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ABSTRACT

The directional correlation of the 722 - 556 KEV gamraa-

114
gamma cascade in Cd was observed as a function of the physi-

cal and chemical state of the source. In the case of InCl3 ^^

a dilute aqueous solution of HOI it was deduced that the undis-

turbed correlation was obtained, and the following values were

found for the LeG-endre expansion coefficients? Ap^.090— .011,

A^=.022^ .016. It was found that spin assignments of 2=2-0

for the first three levels of Cd-^^ together with the assump-

tion that the first transition is an Ml, E2 mixture with the

following percentages? Ml - 95.8, E2 - 4,2 (bothX .6), gave a

good theoretical fit to the observed curve in general agreement

with results of other workers. The lifetime of the first exci=

ted level in Cd was measured and found to be less than or

-10
equal to 2.3x10 seconds. To observe the disturbed correlation

the state of the source was altered to include glycerin solutions

of several viscosities, the dry salt of InCl^, and frozen aqueous

and glycerin solutions. Calculation of the magnitude of the cor-

relation perturbing interaction was based on a theory due to

Abragam and Po«nd. The liquid sources showed no spoilages within

the range of viscosities to which the liquid theory appliesj

however^ the dry salt showed an interaction of greater than or

equal to 700 mcs on the assumption of an electric quadrupole in-

teraction, and greater than or equal to 163 mcs on the assumption

of a magnetic interaction in classically describable fields.

On the basis of field strength estimates in the former case, a

lower limit to the [quadrupole moment

of Od^-^"^ Is set at .21x10""^^ cm^.

of the first excited state
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Chapter 1 - Introduction

The first paper on angular correlation of successive nu=

clear radiations in which the explicit theoretical correlation

functions were derived was by Hamilton (1H40), It was apparent

from the begining that here was a very powerful means of inves-

tigating the low-lying excited states of nucleii. But succes-

sful experiments had to wait many years for advances in elec-

tronics to provide coincidence circuits of sufficiently short

resolving time and for the improvement of radiation detection

techniqueso The first successful attempt to observe an angu-

lar correlation was by Brady and Deutsch in 1947 (1B47)), and

to Co^°, 8c ^^, Y^^, and Cs'^^'^ belong the distinction of being

the first isotopes to have their gamma-gamma correlations mea-

sured conclusively. But really precise measurements of angu-

lar correlations still had to wait until means of detection

more efficient and reliable than Oeiger counters could be de-

velopedo For in this work one measures a statistical function

and is therefore plagued by statistical errorsj hence for pre-

cision a great number (hundreds of millions) of quanta must

be countedo "'"And under these conditions G-eiger counters proved

quite inadequate. But a new day dawned with the first develop-

ment of the scintillation crystal-photomultiplier tube tech-

nique by Marshall and Coltman (1M47). It was now possible in

a single day to measure a correlation to the accuracy it would

have required many years to achieve using (Jeiger counters.

And the experimental art was greatly enhanced by the work of

Hofstadter ClH50) on scintillation crystals of sodium iodld®

activated by small amounts of thallium as an impurity j- these

crystals provided means of measuring gamma ray energies with
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high precision and efficiency. Thus we find in the late 1940'

s

and early 1950' g a tremendous increase in the work, experimental

as well as theoretical, in angular correlation, and the first

paper of Hamilton's is nt)w accompanied by over four hundred

others.





Chapter 2 - Theory of Undisturbed Angular Correlation

The study of the properties of low-lying excited nuclear

states is greatly facilitated by a nuclear spectroscopic "^tool""

known as ""angular correlation", or more completely ""angular e0r-=-

relation of successive nuclear radiations'*.,' The short lifetime

of most excited nuclear states makes their investigation by di-

rect means such as resonance methods next to impossiblco Hence

we must probe these states indirectly, and the method that comes

Immediately to mind in the case of low=lying states is to study

the radiations which preceed and succeed them* When we investi-

gate some property of these radiations as a function of the angle

between their propagation vectors we do ""angular correlation"*"

»

As one can imagine, the field is very broadj howeverj, it can be

subdivided both as to the nature of the radiations involved and

as to the particular property of the radiations under investiga-

tion. In the former case, the theory is broad enough to in-

clude any of the well known nuclear emissionsj, vizo beta rays,

gamma rays, alpha particles, neutrinos, in any allowed combina-

tion, vizo ^-'V)'l(-')J,o^-Xj(5-^,(i-0 V. In the latter case, there

are two general properties of the radiations which divide the

field of angular correlation into (a)^ ""directional correlation"",

wherein one is interested in the relative probability of emis-

sion of the second radiation as a function of angle relative

to the first, and (b)) ""polarization correlation"", wherein one

Is Interested in the absolute or relative polarizations of

either or both of the radiations as a function of included angle*

The original theoretical investigation in this field was con-

cerned with gamma-gamma directional correlation and as mentioned

previously was done by Hamilton ClH40}o Since this investigation

is concerned with gamma-gamma directional correlation, we will

c=> ^ c=>





sketeh Hamilton's arguments In some detallo

Hamilton starts by considering a nucleus In an excited

state, Ai , where X refers to the magnetic quantum number and

^ refers to all other quantum numberso This nucleus is to

decay to a ground state, C , by way of an intermediate state,

!R ,' In so doing it must emit two gamma quanta, each characte-

rized by a propagation vector, K , and a polarization unit vec=

tor, Qj o (The propagation vector, K = K Ko , where Ko Is a

unit vector in the direction of propagation and 4(.= ^?- where

X is the wavelength of the gamma rayK Subscripts I and 2.

on the propagation vectors hereafter will refer to the first and

second transitions respectively*

There are two very general propositions concerning a radial-

ting system of such nuclell which underly this theoryo They

are stated below without proof?

Cl)^ i&ssumlng the radiation Is detected by direction insensitive

counters, each of the three states involved is oriented eomplete=

ly at randofflo The expression' ""oriented completely at random""

as used here has a very precise meaning, which is?:

(a)' equal populations among the magnetic substates, and

(b) random, ioe« unrelated, phases among the wave functions

of the magnetic substates,

(Orientation at random is necessary in order that each substate

be an independent radiating system)^,

(2) Each of the two readiations involved is completely isotropic

At first it may seem nothing short of amazing that out of

propositions (l) and (2), which apparently express the ""acme of

isotropy*, we can derive a theory which predicts an anlsotropy,

ioeo a correlation,
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But this is so, and this Idea occupies a central place in the

theory. The clue to resolving the apparent anomaly is that if

we put a condition on the population we consider and count only

that sub-population in ^ whose preceeding radiation went in a

certain direction, Q, , with respect to the z axis, then the dis-

tribution of this sub-population is not necessarily equal nor

are its phases necessarily randonro This condition can be com-

pared to that reported by the census taker, '"The population of

this state is uniformly distributed in area, however those whose

parents came from Ireland live predominantly in the northeast"".

80 much for similes*

This idea is important enough to belabor a little further

with a quantitative approach. Let the relative transition pro-

bability per unit time from state A 5l to state Dm be aum.

Then from (l) the total rate of radiation from each substate in

A must be equal, hences

(3) 2l_ <<l^^r\ is Independent of IL , and since the various sub-

states of ^ must be equally populated?

(4) ZI ^^^ is independent of on « And since the radiation

is isotropic by (2), each mode of a given multlpole order of ra-

diation must be equally excited?:

(5)) Z_qQ,24rml8 independent of rm , where - L -^ cm 4 -I- L if L

is the multlpole order of the radiation.

Let </>L,(n,/fl,^be the angular distribution of a multlpole of or-

der L carrying an angular momentum whose z axis projection is

given by nnr> , The relative number of quanta in the Kfi.-v'Btv> tran-

sition for example that proceed into a solid angle <:iLu at an

angle of 6, with the z axis is given by afl..v^4>L,fl.-mCaVa3, It

can further be shown that the following is a property of the

distribution functions?
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(6) Z_4>urm(9i> Is Independent of ©i .

We will now proceed to show that these relations imply ma-

thematically that the first transition is isotropic - - - which

they must, for they were based on that hypothesis (2),

From the conservation of angular momenta:

(7) JL = orr^ -»- no

Let the angular distribution of the first transition be

given by @Ce,l . Then:

(8) @(eA - H £ Q^iL,fi.-Onn Cf i_,(Y^(GA

Applying (5), (8) becomes:

(9) @ce.^= L o^si,!L II ^'L.r^v^ca^

which by (6) is independent of B, , hence isotropic.

We will now show mathematically that the total population

of the states Lm is independent of C(\ , which again is direct^

ly from hypothesis, but that the sub-population, arising from

radiations in the direction 6i is not necessarily independent

of (V> , hence the second radiation from these particular sub-

states is not necessarily isotropic?'

Let r<v\ be the relative probability that a state urn Is

occupied. *^

Let vcaOi'^ be the relative probability that a state i^rr^

is occupied through a radiative transition proceeding in the

direction ui with respect to the z axis.

Then we can write immediately:

(10) Too = 2__ ^fl-(^ which by (4) is independent of m , and::

(11) 'P(vv(eA= /^^Q,,(n4'LA-(r>t6.Vhich by (10) is not necessarily

independent of cr^ • This was to be shown*

After going through a derivation based upon a system of

quantized radiators and field oscillators, Hamilton obtains th®

following expression for the complete correlation function:

•» o «="





(12) \JiZu1i^^= s s 21 II(MHuc.,;e,)lBJ(5m|H(Kox,t:,^|cp'^
.^12.

where ^—

>

and —

^

represent averaging over all non-observed

properties of the radiations 1 and 2. such as polarization, and

where H(Ko,e'^ is the perturbing Hamlltonlan, given by:

(12a) HcK.|^ = -yL.^<iv =-^c-'e.yAe. dv

where ^ = vector potential of the radiation field taken

in the gauge where scalar potential Is zero,

L = current density of the radiating system,

p = charge density of the radiating system,

CL - time dependent amplitude of radiation field oscil-

latoi* and is independent of position,

Sh = position vector, and

^^KojK as before.

The cross terms in (12) resulting from the summation over m
before squaring make it very unwieldy, Hamilton goes on to show

that these cross terms arise because the phases in state 1^ are

no longer random, that if the phases were random the cross terms

would vanish, and hence the summation over m could take place

after squaring. He further shows that the phases are random if

one takes the z axis as the direction of the first emission.'

Several authors have proved this theorem also, but an especially

simple proof is due to Llppmann (1L52) and is Included here be-

cause of its physical insight, Llppmann' s proof is based on a

fundamental quantum mechanical theorem: " - the probability of

a transition from an initial to a final state, via a set of in-

termediate states contains interference terms only when it is

not possible to measure ( - without disturbance - ) the inter-

mediate state; if the experiment is inherently capable of spe-

cifying the particular intermediate state the system passes

- T -





through, the classical law of compounding Independent probabili-

ties holds and no Interference terms occur -", Since we are

measuring precise angles, a plane wave description of the emitted

particles Is appropriate ( - Kot and 4<o2. well defined - ), Now

If the z axis Is chosen parallel to Koi , then the description

of the emission of the first particle Is Invariant under a rota-

tion of the coordinate system about Koi (assuming we average

over polarizations); hence the total magnetic quantum number as

well as the quantum numbers of the emitted particles ( L| cm, )

are constants of the motion, (It cpn be shown by other means

that under these conditions rm,— JJt 1 )• If we consider our ra-

diating system to be a single nucleus, the substate, AiL , before

the first emission is in principle measurable, and since our mea-

surement of the first quanta did not disturb the system, the

specification of substate _Dm follows on the basis of the con-

servation of angular momentum. Then the theorem (about the ab-

sence of cross terras) follows*

Thus when we define K as a unit vector parallel to the

z axis, we lose our cross terms and (12) reduces to? y 'i

If we let the relative probability for a transition from

state £> m to state Cp at a direction relative to the z axis

be PmpO'i, then? 2.

(14) P(>.p(0^ = ^—-^ (Cf \HC4<o^^x^\&m^
2.

And with a similar aeflnition for the first transition (13)

becomes?

(15) VJ(0^ = TZL PjirnCO^ Pmp (61

- 8





Cl5) Is presented here "because of the interesting manner

In which the individual transition probabilities decompose;

(16) ?mpCG^ = liT\. Li. m (m^lXb Lt-Xc ?)] 1 La. (Q^

with Lb= L-z-H-Xt^

and ^"^ ^^ orY\T--l- P

where Xb ^ the spin of state ^m ,

Xc^ the spin of state C p ,

L^"= the multipole order of the second radiation,

(^ = the magnetic quantum number of state S m

>

"P ^ the magnetic quantum number of state Cp , and

OfY>-i.^= the magnetic quantum number of the second

radiation.

The first factor in (16) is the well known Clebsch-Oordon

coefficient in the notation of Condon and Shortley (1C35). It

depends only upon the quantum numbers of the radiation and the

states involved, and gives the intensity for the particular

transition. The second factor gives the angular distribution

for the particular transition and depends only upon the quantum

numbers of the radiation. Falkoff and Uhlenbeck (1F50) give

the general expression for the angular distribution functions

and the particular examples given are for diple and quadrupol©

radiation,"

Hamilton expressed (13) finally as a cosine power series

in which due to the properties of the tl \0I only even powers

appear? ^i

(17) V((6^ = ZZ Glx.cCos^'^G

The series terminates and Yang (1Y48) showed that the highest

K is given by:

(18) K' 4 L,
^

\<' 4 L^
^

\<' 4 Xb

whichever Is least.

~ 9 -





Hamilton calculated ^Volo and ^Voo for all combinations

of multlpolarltles up to and Including quadrupole.

It was later found that If one expresfles the correlation

function as a series In LeGendre polynomials,

(19) VI (Q^ = ZZ ^^K?^KCcose^

the coefficients, Aik, can be expressed quite generally and

explicitly, and that (18) still applies. This was first shown

by G-ardner (10-49) for the case of conversion electrons, and was

later extended by others to arbitrary radiations. It turns out

that the /\ik can be decomposed into two factors:

(20) ^2.K = (^^^^K(Ec^l.K

where the first factor contains parameters relevent only

to the first ( K—^"Bi ) transition and the second factor, those

parameters relevent only to the second ( ^ ^C ) transition.'

The expression for the first factor is given below, the second

being similar in all respects?

(21) r/KBkK = Zl[rL.L.nnn,-rm.lL,L.ZKoVK-0 F^TVo^

X W(lb L^Zk Li j
LlXb^

where tfie W is the "Racah coefficient «, Racah (1R42), and

all other factors are as given before (16).

Using (21) we can now calculate gamma-gamma directional

correlations explicitly, with a few reservations as indicated

below. For example, one can find the Clebsh-CJordon coefficients

in Condon and 8hortley (1C35), the Racah coefficients can be

found in (2B52), and the Vi_, (<S) can be found in (IFSO).

However, these correlation coefficients, Azk , have

been calculated explicitly and presented in convenient form

by Lloyd (lL5l).

Now, it seems, it would be appropriate to point out two

- 10 -





limitations on the theory as developed so far and as applied to

gamma-gamma directional correlations;

Limitation 1 - The above theory refers only to pure multi-

pole transitions. It cannot handle, for example, parity forbid-

den transitions which proceed partly by magnetic 2^-pole and

n/l
partly by electric 2 -pole radiations.

Limitation 2 - The above theory assumes that the interme-

diate state is unperturbed. As was pointed out previously, the

existence of a directional correlation depends upon unequal popu-

lations among the various sub-states ^rn , A perturbation ap-

plied to the intermediate state would tend to cause a mixing

of these states and hence a relaxation towards a uniform popu-

lation. Any such equalization would then by propositions (l)

and (2) above cause a reduction in the correlation.

Limitation 2 has been removed by Ling and Falkoff (1L49),

They calculated the effects of various mixing ratios in the mag-

netic n-pole and electric n/l-pole mixed transitions. Their

results however are complicated by the presence of an undeter-

mined relative phase factor in the ratio of these matrix elements,

Lloyd (2L51) 'showed however that only a relative phase of or

180° had physical significance.*

Limitation 2 is still very much with us. However It has

turned out to take on more the qualities of an asset than a

limitation. For by studying the reduction in the correlation

caused by the perturbation of the intermediate state we can

learn something about the electric and magnetic moments of

this state. This study becomes the field of '"disturbed angu-

lar correlations" and is the subject of the next chapter."

- 11 -





Chapter 3 - Theory of Disturbed Angular Correlation

General Interest in the subject of disturbed angular cor-

relation arose when several correlations were observed which did

not fit any consistent theoretical predictions. The situation

was further confused in that the observed correlations seemed

to depend on the physical and chemical state of the source.

The most famous of these '"anomalous correlations'" is the gamma=

111 111
gamma cascade in Cd , the daughter by K capture of In ;• see

for example Boehm and Walter (1B49)), Roberts and Steffen (lR5l),

and Frauenfelder (2F51).

It became apparent that these '"spoilages'" of the correlation

might be the result of a perturbation of the intermediate state

during its period of existence between the emissions of the

first and second quanta* For, as we have seen one of the basl©

assumptions of the ""undisturbed"' theory is that the Intermediate

state remain unperturbed during Its lifetime. Several authors.

Including Goertzel (1G46) and Alder (1A52) have developed suc-

cessful theories based on the Interaction of various nuclear

moments of the intermediate state with perturbing fields. We

shall confine "'ourselves to tracing a theory due to Abragam and

Pound (1A53) which is recommended by its generality.

Abragam and Pound show that the effects of such a pertur-

bation can always be represented in the form?

(1) Vice^ = 7Z &2.k ^^K?^KCcose^
K

where the ^^k are the '"unperturbed" coefficients and the

GzK which contain all of the perturbing effects act as damping

factors on the unperturbed coefficients.

They point out several interesting points in connection

with the Itzk relative to the type of source; namely?

- 12





(a) If the source Is in the form of a polycrystalllne

powder the Gt^k approach a minimum or "hard core" value as the

magnitude of the perturbing Interaction increases without limit;

hence the correlation is never completely destroyed,'

(b) If the source is in the form of a single crystal,

O ^ G-2K "^1 , depending on the orientation of the crystal axle

and the strength of the interaction.

(c) If the source is in the liquid state the C^ek can

approach zero as the magnitude of the perturbing interaction

increases without limit,

Abragam and Pound start with Hamilton's basic directional

correlation equation (2-13), slightly modified to conform to

the former's notation:

where Ol^ d represent quantum numbers of the first and

third states respectively, and p,^ represent quantum numbers

of any complete set in the intermediate state, -1-^ , Hi and nz.

are the interaction Haralltonians for the emission of the first

and second particles respectively (See 1-12),

Let us suppose that the first emission takes place at

time t> -O, and that during time ij the intermediate state is

perturbed by some Hamlltonlan K , The effects of this inte-

raction can be represented by an evolution operator, L) (t^ ,

acting on the intermediate states-

(3) ^Ct^ = U(t^^

where '^Ct^ represents the intermediate state vector after

transormation by the Interaction,—v~

\J ( t ^ can be represented as follows?

- 13 -





(4a) Um = e ^

for static K , or:

(4b) U(t^ = ^ is

for time dependent K ,'

If now we substitute (3) into (2) we have the time depen-

dent correlation function:-

where U"*^ is the Hermetian conjugate of U ,"

We must now consider the probability of emission of the

second particle between time t, and t-i dt. This was ignored

in the undisturbed theory because it yielded only a constant

multiplicative factor. However, in our case we must consider

the fact that the relative probability for emission of the

second radiation between time t, and "ti-clt is given by:

where we consider the source as a whole. If we record all events

taking place until time "u2. , our function becomes:

If K is static we can choose for p , the eigen vectors

of K , which we define as b ; then (6) becomes:

and if we let 1 2.-^00 , we have finally the result ob-

tained also by G-oertzel (lG'46)::

- 14 -





Abragain and Pound's next step is to refonnulate the corre-

lation function in a form convenient for the isolation of the

perturbing terms. They use an expression similar to one derived

originally by Alder (1A52):

(9) aj(tjt, n )^ ^21 XCKaUck^') \\\ (K.Ki./Li.^^t^ IK. CJ1_.mk-».(_0-O

where the Yk (Sl^ are ordinary spherical harmonics in

which XL, and -0-2. specify the direction of emission of the first

and second quanta respectively, X and IL are coefficients

which are independent of the perturbing Hamiltonianj and all of

the effects of the perturbation are contained in \ \ \ .

If the perturbing field can be described classically,

TlXu.K>. a. Uiuti is expressed by:-

(10) 1II(K.K. ll.U^t^ "= ZL (llK.m^>.lXK,lfVr^MIKl.(^rt^•"jUl^.\IK^X(Y0"l

where the first two factors are Clebsch-Gordon coefficients

in the notation of Condon and 3hortley (1C35), the L) is an evo-

lution operator, and the rw^s are the eigen values of the inter-

mediate states i::irrr> which are chosen to be eigen functions of X^,

If the perturbing Hamiltonian, K , is static and if we

define b as an eigen state of this Hamiltonian, then the U

can be represented ass - P » f

(11) tJ = 11^\\,M\,\ er'"^r"

With this substitution (10 ) becomes?

(12) IIICk.K,.fx.>i^t^ = Zl_(XK.rm'fL.\XK,r(Vn'i(lKi.nrVk"'jJLvllki.Irm'0
cm nw'

t e.
—

z
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Now, considering the source as a whole just as in (6) if all coin-

cidences are registered we must integrate ^-lTCO with a decay weigh-

ting factor:

Then the integrated coefficient, lIL(K,Kia,Ut'\j becomes?

(13 ) ULi K.Kvu. av> = IZ (^I K. cm' ;i, I r K. L rmMl K^cm'V^I X K^X (Vo"^

From (9) and (13) we can see why if the interaction Hamil-

tonian for the perturbation is invariant under a rotation about

the z axis and if the first particle goes in the direction of

the z axis then the correlation is undiminished. In the first

place, if the particle goes in the z direction, the only term

of the IK, id) which does not vanish will be where LLi - O o

Since the Hamiltonian is invariant under a rotation about the

z axis, it commutes with Xi , hence Lb= Enm and from the first

Clebsch-Gordon coefficient in (13) we see that since om = nm'-|- lli

that (YvAsrm'", . Thus Eb=-Eb' in (13) and the denominator re-

duces to unity. Now due to the various summations over lo and

b » w@ have the multiplicative factors of ^fm,onn" and drm'", cr(\'

which when w© remember that cm— cert' , imply that Om "= cm"'

hence u-z, = O « Then \\\ c k, k-^_ oo^ -= ^k. ^Ki.
2, K-|- I

which is the normalized form. We have thus shown that under

these conditions the theory predicts the well known experimental

result that the correlation is unperturbed.

We are now ready to consider the problem of the ©rystallln©

powder, or polycrystalline source, as it is called. The observed

correlation, WCf), Is obtained by averaging (9) or (13) over
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all possible orientations of the various micro-crystalline frames

of reference which Is equivalent to integrating the spherical har-

monics, Yk. CiLiM Ki. C^T.'i , over the unit sphere, keeping always the

angle between tl. and Xl f ixedj this angle we call 4^ • If we

do this we find from the orthogonality of the spherical harmonics

that the only non-vanishing products are where Ki^Kv= K and

jj..^ fx>. sr /JL . It also turns out that the Integral so defined is

independent of fJL • The observed correlation can then be writ-

ten, if we average (9) to obtain the time dependent correlation?-

K
where:

(15) GtkCO ^ -^^ ZI ^nXcKKji.^t^

If we average the Integrated correlations we obtain:

(16) Vic^H^ = } G-KCT^h/^ Kk PkCcos^-^

where

(17) Gtkc^.^ - \^&KCt^e- ^- 6X

Notice tftat the Gtk factors which contain all of the effect

of the perturbing Hamiltonian are simple reduction factors which

cause no mixing of the unperturbed coefficients. Also, the (2rK

factors depend only upon the intermediate state and not upon

the preceeding or succeeding radiative transitions.

We give below an explicit expression for the time depen-

dent as well as integrated (jtk^ where the perturbing field can

be described classically and has axial symmetry with respect

to the micro-crystalline axes:

Z, \ ( E rry\ — Eorv\' ) t

(18) GrKCt^= Yf:^ / (rUpm'/JLlTKXinm'\ g.

- 17 -





(19) C-kCT^h^ = ' Zl CXKpm'M.1 -L KX^-J^

^ —
^

So far we have said nothing of the nature of the perturbing

interaction, l.e# whether magnetic or electric in nature. If w«

assume for a moment that we are concerned with the interaction

of the nuclear electric quadrupole moment with the average elect-

ric field gradient, classically deaicribable and axlally symmetric,

at the nucleus, then the perturbing Hamiltonian is already diago-

nal! zed and its eigen values are:

(20) Er^ ^ eQ(^0 C^cvn^-Xd + Ol

where eO. is the nuclear quadrupole moment, defined:

the summation going over all protons where 6i is the angle

betweenJL:> and the nuclear symmetry axis.

If we now substitute (20) into (18) we obtain an explicit

expression for the effects of the electric quadrupole interaction

which for I = 2 we write:

C ,,, -. \ r il -^_ IL c OS aJbe-L-f 4^ COS 3a3.e-t-h ^COs4a)^l^

where CjJe,^ is the energy difference divided by n between

the levels which are split the least by the interaction:- for

1^2 this yields, ^^o^ "= -^ a^^J

If on the other hand we consider a perturbation due to a

classically descrlbable, axlally symmetric with the various

micro-crystalline axes, magnetic field which interacts with

the magnetic moment of the nucleus, we have:

(22) E^ = -fL-'H - - ^^ij^ ^ - 1aUJc,.-J^^^

where \X^ is the nuclear magnetic moment in nuclear mag-
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netic moment in nuclear magnetons, H is the magnetic field, rrr\

the magnetic quantum number, and <^o^ is the angular velocity of

Larmour precession given by -M^ •
"n L

As before, bj introducing (22) into (18) we obtain for 1=2:

(23) ^x-^^^ =-^[\ +-^^°^'^--'^ + ^co^z-cuo^t]

Q. ^^^ ss -l-[ ' + ZCOSUJc.(v«t. 4-ICOS ZOUarmt i-ZcLQ5 3(JUow>t+lC.os4lJJ«rmtjJ

There are two important features of (21) and (23) which

bear noting!

(a) The Q-n^tVaare periodic functions of time with a maxi-
y IT

mum value of unity and a period of -— • This periodicity arises

from the axially symmetric nature of the fields which split the

energy levels in rational multiples of the minimum splitting.

Fields of lower than axial symmetry remove the necessarily pe-

riodic nature of the Gnf-t^s.

(b) The integrated GkCTinV^ , given by (17), which are

observed by a coincidence circuit whose resolving time is long

compared to the nuclear lifetime, have a lower limit (given by

the leading terms in (21) and (23)) known as the "hard core".

This implies that the anisotropy will also have a "^hard core"'

no matter how "Strong the interaction, uj^^n , As will be seen,

this is not necessarily so in liquid sources, where a sufficient-

ly strong interaction can reduce the anisotropy to zero.

The theory of spoilage by axially symmetric, classically

describable perturbing fields in polycrystalline sources as

described above has been tested experimentally and in some cases

(1K53) gives correct results. However, the results of Aeppli

et. al. (1A51) and Steffen (2S53) (1853) on various compounds

of Cd , the daughter by K capture of In-^"^-^, show reductions

in anisotropies to values lower than predicted by the theory of
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axlally symmetric perturbing fields as put forth above. The un-

111
disturbed anlsotropy of the Cd cascade Is about -0,2j the

axlally symmetric theory predicts a '^hard core" anlsotropy of

about -0.05, For example Steffen (2353) reported among others

the following anlsotroples:

Source:: Anlsotropy:

InCl^ dry ® 20°C -.012 ± .005

© 540° C -.022 JZ .006

Inig dry ® 20°C -.020 Jz .006

« 200°C -.021 i: .006

Average of above -.019 jl .003

It Is not surprising that the spoilage theory based on the

assumption of simple axlally symmetric fields does not give

precise results. We shall present below a discussion of two ~

of the possible mechanisms for the spoilage of polycrystalline

sources below the predicted hard core values.

The first explanation has to do with the symmetry of the

fields experienced by the nucleus. The fields In polycrystal-

line sources are extremely complex, and even If the Indium a-

tom In a single Isolated crystal were In a field of axial sym-

metry, when there are many millions of mlcrocrystals close to-

gether, oriented at random, and pressing on one another from

all sides, there is good reason to believe that the aforemen-

tioned axlally symmetric fields could be distorted to a lower

degree of symmetry. Also, following a process such as K cap-

Illture in In , the daughter cadmium atom may have sufficient

recoil energy to displace it from its former axlally symmetric

lattice site. Abragam and Pound (1A53) calculate the effects

of fields of lower than axial symmetry. They give the hard
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core values for Q-k^^ in rhombic fields for various values of

the spin of the intermediate state. They find that there is in-

deed a reduction of the Q-k''^ over and above that obtained with

axially syinmetric fields; however, the resulting reduction in

the anisotropy is still not sufficient to explain the results

of 1353 and 1A51. For information we list here the results of

their calculations for the hard cores for 1=2:

Flhombic Fields Axially Symmetric Fields

Og(lim) 10/<35 13/35

G^dim) 18/63 29/63

It may be of interest to note here that if the pertur-

bations remove all degeneracies, the hard core value of Q-,

should be Q^(lim^) — ^ ^^
. . . Comparing this with the above

results we see that the rhombic fields apparently remove some

but not all of the degeneracies present in the axially symme-

tric case.

The second possible mechanism for spoilage below the pre-

dicted hard core value, and it seems the most fruitful to date,

has to do with the excited state of the electronic configuration

of the daughter atom. Immediately following K capture the daugh-

ter atom is in a very highly excited atomic state with a hole

in the innermost shell. The electronic configuration returns

to the ground state by the emission of X-radiation and the pro-

duction of Auger elections as the '"hole" moves outward. As

more and more Auger electrons are produced the atom tends to

assume a considerable charge, and each Auger electron itself

adds another "hole*" to the configuration. After a short while

the atom begins to '"look»« like a "Swiss cheese'" as Frauenfelder

puts it. Under such conditions the nucleus experiences extremely
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large and rapidly fluctuating magnetic fields and electric field

gradients due to its own electron cloud. It seems possible that

this could cause a time dependent perturbation very similar to

that which would be experienced by the nucleus of an ion in a

liquid under the influence of the random motion of its neighbors;

let us call this the '"confused configuration? effect". And in

a liquid, as will be seen, there is no lower limit or hard core

to the anisotropy for a sufficiently strong interaction. On the

other hand if the nucleus were to "see" during its lifetime

fields due to its own electrons which were constant for a while

and which would then vary stepwise, it is possible that it could

get down to one hard core value In this time and then with the

stepwise variation in the electronic configuration, start down

toward a new and still lower hard core. Let us call this the

"quasi-static configuration effect".'

To test the validity of the K capture excitation hypothesis

Kraushaar and Pound (1K53) performed a directional correlation

experiment using the 396 KEV isomeric level of Cd as the pa-

rent of the decay. Here, the electron shells of the cadmium

atom are unper'turbed during the decay, except possibly by In-

ternal conversion. Kraushaar and Pound used several sources

differing in chemical and physical state. It was found that

the maximum spoilage of the anisotropy occured in a polycrystal-

line source of hexagonal CdClg, and significantly this reduc-

tion was down to, but not below, the hard core as predicted by

the theory of axially symmetric fields.

We will now introduce what is called the "shell relaxa-

tion time", '^5 , which we can think of as the mean time required

for the electronic configuration to return to the ground state
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following a strong excitation such as K capture. We list below

two typical values of "^a for different materials from (1H52):

Material: :

—8
Impurity Centers in » 10 seconds
Ionic Crystals

-12
Metals 1^ 10 seconds

We can fit three experiments Into the pattern of explana-

tion of the •'excited configuration" hypotheslSo In the experi-

ment of Albers-Schonberg et, al, (2A53), using a source consis-

ting of a single axlally symmetric crystal of Indium metal, the

effect Is noteworthy because of Its absence. For certain orienta-

tions of the crystal axis the observed anlsotropy was essentially

unperturbed which hardly seems possible on the basis of the "ex-

cited configuration" hypothesis. This can be explained, however,

as the result of an extremely short shell relaxation time in^

metals (^ lO" seconds, above). In Cd"^-^-'- the lifetime of the

intermediate state is 8.5x10""° seconds, and when the shell re-

laxation time is very much shorter than the nuclear lifetime the

effect has too little time to take place and shows but little

disturbance ta the anlsotropy. This Is similar to the case in

liquids wherein the correlation time is very much shorter than

the nuclear lifetime; the liquid theory will be presented later.

On the other hand, the experiment of Steffen (2353) cannot

be explained on? the basis of the "confused configuration" effect,

- 8
if we believe the figure above of '^^ »10 J. for Impurities in

ionic crystals. For here rs>?rN, and under such conditions the

nucleus sees practically constant fields due to its own electro-

nic configuration^ as will be seen. This requires the application

of a modified polycrystalllne theory considering the quantum

mechanical coupling between the nucleus and electron cloud, taking
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into consideration the fact that the angular momentum of the

shell, J, Is changing during the nuclear lifetime. This, it

would seem, is an example of the "quasi-static configuration

effect" mentioned earlier. It may be that the reductions in

anisotropy below the hard core values observed by 8teffen (2353)

could be due to a combination of two independent effects of com-

parable magnitude, viz. (a) the "quasi-static configuration ef-

fect", and (b) the crystalline field effect treated by Abragam

and Pound (1A53). In a situation like this we could have an e-

lectric quadrupole interaction with the crystalline electric

field gradients and simultaneously the superimposed magnetic

and electric interactions with the "own-electron" configuration

which have not yet "cooled" down to the ground state. The

theory has not yet been worked out for such a situation; but

this seems a reasonable explanation for the occurence of Gr-^

hard cores lower by a factor of two than those predicted on the

basis of "axially symmetric fields" alone»

Futher Justification of the "quasi-static" view follows

from a simple estimate of the times Involved for the outward

progression of'.the K-capture produced hole in the atom. For

a first approximation, if we consider the atom alone independent

of its neighbors and neglect the additional holes produced by

Auger electrons, then we can calculate the time required for the

radiation process on the basis of a model in which an electron

Jumps from the n shell to the n-1 shell with a speed given by

shielded hydrogen wave-functions. The first transitions between

highly excited atomic states of large energy differences are

—15
very fast, being of the order of 10 seconds; while the later

transitions are relatively slow, lying in the range for optical
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p
transitions, or about 10" seconds. But the important point is

that the times for the various transitions are related roughly

as a geometric progression, the second requiring about 10 times

the time required for the first, etc. This means that on the

average during the lifetime of a particular nucleus it has ex-

perienced essentially a constant field resulting from the last

electron configuration in existence before the nucleus decayed

to the final state. In addition, the sum of the times required

for the early transitions , if less than 10" seconds would

cause no perturbation Just on the basis of its short duration.

All of the above seems to lend support to the "^quasi-static hy-

pothesis as the additional spoilage mechanism.

On the other hand, because of the possible similarity of

the processes experienced by the nucleus after K capture to those

in a liquid, we will sketch the results of Abragam and Pound's

(1A53) theory of correlation spoilage in liquid sources.

The time dependent correlation in liquids is analyzed using

(9). Taking the z axis as the direction to the first counter,

jLL( vanishes as discussed under (13), and since there is no

preferred direotion in the source Ul2_ also vanishes. Then we

have;

(24) Cat (ejt1^Xj^<^'<''*^^*<^'*^^^ ^'^S^^^A*^^)"*^^
^^'^^"^ iki(B')

K. kt.

where the terms are thos of (13) and: i

(25) ULcK. K^ootN=lJlK,rmoliK.i:(YY>Ulk^rm'olx\^aXom''i (cwMUcnW^I
om,rm'

where
I

Com' \U(t)\n(Y>^ is the probability that a nucleus In

an initial state m at t — will find itself in state m" at

time t. This relaxation process is what spoils the correlation,

for as pointed out in Chapter 2, an unequal population among
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the various magnetic substates of the Intermediate level is ne-

cessary to produce a correlation. Furthermore it can be shown

that the rate at which this relaxation process takes place is

related linearly to the rate at which the correlation coefficients,

Agjj, (l) diminish.

In the development of the theory the concept of '"correla-

tion time", ^c > enters. Qualitatively, one can think of the

correlation time as the mean time required for a nucleus to in-

terchange its neighbors.

It turns out in the development of the expression for the

time dependent transition probability above that when t»tc, but

with the condition that the transition probability is very much

less than unity, we can use the theory of polycrystalline sources

to describe liquid phenomena. We apply this result by expanding

(21) in a power series in t and replacing ti by ZtZt, ,

It is interesting to note that although the G^'s thus obtained

fall off as the first power in t, they are still larger than

the Gtc's from polycrystalline sources because ta«ti . Similar-

ly the not unexpected result that where '7:c» t we may apply

polycrystalline solid results to liquid sources evolves from

the theory. This is reasonable in that the fields of an in-

finitely viscous liquid would approach roughly those of a solid

except perhaps as related to spatial regularities. It is also

Interesting to note that in this latter region the "fall-off*

of the G-j^'s as a function of time is parabolic as t—>- 0, Just

as we find in (21).

In the region in between where the correlation time is

neither large nor small with respect to t, explicit results

are developed applying only to liquid sources. These results
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apply also where '2^c«t , "but not where "Z^c >> 1: . The Integra-

ted Gjc' s for 1=2 are given as follows:

Electric Quadrupole Interaction:

(26) Gr^^rajo.-^K/^ =r

^ l^^'t^-^-
^ Gr^. C(JJoctv^

= I

\ 4- -!— (jo4^«»t«L
\4

where

LOci<o — GL<fl^^> ftV

Magnetic Dipole Interaction:

(27) G^Cujo^'th/^ =
\ + 7

^ G3-^C(JJc^'t^'\ =
\

60
CjJoJ-^^'>c

4- J—isi^^^^^
48

lere

OOorwN ==
Pl<H> BV

x-K

It may be of interest to compare the shape of the spoiled

anisotropy curve based on ^^j^.' s which come from no particular

physical model with that resulting from (21) and (23), The

purpose is to show the similarity in shape for small values

of (jja'^N of the anisotropy curves arising from G}^(t)'8 quite

different in nature. This is done in Section 5.4.4 based on

the following remarket

Let us construct a G^(t) in the form of a periodic square

wave of half width ok , as shown

in the diagram at right. Then the

Integrated Q^(tuo>^)»s which we will

label Gj[.(u)oTw) are given by:

- A^
(28) Gr^Cco.'r.^ = \

- C ^'^^^ +

/ 5;.rotr

i oZn YlT

UJ-a>ls/

^. , ZS^mhi Va,.T.1

^KNote that the hard core values are given by .^2- ,

It
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The OJ* can be related by applying a modified form of Abragam

and Pound's Eq. 41 (1A53), for integral I:
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Chapter 4 - Choosing an Isotope

Out of all the hundreds of Isotopes, how does one pick one

on which to perform an angular correlation experiment? We sketch

below the procedure we used in the hope that it will be of some

future assistance. The procedure consists in giving each ""can^

didate" a series of tests and using the comparative overall re-

sults as a basis for selection.

These tests can be classified as follows:

1. Decay Scheme

2. Availability

3. History

Decay Scheme

The first thing that must be done is to establish the exis-

tence of a cascade. Then the disturbing influence of radiations

within the energy resolving power of the apparatus must be con-

sidered, and whether these radiations are also in cascade. It

will be found in connection with "History" that most of the simple

cases have already been studied, hence the necessity for good

energy resolution will become more and more important. If we

consider gamma-gamma cascades it will be found that in connec-

tion with the energies of the radiations there are two very im-

portant considerations, viz, (a) that if the lower energy is

above a certain minimum then one can use "energy selection shiel-

ding" as discussed in Section 5,2,1, and (b) If both energies

of the cascade are close enough to one another so that each

channel can be sensitive to both radiations, then the coinci-

dence counting rate will be up by a factor of four over the

case in which each channel is sensitive to only one of the

radiations. (1H53) is a good reference for decay schemes and

various other information concerning isotopes. Interpretation
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of results becomes easier when we know that at least one of the

transitions Involved Is a pure raultlpole as we saw In Chapter

2; this Is Insured If we choose an even-even nucleus where in

all known cases except one (Oe ) the first excited state has

a spin-parity assignment of 2-plus and a ground state of zero-

plus; this insures that the transition between these states will

be pure electric quadrupole. See (3S53) for information on

excited states of even-even nucleil. The total internal con-

version coefficient is also a limiting constraint in the choice

if one wishes to do gamma-gamma angular correlationo We chose

an arbitrary upper limit to the K-plus-L coefficients of 10;-

anything above this number we would reject. In general it turns

out that for a Z greater than 60 and energy less than 175 KEV

the transition will be too highly converted for E2 transitions,

(3B52) page 618 and (lG5l) give formulae and experimental re-

sults relating to Internal conversion. As was seen in Chapter

3, in an investigation of •'spoiled" correlations the lifetime

of the intermediate state is important, and in general should

be greater than 10"" seconds, although this lower limit is

somewhat flexible. (lG5l) contains formulae and experimental

results relating to lifetime.

Availability

The availability of an isotope is determined by the availa-

bility and lifetime of the parent. If local facilities are unable

to produce the isotope then we are limited in general to parent

lifetimes of at least several days. (1H53)' has information re-

lating to the production of Isotopes,

History

Unfortunately there is as yet no comprehensive survey of
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experimental results in angular correlations under one cover. So

after passing "Decay Scheme" and "Availability" tests and isotope's

angular correlation history must be looked up. Of particular in-

terest in disturbed angular correlation work are those cases

where previous work has shown anomalies, such as in Pd •

114Our choice of Cd was based on considerations similar to

the above and also due to the history of spoilage in its sister

111
isotope Cd e See Fig. 4-1 for the decay scheraeo Our interest

lay in the first excited state in Cd-^-^"^ via the 722-556 KEV

gamma-gamma cascade.
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Chapter 5 - The Experiment part 5.1 - Apparatus

Section 5,1.1 - Apparatus, G-eneral

J^ directional correlation apparatus must provide means for

the detection and exclusion of radiation and for the recording

of events. The term "directional" brings to mind the question,

"Relative to what?'' The answer necessitates the use of two

channels, one to fix a direction in space, the other to measure

a relative angle.

The exclusion function of the apparatus is very broad.

First of all it must exclude radiations proceeding at other

than the selected angle. Second, it must exclude in each chan-

nel pulses arising from unwanted radiations of various energies.

Third, it must compare the pulses in the two channels in time

and exclude all those which do not occur simultaneously or within

a small time,1^ , of one another.

Finally, the apparatus must record certain unexcluded, or

selected if you will, events occuring during a given time inter-

val and present them in a convenient manner. To accomplish these

ends the apparatus is divided into mechanical and electronic

components. *-

Section 5.1.2 - Apparatus, Mechanical

The mechanical parts of the apparatus are extremely simple

and consist of the source box and its Included angle measuring

assembly.

The source box provides means to mount the source and angle

measuring assembly, absorb unwanted radiation, as well as shield

the immediate neighborhood from the soft components. It also

provides means to change or maintain the temperature of the source

and to inhibit frost formation on the source holder, which is

accomplished by keeping the box airtight and drying the entrained
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air, (Activated Alumina 8-14 mesh was used as a desclcant and

performed satisfactorily). The source box measured 33x33x16

inches; it was designed with a removable top with an additio-

nal opening for easy access, normally closed with a lucite

window. A small hole was provided in the center of the top

to serve as a liquid air filling connection and another hole

was provided in the lucite window for dry ice filling.

The angle measuring assembly (Fig. 5.1.2-2,3) consists

of a fixed detector and a movable one. The movable detector

can be rotated through an angle of 180 degrees from 90 to

270 degrees relative to the fixed detector. Danger of da-

maging the lead shield of the scintillation crystals pre-

cludes more acute angles. Provision is also made for vary-

ing the detector solid angle subtended at the source in thir-

teen integral steps. This varies the geometrical half angle

of the subtended cone from about 19-^ degrees to about 5 de-

grees. Due to scattering effects and the finite size of the

source the effective half angles are somewhat broader than

the figures quoted (See Section 5.3.3).

The detectars themselves are on mounts which hold the

axis 6'«7/16 off the base plate. Lead shields are provided

which interpose a minimum of 1-^ centimeters of lead between

the crystals when the detectors are at right angles. The

crystals are discussed in connection with the photomultiplier

tubes in Section 5.1.3.

Section 5.1,3 - Apparatus, Electronic

General

The electronics have four primary tasks, viz., detec-

tion of the radiation, energy selection in each channel,
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time comparison between channels, and counting.

Detection Is performed by the crystal-photomultlpller

combination and associated components and amplifiers. Ener-

gy selection is performed by the differential discriminators,

time comparison is performed in the fast double coincidence

circuit. The final selection of those pulses which have pas-

sed both the "time'' and "energy" tests is performed in the

slow triple coincidence circuit. Counting and presentation

are done by the scalers.

It is found necessary to separate the functions of time and

energy selection. The reason for this is illustrated In Fig,

5.1,3-1. It is based on the principle of operation of the dif-

ferential discriminators which will be discussed in more detail

later in this section. But for the purposes of this explanation

it is merely necessary to know that one must use a finite chan-

nel width A E, i.e., the only pulses which will "operate" the

differential discriminator are those from the linear amplifier

In a range, E^ to Eg (See Fig, 5,1,3-1). Now assume that photo=

peak pulses arising from simultaneous gammas of identical energy

may give rise to a pulse from the linear amplifier anywhere

within AEj- this is due to the statistical spread in the photo-

peak pulse height introduced by the photomultipller tube. The

time of firing of the "baseline*" Schraitt circuit determines the

time of the output pulse of the differential discriminator,

and this circuit fires when the voltage of the input pulse rlseiS

to El, It can be seen directly from the figure that a time un-

certainty At is thus Introduced in the output pulse of the dif=.

ferential dlscrimlnatoro (We normally operated with A E ^ 45 v

—7
which gave rise to At » 4x10 sec). One is thus constrained

to use a coincidence circuit operated by pulses generated when

- 34 -
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the pulse height reaches some lower value such as E^, It is clear

that At is much smaller than/it. For thlff reason we use the pul-

ses from a fast amplifier, which saturates on the first few volts

of the photomultiplier pulse, to operate the fast double coinci-

dence circuit.

Block diagrams of the entire apparatus with the interconnec-

tions for various types of runs and checks are shown in Section

5.2.1.

Fhotomultipliers, Crystals, and Associated Components

DuMont Type 6292 photomultiplier tubes were used. They were

oirerated at about 127 volts per stage, adding up to a total high

voltage of 1800 volts« Under these conditions exceptionally large

output pulses were obtained (40, volts for the 722 KEV photopreak)

with extremely good energy resolution (~6^)o An ordinary cath-

ode follower would not pass such a large negative pulse with a

short rise time down even a moderate length of coaxial cable.

This is because one needs a relatively large cathode resistor

to maintain the quiescent voltage at the cathode greater than^ the

pulse height to'be passed, and this large resistance together

with the capacitance of the cable prevent the passage of short

rise time pulses. For these reasons a ""bootstrap'" circuit was

used, in which the cathode resistance is effectively replaced by

a variable resistance in the form of a vacuum tube (Fig. 5ole3-2).

The pulses had a rise time of about 4x10 seconds and a decay

time of about 4.5xl0~ seconds. The decay time constant was

set by the 68K resistor at the collector of the photomultiplier

together with the total capacitance to ground at this point

(about 30 uuf )^.

Relatively small scintillation crystals were used. They

were 1 inch in diameter by ^ inch thick Harshaw Type X4L2j they
- 35 »





Photoraultlpller Voltage Divider Unit and Bootstrap

Pig. 5.1.3-2

Notes
1* All resistors ^ watt unless

otherwise specified.
2. All resistors In HV divider

plus -minus 5%,
3, "m" - megohms

"HIGH VOLTAGE"

'O) 83-lR

DuMont
6292

Anphenol
AN 3102
143-2P

-L ,luf < 2,6tii

f 6Q0V I Carbon





were mounted in a hermetically sealed can made of 0032"^ 2-3 alu-

minum which was internally coated with MgO, Ordinary white vase-

line was used to provide optical contact between the window of

the crystal can and the photocathodeo Crystals were Nal(Tl),

The 460 volt battery applied to the second dynod© (Pig.

5,l,3-2) had the purpose of maintaining the early stage electron gain

both large and con-etanto This tends to increase the energy reso-

lution as well as reduce the effects of high voltage fluctuations.

The good energy resolution of this crystal-photomultiplier combi-

nation is illustrated in the observed partial spectrum of the gam-

ma rays in the decay of In^^^ (Fig„ 5olo3-3)o

There is apparently a transit time uncertainty of about
-8

2x10 seconds in these tubes under these conditions, which makes

this set-up undesirable for lifetime measurements by delayed o©ln-

cidenceso This point is discussed more fully later on in this

section in the paragraph on the fast double coincidence circuit.

Atomic Instrument Company high voltage power supplies (Model

316)^ were used and performed satisfactorilyo

1^1 se Amplifiers

The pulse amplifiers (Fig. 5olo3-4) were designed to provide

a moderately fast pulse output together with a linear pulse out-

put in the same chassis. In the case of the linear output the

term •"amplifier"" is rather a misnomerj- the term '"'inverter'*' would

be more appropriate© The already large negative pulses from the

photomultiplier are inverted and amplified slightly and then fed

to the differential discriminator which requires positive pulses,,

The linear amplifier consists of a heavily fed back single 6AG7

stage whose grid operates about 50 volts above ground© Gain from

-1,6 to -80 is adjusted by varying the amount of unbypassed cathode

resistance© The pulses from the sodium iodide - photomultiplier
=. 36 -
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combination ('--40 volts, 4x10"" seconds rise time )^ when amplified

in the fast amplifier have a rise time of about 5xlO~® seconds and

a height of about 8 volts when clipped with 4 meters of RG-7/tJ,

Differential Discriminators

These operate on the well known circuit of two integral dis-

criminators feeding into an anti-coincidence circuit, Modifica^

tions were made to a standard type of differential discriminator

which resulted in the saving of six tubes and in ruggedness and

reliability of operation. These modifications center around the

anti-coincidence circuit (Fig, 5,1.3-5K Briefly, the operation

is as follows. The square wave generated by the "Base Line**

Schmitt circuit is differentiated strongly and is fed through a

delay line into one input of the anti-coincidence circuit. The

delay is necessary to give the "Delta E" Schmitt circuit a chance

to fire IF IT IS GOING TO FIRE, Here we have two possibilities;

(1) the '"Delta E" Schmitt IS going to fire, 1,6., the input pulse

is too big, or (2)' the ""Delta E»« Schmitt IS NOT going to fire,

i.e., the input pulse is within the "window'". In the first case

the square wave generated by the ""Delta E"" Schmitt is fed into

the anti-coincidence circuit and prevents the delayed, differentia-

ted pulse from the '"Base Line" Schmitt from passing through, i,e.,

the ""Delta E*" Schmitt gates the anti-coincidence circuit off.

Thus, in case (1) we get no output pulse. In the second case there

is no gating pulse from the ""Delta E"* Schmitt and our delayed, dif-

ferentiated pulse from the ""Base Line" Schmitt is passed through

the anti-coincidence circuit, then amplified, and then fed as a

trigger pulse to a blocking oscillator whose output is the output

of the differential discriminator.

- 37 -
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Fast Double Coincidence Circuit

The heart of this piece of apparatus is the non-linear ele-

ment, which in this case is a 6BN6 vacuum tube. The virtues of

this particular tube are that the plate characteristics of two

of Its grids, the quadrature and llmiter grids, are practically

identical. A negative voltage of 3^ volts on either grid with

a plate voltage of 60 volts is sufficient to prevent plate current.

The tube is operated normally with both grids in the cut-off con-

dition ( about -5 volts ). Semi-standard positive pulses of about

8 volts from the fast pulse amplifier in each channel are fed in,

one to the quadrature and one to the limiter grid (Fig. 5.1,3-6).

If they are "^ simultaneous •• the tube conducts and the pulse is am-

plified in a 6AH6 stage and fed out through a 6J6 cathode follower

stage. The fast double coincidence circuit determines the overall

resolving time of the apparatus as a whole. The resolving time

of this circuit can be adjusted in two ways as follows: (1) by

"shortening" the input pulses, i.e., by using a faster, more

strongly clipped input pulse, and (2) by adjusting the bias level

on the grids of" the 6BN6, Both methods were used;- method (2)'

turned out to be"" extremely sensitive to the grid bias adjustment

and made the use of a precision potentiometer necessary in the

cathode circuit of the 6BN6. Resolving time curves obtained by

delayed coincidences using the single channel method (Fig. 5.2.1-3)^

and the double channel method (Fig. 5, 2.1-4)^ are shown in Figs.

5.1,3-7,8. Since the annihilation radiation has zero lifetime,

the broadening of the double detector curve is introduced by the

apparatus. That this is not a ^"channel width'" effect is shown

by comparing Figs. 5.1,3-7 and 5,1,3-8 in which two widely dif-

ferent channel widths were used and which resulted in approximately

- 38 -
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the same broadening. We thus look to the photomultlplier-crystal

combination as the source of the '^Jitter'" which causes the broad-

ening. That this Jitter is not caused by the uncertainty in the

time of creation? of the first photoelectron at the photocathode

can be shown by applying formulae due to Bell, et, al, (1B52).

That this time uncertainty is not caused by varying trajectory

lengths for the avalanche electrons has been shown by measure-

ments by Alford (unpublished) using a pulsed light source. However,

as Alford has shown again, the average transit time is a very de-

finite function of which part of the photocathode is illuminated;'

the average transit time is about 10 seconds longer for photo-

electrons emitted from the circumference of the photocathode than

for those emitted from the center in the DuMont 6292' s. If our

photocathode were illuminated by several intense bursts of light

randomly spaced in area over the photocathode, then our effect

of broadening might be explained on this basis.

81ow Triple Coincidence Circuit

This circuit acts as a sort of recombining point in the flow

of pulses through the whole apparatus, where the two functions,

viz., energy selection and time comparison, which were previously

separated, are rejoined (Fig, 5,2,1-1). Each of the three input

pulses, one from each of the differential discriminators and one

from the fast double coincidence circuit, triggers a square wave

generator whose output pulse length is adjustable from 0.2 to

1.5 micro-seconds (Fig, 5.1,3-9). The pulses from each of these

three circuits are then fed to a non-linear element consisting

of crystal diodes (1N56) in parallel. If the three pulses over-

lap in time, the common plates of the crystal diodes rise sharply,

and this pulse is then fed through a class C amplifier. The out-
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put of this circuit, which is ''energy selected coincidences",

then goes to a scaler where the pulses are counted and recorded.

The square wave generator is a plate triggered univibratorj- the

cathode follower coupling of the two halves of the univibrator

—8
results in a rise time of about 5x10 seconds for these square

pulses.

.«
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Part 5.2 - Experimental Procedures

Section 5.2,1 - Runs and Checks

The various types of runs and checks to gather information

of the source or the equipment are best understood by referring

to the inter-connection diagrams which follow.

Type Runt-

Total Coincidence Counting
Rate

Chance Coincidence Counting
Rate

Resolving Time, Single Chan-
nel Method

Resolving Time, Double Chan-
nel Method

Desig-
nation

TO

CC

RT-A

RT-B

Channel Var- Fig.
Width iable 5.2.1-

Wide

Wide

Wide

Wide

e

G

Delay 3

Delay 4

The checks include operational and characteristic checks.

Operational checks, or "alignment checks", merely serve to tell

if the apparatus is properly tuned. These were performed daily

before each run and occaisonally at the end of a run when there

was reason to believe that something had "gone wrong". Characte-

ristic checks a^'e tests to ascertain that we are actually mea-

suring what we think we are measuring.

Operational Checks

Window Set - This involved setting the photopeak pulse heights

of the 722 KEV or the 556 KEV gamma rays in each channel to a pre-

determined height, then by means of the pulser to set the lower

window edge at a pulse height corresponding to 430 KEV. This fi-

gure was arrived at from the Corapton scattering chart of the gam-

114ma rays present In the decay of In , Fig. 5, 2.1-8; see also Sec-

tion 5.3.3. Then, using the pulser again, delta-E was adjusted

to a predetermined value to include both lines (722-556 KEV) in

each channel.
- 41 -





Explanation of Abbreviations Used In Figs. 5.2.1-1,2,3,4,5,6,7

PM

CF

PMHV
(AIC)

LO

FO

DIFF.
DISC.

FDCC

STCC

8

SCOPE

Photomultlplier Tube

Cathode Follower ("Bootstrap'*)

Photomultiplier High Voltage Power Supply
(Atomic Instrument Company, Model 316)

Linear Output of Pulse Amplifier

Fast Output of Pulse Amplifier

Differential Discriminator

Fast Double Coincidence Circuit

Slow Triple Coincidence Circuit

Scaler

Cathode Ray Oscilloscope, Tektronix Model 511A

All Interconnection lines represent coaxial cable RG-7/tJ unless

otherwise stated.
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PULSE
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PO
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FIG. 5.2.1 -





PMHV-

1

PULSE
AMPLIFIER- 1

PMHV-2

SET UP CC-A
[delay can be in

CHANNEL I OR z]

FIG. 5.2,1-2

PULSE
AMPLIFIER-2





PMHV-2
A IC

SET UP RT-A

r PM'S CAN BE
L INTERCHANGED

R6. 5.2.1-3





PMHV-

PULSE
AMPLIFIER-

1

LO

DIFF.

DISC.

I

SET UP RT-B

FIG. 5.2.1 -4





PMHV-

1

PMHV-2

PULSE
AMPLIFIER- 1

LO FO

t. FIL.

PULSE
AMPLIFlER-2

PO LO

SET UP CE-A

FIG. 5.2.1-5





PMHV-2

PULSE
AMPLIFIER-

1

LO

-w

SET UP CC- B

r CHANNELS CAN BE
L INTERCHANCED ]

FIG. 5.2.1 -6

FO

rrrrvji..
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<
VARIABLE
DELAY

'-Hi'

V

FDCC
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AMPUFlER-2

FO LO

DIFF
DISC.

2

SI S2 S3 S4
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FO
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FIG. 5.2.1-7
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Slow Triple Coincidence Circuit Cout-Out Test - This tests

the overall performance of the energy and time discrimination func-

tions of the apparatus. The input to each differential discrimi-

nator and each input to the fast double coincidence circuit are

removed in turn. The output of the slow triple coincidence cir-

cuit should disappear with each removal.

Scaler Counting Efficiency Test (Fig. 5.2.1-5) - With the

pulser set at the normal single channel frequency and so that

the pulse height falls within each window, the scalers should

count together. Two scalers were compared at a time, viz.,

82:-S3, 32:34, 33:34. It was found that they counted together

accurately to within plus or minus .01^. This test also par-

tially checks the performance of the differential discriminators.

Characteristic Checks

Cable Loss (Figs. 5.2.1-6,7) - Attenuation in the 50 meter

RQ-7/lI delay cable could cause the measured chance coincidence

rate to be less than it actually is. Using the set-up shown in

Fig, 5.2.1-6, there is an observed dimunition of counting rat©

as the delay is increased, whereas no such droop is observed in

the energy sensitive case as shown in Fig. 5,2.1-7. The former

effect is evidently due to attenuation of the lower energy pulses

in the fast amplifier output which are normally Just above threshold

for the fast double coincidence circuit, and which do not trigger

the differential discriminators in any casej" whereas those pulses

which are energetic enough to fall within the window are still

above the fast double coincidence circuit threshold in the latter

effect. We conclude that cable loss in the energy sensitive case

is negligible.
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Scattering - Two ways in which the scattering of gamma rays

could adversely affect us are (l) by scattering from crystal to

crystal which would cause a spurious coincidence to be registered

under certain conditions, and (2) by a change in the scattering

conditions in or near the source which would then be unaccounted

for by the geometrical corrections, (l) is accounted for in two

ways: (a) by the detector lead shields (Section 5.1.2), and (b)

by the location of the window base line. (a) is useful at 90°

but of no use at all at 180°, whereas (b) is most effective at

180 , Fig. 5.2.1-8 shows the enrgy of the scattered quantum versus

scattering angle for the gamma rays present in the decay of In-'-^'*.

For a crystal to crystal scattered coincidence, the gamma ray must

scatter at least through 90®. The window base line of 430 KEV is

chosen so that in the worst possible case (the weak 1300 KEY com-

ponent), the window excludes all rays scattered through more than

78°.

The effective broadening of the solid angle of the detectors

due to scattering from the shields, in the source, etc., is ano-

ther matter and is discussed under '"Geometrical Corrections™, Sec-

tion 5,3.3. However, these corrections would not correct for (2)

above, i.e., VARIATIONS in the scattering conditions due to frost

on the source holder, variation in the phase of the source, and

the presence of a thermo-couple in the source, etc. In order to

check for these variations in scattering conditions, two angu-

lar resolution runs were made using Na , one under conditions of

maximum scattering, i.e., using a thermo-couple in a heavily fros-

ted source holder, and one under minimum scattering conditions,

i.e., at room temperature with no thermo-couple. Effective Increase

in scattering conditions would show up as a broadening of the

angular resolution curve. Results, however, showed no detectlbls

- 44 -
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difference in the curves. We conclude, therefore, that the ef-

fective scattering conditions remained constant throughout the

experiment.

Section 5,2,2 - Sources

Sources were prepared of In and Na^^. Both of these iso-

topes came from Oak Ridge In the form of chlorides in dilute aqueous

solutions of hydrochloric acid.

114
In came as InClg in a .38N solution of HCl. Two separate

shipments of 10 mc each were received, (l) having a specific acti-

vity of 171 mc/gm and a concentration of 1,90 mc/ml and (2) having

a concentration of 87 mts/gm and a concentration of ,96 mc/ml,

114Four separate In sources were prepared, three of them of

the extended source geometry shown in Fig. 5.2.2-1 and one (200

uc) merely evaporated to dryness then sandwiched between to '"l/S

aluminum plates for lifetime measurements using another apparatus.

Of the three sources using the "extended geometry", two were in

liquid form and one was in solid form. The solid was obtained

by evaporating 1 mc of shipment (1) to dryness in the "solid"^ type

extended geometry lucite vial (Fig. 5.2.2-1). Of the liquid

sources, one was of '^l centipoise'* viscosity, i.e., used just

the way it arrived from Oak Ridge (shipment (l)), and the other

was of temperature-variable viscosity, prepared from shipment

(2) as follows. Two cc of the stock solution were evaporated to

.05cc, then gP pure glycerin (greater than 99J^ pure) was added to

make 1,95 cc. The remaining volume of ,05 cc was filled by the

thermo-couple. This solution was duplicated using non-radioactive

indium for experimental determination of viscosity versus tempera-

ture. Relative viscosities were measured using a simple "rate-

of-fall'" viscosimeter. The results are shown in Fig. 5.2.2-2,
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Points for zero degrees and above were from (1M53); points below

zero were experimentally determined. Fig, 5.2,2-3 shows a photo-

graph of the source mounting arrangement for the In ^'* - Glycerin

source. The activity of each of the liquid In^-'-'^ sources was

about 1,5 mc.

2?Three separate Na sources were prepared, each of about

100 uc activity. Two of these were prepared in "extended source'"

containers, and one in a ''point source" container (Fig. 5.2.2-1).

Of the two in "extended source*" containers, one had a thermo-coupl<

and one did not. This was to check on variations In scattering

conditions as discussed in Section 5.2.1, Fig, 5,2,2-4 shows a

22photograph of the source mounting arrangement for the Na point

source.

It Is worthwhile at this time to mention something about the

schedule followed relative to the sources. First of all, the com-

plete, undisturbed correlation was measured, using the dilute

aqueous solution. Following this, the various disturbed ""anlso-

tropy only*" measurements were taken. Interleaving from day to

day In a random manner the source to be measured. Also, the "anl-

sotropy only*^ measurements for the undisturbed correlation was

measured about midway through the disturbed "anlsotropy only"*

runs. In this way it was hoped to minimize the possibility that

long term "drifts" in the electronics could be mistaken as an

effect of the source.
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P^rt 5,3 - Data Reduction

Section 5.3.1 - Errors in G-eneral

The raw data as it is measured has in it many errors. We

can divide these errors into five groups:

1. Systematic Errors - Errors due to malfunctioning or misa-

lignment of the apparatus, such as electronic drifts or source

eccentricities,

2. Inherent Errors - Errors inherent in the design of the

apparatus, present even when adjustments are perfect and opera-

tion stable, such as errors due to finite detector and source

size.

3. Statistical Errors - Errors observed due to the random

nature of the events counted,

4. Lifetime Errors - Errors due to the continually changing

strength of the source due to its radioactive decay,

5. Decay Scheme Errors - Errors in the observed results

due to the nature of the decay scheme, such as the presence of

an annihilation coincidence rate at 180° due to the presence of

a positron component in the decay.

Corrections must be made for each of the above errors. The

sections in which they are discussed are listed below:

Error No. Section? No, Title

Data Normalization

Geometrical Corrections

Statistics

Decay Scheme Corrections

1, 4 5.3.2

2 5.3.3

3 5.3,4

4 5.3.5
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Section 5.3,2 - Data Normalizatlan

Assume that one has a source which decays in a single gamma-

gamma cascade. Let the source strength be Nq decays per second.

One observes a coincidence rate as a function of the angle between

the detectors. Assuming no coincidences arising from crystal-

to-crystal scattering (Section 5.2.1), the observed coincidence

rate is the sum of two^ independent rates:-

(1) a true coincidence rate, N^^, due to the two gammas in

the same decay, and

(2) a chance coincidence rate, Nc„ , arising completely by

chance from separate but simultaneous decays.

Letting the observed, or total, coincidence rate be N^^^ ( ),

we have:

(1) N^o^e 5= ^rJ^ )+ NcH .

Furthermore, considering also the time dependence,

(2) N^^ (e^t) N^ ( t )w( e )[ x.Azb -^ WVibl Y

where W( 9 ) is some function of the angle between the de-

tectors, ALj is the probability that an isotropically emitted

gamma ray, i , will be detected and recorded in channel J , and

X is a further reduction factor due to the electronics. It in-

cludes the efficiencies of the fast double and slow triple coinci-

dence circuits, and the scaler counting efficiency.

The chance rate is expressed by,

(3) N^^(t)^ 2?^Nt ( t, )L\ia-tXz«)Llt \ibt\Tbl '^

where 7: is the "resolving time" of the apparatus, i.e., the

maximum amount of time by which two pulses can be separated and

still considered "in coincidence".

If we express the single channel rate by N c , then,

(4) N(:(^^= No^t^ ^ ^*^ ^^^'' ^ L rr (Ljb
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Combining (l), (2), (3), and (4) we come down to:

(5) NTo(at^ _ Wfe^ Y + 2tX

But we are interested in the true coincidence rate. By a

slight transformation (5) becomes:

(6) MTe(e,t^^ NroiQ.t] - N^Hit^ = \^(e) ^<^t) Nb(t)

No ^t^i

(XfaXlla'^AzaMblY

Now, to a first approximation the factor on the right in

brackets is independent of systematic errors consisting of small

eccentricities of the source and small electronic drifts. This

will be shown later in more detail.

The ratio of WO ) at two different angles 6, and 6;^, at two

different times t). and t>xcan be extracted from (6) by dividing the

true coincidence rates at these angles, remembering that the fac-

tor in brackets is to first order a constant. We then have:

which is our desired form, normalized against the small errors

already mentioned. It is also the form in which we are interested

in the correlation function, W(0), i.e., as a ratio rather than

as an absolute value.

In order to show that the factor in brackets in (6) is approxi-

mately constant we begin by defining,

(8) ^L,JK = ^ ^^^ = h^

and examining XiLa little more closely:

(9) \iL =s (JL> J L £iL ^jL

where (JO is the effective relative solid angle presented by

the detector to the gamma ray, and

€, is the detection efficiency of the detector, or counter
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as It Is often called, for the gamma ray, and

b is the channel factor, i.e., the fraction of the detected

gamma rays which fall within the window.

Then,

(10) ^L,jK = ^-- ^'^ \^' c^cx.b
Li5kt £Kt QKt

Now, the assertion is that (lO) is insensitive to small elec-

tronic drifts and small eccentricities in the source. For although

both %j i and CjJJl will change with the fluctuation in various vol-

tage levels, the ratio i££i and , *• will not change If the win-

dow is properly chosen. Similarly, (jujI is a function of 9 for an

eccentric source, but ^-^""^ ^"^ is a constant for small eccentricl-

ties.

By making use of (8) we can express the factor in brackets

in (6) as follows:

_ (i-V)Li.cLaiMl-l-)JLb,8d'i

From the discussion in the previous two paragraphs, we see

that the \jl!s are approximately time and angle independent. Assu-

ming an approximately constant coincidence circuit efficiency,

expressed by X , we have thus shown that the factor above is

approximately time and angle independent;- hence (7) is Justified,*
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Section 5.3,3 - Geometrical Corrections

General

The directional correlation function, 1t(Q) , as derived by-

Hamilton (1H40), represents a microscopic phenomenon, viz., the

relative directional probability for the decay of a single nucleus,

The apparatus, however, observes a '"macroscopic phenomenon macro-

scopically'*', i.e., it observes a finite volume of many millions

of nucleii, whose exact location is uncertain to the extent of

the linear dimensions of the source volume, and it observes these

with extended detectors which introduce an additional angular un-

certainty. Hence we are not precisely sure where the gamma ray

we count came from nor exactly where it went. What we measure

is a weighted average of W(q^ integrated over the detectors and

through the volume of the source. We wish to determine how the

coefficients of our measured function, W/-q\ are related to the

coefficients of the '^microscopic" function, W(0) , where @ is

the angle between the axes of the detectors and, as usual is

the angle between the propagation vectors of the two radiations

involved in the cascade. These relations we call "geometrical

corrections'". "^

The reader is referred to Appendix III for a general treat-

ment of the philosophy of these corrections. There we present

the basic arguments for our consideration of the geometrical cor^*

rectlons under the following two headings?:

(a) Finite Detector - Point Source, and

(b) Point Detector ° Finite Source.

In this section we will discuss (a) in some detail, but

merely quote the results pertaining to (b) which is treated more

extensively in Appendix III.
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Finite Detector - Point Source

In 1F51 Frankel shows that the effect of the finite detector

solid angle subtended at a point source is to cause a simple reduc-

tion in the magnitude of the correlation coefficients. That Is,

the observed function,

(ly W^0^= ZZ Q 2K A 2K P^K^^^^Q'^

where the A
2,k

&^® "^^® coefficients of the '"microscopic'"

function,

(2) ^re)" 2Z A 2K p2.K^<^<=>-se^

In 1C52 Church and Kraushaar indicate a convenient method

of experimentally determining the Q, 2k ^sing the '*' combined'* re=

lative angular resolution curve, H (q\ , which is the directional

correlation of annihilation radiationo That is,

(3)' ^2K= \ ^(91 PiKCcose^ciCcos©^

where H(q^ is the "eombined" relative angular resolution

curve using annihilation radiation, and is the angle between

the axes of the detectorso

In 1L53 Lawson and Frauenfelder point out essentially that

the H (Q) of 1C52 does not give a true picture of the overall re=

sponse under most conditlonSo This is because the individual

detector resolution curves, which Lawson and Frauenfelder call

^(o^W ^ being the angle between the detector axis and an

element of detector solid angle, dco , are strongly dependent on

gamma ray energy, E a , and the window base line energy, E b ,

ioCc', the minimum gamma ray energy accepted by the pulse height

selectoro In other words, gamma rays of different energies "see"'

apparently different solid angles, and in addition any change in

'"base line"* discriminator setting will also cause apparent solid

angles to changeo All this points up serious limitations to the

annihilation radiation methods of IG52o However, calibrating
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each detector with gamma rays of energies identical with, or close

to, the ones in question, as required by the method of 1L53, is

by no means easy;- it is sometimes impossible to obtain a single

gamma ray of the required energy and effective colliraation is dif-

ficult.

The purpose of this discussion is to point out a refinement

of the method of Church and Kraushaar which will remove some of

the difficulties Indicated by Lawson and Frauenfelder, and still

retain the experimental simplicity of the former method.

The proposed method is based on the assumption that we can

imagine a combined angular resolution curve, H , based on hypo-

thetical gamma rays of the energies in the cascade but which

have an agular correlation like the 511 KEV annihilation radia-

tion, i.eo, a delta function, and that aside from an arbitrary

normalizing factor,

where E <^| and E^a. are the energies of the cascade gamma

rays and E 0^3 is the energy of annihilation radiation, 511 KEV„

E ^1 is the window base line energy used in practice and E^'^i

and E^\y2. ^^® "calibrating"' window base line energies chosen so

that the combinations

Eq,-«^ Eb» "sees'" the same solid angle as E^-j-^Evai ,

and Ert^-*^ E^i "sees*' the same solid angle as Eq-j-^^E^j^^ o

Or, expressed symbollicallyr

where ft^ is the angle of Compton scattering which degrades

the gamma ray from E ^l to E
j^j-j^ o L - l^ t. Thee® calibrating

base line energies, E't), and E ^z. are determined using Fig.

5,2.1-80 For reasons discussed in Section 5o2ols, a value of Ebl
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of 430 KEY was used throughout the experiment.

In other words (4) and (5) assume that the half width of the

resolution curve, but not its essential shape, is different for

various Ea, E ^ combinations. This assumption seems Justified

up to about Eq =1 MEV, There is also the implicit assumption

that the differential cross section per unit solid angle for Comp-

ton sxsattering remains approximately the same?

Thus, the procedure is to determine from Figo 5„2ol-8

the base line energies E bi and E bz which bear to E ^3 the same

relation (via the Compton scattering mechanism) as does E ^i "to

Ea| and E a;^^ (5), then measure H^^ r
j^'^j

^J^^\^ and by (4) use it

for Ho^Eai^Ea^ Ebi'^ • Obviously the method is only an approximation,

but the smaller the difference E^^- Eo^3 , the better the approxi-

mation, L = /, 2.

Now let us apply (3)^ with a slight modification as follows?

Since we measure coincidences in two ways indicated in the

following table, both of the following combinations apply?

Combination No, Q-amma Ray No, Detector

1
*

1 a
2 b

2 lb
2 a

We must take two "combined'" angular resolution curves,

^L(0,E<A3,E'bijE'bi'\ > using annihilation radiation where i represents

the combination number above, and the respective window base lines

are given belows
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ComTDination No,> Channel 1
(Detector
Base Line

a)
Channel 2
(Detector b)
Base Line

1 E bi E bz:

2 Ekz E'bl

Then (3) becomes

J

Q.2K =%[ tt,^,ZK
-4- ^., ^J(7)

where:

It turns out that in this apparatus that:

(9) H,(9^ :^ H^(e^

Hence by (7)r

We thus have a method for calculating the coefficient correct

tlon factors of our "Finite Detector = Point Source*" correction.

The method retains the experimental simplicity of 1C52 while re-

moving to first order at least the major objection raised to 1C52

by 1L53.

Point Detector - Finite Source

As remarked previously, we shall only quote here the results

which are considered in more detail in Appendix III,

We observe a function, Wc©'^ , where @ is the angle between

the detectors, and W(@'^ is given by?

(11) VI i&^ = Y2 C.y^?^<,(C0S.^^

(Note that K may possibly include odd integers).

We wish to determine the relationship between the Lk^ and

the&^^^^xSof (l) which we will designate by ^^k .
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Then from Appendix III:-

(12) Co = B^-i-C (Bo + i^B^i- ^B^) + i'(-| B^-^ B^-^ B^)

C,= Ci B«--^B^- ^ B^) -I- ^'J'CB^-^ B4.)

C^= Bjj-C (f B^) -h X^-jB^-f B^)

G^ = B^tS^(-3B^) -I- :fo(-ZB+)

05= C(3B^)

Where ^o is the ratio of the radius of the source volume con-

sisting of a centered right circular cylinder coaxial with the z

axis of the coordinate system to the distance from the origin to

the detectors and X ^s ^^^ ratio of the %alf->height« of the eylin=

der to the origin- to-»detector distance. Actually, the i)K°s appea-

ring in (12) do not yet correspond exactly to the Qzk ^iK^5 of (l),

but when normalized to Dcs^^l they willo It is almost too obvious

to mention that the finite source does cause '^'mixing'" of the co®f-=

ficients, and it thus behooves one to keep ^o and X as small

as the requirements of the experiment will allow.

Other G-eoraetrical Sources of Error

A pitfall that must be guarded against is the distorting

effect of the lips of the lead shields of the detectors, which

have the effect of making the crystal response more sensitive

to the exact position of the source than would be the case in

the absence of the lead. (For this reason there would have

114
been some advantage in the specific case of Od , where the gam-

mas being investigated are fairly close in energy, In eliminating

the lead shields and in relying upon the available energy dis-

crimination to avoid crystal-to-crystal scattered coincidences

(Section 5.2ol)', but in general this method fails when the gammas
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are far apart in energy).

The distorting effects of the lead shields take place in two

ways:

(a) The lips of the shields accentuate the spurious corre-

lations arising from source eccentri-

cities in the plane of the detector

axes, as indicated in the figure at

right. For an unshielded detector

the principal effect of this horizon-

tal eccentricity is that caused by

variation in source-detector dis-

tance as the angle between the de-

tector axes is varied;- with lead

shields this effect is accentuated by the unde sired shielding of

the detector by the lips of the shield at certain angles,

(b) For a point source which is off center in the vertical

direction, the lips of the shields, by shielding the detector in

an asymmetric manner relative to the source, cause the effective

detector angular resolution curve to lose its symmetry with res-

pect to the detector axiSo The fact that there is no mixing of

coefficients in the "Finite Detector - Point Source" correction

(1), Is based on the detector axial symmetry of this resolution

curve* hence in this case if we apply (1), we will introduce er-

roro In this case not only does the effective resolution curve

lose its aforementioned axial symmetry, but its half width changes

also as the source position is varied in the region where the op-

tical view of the detector from the source is masked by the lips

of the shleldSo We ha'J^e spoken so far of a point source, but what

we have said applies equally well to each element of a finite

source,
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Of the two types of error, (b) is the more insidious in that

it has no well defined symptom which arises in practice. Type (a),

for instance, manifests itself immediately by an anisotropy in the

single channel rates, whereas (b) shows up only as an error in the

results.

The precautions taken against these errors are careful mecha-

nical and electronic adjustment So In case (a), we center our source

in the plane of the detector axes by observing the single channel

rates as a function of detector angle and choosing that position

which yields the most Isotropic single channel responseo In the

vertical direction, case (b), the Na point source was aligned

at the position of maximum coincidence counting rate^ which is

very sensitive to vertical eccentricities, at a relative detector

angle of 180 degrees o The same procedure was followed for the

extended Na sours®, and the position thus found was used for

the In^^^ sources which used the same geometry as the extended

22
Na source*

One might think that errors arising from case Cb) might best

be handled by measuring the resolution curve associated with the

22
Na extended source and using this in a calculation as per (l) •=

(10) above, but from (12) we see that the coefficient mixings

introduced by the source extent would cause error if we used in

(10) the results obtained with an extended source. The proce=

dure followed was first to take a combined angular resolution

22
curve, as defined by (3) and (9) above, using the Na point

source, then determine the '"Finite Detector =» Point Source'" cor=

rections from (10) above. Then the coefficients of the In

correlation, B^j^ » uncorrected for flnit© detector size, wer®

extracted from the observed coefficients, C
j^ , using (12}o Th©
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true coefficients, A a.K. » were then determined from the B 2_« by the

application of (10), In applying (12), there is an ambiguity in

Jo corresponding to the fact that the '"half-height" of the source

is defined in part by the aperture in the lead shield of the de-

tector; but this correction was small enough not to be sensitive

to assumptions on this pointo The same calculations also assume

that the "Finite Detector = Point Source"* corrections, based on

the detector angular resolution curves, were the same for source

elements at all heights© That this is not exactly true is discus^

sed under case (b) above, but since we have an extended source,

for small displacements of the source center, there is always a

source region of the same size which has a "view" of the detectors

uninterrupted by the lips of the shieldSo Thus, the resolution

curves from source elements in this region, which contribute much

more to the coincidence rate than those elements in the "'shadow'*'

zone J still retain their sjTumetry and shape necessary to the ap=-

piication of (10) as previously mentioned. We find then that with

careful vertical positioning of an extended source, the correction®

are stationary with respect to vertical motion of the source center

and thus the errors arising from case (b) are second order in na-
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Section 5.3,4 - Statistics

By the nature of the processes involved the measurements we

take are samples from a probability distribution. The correlation

function itself, W(qj, Is a probability function, i.e., it repre-

sents the relative probability for the emission of two successive

quanta at an included angle » , between their propagation ve©=>

tors. If, for example, we take two successive readings of the

anisotropy, A, where A ~ W(180)/W(90) - 1, there is but a vanish^,

ingly small chance that they would read exactly the same, but this

does not mean something is wrong with the equipment. It means

that we are sampling from a probability distribution of A, cen-=

tered we think at some mean value, and if we take enough samples

we think we can specify that mean with a given degree of accuracy.

In connectlQrn with statistical accuracy, there art several questloni

that may be asked. Among these arer

(1)' Is there an optimum source strength?

(2) How long must one take data to obtain a given statisti-

cal accuracy*?

(3) Is there an optimum division of time to be spent on the

measurement of the chance rate?

Notation

Let Ml = Number of counts in time, Tt,

Let cc\i = Number of counts in unit timeo

Where if?:

c = TO We mean TOTAL counts.

t * T'R We mean TRUE coincidence counts.

L - CH We mean CHANCE coincidence counts.

L - o We mean SOURCE STRENOTH in Number of Decays.

First ©f alls

(1) Nl = (Tie Tl
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The apparatus measures the number of TOTAL coincidences.

This number is made up of two components, (l) the TRUE coincidences

due to cascade radiations proceeding from the same nucleus, and

(2) the CHANCE coincidences due to radiations arising in separate

but simultaneously decaying nucleil. Then we can writes

(2) Nto = Ntr. -h NcH

and

(3) OOrci - CT>x,^ -h n^cH

If we define (^Nre,^ as the variance, or mean square deviation

in Nrft. , then it is desired to see the functional dependence of

the fraction AJjJ''- , which we define as ci

Nt«_

Since the variance in the TOTAL and CHANCE coincidences ar®

independents

(4) b. 1MtR_ = -^f^NTO^''-h(^NcHf

If we assume a normal distribution for our directly measured

quantities, then we have from elementary statistical methods!:

(5) ANl =-y N^ l = to,ch

Let us make one more assumption: that we have available a

total tlme,l , which is to be divided between I
to measuring the

total rate and Ich measuring the chance rate. That iss

(6) T = Tto -h T^H
Note that?

Defines -i-

(8) o^ = y-

That is, ^ is the fraction of the total time spent on the

measurement of the chance rate*

Thens-

(9)^ Tro = Cl-^'iT

Ands

(10) TcH = ^T . ei .





during that fraction of the total available tlme,T" >

to be spent on the measurement of the TOTAL rate, we measure the

following number of TOTAL counts, by (l) and (9);

(11) N-TD = onToCi-o(^ T
And in accordance with (5), since this is a directly measred

quantity it is equal to its variance, or:

(12) ('^NTo^'' = Ntc

We recall again from (5) that the mean deviation in the

MEASURED chance counts would be Just the square root of those

measured during time oC | , or-ymcHO(T , but we must remember that

we do not necessarily spend the same length of time measuring CHANCE

as we do measuring TOTAL, Hence this mean deviation must be nor-

malized to C(-«<.lT , the time spent on measuring TOTAL. Then we get;

Or! ^

(14) (^Hcnf^ -^-^ <^chT

Combining (2), (4), (12), and (14) we have;

(15) ANm _ J _ o^-f ji.

Where;

(16) JL z=L

We are now in a poslton to answer question (3) above, Ther«

Is indeed an optimum division of time, for d has a minimum with

respect to o^ . It turns out that the optimum o^ is given bys:

(17) o/ = jv [_-\\ -\-nr*
-\~]

Substituting (17) into (15), we finally obtain;-

18} d = J [llT3F t-n
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(18)' represents the obtainable statistical accuracy if time

is used to the best advantage. On the other hand, it has no mini-

mum with respect to =^^^ • However the normal way of changing lu

would be to change the source strenth, in the process of which Jb.

and en T^ are proportional to each other. A more useful form of

(18); in which the dependence of m tr. and jtj on rOo appears exp-ll=

citly will now be developed. If we now make the substitutions

(See Section 5.3«2)::

(19) oocH = l^' "^ ^'^

(20) CYIt-r. = K^^VfCe^ CY>c.

(21)

(22)

Where the \<*s are constants, then by (16)):

JL =
K^WfQ-J

(T>(

Flitting (20) and (21) into (18) we obtain

Ki. v/(0^

which has no minimum with respect to mo except as mo—yco-

Hence we have answered question (l) above in the negative^ there

is no optimiM source strength. There is however, an effective

upper limit on or»o , This is determined either by the counting

rates at which the electronics cease to function efficiently or

by safety considerations, whichever yields the lower value (Se«

Section 5o2.2).

We answer question (2) by transposing (18):

(23) I

O0rrt.d

^l-^JL-' +-

-/ I
+ Jl.-' —

This function is plotted in Fig, 5.3,4=1 as T """s. on,.^ for

various values of the prarametsrs d and jl, « Thug, if we have

a given source and resolving time, '^
, characterized by a given

OOtfl and Jl. , and desire a given accuracy, d , the necessary
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total running time may be read directly from the figure.

We Insert here a slight reformulation of (18) which is use-

ful in that it indicates how ^(tl) changes as we change Ji- by

whatever means: _^^______

(24) dcjLl = dCO-^ /-
/'^"-"' ^'

The statistics we have considered so far have been those of

a single large number. However, in this experiment our interest

lies finally in the uncertainty of a ratio, close to unity, of

two large numbers. What we finally want to know is the anisotropy,

A, of the correlation where A is defined, neglecting the small cor-

rections of Section 5,3.2s:

(25) A ^ Mt^C^^o^ _|

It can be shown that the uncertainty in A is given byf

26 ANreisoV

Since the two terms under the square root are each approxl-

mately equal to d , we have?

(27) ^ -- ^Atn .fY" ^
A "1 A

For example, assume A s «14, what TRUE coincidence itatis-

tical accuracy would be necessary to reduce the relative uncertainty

in A to 1^? The answer from (27) is d= .000869, And using (23)

assuming -n_= i/6 and a true coincidence rate of 10 counts per

minute, to attain this accuracy would require 528 hours of run«=»

ning time! For this reason the uncertainty in A is somewhat larg®.

It was the practice in this experiment to run until ci = 8 + 33^10
"'^

which yields 6xl0"^ $ "V ^ loSxlO""^.
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We now wish to investigate briefly the interpretation of sta-

tistical samples. That is, if we take some readings each of which

has a certain plus or minus attached to it, and if we draw in the

curve which gives the least squares fit to these readings, then

we ask the question: ""How well do my observed points "fit" the

curve drawn through them?"" Or: "What is the probability that a

sample set of readings each chosen completely by chance, having

in mind the probability distribution at each point on the curve,

would give no better fit?"*" To answer these questions we use the

well known 'X test, whose table answers this question dlreet-

ly. If then, it turns out that, say 99 times out of a hundred

chance alone would give a better fit, then we have a strong sus-

picion that our apparatus is not performing its function of ""ran-

dom sampling'* properly. However, it must be borne in mind that

we are not sure that the apparatus is malfunctioning. Perhaps

we have Just measured that sample which is the one in a hundred

instance when chance would give Just the fit we measured, or w©rse«

And if we take several hundred samples we are bound to run across

this situation. This is to say that the probability distribution

as given in the" *X table is spread evenly from zero to one."

In such a situation, if a repeated group of readings give the

same probability, then in only one case in ten thousand would two

such random samples appear in succession with such a *X ; then

we would be well justified in looking to our equipment for non«=»

random errors. One characteristic of the *X test, however,

is that it is concerned with three or more readings, or samplee.

We develop below a way of looking at just two readings.

Let us ask ourselves the following question: "•'Given a nor=

mal distribution, what is the probability, TcXo^ , that
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cesslve samples taken from this distribution will lie Xo or

greater standard deviations apart?" The following expression (28)

gives the required probability, where the terms used together with

a "picture" of the integrating process is shown in the diagram,
+ CO - ^' "^^o

(28) P(x«^ =
5 Pi:^,,^-'^ ?cn.-,dxj'l'^
- ca Xt — Xo

ifl plotted in Pig. 5, 3, 4-2, and is tabulated below for

some rational values of Xa .

Xo Trxo^

a 1,000
.25 ,870
,50 ,733
,75 .595

1,00 ,479
1,50 ,287
2,00 ,157
3.00 .033

In using this data one must remember that one started with

the assumption that the two samples were from the same normal

distributionj it does not neccessarily follow that the inverse

is inferable, that given two samples of a given separation, that

Fig. 5,3.4-2 gives the probability that they are from the same

distribution. It may happen that there are two separate distri-

butions very close together, and the probability that the points

are from the same distribution in this case would be less than

indicated in Fig. 5.3.4-2. However, with this limitation in mind

it seems that Fig. 5.3.4-2 is useful in that it gives at least

an upper limit of the probability that two points are from the

same distribution."
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Section 5,3.5 - Decay Scheme Corrections

The observed counting rate must be corrected for certain

features of the decay scheme. In this experiment the most im-

portant correction of this nature, and only one of any conse-

quence, is that due to the annihilation radiation arising from

114
the positron component in the decay of In .

The decay scheme as verified by Johns et. al. (1J54) Is

shown in Fig, 4-1, The annihilation radiation of the positron

component although exceedingly weak is sufficient to cause a

troublesome, unwanted coincidence counting rate at angles near

180 degrees, which if not corrected for will yield an erroneous

value of the anisotropy. The method by which this problem is

attacked is discussed at length in Appendix Ip The result is

that the positron corrected anisotropy is obtained by simply

subtracting a factor^p ^ C (3 «. \ ) from the observed anisotropy

(1) A"=^"'-^

Each of the observed points are then corrected for posi-

trons by applying the following relation:

(2) Co2^(eV= Cc (6^ - (3(6^ Co (so^

where 2'

(3) (^ (Q^ = H/e^ ^

where H-j_CG} is the positror annihilation radiation angular

correlation function normalized so that H-j^^^^^^^ ^^ ^» using

the extended source geometry and a window base line of 430 KEV

in each channel.

Another possible source of error which bears mention is

the presence of the 57ff KEV transition from the 1856 KEY level
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114
In Gd • However since this transition is very much weaker

than the 722-556 KEV cascade (relative intensity ^ .05) C1J54},

it is neglected. All other gamma rays presnt in the decay are

effectively excluded by energy selection.
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Section 5.?. 6 - Curve Fitting

After data reduction the observed function W'''(e} was fit

to the observed points by a least squares procedure. Where:

(1) w"»(e)= a^" -|- a^"cos^G -|- a^-'cos'^e

!rs

minimize 'X where:

The parameters, a'*', a'*', a''*, are varied so as to

(2) 7.^ = H
L

-

NT.L(eO-W"VeL)"

Since approximately equal times were spent on each point:

Then we can write:

^,^
_ z.

l

A total of 10 points were measured, 5 each in the arcs from

90 to 180 degrees and 270 to 180 degrees. Since there v;as no

phase shift in the correlation the points were numbered as follows:

e 90,270 120,240 135,225 150,210 180,180

i '^O 1 2 3 4

By minimizing (4) with respect to the parameters we arrive

at a perncription for the parameters:

(5) a^" — -^ ( 31yQ -^ 9y^ — Sy^ ~ 5y^ + Sy^}

a^" — -^ (-108yQ -I- 26y^ + 80y^ -f- 54y3 - PSy^)

a^" = -^ C ley^ - 8y^ " ^^y^ - By^ + 16y^)

Where:-

(6) y^ = N-rft.f0Ll
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Section 5,2,7 - Data Analysis Procedures

In this experiment we observed the following:

(a) Complete Correlation - Enough points v;ere observed to

make a specific determination of the correlation coefficients.

This was done only in the case of the undisturbed correlation

(dilute aqueous solution of InCl^).

(b) Anlsotropy Only - Measurements taken only at 90-180

and 270-180 degree points. This was done in the case of all

the disturbed correlations (glycerin solutions, salts, and

frozen solutions), and also in case of undisturbed correlation.

The procedure in case (a) is as follows:

1, Normalize the data, i.e. correct for systematic errors

as discussed in -Section 5,3,2.

2, Obtain a least squares fit and calculate tentative

coefficients.

3. Using results of "2" make first approximation of po-

sitron correction.

4. Using results of "3'" correct observed points for po-

sitrons and recalculate the coefficients.

5. With these new coefficients recalculate positron co-

rection for the second approximation.

6. Repeat "4*"' and "5'" until two successive approximations

of the coefficients do not change the positron correction.

7, Correct for finite source size.

8. Correct for finite detector angular resolution.

9, Find correction factor for anlsotropy in undisturbed

case and apply this to results of the measurement of '"anlsotropy

only'" in the unspoiled case,

10, From '"9"' and "S" determine final coefficients by fin-

ding the center of the areas of overlap in a plot of one cor-

relation coefficient versus the other (See Fig, 5,4,3-1),
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Solid, Polycrystalllne Sources

In Chapter 3 we discussed a theory due to Abragam and Pound

(1A53) related to the correlation spoilage in polycrystalllne

sources. We will now apply this theory; the justification for

the application will be discussed in Chapter 6,

We proceed by obtaining the observed anisotropy, corrected

for positrons but not for geometry, of the correlation as a func-

tion ofilo^N where JLo is the angular frequency associated with

the raaximura electric quadrupole or magnetic dipole level split-

ting, i.e. the energy difference between the highest and lowest

levels in the previously degenerate state which has been pertur-

bed by the Interaction, From the plots of the above functions

(Figs. 5.4,4-2,3) we can obtain a lower limit foril^tN for each

assumed interaction. Then knowing an upper limit on '^*v , the

nuclear lifetime of the intermediate state, we can set a lower

limit on -TLo ,

Let A''" be the observed anisotropy corrected for syste-

matic errors as defined in Section 5,3,2,

A' ' be the observed anisotropy corrected as above but

also corrected for positrons, and

A be the observed anisotropy corrected as above but

also corrected for geometry.

The anisotropy is defined:

(1) A _ W(180) _ 1
W(90}

If we express the correlation function in a LeG-endre poly-

nomial expansion:

(2) W(G} = 1 +AgPc>(cose) -h A4p4(cose}

then the anisotropy is gi\'en by:
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3) A — ISAg 4- 5A 4

S — 4Ag -h 3A,4

From (AT-36):

(4) A' • = A" • -
^

where 6 is the positron correction term.

In Section 5.3.3 is was shown that for sufficiently small

values of ^o and ^^ the geometrical corrections cause:

(a) no mixing of the coefficients for finite solid angle

effect, and

(b) only negligible mixing of the coefficients for finite

source effect.

We can then write:

(5) !?'• = 1 -h FoAgPoCcose) + F4A4p4(cose)

where the F's are oiraple reduction factors arising from

the above mentioned geometrical corrections.

Then by (6) and (3), the observed unspoiled anisotropy

corrected for positrons becomes:

(6) A" — ^SFgAg -f- 5F4A4

8 -4F2A2-f 3F4A4

And from the spoilage theory mentioned above, the spoiled

anisotropy as a function ofXlo*t»», defined above, is given by:

(7) A"(iL»^*) — l^F2G2(il.TjA2-|-5F4r^4(ilc.'bN)A4

8 — 4F2a2(ii,^^ )A2 -|- Z>F^G^iD..t*. )A^

v;here the CJ' s are expressed in Chapter 3 as a function of

LOctN vvhere f-O© is the angular frequency associated with the mi-

nimum level splitting in each case, and F:,Ai,are the undisturbed

coefficients corrected for positrons but not geometry.

We restate the expression developed in Chapter 3 for the
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(l*s for the two types of interactions in polycrystalline source!

assuming classically describable fields of axial symmetry.

Ca) Slectric Quadrupole Interaction:

(8) Go.(^uo^O= .372 .057 > .343
.4-

.228
1^(JJ^^N' i^goj^tri" n-isouc-^tiy'-

G. iijon^N ) -_ .460
4e

.191 .'254 .095

1+ ajrh^'" If 9 0)0^ t^^ H-16 UJoIn''

(b) Magnetic Dipole Interpction!

(9)' G^ ('-'--tv) =r .2 ^ ,4

(}.^(uj.ri-^) = .111 _i~ .222'4m

1 -I- oio" rv

1

+

l-ftUo^t-
^> I •

1-h Aujo-T^N^

1

If 4'uc^tN'-

^—1 + _i 1

where the subscripts "e" and ''r^. " refer to e'.ectric and

magnetic interactions respectively.

V/e no\'i wish to express XLo in terms of a3o , both of which

iiave been defined above:

lllectric Q,uadrupole Case:

It can be--shown that the minimum level splitting In an

axially symmetric field for integral I is given by:

where eO is the quadruoole moment as defined in Chapter 3

and [ CT"^
J

is the gradient of the electric field along the axis

of sjTTimetry.

The maximum splitting is given by:

(11) ^e = ^GlC'^O^X
ti >^(zi-n
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So that the ratio:

(12) -TLoa = u^a& X (For integral I)

Magnetic Dipole Case:

The minimum level splitting here is Just the angular ve-

locity associated with Larmour precession!

(13)' LO«cv^^ = -ti
.H

1i X

where ^ is the magnetic moment, and the maximum split-

ting is:

(14) JLorvvN =. —cL- (for integral or half
1S integral I

)

So that the ratio:

(15) -TLorcrx r=r LJLJclr^f^ Zl (For integral or half
integral I)

We use-TLo^as an argument instead of ujot^because as the

fields take on lower degrees of symmetry than axial the angular

frequency associated with the maximum splitting, -H-orw,, to a first

approximation remains constant, while this is not necessarily

so for ijOort>ft,"

For Illustrative purposes only we also include in our

plots (Figs. 5,4. 4-2, 3} the previously discussed (Chapter 3)

square wave G' 'g.

^K

(16) C\ (aj-'tv) = 1 - e ^-^ sr.lnhC ZTTT. )

'' TtT-
Q Lu^Tv —

(

where for 1=2 we have (again from Chapter 3):

(17) 5 Sx 4- q ^^ = 4

where the 5s i are the half widths in radians of the

square waves.

The purpose of including (17) and (IS) is to show graphically
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how CJ' s of a widely different nature than those based on condi-

tions of axial sjinmetry will yield curves of approximately the

same shape near the origin ( where ilo'^N —>-
)

Liquid Sources:

The analysis of the spoilage of the anisotropy in liquid

sources as a function of the viscosity of the source shows that

we cannot apply Abragam and Pound's (1A53) liquid theory (Chap-

ter 3), The reason is as follows. Abragam and Pound develop

coefficient attenuation factors for liquid sources in the form:

(IS) G-K = !

where Xk is directly proportional to the '"correlation time"",

Lc , of the liquid. Correlation time can be thought of as

the average time it take for an ion in a liquid to interchange

its neighbors. As tc gets much larger than ^n we approach

the condition of the solid state; hence for the liquid theory

to apply t'c <'tf* . We observed hov/ever, no detectible dimunition

in the anisotrops'' of the liquid Gources until t^c was of the

-7
order of 3x10 ^ seconds which is at least three orders of mag-

nitude larger than '^n ; hence we cannot apply the liquid

theory to this spoilage. This point will be discussed further

in Chapter 6. We present therefore the liquid data merely in

tabular form.
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Part 5.4 - Results

Section 5,4.1 - G-erieral

In this section we will consider only the results of the

experiment and lea-^/e their interpretation to Chapter 6,

Lifetime measurements were taken on the intermediate state

n 4
of Gd by the method of delayed coincidences using a coinci-

dence circuit similar to that of Bell et al. (lB52).

Result: ?-w 4 ^-3 % 10 6.

Section 5.4.2 - Corrections

Becay Scheme Corrections

Calculation of A (A.I-31)

Following are entries for equation CAI-51) for the

calculation of the positron correction, 6 . Only sig-»

nificant plus and minuses are shown.

juLy ^1.39 fJ.2^ — 1.23 fLzj - 1.31

fjL^-0.65 /JL3^-0.49 /x^^— 0.57

S^ :i^2.79(6) S-, =-3.14(6) S_rz^2„96(6)
Oa Od

8. =3.50(5) S., =4.20(5) S.- 3.84(5)
la Id 1

'^'2a^^"^^^^^
82^-3.19(6) Sg = 2.78(6)

Cog (90) =^1.27(3) Note; Numbers In paren-

^Ip (ISO) = 2.79(3) theses indicate 10 to

CigpOO) = 3.04(2) the power.

^2p (180) = 6.19(4)

a^ ==0.039 ± .046 *
o^ p := 4(=.5) i (-S)

a^ =0.085 + .038 o< ^ == 3o5(-2)

CO3 = 2.48(-2)
* Second approximation did not change

Entering these figures in CA1«31) we obtain!

A -^ 0.016 jl .004
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G-eometrlcal Corrections

Finite Source Correction

For significance see Appendix III.

Then (AIH^7) becomes:

Cq = 0.972Bo -h O.ClSBg -h O.OO9B4

Cg = O.942B2 -4- 0„084B4

C4— O0893B4

Finite Solid Angle Correction

See Eq. (5.3.3-13) and Fig. 5.4.2-lJ

Q.2 = 1.190,0 Q.4 = I.68Q0

Section 5.4.3 - Undisturbed Correlation

Creneral procedure

a. Performed least squares fit on points corrected for syj

tematic and decay errors as defined in Section 5.3.2.

b. Applied positron correction to points and obtained ano-

ther least squares fit,

c. Corrected the LeGendre coefficients for finite source

effect, "

d. Corrected the LeGendre coefficients for finite solid

angle,

e. Introduced the closely observed and corrected ""aniso-

tropy only'" measurements in comparison with ""d'^' and obtained

final coefficients by using center of '"overlap '" of the two

areas in Fig. 5.4.3-1.

These results are tabulated below.

W(e) = 1-f agcos^ -h a4G0S^9 z=z 1 -\- AgP^Ccose)

-f A4P4CCCS9}

^ 7? -
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Procedure ag a^ A

a

2 *4

.039 ±.040 .087 ±.041

b .059 ±.040 .052 ±.039 ,067J|^.035 .01211.009

c
* .070±.037 .013±.010

d .044±.030 ,100+ . 075 .083 ±.043 .022±.016

e .055 ±.062 .099+. 070 .090±.011 .022 + .016

Experimental points together with curves '"b" and "e" are

shown in Fig. 5.4,3-2.

We list below the possible correlation coefficients for

various spin assignments in the cos^ scheme from (1H40) for

pure multlpole transitions of order L. The spin assignments of

the three states Involved are given without parentheses; the

multlpole order of the transition is given in parentheses.

Since Cd is an even-even nucleus we assume the ground state

has a spin-parity assignment of zero-plus and the first exci-

ted state two-plus;- hence for the second transition the only-

possibility is electric quadrupole, E2.

Group a - First Transition Dipole - Second Transition

"^^uadrupole:

1(1)2(2)0

2(1)2(2)0

3(1)2(2)0

Group b - Both Transitions Quadrupole:

0(2)2(2)0

1(2)2(2)0

2(2)2(2)0

3(2)2(2)0

4(2)2(2)0
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-0.333

0.429

-0.103

adrupole:

3.000 4.000

5.000 -5,330

-1.154 1,231

-0,333

0.125 0,042
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As will be shown in the table which follows, none of the

observed coefficients supports any possible spin assignment In

Group a. In droup b the 4(2)S(2)0 agrees with Stcffen flS51)

but none of the others; however it is closer to the others thar.

any other assignment in Group b. However, Steffen and 2obel

(1S52) have shown subsequent to Steffen's first measurement of

this correlation- (1S51), that the second excited level (1278

KEV) in Gd is fed directly from the ground level (one-plus)

of In by K-capture (See Fig. 4-1) which indicates a spin

114
of two for this level in Cd . The assignment of one-plus to

114
the ground level in In is based partly on the election rules

114
for the beta decay to the ground state of Sn • This proceeds

by an allowed transition (log ft—4.5), and since the ground

114
state of Sn has a spin assignment of zero-plus (being an even-

114
even nucleus), the ground state of In must have a spin-parity

of one-plus or zero-plus on the basis of the selection rules,

ll4
The K-capture transition to the second excited state of Cd ,

114
being allowed, implies that the spin of this state (in Gd )

is zero-plus or one-plus or two-plus. If it were zero-plus,

1 14
the first tranaitlon would have to be E2 and the Cd cascade

would be 0(2)2(2)0, with no possibility of modification by multi-

pole ifilxtureB. And as will be seen, this fits no observed cor-

relation; hence, we can eliminate zero-plus. Of the two remai-

ning possibilities, one-plus or two-plus, the former is ruled

out because it is not possible to find a multipole mixing ratio

which will fit any of the observed correlations, whereas as will

be seen, this is possible with a spin-parity assignment of two-

plus, yielding the following cascade: 2(1,2)2(2)0. In addition,
114

In assigning two-plus to the second excited state of Cd , we
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are supported by the knowledge that most other even-even nuclell

have either two-plus or four-plus for this level.

We find that we can obtain a good theoretical fit to the

observed curve by considering the first transition to be a mix-

ture of Ml and E2. From the tables of Ling and Falkoff (1L49)

we construct Fig. 5.4.3-3 which gives the LeG-endre coefficients

of the correlation as functions of the quadrupole mixing ratio.

In Fig. 5.4.3,-3 the curve Ag is part of a tilted eccentric el-

lipse and A4 is a straight line; only that part of Ag correspon-

ding to a relative phase of zero between the quadrupole and di-

pole matrix elements is given, for the best fit is in this re-

gion. Using Fig. 5.4.3-3 we obtain the mixing ratio and resul-

ting theoretical coefficients. These are given below in compari-

son- with those of Steffen and Zobel (1852) and Johns et al»

(1J54):

E2 i%) Ml {%)

8teffen and Zobel 4.4 95.6

Johns et al. 4.0 96.0

Daubin 4.2-I-.I006 95;S 1 .006

Following is tabulated the coefficients as observed by

various workers:

rier. ap a^ Ap A^

1K52 .084 .106 .111 .023

1J54 -.0028 .190 p087 .059

1351 .125 .042 .103 .009

1352 .090 .070 .096 .015

.055 .099 .090 .022
it .062 ± .070 ± .011 ± .016

f. Theoretical .086 .064 ,090 .014
2(M1,E2)2(2)0
E2 - 4.2 %
Ml = 95.8 %

With the exception of ''c'" these curves are shown In Fig, 5.4.3-4.
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a. Klema & McQ-owan

b. Johns et al.

c. 3teffen

d. Steffen & Zobel

e. Daubin
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Section 5,4,4 - Disturbed Correlations

Polycrystalllne Sources

See Section 5,3,7 for a discussion of how the following curves

are constructed and the meansing of the different paramters used.

The source of InCl« dissolved In a dilute aqueous solution?

of HCl yielded the true, or undisturbed, correlation. This- will

be discussed further in Chapter 6, Since we use the anlsotropy

80 measured as a starting point for the curves in Figs, 5,4,4-2,3,

we list below the apparently undisturbed anlsotropy together with

the correlation coefficients:

A' ' (0) = ,124 + ,009

A^'(O) = .074± ,037

A^'(O)^ ,015 4: .012

The observed anisotroples for the various polycrystalllne

sources are given belows

Source Description A" '

(1) InCl3 Salt .097 +.013

(2) Frozen ('--104°C) dilute .102±.011

aqueous solution of InCl^

•in HCl (.4N)

(3) Frozen (/n/-104°C) dilute .087 ±.010

solution of InClg and HOI

in > 99^ glycerin,

(4) Average of (l), (2), (3) .095±.007

(5) Average of (2), (3) .095±,007

In Fig, 5,4.4-1 we show the theoretically predicted per^

turbed anlsotropy based on? Abragam and Pbund" s theory of clas-

sically descrlbable, axlally symmetric perturbing fields and

an electric quadrupole interaction (1A53) (See also Section
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5,3.7 and Chapter 3). The purpose of this plot is to show the

overall shape of the function. The predicted anisotropy A'*,

corrected for positrons but not geometry, and normalized to the

value actually obtained in the undisturbed case, is plotted a-

gainst the magnitude of the interaction, .(Io'^n , where JTo is the

angular frequency associated with the total quadrupole splitting

(Eq. 5.3.7-11)'. Also shown is the "hard core" anisotropy to be

expected from fields of rhombic symmetry for 1=2. In this case

the "hard core" 0' s are G2=G4 = 2/^ (1A53)

In Figs. 5,4.4-2,3 we again plot theoretically predicted

anisotropy normalized to the undisturbed value versus magnitude

of the interaction using the same total splitting angular fre-

quency discussed above. In both Figs. 5.4.4-2 and 5.4.4-3 w©

assume axially symmetric, classically describable fieldsj- in

the former we assume an electric quadrupole Interaction and in

the latter a magnetic dipole interaction. The elliptic looking

curves drawn within the statistical limits of the various ob-

served points represent approximate lines of equal probability

for one standard deviation, i.e. 66% of samples should lie within

closed curves^ The lower vertical tangents to these curves re-

present the lower statistical limits of the interaction,ilo'tw ,

The observed anisotropies of sources (1) and (5) as defined

above are considered.
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Liquid Sources

We tabulate the results of the observations on liquid

sources. See also Fig. 5.2.2-2.

Temperature Viscosity Mean Correlation A'"' A''
(Deg. Cent.) (Centipoise) Time (Seconds)

,
.139 , .124

i .008 d: .009

,
.133

.
.118

± .010 ± .011

,
.133

,
.118

± .010 Jl .011

.
.107

,
.092

-±: .008 dz .009

,
.121

,
.106

X '010 JI -Oil

Note: Numbers in parentheses under "Correlation Time" re«

present 10 to the power indicated.

20± 3 1 (-11)

20+ 3
,

800
-•- 260

8(-9)

4 + i ,
4000

-T- 800
4(.8)

-14+2
,

33000
-h 10000

3.3(-7)

-28+2 600000
-1- 200000

6(-6)
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Chapter 6 - Interpretation and Discussion

Part 6,1 - Undisturbed Correlations

One of the questions frequently asked when a value of ani-

sotropy is alleged to be from the "undisturbed correlation" is,

'"How do you know the correlation to be undisturbed?" We shall

attempt to answer this question using two lines of argument.

The first involves a comparison with the results obtained from

Cd , and the second involves a method of successive approxi-

114mations among the results pertaining to Cd . In both arguments

we shall assume that in the dilute aqueous solution Abragam and

Pound's theory of spoilage in liquids applies; this is to say

that we will assume that ^<^ht although we do not know this

to be true with certainty in the case of Cd • Both arguments

make use of (3-26) which give the spoilage Gj^ factors in liquids

as a function of the electric quadrupole moment, lifetime, and

correlation time.

In the comparison of Cd with Cd in the aqueous solu-

tion, we begin by quoting from (2H53) a value of 500 mcs for

^-^—lA^^ where eQ-'--'--^ is the quadrupole moment of the first

exulted state of Cd , We make the further assumption that

[\\ J
is the same in the Cd aqueous solution as it is in the

114
Cd aqueous solution. We find that when these values are put

into (3-26) with the additional value of Tf^ ^ 2,3xl0" seconds

for the Cd"'--'-'^ lifetime and an estimation of lO"-'"-^ seconds for

the value of T^c. , that we have but negligible attenuation,

i.e. Gg ^ G^ CiS 1. Further, attenuation in the aqueous solu-

114
tion does not become appreciable in Cd unless we make the

114
unrealistic assumption that we have a quadrupole moment in Cd

111
about thirty times as large as that found in Cd . We sum-
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marlze "by saying that on the basis of this test, our aqueous

solution gives the true undisturbed correlation if we assume

that the ratio of the quadrupole moments of Cd^^^ to Cd"^-^-^ is

no larger than thirty to one.

To begin our second argument let us assume that out re-

sults from the dilute aqueous solution at room temperature repre-

sent the true unperturbed correlation. Then we use the aniso-

tropy so determined as a starting point for calculating the va-

lues of the interaction in the polycrystalline sources (Figs.

5.4.4-2,3). Then, let us take the magnitude of -^iM__A.2zl J go
h

determined and place it in (3-26), Just as we did in the first

argument with the results of the Cd interaction. If this In

turn causes a reduction in the ^' s from unity then we will ap-

ply this correction to the original anisotropy and re-calculate

the interaction. If, however, such a substitution leaves the

0^5;' s essentially equal to unity, then we can say that our aqueous

solution does indeed represent the undisturbed correlation. We

have also made the implicit assumption, which seems Justified

at least in order of magnitude, that the average electric field

gradient experienced by the nucleus in liquid sources is no lar-

ger than that experienced in polycrystalline sources. If we

make these substitutions we find again that the ^Jj^.' s again re-

main essentially equal to unity, and from this we conclude that

we may consider for our purposes that the aqueous solution yields

the truly unperturbed correlation.

In regard to the complete correlation, it is interesting

to not that our value for the mixing ratio in the first transi-

tion: Ml ->- .'958 — .006

E2 -> ,042 it .006

agrees within the limits of error to those ratios found both by
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Johns et al. (1J54) and Steffen and Zobel (1S52) (Section 5.4.3)

and thus lends added confirmation to the accuracy of these values.

On the other hand our fit to the theoretical curve based

on the above mixing ratios (Fig. 5.4.3-4) seems better than that

of the others. This adds credence to our values for the LeC3-en-

dre coefficients of the correlation:

Ag = .090 it .011

A^ = .022 ± .016

Part 6.2 - Disturbed Correlations

Section 6,2,1 - Polycrystalline Sources

Our results for the magnitudes of the interactions and mo-

ments are based on various general and particular assumptions.

We shall first state the assumptions, then our conclusions based

on these assumptions; then we shall discuss both the validity

of the assumptions and the firmness of the conclusionso*

G-eneral Assumptions:

1. The perturbing fields are classically describable.

2. The perturbing fields are static.

3. The perturbing fields are axially symmetric.

Particular Assumptions:

a-1. The interaction is electric quadrupole in nature.'

a-2. The interaction is magnetic dipole in nature.

b-1. The primary perturbing field is due to the crystalline

structure and the average electric field gradient at the

nucleus is about 1.6x10 statvolts/cm2,

b-2 The primary perturbing field is due to the electronic

cloud of the atom of which the nucleus is a part and the

average electric field gradient at the nucleus is about

4.' 5x10-^^ statvolts/cra^.

- 86 -





b-S The primary perturbing field is due to the crystalline

structure and the average magnetic field at the nucleus

is about IC* Oersteds.

b-4 The primary perturbing field is due to the electronic

cloud of the atom of which the nucleus is a part and

the average magnetic field at the nucleus is about

10® Oersteds.

Conclusions:

Let Al)e —

Let Al)nrs =

R.
1Y

no nrrv

Sir

where eQ is the nuclear quadrupole moment,

LLkIs the nuclear magneton, and

g Is the nuclear gyromagnetic ratio.'

Then we list below for the various sources, a lower limit

for the AV and the moments based on our known upper limit for

/ / -10 .

the nuclear lifetime I ^ 2.3x10 seconds), and the statistical

limits from Figs. 5.4.4-2,3:

Source: Partic. Assump.

(a) Magnitude of the Interactions:

(1) InCl^ Salt a-1

(2) Frozen Solutions of InClg a-1

(3) InCls Salt a-2

(4) Frozen Solutions of InCl, a-2

A lie, y. 700 mcs^
Atle, ^ 990 mes

Al/onm ^ 163 mce

At^orm i 214 mcs
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(b) Magnitude of the Moments

(5) InClg Salt a-l,b-l \Ql

(6) InClj Salt a-l,b-2
|
Cl

(7) Frozen Solution of InCl^ a-l,l>-l
| Q,

(8) Frozen Solution of InCl^ a-l,l>-2
| g^

(9) InClg Salt a-2,b-3
|

/i.

(10) InClg Salt a-2,b-.4
| ^

(11) Frozen Solution of InCls a-2,b-3 . ^
(12) Frozen Solution of InCl3 a-2,T>-4 i n.

>/ .60 »

>/ .21

>/ .85

>/ .30

>/ 42

;!. .42

>/ 56

>/ .56

-24 o
Note; The units for the quadrupole moment: xlO cm^.

The units for the magnetic dipole moments Nuclear Magnetons.

Discussion

That the fields at the nucleus are classically describahle

would hold in both the magnetic and electric cases if we could

neglect the excited condition of the cadmium atomic configuration

following K capture; for the ground atomic state of cadmium is

an S state. But from the discussion in Chapter 3 we see that

we cannot neglect the '^excited configuration effect"^ whose ge-

neral theoretical interpretation requires the introduction of

the quantum mechanical coupling between the nucleus and elec-

tronic configuration. This in turn would be complicated by the

uncertainty of the total electronic angular momentum, J, fol-

lowing K capture. However, as pointed out by Abragam and Pound,

in the case of the electric quadrupole interaction (particular

assumption a-l) we can still use the classically described

fields because in polycrystalline sources orbital electronle

degeneracies have been removed. This is not possible in the
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case of the magnetic interaction because of the remaining spin

degeneracy. This effect can be seen on semi-classical grounds

as follows. When a nucleus is acted upon by an external field

it also reacts upon the field; i.e. Just as it is possible for

an external field to induce nuclear transitions, it is also pos-

sible for the field produced by the nucleus in a transition to

Induce transitions in the configurations giving rise to the

initial fieldo' If the energy levels of the states giving rise

to the initial are well separated (no degeneracies) then the

nuclear transition reaction can cause no transitions among

these states; this corresponds to the classically describablc

field. However, on this basis it is easy to see that the

reaction due to a nuclear transition could induce transitions

among degenerate states which are the sources of the initial

field. These '"reaction induced'" transitions among degenerate

states could, in turn, alter the initial field. In such a situ-

ation the only valid treatment Is a quantum mechanical one.

With this limitation clearly in mind, we have made certain cal°»

culations (assumption b-4) in which we neglected this quantum

mechanical cotjpliag in the case of magnetic interactions with

the electron cloud, realizing that there still remains a pos-

sible spin degeneracy even in polycrystalllne sources. Howeverj

in an order of magnitude estimate, as this calculation is, this

procedure seems Justifiedo In the light of the abovej conclu-

sions (9)-(l2) should be viewed with a certain amount of reser-

vation,'

That the perturbing fields are static seems to be well ta-

ken. (1H52) indicates a shell relaxation time of greater

—8
than 10 seconds for ionic crystal impurity centers which is
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some two hundred times as large as our nuclear lifetime. Hence

the Od nucleus experiences essentially a constant perturbing

field due to the "quasi-static configuration" effect (Chapter 3).

That the perturbing fields are axially symmetric is not at

all clear. As discussed in Chapter 3 even if an individual

crystal did provide axially symmetric fields (where two of the

field gradients are equal) at the nucleus these fields would

probably be distorted by inter-crystalline pressures in a poly-

crystalline source and by nuclear recoils out of axially symme-

tric sites following K capture. However, a redeeming feature

is that the hard core values for rhombic fields (where all three

field gradients differ) are not much different from the hard

cores for axially symmetric fields; as we saw In Chapter 3 for

1= 2:
Axially Symmetric Rhombic

Or^illm) 13/35 10/35

a^illm) 29/63 16/63

And from Fig. 5.4.4-1 we see that the hard core anlsotroples

in the two cases are?

A(lim)

Axially Symmetric .046

Rhombic .035

The (^{SL^%) for axially symmetric fields fall off quadratically

withru'^rv as5Lj'>»v —>- 0, with a second derivative nearly equal to

the square of the angular frequency associated with the total

splitting (il« ) times the nuclear lifetime ( ^t^ ) (3-21).

Simple arguments indicate that this same general quadratic be-

havior with the same relation to total splitting should apply

for fields of lower symmetry. Since the total splitting is
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approximately Independent of the exact degree of field asym-

metry for a given value of maximum field gradient, we would ex-

pect that the G^ for axlally symmetric and the Gr-^ for rhombic

fields would lie very close together for small values of the

argument , SttSttt ,

In regard to particular assumptions a-1 and a-2 we will make

no effort to favor one type of interactiono Abragam and Pound

(1A53) show that even if a magnetic decoupling experiment shows

negative results, i.e. no detectable increase in anisotropy,

as reported by Albers-Schonberg et al. (2A53), this is not con-

clusive to the absence of a magnetic interaction. We will thus

keep a-1 and a-2 on an equal footing and not try to argue for

either. However, if the Interaction is electric quadrupole

(a-1) our quantitative results are in general more credible than

otherwise because of the discussion above relating to classical-

ly describable fields.

As for particular assumptions b-1 to b-4 relative to the

sizes of the fields; these are only order of magnitude approxi-

mations and are not to be taken too literally. This indeed is

one of the greatest obstacles to the more fruitful use of dis-

turbed angular correlations for the determination of moments,

i.e. our ignorance concerning the magnitude of fields experienced

by the nucleus." The value relating to the electric field gra-

dients in crystals (b-l) came from the appendices of (10-53) by

15averaging a number of cases which ranged from 8.3x10 to 3.5x

10 statvolts/cm . These values of the gradients were cal-

culated from instances where both Q and the splitting in mega=

cycles were known. The value relating to the electric field

gradient due to the electron cloud (b-2) is from (1T49) and
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is based on the gradient due to the p-electron of lodlnej this

would correspond roughly to one of the first excited states in

cadmium. The values for the magnetic fields (13-3,4) are from

(1H52) and (1F52).

The only conclusions backed by direct experimental evi-

dence relative to spoilages are (l) - (4) relating to the magni-

tudes of the splitting frequencies; these are to be taken as

firm within the limits of statistical validity and of the indi-

cated assumptions.

Conclusions (5) - (12) concerning the moments themselves

are uncertain due to the obscurity as to the sizes of the per-

turbing fields as mentioned above. However, it seems we can e-

liminate conclusions (9) and (ll) as being far too large based

on typical nuclear magnetic moments; then we can say that if

the interaction is magnetic it arises from the "quasi-static

configuration" effect, i.e. an interaction between the nucleus

and the magnetic moment due to its own electron cloud. For

comparison purposes the quadrupole moment of the first excited
-I rjc

state of Pd , an even-even nucleus, as estimated by Abragam

and Pound (lA^S) is at least .2x10"^^ cm^.

The complexities of the processes going on in the source

introduce a great deal of uncertainty in the results, and it

must be borne in mind that an exact theoretical calculation of

the "quasi-static configuration" effect may well lower our

values of the interaction. However, if the highly excited state

of the electronic configuration following K capture is primarily

responsible for the perturbing interaction, as it seems to be

in the case of Steffen (1353), then these large fields could

provide an excellent means for the determination of the moments
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—10
of very short lived ( < 10 seconds) excited states. There

seem to be three great experimental hurdles at present in the

way of specification of these moments more precisely:

(a) Measurements of nuclear lifetimes less than 10" sees.

(b) Measurements of the magnitudes of the fields experienced

by nucleil under various conditions.

(c) Specification of the nature of the interaction, i.e.'

whether electric or magnetic in nature**

Furthermore, supposing we could perform (a) and (c), but

not necessarily (b), then comparative measurements of the spoi-

lage due to the '^quasi-static effect" would give us the ratio

of moments for different isotopes of the same element. Or,

using known moments, the spoilage ratio in two isotopes could

give us information as to the atomic physics of the "quasi-

static" field;

Section 6.2.2 - Liquid Sources

The data from the variable viscosity glycerin solutions

yields no information as to the magnitudes of the interactions.

This is because (as can be seen from the table in Section

5,4.4) at the viscosity at which spoilage may perhaps be ta-

king place (about 3x10 centipoises) the theory of spoilage

In liquids (Chapter 3) developed by Abragam and Pound (1A53)

no longer applies. At this viscosity the liquid correlation
-7

time is about 10 seconds which is some 700 times as large

as the nuclear lifetime, and a basic postulate of the liquid

theory is that the correlation time be shorter than the nu-

clear lifetime. At such a large correlation time, our nucleus

-10
with a lifetime of less than or equal to 2.3x10 seconds, ex-
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perlences practically static fields very similar to those asso-

ciated with the solid state.

Another phenomenon in the liquid sources that bears inves-

tigation is that there is no observable spoilage in the range

where lOT (^^'^^c^lCD'?*^; here the nucleus is in a region of transi-

tion where it is begining to experience fields which are prac-

tically constant, and hence related to polycrystalline pheno-

mena. A possible answer may be that in liquids even of this

high a viscosity there is some mechanism which shortens the

atomic shell relaxation time appreciably, and thus reduces the

average field at the nucleus.

Part 6.3 - Statistical Validity

In arriving at the statistical validity of the results we

will make the following tests;

1„ A Chl-Square test on the average anisotropy of the

four sources, viz., aqueous solution at room temperature, InCl^

salt, frozen aqueous solution, and frozen glycerin solution,

all considered simultaneously.

2o A Chl-Square test on the average anisotropy of the

last three of the above mentioned sources considered together,

3. The two-point statistical test developed in Section

5.3.4 wherein, if one assumes two points come from the same

normal distribution, the probability of finding them separa-

ted by more than so many standard deviations is given. When

worked in reverse, i.e. given two points not closer than so

many standard deviations, it gives an upper limit on the pro-

bability that they are from the same normal distribution. This

gives only an upper limit due to the possibility of their

being from different distrlbutionSo We will perform this
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test, comparing the aqueous solution with each of the three

other sources.

Results of the Tests:

Test No. Probability that a random sample gives no

better fit:

1 .041

2 .59

Upper limit on probability that two given

values are from same distribution

3 Aqueous 3ol. - InCl^ Salt - ,032

Aqueous Sol. - Frozen Aq. Sol. - .089

Aqueous Sol. - Frozen Olyc. Sol. - .001

None of the above tests is in Itself conclusive. The fact

that Test 1 gives a probability of .041 is certainly not con-

clusive evidence that the aqueous solution and the other three

sources do not give results which really lie on the same disttl-

butlon. However, from Test 2 one can state with a high degree

of certainty^ that the three polycrystalllne sources give re-

sults which lie on the same distribution or on distributions

which are very close together. When, on the other hand, one

considers Test 1 in the light of Test 2 and the fact that a

spoilage correlation actually seemed to exist, i.e. any de-

viation in the anlsotropy from the aqueous solution was in

the downward directlan and this under conditions that predict

"spoilage'", then one has strong reason to believe the exis-

tence of a true effect.
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Appendix I - Positron Annihilation Component of Coincidence Rate
T T >1

At 180 degrees the In cascade gamma coincidence rate Is^

"polluted* with a rate due to the positron annihilation component

of the decay. We wish to determine what fraction of the observed

true coincidence rate at 180 degrees is due to this annihilation

component.

We will consider three different sources, which we will de-

signate as follows:

No - In extended source

N» - Na extended source

22N^ - Na point source

Notation::

Cjl) - effective counter solid angle

£ •=• counter efficiency

^ «= channel factor, i.e., fraction of detected

pulses falling within '"window**.

The probability that a single gamma ray of energy E, emitted

Isotropically, will register a single channel count in the L, th

channel is given by;-

Note that all three factors are energy dependent.

A more precise definition of Cjo and hence of ^ will be

presented later (App. II);" for present purposes, however, we

may speak as though the counter had a uniform efficiency E for

all gamma gays within solid angle C_u
, and zero efficiency out-

side

We designate the In^l"^ branching ratios as follower

O^p = positron emission

^K •= electron capture for the process which

leads to the 722=556 KEY cascade in Cd"^"^'*.
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The Intensitlee of the various gamma rays are as follower

c/k No - Each of the two In cascade gammas

Z.c5Cp Ho - Both of the In^^^ annihilation gammas

NL - The Na cascade gamma ( 3 -^ cascade) i."ij2.

Z NL - Both of the Na annihilation gammas ^ - 'j^l

In this discussion we will consider gamma rays of four dif-

ferent energies. For simplicity in notation each energy will be

represented by an integer as follows;

1 ^ 722 KEV

2 - 556 KEV

3 - 511 KEV

4 - 127? KEV

Single Channel Rates

Let the c, th (l^a^b ) channel rate for In"^-^^ be Sol

Let the l. th (l^o.^^) channel rate for Na^^ be Sic J = lj2.

Then?-

(1) Soc = No[o(K (XiL +Xzl1 + ^oCp'

but since o( p« oCk , (l) becomes?:

22
and similarly for Na f

(3) SJl = ^'-• (Z\zL +\4L^ si' -1)1

In order to simplify the following derivations, we will us©

a term we call '"the"* single channel rate, So „ In order to pre-=

sent the relationship of So to Soo. and 5ob , consider the case

where there Is present only a gamma ray of energy J . Then by (2)'s

(4) sSoL = ^K No Xjil J = 1,2_

If we define SoS

(5) 5o = -/ 5.0. 5ot
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and \i :

(6) So = c>(kMo\.

Then, by (5) and (6):-

(7) \i -
-I \\a\\\^

Extending the above to the case where there are two gamma

rays, we have a more general definition for the A S :

' (8)) So = c<K INo (\» -V\i?l

Coincidence Rates

Let the In cascade gamma coincidence rate be Coa^B^

Let the In annihilation gamma coincidence rate be Coptl^Oj

Let the Na annihilation gamma coincidence rate beCiPClSD^ ^-'j'Z.

Let the Na cacade-annlhllatlon gamma coincidence rate be Cjc^pClSO)

114
The In cascade gamma coincidence rate may be expressed as

follows? —

I

(9) Co<k(&"\ = O^K NoWCe^L^'CLXlh -l-\2a.\lbj

Combining (2), (5) and (8), we see that::

If we introduce (7);

(11) 2.\i\i_ = Vio-Ve-k 4- AlflLAlb

Then we have:

(12) Cq<^(Q^ =z zo<K N^ Vice> \Ai
The annihilation gamma coincidence rate at 180 degrees,

however, is expressed;

(13) Coo Cl^^) HZ i-

where -CL is a reduction factor due to the finite size of

the source, l.e.,Xl=l if the mate of every annihilation gamma

entering one counter, enters the other counter. One obtains this

with a centered point source, but not with an extended one.
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By (7)) we have directly:

(14) C.pCI^^ = ZOCP NoIX\3

31nce out knowledge of Na is limited at beet, we can be rid

of this factor by considering the ratio of (14) and (12) at 180

degrees: a.

(15) ^-P^'^^ = ^
We are rid of No again, and have another relation, if we

consider the ratio of the single channel to coincidence rates

at 90 degrees where we know there is no positron component. Then

by (12) and (8):

(16) So _ V>-^^^

We now define the term:

And for the sake of completeness:

(18) )Xl,a» = -^ L =a.^b
'

All
Since one can actually measure JlJLu2i by comparing relative

areas under lines in the single channel spectrum, it is worth-

while to show the explicit relation between (18) and (17).

From (11) we have:

And introducing (7) and the definitions (17) and (18):

(20) p^zi = V^[ |lo.jll +-|^b.2\J

or, the arithmetic mean of the single channel M- 5 ,

Then, by (17) and (16):

By substituting (21) into (15), again using (17), we come to:

If we compare the single channel to coincidence rates for the

Na sources, both point and extended, we find an expression for-Q-S
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(23) j:^. ^ CipCiSo^ St.

C zpC\8o1 3.

We get a grip on X^ by considering the coincidence rat©
on

in Na between the annihilation and cascade gammas, which for-

tunately is isotropic. By a procedure similar to the above we

obtain:

^ Si

By substituting (24) and (23) into (22) we have:

(25) Cop(>^^ _ . g^fi Vi^(Sc5^C^pC^%o^C i%p(sd^ S^Sx (l V 'L\><Z\) jX%\

Co^Ciio^ ~ ^o^K W ci^o-^ LU2. d-L^ i\^Cs,\(<\Ss 3? ( 1+ \^^\)'^

All terms have been expressly defined except OJ^ which is

defined more precisely In App. II, where also a method for mea=

eurlng it is derived.

The presence of the second power of V/ Clo') in (25) is unfor-

tunate, but not seriously so. It would be much neater to have

the ratio ^^^y\l, vappear. To this end, we will proceed to cal-

culate \4(J\(S] 2

(26) \ik&\ - \< C\ }- (X'L.Cos'^Q \-a.^CQS'&)

where K is a normalizing factor whose magnitude is deter-

mined by the following constraint:

(27) {\i(e^(iu2> -= 4-rr

If we carry out the integration in (27), it turns out that:

(28) K - [l ^- '/3 CXi.4- V5GL4]

*
(X,i_^ and •• GL^" are to be determined by a least squares fit

to the observed data.

By (28): A
(29) VICHo^ = K = [1 + '/3a.^ -^ */3 ^4]

And substituting (29) into (25) we have:

(30) CayClSo^ __ c^pVCSd^K CtpClSO^Ci^P CSo'^ 5q ^t. ( j-j- L)^3^^ M^'
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-.a define ft and 0" as f . - . vs:
j

;3g) (r = -^ C\i6)

Then (30) beeomesr

(33) (T = Vil£! (^

\tiL\lo)

And eincer

where CoCft'i Is the total , true rate, it is easily shown that?:

(36)

W {<\o^ CoCso^ \ 1
•+- IT

And by (32)

r

-^

We thus arrive at the pleasant result that the correction for

positrons to the observed anisotropy consists merely of subtracting

some number which we can calculate explicitly by (Sl)^ The pro-

cedure mug-t be carried out by successive approximations, however,

because of the uncertainty in K in (31).
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Appendix II - Effective Solid Angle

In equation (AI-25) we find the quantity c^ 3 , which has

been referred to roughly as the "effective relative solid angle".

It is the purpose of this discussion to obtain for this term a

precise functional form.

As a precise definition we use an equation similar to AI-14,

(1) Cip(iBo^ =JJhl^
^z

2_

(2) CO^ = ^-^

But we can represent A as the integral of some relative

response function, '(oL), over the counter, so normalized that;

where C3(^ is the angle subtended at the source between the

detector axis and the element of solid angle, dcjO ;

We can write the coincidence rate at 180 degrees for the

No (Na , point) source as follows;'

Substituting (4) into 12) we have?- remembering (3);

(5) CO. ^ -^ [^Fu^iu^T

We observe an angular resolution curve, GrCG'), from the di-

rectional correlation of the annihilation radiation. Making ^se

of the counter axial symmetry of the function r(oC\ and refer-

ring to the diagram on the top of the next page, we can express

- 102





Counter

G(&) as follows:-

(6) Qr(@) = K CRe*^ FCoC^ dcij

whereOC-=o^(@j9^C()'^ and K is an undetermined constant.

We obtain the resolution curve as a relative function,

HrS), where
:-^^^^ _ \ Ffe^Fu^d CjO

(7) H(@^ =

We can expand rO") In LeGendre Polynomials;-

(8) ^(Qi) = 2Z ^'^ '^'^ CCOS©^

and using the addition theorems

(9) r(:oc"j= ^Z^^L^""^^^^^^ ^"^^^&)

CO
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The terms In co8iL><^ vanishes on Integration over • Hence:
+1

(10) [ S
^^C&)da^ [\(&) = ^TT

^ ^^f
"^-^ ''^^^^ P^(^)i>^ p. (cos ®)

Making use of the orthogonality of Pn(x):

(11) [ \F^aidajHr@i = Ztt H ^-^ [^^^ Pm (coi ©^

Multiplying through by Pn(cos©) and integrating again we

come down to!
fl

From (8) we have?

(13) fir Co

Or, using (I2)s
+ 1 -,Z

4-1

(14) [(^Ra^dcD] = ZiT[_^\\(e)^Cc.sB^

Then by ( 5 )

;

(15) GO 3 =
-^l

H CG^d cco^e)

r^eidCO

Note!" A factor increasing the apparent source size for

annihilation radiation is the range of the positrons. Although

this is taken into consideration by (15) it may be of Interest

to know the positron "halo" around the source. In the decay of

114
In the positrons have a maximum kinetic energy of about 1

mev. This means that their range in the luclte source holder

is about ,13 Inches, as compared to length 1,10 Inches and dia-

meter ,37 Inches which geometrically define the extended source.
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Appendix III - G-eoraetrical Corrections For A Finite Source

^en one observes a directional correlation function, one

is observing a phenomenon in the macroscopic domain. The ob-

served function consists of a weighted sum of micro-scopic func-

tions, each related to an element of source and an element of

solid angle on each counter. The function, W(e), which theory

predicts is related to the microscopic domain, i.e. it is con-

cerned with well defined directions in the decay of a single

nucleus. However, the observed function, which for the pur=>

poses of this discussion we will designate W{®), results from

radiations proceeding in directions uncertain to the extent of

the counter solid angle and which result from the decays of mil-

lions of nucleii whose position is uncertain to the extent of

the source.

Let our observed function beJ

(1) ¥(@) = ) GiPi(cos@)

where is the angle between the axes of the two counters.

Note that we do not restrict the I's to even integers.

And let our well known micro-scopic function bes

(2) W(e) =: 1 -|-A2P2( cose) -h A4P4( cose)

where , as usual, is the angle between the propagation

vectors of the two radiations involved in the cascade.

We now ask, "What is the functional dependence of the

C»8 on the A's?"

To answer this we must first specify the model of our de-

tection system very carefully. For our first model refer to

the diagram on the next page.
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Detection

Sphere

Greoraetrlcal
Extent of
Counters

Counter Resolution Curve
,,

£ (oC^

In the diagram dn^ represents an element of source, acOi and

c1lO;5_ are elements of solid angle on the counters. The counter

angular resolution curve for one counter is shown, the radial

direction being the coordinate of relative response.

We make now a few comments about this modelo Certain
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artificialities have already been Introduced In that we are re-

presenting our counters by spherical caps concentric with the

origin. Obviously, this is only an approximation, since a real

counter has a radial extent and all detection does not take place

at exactly the same distance from the origin. We assume in this

model that the relative counter sensitivity, C (cL") , is symme-

tric about the counter axis and is Independent of the slight de-

viations from normality to the counter surface of radiations from

different parts of the source. This, it seems, is a good approxi-

mation for small sources, i.e. where the direction of the propa-

gation vector from various parts of the source to an element of

counter surface, does not change appreciably in direction. With

these comments in mind we can then write our observed correlation

function as follows:

Now, in principle it is possible to integrate (3) and thus

obtain the functional dependence of the C's on the A°s (1,2).

We would then be making our solid angle and finite source cor-

rections simultaneously and accurately to the limit of validity

of this model. But in practice this integration is exceedingly

tedious.

We now proceed to alter our model slightly to facilitate

the integration (3). We do this by separating the corrections

for finite counter solid angle and finite extent of source. ^

As was pointed out in Section 5.3.3 the corrections for finite

solid angle with a centered point source cause no '"mixing"* of

the coefficients. In this case, assume that our observed func-

tion is W' (e), where?
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(4) W'(e) =1-1- BgPglcose) + B4P4(cose)

Then it can be shown that:

^^^ ^2k = ^k^2k

where Agj^ Is the undisturbed coefficient and ^j^ is a simple

reduction factor, i.e. no mixing of coefficients occur.

If we now alter our model and assume that each element of

source can be first corrected in turn for solid angle without

introducing mixings we can separate the two corrections, i.e.

for finite solid angle and for finite source. This is equivalent

to saying that in our model the spherical caps can be tilted

slightly to bring each element of source in turn to the cap's

spherical center, without deviating too far from the true state

of affairs,"

Then from this model we can construct another diagram:

Counter #1

Counter #2
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Here we have already carried out the solid angle integration

80 each counter can be replaced by a spherical point at its cen-

ter:

(6) Vl (&) =
J T^TTX

expresses the observed correlation. If now we assume R^^^Rp

and that the source is in the form of an upright right circular

cylinder centered at the origin, of '*half-height'" Zq and radius

Tq then we obtain an explicit expression for the C°s (l) in

terms of the B's (4). Letting z^/H = J^ and ro/R = §o > ^^

have after carrying out the integration in (6) to second order

in ^^ and ^ -

C = C( 1|B - 3b )+ J,^ 7b )

3 '^** 5244 34

0^= B4 _|_ ^^( -3B4)-f-X( -2B4)

We can express the B's in terms of the A's by (5). We thus

have answered the original question, i.e. we have expressed the

C's in terms of the A's. Our answer is accurate to the limit

of validity of the second model discussed above.
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