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ABSTRACT

One of the many problems in the design of a servonechanism system

is the determination of compensation to meet certain specifications.

This thesis is concerned with compensation to give "optimum" transient

response. The term "optimum" is defined and the required characteristic

equations for this response are given by Graham and Lathrop (l). The

location of the poles of the "optimum" transfer functions throu-h fifth-

order were determined. Types of compensators that can be us< d in the

error channel and types that can be used in the feedback loop have been

determined. Finally, equations for determining the parameter- of the

compensators have been derived.

The topic was suggested by Professor George J. Thaler of the

Electrical Engineering Department of the U.S. Naval Postgraduate School.

The writer wishes to acknowledge the invaluable aid given by

Professor Orval H. Polk and Professor George J. Thaler during the

preparation of this thesis.
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GENERAL DISCUSSION

Graham and Lathropjl] have specified the form of the characteristic

enuation necessary to obtain "optimum" transient response. The term

"optimum" is in quotes because it has been used with so many different

connotations that one must clearly define the term. In order to use

the forms specified by Graham and Lathrop, their definition of "optimum"

will be used. The function used in this definition is known as the

integral of time-multiplied absolute-value of error, or ITAE, and is

symbolically defined as / t |e| dt where t * time and |e| = absolute
o

value of error. The system that gives a minimum value for this integral

is then the "optimum" system.

In building a system to meet any given set of specifications (for

example, power, space and weight requirements, and cost) certain com-

ponents will be required. In order to build an "optimum" system, it is

necessary that its characteristic equation have the exact form as speci-

fied for the minimum ITAE criterion.

There is small probability that a system designed to meet qjecifications

will also meet the "optimum" requirement. Therefore, the system must be

altered, or compensated, in some manner to brinr, it into agreement with

the specific "optimuia" characteristic equation applicable to the com-

pensated system.

The next problem is to determine the type of compensator to be used

and its location in the system. There are three places in any basic sys-

tem where a compensator may be used, (l) cascade oi* series before the

error detector, (2) cascade in the error channel and (3) in the feed-

back loop. The location of the compensator will determine some of its

required characteristics.
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Usually, the transfer function of a system to be compensated is

expressed in terms of poles and zeros in the complex(s) plane. The com-

plex variable s is defined by s = <r fj<* where j - /\[-i and both <r and

co may have any value. A pole is defined as a root of the equation formed

when the denominator of the transfer function is set equal to zero, and

a zero is a root of the equation formed by equating the numerator of the

transfer function to zero.

The first important step in this study was to investigate the loca-

tion on the complex plane of poles and zeros for compensators to be

used in the error channel and in the feedback loop. The locations of

the compensator poles and zeros were determined in terms of the poles

and zeros of the system to be compensated. It will be shown that when

the poles and zeros of a compensator are determined, it will then be

possible to determine the type of network to be used for "optimum"

transient response, and the values of the parameters required for this

network. It was assumed that a passive, resistance-capacitance com-

pensating network will normally be used, and only this type has been

considered in this study.
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"OPTIMUM" TRANSFER FUNCTIONS

Before considering the required compensation, a study was male of

the location of the poles of the "optimum" transfer functions determined

by Graham and Lathrop [lj . This was done so that the general nature of

the transfer functions that will meet the "optimum" criterion would be

known. With this information and the transfer function for the uncom-

pensated system, it has been possible to specify, or at least limit,

the types of compensators that can be used.

In order to locate these "optimum" poles it is necessary to take

the characteristic ecmation for the system, form the system function,

and from this determine the transfer function. The system function is

KC
defined, for unity feedback systems, as , where KG is the trans-

it KG

fer function and 1 + KG is the characteristic equation. The method for

determining transfer functions is outlined in Appendix I, and the

results for zero-displacement error, unit-numerator systems up to and

including fifth-order are shown in Figure 1.

It should be noted that all of these systems have transfer functions

with a single pole at the origin. This is characteristic of the trans-

fer functions for zero-displacement error systems. A study of the nature

and location of the poles of the transfer function reveals the type of

transfer function required to meet the "optimum" criterion. For example,

a third-order system must have, besides the pole at the o^irin, two

complex conjugate poles with negative real parts. Two negative real

poles will not satisfy the required characteristic ecmation. This means

that if the transfer function for an uncompensated third-order system

has two real negative poles the compensator must cancel these two poles

and introduce two complex conjugate poles in the proper locations.
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LOCATION OF THL "OPTIMUM" POLES
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COMPENSATION

For a compensator located in the error channel, the overall trans-

fer function is obtained by mult inlying the transfer function of the

uncompensated system by the transfer function of the compensator. There-

fore, in order to maintain the same order system as the original uncom-

pensated system, it is necessary to use a compensator with an equal number
*

of poles and zeros. It will be shown later that the location of the

zeros of this compensator must be at the poles of the uncompensated

system. The simplest type of compensator with an equal number of poles

and zeros is one whose transfer function is k
3 * - x

. The resistance-
3 +- *

capacitance network shown in Figure 2 has this transfer function when

1

"CR2
(X =

CU^Rg)
, k „ s JL andk =

R l + R2
R.

AW
R:

^u

Resistance-Capacitance Network

Fig. 2.

In working with this compensator, the coefficient k is ignored since it

is a gain factor. It is assumed that the gain for the systems under

consideration can be adjusted to any required value. Therefore, when

possible, overall gain constants of unity have been used.

In using this resistance-capacitance type of compensator, it is

obvious that certain values of k and «. cannot be used. These values are

<*>= 0, k = and k = 1. It is seen that; (a) if <*, = the transfer
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function of the compensator reduces to — with the result of no change
s

in the overall transfer function; (b) if k = the compensator transfer

function reduces to —-— which has the effect of cancelling the s in
3 +- ex

the denominator of the uncompensated transfer functftn and giving an

overall transfer function which does not represent a zero-displacement-

error system; (c) if k = 1 the compensator transfer function reduces to

s •» S . This results in no change in the overall transfer function.
s + 31

The simplest of all zero-displacement-error transfer functions is

a pure integrator which has the transfer function KG = — or, assuming
s

K = 1, KG - — . When the compensator of the form ^-^—- is used with
s s*- ^

the pure integrator, the overall transfer function becomes KG' = JLtiL^
s(stm)

and the system function becomes = —
. In order to

It KG' s
^
+ (« + l)s + k<*

maintain the unit-numerator type of function, it is necessary to divide

the denominator of the system function by its numerator and set the

remainder equal to zero. This procedure is illustrated, using a second-

order system, in Appendix II. However, for this basic transfer function,

the procedure as outlined leads only to values of k and oc which have

been ruled out as unacceptable. Therefore, this type of compensator

car,not be used with a pure integrator.

A more direct approach to the compensation of this basic integrator

is to consider the system where K ^ 1, then the transfer function is

KG - - and the system function is TT^n = —^r • Comparing the form of
S * 1 + tAj g +• K

the "optimum" characteristic equation with that for systems having other

than unit-numerator transfer functions shows that the system will have

the "optimum" transient response if K = cu , where ou Q is the natural

frequency of the closed system.
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For the next higher order system, represented by the transfer func-

tion KG - —7 r, a compensator with one pole and one zero can be uoed
s^ s +• a;

in the error channel. Using the procedure shown in Appendix II and the

specified form of the "optimum" characteristic equation, a compensator

of the form 3 * k* . requires a value of « *1.4 and k-—2—. These results
s +« 1.4

can be obtained with the compensating network shown in Fijnire 2 by set-

ting <x = 1.4 = Tl T , k * - a - -i-
, and k s_ = -i - .

C(R1 + R2 ) CR2 " 1.4 R2

Using the procedure of Appendix II on the second and higher order

systems it was found that for "optimum" transient response the zeros of

the compensator must cancel the undesirable poles of the uncompensated

system. In addition, the poles of the compensator must be such as to

meet the "optimum" specifications.

Typical transfer functions for two uncompensated third-order systems

and the "optimum" characteristic equations are shown in Figure 3. Also

listed is one possible compensating network for each system along with

the network transfer function. These networks and their transfer func-

tions were chosen from a published list of passive networks and transfer

functions 18/ . Included with the transfer functions are equations for

determining the parameters of the network. These equations were derived

from the requirements (l) that the zeros of the compensator cancel the

undesired poles of the uncompensated system and, (2) the poles of the

compensator must be such as to mi et the "optimum" specifications.

It is theoretically possible to desirn similar compensating net-

works for higher order systems. These networks, however, will be

relatively complex and probably would not be used. Some other type of

compensation in another location would be preferable.
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The next most frequently used type of compensator, aft^r the com-

pensator in the error channel, is one to be inserted in the feedback

loop. This leads to systems whose system functions are of the form

KG
, where KG is the transfer function of the forward loop and AF is

H-KGAF

the transfer function of the feedback loop.

Consider a transfer function of the form KG - —f r and a feed-
" s^ s + aj

back comDensator of the form AF 3 k~ . '

X
. The system function was

vp
formed from the defining relation, . Using the procedure of

' 1 + KGAF

Appendix I, a unit-numerator system function was determined. The values

obtained for k and « are o*> = 0, k = and k - 1. These values are

unacceptable. Therefore, this type of compensator cannot be used in the

feedback loop.

Another type of feedback compensator which is often used is a

tachometer. For this AF = s . With KG - —

-

the compensated system
s(s+-a)

KC 1
function is - ~~5 ; rT~ • The denominator of the "optimum"

1+- KGAF s^+(a+l)s
2

system function for this case must be s + 1.4 3 + 1. The denominator

of the compensated system function does not have a constant term cor-

responding to the one of the "optimum" denominator. The same results

were obtained with higher order systems; therefore, a tachometer alone

cannot be used as a feedback compensator to obtain "optimum" transient

response.

A damping device is another form of compensatidlb that is sometimes

used. This device can be either electrical or mechanical or a combina-

tion of both. For a damper inserted in the feedback loop AF - s + <* .

However, using this type of compen3ator with a unit-numerator system

function results in a meaningless value for tx . This value is <* = 1

regardless of the original transfer function. Therefore, transfer

-10-





functions ana system functions with numerators other than unity and the

'optimum" characteristic equations for systems with other than unit

numerators must be used.

The procedure for determining the value of c* can be shown by

using an uncompensated transfer function of the form KG = -rj~~ "77*

where K is some specified constant. The system function is

KG _ _K
1 KGAF s^ + fa + K) s + K«

For this system the 'optimum" characteristic equation is

s
2 + 1.4. oo

Q s + co
i

2 =

where oo is the natural frequency of the system. Setting the

denominator of the system function equal to the optimum charac-

teristic equation and equating coefficients of equal powers of s

gives the equations K* = (X)
Q
^ and a + K = 1.4- uo . Since a and K are

known from the original transfer function, it is possible to solve

these equations for o< . The solution is

_ a2 + 2aK + K2& = »

1.96K

Using the same procedure for an original transfer function

s (s + a) (s + b)

and the corresponding 'optimum" characteristic equation,

s
3 1.75 oo s

2
+ 2.15 oo

2
a + oo

3 = 0,

a value of o< is found. This value is

a = a
3

?a
2b f_3abLt^L .

(1.75) K

This appears to be the only type of commonly used feedback com-

pensator that can be used to obtain the 'optimum" transient response.

-11-





CONCLUSIONS

Given the characteristic equation of a system having the "optimum"

transient response, it is possible to determine the corresponding trans-

fer function. From this transfer function it is oossible to find the

location of the "optimum" poles on the complex (s) plane. Knowing these

locations and the locations of the poles and zeros of an uncompensated

transfer function, it is possible to specify the form of a compensator

for this system to give "optimum" transient response.

For error channel compensators of the form k s t 1< ^ the values
s +• <*

<*. - 0, k = 0, and k = 1 are unacceptable. Use of this type of com-

pensator with a unit-numerator (K - 1) pure integrator, KG = — , is not
s

possible since the only values of k and * which will satisfy the

"optimum" specification are those values which are unacceptable for

this compensator. For a oure integrator with K ^ 1, KG - -, the
s

"optimum" specification can be met by adjusting the gain, K, so that

K = oue;the natural angular frecjuency of the system.

For a second-order system with unit-numerator transfer function

KG = —r, a compensator in the error channel of the form k -

s(s + a) s * *

can be used, '/hen this compensator is used the values of k and c* for

"optimum" transient resnonse are ex = 1.4 and k - . This com-
1.4

pensator can be obtained using the network shown in Figure 2 by setting

cK = 1.4 = ,, \ , k <x : a = -i-, and k = -L :
'

1 *2
.

CUi* *2> Cll2 1.4 Ii2

For second and higher order systems using error channel compensators,

the zeros of the compensator must cancel the undesirable poles of the

uncompensated system. In addition the poles of the compensator must be

such as to meet the "optimum" specifications.

-12-





For systems of higher than second-order the; simple network shown

in Fir. 2 is not adequate for compensation. Fig. 3 shows two t ,rpical

third-order systems and one possible compensating network for each system.

Also shown are the equations for determining the parameters of the

networks.

For feedback compensation, compensators of the form k

cannot be used since only the unacceptable values of k and ex will

satisfy the required equations.

A tachometer feedback compensator, AF - s, cannot be used to obtain

"optimum." transient response since the characteristic equation of the

compensated system cannot have the proper form.

Feedback compensation using a damping device AF = s + <*. used with

unit-numerator transfer functions leads to a value of unity for <x

regardless of the original system. Since this is meaningless, transfer

functions having other than unit-numerators were used. Useful values of

o< were obtained for some of these systems. For second-order systems,

v 2 ?
KG t r , oi - a f 2flK t K

. For third-order systems,
" s(s+ a) ' * " 1.96K

KG . K
. _ a3 r1a2h4.-lrth

2 *h3
.- sls.aHs.b) • * -

u#75)3 K

Using the method outlined above it is not difficult to determine the

theoretical compensator to use with a given system. The only diffi-

culty is the labor involved in the solution of the equations for high

order systems. This difficulty can be overcome by the use of a digital

computer if one is available.

-13-





HECOMMfcNDVriCNS FOR FURTHER STUDY

Due to time limitations it was not possible to verify, with actual

components or analog computer, the theoretical results presented. It

is felt that this verification along with the possible extension to

hirner order systems would be a very worthwhile project.

Another possible extension which seems to offer possibilities is

the study of compensation to be used with zero-velocity error and zero-

acceleration error systems.

-14-
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APPENDIX I

DETERMINATION OF TRANSFER FUNCTIONS PROM THE SYSTEM FUNCTIONS

As an example to show the method of finding the transfer function

from the system Amotion, consider a third-order system. The charac-

teristic equation for such a system to meet the optimum transient

criterion [l] would be s3+1.75%s2+2.15o> s+% . Then

KG --3 H 2—

r

1 KG s
>+1.75o3 s

t+2.15cu
o
^s+oo

o

and, to satisfy the unit-numerator specification, co
Q
would be unity.

KG 1
This means that —**—= —3 —5

. Solving this for
1+KG s->*1.75s%2.15s*l

1
KG gives KG = J ^ „, 2+2 -,, . The roots of the denominator poly-

nomial, then, are the poles of the transfer function. These are

determined by setting the denominator equal to zero and solving.

s
3

+ 1.75s
2

+ 2.15s =

s(s
2

+ 1.75s 2.15) =

From this equation Sn=

s
2,3

= -°« 875 1 J VL38U = -0.875 ± j 1.177.

The same method can be extended to the higher order systems but each

higher order involves the solution of an equation of one less order

than the system order. For example, a fourth order system involves

the solution of a cubic equation. Methods for the solution of the

higher order equations by numerical methods are available and fairly

straightforward, [6].

For systems where % f 1, the roots of the denominator polynomial

are multiplied by o^ to give the pole locations.
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APPENDIX II

DETERMINATION OF UNIT NUMERATOR SYSTEM FUNCTIONS
AND

COMPENSATOR PARAMETERS

Oiven a unit-numerator zero-displacement error transfer function

of the form Kd = r which is to be compensated using series com-
3(s+a)

pensation of the form ^k**
in the error channel t it is desired to

s+ <x

determine the values of k and <x necessary to give 'optimum transient

response.

The transfer function for the compensated system will be

£o • _ s+k<>

s(s+a) (s>«)

and the system function will be

Kd' - s+k*
1+KG' s (s+a) (s+*) + (s+koO

Expanding the denominator and collecting terms, this becomes
i

_ a+kf* .

s3+(a+*)s ^a^+l)s+k-\

In order to maintain the unit numerator it is necessary to divide the

denominator by the numerator and set any remainder equal to zero. This

1
division yields 2 , ,

>

____. ——^ -^ g-j-
s (a+^x -k =* ) s ( a<* +1 - akon -kcx k * /

,
? ,22,23 ,3_, 3ak« - ak * -k «" + k ^

with remainder
s + k •>.

In order for the remainder to be zero, the numerator of the remainder

2 ? 2 2 3 3 3
must be zero, akc* . ak c\ - k o< kcx. =0. Factoring the left

2
side of this equation gives (<* ) ( k )(l-k)(a-ko<] = C

From this the alternate solutions are

* =0 from which <x =

k =

k = 1 and

k >* = a .
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The first three are discarded for the reasons ;iven on page 6 of the

main text. Using the characteristic equation of the unit-numerator

compensated system and equating the coefficients to the required

coefficients for optimum" transient response [l] gives the equations

a + cx- k <* = 1.4

2 2 2
a ex 1 - ak ex -k <* k « = 1 .

Using the first of these equations along with the value of k«

determined previously gives « = 1.4.. Also, using k <x = a the second of

these equations reduces to an identity 1=1,

Using the values c< = 1.4 and k o< = a it is possible to determine

the parameters for the required compensator.
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