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ABSTRACT

The convective heat transfer characteristics of six screen matrices

with a range of porosity from 0.602 to 0.832 are presented. The charac-

teristics were investigated over a Reynolds number range of 0.1 to 10,

based on hydraulic diameter. The data was obtained by passing air

through a 6 in. diameter woven screen matrix composed of three stacked

screens.

The heat transfer data was obtained by use of the transient techni-

que developed by G. L. Locke at Stanford University. Temperature-time

history of the downstream air temperature is used to determine the maxi-

mum slope of the experimental cooling curve. From a plot of maximum

slope versus NTU of the generalized cooling curve, which is a unique

solution for this type of cooling, an evaluation of the experimental NTU

is possible. With the NTU thus determined, the experimental value of

the thermal conductance coefficient, h, is readily obtained.

The present data is an extension of existing data and was obtained

using the same type of matrices but with a slightly different technique

and over a lower range of Reynolds numbers. The present technique in-

volves heating the screen matrix to a uniform temperature and introduc-

ing the screens into a stream of air entering at a uniformly lower tem-

perature. The temperature-time history of the downstream air is recorded

and available for analysis.

Application of the present data is thought to be useful in transpira-

tion cooling of environmental chambers subjected to an external heat

source.

ii





ACKNOWLEDGMENTS

The author wishes to thank P. Pucci, Assistant Professor of

Mechanical Engineering for his guidance and under whose direction this

work was carried out. My thanks also to C. Howard, Assistant Professor

of Mechanical Engineering for his aid and suggestion on various problems

encountered in this .project.

The assistance of R. Kennicott and J. Beck in fabricating and

assembling the equipment used in this work is acknowledged.

Particular thanks is given to the Cambridge Wire Cloth Co., Cam-

bridge, Maryland and to the Colorado Fuel and Iron Corp., Buffalo, New

York for their contribution of the wire screen matrices used in this

investigation.

iii





TABLE OF CONTENTS

Section Title Page

1. Introduction 1

2. Objectives 5

3. Summary of Contents 6

4. Review of Previous Work 7

5. Advantages and Disadvantages of Transient Method 12

6. Method of Presentation of Results 16

7. Description of Matrices 19

8. Experimental Apparatus 21

9. Experimental Procedure 24

10. Experimental Results 26

11. Discussion of Results 27

12. Comparison of Present Data with Previous Results 29

13. Conclusions 30

14. Recommendations for Future Work 31

15. Bibliography 32

iv





LIST OF ILLUSTRATIONS

Figure Page

1. Nst «Npr
2/3 versus %„' for 60 x 60 - 0.011 in.

screen matrix, porosity 0.602. 33

2. Nst »Npr
2/3 versus NR ' for 60 x 60 - 0.0075 in.

screen matrix, porosity 0.675. 34

3. Nst 'Npr
2/3 versus NRe * for 24 x 24 - 0.014 in.

screen matrix, porosity 0.725. 35

4. Nst 'Npr
2/3 versus NRe

» for 16 x 16 - 0.018 in.

screen matrix, porosity 0.766. 36

5. Nst »Npr
2/3 versus NRe

« for 10 x 10 - 0.025 in.

screen matrix, porosity 0.817. 37

6. Nst
1 Npr

2/3 versus NRe
» for 5 x 5 - 0.041 in.

screen matrix, porosity 0.832. 38

7. Photograph of balsa sliding drawer, matrix holder. 39

8. Plot of NTU as a function of Max. slope of Generalized
cooling curve. 40

9. {% Error in NTU)/(£ Error in Max. slope) as a function
of NTU 41

10. Flow diagram of test apparatus. 42

11. Photograph of balsa test core. 43

12. Photograph of thermocouple holder. 44

13. Photograph of test apparatus. 45





LIST OF TABLES

Table Page

I Details of Wire Screens used in test matrices. 46

II Heat transfer data - 60 x 60 - 0.011 in. screen matrix. 47

III Heat transfer data - 60 x 60 - 0.0075 inc. screen matrix. 48

IV Heat transfer data - 24 x 24 - 0.014 in. screen matrix. 49

V Heat transfer data - 16 x 16 - 0.018 in. screen matrix. 50

VI Heat transfer data - 10 x 10 - 0.025 in. screen matrix. 51

VII Heat transfer data -5x5- 0.041 in. screen matrix. 52

vi





TABLE OF SYMBOLS AND ABBREVIATIONS

English Letter Symbols

p
A - heat transfer area, ft

Af - matrix free flow area, A^ - & A^, ft2

Af f - free flow area of a single screen or a perfectly packed
screen matrix, A^ 1 ^ cc A^, ft2

Afc
- matrix frontal area, ft2

Cf - specific heat at constant pressure, BTU/(lbm °F)

c s
- specific heat of solid phase, BTU/lom °F

C - thermal capacity rate, C = wc , BTU/(hr °F)

D - Diameter, ft

Dh - hydraulic diameter, D^ = k rh , ft

D^' - hydraulic diameter of single screen or of a perfectly
packed screen matrix, D^» = 4 r^' , ft

G - mass velocity, lbm/(hr ft
)

G^ - mass velocity based on matrix free flow area,

Gi = Wf/Af , lbm/(hr ft2 )

G^ 1 - mass velocity based on free flow area of a single screen
or of a perfectly packed screen matrix,

Gi» = wf/Af », lbm/(hr ft2
)

h - unit conductance for convective heat transfer, BTU/(hr ft2 °F)

k - thermal conductivity, BTU/(hr ft2 °F/ft)

L - flow length of matrix, ft

n - number of screens in matrix

q - heat transfer rate, BTU/hr

r^ - hydraulic radius, rh = Of fa , ft

rh'
"" hydraulic radius of a single screen or of a perfectly

packed screen matrix, r^ 1 = c('//3 ' » ^

t - temperature, °F

T - temperature, °R

vii





V - velocity of fluid based on frontal area, ft/sec

V* - velocity of fluid based on free flow area, ft/sec

Vjl'
- velocity of fluid based on free flow area of a single

screen or of a perfectly packed screen matrix, ft/sec

Wf - mass flow rate of fluid, lbra/hr

Wf - mass of fluid contained in pores of matrix, lbm

Ws - mass of solid in matrix, lbm

x - distance from entrance of matrix to a given cross section
measured in the direction of flow, ft

Greek Letter Symbols

CX - porosity, ex = volume of voids/ total matrix volume, nondimen-
sional

CX - porosity of a single screen or of a perfectly packed screen
matrix, nondimensional

/5 - heat transfer area per unit volume of matrix, ft"-*-

|g - heat transfer area per unit volume of a single screen of or a
perfectly packed screen matrix, ft"*

Q - time, hrs

y*- - viscosity, lbm/(hr ft)

p - mass density, lbm/ ft^

Dimen signless Groupings

NTU - number of heat transfer units, NTH = hA/(wj>c.f

)

Npr _ Prandtl number, Npj. = Cfy^fAf

%e " Reynolds number, Nr6 = V\fi±/j*f

%e' ~ Reynolds number employed for screen matrices,

%6 f
= °h ,Gi'/^f

NSt "" Stanton number, Ng. = h/GjCf

Nst r ** Stanton number employed for screen matrices, Nst 1 = h/G^'Cf

vili





T - generalized time variable, f = hA/W3c s ( 9 - Wfx/wfL)

z - generalized position variable, z = (hA/w^c*.) x/L

Subscripts

a - refers to atmospheric conditions

f - refers to the fluid phase

i - refers to matrix initial state

s - refers to the solid phase

1 - refers to the fluid state upstream of the matrix

2 - refers to the fluid state downstream of the matrix

ix





1. Introduction.

In this study, porous media is defined as a solid matrix possessing

2 3
a high ratio of void surface area to bulk volume ft / ft , and a void

geometry which permits flow of gas or liquid through the matrix. The

term porous media is used throughout, to refer only to those random homo-

genous configurations which result in three dimensional flows, with fre-

quent contractions and expansions.

In the past, heat transfer characteristics of porous media have been

of interest primarily in the study of the flow of oil and water through

underground formations, the flow of gases through blast furnace charges,

and the flow through the granular packing used in absorption and stripping

columns and catalyst beds. Other applications of more recent interest are

found in:

a. Periodic-flow, regenerative type heat exchangers

b. Nuclear reactors

c. Boundary layer control for air foils

d. Transpiration or sweat cooling of environmental enclosures.

In regenerative heat exchangers the energy transfer from the hot to

cold fluid is accomplished first by transfer from the hot fluid to the

solid matrix followed later by a transfer from the matrix to a cold fluid.

Thus, the matrix is alternately heated and cooled either by periodic move-

ment of the solid from the hot to cold streams and back again, as in

rotary-type regenerative exchangers (Ljunstrom air-preheaters ) , or by

sequential valving of the hot and cold gas streams through two solid

matrices in parallel. In the past, types of matrices used were of the

nature of brick checkerwork or packed corrugated plates — constructions

which do not possess a very large transfer area per unit volume. As an
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illustration of the wide variance in the degree of compactness of various

matrices the following tabulation was prepared.

APPROXIMATE
AREA/UNIT VOLUME

MATRIX ft
2
/ft3

1. Brick Checkerwork 0.8

2. Rod banks, rod dia. - 0.375 in. 51

xA * = 1 Xj* = 2

3. Corrugated plates 150
(Used in Ljungstrom heaters)

4* Sphere Beds

a. 1/4 in. spheres 170
b. 1/16 in. spheres 690
c. 1/32 in. spheres 1380

5o Packed Wire Screens

a. 5 mesh 190
b. 20 mesh 760
c. 50 mesh 1900
d. 300 mesh 11,400

*X£ - Ratio of longitudinal pitch to tube diameter for flow

across banks of circular tubes, dimensionless.

*"X+ - Ratio of transverse pitch to tube diameter for flow across

banks of circular tubes, dimensionless.

Nuclear reactors for electric power generation consist essentially

of a solid matrix in which the thermal energy created by fission is trans-

ferred as heat to a working substance passing through it. Thus the possi-

bility of making the fuel in the form of a porous medium through which to

pass the cooling fluid should be considered. The principle advantage

being that of high heat transfer effectiveness which would enable the use

of a gaseous medium for a primary coolant. In addition, if porous solids

are practical for this application it may be possible to reduce the volume





and the overall bulk and mass of the system.

The feasibility of using porous media for boundary layer control

has come to the fore primarily due to the development of sintered metals.

Sintered metals are an excellent example of porous media, the area density

being of the order of the 300 mesh screens. Interest has centered princi-

pally in the use of area suction to delay boundary layer transition and

thus take advantage of the lower drag which accompanies laminar flow at

high Reynolds numbers.

Recently attention has been focused on the possible use of porous

media as an enclosure for constant temperature environmental chambers.

The problem of maintaining an enclosed area at a temperature within, such

that it is suitable for human existance, when such an enclosure is sub-

jected to extreme outside temperatures, has been encountered in the air-

craft industry. Pilots who will experience atmospheric reentry frictional

heating in the proposed new aircraft, must be provided with a cockpit which

will remain at "shirt sleeve temperature". The use of porous walls has been

proposed for the cockpit lining, with facilities for inducing air flow out-

ward through the walls, thus cooling an otherwise radiant heat emitter.

This system is believed to be an excellent solution to this problem. One

primary advantage being that of great weight saving in air conditioning

equipment, which would otherwise be required.

These applications suggest the desireability of an increased program

of study of the convective heat transfer behavior in porous solids.

Although some work has been started in this country and more in Great

Britian, there still remains a paucity of data useful for design at the

present time. The principal reason for this lack, is the difficulty in

accurate experimentation. The possibilities of using porous media for

3





transpiration cooling at low flow rates, provided the motive for the

present investigation.





2. Objectives.

a. Develop a testing technique to determine the basic convective

heat transfer data for the flow of air through wire screen matrices, at

low Reynolds numbers.

b. Obtain the heat transfer data for screen matrices over the

Reynolds number range 0.1 to 10, based on hydraulic diameter.

c. Summarize previous work in the field of porous media and to

compare the previous results with the results of the present study.

The work done in developing the analytical solution and method used

in the present work is fully described by Locke in Reference (1)*.

^Numbers in parentheses refer to Bibliography on page of this paper.
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3. Summary of Contents.

A review of previous investigation procedures is presented first,

followed by a discussion of the reasons this investigator chose the

particular method used. The method of presenting the heat^transfer data

is then discussed. Presentation of the data will be made graphically as

well as tabularly. Graphic representation is plotted as Reynolds number,

%e'» as la^er defined, versus ^^'Npy '-*. The range of Reynolds numbers

covered is from 0.1 to 10.

A complete description of all the matrices tested is discussed. De-

tails of each of the six types of woven wire screens are given, along with

details of the matrices assembled from these screens. A complete descrip-

tion of the test apparatus and test program is then presented.

Heat transfer data for wire screen matrices, obtained by Coppage (2),

are compared to the present results. Based on the results of this investi-

gation recommendations for future work are made.





4. Review of Previous Work

The theoretical analysis of the transient heat transfer behavior of

a porous medium was first presented by Schumann (4) in 1929. The porous

solid is considered to be homogeneous and initially at a uniform tempera-

ture. A fluid at the same temperature as the solid, is flowing through the

medium. At a certain instant the temperature of the entering fluid is

assumed to change to a higher or lower temperature. The problem is then

to find the temperature of the fluid and the solid as functions of time

and position in the matrix.

The analytical solution for the convective heat transfer coefficient

of porous solids, requires that the following idealizations, initial condi-

tions and boundary conditions be satisfied.

Idealizations :

1« The fluid specific heat and viscosity are constant

2. The flow is constant

3. The porous solid is homogenous

4. The thermal conductivity of both the fluid and solid is

infinite perpendicular to the flow and zero parallel to

the flow.

Initial and Boundary Conditions :

1. Initially the core is at a uniform temperature

2. At time © = 0, the temperature of the incoming fluid changes

instantaneously. "

3. No heat passes the core boundaries.

An energy balance on a fluid element within the porous medium yields





The rate equation expressing the convective heat transfer between

the porous medium and fluid is

4 = A(is -tf)Adx
C2)

where X = total perimeter of the flow tube at a given

cross section.

An energy balance on the porous medium yields

Introducing the variables f and z for the variables and x

respectively, where

"X = generalized time variable

z = generalized position variable

= NTU, when x = L

and observing that the thermal capacity of the porous medium is much

greater than the thermal capacity of the fluid within the porous

medium, that is, Wsc a)^WfCf, equations (1) and (2) combine to yield

^tf
si = *-* U)

and equations (2) and (3) combine to yield

4£? = «*-* (5)

The boundary and initial conditions are:

tf (0,T) = tfl (6)

tf (z,0) = ti+ (t
fi

- ti) e~z
(? )
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The solutions to equations (4) and (5) together with the boundary

conditions are found to be

V e
(z+f)

'

> t A

= I - e

d(zv)'

A.
^r\-| d.(zX)'

J (2lJzT)

J (2,lVzx)

(8)

(9)

t.-fr,
s

-<**J

VtL T «i
'A

«n=i
«i(zt-r._

= l-e
-(Z.+X)

CO

flt

^

k">

X(2.Vir)

J (2.VH)
'n 3

(10)

(11)

Schumann's solution was first used as the basis for a transient testing

technique by Furnas (5) in 1932 when he passed air through granular beds.

The fluid temperature was measured at the exit of the matrix where z = NTU.

Furnas compared his experimental data with Schumann's theoretical constant

z curves. The z value of the theoretical curve which fitted the experi-

mental data was considered as the NTU of the matrix, and thereby the

convection conductance h was evaluated. His work was limited in the

Reynolds number range from 300 to 2000, based on the hydraulic diameter.

Saunders and Ford (6) used essentially the same method in 1940 to

obtain the heat transfer coefficient, h when air was passed through beds

of spherical balls with porosity = 0.38. Tests were made at Reynolds

numbers from 145 to 290, based on hydraulic diameter. Their results indi-

cated a constant Stanton number, and with the assumption of Npr = 0.74

for air, the following equation may be obtained from their work:

K
St

N
Pr

2/3
= °'°5





Lof and Hawley (7) used the same transient technique in 1943 to ex-

amine four sizes of gravel in beds over the Reynolds number range 5 to 500,

based on hydraulic diameter. Their results indicated a large discrepancy

existing between available data and even in the same group. The reason for

this discrepancy, according to Coppage (2), may be due to the heat losses

to the matrix boundaries and to other thermal capacitances in the experi-

mental system.

Romie (3) used the same transient technique in passing air through a

screen matrix in 1948. He tested two wire screen matrices in which the

screens were separated 1/32 inch, and covered the Reynolds number range

from 20 to £00, based on hydraulic diameter and the mass velocity, based

on free flow area.

In evaluating the heat transfer coefficients, Romie plotted his data

in the form (tf - tf ) / (tf - t^) versus "f/NTU and measured the area

under the curves up to a given value of T/NTU. From Schumann's theoreti-

cal curves of (tf - tf ) / (tf. - t^) versus T/z the area under the curves

was obtained as a function of NTU, and the experimental NTU could thus be

determined.

Locke (1) in 1950 developed an improved method of evaluation of the

experimental NTU from the theoretical curves to eleminate the possible

error introduced by a displacement of the experimentally determined heat-

ing curve either horizontally or vertically. In his method only the maxi-

mum slopes of the theoretical and experimental curves need be compared.

He derived an expression for the slope of the generalized heating curve,

(tf - t^) / (tf - t*) versus T/z, finding that

(t,,-tJ = NTU -X J (2Jl V"TUxtj e (12)
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for the position x=L, at which z=NTU and t* = tf . From this it was

found that the maximum slope of the generalized heating curve is a unique

function of NTU. Therefore with this unique function available, only tho

maximum slope of the experimental cooling curve need be determined. From

the plot of maximum slope versus NTU, the NTU for the experimental curve is

obtaiped and h is easily obtained from the relationship NTU= hA/w^c^

.

Saunders and Smoleniec (8) tested three screen matrices in 1951 in the

Reynolds number range 20 to 1000, based on hydraulic diameter. They passed

air through the matrix, and the convective heat transfer coefficient was

evaluated by comparing the maximum slopes of the theoritical and experi-

mental generalized curves. They presented the heat transfer data of screen

matrices in a plot of N^ versus NRe . When the curve was compared to the

results of NNu versus Nj^Q for flow normal to a single cylinder, the per-

formance was quite similar.

Coppage (2) tested six screen matrices in 1952 by using the same tran-

sient technique developed by Locke (1). He covered the Reynolds number

range 10 to 1000. Air was used as the working fluid. The porosities of

the screen matrices tested were from 0.602 to 0.832, which covers almost

the whole range of porosities of all square mesh, close packed screen

matrices. In addition, he also tested a matrix of packed spheres. The

diameter of the spheres was 0.0818 in., and the porosity of the sphere

matrix was 0.390.

This investigation has extended Coppage 's data to the Reynolds number

range 0.1 to 10. The data obtained is plotted as No+'Npj. ' versus NRe
'

and is compared to Coppage* s data at the overlap region of Npe
' approxi-

2/3
mately equal to 10. Coppage' s data is replotted as ^^'N^ ' vice

^St^Pr ^or comParison purposes.

11





5. Advantages and Disadvantages of Transient Method.

The transient method as used by Furnas (5) and Saunders and Ford (6)

is based on the solution of Schumann's (4) transient problem as outlined

above. A porous solid initially at a uniform temperature is heated or
tf

2 " ti
cooled by a fluid passing through it, and is plotted as a

tf1
* H

function of

Wf
Since atx-.L, _£. - _£- - f f

z
*"

NTU " W^
Q - Wf

;Wf

this curve can be compared to the family of theoretical curves of (tf - tj ) /

(t* - ti) versus T/z with z as a parameter. The analytical curve which

matches the experimental one will then give the value of NTU from which h

can be computed. There are three advantages to this method, (1) the fluid

temperature only need be measured, (2) a core would be simple to construct

and (3) any type of porous solid can be tested. A disadvantage of this

comparison method is the difficulty encountered in the calculation of the

theoretical curves. Calculation of these curves involves the evaluation

of an infinite series for each point and the number of terms which must

be taken to obtain a good approximation increases as NTU increases.

As indicated above, Romie (3) obtained the area under his curves and

compared them to the areas under the analytical solution curves. From the

plot of the area as a function of NTU, the experimental NTU could be deter-

mined and thus h could be obtained. As pointed out by Locke (l) both

these methods have the disadvantage that a displacement of the experimen-

tally determined heating curve either horizontally or vertically intro-

duces errors in the results.

In the method as developed by Locke (1) only the maximum slope of

12





the experimental plot of (tf - t±) / (t^ - tjj versus T/U'ffJ need be

determined. Since the maximum slope of the generalized heating curve is

a unique function of NTH, the experimental NTU value can easily be obtain-

ed from the curve. This function from equation (12) is reproduced in

Figure 8. A further advantage of the maximum slope technique is that the

experimental range which can be conveniently covered is widened. In this

method, actually, a premium is placed on a large NTU and X in the analysis

of the experimental data. Figure 9 is a plot of (% error in h) / {% error

in max. slope) versus NTU. This plot shows the obvious advantage of a

large NTU and suggests the avoidance of NTU in the range 1 thru 4 where

the inflection point of equation (12) occurs. This did not pose a signifi-

cant disadvantage in this investigation since porous media tend to have NTU

greater than 5 because of large heat transfer area. In addition the flow

rates used were sufficiently low in all cases to insure values higher than

NTU =5« The chief disadvantage in this method is that any error in the

experimentally determined maximum slope, is magnified in the corresponding

value of NTU. However, a comparable disadvantage is also inherent in the

other methods also.

Thus for the usual porous media, with it's high NTU, the single blow

transient method with the maximum slope technique is considered the most

desirable and is used in the determination of data in this report.

The method requires more care than the steady state technique to

approach the idealizations and initial and boundary conditions of the

theoretical analysis, which are restated below.

Idealizations

1. The fluid specific heat and viscosity are constant

2. The flow is steady

3. The porous solid is homogenous

13





4. The thermal conductivity of both fluid and solid is zero

in the direction of flow and i3 infinite within the fluid

and solid in the direction normal to the flow. Effective-

ly all the convective resistance is lumped at the fluid-

solid interface.

Since the fluid used is air, the first idealization can be approached if

temperature differences are kept small. For instance, if the maximum air

temperature variation is from 80°F to 100°F, the maximum deviation from

the arithmetic average will be plus or minus 1,5% in viscosity and negli-

gible in specific heat.

The second and third idealizations can be approached by careful design

and selection of equipment, and by discreet selection of the porous solid

to be tested. The fourth idealization, however, can be approached only by

correct core design. As pointed out by Locke (1) and Coppage (2), this

poses no problem since heat transfer in the flow direction is ordinarily

very small in the fluid and may be made negligible in the solid by inter-

rupting the solid material. In the direction normal to the flow, the con-

duction paths in both fluid and solid are usually small so that the effect

is that of low thermal resistance within the solid relative to the resis-

tance between them.

Initial and Boundary Conditions

1. Initially the core is at a uniform temperature.

2. At time 0=0, the temperature of the fluid flowing past the

screens changes instantaneously.

3. No heat passes the core boundaries.

The first condition is achieved satisfactorily if suitable precautions

are taken to insure uniform heating of the screens at temperature other

14





than ambient. The second condition requires some method of rapidly intro-

ducing the heated screens into the flow stream of constant temperature

ambient air. The problem of heat loss to the walls of the approach ducting,

as encountered by Coppage (2), is avoided in this particular technique, in

that ambient air is flowing thru the test duct and thus remains constant up

until the time it encounters the heated matrix. The third conditio! can

only be minimized by careful design of the matrix holder. Since the screens

are heated while contained in the matrix holding device, which has a certain

thermal capacitance, an unavoidable transfer of heat from the holder to the

screens will result as they are cooled. However this effect is minimized

in the design of the matrix holder.

Additional consideration of the foregoing requirements was made by

Locke (1) and the design criteria established.

Briefly, the experimental method used in obtaining the heat transfer

data is as follows: the matrix, heated initially to a uniform temperature,

is cooled by the fluid which enters at a constant, lower temperature. The

temperature-time history of the fluid leaving the matrix is recorded dur-

ing the cooling process. The maximum slope of the "cooling curve" is com-

pared to that of the theoretical cooling curve. From a plot of the maxi-

mum slope of the theoretical cooling curve versus MTU, the NTU correspond-

ing to the maximum slope of the experimental cooling curve can be obtained.

Thus, in tlds manner the heat transfer unit conductance can be obtained.

15





6. Method of Presentation of Results.

Through the dimensional analysis of the problem of heat transfer to

a porous medium as developed by Coppage (2), it is seen that a definition

for flow diameter, other than that normally used for flow thru pipes, will

be necessary. In comparing two geometrically similar media it is clear

that only one diameter is needed to define the relative sizes of the flow

passages. From the description of the porous media used in this investi-

gation and previous investigations, it is seen that all such media have

flow passages which are at least qualitatively similar, in that they all

have a random, three-dimensional character and involve many contractions

and expansions. Thus in comparing various porous media a single dimension

can provide a very good measure of the relative sizes of the flow passages*

One very logical choice of a dimension is based on the familiar concept of

a hydraulic radius. The hydraulic radius of a prismatic al flow passage is

defined as

- flow passage cross-sectional area
h flow passage wetted perimeter

If numerator and denominator are each multiplied by the length of the flow

passage, then

r - flow passage volume
h flow passage surface area

This latter form now provides a possible basis for defining a suitable

average hydraulic radius in a porous medium. Therefore, this definition

will now be used for screen matrices even though the flow passages are not

cylindrical. The relationship is valid since it is merely a defined quan-

tity.

In order to get the average r^ of all passages in the matrix, one can

extend the above definition to

_ Total flow passage volume
rh

~" Total flow passage surface area

16





If both numerator and denominator are divided by the total volume of the

matrix, the result is

_ Total void volume/total matrix volume
Total void surface area/total matrix volume

a

where
15

(X - Total volume of voids _ POROSITY
Total volume of matrix

P - Total surface area of voids
Total volume of matrix

The average flow passage diameter is the conventional hydraulic diameter

°h = 4rh

Now in order to establish an average mass velocity, an average free

flow cross-sectional area, A^ , may be defined such that

AA. = Volume of flow passages in matrix

= Volume of voids in matrix

If both sides of the equation are divided by the total matrix volume we get

Af = oc At

A^ r Total frontal area of the matrix

Therefore, the average mass velocity

Af a At
" cc

Likewise for the average flow velocity

r
i =v< .

w
f

W
f V

ffAf Ctp
fAf

a

The above definitions are based upon the total matrix dimensions, and

therefore some modifications must be made in order to adapt these defini-

tions to a single screen of the matrix. To accomplish this, the following

17





definitions will be made.

d ' = Porosity of a single screen

8 ' = Surface area / unit volume for a single screen

Therefore

r ' c( f hydraulic radius of a single screen
h =

'

V = a «At

G±
* - wf/Af « = G/a*

V±
» = wf/^ofAf = V/a •

Based upon these new definitions then, the dimensionless groupings for

single screen matrices are:

(hAVcf ) = (Dh»G1
i //^\ cf y^fAf ia f

) = (4rh
,G

i
,^rJ cf/<fAf Joe')

Nst
1

= * <%•' 5
NPr JCC')

The heat transfer data obtained for the wire screen matrices are shown

graphically in Figures 1 thru 6 and are plotted as Ns^.'Npr
^ versus NRe

!

far various porosities. Each plot shows the results of each of the three

screen matrices assembled from one type of screen.
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7. Description of Matrices.

The screen matrix is packed in such a way that the individual screens

are arranged in parallel and in close contact with each other. The direc-

tion of the woven lattices of the screens are situated at random. The

flow approaching and leaving the matrix is in the direction perpendicular

to the screens. It is desirable that the test matrices be capable of ex-

act geometric description, as regards surface area, volume of solids,

diameters, etc., in order that the results may be put into forms which

have general applicability. Consequently, matrices were chosen for which

the geometry is completely controllable and yet which permit random three-

dimensional flow which is characteristic of porous media. The reason for

this particular choice is that wire screens permit a fairly wide varia-

tion of geometric parameters while retaining essentially the same type of

flow passage geometry.

Test matrices were constructed from six different sizes of stainless

steel wire screen. The table below summarizes the geometry of the test

materials; the details of all matrices examined are given in Table I.

Screen
Nominal Mesh
per inch

Nominal Wire
Dia., In.

Screen
(

Porosity cc

60 x 60
-.011

60 x 60 .011 .602

60 x 60
-.0075

60 x 60 .0075 .675

24, x 24
-.014

24 x 24 .014 .725

16 x 16
-.018

16 x 16 .018 .766

10 x 10
-.025

10 x 10 .025 .817

5x5
-.040

5x5 .040 .832
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The screen matrices were all composed of circular sections of stain-

less steel wire screen having a diameter of six inches. For all the

matrices tested each set consisted of three screens. Coppage's (2) data

indicated that the number of screens had no affect on the convective heat

transfer coefficient h. The prime consideration was to establish flow con-

ditions which represented a true porous media. With such low flow rates

(3 to 40 ft /hr), it was felt that these conditions were adequately met.

All matrices were assembled in, and held in position during testing by a

special matrix holding device described in Part III and shown in Figure 7.

An important assumption made in the analysis for the transient temper-

ature technique used in this investigation, is that of adiabatic boundary

conditions existing at the matrix boundaries. It is exceedingly difficult

to provide adiabatic boundary conditions in a transient situation, since

all insulating materials have some capacity for storing thermal energy.

By using balsa wood for the matrix boundaries and for the entire test

section as well, the heat transferred from the boundaries was held to a

minimum. Locke (l) and Coppage (2) both point out the idealizations

necessary in developing the experimental method used. From their analysis

of heat loss to the boundaries they showed that the heat transferred from

the boundaries to the screens was generally less than five percent of the

storage capacity of the matrix up to the time of maximum slope.
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8. Experimental Apparatus.

The apparatus assembled for this investigation is entirely different

from that used by both Locke (l) and Coppage (2) in their projects. A flow

diagram of the test system is shown in Figure 10. Basically the system

consists of a balsa test section with a sliding drawer for holding the test

matrix, an air metering device, an air ejector to provide flow thru the

test core, a fan type blower, an air heater, a flow measuring system, and

a temperature measuring system.

Ambient air is drawn through a 6 in. throat diameter, spun aluminum

nozzle, by an air ejector system of a steam condensing plant. The nozzle

was designed according to ASME specifications, contained in Reference (9),

to insure smooth flow. The air then passes immediately into a 6 in. I. D.

solid balsa test section. The test section is pictured in Figure 11. It

is fitted with a sliding drawer which holds the three screen matrix. In

all runs the orientation of the test apparatus is such that the incoming

air flows vertically downward thru the nozzle and into the test section.

The air passes thru the horizontal screen matrix and then past an air tem-

perature thermocouple matrix l£ in. downstream from the screens. From

there it flows through a piping arrangement into one of three Fischer-

Porter flowrators. Flow rate is controlled by a 3/4 ^ru needle valve on

the vacuum side of the flowrator. Fine control is afforded by a £ in.

by-pass needle valve around the large needle valve. With a maximum fluid

velocity thru the nozzle of about 1 ft/sec, uniformity of pressure over the

matrix section is insured.

Adjacent to the test core is an air heating duct used for heating the

screen matrix. The duct is an insulated L-shaped unit of circular cross-

section, with a fan and heater located in the horizontal leg of the L.
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This affords radiant shielding of the screen matrix thermocouples from the

hot element of the heater. The duct is baffled in the vertical leg of the

section of the unit in order to insure uniform air temperature discharging

from the heater. The heating element and fan are individually controlled

by two, 115 volt 60 cycle A.C., "Variacs" with a range of from to 120

volts. Because of the low flow rates used in the heating duct and with the

baffles installed, very little adjustment of the variacs was found necessary

to maintain constant temperature air.

Temperature Measuring System . All thermocouples used are 24 gage

Copper-Constantin. The flowrator temperature is measured by a mercury glass

thermometer inserted downstream of the flowrators. The upstream ambient air

temperature is measured by two thermocouples located on the circumference

of the bell of the inlet nozzle. The downstream air temperature was mea-

sured by a matrix of five thermocouples. The entire downstream matrix con-

sisted of thirteen thermocouples held in a frame and located in equal areas

of the flow cross-section. A picture of the thermocouple matrix is shown

in Figure 12. It was found that there was considerable temperature varia-

tion near the walls of the test section. In constant temperature tests run

on this thermocouple array, the five central thermocouoles, located in equal

areas, gave excellent agreement. The outer two circles of thermocouples

showed considerable variation, with the outermost circle giving the great-

est deviation. The five central thermocouples in series, thus, were used,

and measured the air temperature at the center of the core cross section.

The reference junctions were all placed in an ice bath at 32°F. The

leads from the downstream air temperature matrix were led to a Leeds &

Northrop, "Speedomax", Model G, emf recorder with a variable range of from

1 to 20 mv. The range selected for use on all runs was - 2 rav. The

22





ambient air thermocouples were read with a Leeds & Northrup portable pre-

cision potentiometer. Provision was also made to insure uniform tempera-

ture of the screen matrix when heated in the air stream. Five thermo-

couples were welded to the screen matrix with a pencil point welder.

These thermocouples were also located in equal areas of the cross section.

Reference for this system was also an ice bath at 32°F and were read with

a Leeds and Northrup portable precision potentiometer.

Sliding Drawer Matrix Holder . The experimental method requires that

the test core be initially at a uniform temperature and that at the initial

instant (©=0) air at a different temperature enter the upstream side. This

sudden change in conditions is accomplished by sliding the balsa drawer

matrix holder out of the balsa test section and over a heated air supply

until the temperature of the screens is uniform and at the desired tempera-

ture. The drawer is then pushed into the test section through which

ambient air is flowing.
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9. Experimental Procedure

The conditions of the idealized problem upon which the analysis is based

must be duplicated. Ambient air is drawn through the inlet flow nozzle and

allowed to flow through the test matrix while the flow rate is adjusted.

After constant flow is established the sliding drawer containing the screens

is pulled out and into the heated air stream. Ifihen the screens reach a

steady state temperature, as indicated by monitoring thermocouples spotted

onto the screens, the drawer is quickly inserted into the air stream and

the experiment is started. The ambient air temperature is recorded, the

initial screen temperature is recorded, and the transient downstream air

temperature is recorded on the Leeds & Northrup "Speedomax" recorder.

After the downstream air temperature has returned to nearly ambient air tem-

perature, the run is terminated. No detectible variation in flow rate could

be noticed throughout the runs. The flow induced by imposing a vacuum on

the downstream side of the test section, is seemingly, an excellent method

to obtain low controlled flow rates. Considerable trouble was experienced

with unsteady and erratic flow patterns when induced flow was attempted

with the suction side of a centrifugal blower attached to the test section.

The extremely steady flow rate was not obtained until the vacuum system of

the air ejector steam condenser was used.

The following data were recorded:

a. Atmospheric pressure

b. Atmospheric temperature

c. Initial matrix temperature (5 Copper-Constantin thermocouples)

d. Upstream ambient air temperature (2 Copper-Constantin thermo-

couples)

e. Downstream leaving air temperature as a function of time

(5 Copper-Constantin thermocouples)
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f • Flowrator temperature (Mercury thermometer)
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10. Experimental Results •

The geometric specifications of all the screen matrices examined are

tabulated in Table I. All the test data for the matrices are evaluated

on the basis of the geometry of an individual screen. In other words, the

matrices are packed in such a way that the total length of the matrix is

equal to the individual screen thickness multiplied by the number of

screens.

The experimental heat transfer performance is presented in Tables II

to VII. The heat transfer data is also presented in graphical form by

plotting Nst'Npp^/O versus NRe
' for various porosities as shown in Fig-

ures 1 through 6.
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11. Discussion of Results

As described by previous investigators, heat transfer behavior of por-

ous media, appears to follow, essentially, a single characteristic. In

looking at the plots in Figures 1 to 6, Coppage f s (2), data may quite sat-

isfactorily be interpreted by straight lines drawn through the scatter.

The general trend of the slope and position of the data is unmistakable.

Slope and position of the lines show a definite increase with increasing

porosity.

Coppage (2) pointed out that some degree of curvature is suspected

in his results. This statement is based on the fact that some of his data

were taken in the transition range of Reynolds numbers. Friction factor

data which Coppage took, shewed a non-linear increase of friction factor

with decreasing Reynolds number. Since the friction factor is a measure of

form drag and skin friction drag, an increase in this combined coefficient,

indicates a transition effect. Skin friction is affected very much less

than form drag since the growth of even small standing vortices behind bluff

bodies has a greater effect on form drag than on skin friction drag. There-

fore, because of the analogy between heat transfer and skin friction drag,

discussed in Reference (10), the heat transfer data would be expected to be

more linear than the friction factor data but still exhibit some small cur-

vature. Coppage did not predict the degree of curvature because of the

lack of data, but rather used a straight line representation. Equipped

now with additional data in the lower Reynolds number range, it can be

seen that this curvature actually does exist. In the plots in Figures 1 to

6, a proposed curvature is indicated which incorporates previous data with

present data.

In the extremely low Reynolds number range, it was noticed that a very
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definite increase in the value of h occured. The explanation afforded

this result is that at some low Reynolds number, the value dependent upon

screen porosity, the effect of natural convective cooling affects the forc-

ed convective cooling and causes unpredictable effects. The effects of

this combined natural and forced convective cooling cannot be analyzed with

the maximum slope technique used in this work. A technique for determining

the natural convective cooling coefficient of porous media is certainly a

problem which should be investigated. Since information is not available

on this problem, no conclusions can be drawn from the results at these

lowest Reynolds numbers.

It should be noted that in comparing data obtained in the lower three

screen porosities, with Coppage's (2) data, the curves are either smooth-

ly connecting or overlapping with each other. Only on the highest three

porosities was there considerable variation in results, and then only in

the vertical position of the curve. The general slope of the comparable

section of the curve is approximately the same.

The data obtained will give only a slightly higher heat transfer

coefficient h, than would result if the test section boundaries were tru-

ly adiabatic. This is because of the heat which will flow into the

screens from the boundaries during a run. In order to minimize this, the

test core and matrix holder were constructed of balsa wood, a material

with very low heat capacitance. Romie (3) and Coppage (2) point out that

experiments support the statement that gain of heat from the walls, has

little effect when measurements taken at the flow center-line are used

and when the maximum slope technique is used in determining NTU. To fur-

ther minimize the effects of non-adiabatic boundaries, both of these

techniques are incorporated in the testing procedure used.
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12. Comparison of Present Data with Previous Results

.

The heat transfer characteristics of square mesh screen matrices

have been obtained over the Reynolds number range of 0.1 to 10.

Heat transfer results for various matrices are correlated on the

basis of the effect caused by porosity and Reynolds number.

Previous data and present data agree quite well in their overlap

region for the three lower porosity screens. There is a very definite

curvature noted in the data as Reynolds number is reduced. There is no

data available for comparison in the low Reynolds number range where this

work was done, however it does follow a curved pattern as predicted by

Coppage (2). The amount of curvature is unknown, therefore only a propos-

ed curvature is indicated

„

In the three highest porosity screens, vertical displacement of the

curves oc cured. In the present data the value of h is somewhat higher

than that shown by previous investigation. The possibility exists that

in these higher porosity screens, a three screen matrix does not perform

as a true porous media. It is possible, even with the very low flow rates,

that there are insufficient obstructions to create the flow pattern re-

quired of a porous media. If this is true, then a higher heat transfer

coefficient will probably result for the lower flow rates. Coppage (2)

stated that a lower coefficient for the first screen in a matrix should

be expected, thus yielding a slightly lower overall coefficient. However

this appears to be true only at higher Reynolds numbers. At lower Rey-

nolds numbers the opposite tendency seems to occur. Experiments with

tube banks by Kays and Lo (11), show a definite tendency for h to be high-

er for the first row of tubes than for the subsequent rows. Using this

geometry for comparison then, it is entirely possible for the results to

vary in the manner they do.
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13. Conclusions.

1. A testing technique has been developed for determining connec-

tive heat transfer data for air flow through wire screen matrices at low

Reynolds numbers. The method is also useful for testing any core with

high effectiveness at low Reynolds numbers.

2. Convective heat transfer data of square meshed, randomly packed

screen matrices, composed of three screens, has been established for a

range of porosities from 0.602 to 0.832 and for Reynolds numbers from 0.1

to 10.

3. Previous data for heat transfer to porous media are very limited

in amount and non-existant over part of the Reynolds number range covered

in this investigation. In the overlap region of data, excellent agreement

was found in the three lowest porosity screens of the six sets of screens

tested. However, further investigation is needed to substantiate the de-

viation of the present data from previous data in the three higher porosity

matrices.
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H. Recommendation for Future Work,

a. No data is yet available for porous media on the heat transfer

coefficient due to natural convection. A technique is needed for obtain-

ing such data,

b. Additional data is needed on the three matrices of highest poro-

sity using more than three screens. This would verify whether the number

of screens at the higher porosities have a significant effect on the heat

transfer coefficient.

c. In the screens of 5 x 5 - 0.041 in. mesh, it was not possible to

obtain heat transfer coefficients for NRe
' below 16, The erratic nature

of the cooling curves was so severe that it was impossible to use them

for data. Use of additional number of screens in the matrix should give

a much smoother response and enable extension of this matrix data to a

much lower value of %e
'»

d. The analysis of the heat transfer coefficient of these screens

by using the time temperature history of the screens, would afford an

excellent check on the results of all the previous investigations. This

could be accomplished by attaching a series of thermocouples to the screen

wires by minute spot welding, and monitoring their time-temperature be-

havior. Analysis of the data could be done by the thermal capacitance

technique.
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Photo shows the sliding drawer matrix holder. The test
screens are mounted in the drawer and held in place by a
balsa frame. To the left of the drawer can be seen the test
screens with thermocouples welded to them for measuring the
initial screen temperature.

Figure 7
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Photo shows the path traveled by air as it flows
through and inlet nozzle and into the test core.
Rectangular opening accommodates the sliding
drawer which holds the screen matrix to be tested,

Figure 11
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fc* J 2 5 6 7 8 9 10 H W \

Photo showing the thermocouple matrix consisting
of thirteen thermocouples which could be read
either individually or in series. Thermocouple
leads were brought out of the edge of the drawer
and into a selector switch.

Figure 12
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Photo shows the orientation of the test cell for

all runs. The sliding drawer is resting over the
warm air duct in the position required for heating
the screens. The potentiometers were used to
measure the ambient air and the initial screen
temperature. The continuous pen recorder which
was used to record the temperature-time history
of the downstream air, is not shown.

Figure 13
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TAHLE I

DETAILS OF WIRE SCREENS USED IN MATRICES

Screen
Size

60 x 60
-0.011

60 x 60
-0.0075

Nominal
Mesh/Inch 60 x 60 60 x 60

Nominal Wire
Dia., In. 0.011 0.0075

Actual Wire
Dia., In. 0.0106 0.0075

Frontal Area

At, ^2 0.1962 0.1962

Length of
Matrix, ft 0.0075/* 0.00415

Mass
W
s

» , lfaBL 0.123 0.0653

Porosity
0.602 0.675

Heat Transfer
Area, A', ft2 0.848 , 0.582

Heat Transfer
area/unit vol.

ft
' , f

t

2/f

t

3 1815 2090

Hydraulic Radius
r
h

» , ft x IQh 3.32 3.23

Free Flow Area

V-cr ,At» *t
z 0.118 0.132

24 x 24 16 x 16 10 x 10 5x5
-0.014 0.018 0.025 0.041

24 x 24 16 x 16 10 x 10 5 x 5

0.014 0.018 0.025 0.041

0.0136 0.0177 0.0245 0.0405

0.1962 0.1962^ 0.1962 0.1962

0.00645 0.00858 0.0125 0.0182

0.0873 0.0962 0.118 0.150

0.725 0.766 0.817 0.832

0.408 0.343 0.305 0.254

980 623 352 196

7.40 12.3 23.2 42.5

0.142 0.150 0.160 0.163

Note: For all screens, material is 18/8 stainless steel, specific heat

.12 BTUAhm°Fj thermal conductivity, 10 BTU/hr ft
2

°F/ftj density,

490 lbm/ft3 . Parameters are computed for a single screen.
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Heat transfer characteristics of screen
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