



**Calhoun: The NPS Institutional Archive** 

Theses and Dissertations

**Thesis Collection** 

1958

# Effect of varying dimension on critical currents in thin indium films

Wright, James F.

Monterey, California: U.S. Naval Postgraduate School

http://hdl.handle.net/10945/14124



Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1958 WRIGHT, J.

> EFFECT OF VARYING DIMENSION ON CRITICAL CURRENTS IN THIN INDIUM FILMS

> > JAMES F. WRIGHT AND CHARLES S. BIRD

DUDLEY KNOX LIBRALLY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101



# EFFECT OF VARYING DIMENSION ON CRITICAL CURRENTS IN THIN INDIUM FILMS

~

\* \* \* \* \* \*

:54

James F. Wright, Jr. Charles S. Bird

.

# EFFECT OF VARYING DIMENSION ON CRITICAL CURRENTS IN THIN INDIUM FILMS

by

James F. Wright, Jr. Lieutenant Colonel, United States Army

and

Charles S. Buid

1

Submitted in partial fulfillment of the requirements for the degree of

.

.

BACHELOR OF SCIENCE

IN

PHYSICS

United States Naval Postgraduate School Monterey, California

NPS ARCHIVE 1958 WRZGHT, JI



# EFFECT OF VARYING DIMENSION ON CRITICAL CURRENTS IN THIN INDIUM FILMS

by

Charles S. Bird

Lieutenant, United States Navy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

IN

PHYSICS

United States Naval Postgraduate School Monterey, California

37502

## EFFECT OF VARYING DIMENSION ON

CRITICAL CURRENTS IN THIN INDIUM FILMS

by

James F. Wright, Jr.

This work is accepted as fulfilling

the thesis requirements for the degree of

BACHELOR OF SCIENCE

1

1

IN

PHYSICS

from the

United States Naval Postgraduate School

### ABSTRACT

This paper reports the results of measurements of the effect of film width and film thickness on critical current for cessation of superconductivity in superconducting thin films. Indium specimens ranging in width from 0.0127 centimeter to 0.0508 centimeter and in thickness from 1.11 x  $10^{-5}$  centimeter to 4.44 x  $10^{-5}$  centimeter were examined in the temperature range from 2.7° K to 3.4° K. In this temperature range it was found that critical current is approximately proportional to film width and essentially independent of film thickness.

405

The writers wish to express their appreciation for the advice, assistance, and encouragement given them by Professor Eugene C. Crittenden, Jr., Professor John N. Cooper, and Mr. Kenneth C. Smith of the United States Naval Postgraduate School.

TABLE OF CONTENTS

| Section     | Title                                                                      | Page |
|-------------|----------------------------------------------------------------------------|------|
| 1.          | Introduction                                                               | 1    |
| 2.          | Specimen Preparation .                                                     | 4    |
| 3.          | Experimental Procedures                                                    | 7    |
| 4.          | Experimental Results                                                       | 10   |
| 5.          | Conclusions                                                                | 15   |
| 6.          | Fields for Future Study                                                    | 23   |
| 7.          | Bibliography                                                               | 24   |
| Appendix I  | A. Range of specimen sizes used                                            | 25   |
|             | B. Determination of amount of indium required for desired film thicknesses | 27   |
| Appendix II | A. Tabulated Data- Half width specimens                                    | 29   |
|             | B. Tabulated Data- Standard width speci-<br>mens                           | 33   |
|             | C. Tabulated Data- Double width specimens                                  | 36   |
|             | D. Tabulated Data- Confirmation runs                                       | 39   |
|             | E. Tabulated Data- Anomalous runs                                          | 41   |

# LIST OF ILLUSTRATIONS

| Figure | 1                                                               | Page |
|--------|-----------------------------------------------------------------|------|
| 1.     | Curves of Threshold magnetic field vs.<br>Temperature           | 3    |
| 2.     | Sohematic wiring diagram of circuit                             | 6    |
| З.     | Block diagram of equipment set-up                               | 9    |
| 4.     | Critical current vs. Temperature curves<br>Half width           | 11   |
| 5.     | Critical current vs. Temperature curves<br>Standard width       | 12   |
| 6.     | Critical current vs. Temperature curves<br>Double width         | 13   |
| 7.     | Critical current vs. Temperature curves<br>Average              | 14   |
| 8.     | Critical current/width vs. Temperature curves<br>Half width     | 19   |
| 9.     | Critical current/width vs. Temperature curves<br>Standard width | 20   |
| 10.    | Critical current/width vs. Temperature curves<br>Double width   | 21   |
| 11.    | Critical current/width vs. Temperature curves<br>Average        | 22   |

### 1. Introduction.

Various aspects of superconductivity have attracted a great deal of study since the discovery of the phenomena by Kamerlingh Onnes in 1911. The first characteristic property of superconductors, that of the disappearance of electrical resistance below a certain temperature, was discovered at that time. The temperature at which the resistance disappears is called the transition temperature.

When an external magnetic field of sufficient intensity is applied to a superconductor, a transition from the superconducting state to the normal or resistive state occurs. The magnetic field required to cause this transition to take place is called the threshold field. Curves showing the relationship of threshold field with temperature for various metals are shown in Figure 1.<sup>1</sup>

When a steadily increasing current is passed through a superconductor, the field associated with the current eventually becomes great enough to destroy the superconductivity. The maximum current which the superconductor can carry without becoming resistive is called the critical current. A relationship between critical current and threshold field in wires was suggested by Silsbee.<sup>2</sup> In thin films, however, the current is

J

<sup>&</sup>lt;sup>1</sup>D. Shoenberg, Superconductivity, pp. 224-225; Cambridge, University Press, 1952.

<sup>&</sup>lt;sup>2</sup>S. Flügge (Ed.), Handbuch der Physik, Volume XV, pp. 253-254; Berlin, Springer-Verlag, 1956.

probably concentrated near the edges and the current distribution function has not yet been determined. No definite relationship between critical current and threshold field has been established for thin films.

In this experiment it was decided to make specimens with indium films of various widths and thicknesses, and to measure the critical current variation with temperature. With this data it was expected that some idea of the effects of width and thickness on critical current could be determined.

It is hoped that this work will help lay the foundation for a continuing study of the current and field relationships in superconducting thin films.





Figure 1



Figure 1

The A. Lietz Co., San Fra Made in U.S.A

### 2. Specimen preparation.

The specimens were prepared by using the evaporated metallic film technique to deposit on laboratory grade microscope glass slides (14 x 25 millimeters) two lead (Pb) conduction borders approximately five millimeters wide with a 6.34 millimeter separation between them. This separation determined the length of the indium test film and was kept constant for all specimens. An indium film of the desired width and thickness was then evaporated between the lead (Pb) borders and covered by evaporating a coating of silicon monoxide over the indium. Figure 2 shows a diagram of the specimen. The silicon monoxide was used as it was felt that an inert nonconducting coating would reduce any tendency of the indium test film to oxidize and thereby reduce a possible variation in the superconductivity characteristics of the specimen.

The glass slides were cut to size, cleaned with alcohol, and dried. The lead (Pb) conduction borders were evaporated to a thickness of 5 x  $10^{-4}$  centimeter at a pressure of 5 x  $10^{-5}$  millimeters of mercury. The indium films were evaporated to the desired widths and thicknesses at pressures of 5 to 8 x  $10^{-6}$  millimeters of mercury and the silicon monoxide coatings were evaporated to the desired thickness at pressures of 3 to 9 x  $10^{-6}$  millimeters of mercury.

The desired thicknesses of the films were obtained by calculating the required length of indium wire of known mass

per unit length for each thickness utilizing Lambert's Law for the distribution of flux. The calculations involved in determining the length of indium wire to be used and the range of specimen sizes utilized are given in detail in Appendix I.

,



Textronix - type 541 with type 53/54 G plug in preamplifier

ELECTRICAL SCHEMATIC

Figure 2 6
-

## 3. Experimental procedures.

The superconductivity characteristics of the test specimens were investigated by determining the direct current required to cause a voltage drop across the specimen at a particular temperature. This voltage drop indicated the change from the superconducting state to the resistive state.

The specimens were mounted in a plastic holder which was fitted with lead (Pb) foil strips to insure electrical contact between the external measuring instruments and the lead (Pb) borders of the specimens. A variable direct current supply was used to apply the current to the specimens and an oscilloscope provided a visual presentation of the voltage drop across the specimens when the phase change occured. A schematic wiring diagram is shown in Figure 2 and a block diagram of the equipment used in this work is shown in Figure 3.

The cryostat, specimen, and specimen holder were precooled with liquid air prior to filling the cryostat with liquid helium. The loaded cryostat was allowed to reach temperature equilibrium, as indicated by the cessation of boiling, and the resistance of the specimen at atmospheric pressure (4.2°K) was determined.

The pressure was then reduced to 325 millimeters of mercury (3.432°K) and allowed to stabilize. The pressure was then decreased in five millimeter increments until the specimen became superconducting.

After the specimen became superconducting a direct current was applied to the specimen and the current required to cause the phase change to the resistive state was measured by observing the current value when the oscilloscope trace indicated a change in the voltage across the specimen. This procedure was repeated at pressure intervals of five to fifteen millimeters (0.013 to 0.040°K).

The readings reported were the average of three current determinations at each value of temperature. The pressure was always decreased between readings in order to assist in reaching and maintaining temperature equilibrium, and in no case was the specimen allowed to warm up during a run.

Values of current are considered accurate within one milliampere in the range from 0 to 100 milliamperes; within two milliamperes in the range from 100 to 150 milliamperes; and within three milliamperes in the range from 150 to 200 milliamperes. Pressure readings are considered accurate within one millimeter of mercury, corresponding to temperature values of  $\angle 0.003^\circ$  for the range from 3.5 to 3.2°K;  $\angle 0.004^\circ$  for the range from 3.2 to 2.9°K;  $\angle 0.005^\circ$  for the range from 2.9 to 2.6°K; and  $\angle 0.006^\circ$  for the range from 2.6 to 2.3°K. These estimates are based on instrument scale divisions and the difficulty of reading constantly changing instrument indications.

.



EQUIPMENT SCHEMATIC



## 4. Experimental results.

The values of temperature and critical current obtained for each specimen tested are tabulated in Appendix II. The curves of Figures 4 through 7 are a graphical representation of this data shown by families of specimens having the same width.

In those cases where later runs were made using the same specimens, agreement of data was considered very satisfactory. This is felt to be due in large part to the protection against oxidation furnished by the coating of silicon monoxide.

Anomalous results were noted on two specimens- 2C3D and 5D3G. On these two specimens the critical current vs. temperature curves became horizontal at a relatively high temperature. Successive jumps of voltage across the specimen were observed at three, four, or five values of current at the same temperature. This action is attributed to extreme irregularities on the surface of the film noted in subsequent microscopic examination.



Made in U.S.A.





Made In U.S.A



Figure 7 14

Made II. U.S. A

## 5. Conclusions.

An examination of the data accumulated, and of Figures 4 through 7 indicates that varying the width of the film has a definite effect on the critical current. No effect was noted as a result of varying the thickness.

The Meissner effect<sup>3</sup> shows that the magnetic induction inside a superconductor is zero. Actually there is a slight penetration of the magnetic field into the superconductor, on the order of  $10^{-6}$  centimeter, known as the penetration depth.<sup>4</sup> This indicates that superconductivity is essentially a surface effect. In studying thin films we would expect only a slight variation of critical current with the thickness of the film for films appreciably thicker than the penetration depth. Although the current distribution in the film has not been determined, the current is considered to be concentrated toward the edges of the film due to the inability of the magnetic field to penetrate the superconductor.<sup>5</sup> It would therefore be expected that the variation of critical current with width would be non-linear in nature. The curves plotted from the date obtained in these experiments, however, indicate that this relationship might in fact be linear. In order to study this more carefully the data was replotted in the form of critical current divided by width vs. temperature.

<sup>3</sup>Flugge, op.cit., pp. 211-212. <sup>4</sup>ibid., p. 241ff. <sup>5</sup>Shoenberg, op.cit., p.177.

These curves are shown as Figures 8 through 11.

Study of these curves seems to show that there might be some variation of critical current/width vs. temperature with specimen width, which would indicate a non-linearity of the critical current-width relationship. Considerable overlap exists in these curves, however, which may account for this apparent variation with width. This overlap is caused partially by the experimental errors in measuring critical current and temperature and partially by the indeterminate nature of the measure of specimen width. Nicks, scratches, and surface irregularities may give the specimen an effective width differing from the measured value. Even in the case of measurable abnormalities, such as nicks in the sides of the film, it generally cannot be determined whether the damage occured before readings were made, during the taking of measurements, or after readings had been completed. The magnitude of the effect of these irregularities could not be definitely ascertained. In the case of specimens 2C3D and 5D3G, previously mentioned, the surface irregularities were quite pronounced, and the behavior of the specimens was anomalous. Specimens with defects which were not apparent on close examination may nevertheless have been affected to some extent.

in the

Taking these two sources of scattering into account, it would appear from this data that the relationship between critical current and specimen width is effectively linear to temperatures as low as 2.7°K.

Another phenomena observed was the linear relationship between critical current and temperature to temperatures as low as 2.7°K. The behavior of this curve at lower temperatures is still uncertain; and although thermodynamic considerations make it clear that the current must be independent of temperature near 0°K, the magnitude of the critical current at that point is not known.

The average transition temperature observed during the conduct of the experiment was 3.425°K, slightly higher than the generally accepted value for bulk specimens of 3.396°K. This increase is probably due to the tension induced in the film on being cooled to liquid helium temperatures as a result of the different coefficients of thermal expansion of the indium film and glass backing material.

Certain conclusions can also be drawn as to the practicability of certain film dimensions, With the techniques used in this experiment films of a thickness of about  $1 \times 10^{-5}$ centimeter appeared to be the thinnest that could be produced. Films of this thickness were produced at the center position of the vapor plating holder using two centimeters of indium wire, as described in Appendix IB. The outer positions produced specimens with a thickness calculated as 0.68 x  $10^{-5}$ centimeter, and although several of these specimens appeared to provide the necessary conduction paths, all had infinite resistance. It is believed that by cooling the specimens while they are being vapor plated a film with a smoother surface will result and films thinner than those produced without cooling will be possible.

It was also noted that films of the greatest width did not have as sharp a transition from the superconducting to the resistive phase as did the films of standard and half standard width. It is possible that the wider films show wider variations due to surface irregularities than the narrower films. In this case also, cooling the specimens during the vapor plating operation should improve the performance of the specimens.



THE ALLIELS COLL SAN FRANCISCO Made in U.S.A.



The A Lietz Co., San Francisco Made in U.S.A

/



Made III U.S. A



Made In U.S. 4

6. Fields for future study.

Several fields for future study are suggested by the results of this experiment. A few of them are briefly discussed here.

A. Comparison of critical current and threshold field data.

It would be interesting to compare the critical current vs. temperature curves with threshold field vs. temperature curves obtained by applying an external magnetic field to the specimens used in this experiment, or to similar specimens.

B. Examination of films of other dimensions.

By repeating this experiment with specimens in a wider range of widths the suspected linearity of the critical current- width relationship could be confirmed or disproved.

C. Effects of applied pulses.

A study of the transitions brought about by applied pulses of various sizes and shapes instead of a direct current might prove of great interest in the study of the field of superconducting transitions.

The field of superconducting transitions in general, and especially that of transitions in superconducting thin films, is one offering many openings for work which will increase our knowledge and understanding of this phenomena.

## BIBLIOGRAPHY

- 1. E. F. Burton, H. Grayson Smith, and J. O. Wilhelm, Phenomena at Temperature of Liquid Helium, Reinhold Publishing Company, 1940.
- 2. S. Flugge (Ed.), Handbuch der Physik, Volume XV, Springer-Verlag, 1956.
- 3. C. J. Gorter, Progress in Low Temperature Physics, Interscience Publishers, Inc., 1955.
- 4. D. Shoenberg, Superconductivity, Cambridge University Press, 1952.
- 5. C. F. Squire, Low Temperature Physics, McGraw Hill Book Co., Inc., 1953.
- 6. E. C. Crittenden, Jr., A New Memory Element Employing Persistent Currents in Superconductors, Los Angeles Chapter-Professional Group on Electronic Computers- IRE, June-July 1957.

.
## APPENDIX I

A. Range of specimen sizes used.

In order to fit in with work previously performed in this field by Crittenden and Cooper a "standard" width of 0.0254 centimeter and a "standard" thickness of 2.22 x  $10^{-5}$ centimeter were chosen for the specimens produced. It was decided to work in addition with specimens of one-half standard and double standard widths and thicknesses.

A coding system for designating the completed specimens was established. Each specimen manufactured was given a designator consisting of a number-letter-number-letter combination. The first number indicated the number of the batch to which the specimen belonged. The first letter indicated the width of the specimen; the second number its thickness. The final letter showed the position of the specimen on the vapor plating holder- position A being the center position and positions B through G being on the outer circle.

The width and thickness designators are given in the following table: WIDTH DESIGNATOR WIDTH DESIGNATOR THICKNESS A very narrow (not used) | very thin (not used)

| ** | tory marrow     | (1100 4004) | - |                    | (110 0       |        | ,                             |          |              |
|----|-----------------|-------------|---|--------------------|--------------|--------|-------------------------------|----------|--------------|
| B  | half standard   | .0127 cm    | 2 | half<br>standard   | 1.11         | x      | 10-5                          | cm       | (A)          |
| C  | standard        | .0254 cm    | 3 | standard           | 1.35<br>2.22 | x<br>x | 10 <b>-5</b><br>10 <b>-</b> 5 | cm<br>cm | (B-G)<br>(A) |
| D  | double standard | .0508 cm    | 4 | double<br>standard | 2.70<br>4.44 | x<br>x | 10-5<br>10-5                  | cm<br>cm | (B-G)<br>(A) |

Thus specimen 2C3A would be the center specimen of the second batch manufactured, and of standard width and standard thickness.

B. Determination of amount of indium required for desired film thicknesses.

The source of indium for the films was indium wire of 0.015 inches diameter with a density of 7.28 grams per cubic centimeter and a length of 120 centimeters per gram.

The determination of the thickness of the films was based on Lambert's Law for distribution of flux:

$$F = F_0 \cos \theta$$
$$F_{av} = \frac{\int F dA}{\int dA}$$

r sin 
$$\theta$$
 r d $\theta$ 

Considering the surface area of a hemisphere:  $dA = 2\pi r \sin \theta \cdot r d\theta = 2\pi r^2 \sin \theta d\theta$ 

$$F_{av} = \frac{\int_{0}^{\pi/2} Fo 2\pi r^{2} \sin \theta \cos \theta \, d\theta}{\int_{0}^{\pi/2} \int_{0}^{\pi/2} 2\pi r^{2} \sin \theta \, d\theta} = \frac{Fo \left(\frac{1}{2}\sin^{2}\theta\right)_{0}^{\pi/2}}{\left(-\cos\theta\right)_{0}^{\pi/2}} = \frac{Fo}{2}$$

$$F_{av}$$
 is also equal to  $\frac{mass plated}{area plated} = \frac{m}{2\pi r^2}$ 

Since m = L/120,  $F_{av} = L/240 \text{gr}^2$  and  $F_o = 2 F_{av} = L/120 \text{m}^2$ , and in general:  $F = \frac{F_0 \cos \theta}{120 \text{m}^2}$ 

The thickness of the film will equal flux/density:

$$t = \frac{L \cos \theta}{120\pi^{r} d}$$

The length of indium wire required to produce a given thickness:

$$L = \frac{120\pi r^2 d}{\cos \theta} t$$

With the equipment used for vapor plating in our set-up, the geometry factors were as follows:

For center position (A);  $r^2 = 65.61 \text{ cm}^2$ ,  $\cos \theta = 1.000$ For outer positions (B-G):  $r^2 = 91.39 \text{ cm}^2$ ,  $\cos \theta = 0.847$ The necessary lengths of indium wire were determined from this relationship.

35

The actual lengths of indium wire used and the resulting film thicknesses are given below:

2 cm In half thickness 1.11 x  $10^{-5}$  cm (center) 4 cm In standard thickness 1.35 x  $10^{-5}$  cm (outer) 2.22 x  $10^{-5}$  cm (center) 8 cm In double thickness 2.70 x  $10^{-5}$  cm (outer) 4.44 x  $10^{-5}$  cm (center)

ì

## APPENDIX II

## TABULATED DATA

## A. Half width specimens.

| Specime<br>Thickne<br>Width:<br>Resista<br>Resista | n no.:<br>ss:<br>nce (300<br>nce (4.2 | 9B2A<br>1.11 x 10 <sup>-5</sup> cm<br>0.0173 cm<br><sup>o</sup> K): 27.9 ohms<br><sup>o</sup> K): 1.25 ohms |                                           | 12B2A<br>1.11 5<br>0.0157<br>50 ohn<br>2.5 c | c 10 <sup>-5</sup> cm<br>7 cm<br>ns<br>ohms |
|----------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|---------------------------------------------|
| т                                                  | I <sub>c</sub>                        | I <sub>c</sub> /w                                                                                           | т                                         | I                                            | I <sub>c</sub> /w                           |
| ( <sup>о</sup> к)                                  | (ma)                                  | (amp/cm)                                                                                                    | (°к)                                      | (ma)                                         | (amp/cm)                                    |
| 3.396                                              | 7                                     | 0.40                                                                                                        | 3.394                                     | 7                                            | 0.45                                        |
| 3.384                                              | 10                                    | 0.58                                                                                                        | 3.381                                     | 8                                            | 0.51                                        |
| 3.371                                              | 10                                    | 0.58                                                                                                        | 3.368                                     | 10                                           | 0.64                                        |
| 3.355                                              | 12                                    | 0.70                                                                                                        | 3.357                                     | 12                                           | 0.77                                        |
| 3.331                                              | 13                                    | 0.75                                                                                                        | 3.341                                     | 15                                           | 1.00                                        |
| 3.287                                              | 18                                    | 1.04                                                                                                        | 3.328                                     | 19                                           | 1.21                                        |
| 3.244                                              | 22                                    | 1.27                                                                                                        | 3.287                                     | 32                                           | 2.04                                        |
| 3.195                                              | 28                                    | 1.62                                                                                                        | 3.244                                     | 44                                           | 2.80                                        |
| 3.121                                              | 41                                    | 2.37                                                                                                        | 3.198                                     | 53                                           | 3.38                                        |
| 3.050                                              | <b>54</b>                             | 3.12                                                                                                        | 3.147                                     | 62                                           | 3.95                                        |
| 2.981                                              | 70                                    | 4.05                                                                                                        | 3.094                                     | 71                                           | 4.52                                        |
| 2.881                                              | 118                                   | 6.82                                                                                                        | 3.039                                     | 85                                           | 5.40                                        |
| 2.820                                              | 144                                   | 8.34                                                                                                        | 2.981                                     | 95                                           | 6.05                                        |
| 2.770                                              | 161                                   | 9.32                                                                                                        | 2.930                                     | 105                                          | 6.70                                        |
| 2.706                                              | 186                                   | 10.75                                                                                                       | 2.859                                     | 119                                          | 7.60                                        |
| 2.660                                              | 206                                   | 11.80                                                                                                       | 2.788<br>2.722<br>2.599<br>2.539<br>2.513 | 133<br>150<br>175<br>186<br>192              | 8.48<br>9.55<br>11.15<br>11.85<br>12.20     |

.

| Specimer<br>Thicknes<br>Width:<br>Resistan<br>Resistan | n no.:<br>ss:<br>nce (300°)<br>nce (4.2°) | 10B3A<br>2.22 x 10 <sup>-5</sup> cm<br>0.0188 cm<br>K): 16.3 ohms<br>K): 0.33 ohms |                                           | 10B3<br>1.35<br>0.01<br>70 o<br>3.0 | D<br>x 10 <sup>-5</sup> cm<br>82 cm<br>hms<br>ohms |
|--------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|----------------------------------------------------|
| т<br>( <sup>о</sup> к)                                 | I <sub>c</sub><br>(ma)                    | I <sub>c</sub> /w<br>(amp/cm)                                                      | т<br>(°К)                                 | I <sub>c</sub><br>(ma)              | I <sub>c</sub> /w<br>(amp/cm)                      |
| 3.368                                                  | 14                                        | 0.76                                                                               | 3.381                                     | 6                                   | 0.33                                               |
| 3.349<br>3.331<br>3.281                                | 18<br>21<br>28                            | 0.96<br>1.12<br>1.49                                                               | 3.365<br>3.347<br>3.328                   | 10<br>13<br>17                      | 0.55<br>0.72<br>0.94                               |
| 3.241                                                  | 35                                        | 1.86                                                                               | 3.309                                     | 20                                  | 1.10                                               |
| 3.198<br>3.144<br>3.094<br>3.042<br>2.988              | 43<br>55<br>70<br>81<br>96                | 2.29<br>2.93<br>3.71<br>4.30<br>5.10                                               | 3.258<br>3.217<br>3.160<br>3.114<br>3.060 | 31<br>44<br>70<br>85<br>104         | 1.70<br>2.42<br>3.84<br>4.66<br>5.71               |
| 2.906<br>2.810<br>2.722<br>2.587<br>2.460              | 110<br>127<br>145<br>168<br>197           | 5.85<br>6.76<br>7.71<br>8.94<br>10.50                                              | 2.988                                     | 132                                 | 7.25                                               |

-

| Specimen<br>Thicknes<br>Width:<br>Resistan<br>Resistan | n no.:<br>ss:<br>nce (300°<br>nce (4.2° | 11B4B<br>2.70 x 10 <sup>-5</sup> c<br>0.0184 cm<br>2K): 27.5 ohms<br>2K): 0.8 ohms | m                                          | 11B4I<br>2.70<br>0.016<br>23.1<br>2.5 | x 10 <sup>-5</sup> cm<br>55 cm<br>ohms<br>ohms |
|--------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|------------------------------------------------|
| т<br>(°к)                                              | I<br>(ma)                               | I <sub>c</sub> /w<br>(amp/cm)                                                      | ( <sup>T</sup> <sub>0</sub> <sub>K</sub> ) | I <sub>c</sub><br>(ma)                | I <sub>c</sub> /w<br>(amp/cm)                  |
| 3.394                                                  | 9                                       | 0.49                                                                               | 3.381                                      | 9                                     | 0.55                                           |
| 3.384                                                  | 10                                      | 0.54                                                                               | 3.368                                      | 13                                    | 0.79                                           |
| 3.371                                                  | 13                                      | 0.70                                                                               | 3.357                                      | 16                                    | 0.97                                           |
| 3.357                                                  | 18                                      | 0.78                                                                               | 3.309                                      | 26                                    | 1.57                                           |
| 3.344                                                  | 21                                      | 1.13                                                                               | 3.261                                      | 40                                    | 2.42                                           |
| 3.301                                                  | 40                                      | 2.15                                                                               | 3.202                                      | 57                                    | 3.45                                           |
| 3.258                                                  | 58                                      | 3.12                                                                               | 3.134                                      | 73                                    | 4.42                                           |
| 3.208                                                  | 74                                      | 3.98                                                                               | 3.067                                      | 90                                    | 5.45                                           |
| 3.164                                                  | 86                                      | 4.62                                                                               | 2.984                                      | 115                                   | 6.87                                           |
| 3.111                                                  | 105                                     | 5.70                                                                               | 2.902                                      | 138                                   | 8.36                                           |
| 3.053                                                  | 130                                     | 7.05                                                                               | 2.820                                      | 160                                   | 9.70                                           |
| 2.996                                                  | 155                                     | 8.42                                                                               | 2.722                                      | 196                                   | 11.85                                          |
| 2.943                                                  | 192                                     | 10,40                                                                              |                                            |                                       |                                                |

12 2 26

Sec.

Specimen no.:13B4BThickness: $2.70 \times 10^{-5}$ cmWidth:0.0163 cmResistance ( $300^{\circ}$ K):21.1 ohmsResistance ( $4.2^{\circ}$ K):0.65 ohms

| Т     | I    | I <sub>c</sub> /w |
|-------|------|-------------------|
| (°K)  | (ma) | (amp/cm)          |
| 3.391 | 8    | 0.49              |
| 3.378 | 12   | 0.73              |
| 3.365 | 15   | 0.92              |
| 3.352 | 18   | 1.10              |
| 3.298 | 34   | 2.09              |
| 3.258 | 44   | 2.70              |
| 3.208 | 53   | 3.25              |
| 3.144 | 66   | 4.05              |
| 3.097 | 72   | 4.40              |
| 3.028 | 90   | 5.52              |
| 2.958 | 100  | 6.14              |
| 2.868 | 115  | 7.06              |
| 2.774 | 127  | 7.80              |
| 2.717 | 136  | 8.35              |
| 2.638 | 149  | 9.14              |
| 2.520 | 166  | 10.10             |
|       |      |                   |

.

ł

B. Standard width specimens.

| Specimen<br>Thickness<br>Width:<br>Resistand<br>Resistand | no.:<br>s:<br>ce (300°<br>ce (4.2° | 3C2A<br>1.11 x 10-5 <sub>cm</sub><br>0.0218 cm<br><sup>0</sup> K): 36.9 ohms<br><sup>0</sup> K): 1.8 ohms |       | 403<br>1.39<br>0.03<br>21.3<br>0.0 | 2A<br>9 x 10 <sup>-5</sup> cm<br>224 cm<br>5 ohms<br>35 ohms |
|-----------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|-------|------------------------------------|--------------------------------------------------------------|
| T                                                         | Ic                                 | I <sub>c</sub> /w                                                                                         | Т     | I.                                 | I_/W                                                         |
| (°K)                                                      | (ma)                               | (amp/cm)                                                                                                  | (°K)  | (ma)                               | (amp/cm)                                                     |
| 3.384                                                     | 10                                 | 0.46                                                                                                      | 3.381 | 8                                  | 0.40                                                         |
| 3.365                                                     | 17                                 | 0.78                                                                                                      | 3.368 | 11                                 | 0.49                                                         |
| 3.344                                                     | 24                                 | 1.11                                                                                                      | 3.341 | 16                                 | 0.72                                                         |
| 3.328                                                     | 30                                 | 1.39                                                                                                      | 3.314 | 22                                 | 0.99                                                         |
| 3.287                                                     | 40                                 | 1.85                                                                                                      | 3.255 | 33                                 | 1.47                                                         |
| 3.229                                                     | 55                                 | 2.55                                                                                                      | 3.192 | 50                                 | 2.23                                                         |
| 3.198                                                     | 63                                 | 2.92                                                                                                      | 3.121 | 69                                 | 3.08                                                         |
| 3.144                                                     | 77                                 | 3.55                                                                                                      | 3.050 | 92                                 | 4.10                                                         |
| 3.053                                                     | 100                                | 4.59                                                                                                      | 2,965 | 117                                | 5.23                                                         |
| 3.018                                                     | 112                                | 5.15                                                                                                      | 2.881 | 135 、                              | 6.02                                                         |
| 2.914                                                     | 146                                | 6.70                                                                                                      | 2.833 | 146                                | 6.52                                                         |
| 2.815                                                     | 165                                | 7.56                                                                                                      | 2.738 | 159                                | 7.10                                                         |
| 2.722                                                     | 173                                | 7.94                                                                                                      | 2.717 | 178                                | 7.95                                                         |
| 2.676                                                     | 176                                | 8.08                                                                                                      | 2.638 | 198                                | 8.84                                                         |
| 2.616                                                     | 181                                | 8.30                                                                                                      |       |                                    |                                                              |
| 2.551                                                     | 185                                | 8.49                                                                                                      |       |                                    |                                                              |
| 2.481                                                     | 190                                | 8.72                                                                                                      |       |                                    |                                                              |
| 2.410                                                     | 198                                | 9.08                                                                                                      |       |                                    |                                                              |

| Specimen<br>Thickness<br>Width:<br>Resistand<br>Resistand | no.:<br>s:<br>ce (300 <sup>0</sup><br>ce (4.2 <sup>0</sup> | $\begin{array}{r} 2C3A \\ 2.22 \times 10^{-5} \\ 0.0231 \text{ cm} \\ \text{OK}: 12.8 \text{ ohms} \\ \text{OK}: 0.5 \text{ ohms} \end{array}$ | cm    | 2030<br>1.35<br>0.027<br>16.0<br>0.8 | 76 cm<br>ohms<br>ohms |
|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|-----------------------|
| Т                                                         | I                                                          | I <sub>c</sub> /w                                                                                                                              | Т     | I                                    | I_/w                  |
| (°K)                                                      | (ma)                                                       | (amp/cm)                                                                                                                                       | (°K)  | (ma)                                 | (amp/cm)              |
| 3.357                                                     | 14                                                         | 0.60                                                                                                                                           | 3.378 | 15                                   | 0.51                  |
| 3.341                                                     | 18                                                         | 0.78                                                                                                                                           | 3.363 | 20                                   | 0.73                  |
| 3.314                                                     | 23                                                         | 1.00                                                                                                                                           | 3.347 | 25                                   | 0.91                  |
| 3.281                                                     | 27                                                         | 1.17                                                                                                                                           | 3.306 | 38                                   | 1.38                  |
| 3.253                                                     | 30                                                         | 1.30                                                                                                                                           | 3.261 | 52                                   | 1.87                  |
| 3.220                                                     | 37                                                         | 1.60                                                                                                                                           | 3.214 | 70                                   | 2.54                  |
| 3.180                                                     | 45                                                         | 1.95                                                                                                                                           | 3.157 | 96                                   | 3.48                  |
| 3.128                                                     | 59                                                         | 2.55                                                                                                                                           | 3.094 | 129                                  | 4.68                  |
| 3.050                                                     | 81                                                         | 3.50                                                                                                                                           | 3.010 | 175                                  | 6.34                  |
| 2.981                                                     | 108                                                        | 4.68                                                                                                                                           | 2.977 | 195                                  | 7.06                  |
| 2.881                                                     | 145                                                        | 6.29                                                                                                                                           |       |                                      |                       |
| 2.837                                                     | 160                                                        | 6.73                                                                                                                                           |       |                                      |                       |
| 2.801                                                     | 175                                                        | 7.57                                                                                                                                           |       |                                      |                       |
| 2.760                                                     | 188                                                        | 8.14                                                                                                                                           |       |                                      |                       |
| 2.731                                                     | 199                                                        | 8.61                                                                                                                                           |       |                                      |                       |

.

۱,

| Specime:<br>Thickne<br>Width:<br>Resista:<br>Resista: | n no.:<br>ss:<br>nce (300<br>nce (4.2 | 1C4A<br>4.44 x 10 <sup>-5</sup> cm<br>0.0216 cm<br><sup>o</sup> K): 6.9 ohms<br><sup>o</sup> K): 0.25 ohms |                   | 1C4E<br>2.70<br>0.023<br>20.0<br>1.1 | x 10 <sup>-5</sup> cm<br>0 cm<br>ohms<br>ohms |
|-------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------|-----------------------------------------------|
| Т                                                     | I                                     | Ī <sub>c</sub> /w                                                                                          | т                 | I                                    | I_/W                                          |
| (°K)                                                  | (ma)                                  | (amp/cm)                                                                                                   | (° <sub>K</sub> ) | (ma)                                 | (amp/cm)                                      |
| 3.347                                                 | 30                                    | 1.46                                                                                                       | 3.357             | 9                                    | 0.39                                          |
| 3.328                                                 | 35                                    | 1.70                                                                                                       | 3.339             | 12                                   | 0.52                                          |
| 3.314                                                 | 40                                    | 1.94                                                                                                       | 3.322             | 16                                   | 0.70                                          |
| 3.281                                                 | 52                                    | 2.52                                                                                                       | 3.295             | 19                                   | 0.83                                          |
| 3.247                                                 | 65                                    | 3.15                                                                                                       | 3.281             | 22                                   | 0.96                                          |
| 3.198                                                 | 83                                    | 4.03                                                                                                       | 3.267             | 25                                   | 1.09                                          |
| 3.141                                                 | 97                                    | 4.70                                                                                                       | 3.229             | 33                                   | 1.44                                          |
| 3.091                                                 | 114                                   | 5.28                                                                                                       | 3.189             | 40                                   | 1.74                                          |
| 3.014                                                 | 135                                   | 6.25                                                                                                       | 3.118             | 59                                   | 2.56                                          |
| 2.926                                                 | 164                                   | 7.60                                                                                                       | 3.074             | 70                                   | 3.04                                          |
| 2.859                                                 | 183                                   | 8.48                                                                                                       | 3.053             | 75                                   | 3.26                                          |
| 2.824                                                 | 193                                   | 8.94                                                                                                       | 2.999             | 87                                   | 3.78                                          |
|                                                       |                                       |                                                                                                            | 2.918             | 104                                  | 4.52                                          |
|                                                       |                                       |                                                                                                            | 2.833             | 120                                  | 5.21                                          |
|                                                       |                                       |                                                                                                            | 2.736             | 138                                  | 6.00                                          |
|                                                       |                                       |                                                                                                            | 2.581             | 162                                  | 7.05                                          |
|                                                       |                                       |                                                                                                            | 2.481             | 180                                  | 7.33                                          |
|                                                       |                                       |                                                                                                            | 2.324             | 210                                  | 9.14                                          |

- E

C. Double width specimens.

.

.

| Specime<br>Thickne<br>Width:<br>Resista<br>Resista | en no.:<br>ess:<br>ance (300<br>ance (4.2 | 6D2A<br>1.39 x 10 <sup>-5</sup> cm<br>0.0432 cm<br><sup>o</sup> K): 10.2 ohms<br><sup>o</sup> K): 0.55 ohms | 1     | 8D2<br>1.11<br>0.04<br>15.6<br>0.7 | $\begin{array}{c} A \\ x \ 10^{-5} \text{cm} \\ 40 \ \text{cm} \\ \text{ohms} \\ 5 \ \text{ohms} \end{array}$ |
|----------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------|------------------------------------|---------------------------------------------------------------------------------------------------------------|
| T                                                  | I                                         | I <sub>c</sub> /w                                                                                           | Т     | Ic                                 | I <sub>c</sub> /w                                                                                             |
| (°K)                                               | (ma)                                      | (amp/cm)                                                                                                    | (°K)  | (ma)                               | (amp/cm)                                                                                                      |
| 3.396                                              | 15                                        | 0.35                                                                                                        | 3.407 | 10                                 | 0.23                                                                                                          |
| 3.381                                              | 22                                        | 0.51                                                                                                        | 3.394 | 16                                 | 0.36                                                                                                          |
| 3.368                                              | 30                                        | 0.70                                                                                                        | 3.378 | 25                                 | 0.57                                                                                                          |
| 3.355                                              | 38                                        | 0.88                                                                                                        | 3.352 | 38                                 | 0.86                                                                                                          |
| 3.341                                              | 45                                        | 1.04                                                                                                        | 3.322 | 55                                 | 1.25                                                                                                          |
| 3.298                                              | 64                                        | 1.48                                                                                                        | 3.287 | 67                                 | 1.52                                                                                                          |
| 3.255                                              | 82                                        | 1.90                                                                                                        | 3.244 | 92                                 | 2.09                                                                                                          |
| 3.195                                              | 108                                       | 2.50                                                                                                        | 3.198 | 111                                | 2.52                                                                                                          |
| 3.118                                              | 138                                       | 3.20                                                                                                        | 3.141 | 137                                | 3.12                                                                                                          |
| 3.039                                              | 183                                       | 4.24                                                                                                        | 3.094 | 175                                | 3.98                                                                                                          |
| 2.984                                              | 204                                       | 4.72                                                                                                        | 3.050 | 204                                | 4.63                                                                                                          |

i

ø

Б. Б. .

| Specimer<br>Thicknes<br>Width:<br>Resistar<br>Resistar | n no.:<br>ss:<br>nce (300<br>nce (4.2 | 5D3A<br>2.22 x 10-5 <sub>cm</sub><br>0.0454 cm<br><sup>o</sup> K): 8.0 ohms<br><sup>o</sup> K): 0.13 ohms | 1     | 5D30<br>1.35<br>0.046<br>16.3<br>0.5 | x 10 <sup>-5</sup> cm<br>1 cm<br>ohms<br>ohms |
|--------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------|-------|--------------------------------------|-----------------------------------------------|
| т                                                      | I <sub>c</sub>                        | 'I <sub>c</sub> /w                                                                                        | т     | I <sub>c</sub>                       | I <sub>c</sub> /w                             |
| (°к)                                                   | (ma)                                  | (amp/cm)                                                                                                  | (°к)  | (ma)                                 | (amp/cm)                                      |
| 3.371                                                  | 32                                    | 0.71                                                                                                      | 3.394 | 15                                   | 0.33                                          |
| 3.357                                                  | 37                                    | 0.82                                                                                                      | 3.381 | 20                                   | 0.44                                          |
| 3.344                                                  | 46                                    | 1.01                                                                                                      | 3.368 | 28                                   | 0.61                                          |
| 3.314                                                  | 58                                    | 1.27                                                                                                      | 3.341 | 37                                   | 0.80                                          |
| 3.287                                                  | 74                                    | 1.63                                                                                                      | 3.314 | 50                                   | 1.08                                          |
| 3.238                                                  | 103                                   | 2.27                                                                                                      | 3.267 | 73                                   | 1.58                                          |
| 3.176                                                  | 132                                   | 2.91                                                                                                      | 3.226 | 93                                   | 2.02                                          |
| 3.128                                                  | 157                                   | 3.46                                                                                                      | 3.176 | 117                                  | 2.54                                          |
| 3.077                                                  | 180                                   | 3.96                                                                                                      | 3.128 | 152                                  | 3.30                                          |
| 3.021                                                  | 211                                   | 4.65                                                                                                      | 3.094 | 181                                  | 3.98                                          |
|                                                        |                                       |                                                                                                           | 3.060 | 207                                  | 4.55                                          |

| Specimen no.:       | 5D3D                     |
|---------------------|--------------------------|
| Thickness:          | $1.35 \times 10^{-5}$ cm |
| Width:              | 0.0535 cm                |
| Resistance (300°K): | 13.9 ohms                |
| Resistance (4.2°K): | 0.5 ohms                 |

| т                 | I          | I <sub>c</sub> /w |
|-------------------|------------|-------------------|
| (° <sub>К</sub> ) | (ma)       | (amp/cm)          |
| 3.386             | 30         | 0.56              |
| 3.368             | 37         | 0.69              |
| 3.341             | 56         | 1.05              |
| 3.312             | 75         | 1.40              |
| 3.281             | 95         | 2.20              |
| 3.220             | 136        | 2.54              |
| 3.180             | 160        | 2.99              |
| 3.151 3.128       | 182<br>192 | 3.40<br>3.59      |

| Specime<br>Thickne<br>Width:<br>Resista<br>Resista | en no.:<br>ss:<br>ance (300<br>ance (4.2 | 7D4B<br>2.70 x 10-5<br>0.0440 cm<br>0 K): 7.8 ohms<br>0 K): 0.5 ohms |                | 7D4(<br>2.70<br>0.04<br>7.6<br>0.5 | x 10 <sup>-5</sup> cm<br>74 cm<br>5hms |
|----------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|----------------|------------------------------------|----------------------------------------|
| T                                                  | I (ma)                                   | I <sub>c</sub> /w                                                    | т              | I <sub>c</sub>                     | I <sub>c</sub> /w                      |
| (°K)                                               |                                          | (amp/cm)                                                             | (°к)           | (ma)                               | (amp/cm)                               |
| 3.389                                              | 18                                       | 0.35                                                                 | 3.389          | 9                                  | 0.19                                   |
| 3.376                                              | 18                                       | 0.35                                                                 | 3.373          | 19                                 | 0.40                                   |
| 3.363                                              | 18                                       | 0.35                                                                 | 3.357          | 31                                 | 0.65                                   |
| 3.349                                              | 18                                       | 0.35                                                                 | 3.341          | 38                                 | 0.80                                   |
| 3.331                                              | 35                                       | 0.68                                                                 | 3.295          | 58                                 | 1.22                                   |
| 3.314                                              | 35                                       | 0.68                                                                 | 3.258          | 75                                 | 1.58                                   |
| 3.287                                              | 44                                       | 0.86                                                                 | 3.214          | 94                                 | 2.09                                   |
| 3.258                                              | 50                                       | 0.97                                                                 | 3.164          | 115                                | 2.43                                   |
| 3.214                                              | 76                                       | 1.47                                                                 | 3.111          | 134                                | 2.82                                   |
| 3.164                                              | 100                                      | 1.94                                                                 | 3.057          | 163                                | 3.44                                   |
| 3.111<br>3.060<br>3.007                            | 129<br>161<br>200                        | 2.50<br>3.11<br>3.88                                                 | 3.010<br>2.984 | 187<br>205                         | 3.95<br>4.32                           |

Specimen no.:7D4DThickness: $2.70 \times 10^{-5}$  cmWidth:0.0536 cmResistance ( $300^{\circ}$ K):5.9 ohmsResistance ( $4.2^{\circ}$ K):0.2 ohms

| Λ. |
|----|
| 1  |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |



D. Confirmation runs.

| Specimen:        | 12B2A     | 10                            | 10B3A |                                  | 11B4 <b>B</b> |  |
|------------------|-----------|-------------------------------|-------|----------------------------------|---------------|--|
| (° <sub>K)</sub> | I<br>(ma) | ( <sup>7</sup> <sub>K</sub> ) | (ma)  | , ( <sup>T</sup> <sub>0</sub> K) | Ic<br>(ma)    |  |
| 3.391            | 7         | 3.381                         | 10    | 3.378                            | 9             |  |
| 3.378            | 12        | 3.368                         | 15    | 3.360                            | 14            |  |
| 3.360            | 17        | 3.355                         | 17    | 3.341                            | 20            |  |
| 3.344            | 25        | 3.314                         | 23    | 3.295                            | 35            |  |
| 3.295            | 39        | 3.273                         | 31    | 3.258                            | 50            |  |
| 3.235            | 55        | 3.202                         | 46    | 3.192                            | 70            |  |
| 3.151            | 74        | 3.141                         | 63    | 3.108                            | 99            |  |
| 3.060            | 90        | 3.081                         | 78    | 3.032                            | 135           |  |
| 2.962            | 110       | 2.999                         | 94    | 2.926                            | 188           |  |
| 2.810            | 135       | 2.906                         | 110   |                                  |               |  |
| 2.671            | 159       | 2.797                         | 130   |                                  |               |  |
| 2.481            | 190       | 2.671                         | 155   |                                  |               |  |
|                  |           | 2.501                         | 185   |                                  |               |  |

1

Specimen: 3C2A

÷.

2030

| (°K)  | Ic<br>(ma) | (°K)  | I <sub>c</sub><br>(ma) |
|-------|------------|-------|------------------------|
| 3.394 | 8          | 3.399 | 9                      |
| 3.381 | 10         | 3.386 | 13                     |
| 3.368 | 17         | 3.363 | 19                     |
| 3.312 | 39         | 3.258 | 53                     |
| 3.167 | 80         | 3.111 | 113                    |
| 3.063 | 101        | 3.067 | 132                    |
| 2.981 | 119        | 2.918 | 200                    |
| 2.897 | 142        |       |                        |
| 2.810 | 165        |       |                        |
| 2.717 | 185        |       |                        |

| Specimen: 8D2A |            | 5D3C           |                | 7 D4 0                  | 7 D4 C                 |  |
|----------------|------------|----------------|----------------|-------------------------|------------------------|--|
| т<br>(°К)      | (ma)       | Т<br>(°к)      | I<br>(ma)      | т<br>(°к)               | I <sub>c</sub><br>(ma) |  |
| 3.419          | 7          | 3.414          | 11             | 3.363                   | 23                     |  |
| 3.391<br>3.378 | 23<br>38   | 3.384<br>3.365 | 13<br>20<br>30 | 3.347<br>3.331<br>3.284 | 28<br>33<br>51         |  |
| 3.344          | 60         | 3.322          | 54             | 3.241                   | 74                     |  |
| 3.273<br>3.226 | 115<br>134 | 3.255<br>3.211 | 115<br>135     | 3.173<br>3.087          | 96<br>137              |  |
| 3.144<br>3.087 | 167<br>185 | 3.144<br>3.087 | 168<br>202     | 2.977                   | 205                    |  |

\*

,

E. Anomalous runs.

8

.

| Specimen: 2C3D                            |                                                       |                                           | 5D3G (I)                                                      |                                           | 5D3G (II)                                                                    |  |
|-------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|--|
| (°K                                       | (ma)                                                  | (°К)                                      | I <sub>c</sub> (ma)                                           | т<br>(°К)                                 | I <sub>c</sub><br>(ma)                                                       |  |
| 3.391<br>3.378<br>3.368<br>3.303<br>3.241 | 8<br>10<br>14<br>22<br>32                             | 3.407<br>3.394<br>3.368<br>3.341<br>3.301 | 8<br>13<br>22<br>34<br>45                                     | 3.419<br>3.407<br>3.394<br>3.368<br>3.341 | 8<br>10<br>15<br>22<br>42,45,55                                              |  |
| 3.176<br>3.101<br>3.003<br>2.922<br>2.824 | 38<br>42<br>28,37,46,60<br>33,40,48,69<br>32,42,50,77 | 3.255<br>3.205<br>3.160<br>3.108<br>3.057 | 52<br>58<br>68<br>75<br>75,86                                 | 3.301<br>3.241<br>3.195<br>3.141<br>3.067 | 56,59,64<br>66,70,80<br>66,79,84,95<br>71,88,93,104,138<br>89,97,105,119,136 |  |
| 2.722                                     | 40,58,90                                              | 2.999<br>2.972<br>2.881<br>2.765<br>2.692 | 85,90,110<br>80,92,120<br>80,100,133<br>78,107,146<br>102,160 | 3.003<br>2.918<br>2.833                   | 89,97,111,124,131<br>75,105,115,136,144<br>85,111,126,138,160                |  |
|                                           |                                                       | 2.604<br>2.545<br>2.446                   | 110,172<br>95,175<br>95,175                                   |                                           |                                                                              |  |

•

/




