-

cribed in the preceding chapter so that this chapter may be devoted to

following the complete manufacturing process and describing the machines

themselves. A flow diagram of the pilot production line is given in

figure (11).

The materials as received are primarily bulk or slightly machined

materials available in ample quantities. It is not planned to provide

large storage facilities for these materials in the pilot production

plant.

The bulk steatite or talc for making the wafers and tube sockets

is mixed with water in conventional commercial type mixers such as are

used in bakeries. The water is pressed out of the thoroughly mixed

steatite, leaving it in large cakes which are then granulated to corn-

meal size particles. The granulated steatite is hopper fed to a die-

press which compacts it into the desired shape. From the die-press the

wafers or tube sockets slide down a chute onto carrier plates which are

manually transferred and stacked upon trolley cars of an endless belt

oven where they are fired at 2300°F for eight hours.

Similar machines are provided in the ceramic facility for mixing,

forming, and curing the ceramic capacitor bodies except that the machines

are all of a smaller size.

After being fired, the different ceramic parts are manually trans-

ferred to gagers where the physical dimensions are checked and those

parts not within the set tolerances are discarded. The gagers are fed

by Syntron bowl type feeders which are similarly used throughout the
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pilot facility. The parts are placed in the feeder bowl which is vibrated

in such a manner as to cause objects to climb up a spiral ledge around the

inside wall of the bowl. The bowl feeder is shown in several of the fol-

lowing pictures. The objects are discharged from the bowl down a chute

to the gager. The wafer gager with the feeder is shown in figure (12)i

A close up of the final wafer gaging wheels are shown in figure (13).

The parts which satisfactorily pass through the measurement gager are

discharged to a small portable bin which is used for temporary storage

and for carrying the parts to the next process.

Following the wafers through the production line, they are manually

transferred to the feeder for the notch painter. In the notch painter

they are carried by a continuous chain carrier through four sets of

silicone-rubber paint applicator wheels, pictures of which are shown in

figures (14) and (15). The three discs in each set of wheels run in a

reservoir containing silver conducting paint. The paint is transferred

to the wafer notches as the wafers are carried through the paint wheels.

The five to ten mil coating of paint thus applied to the notches is dried

sufficiently to permit handling the wafers by passing them under heat

lamps before being discharged to the portable transfer bin. The notch

painter is capable of processing a maximum of six thousand wafers per

hour.

The wafers are manually transferred to one of the six channels of

the wafer pattern printer. Each channel is fed by a bowl feeder which

has been modified by the addition of an indexing device mounted on top

the bowl. The indexing mechanism consists of a series of eight gates
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which will permit the wafer to pass to the discharge chute only if the

index notch of the wafer coincides in position with the location of the

index pin at the top of each gate. The wafer standing nearly vertical

and resting on one edge climbs the curved inclines containing the exit

gates. After failure to pass through one exit gate, the wafer is

tumbled through ninety degrees on to the incline for the next gate. If

it does not pass through any index gate because of failure to be tumbled

through ninety degrees onetime, the wafer is returned to the feeder bowl

to start over. The feed arrangement for the six channel pattern printer

is pictured in figure (16).

The properly indexed wafers are carried through "silk-screen"

patterns in the printer head shown in figures (16) and (17) where a

squeegee is used to force silver paint through the screens on to the

wafers, stenciling them with the proper patterns for the particular

channel.

The silvered wafers are carried on through an endless belt oven

where the silver is cured. The arrangement for transferring the wafers

to the endless belt of the oven may be seen in figure (18). An automatic

six channel pattern checker, shown in figure (19), makes an electrical

continuity check between the notches of all wafers as they leave the

oven to insure that they are properly painted. The pattern checker is

controlled by punch cards inserted in the six channels of the checker.

Defective wafers are discarded and the good wafers are discharged into

portable bins for temporary storage or for immediate transfer to the

next process. The punch cards accompany the bins of wafers through the
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Figure 19
Wafer Pattern Tester.
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production line to the module assembler. If too many successive wafers,

as determined by a setting on the checker, are discarded the pattern

printer will be automatically stopped.

The capacitor discs are carried manually from the dimension checker

in the ceramic facility to the capacitor disc printer where the proper

size electrodes for the value of capacitance desired is silk-screened

on in silver paint. The capacitors then are carried through an endless

belt oven where the silver is cured. The fingers for carrying the

capacitor discs through the printer are shown in figure (20), and the

printer head is shown in figure (21).

The capacitors and the wafers upon which the capacitors are to be

mounted are pretinned by dip-soldering in modified doughnut making type

machines. The dipping machine for pretinning capacitors is shown in

figure (22). The pretinned wafers are index fed to the capacitor

assembler machine which places and clamps the capacitors on the wafers

in the proper relationship. The parts are successively added to the

assembly as it is carried in steps to the various stations by the

carriers shown in figure (23). After all parts have been assembled

the carrier moves under an inductance heating coil, which comes down

around the assembly, as shown in figure (24), and heats the tinning

solder to the melting point, soldering the parts together. Narrow

silver ribbons for connecting the outside plates of the capacitors to

the wafer notches are then soldered into place.

The tape resistors are produced in a spray cabinet similar to the

one previously described. It is planned, however, to build a spray
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cabinet which will handle much greater lengths of tape although the

present spray facility should be adequate for the pilot production

facility.

Rolls of the proper values of resistance tape for the circuit

being manufactured are threaded in the tape applicator, shown in

figure (25). The proper channel of wafers are index fed to the tape

applicator machine where the wafers pass in intermittent steps to

between the tape applicator heads. The narrow strips of resistor

tape are fed down to the applicator heads and the polyvinyl protec-

tive tape is pulled off. The tape is cut into one half inch length

resistors and placed on the wafers either parallel or perpendicular

to each other on the opposite sides of the wafer. Up to two resis-

tors may be placed on each side of a wafer. The wafer then passes

between press heads which move in to press the tape firmly against

the wafer.

After leaving the tape applicator the wafers are carried through

an endless belt oven where they are cured for four hours at 300°C.

When the production line has been modified to include the new

silicone alkyd protective tape, it will be applied over the resistor

tape by a second tape applicator. The resistor wafers are then

carried by an endless belt through a series of four short ovens to

stabilize the resistors by temperature cycling and to cure the

protective tape.

The assembled resistor and capacitor wafers are index fed to

separate automatic comparison bridge checkers which check for the

s^i'^lWigMlBIWMEiteiR 57
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proper values of resistance or capacitance between the notches of the

wafers. A wafer is rejected if any component value falls outside the

range of tolerances set on the comparison heads or if the pattern is

different from that determined by the punched card controlling the

checker. The resistor assembly tester is shown in figure (26). This

figure is a very good close-up of a Syntron vibratory feeder with the

indexing escapement mechanism. Also shown is the photo-electric wafer

level control on the chute to the tester which causes the tester to be

stopped if the supply of wafers becomes low.

No provision has been made for machine production of mylar capaci-

tors, wire wound resistors, or inductances at the present time. However,

once these components have been produced and mounted on wafers they will

be handled by the machines in the same manner as the machine produced

and assembled components.

The tube socket pin connectors are made from a coil of twelve mil

thick and five -eighths inch wide beryllium-copper ribbon in a punch

press machine which is shown in figure (27). The connectors which are

made in strips are wound upon carriers which are also shown in the

figure. The full carriers are placed in tempering ovens where the

connector strips are heated for three hours at 500°F and then air

cooled naturally. The tempered connector strips are then silver

plated before assembling in the tube sockets. The wafers on which

the tube sockets are to be mounted are index fed to the tube socket

assembler which is shown in figure (28). The socket assembler cuts

the pin connector from the strips and inserts them into the steatite
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sockets. The sockets are then center riveted to the module wafers with

a beryllium-copper eyelet. The tube sockets are oriented in assembly

with the side which is flat parallel to one edge of the wafer.

Before the wafers are assembled in the modules it is necessary

to insure that adequate solder will be in the riser wire notches to

make a proper solder connection with the riser wires in the assembling

process. Now that a protective coating for the tape resistor has been

developed it is possible to pre-tin all wafers for soldering by a dip-

solder process. A machine is currently being designed for this purpose,

It is thought probable that two dippings will be necessary to insure

adequate solder is deposited in the notches. Prior to this development

a machine which forced small pellets of solder into the wafer notches

was used for resistor wafers.

After the component wafers have been assembled and tested, and

the wafer notches have been pre-tinned they are placed in the bowl

feeders for the six separate channels of the module assembler which

is shown in figure (29). The indexed wafers are discharged to chutes

which stack them in the proper order in an assembly jig, one of which

is shown in figure (30). They are carried in the jig to the first

soldering station where the riser wires on two opposite sides are

soldered to the wafers. The riser wires are fed to the soldering

station from the large reels shown in the figures and are pressed

into the wafer notches by a pair of soldering heads which heat them

to melt the solder in the notches. The jig then carries the module

to a second soldering station, rotating it 90°, where the soldering
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process is repeated for the remaining six riser wires. One of the

soldering stations is shown in figure (31)*

The module next passes through sets of riser wire trimming cutters

which trims the ends of the riser wires to the proper length.

The assembled module is given a final a-c and d-c check in the

punch card controlled automatic module checker which is shown in

figure (32). The checker rejects modules not having the proper values

between riser wires as determined from a standard module of the design

being checked. It has been found that the checker will also reject

modules having cold solder joints although it was not designed with

this thought in mind.

The module is then completed in the riser wire segment clipper

which cuts the risers between wafers as required.

The baseplates are stamped or cut out of XXXP Phenolic copper-

clad sheets and the desired conducting pattern is etched as previously

described.

The machines for assembling the modules into the plate assemblies

have not yet been installed. In full production, jigs will be used to

drill the holes in the baseplates for the riser wires. Other jigs will

be used to hold the module in position for assembling to the baseplates.

They will then be dip-soldered and the baseplates will be coated with

a protective insulator.

Initially the plate assembly will be tested manually. Some thought

has been given to the requirements of a method of performing these tests

automatically, but as far as is known nothing has yet reached the design

stage.
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IV. DESIGN

In this chapter the circuit design problems and the method of

laying out the module design will be discussed. Also the character-

istics of the components which are important to the designer of

Tinkertoy circuitry will be sumnarized.

The Tinkertoy system is still so new that many of the design

aspects of the system have not yet been thoroughly investigated.

However, in the interests of being specific, an attempt will be made

to present the best information now available.

At least until more experience in making Tinkertoy layouts has

been gained, the circuit should be built in a conventional bread-

board layout before any attempt is made to raodulize it. The bread-

board is modified to eliminate from the circuit any components which

are not adaptable to machine production in the Tinkertoy system. The

components to be eliminated are in general large values of capacitance,

high wattage resistors, power transformers, et cetera. There may be

some such components which cannot be deleted, but which can be obtained

in conventional components that can be packaged in non-standard modules

or that can be potted in module size. Any remaining components which

have not been provided for should, if possible, be arranged in the

final layout so they may all be included in a non-modulized section with

any necessary mechanical components.

It may be possible to reduce the size of the large capacitors by

raising the network impedances while maintaining similar time constants,
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The standard one-half watt resistor can usually be replaced by the one-

quarter watt tape resistor, but since this is not always true each one

should be considered individually. Probably some of the slightly larger

resistors may also be safely reduced to a slightly lower power rating

which can be more easily modulized by using series and parallel combina-

tions of the tape resistors. It may be found that essentially the same

performance is obtained with the tubes biased for slightly lower quiescent

plate currents, permitting use of lower power load resistors which are

better adapted for modulizing. In making any of these changes, however,

the accepted design standards should be followed. A study of the specific

circuit may suggest a number of other ways in which it may be modified to

be more adaptable for complete modulization.

After the conventional breadboard has been modified or redesigned

it is used as a guide in making the module layout. It may be found that

the circuit will require further modification after it has been built

in the module form. A number of module layouts may be tried before ob-

taining the most satisfactory layout. Just as in building conventional

circuits, it has been found that the layout problems are relatively

simple for audio frequencies, but greater care is required as the fre-

quencies involved become higher. As experience is gained, less trial

and error should be required to solve the layout problems.

In general, a greater shunt capacitance is obtained across the

input and output circuits of the stages with module layout than with

careful conventional layout. However, the stray shunting capacitance

will remain nearly constant in the machine produced units so that once
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the value has been determined it may enter into the design just as a

lumped capacitance. Typical values of stray capacitance, which an

engineer at Sanders Associates measured in a sixty megacycle I.F.

stage, are given in table IV.

At high frequencies it has been observed that the various lengths

of parallel riser wires will act as stubs, which may produce low shunting

impedances across high impedance circuits at certain frequencies. This

effect can generally be minimized by altering the layout so that it will

not occur at frequencies of interest.

The Tinkertoy components have been developed with the aim of per-

mitting operation at higher ambient temperatures than is possible with

present conventional components. The Tinkertoy system of construction

also permits better natural heat dissipation if full advantage is taken

of the possibilities. In one particular equipment which was redesigned

it was possible to eliminate the forced air blower used in the original

equipment and at the same time to maintain a lower internal ambient

temperature.

A number of forms have been developed to assist in the mechanics

of the module layout. Two different forms for accomplishing the same

result but slightly different in format are given in the next two pages.

The component electrical symbols labeled with the proper values and

identifying numbers are drawn in the wafer symbols on the first form

or in the rectangular blocks on the second form. The riser wire

connections and the points where the risers are to be clipped are

indicated in the center diagrams of both forms. Layouts of the baseplates
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TABLE IV

Source of Stray Capacity mmf

Between adjacent tube pin
connections 0.5-0.7

Between alternate tube pin
connections 0.3-0.5

Between surface of etched
coil and 3/8" silver screen
on bottom of adjacent wafer 0.5-0.7

Between two 3/8" silver
screens on top and bottom
of adjacent wafers 0.4-0.5

Any one tube pin connector
to surface of etched coil
on bottom of same wafer 0,8-1.0

Remarks

Standard 7 pin tube socket.
Excessive solder on joints
from wafer slots to tube
pins increases the capacity
from 0.1-0.2 mmf.

Using a 6 turn copper etched
coil with .01" wire and .01"

spacing.

If several tube pins are at
low r.f. potential, the total
shunt capacity may be unusually
high

Any tube pin connector to
etched coil on bottom of
adjacent wafer 0.4-0.6

Between 1/8" wide and 1/2"
long interstage base plate
connection and ground plane
spaced 1/16" from connection 0.7-1.2

Between adjacent riser wires
extending along standard 0.7
5 wafer stack;
between alternate risers 0.4

Excessive solder on joints also
causes this effect to be exag-
gerated

Increases slightly due to ex-
cessive solder on wafer slots

Between any one tube pin
connector and grounded rivet
on tube socket 0.5

Between any one tube pin and
3/8" silver screen on bottom
of adjacent wafer 0.3-0.4

Between two condensers on top
and bottom of adjacent wafers
respectively (3/8" silver
screen, 1/16" spacing between
screens) 0.7-0.9

Note: Remaining sources of capacity may result in an additional 1.5 to 2.5 mmf

although each source is small (0.1 to 0.2 mmf).

If one of the condensers is a

coupling condenser, this amounts
to shunting the stray capacitance
across the interstage coil

• :al
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should be made to assist in determining the riser wire connections to be

made to the conductor patterns . The patterns are sketched on the layout

to insure that all required connections can be made without crossovers

and to insure that signal leads are kept short and well separated from

other leads and each other to prevent interaction.

In designing the module layout the points of the circuit which are

to be connected to each riser wire should first be determined. This

calls for consideration of the orientation of the tube socket to pro-

vide the best layout. With the nine-pin socket the riser wires going

to each connector are determined by the orientation, but a choice of

which riser of each corner pair is connected to the tube socket remains

to be made with the seven-pin socket. Where sub-miniature tubes with

solder type leads are used the sequence of leads should be kept, but

more freedom is permitted in the layout. The tube base orientation

should be such that the signal leads, which are normally etched on

the top baseplate, are kept short and well separated, without sharp

turns. No leads should be required to cross outside the module.

A voltage may be transferred from one riser wire to another by

a connection silvered on one of the wafers if this becomes desirable.

In such a case only part of each riser may be required to carry the

voltage so if desired they may be cut between a pair of wafers, per-

mitting the remaining portions to carry another voltage or to be

grounded. Supply voltage leads should not be run through one module

to make connections to other modules if it can be avoided. Double

clad baseplates with circuits etched on both sides may be used, if
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necessary, but is undesirable from the standpoint of increased cost and

greater complication in production.

In assigning riser wire connections, the desirability of keeping

lead lengths in the module as well as on the baseplates as short as

possible must be considered.

The critical circuit riser wires may be surrounded by grounded

risers. The input and output leads should be kept separated as far as

practical. The signal leads should be kept separated from supply voltage

leads, usually by using the upper baseplate for signal leads only.

Once the choice of riser wires has been made to meet the above needs,

the remaining risers may be assigned as desired to complete the circuit

connections not yet determined. Risers may be cut between wafers or at

the ends, if desired, instead of going to the baseplates, leaving suffi-

cient wires to provide adequate support to the module. Not all connec-

tions between risers are permissible on resistor wafers so that some of

the choices previously made may have to be changed to avoid these com-

binations. Those riser wires not otherwise used should in general be

grounded.

After this tentative assignment of the various circuit connections

to riser wires has been made, the remainder of the layout may be com-

pleted in a fairly straight forward manner. The following considerations

should be kept in mind while making the assignment of the circuit compon-

ents to the various wafers.

1. Tube sockets must be mounted on the outside of an end wafer,

normally the top one.
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2. Variable components should be mounted on an end wafer with

access to adjustments normally through the plane of the

wafer.

3. The outside face of the end wafers should normally not be

used for components thicker than resistors, except for

tube sockets.

4. The number of components per wafer should be kept to a

minimum for best yield percentage of good wafers.

5. The maximum number of resistors per wafer is two per side,

except the rated power dissipation of the wafer is limited

to three-quarters of a watt. The resistors on the same

face of the wafer must be placed physically parallel, but

may be placed parallel or perpendicular to those on the

reverse face. Resistance values falling outside the

available range from forty ohms to ten megohms may be

obtained using parallel or series combinations. For

resistances requiring closer tolerances than ten per cent

wire-wound resistors should be used. For power ratings

greater than one-quarter watt, series or parallel combina-

tions of tape resistors may be used. The limited space for

painting connections when two resistors are placed upon the

face of a wafer permits each end of a resistor to be connected

only to the four notches at that corner of the wafer.

6. The various ceramic capacitor combinations on one face of a

wafer is limited to one large disc, two small discs placed
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diagonally, or one large disc with another large or small

disc stacked on it. The capacitance available with disc

capacitors is limited to the range from 7mnf to 20 mmf with

small discs and up to .01 mf with large discs. The range

may be extended by parallel combinations to a maximum value

per wafer of .05 raf obtained by placing two stacked .01 mf

capacitors on each side of the wafer. The high dielectric

constant ceramic capacitors have poor temperature stability

so that for purposes where good stability is required mylar

film or conventional capacitors must be used. Mylar film

capacitors are available from 680 mmf to .02 mf . Because of

the size of these capacitors only resistors are sufficiently

thin to be used on the adjacent face of the next wafer.

Sectored ceramic discs may be used to provide several capaci-

tors having a common terminal on the same body, if desired.

Capacitors which are stacked must have at least one common

connection. The potential on the adjacent wafer should be

kept about the same as the outer plate of stacked disc

capacitors to prevent arc-over due to the close tolerances.

Precautions must be taken to minimize undesired coupling

between capacitors by carefully choosing the capacitors

placed on the same wafer. If one plate is grounded it should

be placed between the capacitors. The coupling between capaci-

tors on the two sides of the same wafer with a ground plane

between is normally of the order of 4 mmf.
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7. The baseplate design should be such as to provide the shortest

possible signal lead connections consistent with maintaining

adequte separation between the conductors. Sharp angles should

be avoided in conductors carrying high frequencies. In general,

the top baseplate should be reserved for signal carrying leads

and the bottom baseplate should be used for power supply leads.

Room is not available to permit conductors to pass between ad-

jacent riser wires making connections to the baseplate, but

direct connections may be made between two riser wires on

opposite sides of the module if an interfering tube is not

mounted through the baseplate. Where it is not necessary to

etch the baseplate copper away, it is generally left to pro-

vide a large ground plane.

Pictures included in the following pages provide a comparison of the

modular method of construction as compared to more conventional methods.

In figure (35) two five-microsecond delay lines constructed in both

systems and having about the same characteristics are shown. The dis-

tributed constant line occupies a slightly greater volume than the

module line which, with slight modification, could be reduced further

in size, if desired. The second picture, figure (36), provides a com-

parison of a circuit constructed in the two systems. The five modules

shown contain the circuit components except for the sub-miniature tubes

which are mounted in holes drilled in the aluminum semi-circular ring

shown around the sub-assembly. The third picture, figure (37), is of

an FM receiver shown in both the conventional and modulized versions.
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The last two pictures, figures (38) and (39), are of a drone control

receiver. It is the first equipment to be initially designed in the

Tinkertoy system. The plate assemblies of various sizes and shapes

should be noted in these figures.

The component specifications of interest to the design engineer

will be summarized in the remaining pages of this chapter.

1. Wafers

(a) 7/8" x 7/8" x 1/16" with clear area for mounting components

of at least 9/16" x 9/16". Spacing between wafers normally

1/8" but can be increased to 5/16" by removal of one wafer.

(b) Weight: 1.2 gm.

(c) Power dissipation limited to 3/4 watt. Dielectric constant

about one.

2. Tube sockets

(a) Miniature 7 or 9 pin. Have choice of module riser wires

connected to the 7 pin socket at the corners of the wafer.

Tube socket flat to be mounted parallel to wafer edge.

(b) Diameter 0.687", height 0.33".

(c) Weight: 3.65 gm.

(d) Stray capacity between two contacts about 0.6 mmf and from

one to all others 0.8 mmf. Leakage resistance between two

contacts about 7 x lOr-*- ohms and from one to all others

5 x 1011 ohms.

3. Capacitors

(a) Ceramic disc capacitors.
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(1) Diameter 0.3" or 0.55" and 18 mils thick.

(2) Weight: Silvered and tinned 0.2 and 0.6 gra.

(3) Range: With small disc 7 mmf to 20 mraf and with large disc

20 mmf to .01 mf in all RMA standard 10$ values. Tempera-

ture compensating capacitors from 5 mmf to 200 mmf.

Accuracy: Within 10$ at room temperature (5% with special

care). High values fall off appreciably at high tempera-

tures.

(4) Rated 500 working volts continuous at temperatures up to

85°C.

(5) Bodies with dielectric constant above K500 decay in capaci-

tance value with shelf life.

(6) Power factor: Approximately constant with frequency.

: At 25°C varies with dielectric constant

less than 2% for K5000, less than 1%

for K2000 to K100, less than .04$ for

K88, and approaches mica below K50.

: Varies with temperature. In general in-

creases linearly for bodies below K500.

For higher dielectric constant bodies is

a complex variation with a general decrease

to a minimum between 100°C to 150°C and

returns to original between 150 to 200°C.

(b) Mylar film capacitors

(1) Up to 9/16" x 9/16" and 90 mils thick.
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(2) Range; 680 mraf to.02 mf.

(3) Rated up to 600 volts.

(4) Capacitance stable with temperature. Variation of dielec-

tric constant of film with frequency in figure (40).

Resistors

(a) Tape resistors:

(1) About 0.125" x 0.5" and six mils thick, 0.3" spacing

between electrodes on wafer.

(2) Weight: About 0.02 gra.

(3) Rated 1/4 watt up to 200°C. See figure (41) for derating

curve

.

(4) Range: Forty ohms to ten megohms.

Accuracy: Within 10%.

(5) Stray capacity 3/4 mmf between two on same side of wafer

and 3 mmf from one to all others possible. Leakage

resistance between two on same side 15 x 10 ohms.

Temperature cycling five times from 25°C to 200°C

results in less than 1% variation. Have less than 6%

change when operated for 500 hours under 1/4 watt load

at rated maximum temperature.

(6) For the 150° series: Temperature coefficient negative

500ppm/°C. Voltage coefficient 0.035%/ volt below 2.5M

and less than .05$/ volt from 2.5M to 10M. Noise less

than lmvolt/volt from 5K to 100K and less than 3mvolt/volt

from 100K to 1M.

(7) For the 200°C series: Temperature coefficient positive
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1000 ppm/°C from 100 ohms to 100K and same as 150°C series

above 100K. Voltage coefficient 0.035$ from IK to 500K.

Noise less than lmvolt/volt from IK to 50K, and less than

3 mvolt/volt from 50K to 250K.

(b) Wire wound resistors: To be available from about one ohm to

2Megohm with 1% accuracy.

5. Other components.

(a) Fitted in clear area of at least 9/16" x 9/16" on wafer, clear

height of 1/8" which is increased 3/16" for each wafer omitted.

(b) Variable components on end wafers with access for adjustments

through plane of wafer.

6. Module assembly:

(a) Standardized on five wafer stacks, but other sizes can be used.

The five wafer stack 13/16" high or with tube base 1 5/64" high.

(b) Weight of five wafer stack without components 11.2 gm.

(c) No standardized provision for shielding. Self inductance of

one riser wire at 100 Mc with no connections is about .05 mh

and with adjacent wire used as ground for first is about 0.013

mh. Leakage resistance one wire to any other 5 x lO^-ohms and

to all others in module 2 x lO^ohms. Stray capacity one riser

wire to any other about 0.7mmf and to all others about 2<,0mraf.

7. Plate assemblies:

(a) Ten or less modules or equivalents with minimum on center

spacing of 1".

(b) Minimum conductor widths and spacings on order of 50 mils.

(c) Tube shield bases riveted to baseplates.
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V. CONCLUSIONS

The primary purpose of the Tinkertoy project is to develop a prac-

tical and flexible system of machine production of electronic circuitry

from basic materials. After the production line has been completed and

used to produce a selected military electronic equipment which may be

used to prove the practicability of the system, it is planned to reveal

the development to industry. This is with the hope that industry will

accept the fact that machine production methods have finally arrived and

will use this sytem or some other system of machine production and pro-

ceed to make continued improvements. Plans are already being made for

extending the system further, but it is hoped that once the industry

becomes aware of the many advantages to be gained that it will no longer

be necessary to lead the way.

There are very compelling reasons for the system to be accepted by

industry. A small company with little capital outlay for the relatively

inexpensive machines and a small plant layout could easily out produce

the larger companies now using the slower hand assembly techniques. If

the expectations are realized, the resulting equipments will be equal

to or better than the present equipments at a fraction of the cost and

with decreased usage of hard to obtain critical materials. By suitable

standardization with development of plug-in assemblies for making up

a complete equipment, repairs can largely be reduced to replacement of

the relatively cheap plug-in assemblies as is now done with vacuum tubes.

As applied to military equipment these same advantages will apply
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with the additional advantages of having more rugged equipment which,

if expectations are met, will at the same time be lighter and smaller

than the present equipment.

This type of construction in which the equipment is made up of

functional sub-assemblies should add impetus to the present trends

toward standardization of circuits With standardization extended to

include all equipments installed on shipboard or carried by any military

unit, the spare parts required could be largely reduced to carrying

suitable numbers of functional sub-assemblies of which a number would

be common to several equipments. The reliability of the equipment

could be greatly increased, even if the present rate of failures were

to continue, for the replacement of a complete sub-assembly found to

be faulty could be accomplished in a fraction of the time now needed

to locate the particular faulty part and replace it. By incorporating

a fault-finding system which could isolate the trouble to one or two

such sub-assemblies, repairs could be speeded up even more.

Circuit standardization could also be used to greatly speed up

design of new equipments for the basic equipment would already be

determined and only the circuits peculiar to the particular requirements

would need to be designed. The development of standard circuits should

not be allowed to stifle development, however, but efforts should be

continued to improve upon the standard assemblies. By such methods the

existing equipments after conversion to standard sub-assemblies could be

kept modernized by continued replacement of the individual sub-assemblies

as they are improved.

The number of electronics technicians required to maintain equip-
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merit with standardized sub-assemblies should be greatly reduced. The

training required of the maintenance personnel would be reduced to such

an extent that the operators with a little training should be capable

of performing all but the most complicated repair work. The number of

circuits with which the technician performing the major repair work

need be familiar would be reduced to the few standard circuits plus

the special circuits peculiar to particular types of equipment. This

same standardization could also be used to reduce the size and speed

up preparation of the instruction books which would only need to treat

the special circuits and their relation to the standard circuits used.

Returning to the major reason for which the Tinkertoy system was

developed, the stockpiling of a number of the production machines which

are relatively inexpensive will permit rapid expansion of the electronics

industrial capacity in the event of mobilization for war. This should

reduce if not completely eliminate the need to stockpile large quantities

of expensive complex equipment which may rapidly become obsolete.

The machines are sufficiently small that they could be hurriedly

installed in the smallest factories in case cf war and start producing

circuits in large volume in a fraction of the time normally required to

train workers to do the same job. Most of the materials used are avail-

able in ample quantities. The use of critical materials is held to a

minimum. If it becomes desirable the small quantities of waste materials

in the production process could be reclaimed.

This system of machine production will certainly make possible a

large step forward in the rapid production of electronic equipment.
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However, until every part of electronic equipment can be similarly

machine produced the ultimate solution will not have been reached.
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