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ABSTRACT

To reduce the cost and complexity of the current DoD information infrastructure, a
Multilevel Secure (MLS) network solution eliminating hardware redundancies is required.
Implementing a high assurance MLS LAN requires the ability to extend a trusted path over
a TCP/IP network. No high assurance network trusted path mechanisms currently exist.

We present a design and proof-of-concept implementation for a Secure LAN Server
that provides the trusted path between a trusted computing base extension (TCBE) servicing
a COTS PC and protocol servers executing at single sensitivity levels on the XTS-300. The
trusted path establishes high assurance communications (over a TCP/IP network) between a
TCBE and the Secure LAN Server. This trusted channel is used first for user authentication,
then as a trusted relay between the protocol server and TCBE. All transmitted data passed
over the LAN can be protected by encryption, providing assurance of integrity and
confidentiality for the data.

This thesis documents the implementation of a demonstration prototype Secure
LAN Server using existing technology, including high assurance systems, COTS hardware,
and COTS software, to provide access to multilevel data in a user-friendly environment.

Our accomplishment is crucial to the development of a full scale MLS LAN.
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I. INTRODUCTION

A. BACKGROUND

Information control is pervasive in all aspects of our lives. Business secrets,
financial statements, what your children are allowed to see on TV, personal diaries, military
plans, and political agendas are all examplesl of information that needs to be controlled.
Diaries disclosed can lead to personal embarrassment, political agendas revealed can ruin a
career, and military plans leaked may kill people or even cause the downfall of a society.
Clearly, the control of information is vitally important to all of us.

A security policy dictates who has access to which information and the procedures
for accessing information. A well thought out security policy is essential in any
organization where controlled sharing is required. In a computer, controlled sharing occurs
when people are able to access the system where all of the information is stored, but a
person’s ability to access certain information is determined by his permissions. The first
step in protecting our information resources is to delineate what rules and procedures users
must follow in order to access information. Collectively, these rules and procedures
compose a security policy.

In the past, security policies were primarily directed towards the protection of paper
documents including text, photos, and microfiche. The policies focused on controlling
access and limiting duplication of the protected documents. In the last 30-40 years, there has
been a significant change. Most information is no longer stored in hard copy form, but is
entrusted to some electronic medium. The benefits of using digital data, such as search
speed, minimal volume, ease of reproduction, and ease of modification, have all combined
to accelerate the use of electronic storage via computers.

The move towards electronic storage and management of information changed the
methods used to implement security policies, but the amount of money dedicated to security

remains limited. When organizations must decide where to concentrate their fiscal resources




in order to protect their information decisions are generally based on the cost-effectiveness
of the security solution. Many types of security relate to computers and the information they
process and store. Some of the security areas applied to the protection of hard copy
documents and are well understood and implemented: physical, personnel, emanation, and
operations security. The Department of Defense (DoD) has spent years and significant
effort to improve security in these fields; additional gains cannot be achieved without a
disproportionate increase in expense. Computer security, a relatively new field that
addresses the different concerns associated with computers, offers the most cost-effective
avenue for improvement.

Computer security focuses on the enforcement of an information security policy in
the electronic realm. In this area, the threat of the inside user who decides to steal
information has been joined by that of an outside attacker who is able to create, and
introduce to the target system, a malicious application. The application may steal many
documents very quickly or modify existing data in such a way that it is no longer useful or
is actually detrimental to their intended use. Over the past 30 years, many researchers have
conducted extensive research on countering the effects of malicious code and other
significant computer security threats. However, much of the work has gone unheeded and
unused due to the tremendous expense involved with purchasing and using the systems that
were developed to provide the solutions. The focus of this paper is on using existing secure
components to enforce a given policy, while ensuring that the cost of implementation is not
prohibitive and the ease of use expected by today’s users is maintained. We intend to
provide the building blocks for a secure local area network (LAN) that is economical, easy
to use, and based on a security architecture comprised of both high assurance and
commercial-off-the-shelf (COTS) components.

A secure system is one that accurately implements a specified security policy [Ref.
1]. The degree of assurance that its security features and architecture correctly enforce
security policy can be measured against well-understood criteria such as the “Department of

Defense Trusted Computer System Evaluation Criteria” (TCSEC) [Ref. 2]. The TCSEC




offers criteria for evaluating systems with a range of security features. In the past, many
systems that met the highest levels of assurance also proved to be the least user friendly.
High assurance systems, that meet the TCSEC Class B3 requirements, have often been
dedicated to specialized tasks with a limited number of expert users; consequently, the lack
of a user-friendly interface was often not an issue. As more enterprises, including the
military, move toward the use of COTS equipment there is a greater desire to have high
assurance servers that can provide controlled sharing of information within a LAN and still
retain compatibility with COTS products. High assurance multilevel workstations can
provide controlled sharing, but are expensive, difficult to use, and incompatible with COTS
software.

Conflicting mandates such as minimizing cost while maximizing functionality have
rendered expensive, high assurance workstations infeasible. Fortunately, technological
advances in networking have revived the centralized host approach. Originally, the
mainframe computers that provided storage and computing power were exceedingly
expensive. To use mainframe computers more efficiently, inexpensive “dumb” terminals
were connected to a central server providing multiple users with concurrent access to the
resources, thus forming a network. Technological advancements led to the creation of an
affordable desktop computer. These personal computers (PCs) became cheaper to purchase
and install for organizations than one centralized server coupled with many terminals.
Consequently, networks moved away from centralized topologies in the late 1980’s and
1990’s.

The power of today’s computers and the cost of installing licensed software on each
PC have revived the idea of utilizing a centralized server to provide network services to thin
clients' or inexpensive personal computers. Centralized hosts are capable of providing a

variety of services that extend the functionality of inexpensive PCs connected to LANS;

1 Thin clients, also known as network computers, are computers with minimal processing and possibly no
permanent storage capabilities; they depend on a server to process and store data, and provide a user interface to

the client.




examples of these services include electronic email, database management, fileservers, and
directory services. The protection of this consolidated data storage lends itself to the use of
one high assurance server. A network with a high assurance server and inexpensive PCs or
thin clients as terminals has the potential to be less expensive than a network composed of
highly capable PCs with individually licensed software suites. A centralized approach has
the potential to provide economically sound secure networks.

Proof that modern enterprises are seriously considering the centralized approach is
evident in the military. Specifically, the US Navy is exploring the concept of a Navy Virtual
Intranet (NVI) which will electronically interconnect and provide information services to
the Navy and Marine forces, and civilian employees afloat and ashore. The proposed
functional architecture is based on commercial-off-the-shelf (COTS) hardware and software
with security implemented at each level of the architecture. One of the basic premises of the
plan is that operational and financial constraints will preclude the Navy from absolute
assurance that the threatAwill be kept out of the information systems during future conflicts
[Ref. 3]. We believe that it is possible to achieve a Iﬁgher level of assurance than is
available from COTS products without sacrificing the requisite interoperability.

Currently, the Navy and other services segregate multiple security levels by
providing independent network infrastructures for each level of information needed.
Consequently, users who need access to networks at three classification levels will have
three redundant PCs on their desk. Besides the waste of resources that is immediately
apparent, there is an inherent security vulnerability in this setup; there are no labels
associated with the information in its electronic form, and possibly not in its hard copy
form. The NVI retains this existing network structure. We believe that research associated
with the MLS LAN project, including this thesis, will demonstrate a high assurance system
architecture that retains the interoperability with COTS hardware and software needed by

the Navy and other organizations in DoD and US government.




B. GOALS OF THE THESIS

As outlined above, a MLS LAN implementation must overcome three basic
obstacles: removing redundant PCs at the user’s desk, resolving incompatibility issues
between high assurance platforms and COTS software and hardware, and mitigating the
high cost of high assurance platforms. To solve the MLS LAN problem, we will leverage
existing technology, including high assurance systems, COTS hardware, and COTS
software, to provide access to multilevel data in a user-friendly environment. High
assurance multilevel platforms that permit controlled sharing of sensitive information by
users at multiple security levels exist. While high assurance platforms are prohibitively
expensive to put on each desktop, they are excellent for use as a server in a centralized
network configuration. An ideal solution would permit use of COTS software to manipulate
data that is stored on a high assurance multilevel server. A high assurance multilevel
platform that implements the Bell-LaPadula Model?, such as the Wang XTS-300, is crucial
to ensuring that the correct subject/object dominance relation between security levels is
enforced. When used as a server, the security features present in the XTS-300 can mediate
access to stored data. Designing a network that can securely distribute information at
multiple classification levels to inexpensive single-level workstations will allow the DoD to

conserve resources by eliminating redundant desktop computer systems and networks.

2 «A formal state transition model of computer security that describes a set of access control rules. In this formal
model, the entities in a computer system are divided into abstract sets of subjects and objects. The notion of a
secure state is defined and it is proven that each state transition preserves security by moving from secure state to
secure state; thus, inductively proving that the system is secure. A system state is defined to be “secure” if the
only permitted access modes of subjects to objects are in accordance with a specific security policy. In order to
determine whether or not a specific access mode is allowed, the clearance of a subject is compared to the
classification of the object and a determination is made as to whether the subject is authorized for the specific
access mode. The clearance/classification scheme is expressed in terms of a lattice.” The model also defines the
Simple Security Condition to control granting a subject read access to a specific object, and the *-Property to

control granting a subject write access to a specific object. [Ref. 2]




Additionally, this architecture will be able to support rapid upgrades of
commercially developed office productivity products at the workstation without requiring
modifications to the trusted components [Ref. 4]. This will be possible if the PC
workstation and the software on the PC are not required to be trusted. A network
administrator can then simply upgrade the software on the user’s PC and allow continued
operation.

The objective of the secure LAN development project is to utilize a LAN with a
high assurance server and COTS workstations to provide a secure processing environment
in which user functions or programs can be securely integrated at virtually any time while
still preserving the security of existing data. Our proposed solution involves networking
COTS PCs equipped with a trusted computing base extension (TCBE) to the existing
trusted computing base (TCB) on the XTS-300 (see Figure 1) [Ref. 4]. The TCBE
negotiates a trusted path across the network with XTS-300 when it sends the secure
attention sequence (SAS). The user at the PC, communicating with the TCBE, is then able
to use the trusted path to initiate a secure session on the XTS-300.

This thesis develops and demonstrates a procedure for establishing a trusted path
and secure session between a thin client and a high assurance multilevel server over an
untrusted LAN. It involves a rigorous software engineering approach applied to the design,
implementation, and analysis of our procedure for establishing a trusted path and a secure
session. The goal of this research is to provide the foundation upon which a secure
multilevel LAN can be created using a single multilevel server and numerous, inexpensive
thin clients. Initially the thin clients will be COTS PCs modified to operate as write-less

clients.
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Figure 1. High Assurance Server Architecture

C. JUSTIFICATION FOR A TRUSTED PATH

1. Why does our design require a Trusted Path?

The TCB shall support a trusted communication path between itself and
users for use when a positive TCB-to-user connection is required (e.g.,
login, change subject sensitivity level). Communications via this trusted
path shall be activated exclusively by a user or the TCB and shall be
logically and unmistakably distinguishable from other paths. [Ref. 2: p. 107]

A trusted path, as mandated above in the TCSEC, is intended to provide a
guaranteed conduit for information exchange between the TCB and user (see Figure 2). The
trusted path must ensure both ends of the connection cannot be spoofed and that all
messages are tamperproof. This means that when the user initiates a connection to the

} server, he/she is guaranteed to be communicating with the TCB and with no other process.
' From the server’s perspective, the server must be assured that it is communicating with a
|
|




process executing on a piece of equipment that can be uniquely and positively identified

and provides a conduit to the user that cannot be subverted.

Trusted Server
Trusted
Computing
Base
TCBE !
’ A Trusted
User | E::J uete
: Untrusted
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Figure 2. Trusted Path

These standards for secure communication via a trusted path are very stringent, but
necessary since the trusted path is a building block of a protected session. Without these
guarantees, it is not possible to assume any subsequent communication between the server
and the various clients can be protected. The trusted path is used to perform user
identification and authentication, negotiate session levels, and possibly invoke trusted
subjects’ on the server to execute on behalf of the remote user.

If we step back a bit and consider two individuals who wish to have a sensitive
conversation, the concept of a trusted path may become a bit clearer. They have not met
before, but have previously arranged to meet over the telephone. Upon meeting, the first
question on each of their minds will be "How do I know I am talking to the right person?"

After the first question is resolved, the second question will be "How do I know this

3 A trusted subject is a subject that is part of the TCB. Within a specified range of access classes it is not constrained
by the confinement property, but is trusted not to actually do so. It is required for special operations that span

access classes; an example of such an operation is downgrading information.




conversation is private?" Once these two questions have been answered satisfactorily, the
conversation can proceed with some level of confidence that it is appropriate and private.

Using a trusted path to initiate electronic communication is the method of choice for
answering the two preceding questions in a networked environment. Extending this to a
physically unprotected LAN is the primary goal of this research. Our trusted path will use
public-key cryptography to authenticate the TCBE to the server, and vise versa, when the
user initiates the trusted path.

During a session, there are two possible communication modes available to the user:
trusted path or normal. A trusted path is required for direct communication between the user
and the TCB, such as during user authentication. The encryption that protects trusted path
communication depends on a one-time session key that is established when the user initiates
a session. This session key is negotiated by the trusted path server and the TCBE during the
initial trusted path setup using Oakley* or some other equally strong’ key exchange
algorithm.

Normal communication occurs when the user does not have to communicate
directly with the TCB. Once the session is established and the user begins working, normal
communication may or may not need to be encrypted. The option to not encrypt non-trusted
path data will be available if data protection is not required.

The design and implementation of a trusted path mechanism will solve the problem
of hardware authentication between the server and the TCBE for initial identification and
authentication functions and trusted commands. Additionally, the trusted path will provide
secure, tamperproof, communication between the server and the TCBE over a physically

unprotected LAN. The trusted path mechanism will not prevent denial of service attacks,

4 The Oakley Key Determination Protoco! uses a hybrid Diffie-Hellman technique to establish session keys on
Internet hosts and routers. Oakley provides the important security property Perfect Forward Secrecy and is based
on cryptographic techniques that have survived substantial public scrutiny. [Ref. 5]

5 In cryptography the word strong has special meaning; an algorithm is considered strong if there are no known

methods exist to break the crypto-system with existing technology and knowledge. [Ref. 6]




but, if designed carefully, may limit the effectiveness of some denial of service attacks by
requiring proper public-key authentication before initiating a resource intensive key
exchange.

To summarize the benefits of a trusted path in our design, it will allow the server
and the TCBE to authenticate each other and then enable secure communication between
the server and the TCBE. Following the creation of the trusted path, the user on the client
side of the TCBE will be allowed to login and use the services provided by the secure
server. The trusted path does not address the issues surrounding communication between
the TCBE and the COTS client. What it will provide is a mechanism for extending the
trusted computing base to multiple TCBEs over a physically unprotected LAN using
TCP/IP. This approach should be readily extensible to a wide range of applications.

2. What can happen if we do not establish a trusted path?

Without a trusted path, the network cannot be certified at Class B3 in accordance
with the Trusted Network Interpretation (TNI) of the TCSEC [Ref. 7], which is a primary
goal of our project. Since a trusted path is required by the TCSEC for a Class B3
certification, the trusted path functionality is not optional. To understand the TCSEC
requirement consider the possibility that there exists an untrusted process with malicious
intent. Now examine the remote login procedure and the fact that without a trusted path to
protect communication, the malicious application can listen to all traffic since there is no

“trusted path protecting the communications. When the remote user attempts to login, the
malicious application could listen for the login message and possibly impersonate the server
or record the login for a replay attack later. The author of the malicious code can replay the
login data since, without the trusted path, the hardware initiating the communication is not
identified. Now that this application can login as an authorized user, this process could
modify, reroute, or examine any traffic that the malicious programmer was creative enough
to anticipate. A trusted path protects communication between a user and a TCB, such as
login and session negotiation, from interference or replay by untrusted code since the

hardware at both endpoints have been properly authenticated.
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D. ESTABLISHING A TRUSTED PATH
1. What are the design requirements of a trusted path?

These requirements have been touched upon above, but we will restate them here.
First and foremost, the trusted path must guarantee the ability to authenticate the identity of
each party involved in the creating the communication session. In our design, outlined in
Chapter II of this thesis, these parties will be the Trusted Path Server and the TCBE, which
provide an interface through which the user communicates to the TCB. The Trusted Path
Server will negotiate trusted paths with the various TCBE clients. The idea is to establish a
secure conduit between the Trusted Path ‘Server and the TCBE utilizing public-key
encryption and signatures, then to create a one-time session key to protect the trusted path
communications. This one-time session key may, or may not, be used for the follow-on
secure session communications. Establishing the trusted path will only guarantee
communication security between the TCBE hardware and the Trusted Path Server on the
XTS-300 for use during the hardware and user identification and authentication states. It is
important to remember that the trusted path is designed to authenticate the hardware, not the
user attempting to use the TCBE client. User authentication information will be exchanged
in a secure manner using the one time key generated during the negotiation of the trusted
path and then forwarded to the existing STOP® system calls for user identification and
authentication.

The second function of the trusted path is to guarantee all communication between

the Trusted Path Server and the TCBE is tamperproof. In other words, we must be assured

6 STOP is a multilevel secure Aoperating system developed and supported by Wang Government Services, Inc.
STOP consists of four components: the Security Kernel, which operates in the most privileged ring and provides
all mandatory, subtype, and a portion of the discretionary, access control; the TCB System Services, which operate
in the next-most-privileged ring, and implements a hierarchical file system, supports user 1/O, and implements the
remaining discretionary access control; Trusted Software, which provides the remaining securityvservices and user
commands; and Commodity Application System Services (CASS), which operate in a less privileged ring and

provide the UNIX-like interface. CASS is not in the TCB. [Ref. §]
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that a third party cannot manipulate messages such that the meaning of a message is
changed. This goal can be realized using symmetric key encryption. In addition, encryption
algorithm can be used to provide data communication integrity, i.e. to ensure that if one bit
changes in the encrypted text there will be a large change in the decrypted message. With a
good algorithm, the change will be large enough so that the decrypted message will not
decrypt properly. This property is called diffusion [Ref. 9: p. 60]. Diffusion in cryptography
means that when one character in the input data changes the cipher text output changes
dramatically. The reverse of this implies that if a third party attempts to change the cipher
text to manipulate the plain text the decrypted message is gibberish.

Ensuring that the cipher text cannot be manipulated in a useful manner is only one
element of making the message traffic tamperproof. We must also ensure that the message
cannot be substituted wholesale. In other words we must ensure no other person or process
can intercept a message and substitute their own message which could be assumed to be
from a legitimate party. This attack, known as spoofing, can be prevented by protecting the
symmetric encryption key and by selecting a suitable encryption algorithm. The suitability
of an encryption algorithm depends on requirements established by the cognizant authority.
Possible requirements include the length of time that the information must be protected and
assumptions about adversary resources and expertise. The first step towards protecting the
symmetric encryption key is to never pass the key in the clear. Ideally, this key should never
be transmitted using the same medium as the future traffic encrypted by the symmetric key.
In order to prevent the key from ever being vulnerable, a strong high assurance public-key
exchange algorithm must be used. In this manner both parties can calculate the symmetric
key and have no need to transmit the key data over the LAN that will carry the encrypted
text. Selection of the key exchange algorithm and the symmetric encryption algorithm will
be the topics of future research, but for now let us assume that suitable algorithms exist and
can be implemented in our chosen architecture.

If these two requirements are met, both parties will know exactly who they are

communicating with and all messages between the parties will be guaranteed to be as
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intended by each party. In summary, the trusted path will provide hardware authentication

and assurances that the messages will be confidential and tamperproof. A secure LAN can

be built from this as a building block.

E. JUSTIFICATION FOR A SECURE SESSION

The trusted path is instrumental in the establishment of a secure session. Without the
ability to communicate directly with the trusted computing base (TCB), a remote user
would not be able to provide the information that is required to login, set session level, and
maintain accountability in the system with the requisite level of assurance. What exactly is a
secure session? A session refers to the connection between the client computer and the
remote server. A secure session must be established and maintained in a manner that
preserves a secure state on the remote server. Consequently, the user must provide
information to the TCB that facilitates the enforcement of the security policy before being
able to establish the session. In order to rﬁaintain a session in a secure manner, its
transmissions must have some characteristic that thwarts any attempt at imitation and
prevents useful interception by untrusted processes. The cryptographic algorithms described

later in this paper provide this characteristic.

F. ESTABLISHING A SECURE SESSION

A secure server must accurately enforce the security policy for all attempts to access
its information, whether the attempts are from local or remote users. The user must provide
information directly to the TCB so the server can control access to the information and
provide user accountability. The degree of confidence that the server is correctly
implementing the security policy is its level of assurance and is very important.

1. Accountability

All personnel of the Department of Defense are personally and
individually responsible for providing proper protection to classified
information under their custody and control. [Ref. 11]
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Accountability provides a means of determining the responsible party in a given
situation and has two requirements.

1. Each subject and object in the system must be uniquely identified in order to

track actions with the requisite granularity.

2. The actions must be recorded and protected from modification.
The military, where the actions of an individual can endanger national security or lives, has
always recognized the importance of accountability and implemented it where necessary.
Commercial ventures are also becoming increasingly aware of the inherent value of the
information stored on their computers. Consequently, security administrators must be able
to track every successful and failed attempt to access protected information in order to
identify and discipline users who act inappropriately. In order for a system to provide

accountability, it must implement identification and audit.

a. Identification and Authentication

Identification is “...the process that enables recognition of an entity by a
system, generally by the use of unique machine-readable user names” [Ref. 12].
Identification without authentication, however, is not useful to systems that are trying to
provide accountability. Authentication is the “means of establishing the validity of” the
identity. [Ref. 13] There are three accepted methods of authentication that can be used alone
or in any combination:
1. Something the user knows (a password or Personal Identification Number
(PIN));
2. Something the user has (a token or smart card);
3. Something the user is (a unique biological trait such as a fingerprint or retina
pattern).

While there are benefits and drawbacks for each of these methods, the most common

authentication method being implemented currently is the use of passwords. Since this is -

the case for the XTS-300, this section will briefly explain the advantages and concerns

associated with the use of passwords.
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The strength of a password derives from two sources, its composition and its
secrecy. If one of these two components is flawed, a password cannot be trusted to provide
adequate security. The perfect password would have a different composition every time it is
used, a one-time password. Although the use of one-time passwords is possible, it usually
involves adding hardware and software to the existing system. The XTS-300 does not
implement one-time passwords, so they will not be discussed. Passwords used more than
once can be relatively secure against most forms of attack if users follow certain
composition rules while changing their passwords periodically. These rules are outlined in
the DoD Password Management Guideline [Ref. 14].

However securely a password is composed, it cannot provide security and be
used for authentication if it is known by more than one person. Therefore, it is very
important that each user protects his personal password in the following ways: do not write
it down, do not share it with anyone, and do not let anyone see you type it. Unfortunately,
users have limited control over their passwords when they are transmitted over a network.
System administrators should ensure that there is adequate security in place to protect
passwords from electronic monitoring. They should also protect the password files on the
network server(s) from unauthorized access or modification.

Access control to both the system and the information contained on the
system is very important. The identification and authentication process is a crucial
component of computer security since it provides the basis for most types of access control
and for establishing user accountability. Systems evaluated at the Class B3 level use the
clearance and authorizations associated with the user to properly mediate access to objects.
In order to meet Department of Defense security requirements, we want to protect
information and provide user accountability while still allowing authorized users access to
information.

Classified information and sensitive unclassified information shall be
safeguarded at all times while in AISs. Safeguards shall be applied so that
such information is accessed only by authorized persons, is used only for its
intended purpose, retains its content integrity, and is marked properly as
required. [Ref. 15]
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b. Audit

Audit is the final component of the accountability mechanism. Being able
to identify what actions a subject performs on an object is of limited usefulness unless the
system records the actions and protects that record from modification. The security policy
that must be enforced determines the granularity of the audit trail. The system
administrator must choose auditable actions carefully, especially if storage space is a
problem, because audit trails can grow rapidly.

2. Assurance

Brinkley and Schell use a library analogy’ to illustrate one of the basic concepts of

computer security: assurance.

Of course, we must not only have a good security system; we must also
implement it correctly. If a guard is subject to subversion or if our vault has

walls of paper rather than steel, the security we provide will not be very
effective. [Ref. 16]

Assurance is “a measure of confidence that the security features and architecture
of an AIS accurately mediate and enforce the security policy” [Ref. 15]. In the library
analogy, we have more confidence that vault walls will allow access only through
legitimate entrances than we do that regular room walls could provide such a level of
protection. The walls of a vault are built to be secure against penetration. The walls of a
normal room are generally intended to provide separation and might have weak spots

such as windows that are vulnerable to penetration. A vault inherently has a higher

7 The authors draw parallels between the protection mechanisms used in protecting sensitive hard copy documents
and those that should be implemented to provide security for information stored in a computer. For example, when
trying to enforce access control, the first step in protecting hard copy documents might be locking them up in a
vault. However, the documents still have to be used so a method of allowing authorized people to access them
must be created. If a door is installed, we must then provide some set of controls over who can enter. Posting a
guard at the door and providing a list of who is authorized access establishes a method of controlling who may
enter the vault. The analogy continues building upon itself to explore other computer security concepts such as

authentication, an audit trail, assurance in implementation, etc.
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assurance of physical security than a normal room, even one with added features such as
locks and barred windows, because it is built to meet certain security specifications.
Similarly, computer security requirements can be fulfilled by using either trusted
systems or add-on components that provide security features. Relating these concepts to
the library analogy, a vault would represent the trusted system and add-on security
components could be bars on the window of a normal room. The use of add-on
components (see Figure 3) is the easiest and cheapest method because it does not require
any modification of the system development phase, but can be incorporated after the
system has been built. There are two inherent vulnerabilities in this configuration. The
first is that if the add-on security component can be circumvented, the system is
vulnerable. In the library analogy, if an intruder penetrates the walls, he can gain access
to the room. Even if the add-on security component cannot be by-passed, the user cannot
have much confidence that the system will behave in the manner expected because the
development phase contained no controls. In terms of our library analogy, even if the
guard prevents unauthorized access through the door and the walls cannot be penetrated,

there is no guarantee that the bars cannot be defeated.

Application
Szcglgty Q> Add-on Security Component Circumvent
\ 4 Operating System

Figure 3. Add-on Security Component
On the other hand, a vault is built from the ground up to meet certain security
criteria and therefore has a higher level of assurance. The same logic applies to the
development of trusted systems. In this paper we use the original definition of “trust”
where it is used to describe the “level of confidence that a computer system will behave
as expected” [Ref. 17]. A trusted system is developed in accordance with specified

security and assurance requirements [Ref. 2].
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G. TERMINOLOGY

The generally accepted definition of a trusted subject is a subject that has a range,
where the read class strictly dominates the write class, within which the subject is not
constrained by the confinement property (*-property). Normally, a trusted subject is
distinctly different from a privileged subject. A privileged subject is one that has privileges
to write to privileged (i.e., protected) data structures.

The XTS-300 combines the discrete properties described above and assigns them to
what it also calls a trusted subject. “A process is trusted on the XTS-300 (a trusted subject)
either if the process’ integrity level allows manipulation of TCB databases (an integrity
level of at least operator) or if the process possesses privileges that exempt it from specific
access control rules (for example, the privilege to be exempt from the security *-property).”
[Ref. 18]

In order to distinguish between the two subsets of the XTS-300 trusted subject, we
call a subject whose integrity level allows manipulation of TCB databases a privileged
subject. A subject with privileges that exempt it from specific access control rules is called a
trusted subject. It is important to note that privileged subjects are not always trusted
subjects, but every trusted subject is a privileged subject in the XTS-300.

A program that is installed with a maximum integrity level of at least operator can
be assigned a privilege set that potentially exempts it from specific access control rules
during execution. Normally, a privileged subject invokes those privileges only at the
specific times they are required, becoming a trusted subject temporarily. After the rrusted
subject has performed the desired action, the privileges are revoked, and the privileged

subject resumes execution.

H. ORGANIZATION OF THESIS

Chapter II provides information on the software module design process. Chapter III

presents the final design and discusses the implementation phases. Chapter IV introduces
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other products intended to provide similar multilevel security (MLS) functionality, then

compares and contrasts those products with the MLS LAN project and presents the
conclusions. The design documents for the Secure LAN Server are included as Appendices
A and B. The source code is included in Appendices C, D, and E. Appendix F contains a

glossary of terms and acronyms used in this paper.
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II. SOFTWARE MODULE DESIGN PROCESS

A. INTRODUCTION

While the implementation of protocol servers on a high assurance platform is

intended to improve security, another goal of this thesis was to have minimal impact on the

end user. Consequently, the design attempted to replicate existing user interfaces to the

greatest extent possible while minimizing additional user interaction.

The hardware authentication required for establishing the trusted path occurs
automatically when the user depresses the SAK at the TCBE and is transparent
to the user.

User authentication, which must occur before a session can be established on the
server, requires user input but the procedure resembles the login process
normally associated with accessing the XTS-300.

Setting the session level is automatic if the default security and integrity levels
are valid; otherwise, the user must go through a process similar to the sI®
procedure that exists on the XTS-300.

Subsequent invocations of the trusted path interrupt application processing. If
the user chooses to continue the session, application processing will resume. If
the user chooses to logout, the session is terminated.

The additional software components that compose the Secure LAN Server are

transparent to the TCBE and the protocol server.

In order to implement all of these features, we created an application called the

Secure LAN Server on the server. It can be divided into two categories of functionality

called the Trusted Path Server and the Session Server. The Trusted Path Server (TPS)

8 If a user has the change security level permission, the sl command allows the user to change the security and

integrity levels of the current session at the trusted path prompt.
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behaves like a traditional protocol server and spawns a child process called the Session
Server when a new connection is requested. The Session Server has two modes,
Authentication and Socket Relay. The Session Server (Authentication) provides an interface
between the user’s TCBE and the TCB on the remote server to transmit user authentication
and session management information. The Session Server (Socket Relay) acts as a secure
intermediary between the TCBE client and the protocol server. The interface presented to
the client application mimics the interface of the normal protocol server. Similarly, the
Session Server (Socket Relay) presents an interface to the protocol server that mimics
normal socket behavior.

A protocol server normally binds to a socket that uses a well-known port number.
Clients that want to use the protocol server request a connection on the protocol server’s
listening socket (see Figure 4). The protocol server spawns a child process, which has a

different socket, to handle the new connection.

listening socket
XTS-300 Client
i -P;otocol connection request ' Pn;to_c-c;l_mg
Server Application E
fork
3 connection
Protocol
Server (child)
connected socket
N \Ve!l-Known Port Ephemeral Port

Figure 4. Normal Protocol Server Socket Connection

In our scenario, the TPS binds to a reserved port number and creates a listening
socket on which connection requests are received (see Figure 5). By sending a secure
attention sequence (SAS) via a trusted computing base extension (TCBE), a user is
requesting a trusted path. When a user sends the first SAS, the TPS forks a child process

called Session Server. The Session Server creates two types of sockets. The first is a
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pseudo-socket to which the protocol server can bind and the second is a real socket to which

the TCBE/client application can bind.

XTS-300 listening socket Client
Trusted Path connection request Protocol |
Server Application E
fork
: connection
Session
Server (child)
"'E{;tgc'o]"" connected socket
Server :
) I Reserved Port Ephemeral Port

Figure 5. Modified Protocol Server Socket Connection

The Session Server does not establish a trusted path until the TCBE hardware
authentication has been completed successfully. Once hardware authentication has been
validated, the Session Server (Authentication) creates a trusted path to accept user
authentication and session management information. If the user authentication and session
level request are valid, the Session Server (Socket Relay) acts as a relay, with optional
encryption to protect confidentiality and integrity, between existing protocol servers and the
corresponding Trusted Computing Base Extensions. If a user presses the SAK, a SAS is
generated and routed to the Session Server (Socket Relay) and a trusted prompt will be
displayed at the user’s terminal. The trusted prompt will allow the user to logout or
continue.

The Secure LAN Server is designed to support request connections from multiple
client TCBEs. When different TCBEs try to contact the Trusted Path Server at the fixed
connection request location, the TPS creates a separate Session Server to handle each
connection request, as shown in Figure 6. Once a connection has been established, any other

SASs from a particular TCBE are handled by the Session Server assigned to that
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connection. The security and integrity levels of the connection determine with which

protocol server the Session Server allows the client to interface.

XTS-300 listening socket Client
(unclassified)
Trusted Path i‘ Protocol |
Server i ~ Application 5
fork
4
i Session i
; vy . Client
Server {child =
ookt fonid) | {confidential) *
~~~~~~~~~~~~~~~ o
________ i —, i Protocol -
| Protocol 1 connected socket i Application” |
Server !} T
g e
I Reserved Port Ephemeral Port .
--------- # Connection Request — Connection

Figure 6. Secure LAN Server with Multiple Clients

Although the goals of the thesis did not change, the design of the software
components went through several major revisions. The second section discusses the design
process. The final section presents the significant changes in chronological order and the
reasons for these changes to illustrate the progression of the design and the steps used to

implement that design.

B. DESIGN PROCESS

1. Functional Decomposition

The initial approach in designing the Trusted Path Server (TPS) was functional
modularization. We asked questions such as “What occurs next?”, “What procedure should
be responsible for that functionality?”, “How can we communicate via the TCP/IP stack?”,
“How do we communicate with the protocol server?”, which all focused on what
functionality is needed at what time. The answers to these questions led to the development

of a complex set of control flow diagrams, which are included in this chapter.
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The design process began with the TPS, which forks a child process called the
Session Server to handle each connection request. The Session Server (Authentication)
performs both hardware and user identification and authentication. User identification and
authentication is only required to initiate a new session. Hardware identification and
authentication is performed by the Session Server every time a secure attention sequence
(SAS) is sent from the trusted computing base extension (TCBE). If the session is created
successfully, the Session Server (Socket Relay) acts as a relay between the client's TCP
connection and the protocol server's pseudo socket connection.

This design approach created modules called Trusted Path Server (TPS),
Connection Database (CDB), Session Server (Authentication), Session Server (Socket
Relay), and Pseudo Socket. The TPS was to listen and accept socket connections. The CDB
maintained a record of the authorized TCBEs, with their associated public key, and whether
there was an active session. The Session Server (Authentication) called procedures to
perform hardware and user identification and authentication. The Session Server.Socket
relay acted as a relay between the client’s socket connection and the protocol server's
pseudo socket, pérforming hardware identification and authentication upon receipt of a
SAS. The Pseudo Socket emulated the system’s socket calls for the protocol server.

2. Object Model Decomposition

After attempting to implement our application using these concepts, it became clear
that the multiple interactions between modules were adding to the complexity of the
implementation and hence our debugging time. Re-examining the module decomposition
using what Parnas [Ref. 19] calls an unconventional approach immediately yielded benefits
in understanding the overall project. Our "unconventional" (object oriented) approach was
to examine the data stores required by the application, and then provide an interface module
for each of the database types thereby minimizing intra-module dependencies and
complexity.

This second approach yielded additional software modules called Shared Memory
Structure, Shared Memory, Semaphores, and Buffer I/O. The Shared Memory Structure is
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responsible for all calls that manipulate data structures in shared memory. The Shared
Memory Structure Module is built upon the Shared Memory Module, Buffer I/O, and
Semaphores. The Trusted Path Server main procedure calls interfaces to the Shared
Memory Structure. The resulting hierarchical structure of dependencies (see Figure 7)

yields an application that has proven to be much easier to debug and understand.

tps
tps_util
shm_struct
user_ia listeng
buff_io io_util msem priv_util shm . cdb
util

Figure 7. Software Module Dependency Diagram
4. Module Responsibilities

The TPS continues to listen and accept socket connections before forking a child to
handle the connection, but the child process acts as a driver for the various data stores. The
Session Server (Authentication) passes any socket connection to an identification and
authentication procedure that will make requests of the Connection Database and various
STOP User Access Databases. If the procedure successfully validates the TCBE and the
user, the connection is handled by the Session Server (Socket Relay). The Session Server
(Socket Relay) acts as a controlling driver for the various data store modules it must
manipulate. The Session Server (Socket Relay) depends on the Shared Memory Structure
Module to pass data to the protocol server and on the Buffer I/O Module to pass data to and
from the client's socket connection. The Shared Memory Structure also depends on the
Buffer I/O module for the to_server and to_client buffers. The reuse of previously debugged
code shortened the coding effort by several days. If either data store were to be changed, the

Session Server (Socket Relay) would not need significant modification to make the same
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function calls and declarations. For example, if FIFO pipes were used in place of shared
memory, the Session Server (Socket Relay) could still make calls to a module called Shared
Memory Structure. However, the implementation behind the Shared Memory Structure
would change considerably (information hiding), albeit the name would be less than
descriptive.

The procedural design yielded a framework for understanding the overall goal of the
project and for discovering the required databases. The control flow diagrams facilitated
real understanding of how a secure attention sequence (SAS) should be handled, and what
side effects could be expected when responding to each SAS. The procedural design also
produced the first data store module break out (Connéction Database) and yielded the
modules that act as drivers (TPS, Session Server) during application execution. The object-

oriented analysis of the control flow produced an easily understood object-oriented design.

'C.  DESIGN DECISIONS

During the design process, several discoveries led to the decisions that resulted in
the final design that is presented in the next chapter. The discoveries and decisions are
presented chronologically in this section to show the progression of the design.

1. Simplificaﬁon of Secure LAN Server Implementation

For demonstration and development purposes, we designed the Secure LAN Server
to function as a stand-alone application, vice relying on inetd’ to start each Session Server.
The stand-alone application is called the Trusted Path Server (TPS) and is a socket listener
that provides inetd-like services for the Session Servers. This decision resulted in two
implementation simplifications. We maintained the connection database in memory owned

by the TPS, and we were able to execute the Trusted Path Server from the command line.

9 Inetd is a daemon associated with UNIX servers using TCP or UDP. It handles most of the startup details of other

daemons and is the one process that waits for incoming client requests. [Ref. 20]
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Storing the connection database in the memory space of the TPS allowed our
implementation to postpone the development of a dynamic database interface, thus saving
considerable time in producing the first version for a live demonstration. Since each Session
Server is a child of the TPS, the Session Servers each had access to the database pointer,
which was required for updates, with no additional coding. Mutual exclusion constructs are
not required since each Session Server is responsible for updating only the record associated
with the TCBE the Session Server is currently serving. Once fully developed, this database
interface will support access by multiple processes, each supporting a different session,
while providing mutual exclusion at a record level. We postponed implementing this
portion of the connection database during our proof of concept implementation.

Running the Trusted Path Server from the command line speeded the development
process by allowing simplified monitoring of the application’s behavior via debug
statements. Once the application is installed as a trusted daemon, it will not be possible to
view run time debug statements and log file functionality will need to be designed and
implemented.

2. Amount of Trusted Code

Privileged code implements a privileged subject, which we have defined as a subject
that has an integrity level of at least operator. The original design attempted to minimize the
amount of privileged code; privileged subjects that are exempt from specific access control
" rules are called trusted subjects. A discussion of the distinctions between these phrases is
presented in Chapter I, Section G.

Consequently, there were several software modules, only one of which was trusted
(see Table 1). The TPS daemon, the user identification and authentication module, and the
Session Server (active) were originally privileged modules. The process that created the
Session Server (active), the Session Creator, was trusted. The Session Creator was the only
module that had to communicate with subjects at multiple levels. It was required to take
information from a system low module, the user identification and authentication, and

create a child process that was possibly at a higher level.
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Privileged Subjects Trusted Subjects

TPS Daemon Session Creator
User Identification and Authentication

Session Server (active)

Table 1. Subjects in Original Design

While porting our first network application to the XTS-300, we discovered that a
network application must be at the same level as the TCP/IP daemon (system low) or be
trusted in order to utilize sockets. Considering this new requirement, alternative solutions
had to be considered. The first, instantiating new TCP/IP stacks for each level, was quickly
eliminated since it would be excessively resource intensive.

The next solution we examined was designing the TPS as a privileged process that
creates a trusted child process, the Session Server. In order to be able to receive information
from the TCP/IP connection and create a child process to support a session that was at any
level higher than system low, the TPS was required to be a privileged process. As a child
process, the Session Server inherits the characteristics of the parent and is able to handle all
further communication with the TCBE/client application pair.

In order to communicate between the TCP/IP stack and any protocol servers
operating above security level zero and integrity level three (the level of the TCP/IP stack),
the module previously called Session Server (active) would have to be a trusted subject.
Separating it from the Session Creator would no longer minimize the number of trusted
subjects; consequently, the twc') modules were put into one process and the resulting trusted

subject was called the Session Server. Table 2 depicts the results of the design change.

Privileged Subjects Trusted Subjects

TPS Session Server

Table 2. Subjects in Final Design
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3. Secure Attention Sequence (SAS) Handling

a. Alleviating Denial of Service Attacks #1

Initially, the TPS was designed to receive each SAS destined for the system
and perform the TCBE hardware identification and authentication (HW_IA) before it
determined the correct process to forward the SAS signal to for action. The initial intent was
to provide consistent handling of the SAS, but the overhead associated with verifying the
TCBE hardware ID for each SAS represented a potential choke point. Since each active
session had a direct connection between the Session Server and its respective TCBE, we
decided to have the SASs sent directly to the Session Server currently acting as the TCBE’s
controlling active process. This decision eliminated the overhead that was introduced by
having the TPS determine which Session Server should handle each SAS.

In addition to adversely impacting system performance, the choke point also
introduced a vulnerability to denial of service attacks. In order to alleviate the problem, the
TPS was redesigned to spawn a child process to handle hardware and user authentication

procedures every time it received a SAS. The Session Server performs the TCBE hardware

ID before further processing the SAS.

b. Preventing Multiple Session Servers for a Single TCBE

Since every SAS received by the TPS was now generating a Session Server,
checks against the connection database were introduced into the system to ensure that the
SASs associated with an active session were forwarded to the right child process. The
TCBE hardware ID procedure serves two purposes. If the hardware ID is not valid, it
returns an INVALID_ID; if the hardware ID is valid, it returns the controlling active
process ID (CAPID) and saves the hardware ID in the parameter that was passed by
reference. If the CAPID is not equal to TPS_ CONTROL, there is an active session and the
Session Server (Authentication) passes the SAS to the CAPID and calls End Session.

To maintain the integrity of the connection database data, a critical region is

defined in the code that provides functions to manipulate the connection database. The
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critical region begins with the TCBE hardware ID procedure and ends after the conditional
structure that updates the CDB if the result of the TCBE hardware ID procedure is
TPS_CONTROL. We determined that the critical region was required to prevent multiple
processes from one TCBE from receiving a TPS_CONTROL and attempting to update the
Connection Database (CDB). Now only one process will receive TPS_CONTROL and
update the CDB with its process ID as the CAPID for the TCBE that sent the SAS. The
other processes that were created because of SASs from the same TCBE will receive a

SESSION_ACTIVE and forward their SAS to the process listed as the CAPID.

C Alleviating Denial of Service Attacks #2

Creating a Session Server every time a SAS is received presented another
problem; the system’s vulnerability to a denial of service attack increased. Reviewing the
flow of information that was occurring revealed a possible solution: the TPS only needed to
handle SASs for connection requests. SASs for established connections could be routed
directly to the Session Server responsible for the session.

Although it is still possible that a flood of connection requests could
constitute a valid Denial of Service attack, a properly configured LAN can significantly
reduce the attack’s effectiveness. IP filtering at the incoming router, and the resulting
restricted IP addresses, limit 'the number of users who are capable of performing this type of

Denial of Service attack and make identifying the culprits much easier."’

d Handling Multiplexing Issues

Because of the possible delay in creating a Session Server when the first
SAS is handled, there could be other SASs from the same TCBE that are routed to the TPS
queue before the connection is actually established. In this situation, the approach is very

similar to that presented in the previous section on “Preventing Multiple Session Servers for

10 Denial of service attacks are still possible. However, we have proposed a mechanism by which we can limit the
number of possible attackers. If the LAN is configured as intended, the router providing external communications

should be on the far side of the high assurance server from the LAN clients.




a Single TCBE”. However, only the SASs that are received in the time period between the
first SAS being received and the connection being established end up in the TPS queue.
Any SASs received after the connection is established are forwarded directly to the Session
Server responsible for the connection. Therefore, the possibility discussed in the section on

“Alleviating Denial of Service Attacks” is diminished.
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HI. FINAL DESIGN

This section presents details of the final design by presenting the functional
diagrams for each portion of the Trusted Path Server (TPS) and the Session Server. Figure 8
illustrates a high level diagram of the Secure LAN Server components. Figure 9 shows the
high-level transition control diagram of the required components. The Connection Database
is a pivotal component that does not appear in Figures 8 or 9 because it is part of the TPS

initialization. The characteristics of each component will be explained in its corresponding

section.
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Initialize
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Figure 9. Transition Control Diagram

A. COMPONENTS
1. Connection Database (CDB)

The CDB is vital to the implementation of the TPS and Session Server. It is
initialized from a protected file when the TPS is started, and maintained in memory as long
as the TPS exists. The code associated with maintéining the CDB must be trusted to prevent
unauthorized modifications.

For demonstration purposes, the CDB was designed to allow the system
administrator to make additions, deletions, and modifications to the CDB records by
directly modifying the initialization file. This means that changes only take effect when the
TPS restarts. Future options are discussed in Chapter IV, Section B.

The structure of the CDB is displayed in Figure 10. If the TCBE hardware ID is
valid, the CAPID field holds the process ID (PID) of the process that is responsible for the
current session. If the controlling active process ID (CAPID) is TPS_CONTROL, there is

no active session for the TCBE.
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TCBE Hardware ID TCBE Public Key Controlling Active
Process ID (CAPID)
3434789 <very long key> 2134
3434790 <very long key> 2345

I

A CAPID of zero indicates that
the TPS is the controlling process.

Figure 10. Connection Database Structure
2. Secure Attention Sequence (SAS)

The secure attention sequence (SAS) (see Figure 11) is created by the TCBE in
response to a user SAK. The SAS is used to initiate trusted path negotiation. The TCBE is
not required to monitor the data stream from the client PC for the reserved sequence of
keystrokes since they can only be entered under control of the TCBE. This is true because a
valid SAS is signed using the TCBE’s private key by the TCBE prior to transmission to the
Secure LAN Server. It is unlikely that the untrusted software on the PC client will be
capable of spoofing the SAS without access to the private key of the TCBE. The likelihood

of this event will be determined when an appropriate public-key algorithm is selected.

SAS Hdr Hardware ID User Name Password Security Level Integrity Level
|255 {243 a1 @2 [ @3 | 10 10 [pass | . [wot[ 10| s | 1 KRR
I
¥

2byes | lwlbyes | | 1 t0 20 bytes [ 1wiobyes |

name | name | name vl

3 bytes ;! II 3 bytes !

Figure 11. Secure Attention Sequence

When a user enters a reserved sequence of keystrokes, the TCBE stops the data flow
from the client PC and sends a SAS to the XTS-300. The Secure LAN Server must monitor
all inbound packets for the SAS header sequence and react accordingly when a SAS header
is detected. The reaction depends upon whether the SAS is part of the initial session request
or occurs during an active session. These reactions are covered in more depth in the TPS

and Session Server sections.
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Requiring the Secure LAN Server to monitor the individual bytes should add
negligible overhead while simplifying the design of the Session Server. Minimal extra
coding is required to add a conditional branch if the SAS header is detected. If TCP out-of-
band data or some other mechanism of signaling the Session Server were to be used, the
complexity of the Session Server and the TCBE will be increased. Both of these
components have design goals of limiting the amount of code required. The reason for
minimizing code in the Session Server and TCBE is to simplify the evaluation in
accordance with the TNI [Ref. 7], and to minimize the final hardware implementation of the
TCBE. Additionally, monitoring of the inbound data may be easier if a block cipher [Ref. 9:
p. 57] is selected and the TCBE is required to send a SAS on a block boundary. The
selection of a symmetric cryptographic algorithm is further discussed in Chapter IV under
future research.

Once the trusted path is established, only trusted path communication is allowed.
Data flow from the client PC does not resume until the trusted path communication is over
and the TCBE resumes transmitting data from the client PC. This is discussed further in the
Trusted Prompt section of the Final Design chapter.

The SAS contains the TCBE hardware identification (ID) and a nonce'* that is
encrypted with the Secure LAN Server public-key that are used to establish a trusted path.
When the SAS arrives at the XTS-300, either the TPS or the Session Server that is
supporting the current session handles it; the TPS and Session Server sections discuss these
procedures in more depth.

3. Trusted Path Server (TPS)

The TPS is a program that is started from the trusted prompt and runs in the
Operating System Services (OSS) domain of the XTS-300. Although not currently a

daemon, we are simulating one in the TPS. Execution of the TPS begins with an

11 A nonce is a unique character string often representing time used in cryptography to provide protection against

replay attacks. [Ref. 10]
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initialization process that consists of loading the Connection Database into memory from a
protected file and binding the TPS process to the port that is reserved for the Trusted Path
Server. When these steps have been successfully completed, the TPS enters a listening state
(see Figure 12) in which it blocks until a user initiates a connection by sending a secure
attention sequence (SAS) via the TCBE. As connection requests are received, they are
placed in a first-in-first-out (FIFO) queue maintained by the TCP/IP stack. The size of the
pending request queue is a design parameter (we chose 5), and can be changed in the TPS
source file. Future work could place this in a configuration setup file accessible the system
administrator.

Once a connection is established, the TPS creates a child process called the Session
Server to handle all further communications for that connection, forwards the SAS, and
continues to monitor for any other pending connection requests. If there are requests present
in the queue, the TPS handles them in a first-in-first-out (FIFO) manner as discussed above;
if there are no other requests pending, the TPS re-enters its listening state.

Designing the TPS as a command line program shortened the modification and
testing cycle. Exfending the design for the TPS to function as a daemon is discussed in

Chapter IV under future research.

From
Initialize TPS

Forward
SASto
Session
Server

Figure 12. Trusted Path Server Listen Mode

37




4, Session Server

a. Session Server (Authentication)

The first thing the Session Server (Authentication) (see Figure 13) does is to
determine whether the hardware ID of the TCBE that made the connection request is valid.
This is accomplished during the Hardware Identification and Authentication (HW 1&A) that
is discussed in more detail in a later section. If the hardware ID is invalid, the Session
Server (Authentication) calls End Session. There are two possible branches if the hardware
ID is valid; one occurs if there is an active session, and the other occurs if there is no active
session. If there is no active session for the TCBE, the value in the CAPID field is
TPS_CONTROL. In this case, the Session Server (Authentication) updates the controlling
active process ID (CAPID) of the TCBE in the connection database (CDB) with its process
ID. Once this update occurs, an active session has been established and the second branch
occurs. Any subsequent SAS from the same TCBE is handled directly by the Session
Server.

Each SAS causes the HW_IA procedure to be invoked; any time a HW_IA
fails, the connection is terminated. If a SAS is received by the Session Server
(Authentication), it exits the current procedure and repeats hardware identification and
authentication. For example, if the Session Server (Authentication) has begun, but not
completed, user identification and authentication, a SAS will cause the Session Server
(Authentication) to discontinue “User 1&A” and being again with the bubble labeled
“HW_I&A initial session.” SAS transitions are shown only where they are allowed.

The design includes an option for negotiating a one-time session key to
encrypt ensuing session communications. If the encryption option is selected, a session key
is negotiated and used; the details of the negotiation are covered in more detail in the
section on Negotiate Session Key. Regardless of whether the encryption option is selected,
the Session Server (Authentication) begins the user login procedure, which is discussed in

more detail in its own section. If the user identification and authentication fails, the Session
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Server (Authentication) calls End Session; if it succeeds, the process changes modes from

Session Server (Authentication) to Session Server (Socket Relay), effectively beginning the

user’s active session.

From TPS
listener

SAS

SAS
Session
AW 1&A N vk Set CAPID \]/( i
. Valid No [ Set ; al
initial CAPID > 0? - Ne$°“;'° Session Server.
session Caller PID session key Socket Relay

User I&A
Invalid

HW_I&A
Invalid

Session
Key Invalid

SAS_msg
to CAPID

To
End session

Figure 13. Session Server (Authentication)

b. Session Server (Socket Relay)

Separate Session Servers (Socket Relay) (see Figure 14) are responsible for

establishing and maintaining the secure sessions for each TCBE and protocol. Once the

Session Server (Socket Relay) has control of the session, it blocks while waiting for data

from the client PC. Once it receives data, the Session Server (Socket Relay) calls Session

Relay, which is discussed in more detail in its own section. The Session Relay is active as

long as data is being received; when the data stream is empty, the Session Relay returns

control to the Session Server (Socket Relay).

When the Session Server (Socket Relay) receives a SAS, a Hardware Identification
and Authentication (HW [&A) occurs to ensure that the TCBE is still valid. If the HW I&A
fails, the Session Server (Socket Relay) calls End Session. If the HW I&A is successful, the

user will see a Trusted Prompt at his PC. The functionality of the Trusted Prompt is
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discussed in more detail in a later section. If the user chooses to continue his current

session, the Session Server is restored to its previous state. If the user chooses to logout, the
Session Server (Socket Relay) calls End Session.

active session

From
Session Server.
Authentication,

End Session

Receive
packet
signal

Data
stream
empty

Logout *

Continue

) Z2E

Trusted
Prompt

Figure 14. Session Server (Socket Relay)

5. End Session

End Session (see Figure 15) is a procedure that cleans up when a connection is
terminated. The CAPID value in the CDB for the TCBE is reset to TPS_CONTROL

(indicating that there is no active session) and the Session Server process for the connection

* exits with the appropriate status code.

From
Session Server

Exit with
appropriate
error code

Figure 15. End Session
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6. Hardware Identification and Authentication (HW I&A)

TCBE Hardware Identification and Authentication (see Figure 16) is a crucial
component of the Trusted Path. Without verification of the identity of the hardware, there is
no guarantee that the client identity is not being spoofed. The HW _IA is called from both
the Session Server (Authentication) and the Session Server (Socket Relay). During this
development phase, the TCBE Hardware Identification and Authentication encryption was
simulated. The HW_JA consisted of verifying the TCBE hardware identification number
against those present in the Connection Database (CDB). If there was a record with a
corresponding TCBE hardware identification number, the TCBE was considered
authenticated and the controlling active process identification (CAPID) was returned.
Implementation of hardware authentication was reserved for future research efforts as
discussed in Chapter IV, Section B.

Both public-key and symmetric-key cryptography could be used to encrypt the
communications between the TCBE and the Secure LAN Server, but there are several
reasons that we chose public-key cryptography. Symmetric-key algorithms are simpler and
faster, but the key must be exchanged in a secure out-of-band manner. Alternatively, public-
key encryption allows the public key to be distributed in a non-secure way and the private
key is never transmitted.

Public-key cryptography can be used to simultaneously protect the secrecy of the
TCBE hardware ID included in the SAS and provide authentication between the TCBE and
the Secure LAN Server. The TCBE signs the SAS using its private key and then uses the
Secure LAN Server’s public-key to encrypt the SAS before it sends it over the network.
HW _IA decrypts the SAS using the Secure LAN Server’s private key and looks in the CDB
to see if there is a matching TCBE hardware ID. If there is not, the HW_IA returns an
INVALID ID. If there is, the HW IA returns the CAPID associated with the TCBE
hardware ID and copies the hardware ID into the hardware ID parameter passed by

reference.
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From
Session Server

Does HW_ID
of signed_msg
match that
associated with
signature?

To Session Server,
Negotiate Session Key

Session
Server?

To Session Server,
Trusted Prompt

To
End Session

Figure 16. Hardware Identification and Authentication
7. Negotiate Session Key

The option to negotiate a session key (see Figure 17) has been included in the
design, although it has not been implemented as a part of this thesis. In environments that
do not provide protection against malicious eavesdropping, a one-time session key provides
confidentiality for the communications between the client and the server. A symmetric-key
encryption algorithm was chosen over public-key encryption because it is faster and thus
more appropriate for bulk data encryption. A public-key exchange algorithm, Oakley, was
chosen as the method for calculating the one-time session key for symmetric encryption
because it does not require the session key to be transmitted over the network.

A test message is sent as an automatic communications check to ensure that both the
TCBE and the Session Server correctly calculated the one-time session key. The test
message should be long enough to accurately exercise the diffusion property of the
encryption algorithm. If the Session Server is unable to decrypt the test message and
retrieve the expected plain text, then the connection is terminated. If the TPS can properly

decrypt the test message, the user begins identification and authentication procedures.
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Figure 17. Negotiate Session Key
8. User Identification and Authentication

The user identification and authentication procedure éccepts user name, password,
and session level information from the user via the trusted path. The current implementation
for verifying the user information against the User Access Databases associated with the
STOP operating system is stubbed out. Future implementations are discussed in Chapter IV,
Section B.

9. Trusted Prompt

The Trusted Prompt is differentiated from the login prompt. While both prompts use
the trusted path as the communications conduit, the login prompt occurs once, immediately
after the connection has been established. The Trusted Prompt can occur at any time, after
both the connection and the session have been established. The Trusted Prompt (see Figure
18) developed as part of this thesis attempts to emulate the appearance of the trusted prompt
that is normally associated with the XTS-300. Once a session has been established and the
user is successfully authenticated, a SAS from the TCBE will initiate a trusted prompt. A
session message that contains the session security and integrity levels is assembled to send
to the client PC. As all trusted path communications are encrypted, the session message
must be encrypted. When the session message reaches the TCBE, it is decrypted and the
contents are displayed under control of the TCBE.

At this point, the trusted path has been established and the Trusted Prompt on the

remote server is waiting to receive a command from the user via the TCBE. In order to
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demonstrate the validity of our approach, our trusted prompt supports a subset of the usual
trusted path functions; the user may continue or logout. The command continue reattaches
the user’s session in its previous state; the command Jogout terminates the session. Any
other entry will cause the user to be prompted for a command input again. The restrictions
placed on the commands permitted over the Ethernet trusted path prevent administrative
functions from being performéd from client PCs. This feature reduces the possibility that

the system could be subverted by a user from an external location.

Query User
Access DB
wiuser_id

and password

From
Negotiate
Session Key,

Send
“login attempt
failed”

To
End Session

Get
session
level

Session Query User
yalid [ Access DB
w/user_id,
sl, and il

Get
integrity
level

To Session Server

Send “invalid
category/
level name”

Figure 18. Trusted Prompt

10. Session Relay

The Session Relay (see Figure 19) is called by the Session Server (Socket Relay)
when there are incoming packets on a connection. When the data packet reaches the Session
Relay, the TCP/IP header has been stripped away, but the packet is still encrypted. The
Session Relay is responsible for decrypting the packet and forwarding it to the appropriate

protocol server via a pseudo-socket interface."? If, for some reason, the appropriate protocol

12 The details of the pseudo-socket interface and the shared memory structure are discussed in the implementation

chapter of this thesis. However, it is worthwhile to note that there is only one shared memory structure per
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server has not been started, the Session Relay is responsible for starting and opening a
communications path with it. The Session Relay checks the data stream for more input to
handle; if the data stream is empty, it returns control to the Session Server (Socket Relay).
For demonstration purposes, our thesis implements a Session Relay that supports
one protocol, but the design can be extended to multiplex between multiple protocols.

Future developments are discussed in Chapter IV, Section B.

From
Session Server.
Socket Relay

To
Session Server.
Socket Relay

Is service
for protocol
running?

Forward
packet
to service

Open
comms path
w/ server

Start
service

If a SAS is received at any point in this diagram, it transitions to Session Server, HW_I&A.

Figure 19. Session Relay
11.  Audit

The act of recording events in the audit trail is not noted on any of the previous
diagrams to prevent unnecessary distraction or confusion. The events that are audited can be
“selected by the system administrator, since our system is based on the XTS-300 which
allows the auditing of all or selected events. The audit records that our system might

generate are shown in Table 3 [Ref. 18: pp. 21-26].

sensitivity level. This shared memory structure is used to allow communication between a secure session server

and the protocol servers associated with a sensitive level.
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No. Audit Event

8 device open

11 device close
132 device start error
68 object close

70 object creation
72 object deletion
74 object open

13 IPC message sent
17 process creation
19 process deletion

20 process fork

21 process owner chahge
22 process privilege change
32 shared segment map

33 shared segment unmap
34 semaphore object

77 socket open close

78 socket bind failure
79 socket connect

80 socket accept

83 Internet inbound connect failure
131 cup (change user password) command
134 login

135 logout
136 operator command

140 sl (change session level) command

Table 3. Audit Events
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B. IMPLEMENTATION PHASES
1. Background Information

The XTS-300 has four primary software components: the Security Kemel, TCB
System Services (TSS), Trusted Software, and the Commodity Application System
Software (CASS). [Ref. 21] The Security Kemel provides basic system operating services
and enforces system security policy. The TSS software provides general trusted services to
XTS-300 application and system software. Trusted Software provides additional security
services outside the Security Kernel. CASS provides an environment on the XTS-300 for
the execution of UNIX-based application programs.

A ring mechanism is also provided to augment the security of the XTS-300 system
(see Figure 20). It is used to isolate portions of a process from being tampered with. Ring 0
is reserved for the Security Kernel and is the most privileged ring. Ring 1 is reserved for the
TSS. Ring 2 is reserved for Trusted Software, CASS, and site-developed trusted processes,
and is less privileged. Ring 3 is reserved for user processes and is the le;ast privileged. [Ref.

21]

Application Domain | Application Sofiware Ring 3

Commodity
Application Trusted Software | Ring 2
System Services

Operating
System Domain

TCB System TCB System Services Ring 1
Services Domain.
Kernel Domain Security Kernel Ring 0

XTS-300 Architecture

Figure 20. XTS-300 System Diagram

“The policy that the XTS-300 enforces is the DoD policy on multi-level secure
computing as formalized in the National Computer Security Center (NCSC) approved Bell-
LaPadula mathematical model.” [Ref. 21] The trusted computing base (TCB) enforces the
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mandatory rules: the simple security property, *-property for secrecy, the simple integrity
property, and the *-property for integrity. The enforcement of these rules is based on
comparison between the clearance of the user and the labels associated with the objects in
the system. Clearance and labels are composed of security levels (sl) and integrity levels
(il). A security level is the combination of a security classification and a set of security
compartments. An integrity level is the combination of an integrity classification and a set
of integrity compartments. Security level 0 (sl0) means the lowest classification level.
Similarly, integrity level 0 (i10) means the lowest integrity level.

The XTS-300 is designed to support most of the UNIX System V Release 3 system
calls in Ring 3 and a significant subset of the System V Release 3 system calls in Ring 2.
However, the differences were great enough that we experienced a very steep learning curve
during the implementation of the Trusted Path Server in Ring 2 of the system. We decided
to approach the problem by decomposing it into small steps; each of which provided
incremental progress toward the final goal. The phases are outlined here, although not in
comprehensive detail.

2. Porting an Echo Server to the XTS-300

The first step was choosing an initial program to port to the XTS-300 and
successfully doing so. The components of our final program provided the basic
functionality of accepting information from a pseudo-TCBE and sending information back
to the TCBE/client PC. An echo server provides a similar service, and it was chosen as the
program to port.

We used code from Stevens [Ref. 20: pp. 112-115] as the basis of our echo server
and client. Since the author defined some wrapper functions for the various socket system
calls in the name of portability, we had to replace them with the corresponding system calls
that were supported on the XTS-300. Some of the functions used in the code are not
supported by the XTS-300, and had to be replaced with equivalent functions that are
supported. Another problem was that Stevens had consolidated all of the #includes into one

huge file called “unp.h”. Mapping Stevens’ #includes to the sometimes non-standard XTS-
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300 includes réquired careful attention to the XTS-300 documentation and Steven’s
documentation. At this point, the code compiled successfully and ran in the application
layer (Ring 3). While the echo server was active, a client could telnet to the port associated
with the echo server, enter a string and have it echoed back to his terminal.

3. Accepting Manually Entered SAS from Pseudo-TCBE

At this point, we had a working echo server between the TCBE and the TPS and
wanted to extend the functionality of the TPS to accept a manually entered secure attention
sequence from the TCBE before it spawned a child process. First, we had to define what the
secure attention sequence (SAS) from the TCBE was going to be. Since the existing telnet
option for the XTS-300 requires a telnet break sequence to initiate a secure attention key
(SAK), we decided to require the same sequence.

As we tried to determine the composition of a telnet break sequence, we ran into
some inconsistencies. Although the break sequence itself is defined as an IAC" followed by
a BRK (255 243) in RFC 854, some telnet programs insert a line feed after the BRK. To
maintain consistency, we created a pseudo trusted computing base extension (TCBE) that
consistently sent the desired sequence of bytes to the Trusted Path Server (TPS). When the
pseudo-TCBE ran, it sent the sequence 255 243 digit [digit] [digit] 10 (IAC BRK digit
[digit] [digit] LINEFEED), where digit [digit] [digit] represents the hardware identification
number with one to three digits.

The TPS code parsed the message upon receipt. If the first two ASCII
representations were not 255 and 243, the secure attention sequence (SAS) would fail and
the Session Server would terminate. The call to the procedure that checks the validity of the
SAS against the Connection Database (CDB) was stubbed out and hard-coded to return
successfully each time. The program was successfully establishing connections and parsing

the SAS when it was received at this stage of the development.

13 Interpret as command (IAC) is an escape character for telnet that is always followed by a command byte.
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4. Creating the Connection Database

In order to be able to expand the stubbed out procedure that was verifying the
identification number of the trusted computing base extension (TCBE) against the
Connection Database (CDB), we had to create the CDB. We started by defining the format
of the initialization file. Each line of the file would contain a record associated with a
' specific TCBE. Each record in the initialization file contains two elements, the TCBE’s
hardware identification number (one byte) and the TCBE’s public key (the length is PKI
dependent), separated by a comma and terminated by a carriage return. Since the number of
TCBE clients for the demonstration is expected to be relatively small, we decided to
maintain the entire database in memory and initialize it at TPS startup. During execution,
each record contains an additional field to maintain the controlling active process
identification (CAPID). This information is only pertinent at run time and is always
initialized to TPS_CONTROL to reflect the TPS as the controlling active process.

Keeping the connection database in memory will limit disk accesses and improve
TPS response time. The ultimate impact on system memory resources will depend largely
on the size of the public key used to uniquely identify each TCBE and the number of TCBE
clients to be served. For example, if there were 100 entries in the CDB and public keys were
each 1000 bits in length, then the CDB would consume 12,600 bytes of memory.
Determining the public-key infrastructure has been left as future work.

5. Checking Hardware Identification from Pseudo-TCBE

Once the Connection Database (CDB) was initialized and in memory, we could
develop the stubbed out procedure that was responsible for checking the validity of the
TCBE hardware identification. The hardware identification check is responsible for two
things: verifying the validity of the TCBE hardware identification number and returning the
controlling active process identification (CAPID) if the hardware identification number is
valid. If the hardware identification is not valid, the procedure returns an INVALID ID.

The hardware identification check is performed as part of the secure attention

sequence (SAS) processing. If the hardware identification check is not valid, the SAS is
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rejected and the connection is terminated. Now the program is capable of selectively
supporting connections based on the validity of the SAS, which must include a valid TCBE
hardware identification number.

6. Creating a Loop-back in the Session Server to the Pseudo-TCBE

To maintain our controlled development, we decided to take an intermediate step
between the current program and the next stage, which was introducing the full relay
capability to the Session Server (Socket Relay). The full relay would allow the Session
Server (Socket Relay) to receive information from the TCBE, forward that information to
the protocol server, receive information from the protocol server and return the protocol
server’s response to the TCBE. The intermediate step was to ignore the protocol server and
simply have the Session Server (Socket Relay) forward all data received back to the TCBE.
In this manner, the pseudo-TCBE would see echo server functionality while we tested the
first half of the data flow. The loop-back would prove that the Session Server.Socket relay
was able to receive and send input from and to the client application over a TCP/IP socket,
the pseudo-TCBE in this case.

We were able to reuse much of the code from the original echo server that we ported
to the XTS-300 for this phase. One procedure in the code was called str_echo and its
purpose was to read data from a socket and then write it back to the same socket. By
inserting a call to this procedure after the Session Server completed the hardware

“authentication, a loop-back was created in the Session Server (Socket Relay). The program
can selectively support connections based on the validity of the SAS and provide an echo
server function to the pseudo-TCBE. (

7. Providing Interface between Echo Server and Session Server

This stage proved to be one of the most challenging. We had to create a pseudo-
socket library for the echo server that would provide socket-like functionality for sockets
that were simulated by some other construct. One of the first design decisions that had to be
made was to decide what would be used to simulate the socket connection between the

Session Server (Socket Relay) and the echo server. Since the pseudo-socket had to be able
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to communicate between an OSS domain program (the Session Server (Socket Relay)) and
an Applications domain program (the echo server), an Inter-Process Communication (IPC)
mechanism was needed. The XTS-300 placed limitations on which IPC mechanisms could
be used. The eligible IPC mechanisms that were appropriate for bulk data transfer between
processes were FIFOs, shared files, and shared memory. Shared files were ruled out
immediately because of the latency file I/O would impose.

Our initial intent was to implement a pseudo-socket library that did not require any
modifications to the echo server, so we looked at the remaining IPC mechanisms with
regards to their implementation. Although the FIFOs were very socket-like (i.e. a socket
descriptor is provided), communication between the Session Server (Socket Relay) and the
echo server would require two FIFOs to simulate one socket connection, one for data flow
in each direction. The result of this requirement dictated the use of two file descriptors when
the pseudo-socket was created, instead of the one that would be expected from a normal
socket connection. Although the two file descriptors could have been virtualized into one
pseudo-socket, it would have required modifying the echo server to call read and write
functions specific to the virtual pseudo-socket, which was contrary to our initial objective.

Since the mechanisms for using shared memory were even more divergent from
those for using sockets, we knew that we could not use shared memory without modifying
the echo server. Therefore, our goal of no modification changed to one of minimal
modification of the echo server. At this point, we began looking at the benefits and
drawbacks of the FIFOs and shared memory before deciding which one to implement.

FIFOs are relatively easy to implement, but are less efficient than shared memory.
Implementing FIFOs to simulate sockets would have required six copies of the data (see
Figure 21) for each round trip from the client XTS-300’s TCP/IP stack through the echo
server and back to the XTS-300’s TCP/IP stack. Conversely, shared memory is more
complex to implement, but only requires between two and four copies (see Figure 22). In
the interest of having a more efficient program, we decided to use shared memory to

simulate sockets.
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Figure 22. Shared Memory Data Flow [Ref. 22]

The modifications that had to be made to the echo server as the result of our design
decision were minimal. The read, write, and close calls associated with sockets were

changed to my_read, my_write, and my_close calls because we could not overload system
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calls in /ibc'* without a significant operating system redesign. The procedure calls defined
in the STOP operating system’s socket.h file remained the same. They were replicated, with
different internal functions, to provide pseudo-socket functionality to the protocol server via
our pseudo-socket file that is used in place of the normal files. |
The next step in providing the interface between the echo server and the Session
Server (Socket Relay) was to implement shared memory. In order to prevent collisions, we
used semaphores to provide mutual exclusion for all of the reads and writes to a particular
pseudo-socket connection in shared memory. The constraints imposed by the XTS-300
required that the mandatory access control (MAC) levels of the two processes sharing
memory be identical or that one of the processes be trusted and be granted privilege to
transcend the MAC enforced by the STOP operating system. Consequently, the Session
Server (Socket Relay) is a multilevel process that provides the required MAC exemptions
when reading to or writing from a shared memory segment at any level other than security
level zero (s10) and integrity level three (il3).
The procedure bcalls that occur when a protocbl server is preparing to accept
connections with normal sockets are:
e socket — if successful, _refurns a socket descriptor
e bind - if successful, assigns a local protocol address to a socket
e listen — if successful, converts an unconnected socket into a passive socket;
indicates that the kernel should accept incoming connection requests directed to
this socket
* accept — if successful, returns the new socket descriptor created by the kernel for
the connected socket; if the connection queue is empty, the calling process is put
to sleep
The corresponding calls that occur when the protocol server is going to accept

connections using pseudo-sockets are:

14 fibc is the standard UNIX system library.
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e socket — creates shared memory segment at MAC level of the calling process;
returns the listen queue socket descriptor

e The key that is a required parameter to the socket call for a process to create
or open a shared memory segment is calculated independently by each
prbcess. The algorithm that determines this key is: key = base_number + (10
* s1) + il, where base_number is fixed for all session levels and both sl and il
are defined by the process’s sl and il.

e Within the shared memory segment, this call creates and initializes a listen
queue and an array of buffers. The size of the array is currently a design
parameter of value five.

e The indices of the buffer array are used as the pseudo-socket descriptors.

e bind —ensures the pseudo-socket descriptor that is passed in corresponds with
the listen queue socket descriptor

e listen —ensures the pseudo-socket descriptor that is passed in corresponds with
the listen queue socket descriptor

e accept — blocks until a connection request (pseudo-socket descriptor) is placed

into the listen queue by the Session Server; extracts the pseudo-socket descriptor

and returns it

Because the pseudo-socket functionality was developed to fulfill those requirements
expected by the protocol server, an alternate interface was created to allow the Session
Server (Socket Relay) to interact with the shared memory structure. The Session Server
(Socket Relay) is able to open the shared memory segments by independently calculating
the key in the manner described above. However, in order to facilitate the “opening” of a
pseudo-socket between the protocol server and the Session Server (Socket Relay), the
Session Server (Socket Relay) calls a procedure that searches an array of pseudo-socket
connections in shared memory to see if there are any connections free to support the current

|
| request. This procedure searches the array of connections to see if any of them do not have
|
i
|
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the IN_USE bit set. It returns the first available index number or, if none are available, the
“connection” is refused.

Within this stage, there were actually two different phases. The pseudo-socket
interface was implemented and tested within a single security level first. This restriction
allowed faster debugging of the new code as a Ring 3 process. Once the pseudo-socket
interface was fully functional at a single security level, it was extended to support multiple

security levels.
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IV. CONCLUSIONS

A. COMPARISON WITH OTHER WORK

The pursuit of a cost-effective multilevel secure local area network is not new.
Several research projects have been dedicated to finding solutions that are inexpensive and
provide the capability for a user to use one terminal to access information at different
classification levels or pass information between users at different classification levels.
Although the results of the previous research have been implemented and presented as
solutions to the MLS LAN problem, we believe that each system still has shortcomings that
have been addressed by our proposed solution.

1. The NRL Network Pump

The Naval Research Laboratory (NRL) Network Pump [Ref. 23] was developed to
allow messages from a system operating at a low security level to be sent to a system
operating at a high security level, but not in the reverse direction. It is designed to provide
connectivity between multiple single-level systems at different security levels, resulting in a
multiple single-level network. While the multiple single-level (MSL) security architecture
approach is better than an air-gap and “sneaker-net” solution, it falls short of the true
multilevel secure (MLS) solution.

The NRL Network Pump’s developers propose that using “a handful of trusted
devices to separate information” leads to a less expensive and shorter evaluation and
certification process. What is not mentioned is the cost of maintaining separate local area
networks (LANs) to allow the replication of data required by the NRL Network Pump
solution. While developing the software design, the developers recognized that
acknowledgments from high to low are important, but that they also provide a vehicle for
covert channels. To avoid this problem, the NRL Network Pump decouples the
acknowledgment stream by using statistically modulated acknowledgements. Another

important component of the design is the use of wrappers at the low and high servers. The
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wrappers allow the applications to communicate with the pump. In order to prevent an
application at the low server from arbitrarily pinging processes on the high server, the
developers introduced a pump administrator. The pump administrator was an important
addition to the basic NRL Pump model because it provides even more assurance against
Trojan Horses.

In contrast to the NRL Network Pump, our MLS LAN proposal does not require the
maintenance of multiple single-level LANS, but it would still be capable of providing
connectivity between LANSs of varying levels. Additionally, the majority of the equipment
is COTS-based with the exception of the high assurance server and the trusted computing
base extension. The XTS-300 represents an existing resource that the DoD has already
invested in, and since it has been evaluated at Class B3 in accordance with the TCSEC, the
XTS-300 provides protection against Trojan Horses.

2. NRL’s MLS Distributed Computing Infrastructure

Another development that is more recent is presented by Kang, et al [Ref. 24]. In
this paper, the authors propose using an NRL Pump object, renamed a “flow controller”, to
ensure only data authorized by a “policy server” is transmitted from one classification
domain to another. The authors propose using cryptographic solutions to provide for
secrecy, integrity, and identification between the policy server and the flow controller to
provide a high level of assurance that messages from the policy server can not be spoofed

(see Figure 23).
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Figure 23. NRL’s MLS Distributed Computing Infrastructure
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It is assumed that the flow controller can not be bypassed and that only data
authorized by the policy server is forwarded to and from the flow controller. The policy
server is intended to be a single level platform of “modest trust”. The flow controller is
built upon a high assurance component, and the system high enclave is a network of
arbitrary size functioning in a system high mode. This system high enclave can consist of
almost any type of asset (COTS or not).

The primary weakness in the design is that the policy server must be trusted to be
both automated and fool proof. If it is not automated, the goal of an interconnected world
becomes impossible since the choke point created by a manual policy server would prohibit
the exchange of significant amounts of data. This automated policy server is intended to be
designed using only “modest trust”, but the article does not delineate what criteria are used
to determine “modest trust”. The effectiveness of a “modest trust” automated policy server
(AKA guard) becomes questionable since it must make its release/not release decision
based on data content. In a system high enclave all data is assumed to have a virtual label at
the maximum sensitivity level of any data stored in the enclave. Therefore, a simple check
of the data’s label is of no use in improving throughput through the policy server. Trusting
an automated “modest trust” policy server to make release decisions based on data content
would appear to lead to a slow system with questionable reliability.

Our design overcomes these shortcomings by acknowledging the need to build a
secure system based upon a high assurance asset that labels all data. One “expensive” high
assurance asset can be used to provide data flow assurances to a large number of low cost
clients producing an aggregate low cost solution to the MLS LAN problem. The high
assurance server can prevent the exfiltration of data since it was designed from the ground
up to do so. The XTS-300, an example of a high assurance server, was designed in
accordance with very stringent engineering methodologies and then evaluated by external
teams adhering to the tenants of the TCSEC [Ref 2]. This evaluation process adds to the
cost of the server, but it provides the assurance required to build a secure network. In our

design, we utilize the XTS-300 because it is currently in use in DoD facilities. Using an
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existing system leverages previous development expenditures and dramatically reduces the
development risk. In contrast, the design and implementation of a policy server has yet to be
accomplished, and seems unlikely considering the nearly unlimited ability of a Trojan
Horse application to hide sensitive data in seemingly innocuous documents. Our design
greatly limits the threat of a Trojan Horse exfiltrating data by requiring labels on all data

and preventing the downgrading of data with out human intervention.

B. RECOMMENDATIONS FOR FUTURE RESEARCH
1. Secure LAN Server

In future iterations, of the Secure LAN Server demonstration, integration with inetd
as a daemon would be desirable from a consistency standpoint. All other servers are
registered with inetd, the Secure LAN Server should be no exception. However, the benefits
of inetd such as limiting the number of server processes running at all times and simplifying
the coding of the individual server applications were not significant factors for our proof of
concept demonstration. The Secure LAN Server only adds one extra process to the system
and the coding was largely extracted from Stevens [Ref. 22], hence requiring little effort on
our part. Once the application is installed as a trusted daemon, it will not be possible to view
run time debug statements. This implies the log file functionality will need to be designed
and implemented prior to converting the Secure LAN Server to a daemon.

2. Connection Database

For demonstration purposes, the CDB was designed to allow the system
administrator to make additions, deletions, and modifications to the CDB records by
directly modifying the initialization file. At TPS startup the initialization file is read into
RAM and used for all hardware identification and authentication decisions. Currently, there
are no provisions for modifying the image of the CDB in RAM. This design decision
requires that the system administrator restart the TPS after each set of CDB modifications.
Future work on the Connection Database Module should allow the system administrator to
modify the RAM image of the CDB and have those modifications be reflected in the CDB
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initialization file. Since, the TPS will be compiled as a daemon in the future the CDB
interface will most likely have to be provided via a separate process. The CDB update
process could communicate with the TPS via the network’s trusted path or via some
additional interface local to the server platform. Utilizing the existing network trusted path
functionality with a conditional branch if CDB update functionality is desired might prove
easier and more flexible to implement.

We believe that restarting the protocol servers every time a configuration change is
made would be detrimental to the purpose of this software application. Protocol servers
should have high rates of availability, and reqpiring the server to be shutdown and restarted
every time the system administrator has to add TCBE clients to the Secure LAN Server

‘would be counterproductive. Providing a real-time update capability to the CDB and
restricting the use of that capability to the system administrator on the high assurance server
should provide sufficient assurance that unauthorized modifications will not take place.

3. Trusted Path Server

The Trusted Path Server (TPS) is currently a program that runs from the command
line. This implementation was used to simplify the modification-to-test cycle. A future
implementation of the TPS program as a daemon that is initialized when the XTS-300 is
turned on or rebooted would be more appropriate for the final fielded product, but would
have slowed the development process.

This daemon could function in response to inetd connection requests and provide
inetd functionality to the various protocol servers. It would be best if the Secure LAN
Server provided the inetd “wake-up call” functionality to any desired protocol server not
already running. One of the constraints of the current implementation is that the protocol
server actually creates the shared memory used for communicating between the Secure
LAN Server and itself by a call to pskt:socket(). The protocol server eventually blocks on
the listen queue via a call to pskt:accept(). Then the Session Server uses the listen queue
initialized by the pskt:socket() call to awaken and to pass the pseudo-socket identifier to the

protocol server. If the protocol server is not currently running, this means that the “wake-up
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call” must be passed via some other mechanism — a call to load_process() perhaps. At this
point, the Session Server must either create the shared memory segment itself, or wait until
the protocol server creates and initializes the shared memory segment, before attempting to
place the connection id in the listen queue.

The first case, where the protocol server is already running, is currently handled and
considered sufficient for our proof of concept demonstration. Implementing a Session
Server that is capable of starting the protocol server has been left as future work, but should
be fairly simple to implement since the available get_shared memory() system call already
handles the case where the shared memory segment exists. The system does not attempt to
recreate the shared memory segment, but simply returns a pointer and the shared memory
identifier associated with the existing segment.

4. Hardware Identification and Authentication

Hardware identification and authentication, although vital to the implementation of
a true trusted path, was stubbed out for demonstration purposes. Although the hardware
identification number was verified against those that were contained in the Connection
Database, no authentication was actually performed. Our design envisions the use of public-
key cryptography as a possible authentication solution and the rest of our design reflects
this.

Public-key cryptography can be used to simultaneously protect the secrecy of the
TCBE hardware ID included in the SAS and provide authentication between the TCBE and
the Secure LAN Server. The 'TCBE signs the SAS using its private key and then uses the
Secure LAN Server’s public-key to encrypt the SAS before it sends it over the network.
There are several well-documented public-key identification and authentication algorithms
available. Selection and implementation of a suitable algorithm has been left as future work.

5. Negotiate Session Key

One of the simplifying assumptions of this thesis is that the LAN is physically
protected against eavesdropping or interceptions. Consequently, the design did not

implement session key negotiation. We recognize that, for unprotected networks, there is a
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requirement for session encryption, so we have included a possible design solution that uses
symmetric-key encryption.

Symmetric-key encryption was chosen over public-key encryption because it is
generally faster and thus more appropriate for bulk data encryption. Additionally, choosing
symmetric-key encryption allows for the future inclusion of any number of symmetric-key
hardware solutions that would yield even greater performance. A public-key exchange
algorithm, Oakley [Ref. 5], was chosen as the method for calculating the one-time session
key for symmetric encryption since it does not require the session key to be transmitted over
the network. Not actually transmitting the key over the network prevents the cascading
compromise of future communications that could occur if symmetric session keys were
used to protect all data flow and future in-band key updates. The primary advantage to
using public-key cryptography is that it allows the re-keying of clients using the Secure
LAN in-band communications to transmit the new public keys. This is possible since
individual hardware components can recalculate a new key pair. The key update is
completed when a new public key is passed to the other necessary parties. All of this can be
accomplished without ever passing the private keys in-band. One of the first rules to follow
when developing an encryption system is to avoid passing private or any symmetric keys
in-band since it minimizes the vulnerability of the system.

After key exchange, a test message should be sent as an automatic communications
_ check to ensure that both the TCBE and the TPS correctly calculated the one-time session
key. The test message can be very simple and random. We depend on the diffusion
properties of the encryption alg;)rithm to guarantee that only a valid key will yield a correct
result when cipher text is decrypted. As long as the randomness of the message fits some
predetermined format, it should be possible for the endpoints to determine if they have a
correct connection without introducing a vulnerability to a known plain text attack. If the
TPS is unable to decrypt the test message, then the connection is terminated. If the TPS can

decrypt the test message, the user begins identification and authentication procedures. A
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comparison of alternate public-key exchange algorithms and final implementation on the
XTS-300 remains to be done.

6. User Identification and Authentication

For demonstration purposes, the user identification and authentication functionality
has been emulated and not fully implemented. We only require that the TCBE provide a
valid hardware identifier and the user enter the security level and integrity level of an
existing protocol server to establish communications. Anything that is entered for user
name and password is accepted as valid by the program. The final product should either
interface directly with the STOP databases or use an interface provided by Wang
Government Services, Inc. such as the pseudo-terminal.

Several factors have to be taken into consideration when deciding whether to use the
pseudo-terminal provided by the XTS-300 to accept user and session information. Although
we did not research this area in depth, there is a concern that should be mentioned. The
establishment of a trusted path for the Secure LAN Server depends on being able to
“intercept” communications between the server’s TCB and the TCBE and “wrap” the data
with the appropriate encryption techniques. Instead of having the user interface directly
with the pseudo-terminal, it may be easier to get the information from the user over the
trusted path and then pass the login information to the kernel via the pseudo-terminal
identifier. The pseudo-terminal would have to remain active for the duration of the user’s
session to ensure that the audit trail has accurate information.

It would be more efficient if the final product were able to make use of direct calls
to the STOP databases since this would alleviate the need to start yet another set of
processes supporting a pseudo-terminal used only for login. Since the login code is
currently only available to the XTS-300 session server, this implementation would require
modification to existing source code. We believe either implementation would work and the

tradeoffs are implementation time versus performance.
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7. Trusted Prompt

Our trusted prompt, which is used for all valid SASs except the initial login SAS,
supports a subset of the usual trusted path functions; the user may continue or logout. The
restrictions placed on the commands permitted over the Ethemet trusted path prevent
administrative functions from being performed from client PCs. This feature reduces the
possibility that the system could be subverted by a user from an external location. However,
the final system might extend the number of commands that can be supported from a TCBE
to allow functions such as changing user password, which will require an interface to the
STOP 4.4.2 User Access Databases.

8. Multiple Protocol Support

For demonstration purposes, our thesis implements a Session Relay that supports
one protocol, but the design can be extended to multiplex between multiple protocols.
Protocol differentiation would be accomplished, in the normal manner, by assigning
different ports to each protocol. The Secure LAN Server would then use select()
functionality to multiplex the various LAN socket connections. This would not be difficult,
but would require a restructuring of the shared memory structure used to communicate
between the protocol server and the Secure LAN Server. Multiple listen queues would be
added, one for each protocol server.

9. Shared Memory Structure

Some protocol servers function by accepting a connection identifier, creating a child
to handle the request, then closing the connection identifier so that only the child has the
connection open. This works because the child process inherits all connection identifiers
from the parent. In order to avoid marking the pseudo-socket as not in use, there must be a
mechanism to map child processes to pseudo-sockets that is integrated with the pseudo-
socket my_close() function. The my_close() call should only mark the pseudo-socket as not
in use if there are no processes, parent or child, with the connection open. A list of process

identifiers associated with each pseudo-socket would be sufficient to keep track of open
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connections, but this method raises questions such as 1) how to know when a process
unexpectedly quits and 2) how to know the child has been created. Time stamping each
access to the pseudo-socket may provide the answer. A pseudo-socket could be considered
stale after some arbitrary time, such as ten minutes, had elapsed without activity. It would
be assumed the protocol server’s child process would make some call using the pseudo-
socket identifier within a ten-minute time frame. When the child does make the call, the
child’s PID would need to be mapped to the pseudo-socket as opening the pseudo-socket.
This time out is similar to the functionality provided by many other network protocols such
as ftp, point-to-point protocol, mail servers, et cetera.

Additionally, the listen queue should be re-implemented as another pseudo-socket
that allows blocking. This would simplify the handling of multiple socket() calls by a
protocol server. Currently the listen queue descriptor is set to a fixed value since there is at
most one listen queue in the shared memory structure. This fixed value was arbitrarily set at
one greater than the maximum pseudo-socket identifier. Having one listen queue limits
each protocol server to only one socket/bind/listen sequence. This unnecessary limitation
can be corrected by converting the listen queue to a pseudo-socket. Once a correct version
of select() is implemented using signals, this conversion should be straightforward. Select()
can then be used inside accept() to force proper blocking behavior.

De-allocation of the shared memory segment also needs to be addressed. Since the
. current implementation assumes that protocol servers are started ahead of time, there is no
real reason to de-allocate the shared memory segments. However, in a future
implementation where the prc;tocol servers are started on the fly at whatever level is
necessary, it will become necessary to return the scarce shared memory resources to the
system. The best time to de-allocate the shared memory might be when the protocol server
closes its listen pseudo-socket descriptor, or possibly its last listen pseudo-socket descriptor,
assuming that a protocol server that is no longer listening is about to shutdown. The real

issue is to design this in such a way that the protocol server need only make normal socket
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calls of the pseudo-socket interface that, in turn, initiates the de-allocation of shared

memory.

10. Improving Through-put

Currently the pseudo-socket select call is just a busy loop, with an included sleep
call to avoid slowing the overall system performance down excessively. A mechanism
needs to be added to allow the select call to block for an arbitrary time, from zero seconds to
indefinitely. Blocking indefinitely could be implemented by using a counting semaphore.
The counting semaphore would be assigned a set of sockets that it would keep track of the
number of bytes available to a protocol server; when its value is greater than zero, then
select() should stop blocking and indicate which sockets in the set have data available.

Using poll() without a call to sleep would easily simulate not blocking at all.
However if we wish to block for a maximum time, but return as soon as data is available,
we need to implement some form of signal communication between the Session Server and
the pseudo-socket select() call. The best method for implementation would require the
select() call to check whether there is data currently available; if not, then select() would
block on a data available signal from the Session Server. The Session Server could
generate this signal every time it calls xfer skt buff() (transfer data from socket to shared
memory buffer).

Likewise, a similar signal mechanism needs to be implemented for data flow from
the pseudo-socket write to the Session Server. This becomes more complicated on the
Session Server side because the Session Server needs to be able to block on TCP/IP sockets
as well as on data available in the shared memory buffer. Careful attention is required to
ensure that data available signals from the pseudo-socket do not interfere with
communication on the TCP/IP sockets. It may even make sense to have the Session Server
fork itself into two processes, one for inbound data and one for outbound data. There are

several design changes required to improve overall throughput.
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11.  Protocol Server Integration

The first demonstration linked an echo server to our pseudo-socket library. This
proved that the data flow works as expected and that it is easy to link an existing TCP/IP
application to our pseudo-socket implementation. Future students need to link the IMAP
server, recently ported by Eads [Ref. 25] to the XTS-300, to the pseudo-socket library and
expand the pseudo-socket interface if necessary. Currently fetl() and ioctl() are not provided
and may be needed to correctly mimic the expected socket interface. The ported echo server

only required the function calls: socket, bind, listen, accept, select, read and write.

C. CONCLUSIONS

The Multilevel Secure Local Area Network (MLS LAN) presented in this thesis is
intended to utilize COTS clients and existing multilevel high assurance hardware to allow
single level clients access to multilevel data. We propose a design and provide a proof of
concept for the implementation of the interface between a trusted computing base extension
(TCBE) and a protocol server executing in a single level on the XTS-300. This interface
includes procedures to create a network trusted path between a TCBE and the Secure LAN
Server; utilize the trusted path for user identification and authentication; then act as a trusted
relay between the protocol server and the TCBE. All transmitted data has the potential to be
protected by encryption to provide assurance as to the integrity and confidentiality of the
data if it is passed over an unprotected LAN.

We have proven the feasibility of implementing a Secure LAN Server on Wang
Government Service’s XTS-300 while preserving the potential for a future evaluation at
Class B3 following the guidance contained in the TNI [Ref 7] of the TCSEC [Ref 2] or an
equivalent Common Criteria profile. This proof of concept demonstration mitigates much
of the risk in moving towards a full scale Multilevel Secure LAN. Coupled with the work
accomplished by Irvine, et al. [Ref. 4], Eads [Ref. 25], and ongoing research at the Naval
Postgraduate School into the feasibility of creating a high assurance TCBE, we have made

considerable strides towards providing a cost effective solution that takes advantage of
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COTS software and hardware while still providing secure access to multilevel data in a

network environment.
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APPENDIX A. SECURE LOCAL AREA NETWORK SERVER SOFTWARE
REQUIREMENTS SPECIFICATION (SRS)

1.0  Introduction
1.1  Purpose

The concept of a secure session has traditionally been constrained to sessions that
are on a high assurance workstation or established via a point-to-point connection. With a
point-to-point link, a special out-of-band sequence can be defined that ensures trusted path
initiation. An Ethernet network does not provide a point-to-point connection; there is no
guarantee that when the connection is established, the user is connected with the desired
host. [Ref. 26: p. 1]

The purpose of this document is to define the software requirements that will
establish a trusted path and a secure session between a multilevel, high assurance server and
a trusted computing base extension (TCBE) over an Ethernet network. Assurance and
security requirements outlined by the TCSEC [Ref. 2] will be incorporated into these
software requirements.

1.2 Scope

The product, the Secure LAN Server, is designed to interface with STOP 4.4.2, the
operating system associated with the XTS-300 high assurance workstation produced by
WANG Federal, Inc. This specification is intended to form the basis for the design of a
software product that will support the establishment of a secure session using a trusted path
across an untrusted local area network. The software product can be separated into two
areas of functionality: the Trusted Path Server and the Session Server.

1.3  Glossary of Abbreviations and Definitions

See Appendix F of “Secure Local Area Network Services For A High Assurance
Multilevel Network ” by Lieutenants Susan BryerJoyner and Scott D. Heller.
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14 References

See List of References from “Secure Local Area Network Services For A High

Assurance Multilevel Network by Lieutenants Susan BryerJoyner and Scott D. Heller.

2.0 General Characteristics
2.1 Introduction

The Secure LAN Server is part of the Multi-level Secure (MLS) Local Area
Network (LAN) development project sponsored by Dr. Cynthia Irvine and the Center for
INFOSEC Studies and Research at the Naval Postgraduate School. Technical support and
access to proprietary source code was provided by WANG Federal, Inc.

2.2 Product Perspective

The Secure LAN Server requires the trusted computing base extension (TCBE) card
(to be developed in another thesis). The Secure LAN Server interfaces with the STOP 4.4.2
operating system associated with the XTS-300 high assurance server produced by WANG
Federal, Inc. The high-level system diagram is shown in Figure 1.

2.3 Product Functions

The Secure LAN Server is expected to provide the following functions to establish a
trusted path, establish and maintain a session in a manner that preserves a secure state on

the server, and ensure enforcement of the access control policy for client requests.

e establish a trusted path using a cryptographic algorithm, or combination of
algorithms, that provides authentication and secrecy for data transmitted over
the LAN. |

 accept user identification and authentication information over a trusted path
established between the Trusted Path Server and a trusted computing base
extension (TCBE) and verify the user information against that contained in the

STOP 4.4.2 User Access Databases
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e establish a session on the server at the default security and integrity level for
each valid user

e provide a pseudo-socket to which the protocol server can connect with minimal
modification of the protocol server

e provide trusted commands continue and logout

The Secure LAN Server is expected to emulate, to the greatest extent possible, the XTS-300

login and trusted prompt interface.

Trusted Client Computers

Computing ‘/\—
Base
\ PC PC

 HIGH ASSURANCE SERVER | |TCBE TCBE
i‘zj Trué;féd Path Sfé:rver \
= i B Trusted
§ - : Computing
g " Extensions
User Access Database. /
: TCBE TCBE
PC PC
= [nternal communications ——— Pseudo-socket communications D Untrusted

—— Normal communications . _ _Trusted Path communications Trusted

Figure 1. Multilevel Secure Local Area Network

24 User Characteristics

Users are expected to be computer literate and familiar with handling information at

different security levels in accordance with any applicable security policies.
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2.5 General Constraints

e The Secure LAN Server software shall execute under release 4.4.2 of the STOP
operating system.

e The Secure LAN Server software shall be written in C.

e The Secure LAN Server shall run on the XTS-300.

e The Secure LAN Server shall be designed to interface with the Trusted
Computing Base Extension (TCBE).

» The product is designed so that a network that incorporates it may be evaluated
at Class B3 in accordance with the Trusted Network Interpretation of the
TCSEC [Refs. 2 and 7].

* The permitted session level at the PC may be constrained by the security level of
its physical environment; the permitted session levels may be a subset of the full
range of valid security and integrity levels.

e Each TCBE can support only one secure session at any one time.

» The number of concurrent secure sessions a user may have (at multiple PCs)
may be restricted by the system administrator.

e Amount of trusted code will be kept to a minimum.

The Secure LAN Server is a key subsystem. If the Secure LAN Server
malfunctions, it shall not cause the STOP 4.4.2 operating system to crash or hang.
Availability includes operating software, the application software product, and server
hardware.

2.6  Assumptions and Dependencies

¢ The product is designed to work with the XTS-300 and the TCBE developed as
part of the MLS LAN project.

* The TCBE shall have the requisite software and cryptographic keys installed to
create the trusted path.

74




e Protocol servers that support applications on a standard MS Windows NT PC
have been ported to the XTS-300.

3.0  Specific Requirements
31 Functional Requirements

This section contains the details necessary to create the design specifications of the
Secure LAN Server. It is organized in five sections.
3.1.1 Establish Trusted Path
3.1.2  User Login
3.1.3 Establish Session
3.1.4 Trusted Prompt
3.1.5 Pseudo-Socket Interface
Section 3.1.5 is provided to allow the system to emulate socket functions internal to
the server. The design of the few socket functions required and implemented is specific to

the products developed in this thesis.

3.1.1 Establish Trusted Path

Introduction
This module establishes the trusted path between the user and the trusted
computing base of the remote server.

Inputs

e int —socket descriptor

Processing

Receives secure attention sequence (SAS) from the TCBE. Verifies SAS
format. Extracts the TCBE hardware identification number and verifies it against the
connection database.

Outputs

e int — controlling active process identification (CAPID)
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e *int — TCBE hardware identification number

Error Handling

If the SAS is not in the proper format or if the TCBE hardware identification

number is not in the connection database, the connection is refused.

3.1.2 User Login

Introduction

This receives user and session information from the TCBE.

Inputs

e int—socket file descriptor of connection |

Processing

This module will initially be hard-coded to accept any input as user name
and password. While the session security level and integrity level must be in the proper
format, the values are not checked against the STOP 4.4.2 User Access Databases. The fully
implemented design would use well-defined functions provided by the STOP 4.4.2
operating system to verify the user and session information against that contained in the

User Access Databases.

Outputs

e struct — contains fields

® int — user and session information valid; if valid, TRUE;

otherwise, FALSE
e char[] - contains user’s name up to MAX_USER_NAME
* int- session security level

* int— session integrity level

Error Handling

None.
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3.1.3 Establish Session
Introduction
This module establishes a session on the remote server at the user’s desired
security and integrity levels.
Inputs
e struct - contains fields
e int — user and session information valid; if valid, TRUE;
otherwise, FALSE.
e char[] —contains user’s name up to MAX USER NAME
e int-— session security level
e int— session integrity level

Processing
This module uses well-defined functions provided by the STOP 4.4.2

operating system to give the Session Server privileges that-allow it to communicate between
two processes at different mandatory access levels.
Outputs
e int—old privilege set if successful; ERROR_OCCURRED otherwise
Error Handling

If the Trusted Path Server program has not been installed with the proper

privilege set, the user will be prompted contact his administrator, who must reinstall the
program with the proper privileges.
3.1.4 Trusted Prompt

Introduction

This module provides the trusted commands continue and logout.

Inputs
None
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Processing

This module displays the current session security and integrity levels at the
user’s terminal, followed by a prompt “Continue or logout?” If the user enters continue, the
session is reattached in its previous state. If the user enters logout, the session is terminated
normally.

Outputs

None

Error Handling

Any entries other than continue or logout will cause the user to be

prompted for input again.

3.1.5 Pseudo-Socket Design

Introduction

The pseudo-socket library will provide two interfaces, one to the protobol
server and one to the Session Server. Only a few socket calls are required by the protocol
server and implemented in this thesis. The design of socket functions is specific to the
products developed in this thesis. Some method of synchronization will be required to
ensure that both the TPS and the protocol server can access the shared memory segments
that will represent pseudo-sockets.

The Session Server (Socket Relay) and the pseudo-socket code will include
" a base number that will be used to calculate the key value that the TPS and the protocol
server will use to access shared memory. One shared memory segment will be created at
each security level of the system. The shared memory segments will contain two data
structures: a listen queue and an array of connections that each contains a to_server and
to_client buffer. The index of the array for a particular connection is used as the pseudo-
socket descriptor.

When the protocol server is executed, it calls socket to create a pseudo-socket. The

modified socket call uses the base key value, security level and integrity level of the

protocol server to calculate the key required to create and open the shared memory segment
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at the proper sécurity level. Bind and listen are procedures that check to ensure that the
pseudo-socket passed in is that for the listening socket. The protocol server then blocks on
an accept waiting for a connection request on the listen queue in the shared memory
segment.

As the TPS accepts connections from TCBEs, it creates Session Servers. The
Session Server calculates a key to shared memory in the manner described above and opens
the shared memory segment that exists at the desired security level for the session. After
receiving a pseudo-socket descriptor in .response to a shm_struct connection request, the
Session Server must place the pseudo-socket descriptor in the listen queue of the shared
memory segment.

When accept detects data in the listen queue, it removes the first pseudo-socket
descriptor from the listen queue, and returns the pseudo-socket descriptor. At this point, the
connection has been established between the Session Server and the protocol server. The
protocol server now blocks on select while waiting for additional data. Modified my_read,

my_write, and my_close are used in succeeding pseudo-socket manipulations.

3.1.5.1 socket

Introduction

Creates a pseudo-socket and returns a pseudo-socket descriptor. The
prototype should be int socket( int domain, int type, int protocol ).

Inputs

e int — domain specifies the communications domain

e int — fype specifies the type of the socket (SOCK_STREAM,

SOCK_DGRAM, or SOCK_RAW)
e int — protocol specifies a particular protocol to be used with the

socket
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Processing

Using libraries developed to emulate normal socket behavior internal
to the Secure LAN Server, this function creates a pseudo-socket by creating if necessary
and connecting to a shared memory segment that will simulate stream input/output.

Outputs

o int— 0 if successful; -1 otherwise

Error Handling

Return -1 if listen queue socket already allocated.

3.1.5.2 bind

Introduction
This function is provided to permit compilation of source code that
depends on the modified libraries; currently, pseudo-sockets do not require this function and
simply ensure that the socket descriptor presented is the correct one. The prototype should
be: int bind( int sockfd, struct sockaddr * name, int namelen ).
Inputs
e int — sockfd specifies a socket that exists in a name space
(address family) but has no name assigned
e struct sockaddr * - name specifies the name to be assigned to the
socket

e int'— namelen indicates the length of the name pointed to by

*name

Processing
None.

Outputs

o int— 0 if successful; -1 otherwise
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Error Handling

Unsuccessful if attempting to bind to any pseudo-socket other than
the listen queue socket returned by a previous call to socket or if the sockfd is not valid in

use.
3.1.5.3 listen

Introduction

This function is provided to permit compilation of source code that
depends on the modified libraries; currently, pseudo-sockets do not require this function and
simply ensure that the socket descriptor presented is the correct one. The prototype should
be: int listen( int sockfd, int backlog ).

Inputs

e int— sockfd specifies the socket to listen to

e int — backlog specifies the maximum length that the queue of

pending connections may grow to

Processing

None.

Outputs

e int— 0 if successful; -1 otherwise

Error Handling

* Unsuccessful if attempting to listen to any pseudo-socket other than
the listen queue socket returned by a previous call to socket or if the sockfd is not valid in

use.
3.1.5.4 accept

Introduction

This function provides functionality for pseudo-sockets that is

identical to accept. The prototype should be:
int accept( int sockfd, struct sockaddr *addr, int *addrlen ).
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Inputs
e int - sockfd specifies the socket that is listening for a connection
¢ struct sockaddr * - addr is a result parameter that is filled in with
the address of the connecting entity as it is known to the
communications layer (domain specific format)
* int* - addrlen is a value-result parameter that contains the length
in bytes of the address returned
Processing
Using libraries developed to emulate normal socket behavior internal
to the Secure LAN Server, this function is designed to block until a connection request is
made. A connection request is simulated by the placement of a pseudo-socket descriptor
into the listen queue located in the shared memory segment at the correct security level. At
that time, this function removes the first pseudo-socket descriptor and returns it to the
protocol server as the pseudo-socket descriptor.
Outputs
e int — if successful, non-negative integer that is the pseudo-socket
descriptor for the accepted socket; -1 otherwise

Error Handling

Unsuccessful if attempting to accept from any pseudo-socket other
than the listen queue socket returned by a previous call to socket or if the sockfd is not valid
in use.

3.1.5.5 select

This function returns the number of ready descriptors contained in
the descriptor sets or —1 if an error occurred. The prototype should be:

int select( int nfds, fd_set *readfds, *writefds, *exceptfds, struct timeval *timeout )
Inputs
e int - nfds is the number of bits to be checked in each bit mask

that represents a file descriptor
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e fd set — *readfds contains the addresses of file descriptors to be
examined to see if any of their descriptors are ready for reading;
can be NULL

o fd set — *writefds contains the addresses of file descriptors to be
examined to see if any of their descriptors are ready for writing;

can be NULL

o fd set — *exceptfds contains the addresses of file descriptors to
be examined to see if any of their descriptors have an exceptional
condition pending; can be NULL

e struct timeval - *timeout specifies the maximum interval to wait
for the selection to complete if it is not a NULL pointer; if it is a
NULL pointer, the select blocks indefinitely

Processing

The function does not use nfds and timeout. It should be hard-coded

to poll every one seconds to see if any of the descriptors are ready for reading, writing, or
have an exceptional condition pending.

Outputs

e int —number of ready descriptors; -1 if error

Error Handling

Returns error if one of the I/O descriptor sets specified an invalid I/O
descriptor.

3.1.5.6 my read

This function provides identical functionality to the system call

read. The prototype should be: int my_read( int fd, char *buff, int read_limit )
Inputs

e int—fd is the pseudo-socket connection identification

e char — *buff contains the location to put character data that is

read
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* int—read limit is the maximum number of characters to read
Processing
This function attempts to read the specified number of bytes from
the connection associated with the given socket descriptor into the buffer pointed to by the
given pointer.
Outputs
e int — If successful, returns the number of bytes actually read and
placed in the buffer; this number may be less than the specified
number of bytes; otherwise —1.

Error Handling

Returns error if the pseudo-socket identifier is not in use.

3.1.5.7 my write

This function provides identical functionality to the system call
write. The prototype should be: int my_write( int fd, const *buff, int nbytes )
Inputs
e int— fd is the pseudo-socket connection identification
e char - *buff contains the location to read character data from
e int— nbytes is the maximum number of characters to write
Processing
This function attempts to write the specified number of bytes from
the buffer pointed to by the given pointer into the connection associated with the given
socket descriptor.
Outputs
e int - If successful, returns the number of bytes actually written to
the connection; this number may be less than the specified
number of bytes if there is insufficient room in the connection

buffer; otherwise —1.
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Error Handling

Returns error if one of the I/O descriptor sets specified an invalid I/O

descriptor.

3.1.5.8 my close

This funtion provides identical functionality to the system call close.
The prototype should be: int my_close( int fd )
Inputs

e int—fd is the pseudo-socket connection to be closed

Processing
The function closes the specified pseudo-socket descriptor.

QOutputs
e int— If successful, returns 0; -1 if error

Error Handling

None.

3.1.5.9 FD SET

This function provides identical functionality to the socket call
FD_SET. The prototype should be: FD_SET(int fd, fd_set *bits )

Inputs
e int—fd s the file descriptor to be included in bits

e fd set— bits is the set of flags, one of which should be associated
with fa
Processing
The function includes the specified file descriptor in the file
descriptor set.
Outputs
None.

Error Handling

Returns error if the I/O descriptor specified an invalid I/O descriptor.
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3.1.5.10 FD ZERO
This function provides identical functionality to the socket call

FD_ZERO. The prototype should be: int FD_ZERO( fd_set *bits )

Inputs
e fd_set— bits is the set of flag bits to be set to zero

Processing
The function initializes the set of flag bits to the null set.

Outputs

None.

Error Handling

None.
3.1.5.11 FD ISSET
This function provides identical functionality to the socket call

FD_ISSET. The prototype should be: int FD_ISSET( int fd, fd_set *bits )

bit set.

Inputs

e int—fdis pseudo-socket connection identification
o fd set— bits is the set of flags to test if /d is set to true(1)

Processing
This function checks whether the bit associated with £ is set in the

Outputs
® int—retumns a nonzero if fd is a member of bits, a zero otherwise

Error Handling

Returns error if the I/O descriptor specified an invalid /O descriptor.
3.1.5.12 FD CLEAR
This function provides identical functionality to the socket call

FD_CLEAR. The prototype should be: int FD_CLEAR(int fd,, fd_set *bits )
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1.

3.2

Inputs

e int—fd is pseudo-socket connection identification
o fd set— bits is the set of flags of which the bit associated with fd
will be set to zero

Processing
The function removes fd from bits by clearing the bit associated with

Outputs

None.

Error Handling

Retumns error if the I/O descriptor specified an invalid I/O descriptor.

External Interface Requirements

3.2.1 User Interfaces

e It should be possible for users described in section 2.4 to use the
program by following information provided on the screen and in the
Secure LAN Server user manual. Assistance in changing session level
(s) will not be provided interactively.

e The program shall use command line prompts to allow the user to enter
information. Available options will not be provided on the screen, but

will be available in the Secure LAN Server user manual.
3.2.2 Hardware Interfaces

e It shall not be necessary to amend or reconfigure the server to install the

Secure LAN Server.

o The screen (hardware and software support) shall be capable of

displaying command line prompts.
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3.2.3 Software Interfaces ‘

e The program shall run under STOP 4.4.2.

e In order to use the program, the user must be properly authenticated to

the system.

e It shall be the responsibility of the system administrator to establish the
necessary access rights.

3.3  Performance Requirements

* There will be a maximum of 15 seconds between a user initiating the login
process and the system making a visible response.

3.4  Design Constraints

3.4.1 Standard Compliance

Design and development shall conform to Wang Government Services,

Inc.’s software development standard.
3.4.2 Hardware Limitations

The XTS-300 characteristics and limitations are as described in Reference

27.
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APPENDIX B. SECURE LOCAL AREA NETWORK SERVER SOFTWARE
DESIGN SPECIFICATION (SDS)

Introduction

Refer to - Section 1.0 of the Secure

System Overview

Introduction

to Section 2.1 of the

Product Perspective

to Section 22 of the

Product Functions

to Section 2.3 of the

Design Considerations

Secure

Secure

Secure

Assumptions and Dependencies

to Section 2.6 of the

General Constraints

Secure

Refer to Section 2.5 of the Secure

1.0
Specification.
2.0
2.1
Refer
Specification.
2.2
Refer
Specification.
23
Refer
Specification.
3.0
31
Refer
Specification.
32
Specification.
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33 Development Methods

Refer to Chapter II, Section B in “Secure Local Area Network Services For A High

Assurance Multilevel Network by Lieutenants Susan BryerJoyner and Scott D. Heller.

4.0  Architectural Strategies

Refer to Chapter II — Section C and Chapter III in “Secure Local Area Network
Services For A High Assurance Multilevel Network by Lieutenants Susan BryerJoyner and
Scott D. Heller.

5.0  System Architecture

Refer to Chapter III in “Secure Local Area Network Services For A High
Assurance Multilevel Network by Lieutenants Susan BryerJoyner and Scott D. Heller.

6.0  Module Design Overview

The module design overview is intended for use with the source code to better
understand the current state of the Secure LAN Server design and implementation. Each of
the following sub-sections details a module in our final design and corresponds to a source
file. The design of each module is intended conform, as close as possible given the
limitations of the C programming language, to our object oriented model of the Secure
LAN Server. The interface/exports section is used to provide a listing of each function
provided by a module. For a detailed description of each function, refer to the appropriate
section of Appendix C.
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6.1 Buffer I/O

Classification

Data Store Module

Definition

Provide circular queue buffer for network 1/0.

Responsibilities

Prevent buffer overflow while allowing controlled reads from socket IO.

Constraints

Buffer size is limited to INBUFFSIZE. Currently set to 4096 bytes.

Composition

None.

Uses/Interactions

Uses socket I/0 for reading.

Resources

Refer to “buff_io.h” in Appendix C for the #includes.
Each instantiation of a buffer I/O object contains an object of type in_buff struct.

The struct is used to store the circular queue representation in a flat array.

struct in_buff struct

{
char in buff[INBUFFSIZE];
int read_idx;
int write_idx;

};

91




Processing

For all operations a read and write index are used to maintain the next item to read
and the next location to write to. Data is stored in an array of char. Read and write indices
are manipulated to force circular queue behavior, by using modular arithmetic to limit the
range of each index to [0,INBUFFSIZE]. When reading the read_idx may never pass the
value of write idx. When writing write_idx may never pass the value of read idx. For
purposes of the circular queue, “pass” means to be incremented when equal to the other

index. When the two indices are equal the queue is empty.

Interface/Exports

Refer to “buff io.h” in Appendix C for a full description of each function.

void init buffer( struct in buff struct * this );
int poll ok to_read( int fd )};
int poll_ok to_read block( int £fd, int milliseconds );
int poll_ok_to_write( int £fd );
char * get token( int fd, struct in buff struct *queue,
const char delim, int nbytes );
char *empty buff(struct in_buff struct *queue);
int buff io read(struct in_buff struct * this, char * data, int n);
int num_char(struct in buff struct *queue );
char peek char( struct in_buff struct *queue);
char remove_char(struct in_buff struct *queue);
int bytes free( struct in_buff struct * queue);
int empty( struct in buff struct *queue );
void add data( const char *data, struct in_buff struct *queue,
int num read );
int add_data_part( const char *data, struct in_buff struct *queue,
int num_read );
int get_data(int fd, struct in buff struct *queue ):;

void print_buff_ queue( struct in buff struct *this );
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6.2 Connection Database

Classification

Data Store Module

Definition

Provide interface to Connection Database, to include initialization and modification
of the controlling active process. The Connection Database is initialized from an

initialization file and maintained in memory during run time.

Responsibilities

Provide basic database functionality for connection database. Functions needed
include record retrieval by hardware ID and controlling active process field modification of
a record identified by a hardware ID.

Used to determine if a TCBE has an active connection and which Session Server is

the Controlling Active Process (CAPID).

Constraints

Maximum number of records is defined by MAX_CLIENT. (10 records).

Maximum record length is defined by MAX RECORD_LEN. (20 bytes).

Hardware ID is 1-3 digits.

Public-key. The remaining bytes, however it is currently not used.

Controlling active process is only maintained in the memory version of the

database. It is the result of a call to getpid() — an int.

Composition

None.

Uses/Interactions

Uses socket I/O for reading.

Resources

Refer to “cdb.h” in Appendix C for the #includes.

The Connection Database module uses an array of cdb_records to store the
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Connection Database in memory.

struct cdb_record

{
unsigned hw_id;
unsigned public_key;
unsigned capid;

}i

Processing

Hardware ID lookups are currently done by exhaustive search. O(n).

Interface/Exports

Refer to “cdb.h” in Appendix C for a full description of each function.
int init_cdb( );

int update_CDB{ int hw_id, int new CAP );

int get CAPID( int hw id );

void print_cdb_ record(struct cdb_record * this_record );

void print _cdb();

6.3 10 Utilities

Classification

Wrapper

Definition

Provide interface to system socket I/0.

Responsibilities

Provide robust write function for socket 10.

Constraints

None.

Composition

None.
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Uses/Interactions

Uses socket I/O for writing.

Resources

Refer to “io_util.h” in Appendix C for the #includes.

Processing

Returns zero upon successful write. Uses <stdio.h> write().

Interface/Exports

Refer to “io_util.h” in Appendix C for a full description of each function.

int Writen(int fd, void *ptr, size t nbytes);

6.4  Listen Queue

Classification

Data Store Module

Definition

Provide FIFO Queue for new connection requests. Uses circular queue structure to

avoid buffer overflow condition.

Responsibilities

Provide ability for a calling function to block until data are available.
Accept pseudo-socket connection request identifiers.(type int)

Deliver pseudo-socket identifier to calling function upon exit.

Constraints

Buffer size is limited to MAX_LQ_SIZE. Currently set to 10 bytes.
Base counting semaphore key is LISTEN_Q_SEM_KEY. Currently 5000. Base
must be a multiple of 100 to allow calculation of sl an il from the respective level key in

msem:sem open.

Composition

“msem.h” for semaphore used to count data items in listen queue.
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Uses/Interactions

Refer to “buff io.h” in Appendix C for the #includes.
msem:sem_op() as counting semaphore to keep track of the number of items in the
queue.

priv_util:calc_key().

Resources

The listen queue module uses the following listen g struct to simulate a listen
socket queue. The queue uses a similar construct to the buff io queue, but is intended to

hold integers vice bytes.

struct listen_ g struct {
int initialized; //according to ANSI C static var
// init to zero.
int  write_idx;

int read idx; '
int  in buff([MAX LQ SIZE]; // pseudo-socket identifiers.
int listen_g_sem; // semaphore id used to block on 1lg
key t listen_g sem key; // key value.
}i
Processing

When adding an item the listen_q_sem is incremented by 1.
When removing an item sem_op(listen_q_sem, -1) is called to block until some data
is available. When the semaphore’s value is greater than zero the block is removed and the

value of the data is returned.

Interface/Exports

Refer to “listeng.h” in Appendix C for a full description of each function.

void lg_init(struct listen g_struct * this );

void 1g_print(struct listen_g struct * this );

int 1g_add item(int data, struct listen_g_struct *queue );
int l1g_empty(struct listen_g struct * queue );

int lg num_ free(struct listen g _struct * queue );

int lg_remove_item(struct listen_g_struct * queue );

int 1g peek_item(struct listen_ g struct *queue };

int l1g num_items(struct listen g struct *queue);
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6.5 - Semaphore Array

Classification

Wrapper

Definition

Provide simplified interface to arrays of semaphores.

Responsibilities

Allow for the initialization, destruction, and manipulation of arrays of semaphores.

Constraints

MAX_SEMAPHORES is 20
MAX SEMAPHORES PER _SET is 20.
MAX SEMAPHORE_VALUE is 32767

Maxunum semaphores per array 18. (20 — 2 control semaphores per set)

Composition

Refer to “msem.h” in Appendix C.

Uses/Interactions

Refer to “msem.h” in Appendix C for the #includes.

In sem_create and sem_open when used in a ring 2 application the key is used to
calculate the desired (sl, il) pair IAW the following formula: key = base + sl *10 + il; This
requires the base key be a multiple of 100.

Resources

Refer to “msem.h” in Appendix C for a detailed discussion of the data structures

used.

Processing

Refer to “msem.c” in Appendix C.
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Interface/Exports

Refer to “msem.h” in Appendix C for a full description of each function.

int sem create( key t key, int initial, int num_sems );
int sem open ( key t key);

void sem wait(int id, int idx);

void sem signal (int id, int idx);

void sem op(int id, int idx, int value);

void sem close(int);

void sem _rm(int);

6.6  Privilege Utilities

Classification

Wrapper

Definition

Provide simplified to the STOP operating system set privilege calls.

Responsibilities

Enable a predetermined set of privileges needed to acquire exemption from MAC

constraints.

Constraints

None.

Composition

Refer to “priv_util.h” in Appendix C.

Uses/Interactions

Refer to “priv_util.h” in Appendix C for the #includes.

In sem_create and sem_open when used in a ring 2 application the key is used to
calculate the desired (sl, il) pair IAW the following formula: key = base + sl *10 + il; This
requires the base key be a multiple of 100.

98




Resources

Refer to “priv_util.h” in Appendix C for a detailed discussion of the data structures

used.

Processing

The following privileges are assigned upon calling enable_priv():
SIMPLE_SECURITY_ EXEMPT;
SIMPLE_INTEGRITY EXEMPT;

SECURITY STAR PROPERTY_ EXEMPT;
INTEGRITY STAR_PROPERTY_ EXEMPT;

Currently no processing is done for the special cases where only a subset of the

privileges is required.

Interface/Exports

Refer to “priv_util.h” in Appendix C for a full description of each function.

ushort enable priv();
void set_priv{ushort priv );
int get_current_level (struct level struct * 1lvl );

key t calc_key(int base ):

6.7 Shared Memory Module

Classification

Wrapper

Definition

Provide simplified interface to system shared memory.

Responsibilities

Allow for the initialization, destruction, and manipulation of shared memory

segments.

Constraints

None.

Composition

Refer to “shm.h” in Appendix C.
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Uses/Interactions

Refer to “shm.h” in Appendix C for the #includes.

Resources

Refer to Reference 28, p. 50, p. 10

Processing

Refer to “shm.c” in Appendix C.

Interface/Exports

Refer to “shm.h” in Appendix C for a full description of each function.

int get_shm(key t key, void ** addr, size_t size );
void *attach_shm( int shmid );

void remove shm( int shm _id, void * addr );

6.8 Shared Memory Structure

Classification

Data Store Object

Definition

Provide interface to shared memory segment used to pass data to/from the Session

Server and the Protocol Server.

Responsibilities

Allow for the initialization, destruction, and manipulation of a shared memory

structure stored in shared memory.

Constraints

MAX OPEN_CONN represents the maximum number of connection buffers
available for use as pseudo-sockets in each shared memory structure defined (Currently 5).
Only one listen queue may be defined per shared memory structure. Since there is

only one shared memory structure per level this, currently, implies only one protocol server

listening to one socket per (sl,il) pair.
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Composition

Refer to “shm_struct.h” in Appendix C.

Other objects used: listen queue, shared memory, semaphore arrays, and buffer I/O.

Uses/Interactions

Refer to “shm_struct.h” in Appendix C for the #includes.

Resources

// Each p_socket connection needs an inbound and outbound
// buffer as well as a flag to indicate if in use or not.
// The addr should eventually be filled in by the SSS
// and returned in accept().
struct connect_struct {

int in_use;

struct in_buff struct to_svr buff;

struct in buff struct to cli buff

struct sockaddr addr; // client address storage
}i

// The entire contents of each level’s shared memory segment
// 1lq is used to block on by accept.
struct shm hdr {

struct listen g _struct lg;

struct connect struct conn[MAX OPEN_CONN] ;

int shm_ hdr shmid; // needed for ss _cleanup call to rm shm.
int conn_semld,

}:

Processing

Refer to “shm_struct.c” in Appendix C.
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Interface/Exports

Refer to “shm_struct.h” in Appendix C for a full description of each function.

int init_shm _hdr( struct shm_hdr ** shm ptr );
void ss_cleanup( struct shm_hdr * shm ptr );
int ss_get_hdr(struct shm_hdr ** shm hdr,
struct user ia_struct * ia_data);

void ss_detach_hdr( struct shm _hdr * shm hdr );
int ss_read(int fd, struct shm hdr * shm hdr, char *buff,

int nbytes );
int ss write(int fd, struct shm_hdr *shm_hdr,

const char *data, int nbytes );
int ss_read fm_svr(int fd, struct shm_hdr * shm_hdr, char *buff,

int nbytes );
int ss_write to_svr(int fd, struct shm_hdr *shm_hdr,
const char *data, int nbytes);
void ss_close(int fd, struct shm_hdr *shm hdr );
int ss_data_avail( int idx, struct shm_hdr *shmhdr );
int ss_space_avail( int idx, struct shm_hdr *shmhdr );
int ss_socket_error(int idx, struct shm_hdr *shmhdr );
int ss_block_on_lq( struct shm_hdr *shmhdr );
void ss_copy cli_buff( struct shm hdr *shmhdr, int idx,
struct in_buff struct *from );
int ss_xfer_ skt_buff( struct shm_hdr *shmhdr, int pskfd,
int sockfd );
int ss_xfer_buff_skt( struct shm_hdr *shmhdr, int pskfd,
int sockfd ):

int ss_request_connection( struct shm_hdr *shmhdr );
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6.9 User Identification and Authentication

Classification

Procedure

Definition

Reads user identification and authentication information using a buff io object and
determines if the data formulates a valid session level request. Returns a user_ia_struct for

use by the session server in finding the proper protocol server is the request is valid.

Responsibilities

Ensure only valid requests get declared valid.
Interface with the STOP OS to utilize the existing security databases.

Constraints

MAX USER _NAME is the maximum length of the user name (20) including the
delimiter (\n).

MAX USER_PWD is the maximum length of the user password (10) including the
delimiter (\n).

MAX IL_LEN is the maximum length of the integrity level input string (4)
including the delimiter (\n).

MAX SL_LEN is the maximum length of the security level input string (4)
including the delimiter (\n).

Composition

Refer to “user_ia.h” in Appendix C.

Uses/Interactions

Refer to “shm.h” in Appendix C for the #includes.
Uses a valid TCP/IP socket and a buff io object in addition to STOP OS security

database calls to be determined.
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Resources

// Purpose: Pass user IA information primarily when determining
// user’'s desired session level and validity of login request
struct user_ia_ struct {

int valid;

char uname [MAX USER_NAME];

int sl;

int i1;

}i

Processing

Refer to “user ia.c” in Appendix C.
- pp

Interface/Exports

Refer to “user_ia.h” in Appendix C for a full description of each function.

struct user_ia_ struct user IA(int sockfd,

struct in_buff struct *queue );

6.10 TPS Utilities: Check Secure Attention Signal

Classification

Procedure

Definition

Provided verification of the Secure Attention Signal and extraction of the hardware
ID.

Responsibilities

Ensure only valid SASs is accepted. A valid SAS is one that is formatted properly,
signed with a valid public-key and contains the hardware ID associated with the public-key
in the Connection Database.

Return hardware ID from a valid SAS.
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Constraints

#define MAXHWID 7 // maxsize of hw_id in char + 3 =>
// hw_id can be 3 digits
#define TELNET SEND 255 // value for brk
#define TELNET BRK 243 // value for send
#define MIN_SAK LEN 3 // minimum valid SAK length
SAS format is:

“TELNET_SEND TELNET BRK <hardware ID><new line (ASCII 10)>”

This will change as encryption is added. The <hardware ID> is 1-3 digits long.

Composition

Refer to “tps_utilh” in Appendix C.

Uses/Interactions

Refer to “tps_util.h” in Appendix C for the #includes.
Uses a valid TCP/IP socket and a buff io object. buff io:get_token() is used to

extract a delimited char sequence of limited length.

Resources

None.

Processing

Refer to “tps_util.c” in Appendix C.

Interface/Exports

Refer to “tps_util.h” in Appendix C for a full description of each function.

int check SAK(int sockfd, int * hw_id,
struct in_buff struct *queue );

6.11 TPS Utilities: Socket Relay

Classification

Procedure
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Definition

Relay information, possibly between two distinct security levels, from a TCP/IP

socket and a pseudo-socket.

Responsibilities

Ensure only information from a security level greater than (sl0, i13) is only routed to
a trusted destination and is encrypted (if required) prior to data transfer.
Efficiently transfer data with out busy waiting and/or unnecessary blocking.

Minimize time using privileges.

Constraints

Privileges are as assigned in priv_util.c, see Appendix C.

Composition

Refer to “tps_util.h” in Appendix C.

Uses/Interactions

Refer to “tps_util.h” in Appendix C for the #includes.
Uses a valid TCP/IP socket, a user_ia_struct, a shared memory structure, and a
buff io object.

Resources

None.

Processing

Refer to “tps_util.c” in Appendix C.

Interface/Exports

Refer to “tps_util.h” in Appendix C for a full description of each function.

int socket_relay(int cli_fd,
struct in_buff struct *cli_buff,

struct user ia_struct *ia data );
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6.12 Trusted Path Server (TPS)

Classification

Procedure

Definition

Accepts connection requests and creates a child Session Server via the fork()

function to service the request.

Responsibilities

Properly setup and bind to a reserved port to service connection requests.

Act as the driver for all connection requests.

Constraints

#define SERV_PORT 6002 // port TPS will listen to.

Composition

Refer to “tps.c” in Appendix C.

Uses/Interactions

Refer to “tps.c” in Appendix C for the #includes.
Uses a valid TCP/IP socket and a buff_io object.

Resources

None.

Processing

Refer to “tps.c” in Appendix C.

Interface/Exports

main()

6.13 Pseudo-Socket Interface

Classification

Wrapper

Definition

Provides socket-like interface for a protocol server to the shared memory structure.
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Responsibilities

Mimic the behavior of the socket calls defined in Reference 29.

Constraints
#define I NREAD 1 // this means ioctl needed
#define AF_INET -1 // only socket type supported internet stream.

#define SOCK_STREAM -1

Composition

Refer to “pskt.c” in Appendix C.

Uses/Interactions

Refer to “pskt.c” in Appendix C for the #includes and Reference 29 for exact

behavior to be mimicked.

Resources

// used to mimic select timeval parameter.
struct timeval {

int tv_sec;

int tv_usec;

}i

Processing

Refer to “pskt.c” in Appendix C.
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Interface/Exports

Refer to “pskt.h” in Appendix C for a full description of each function.

int socket (int domain, int type, int protocol ):
int bind(int sockfd, const struct sockaddr * serv_addr, int size );
“int listen( int fd, int queue _size );
int accept(int listen_sem, struct sockaddr * addr,
int * addr_len );
int my read(int fd, char *buff, int read limit);
void my close( int fd };
int my_write(int fd, const char* data, int nbytes );
int select( int bits_to_check, fd_set *ibits, fd_set *obits,
fd_set *xbits, struct timeval *timeout );
void FD _SET(int £fd, fd_set *bits);
void FD ZERO(fd_set *bits);
int FD_ISSET(int fd, fd_set *bits);
void FD_CLEAR (int fd, fd_set *bits);
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APPENDIX C. SECURE LAN SERVER SOURCE CODE

Makefile for Trusted Path Server

1

QUOWOJOYOUTx WM

source = priv_util.c tps.c util.c tps_util.c cdb.c io_util.c cdb.c
buff io.c shm.c msem.c listeng.c shm_struct.c user_ia.c

headers = tps_util.h buff io.h

CFLAGS = -DOSS_OPTION

CF_POLL = -DOSS_OPTION -DUSE_POLL

oss: ${source}
cc S${CFLAGS} -oss -I/usr/include/sys/ ${source} -o tps -lsocket

osspoll: ${source}
cc ${CF_POLL} -oss -I/usr/include/sys/ ${source} -o tps -
lsocket

tps_util.o: tps_util.c tps_util.h util.h buff_io.h

app: S${source}
cc -DUSE_POLL -I/usr/include/sys/ ${source} -o tps -lsocket -
lcass

clean:
/bin/rm -f /usr2/sdheller/wip/*.o
/bin/rm -f /usr2/sdheller/wip/core

rm:
/bin/rm -f /usr2/sdheller/wip/*.o
/bin/rm -f /usr2/sdheller/wip/core
/bin/rm -f /usr2/sdheller/wip/tcbe/*.o
/bin/rm -f /usr2/sdheller/wip/tcbe/core
/bin/rm -f /usr2/sdheller/wip/echo/*.o
/bin/rm -f /usr2/sdheller/wip/echo/core

arch:
tar -cvf “date +../archive/wip_%y%m%d_%$H%M.tar"
/usr2/sdheller/wip/*.*

depend:

cc -Hmake -oss -I/usr/include/sys/ ${source} =~o tps -lsocket -
lcass
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// File: buff io.h

// Author: Scott Heller

// Date: 2 Feb 1999

// Purpose: buffered IO from network. Uses circular queue data
structure.

// will not overwrite data in queue.

#ifndef BUFF IO H_
#define BUFF_IO H_

#include <errno.h>
#include <memory.h>

#ifndef USE_P_SOCKET
#include <sys/time.h>
#include <sys/types.h>
#include <sys/select.h>

#include <stropts.h>
#include <sys/socket.h>
#include <unistd.h>
#endif //!USE_P SOCKET

//for poll

#ifdef USE_POLL

#include <stropts.h>
$ifdef 0SS_OPTION
#include <sys/poll.h>
#else //OSS_OPTION
#include <poll.h>
#endif //0SS_OPTION
#endif //USE_POLL

#include "util.h"

#define INBUFFSIZE 4096

// data struct for circular queue.
struct in_buff struct
{
char in buff [INBUFFSIZE];
int read_idx;
int write_ idx;

};

#ifdef USE_P_SOCKET
#include "echo/pskt.h"
#endif //USE_P_SOCKET

// Param: this: buffer to initialize
// Purpose: initialize buffer index variables.
// does not allocate memory.
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void init_buffer( struct in buff struct * this );

// Return: -1 if socket not valid. 1 if data availible.
// 0 if no data availible, but socket fd still valid

// Param: fd: valid socket descriptor

// milliseconds: maximum time to delay. actually
// converted to seconds using integer math any value
// less than 1000 will yield a delay of 0.

// Purpose: Discover if socket i/o will block or not.

int poll ok to_read( int fd );

int poll ok_to_read block( int fd, int milliseconds );

// Param: fd: valid socket descriptor
// Purpose: Similar to above. Not yet implimented.
int poll ok to write( int fd );

// Param: fd is a socket descriptor. gqueue is a buffer.

// delim is the delimiter used to mark the end of the

// desired token. nbytes is the maximum number of bytes

// that will be checked while searching the buffer for

/7 the delimiter.

// Return: char * to the token null terminated with delim removed.
// ~ NULL if delim not found within nbytes.

// Notes: The socket need not be open for this call to succeed if
// the data is still in the buffer.

char * get_token( int fd, struct in buff_struct *queue,

const char dellm, int nbytes );
// Return: char * to null terminated string.
// Param: queue: buffer to extract all data from.
// Purpose: return a null terminated string to all remaining data
// in the queue. The queue will be empty after this call.
char *empty buff(struct in_buff struct *queue);

// Return: number of char read.

// Param: this: buffer to read from

// data: buffer to place read data in.
// n: max number of bytes read.

// Purpose: mimic system read.

int buff io read(struct in_buff struct * this, char * data, int
n);

// Return: number of data bytes in queue.

// Param: queue: queue to query.

// Purpose: return the number of char in the queue. Does not
include

// space for the null terminator if you wish to allocate

// memory for a call to empty buff() allocate num char + 1.
int num_char (struct in_buff struct *queue );
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112

113 // Return: next char in queue

114 // Param: gueue: queue to query.

115 // Purpose: return the next char in the queue. No side effects.
116 char peek char( struct in buff struct *queue);

117

118

119 // Return: next char in queue
120 // Param: queue: queue to query.

121 // Purpose: return the next char in the gqueue. char is removed
from queue.
122 char remove_char(struct in_buff struct *queue);

123

124

125 // Return: number of bytes free in the queue
126 // Param: queue: queue to query.

127 // Purpose: return the number of bytes free in the queue.
128 int bytes_free( struct in buff struct * queue);

129

130

131 // Return: true if empty, false otherwise.
132 // Param: gueue: queue to query.

133 // Purpose: return true if the queue is empty.
134 int empty( struct in_buff struct *queue );

135

136

137 // Param: data: data to add to the buffer
138 // queue:buffer to add data to

139 // num_read: number of bytes to add.

140 // Purpose: add the char data in data{] to the queue.

141 // WARNING: if num_read > bytes free in queue a fatal error is
generated.

142 // the program will exit (-1).

143 void add data( const char *data, struct in buff struct *queue, int
num_read );

144

145

146 // Return: number of bytes actually added. -1 on error.

147 // Param: data: data to add

148 // gueue: buffer to add data to

149 // . num_read: number of bytes to add

150 // Purpose: same as above, but may write less than num_read.

151 // returns the number of bytes added.

152 int add_data_part( const char *data, struct in buff struct *queue,.
int num_read );

153

154

155 // Pre:

156 // Post:

157 // Return: number of bytes read or -1 on error.

158 // Param: fd: valid socket descriptor

159 // queue: desitnation for the newly read data.
160 // Purpose: read upto the number of bytes free in the queue
161 // return the result of the read() call.

162 int get_data(int fd, struct in buff struct *queue );
163
164
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165
166
167
168
169

// Param:
// Purpose:

#endif

queue: queue to print
used for debugging, prints contents of the queue.
void print_buff queue( struct in_buff struct *this );
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// File: cdb.h

// Ruthor: Scott D. Heller & Susan Bryer-Joyner

// Date: 28 January 1999

// Purpose: Provide interface for manipulating the Connection
Database (CDB)

#ifndef CDB H_
#define CDB H_

#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

#include "util.h"

#define MAX CLIENT 10 // maximum number of CDB records
#define MAX _RECORD_LEN 20 // max size of a CDB record

struct cdb_record

{
unsigned hw_id;
unsigned public key;
unsigned capid;

}i :

// creates a copy of the connection database in RAM
// Return: thHe number of records, exits -on error
int init_cdb( );

// update the CDB record containing hw id with new_CAP

// num_records must contain the number of records in the CDB
// Otherwise it is possible to read from memory not assigned.
// Return: true if record found, false if record not found.

int update_CDB( int hw_id, int new CAP );
// return capid if hw_id in CDB else return -1.
int get_CAPID( int hw_id );

// prints one CDB record in RAM.
void print_cdb_record(struct cdb_record * this record );

// print the contents of the CDB in RAM from cdb _ptr for
num_records.
void print_cdb()

#endif
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// File:

io_util.h
// Author: Scott D. Heller & Susan Bryer-Joyner
// Date: 1 Feb 1999
// Purpose: IO routines that do not require any trusted includes.
#ifndef IO UTIL H_
#define IO_UTIL_H_
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory.h> // for memset ()
#ifdef USE_P_SOCKET
#include "echo/pskt.h"
#endif
#include "util.h"
// Pre:
// Post:
// Return: -1 if socket is closed; 0 otherwise
// Param: fd: valid socket descriptor
// ptr: ptr to the data to write
// nbytes: number of bytes to write.

// Purpose: writes n bytes to a descriptor from the buffer ptr
int Writen(int fd, void *ptr, size_t nbytes):;

// Param:

buff: char string.

// Purpose: debugging. Prints a char string 1 char at a time
void print_buff( char *buff );

$endif
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// File: listenqg.h

// Ruthor: Scott Heller

// Date: 20 February 1999

// Purpose: Provide a queue of information required to establish a
// shared memory connection between two processes.

$ifndef LISTENQ H
#define LISTENQ H

#include <stdio.h>

#include "msem.h" // for 1q_init() and 1lqg_remove ()
#include "priv_util.h" // for calc_key()

#define MAX LQ SIZE 10 // size of the listen queue
#define LISTEN ¢ _Q SEM KEY 5000

#define MAX_ SHM CONNECTIONS MAX LQ SIZE // fix this.

struct listen g_struct {

int initialized; //according to ANSI C static

var :
// init to zero.

int write_idx;

int read_idx;

int in_buff[MAX LQ SIZE]; // key to open shm
segment.

int listen g sem;

key t listen_g_sem key;
}i
// Pre: Memory for this is allocated.
// Param: this: ptr to listen g struct
// Purpose: Initialize buffer index variables and create

// 1lg semaphore so that accept can block.
void lg_init(struct listen g struct * this );

// Param: this: ptr to listen g struct to be printed.

// Purpose: debugging feed back. prints all data in the
// listen_g_struct *this is decimal and char format.

void lqg_print(struct listen_ g struct * this );

// Return: 1 if added, 0 if queue full and item not added

// Param: data: integer to- be added to listen queue
// gqueue: where to add the data.
// Purpose: add data from char[] to queue

int lg_add item(int data, struct listen_g struct *queue );

// Return: true if empty false otherwise

// Param: queue: gueue to test.

// Purpose: test if queue is empty.

int lg empty(struct listen_g struct * queue );
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// Return: number of free bytes in queue

// Param: queue: queue to query.

// Purpose: return number of free bytes in queue
int lg num_free(struct listen_gqg_struct * queue );

// Return: integer data stored in queue.

// Param: queue: where to get the data.

// Purpose: remove and return one struct relay struct from queue
// will block until data is availible.

int 1q remove item(struct listen_g_struct * queue );

// Return: int value of head of queue

// Param: queue: where to get the data.

// Purpose: return value of head of gqueue without removing.
int 1lq peek item(struct listen_g_struct *queue );

// Return: int number of items in queue

// Param: gueue: queue to query.

// Purpose: return current size of queue

int lg_num_items(struct listen_g_struct *queue);

$endif
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// File: msem.h

// RAuthor: Richard Stevens

// Modified: Scott Heller: added ring 2 compatibility
// and the capability do declare an array of sems.
// Date: 27 Feb 99

#ifndef MSEM H
#define MSEM H_

#ifdef OSS_OPTION
#include <stdtyp.h>
#include <semaphore.h>
#include <error_ code.h>
$endif // OSS_OPTION

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <stdio.h>

#include <errno.h>
#include "util.h"

#ifndef OSS OPTION
extern int errno;
#endif // OSS_OPTION

// Return: semaphore system identifier.

// Param: key: Key of sem to create or open

// initial: initial value of each sem in the array
// num_sems: number of sems in the array

// Purpose: create array of sems with initial value or open

int sem create( key t key, int initial, int num_sems );

// Return: semaphore system identifier.
// Param: key: Key of sem to open.

// Purpose: open (must already exist)
int sem open ( key t key);

// Param: semid: semaphore identifier
/7 idx: index of semaphore in the set.
// Purpose: wait = P = down by 1

void sem wait(int id, int idx);

// Param: semid: semaphore identifier
// idx: index of semaphore in the set.
// Purpose: signal =V = up by 1

void sem_signal (int id, int idx);

// Param: semid: semaphore identifier
// idx: index of semaphore in the set.
// value: amount by which to modify semaphore.
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// must not be zero.

// Purpose: General semaphore operation.

// wait if (amount < 0) or signal if (amount > 0)
void sem op(int id, int idx, int value);

// Param: semid: semaphore identifier
// Purpose: close the semaphore set.
void sem _close(int);

// Param: semid: semaphore identifier
// Purpose: remove (delete)
void sem_rm({int);

$endif
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// File: priv_util.h
// Author: Scott Heller
// Date: 27 Feb 99

// Purpose: One stop shopping for gaining the privileges needed to

// execute as a Secure Session Server. App needs to first be
installed
// with privileges using "tp edit"” with administrator access.

#ifndef PRIV_UTIL_H_
#define PRIV_UTIL H_

#ifdef 0OSS_OPTION
#include <stdtyp.h>
#include <error code.h>
#include <procman.h>
#include <tcb gates.h>
#include <access.h>
#include <privileges.h>

#else // ring 3 application

#include <sys/types.h>
#include <level.h> // need ~lcass to be linked.

extern int getlevel (const char path[], access_ma *buf );
#endif //0SS_OPTION
#include "util.h"

struct level struct {
int il;
int sl;

}i

// Return: The previous privilege set.

// Purpose: Enable the fixed set of privileges needed to freely
communicate

// between two MAC levels.

ushort enable priv();

// Param: priv: privilege set.
// Purpose: Enable the privilege set defined by priv. Used to
restore

// privileges after an enable priv() call.

void set_priv( ushort priv );

// Return: -1 on error. 0 on success.

// Param: lvl: a level_struct.

// Purpose: Get the current integrity and security level of the

calling
// process. Works in ring 2 and 3.
int get_current_level( struct level struct * lvl );
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// Return: sl * 10 + il + base

// Param: base: Shared mem or semaphore base key. Must be
// a multiple of 100 to fuction properly with
// SSS.

// Purpose: Given a base key calculate a unique key for

// the current (sl,il) pair.

key t calc_key( int base );

#endif //PRIV_UTIL H_
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// File: shm.h

// Ruthor: Scott Heller

// Date: 17 Feb 99

// Purpose: Create and manipulate a shared memory segment
// between ring 2 and 3.

#ifndef U_SHM H_
#define U _SHM H

#include <sys/ipc.h>
#include <sys/shm.h>
#include "util.h"
#define SHM PERM 00666

// Return: Shared memory identifier
// Param: key: The key to find the shared mem segment.

// addr: Will be set to the first address of the segment
// size: size of the desired segment.

// Purpose: create and attach to a shared memory segment

// make this segment availible to the protocol server

int get_shm(key_t key, void ** addr, size t size );

// Param: shmid: the shared mem segment identifier
// Purpose: return a ptr to a shm segment from a shmid
void *attach shm( int shmid );

// Param:  shm_id: shared memory identifier

// addr: address of shared memory.

// Purpose: detach and remove shared memory segment from the
system

!/ this must be done every time prior to exit being called
void remove_shm( int shm_id, void * addr );

#endif // SHM H_
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// File: shm_struct.h
// Author: Scott Heller
// Date: 22 Feb 1999

// Purpose: Provide interface for connection shm. One shm segment

// per level.

#ifndef SHM STRUCT_H_
#define SHM STRUCT__ H

#ifdef OSS_OPTION
#include <tcb_gates.h>
#include <shared mem.h>
#endif // 0SS_OPTION

#include "util.h"
#include "buff_io.h"
#include "io_util.h"
#include "user_ia.h"
#include "listeng.h"
#include "shm.h"
#include "msem.h"
#include "priv_util.h"

#define MAX OPEN_CONN 5

// The following keys may be changed, but

// must be multiples of 100 inorder for the SSS
// to find the proper level based upon the keys.
// Acutal keys used to open shm and sems are:

// key = sl * 10 + il + base;

#define SHM STRUCT_BASE_KEY 7800

#define LEVEL SEM_ KEY BASE 8000

#ifdef USE_P_SOCKET
// Needed to fully impliment pseudo sockets.
struct sockaddr {
char sa_len;
char sa_ family;
char sa_data[l4];
}i

$endif //USE_P_SOCKET

// Each p_socket connection needs an inbound and outbound
// buffer as well as a flag to indicate if in use or not.
// The addr should eventually be filled in by the SSS
// and returned in accept().
struct connect_struct {

int in_use;

struct in _buff_ struct to_svr_ buff;

struct in buff struct to Cll buff

struct sockaddr addr; // client address storage

}i
// The entire contents of each level's shared memory segment

// 1lg is used to block on by accept.
struct shm _hdr {
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58 struct listen_g struct lg;

59 struct connect_struct conn{MAX OPEN CONN];

60 int shm_ hdr shmid; // needed for ss_cleanup call to rm shm.
61l int conn_semld

62 };

63

64 // Return: -1 on error. shmid on success

65 // Param: shm ptr: pass the address of the pointer

66 // to a shm hdr struct. It will be set to the first

67 // address in the new shared memory segment.
68 // Purpose: Allocate and intialize shared memory

69 // for the current level of the protocol server.

70 int init_shm hdr( struct shm_hdr ** shm ptr );

71 '

72

73 // Param: shm ptr: first address in the shared mem segment.

74 // Purpose: Remove shared memory from the system.

75 void ss_cleanup( struct shm hdr * shm ptr );

76

77 // Return: shared memory id. -1 on error.

78 // Purpose: Don't create, just get the shm struct address
79 // for the (sl,il) pair in ia_data.

80 int ss_get_hdr(struct shm _hdr ** " shm _hdr,

81 struct user_ia_struct * ia_data);

82 .

83 // Param: shm_hdr: pointer to the shared mem segment.
84 // Purpose: detach shm seqg from current process

85 void ss_detach_hdr( struct shm_hdr * shm hdr );

86

87 // Return: number of char read or writen

88 // Param: fd: index into the connection array
89 // shm hdr: ptr to shared mem segment

90 // others as expected for read and write.

91 // Purpose: I/0 functions for pseudo socket calls
92 int ss_read(int fd, struct shm_hdr * shm hdr,

93 char *buff, int nbytes )2

94 int ss_write(int fd, struct shm hdr *shm hdr,

95 - const char *data, int nbytes );

96

97

98 // Return:. number of char read or writen

99 // Param: fd: index into the connection array
100 // shm hdr: ptr to shared mem segment
101 // others as expected for read and write.

102 // Purpose: I/O functions for SSS calls to shm struct
103 int ss_read fm _svr(int f£d, struct shm hdr * shm _hdr,

104 char *buff, int nbytes );

105 int ss_write_to_svr(int fd, struct shm_hdr *shm_hdr,
106 : const char *data, int nbytes),
107

108 // Param: fd: index into the connection array

109 // shm hdr: ptr to shared mem segment

110 // Purpose: mark the connection fd as not in use.
111 void ss_close(int fd, struct shm hdr *shm hdr );
112

113

114 // Return: boolean indicating results of test.
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// Param: idx: index into the connection array

// shm_hdr: ptr to shared mem segment

// Purpose: tests needed by select() in pskt.h

int ss_data_avail( int idx, struct shm _hdr *shmhdr )
int ss_space_avail( int idx, struct shm _hdr *shmhdr )
int ss_socket_error(int idx, struct shm_hdr *shmhdr )

7
’

’

// Return: index of connection from listen queue.

// Param: shm_hdr: ptr to shared mem segment

// Purpose: used by accept to block until connection is
// availible.

int ss_block on_lqg( struct shm hdr *shmhdr );

// Param: shmhdr: ptr to shared mem segment
// idx: index into the connection array
// from: buffer to copy into shared memory.

// Purpose: Used by session_relay to copy the TCBE client buffer
//  into shared memory.
void ss_copy_cli_buff( struct shm_hdr *shmhdr, int idx,

struct in buff struct *from );

// Return: number of bytes transferd. -1 on error.

// Param: shmhdr: ptr to shared mem segment
// idx: index into the connection array
// sockfd: valid socket descriptor

// Purpose: Transfer data between a socket and a shared mem
buffer.

int ss_xfer skt buff( struct shm_hdr *shmhdr, int pskfd, int
sockfd );

int ss_xfer buff_ skt( struct shm_hdr *shmhdr, int pskfd, int
sockfd );

// Pre:

// Post:

// Return: New pskt connection index. -1 if no connection free.
// Param: shmhdr: ptr to shared mem segment

// Purpose: Find next availible connection in shared memory. Then
// allocate that connection for use by the SSS.

int ss_request_connection( struct shm hdr *shmhdr );

#endif
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// File:

// Author:

// Date:

// Purpose:

tps_util.h

28 January 1999

#ifndef TPS UTIL H_
#define TPS_UTIL _H_

#include
#include
#include
#include
#include

<unistd.h>

<errno.h>

<stdio.h>

<stdlib.h>

<memory.h> // for memset ()

//for select in select_sleep

#include
#include
#include

#include
#include
#include
#include
#include
#include
#include
#include
#include

#define MAX SAK ATTEMPTS 3

<sys/time.h>
<sys/types.h>
<sys/select.h>

" Cdb . h"

"io util.h"
"buff io.h"
"atil.h"”
"shm.h"
"msem.h"
"listeng.h"
"shm struct.h”
"priv_util.h"

before exit

Scott D. Heller & Susan Bryer-Joyner

Functions used by the Trusted Path Server (tps.c)

// limit of invalid SAK attempts

// maxsize of hw_id in char + 3

hw_id can be 3 digits

// minumum valid SAK length
// port TPS will listen to.

pointer used to return the hardware id of the

: buffer associated with the current connection.

is one the starts:

#define MAXHWID 7
=>
/7
#define TELNET SEND 255 // value for brk
#define TELNET_ BRK 243 // value for send
#define MIN SAK LEN 3
#define SERV_PORT 6002
// Return: -1 if not valid SAK mssg else return CAPID
// Param: sockfd: valid socket descriptor
// hw_id :
TCBE
// queue
// Purpose: Verify the SAS is legitiment. Eventually public-key
verification
// should occur here.
// Note: A valid SAK mssg, for now,
// "send brk" and is followed by a 1-3 digit hardware ID.

int check_SAK(int sockfd, int * hw_id, struct in_buff struct

*queue );

// Return:

-1 on error.
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// Param: cli_fd: valid socket descriptor for communicating with

TCBE
// cli_buff: buffer used to store data from TCBE
// ia_data: sl and il for desired current session.

// Purpose: relay data from TCBE to protocol server and vice a
versa.

// This is were most of the real work of the Secure Session
Server

// is accomplished.

int socket relay(int cli_£d,

struct in buff struct *cli_buff,

struct user_ ia struct *ia_data ) :
// Param: sockfd: wvalid socket descriptor
// seconds: maximum number of seconds to sleep.
// Purpose: Select test. Any activity on sockfd will cause

// immediate return.
void select_sleep(int sockfd, long seconds );

#endif
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// File:

// Date:

WO U WN

10 #include
11 #include
12 #include
13 #include

15 #include
16 #include
17 #include

user ia.h

// Buthor: Scott D. Heller & Susan Bryer-Joyner

28 January 1999

// Purpose: Perform User Identification and Authentication.

#ifndef USER IA H_
#define USER IA H

<unistd.h>
<errno.h>
<stdio.h>
<stdlib.h>

"io util.h"
"buff io.h"
"util.h"

19 #define MAX USER_NAME 20 // maximum length of user name
20 #define MAX USER PWD 10

21 #define MAX IL LEN 4
22 $#define MAX_SL LEN 4
23
24

25 // Purpose: Pass user IA information primarily when determining

26 // user'

s desired session level and validity of login request

27 struct user_ia_struct {
28 int valid;
29 char uname [MAX USER _NAME] ;

30 int sl;
31 int il;
32 };

35 // Pre:
recieved.
36 // Post:

sockfd is connected to a valid socket and a SAS was

user IA data will be consumed from the (sockfd, queue) .

37 // Return: wuser_ia_struct

38 // Param:
39 //

sockfd from where to get the user information.
queue currently being used with sockfd to store

inbound data.
40 // Purpose: Perform user idenfication and authentication
41 // return true if valid.
42 struct user_ia_struct user_ IA(int sockfd, struct in buff struct

*queue );

45 #endif
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// File: util.h

// RAuthor: Scott D. Heller & Susan Bryer-Joyner

// Date: 28 January 1999

// Purpose: General utility functions possibly used by any
application

#ifndef UTIL H_
$define UTIL H

#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

extern int errno;
#ifndef true
#define true 1

#endif

#ifndef false
#define false O

#endif

// Param: test value

// Purpose: if test == 0 ensure will print perror information
// and exit.ring 2 application do not have access to assert.

void ensure(int test);
void ensure m{int test, char *mssg);

// Param: int on/off switch, debugging message.

// Purpose: Standardized debugging. If int is not zero print the
// string prefaced by the pid of the calling process

void dbug{( int on, char * prompt );

// Param: on/off swtich, debugging prompt, integer data

// Purpose: Standardized debugging. If int is not zero print the
// string followed by value of int prefaced by the pid of the
// calling process.

void dbugd( int on, char *prompt, int data);

#endif
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// File: buff io.c

// Author: Scott Heller

// Date: 2 Feb 1999

// Purpose: Buffered IO from/to network

#include "buff io.h"

// initialize buffer index variables.
// does not allocate memory.
void init_ buffer(struct in buff struct * this )
{
int debug on = 0;

this->write idx = 0;
this->read idx = 0;

if(debug_on) print_buff queue (this);

}// end init_buffer

// Purpose: debugging feed back. prints all data in the
// in_buff struct *this is decimal and char format.
void print_buff queue(struct in_buff struct * this )

{

int idx = this->read_idx;

printf("buffer queue: size = %d: contents:", num_char (this)
)i '

while (idx != this->write_idx )
{
printf("(%d, %c)", this->in buff[idx], this->in buff[idx]

idx = (idx + 1)S%INBUFFSIZE;
}
printf ("\n");
}// end print_buff queue

// read upto the number of bytes free in the queue
// return the result of the read() call.
// this result should be the number of bytes read
/! or -1 on error.
int get_data(int fd, struct in_buff struct *queue )
{

int debug on = 0;

dbug (debug_on, "get_data: entered.");

// only read upto the # bytes free in queue
int read limit = bytes_free(queue );

// allocate memory for incomming data.

char *temp buff = malloc(read limit);
int num read = 0;
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// initialize the input buffer.
if (!memset (temp buff, 0, read limit ) )
{
perror ("buff_ io:get data:memset");
exit (-1);

}

// attempt to read until valid error or valid read.
do {
dbug (debug _on, "buff io:get_data: ABOUT to read.");

$ifdef USE_P_SOCKET

num read = my read(fd, temp buff, read limit );

#else //USE TCP/IP Sockets

num_read = read({fd, temp_buff, read_limit );

#endif // USE_P_SOCKET

} while(num_read < 0 && errno == EINTR );

// if there was an error while reading.
if(num_read < 0 )
{
perror ("buff io:get_data:read"):;
} else if(num_read > 0 ) {

// move data from temp buff to queue.
add_data(temp buff, queue, num read );
} // end if

dbug (debug_on, "buff jo:leaving get_data");
if(debug_on) print_buff_ queue(queue);

free (temp_buff );

return num_read;

}// end get_data

// add data from char[] to queue

// assert: bytes <= bytes free

void add_data(const char *data, struct in_buff_struct *queue, int
bytes )

{

)

int debug_on = 0;
dbugd( debug_on, "buff io:add data adding nbytes = ", bytes

ensure (bytes <= bytes_free(queue) );
for (int idx = 0; idx < bytes; idx++ )
{

// add char at write_idx
queue->in buff[ queue->write idx ] = data[idx};

// incremetn write_idx unless it would be too big
queue~>write idx = (queue->write_idx + 1)3%INBUFFSIZE;

}// end for loop
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if (debug_on) print_buff queue( queue );
} // end add_data

int add_data_part(const char *data, struct in buff struct *queue,
int bytes )
{

int free = bytes_ free(queue);

int nwritten = (bytes > free) ? free : bytes;

add_data(data, queue, nwritten ):;
return nwritten;
}// end add data part

int empty(struct in buff struct * gueue )

{
// true if empty
return (queue->read idx == queue->write idx );

}
// return number of free bytes in queue
int bytes_free(struct in_buff struct * queue )

{

int result = 0;
if (queue->write_idx < queue->read_idx )

result = queue->read_idx - queue->write idx;
"} else {
result = queue->read_idx - queue->write idx + INBUFFSIZE;

}

return result;

} // end bytes free

// remove and return one char from queue

char remove_char(struct in buff struct * gqueue )

{
char result = queue->in buff[ queue->read idx ];
queue->read_idx = (queue->read_idx + 1)3%INBUFFSIZE;
return result;

}// end remove_char

// peek at next char in queue

char peek char(struct in_buff struct *queue )

{

return(queue—>in_buff[queue—>read_idx]);
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}// end peek_char

// return true if delim found within nbytes of head of queue
int delim exists(struct in buff struct *queue, char delim, int
nbytes )

{

int limit = nbytes <= num_char (queue) ? nbytes
num_char (queue) ;

int result = false;

int curr_idx = queue->read idx;

while(limit-~ && !result )
{ .

if (queue->in buff[ curr_idx ] == delim )

{
result = true;

} else {
curr_idx = (curr_idx + 1)%INBUFFSIZE;

}//end if
} //end while

return result;

// return current size of queue
int num_char(struct in buff_ struct *queue)

{
return (INBUFFSIZE - bytes free(queue) );

}// end num_char

// return char * to all reamaining data in queue
// queuve will be empty afterwards
char *empty buff(struct in_buff struct *queue)

{

char *result = malloc(num char(queue) + 1 );
char *curr_ptr = result;

while (num_char (queue ) )

{

*curr ptr = remove_char (queue);
curr ptr++;

}

// fdd null char to terminate string.
*curr_ptr = 0;

return result;

}// end empty buff
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221 int buff io_read(struct in buff struct *queue, char *buff, int

nbytes)
222 { :
223 int result = 0;
224
225 for(int idx = 0; idx < nbytes && num_char (queue); idx++ )
226 {
227 bufflidx] = remove_char (queue);
228 result++;
229 }
230 return result;
231 }// end buff io_read()
232
233

234 // return string containing char upto, but not
235 // including delim, NULL if delim is not in the buffer.
236 char * get_token(int fd, struct in buff struct *queue,

237 const char delim, int nbytes )

238 {

239 int debug on = 0;

240

241 int ok = 0;

242

243 dbug (debug_on, "buff_ io:get token - entering");

244 char *result = malloc(nbytes);

245 char *curr ptr = result;

246 ‘

247 // if the queue is empty there is no data to read.

248 int done = empty(queue);

249 int read_result = 0;

250 dbug (debug_on, "buff io:get token:calling
poll_ok_to_read_block()" )

251

252 ok = poll ok_to_read block(fd, 0 );

253 dbug (debug_on, "biff io:get_ token: pell ok... returned");

254 dbugd (debug_on, "buff io:get_token: ok = ", ok );

255 if(ok == 1)

256 {

257 dbug (debug_on, "buff_io:get_token: calling get_data()");

258 // read data avail from stream fd.

259 read_result = get_data(fd, queue);

260 if (debug_on ) print_buff queue(queue );

261 }

262 if(delim_exists(queue, delim, nbytes ) )

263 {

264 dbug (debug_on, "buff_ io:get_token: delim exists finding
token " );

265 for(int idx = 0; idx < nbytes && !done; idx++ )

266 {

267 if ((*curr_ptr = remove_char(queue) ) == delim )

268 {

269 dbugd (debug_on, "buff_ io:get_token: *curr ptr = ",
*curr ptr );

270 *curr_ptr = '\0';

271 done = true;

272 } else {

273 curr_ptr++;
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if (read_result < 0 && empty(queue) ) done = true;
}//end if
}// end for
dbug (debug_on, result );

} else {
// the delim is not yet(?) in the queue.
free (result );
result = NULL;

}// end if
dbug (debug on, "buff io:get_tcken - leaving");
return result;

}// end get_token

// legacy call to get_data() should be removed.
int get_all avail (int fd, struct in_buff struct *queue )
{
return get_data(fd, queue );
}// end get_all avail

// return -1 if error indicates the socket is closed.
// return 0 if data not available or 1 if ok to read.
// if calling blocking then milliseconds indicates how
// long the call will wait for a status change of the fd.
int poll ok to_read(int fd )
{
return(poll_ ok to_read block(fd, 0 ) );
}// end poll ok to_read

int poll ok to_read block(int £fd, int milliseconds )
{ .
int debug on = 0;

int result = 0;

fd_set ibits, obits, xbits;
FD_ZERO(&ibits); FD_ZERO(&obits); FD_ZERO(&xbits);

static struct timeval timeout;
timeout.tv_sec = milliseconds/1000;
timeout.tv_usec = 0;

FD_SET( fd, &ibits ):;
FD_SET( fd, &xbits );

select( 16, &ibits, &obits, &xbits, &timeout );
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331 if( FD ISSET( fd, &xbits ) ) result = -1;

332 else if( FD_ISSET(fd, &ibits ) ) result = 1;
333

334 return result;

335

336 }// end poll ok to read

337

338 // return -1 if error indicates socket is closed.
339 // return 1 if ok to write with out blocking,

340 // 0 otherwise.

341 int poll ok to_write({int fd )

342 {

343 int debug on = 0;

344 int result = 0, sigs = 0;

345

346 /* dbug (debug_on, "buff io:poll ok to write:entered");
347 if(ioctl(fd, I_GETSIG, &sigs ) < -1 )

348 { .

349 result = -1;

350 } else {

351 dbugd(debug_on, "buff_ io:poll..write: sigs = ", sigs );
352 result = sigs & S_OUTPUT;

353 }// end if

354 */

355

356 // return result;

357 return 1;

358

359 }// end poll ok to write

360
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// File: cdb.c

// Author: Scott D. Heller & Susan Bryer-Joyner

// Date: 28 January 1999

// Purpose: Provide interface for manipulating the Connection
Database (CDB)

#include <stdio.h>
#include <stdlib.h>
#include <math.h> // for itostr() which should be moved to util.c

#include "cdb.h"

// variable used by all cdb functions.
static struct cdb_record CDB_PTR[MAX CLIENT];
static int NUM_RECORDS = 0;

// public functions

// creates a copy of the connection database in RAM
// Return: the number of records, -1 on error

int init_cdb()

{

int debug_on = 0;
FILE *db_file;

char* db _name = "/usr2/sdheller/wip/cdb_file.txt";
char record_str[MAX RECORD_LEN];

char *fieldl;

char *field2;

int num loaded = 0;

// assigns file descriptor to open file
// if open fails, exits with -1
if ((db_file = fopen(db_name, "r")) == NULL)
{
perror ("cdb.c fopen”);
printf ("Problem opening connection database: %s\n",
db_name) ;
exit (-1);
}//end if

// initializes the array with values from the
// connection database file
while ( num_loaded < MAX CLIENT && fgets( record_str,
MAX RECORD_LEN, db_file ) )
{
dbug ( debug_on, "reading a record");
dbug( debug _on, recoxrd str ):

fieldl = strtok( record_str, "," };
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dbug( debug_on, "fieldl" );
dbug( debug on, fieldl );

field2 = strtok( NULL, "\n" );
dbug( debug on, "field2" );
dbug( debug on, field2 );

if( !sscanf( fieldl, "3%d", &(CDB_PTR[num_loaded}.hw_id) V)
{
printf("sscanf failed to convert hw_id from data
file\n");
exit (-1);
}
dbugd( debug_on, "sscanf( fieldl )",
CDB_PTR[num_loaded].hw_id ) ;

if( !sscanf( field2, "%d", &(CDB_PTR[num_loaded].public_key)
))
{
printf ("sscanf failed to convert public_key from data
file\n");
exit (-1);
}
dbugd( debug_on, "sscanf( field2 )",
CDB_PTR[num_loaded] .public_key );

CDB_PTR[num_loaded].capid = 0;

dbugd (debug_on, "hw_id", CDB_PTR[num_loaded] .hw_id );
dbugd (debug_on, "pk", (int)CDB_PTR[num_loaded].public key );

num_loaded++;
dbugd(debug_on, "num_loaded: " , num_loaded );
}//end while

//close the connection database file
fclose( db_file );

NUM_RECORDS = num_ loaded;
return num loaded;

} // end init_cdb

// update the CDB record containing hw_id with new_CAP
// num_records must contain the number of records in the CDB
// Otherwise it is possible to read from memory not assigned.
// Return: true if record found, false if record not found.
int update CDB( int hw_id, int new CAP )
{

int debug_on = 0;

int result = false;

struct cdb_record * curr_ptr = CDB_PTR;
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// find the hw_id in the database.
for (int idx = 0; idx < NUM_RECORDS && hw_id != curr ptr->hw_id;
idx++)
{
curr_ptr++;
}
// found the hw id in the database.
dbugd (debug on, "update CDB: hw_id found in record:", idx);
if ( idx < NUM_RECORDS )
{
result = true;
curr_ptr->capid = new_CAP;
}
if (debug_on) print_cdb_record( curr ptr );
return result;

}// end update_CDB

// prints one CDB record in RAM.
void print_cdb_record(struct cdb_record * this_record )
{
printf("cdb_record: hw_id %d; public_key %d; capid %d.\n",
this record->hw_id, this_record->public_key,
this_record->capid );

// print the contents of the CDB in RAM from cdb_ptr for
num_records.
void print_cdb()
{
for(int idx = 0; idx < NUM_RECORDS; idx++)
{

}
}// end print_cdb

print_cdb record( &CDB_PTR[idx] );

// return -1 if hw_id is not found in CDB.
// else return the associated CAPID
int get CAPID( int hw_id )
{
int debug_on = 0;

int result = -1;

dbug (debug_on, "entered get CAPID");

// find the idx of the record with hw_id.

for( int idx = 0; idx < NUM RECORDS && hw_id !=
CDB_PTR[idx].hw_id; idx++ );

// if hw_id was in CDB return the associated capid.
if( idx < NUM_RECORDS )
{

result = CDB_PTR[idx].capid;
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}

dbugd (debug_on, "leaving get CAPID: capid = ", result );

return result;

} // end get_CAPID

142

14




WO JoU s WIN =

// File: io_util.c

// Buthor: Scott D. Heller & Susan Bryer-Joyner

// Date: 1 Feb 1999

// Purpose: IO routines that do not require any trusted includes.

#include "io_util.h"
// function required by Writen( int, const void *, size t )

// Write "n" bytes to a descriptor.

// Author: R. Stevens

size_t writen(int fd, const void *vptr, size_t n)
{

int debug on = 0;

size_t nleft = n;
size t nwritten = 0;
const char *ptr = vptr;

while (nleft > 0) {
dbugd (debug_on, "io util:writen:attempting write, nleft =",
nleft); '
do {
$ifdef USE_P_SOCKET
nwritten = my write(fd, ptr, nleft);
#else // use normal tcp/ip sockets
nwritten = write(fd, ptr, nleft);
#endif // USE_P_SOCKET
} while (errno == EINTR && (int)nwritten < 0 );

if( nwritten > 0 )
{

nleft -= nwritten;
ptr += nwritten;

}

else

{
n = nwritten;
break;

}//end if

}// end while()
return(n);

/* end writen */

// function Writen( fd, void *, size_t )

// writes n bytes to a descriptor from the buffer ptr
// return -1 on error by write().

// Author: R. Stevens

int Writen(int fd, void *ptr, size_t nbytes)

{

int result = -1;
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if ((result = writen(fd, ptr, nbytes))

{
//err_sys("writen error");
printf ("Error: writen error\n");
}//end if

if (result >= 0)
{

result = 0;
}//end if

return result;

}// end Writen()

// print a char buffer 1 char at a time
void print_buff( char *buff )

char *curr char = buff;

!'= nbytes)

while( *curr_char ) printf( "%c", *curr char++ );

printf ("\n");

}// end print_buff ()
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// File : listeng.c

// RAuthor: Scott Heller

// Date: 20 February 1999

// Purpose: Provide a queue of information required to establish a
// shared memory connection between two processes.

#include "listeng.h”

// Initialize buffer index variables and create
// 1lg semaphore so that accept can block.
void 1g init(struct listen q struct * this )

{

int debug _on = 0;

this->write idx = 0;
this->read idx = 0;

// create semaphore for this listen queue. This will need to

be changed
// if more than one listen queue per level is to be used.
this->listen_g_sem key = calc_key( LISTEN_Q SEM KEY );
this- >llsten_q_sem = sem create( this->listen g _sem key, O,

1);

dbugd( debug_on, "lg init: this->listen_g sem = ", this-
>listen_g_sem );

if (debug_on) 1lqg print(this);

}// end 1lqg_init()

// must call before exit()
void 1lg remove(struct listen g struct * this )

{
sem _rm( this->listen_q sem };

}// end remove_listen_gq

// Purpose: debugging feed back. prints all data in the
// listen_q_struct *this is decimal and char format.
void lg__ print (struct listen . g_struct * this )

{
int idx = this->read_idx;

printf("listen queue: size = %d: contents:"
1g num_items(this) );

while (idx != this->write idx )

{
printf (" (%d) ", this->in_buff[idx]);
idx = (idx + 1)3%MAX SHM CONNECTIONS;
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printf ("\n");
}// end lq print()

// add data from char[] to queue
// Return: 1 if added, 0 if queue full and item not added
int lg add_item(int data, struct listen_g_struct *queue )

{
int debug on = 0;
#ifdef DEMO
debug on = 1;
#endif // DEMO
int result = 0;
dbugd( debug_on, "lg add item: adding data => ", data );
if(lq_num_free(queue) > 1 )
{
int sem_id = 0;
// add relay_struct at write idx
queue->in buff] queue->write idx ] = data;

// incremetn write_idx unless it would be too big
queue->write idx = (queue->write idx +

1) $MAX SHM CONNECTIONS;
result = 1;
sem_id = sem_open( queue->listen_q sem_key );
sem op( sem_id, O, 1 ); // incremnt sem - signal
sem_close( sem_id );

}// end if
return result;
} // end add_item

// return: true if empty false otherwise
int lg_empty(struct listen_g struct * queue )
{
// true if empty
return (queue->read_idx == queue->write idx );

}

// return number of free bytes in queue
int 1q_num free(struct listen_g struct * queue )

{

int result = 0;
if (queue->write_idx < queue->read idx )
{

result = queue->read idx - queue->write idx;
} else {
result = queue->read_idx - queue->write idx +
MAX SHM CONNECTIONS;
}

return result;
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} // end num_free

// remove and return one struct relay struct from queue
// will block until data is availible.
int lg remove item(struct listen_g struct * queue )
{
int debug on = 0;
int result = 0, sem_id = 0;
dbugd (debug_on, "entered lg_remove item:sem key = ",
queue->listen g sem key );
$ifdef DEMO
printf ("Blocking on listen queue\n");
#endif // DEMO

sem id = sem open( queue->listen_g_sem key );
dbugd( debug_on, "lg remove item: sem open: sem_id =",
sem_id );
dbugd( debug on, "lq remove_ item: queue->listen g sem = ",
queue->listen_q sem );

sem_op( sem id,0, -1 );
dbug( debug on, "lg remove item:stopped blocking”" );

sem_close(sem_id);

dbug (debug_on, "lg remove_item:closed sem_id");
if(debug_on) 1lg_print (queue);

dbug (debug_on, "lg remove_item taking item off queue");
result = queue->in buff[ queue->read idx ];

queue->read_idx = (queue->read_idx + 1)%MAX SHM CONNECTIONS;
return result;

}// end remove_item

// peek at next struct relay struct in queue
int lg_peek_item(struct listen_g_struct *queue )

{

return(queué—>in_buff[queue—>read_idx]);

}// end peek item

// return current size of queue
int lg num_items(struct listen_g struct *queue)

{
return(MAX SHM CONNECTIONS - lq num_free (queue) );

}// end num_items

/*
* Provide an simpler and easier to understand interface to the
System V
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* semaphore system calls. There are 7 routines available to the
user:

* %

* We create and use a n-member set for the requested semaphore.

* The first member, [0], of the semaphore set is used as a lock
variable

* to avoid any race conditions in the sem create() and
sem close()

* functions.

* The second member, [l], is a counter used to know when all
processes

* have finished with the semaphore. The counter is initialized
to a large :

* number, decremented on every create or open and incremented on
every close.

* This way we can use the "adjust" feature provided by System V
so that

* any process that exit's without calling sem close() is
accounted

* for. It doesn't help us if the last process does this (as we
have

* no way of getting control to remove the semaphore) but it will

* work if any process other than the last does an exit
(intentional

* or unintentional).

*/

// Scott's comments: In the original the first sem was the actual
semaphore.

// Now the 3rd though num_sems + 2 are the actual semaphores.
This should be

// transparent to the caller, who should assume the indices of
the actual sems

// run from O to n - 1. Much work is also done in the next 20
lines to allow

// the same code to be used in ring 2 or ring 3. Before
attempting to trace

// this code make sure you understand the following defines
sections. The

// sem_open command for ring 2 is only designed to work with the
TPS. This

// 1s not portable code since the key is parsed to determine the
(sl,il)

// of the semaphore segment according to the following formula:
// key = base + sl * 10 + il; Since we are operating only from
s1l0 - sl2

// and always at 113. The sl is calculated as (key/10)%10, and
il

// is calculated as key%10. See k get_sl and k_get il below.
// There is an issue using the SEM UNDO flag when forking
children that I

// don't understand yet.

#include "msem.h"

#ifdef OSS_OPTION // compiling ring 2 application.
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(c) ,APPL_RING)

#define semop(a,b,c) semaphore operation((a ) =
( (b)Y, (¢}, (d),

#define semctl(a,b,c,d) semaphore control (
APPL_RING)

void perr sys( char * mssg, error_ code err );

#define err_sys(a) perr_sys((a), err)

#define ERROR_TEST err l= NO_ERROR

#define ERROR_CODE error code

static void * U_ZERO; // ring 2 needs a different
control _ds type.

felse

), (b
a),

#define sem operation struct sembuf

void err_sys( char * mssg );

extern int semget( key t, int, int );

extern int semop( int, sem operation*, int );
extern int semctl{ int, int, int, union semun arg );
#define ERROR _TEST err < 0

f#define ERROR_CODE int

static union semun U_ZERO;

#endif //0SS_OPTION

#define BIGCOUNT 10000 /* initial value of process counter */
#define  PROC_CNT 1

#define  RACE_LK ]

#define  SEM_FLG 0 // changed from SEM UNDO

#define err dump(a) ensure_m(0, (a))

static int  num_sems;
int k_get_sl{ key_ t key );
int k get_il( key t key );

/*
* Define the semaphore operation arrays for the semop() calls.
* These struct provide instructions for the various sems in @

set.

*/
static sem operation op_lock{2] = {
RACE LK, 0, 0, /* wait for [RACE_LK] {lock) to equal 0 */
RACE LK, 1, SEM FLG /* then increment [RACE LK] to 1 - this

locks it */

/* UNDO to release the lock if processes exits
before explicitly unlocking */
Y
static sem operation op_endcreate([2] = {
PROC _CNT, -1, SEM FLG,/* decrement [1l] (proc counter) with undo

on exit */
/* UNDO to adjust proc counter if process exits
before explicitly calling sem_close() */
RACE LK, -1, SEM FLG /* then decrement [RACE_LK] (lock) back to
0 */
}i
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90 static sem_operation op_open[l] = {

91 PROC_CNT, -1, SEM FLG /* decrement [1] (proc counter) with
undo on exit */

92 };

93

94 static sem_operation op_close[3] = {

95 RACE_LK, 0, 0, /* wait for [2] (lock) to equal 0 */

96 RACE_LK, 1, SEM_FLG, /* then increment [2] to 1 - this locks it
*
/

97 PROC_CNT, 1, SEM _FLG /* then increment [1] (proc counter) */
98 };

99
100 static sem operation op_unlock[l] = {

101 RACE_LK, -1, SEM FLG /* decrement [2] (lock) back to 0 */
102 };

103

104 static sem_operation op op[l] = {

105 0, 99, SEM _FLG /* decrement or increment [0] with undo on exit
*
/

106 /* the 99 is set to the actual amount to add

107 or subtract (positive or negative) */

108 };

109

110

/***********************************************************
ke ko ok ke kook kok ok ke ke ke kk ok

111 * Create a set of semaphores with a specified initial value.

112 * If the semaphore already exists, we don't initialize it (of
course) . .

113 * We return the semaphore ID if all OK, else -1.

114 */

115

116 int

117 sem_create(key, initval, num_sem)

118 key t key:;

119 int initval; /* used if we create the semaphore */

120 int num_sem;

121 {

122 int debug on = 0;

123

124 ERROR_CODE err = 0;

125

126 int id, semval;

127 union semun sem_arg;

128

129 num_sems = num_sem + 2; // for RACE_LK and PROC_CNT.

130

131 ushort *init_array = malloc( sizeof (ushort) * num sems );
132 ensure(init_array != NULL );

133 for( int idx = 0; idx < num_sems; idx++ )

134 {

135 init_arrayl[idx] = 0;

136 }

137

138 if (key == IPC_PRIVATE)

139 return(-1); /* not intended for private semaphores */
140
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else if (key == (key t) -1)
return(-1); /* probably an ftok() error by caller */
again:
$ifdef 0OSS_OPTION
* ((ushort *)U_ZERO) = 0;
access_ma maccess;
access_da daccess;
maccess.security level = k get sl (key);
maccess.integrity_level = k _get_il(key);
dbugd (debug_on, "maccess.security level = ",
maccess.security_ level);
dbugd (debug_on, "maccess.integrity level = ",
maccess.integrity level);
maccess.integrity categories = 0;
maccess.security categories[0] = 0;
maccess.security categories{l] = 1;

daccess.owner_perms
daccess.group_perms
daccess.other perms

READ MODE | WRITE_MODE;
READ MODE | WRITE_ MODE;
READ MODE | WRITE MODE;

err = get_semaphore( key, &maccess, APPL_RING, num_sems,
0666 | IPC_CREAT, daccess, &id );
if (ERROR_TEST)
{
err_sys("get_semaphore: error "); .
return(-1);

}

#else // not OSS_OPTION
U _ZERO.val = 0; // initialize U_ZERO for use by all other
calls.

if ( (id = semget(key, num_sems, 0666 | IPC CREAT)) < 0)
return(-1); /* permission problem or tables full */

#endif // 0OSS_OPTION

dbugd( debug_on, "seget returned id =", id );
sem_arg.array = init_array;
#ifdef OSS_OPTION
void * v_ptr = init_array;
err = semctl( id, num_sems, SETALL, v_ptr );
#else

err = semctl( id, num_sems, SETALL, sem_arg );
#endif // OSS_OPTION
if (ERROR_TEST)
{ .
err_sys("SETALL failed in sem_create");
}
dbugd( debug_on, "num _sems = ", num sems );
free(init array);
/* -
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1985 * When the semaphore is created, we know that the value of all
196 * SEM SET_SIZE members is 0.

197 * Get a lock on the semaphore by waiting for [2] to equal 0,
198 * then increment it.

199 *

200 * There is a race condition here. There is a possibility that
201 * between the semget() above and the semop () below, another
202 * process can call our sem close() function which can remove
203 * the semaphore if that process is the last one using it.

204 * Therefore, we handle the error condition of an invalid

205 * semaphore ID specially below, and if it does happen, we just
206 * go back and create it again.

207 */

208

209 err = semop{id, &op_lock[0], 2);

210 #ifdef OSS OPTION

211 if( err == MESSAGE RECEIVED ) goto again;
212 else if (ERROR_TEST) err_sys("can't lock");
213

214 #else // NOT 0SS OPTION

215 if (ERROR TEST) {

216 if (errno == EINVAL)

217 goto again;

218 err_sys{"can't lock");

219 }

220

221 #endif //0SS_OPTION

222

223 /*

224 * Get the value of the process counter. If it equals O,
225 * then no one has initialized the semaphore yet.
226 */

227 err = semctl(id, PROC_CNT, GETVAL, U_ZERO) ;
228 semval = err;
229 if (ERROR_TEST)

230 err_sys("can't GETVAL");

231 dbugd( debug_on, "creat_sem: PROC CNT value is ", semval );
232

233 if (semval == 0) {

234 /*

235 * We could initialize by doing a SETALL, but that
236 * would clear the adjust value that we set when we
237 * locked the. semaphore above. Instead, we'll do 2
238 * system calls to initialize [0] and [1].

239 */

240

241 for(int idx = 2; idx < num_sems; idx++)

242 {

243 err = semctl(id, idx, SETVAL, U_ZERO);

244 if (ERROR_TEST)

245 err_sys("can't SETVAL");

246 }

247

248 sem_arg.val = BIGCOUNT;

249 #ifdef 0SS _OPTION

250 void * v_ptr = &(sem arg.val);

251 err = semctl(id, PROC_CNT, SETVAL, v_ptr);
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252 #else // not OSS_OPTION

253 err = semctl(id, PROC_CNT, SETVAL, sem_arg);
254 #endif //0SS_OPTION

255 if (ERROR_TEST)

256 err_sys("can SETVAL[PROC_CNT]");

257 }

258

259 /*

260 * Decrement the process counter and then release the lock.
261 */

262 err = semop(id, &op_endcreate[0], 2);

263 if (ERROR_TEST)

264 err sys("can't end create");

265

266 return(id);

267 }

268

269

/***********************************************************
deok ok okok ok ok ok ok ok ok ke ok ok kok ok

270 * Open a semaphore that must already exist.

271 * This function should be used, instead of sem create(), if the
caller

272 * knows that the semaphore must already exist. For example a
client

273 * from a client-server pair would use this, if its the server's

274 * responsibility to create the semaphore.

275 * We return the semaphore ID if all OK, else -1.

276 */
277
278 int

279 sem_open (key)

280 key t key;

281 {

282 int debug on = 0;

283 ERROR_CODE err = 0;

284

285 dbugd( debug_on, "sem open: key =", key )

286

287 int id;

288

289 if (key == IPC_PRIVATE)

290 return(-1); /* not intended for private semaphores */
291

292 else if (key == (key_ t) -1)

293 return(-1); /* probably an ftok() error by caller */
294

295 #ifdef 0SS _OPTION
296 access_ma maccess;
297 access_da daccess;
298

299 maccess.security level = k get_ sl (key);

300 maccess.integrity level = k get_ il (key);

301 dbugd(debug on, "k _get_ sl (key) ", k_get_sl(key)):
302 dbugd(debug _on, "k _get il (key) ", k_get il (key));
-303 maccess.integrity categories =
304 maccess.security categories[0]
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maccess.security categories[l] = 0;

daccess.owner_perms READ MODE | WRITE MODE;
daccess.group_perms READ_MODE | WRITE MODE;
daccess.other_perms = READ_MODE | WRITE MODE;

]

err = get_ semaphore( key, &maccess, APPL_RING, num_sems,
0, daccess, &id );
if(err != NO_ERROR )
{
print_error ("get_semaphore: error ", err );
return(-1);
}
#else // not 0SS_OPTION

if ( (id = semget (key, num_sems, 0)) < 0)
return(-1); ./* doesn't exist, or tables full */
#endif // 0SS_OPTION

/*
* Decrement the process counter. We don't need a lock
* to do this.
*/
err = semop(id, &op _open{0], 1);
if (ERROR_TEST)
err_sys("can't open");

dbugd( debug on, "sem open: returning id = ", id );

return(id);

/***********************************************************
%k J ke Kok ok ok ok ok ke ok ke ke ke ke

* Remove a semaphore.

* This call is intended to be called by a server, for example,
* when it is being shut down, as we do an IPC_RMID on the
semaphore,

* regardless whether other processes may be using it or not.

* Most other processes should use sem close() below.

*/

void sem rm(id)
int id;
{
ERROR CODE err = 0;

err = semctl(id, 0, IPC_RMID, U_ZERO);
if (ERROR_TEST)

err_sys("can't IPC_RMID");

/***********************************************************
dokodeokkodk ok ok kdkokkokkkok ok

* Close a semaphore.
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356 * Unlike the remove function above, this function is for a
process

357 * to call before it exits, when it is done with the semaphore.

358 * We "decrement” the counter of processes using the semaphore,
and

359 * if this was the last one, we can remove the semaphore.

360 */

361

362 void sem close(id)

363 int id;

364 {

365 int debug on = 0;

366 ERROR CODE err = 0;

367 dbugd( debug on, "sem close: id =", id );

368 ensure( id >= 0 );

369 register int semval;

370

371 /*

372 * The following semop() first gets a lock on the semaphore,
373 * then increments [1l] - the process counter.

374 */

375 err = semop(id, &op_close[0], 3):;

376 if (ERROR_TEST)

377 err _sys("can't semop");

378

379 /*

380 * Now that we have a lock, read the value of the process
381 * counter to see if this is the last reference to the
382 * semaphore.

383 * There is a race condition here -~ see the comments in
384 * sem create(). ‘

385 */

386 err = semctl(id, PROC_CNT, GETVAL, U_ZERO);
387 if (ERROR_TEST)

388 err_syE("can't GETVAL") ;

389 semval = err;

390

391 if (semval > BIGCOUNT)

392 err dump("sem[1] > BIGCOUNT");

393 else if (semval == BIGCOUNT)

394 sem_rm(id);

395 else

396 {

397 err = semop(id, &op unlock[0], 1);
398 if (ERROR_TEST)

399 err_sys("can't unlock"); /* unlock */
400 }

401 }

402

403

/***********************************************************
Fok Kk ke ok ok ok k% Kk ko ke ok ke ke ok
404 * Wait until a semaphore's value is greater than 0, then
decrement
405 * it by 1 and return.
406 * Dijkstra's P operation. Tanenbaum's DOWN operation.
407 */
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408

409 void sem_wait (id, idx)
410 int id;

411 int idx;

412 {

413 sem op(id, idx, -1);
414 '}

415

416

/***********************************************************
*hkhkhkhkhhkhhkddhkdkhht

417 * Increment a semaphore by 1.
418 * Dijkstra's V operation. Tanenbaum's UP operation.
419 */

420

421 void sem_signal (id, idx)

422 int id;

423 int idx;

424 {

425 sem op(id, idx, 1);

426 }

427

428

/***********************************************************
*hhkhkhkkhkhkhhkhkhkkhkk

429 * General semaphore operation. Increment or decrement by a user-
specified

430 * amount (positive or negative; amount can't be zero).

431 */

432

433 void sem op(id, idx, wvalue)

434 int id;

435 int idx:;

436 int value;

437 {

438 int debug _on = 0;
439

440 ERROR_CODE err = 0O;

441 dbugd( debug_on, "entered sem op id = ", id );
442 dbugd( debug_on, "entered sem op idx = ", idx );

443 dbugd( debug_on, "entered sem_op value = ", value );

444 dbugd( debug_on, "entered sem op num_sems = ", num sems );

445

446 if ( (op_op[0].sem op = value) == 0)

447 err sys("can't have value == 0");

448

449 op_op[0].sem num = idx + 2; // to compenstate for having two

extra sems in 0 and 1
450 err = semop(id, &op_opl[0], 1);
451 if (ERROR_TEST)
452 err_sys("sem_op error");
453 }
454
455
456 // Private utility functions.
457 )
458 #ifdef OSS_OPTION
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459

460 void perr sys( char * mssg, ERROR _CODE err )
461 {

462 print_error (mssg, err);
463 exit(-1);

464 }

465

466 #else not OSS_OPTION

467

468 void err sys( char * mssg )
469 {

470 perror (mssqg) ;

471 exit (~-1);

472 }// end err_sys

473

474 #endif // OSS_OPTION

475

476 int k get sl ( key_t key )
477 |

478 return( (key/10) % 10 );
479 }

480

481 int k get il( key_t key )
482 {

483 return( key%10 );

484 }

485

486
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// File: priv_util.c

// Author: Scott Heller

// Date: 27 Feb 99 .

// Purpose: One stop shopping for gaining the privileges needed to
// execute as a Secure Session Server. App needs to first be
installed

// with privileges using "tp_edit" with administrator access.

#include "priv_util.h"
void set priv( ushort priv )
{

int debug_on = 0;

#ifdef OSS_OPTION

dbugd( debug_on, "set priv: setting privileges = ", priv );
(void)set privilege( priv );
dbug( debug_on, "set priv: set privileges = ");
#else
dbug ( debug_on, "set priv: ring 3 - doing nothing");
#endif // OSS_OPTION

}// end set_priv()
ushort enable_priv(void)
{
int debug_on = 0;
ushort old priv = 0, new priv = 0;

dbug( debug_on, "enable_priv: entered");
#ifdef 0SS OPTION

process_status proc_stat;

if( get_process_status(0, &proc_stat) == NO_ERROR)
{

if (proc_stat.max_privilege.privilege.simple security_ exempt &&
proc_stat.max privilege.privilege.simple integrity exempt &&
proc_stat.max_privilege.privilege.security star_property_exempt &&

proc_stat.max_privilege.privilege.integrity star property exempt )

{
new_priv |= SIMPLE SECURITY_ EXEMPT;
new_priv |= SIMPLE INTEGRITY EXEMPT;
new_priv |= SECURITY_ STAR PROPERTY EXEMPT;
new_priv |= INTEGRITY_ STAR PROPERTY_ EXEMPT;
} else {
dbug( debug_on, "enable priv: SET PROPER PRIVS USING
TP_EDIT");
}// end if
}// end if
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95

96
97
98
99
100
101
102

old priv = add_privilege( new _priv );
#else // not a ring 2 application

dbug( debug on, "enable priv: not in ring 2: doing
nothing™);

$endif // 0SS_OPTION

return old priv;
}// end enable priv()

// return -1 on error, 0 on success.
int get_current level( struct level_struct * result )
{

int debug on = 0;

int error = false, status = 0;

#ifdef 0SS _OPTION
access curr_a;

dbug( debug on, "enable priv: not in ring 2: doing
nothing");
// need <access.h>, and <tcb_gates.h>
if( get_process_access( 0, &curr_a ) == NO_ERROR )
{
result->sl = curr_a.ma.security level;
dbugd{ debug on, "get_current level: sl ", result->sl

result->il = curr_a.ma.integrity_ level;

dbugd( debug on, "get_current_le;el: il = ", result->il
)i
} else {
error = true;
}// end if

#else // This is a ring 3 application.
// need <level.h> and -lcass
access_ma curr_ma;

if( getlevel( NULL, &curr _ma ) )
{ .
error = true;
} else {
// getlevel succeeded.
result->sl = curr ma.security_level;
result->il = curr_ma.integrity level;

dbugd( debug_on, "get_ current_level: sl = ", result->sl
)
dbugd( debug on, "get current level: il = ", result->il
)y
}// end if

#endif // OSS_OPTION
if(error) {

result->sl

result->il

._1;
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status = -1;
}

return status;

}// end get_current_level()

key_t calc_key( int base )

{

int debug on = 0;
key t key = -1;

struct levei_struct 1lvl;

// get the current level for the key calculation
if( get_current level( &lvl ) )
{

dbug (debug_on, "calc_key: error occured");

-} else {

// calculate the key.
key = 1vl.sl * 10 + 1lvl.il + base;

}// end if
dbugd( debug_on, "calc_key: key = ", key );

return key;

}// end calc_key()
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/7
//
//
//
!/

File: shm.c

Author: Scott Heller

Date: 17 Feb 99

Purpose: Create and manipulate a shared memory segment
between ring 2 and 3.

#include "shm.h"

/7
//
//
//
/7
//
/7

create and attach to a shared memory segment
make this segment availible to the protocol server
PRE: addr == NULL;

Return: shared memory ID. addr = <first address of shared mem>

size of the shm seg is sizeof(struct in_buff struct);

NOTE: Do not loose the addr. Needed for removal of shm segment.

Todo: May have to set the shm perm.mode for ug+rw

int get_shm(key t key, void ** addr, size_t size )

{

int debug_on = 0;
int result = 0;
//ensure (addr == NULL );

dbug (debug on, "shm:get shm: entered" );
dbugd( debug_on, "shm:get_shm: with key = ", key );

result = shmget( key, size, SHM PERM | IPC_CREAT );

dbugd (debug_on, "shmget called shmid = ", result );
if( result !'= -1 && debug on )
{

struct shmid ds shm_ds;

if( !shmctl( result, IPC_STAT, &shm ds ))

{

printf("shm ds: mode %d, size %d, creator %d\n",

shm_ds.shm perm.mode, shm_ds.shm_segsz,
shm_ds.shm_cpid );

} else {
perror ("shmctl failed to get IPC_STAT");
} //end if
}// end if
if(result != -1 )

{ .
// shmget successful now attach the shm segment.
*addr = shmat (result, (void *)0, 0 };
dbugd( debug_on, "shmat:addr = ", (int)addr);
if{addr == (void *) -1 )
{

// shmat failed

perror ("shm: shmat failed");

result = -1;

// shmctl rtns 0 if successful -1 on error
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if (shmctl (result, IPC_RMID, (struct shmid ds *)0 ) )
{
perror("shm:shmctl IPC_RMID failed");
}
}// end if

}// end if

dbugd( debug_on, "get_shm exiting shmid = ", result );
return result;

}// end get shm

// return a pointer to a shm segment from a shmid.
void *attach shm( int shmid )
{

int debug on = 0;

dbugd( debug on, "attach shm: entered with shmid = ", shmid
);
void * addr = shmat( shmid, (char *)0, 0 );

return addr;
}// end attach_shm

// detach and remove shared memory segment from the system
// this must be done every time prior to exit being called
void remove_shm(int shm_id, void * addr )
{

int debug_on = 0;

dbug (debug_on, "shm:remove_shm:entered" );

// detach shared mem segment
if (shmdt (addr) )
{
perror ("shm:remove_shm:shmdt failed");
}

// dispose of shared mem segment
if (shmctl (shm_id, IPC_RMID, (struct shmid ds *)0 ) )
{

}

perror ("shm:shmctl IPC_RMID failed");

}// end remove shm
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// File: shm_struct.c

// BAuthor: Scott Heller

// Date: 22 Feb 1999

// Purpose: Provide interface for connection shm. One shm segment
// per level.

#include "shm_struct.h”

// This is only called from ring 3 during protocol server's
// call to socket(). If used by ring 2 app will cause undesired
side affects.
int init_shm hdr( struct shm hdr ** shm_ptr )
{
int debug_on = 0;

key t level key;

key_t level sem key;

int result = 1, shm_id = 0;

dbug ( debug_on, "Entered init_shm hdr" );

// get_sl * 10 + get_il + SHM STRUCT_BASE_KEY
level_key calc_key( SHM . STRUCT BASE KEY )

shm_id = get_shm(level_key, (void *)shm_ptr, sizeof(struct
shm_hdr});

if(shm_id == -1)
{
perror ("init shm hdr:get_shm returned error");
result = -1;
} else {
dbugd( debug_on, "About to assign shm ptr->shm_hdr_shmid
=", shm id };

// shm_id is valid.

(*shm ptr) ->shm_hdr_shmid = shm_ id;

level sem _key = EVEL SEM_KEY BASE,
level_sem_key = calc_key | Tlevel sem key );

// create semaphores for connections
(*shm_ptr)->conn_semid =
sem_create(level_sem_key,O,MAX_OPEN_CONN ):

if( (*shm_ptr)->conn_semid == -1)
{
perrox ("init_shm hdr:failed to create conn
semaphores™) ;
ss_cleanup (*shm _ptr);
result = -1;

}

// initialize the listen queue
lg init( &((*shm_ptr)->lq) );

// set all connections available and initialize buffers.
for(int idx = 0; idx < MAX OPEN_CONN ; idx++ )
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(*shm_ptr)—>conn[idx].in_use = 0;

init _buffer( &{ (*shm_ptr)—>conn[idx].to_svr_buff Y )

init buffer( &( (*shm_ptr)—>conn[idx].to_cli_buff ) )
} .

if (debug_on) printf("init shm hdr:shm ptr address is: %x\n",
(int)shm_ptr );
if(debug_on) printf("init_shm hdr:shm ptr points to addr:
$x\n",
(int)*shm ptr );
dbugd( debug_on, "init_shm hdr: exiting result = ", result
);

return result;
}// end init shm_hdr()

// currently never called. Not a big issue since, for demo
purposes

// only up to 3 shm segments are ever created and the same ones
// are always reused.

void ss_cleanup( struct shm_hdr * shm _ptr )

{
int debug _on = 1; :
dbug (debug on, "EXECUTING ss_cleanup");

remove_shm( shm_ptr->shm_hdr_shmid, (void *)shm ptr );
sem_rm( shm ptr->conn semid );

}// end ss_cleanup()

int ss_read(int fd, struct shm hdr * shmhdr, char *buff, int
nbytes )

{
int debug on = 0;

int n = 0;
dbugd( debug_on, "ss read: fd = ", fd );

if (debug_on) print_buff queue( &(shmhdr-
>conn[fd] .to_svr buff));

// if in_use read, other wise return error.
if( shmhdr->conn[fd].in_use )
_ n = buff io_read(&(shmhdr->conn{fd].to_svr buff), buff,

nbytes) ;

else

n=-1;

return n;

}// end ss_read

int ss_write(int fd, struct shm_hdr *shmhdr, const char *data, int
nbytes )
{
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102 int n = 0;

103 if( shmhdr->conn[fd].in_use )

104 n = add_data_part( data, &(shmhdr->conn[fd].to_cli_buff),
nbytes);

105 else

106 n = -1;

107

108 return n;

109

110 }// end ss_write()

111

112 int ss_read_fm_svr(int fd, struct shm_hdr *shmhdr, char *buff, int
nbytes)

113 {

114 return(buff_io_read(&(shmhdr->conn[fd].to_cli_buff), buff,
nbytes));

115 }// end ss_read fm_svr

116

117

118 int ss write to_svr(int fd, struct shm_hdr *shmhdr, const char
*data, int nbytes)

119 {

120 int n = 0;

121 n = add_data_part( data, & (shmhdr->conn[fd] .to_svr_buff),
nbytes);

122 return n;

123 }// end ss_write_to_svr()

124

125 void ss_close( int fd, struct shm_hdr *shmhdr )

126 {

127 int debug_on = 0;

128 #ifdef DEMO

129 debug on = 1;

130 #endif //DEMO

131

132 dbugd( debug on, "ss_close: closing idx =", fd );

133

134 _shmhdr->conn[fd] .in_use = 0;

135

136 }// end ss_close()

137

138 int ss_data_avail( int idx, struct shm_hdr *shmhdr )
139 { :

140 int debug_on = 0;

141 int n = 0;

142

143 dbugd( debug on, "ss_data_avail: entered idx = ", idx );

144 ensure{ idx >= 0 && idx < MAX OPEN_CONN );

145

146 if (debug on ) print_buff queue( &(shmhdr-
>conn[idx].to_svr_buff ));

147

148 n = num_char( & (shmhdr->conn{idx].to_svr_buff )};

149 dbugd( debug on, "ss_data avail: I think there are n bytes
=> ", n); '

150

151 return ( n );
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152

153 }// end ss_data_avail()

154

155

156 int ss_space avail( int idx, struct shm_hdr *shmhdr )
157 {

158 int debug on = 0;

159 ensure( idx >= 0 && idx < MAX OPEN CONN );

160

161 return( bytes free( &(shmhdr—>conn[idx].to_cli_buff) V)
162

163 }// end ss_space_avail()

164

165 int ss_socket_error( int idx, struct shm_hdr *shmhdr )
166 {

167 int debug on = 0;

168 ensure( idx >= 0 && idx < MAX OPEN_CONN );

169 dbugd( debug_on, "ss_socket_error: entered for connection ",
idx );

170 int result = shmhdr->conn[idx].in use;

171 result = (result == )2 0 ¢ 1;

172 dbugd( debug_on, "ss_socket error: returning ", result );

173

174 return( result );

175

176 }// end ss_socket_error()

177

178

179 int ss_block on_lg( struct shm_hdr *shmhdr )

180 {

181 int debug on = 0;

182 dbug( debug_on, "ss_block _on lg: entered" );

183 int new_socket = lg remove item( & (shmhdr->1q) );

184

185 return new_socket;

186 }// end ss_block on lg

187

188 void ss_copy_cli_buff( struct shm_hdr *shmhdr, int idx,

189 struct in_buff struct *from )

190 {

191 '

192 - {(void) memcpy( (void *)&(shmhdr—>conn[idx}.to_cli_buff) ,

193 (void *)from, sizeof(struct in_buff struct) );

194

195 }// end ss_copy_cli_buff

196

197

198 int ss_request_connection( struct shm_hdr *shmhdr )
199 {

200 int debug _on = 0;

201 dbug (debug_on, "ss_request_connection entered");
202 .

203 int idx = 0, new_conn = -1;

204

205 while( idx < MAX OPEN_CONN )

206 {

207 dbug( debug_on, "checking shmhdr->conn[idx].in use” );
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if (shmhdr->conn[idx].in_use)
{
dbugd ( debug_on, "connection busy: ", idx );
idx++;
} else
break;
}// end while R
dbugd( debug on, "ss_request_conn: while loop finishted idx
=", idx );
if( idx < MAX OPEN_CONN )
{
new _conn = idx;
init buffer( &(shmhdr->conn[new_conn].to_svr_buff) );
init_buffer( & (shmhdr->conn[new _conn] .to_cli_buff) );

if( ! lg_add_item( new_conn, &(5hmhdr->lq) ) ) new_conn =
._1;
} else {
new conn = -1;

dbug ( debug on, "No connections avail, try again later");

}

dbugd( debug_on, "ss_request_connection returning => ",
new_conn );

shmhdr->conn[new _conn].in_use = 1;

return new_conn;

}// end ss_request_connection

int ss_xfer skt _buff( struct shm _hdr *shmhdr, int pskfd, int
sockfd )}

{
int debug_on = 0;
int n = 0; // number of bytes transfered.

dbugd( debug on, "ss_xfer_skt_buff: to conn => ", pskfd);
// enter cs
n = get_data( sockfd, &(shmhdr->conn{pskfd].to_svr buff ));
// exit cs
dbugd ( debug_on, "ss_xfer skt _buff: get_data reports nbytes
added™,
n)j;

return n;
}// end ss_xfer_skt_buff

int ss_xfer buff skt( struct shm_hdr *shmhdr, int pskfd, int
sockfd )
{

int debug on = 0;

int n = 0; // number of bytes transfered
char t_buff[INBUFFSIZE];

//enter cs
n = ss_read fm_svr(pskfd, shmhdr, t_buff , INBUFFSIZE - 1 );
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259 dougd( debug_on, "ss_xfer buff skt: ss_read fm svr read

nbytes = ",

260 n);

261 dbug ( debug _on, t_buff );

262

263 if(n>0)

264 n = Writen( sockfd, t_buff, n );

265 else

266 dbug( debug_on, "ss_read fm svr returned error in
ss_xfer buff skt");

267

268 return n;

269

270 }// end ss_xfer buff skt()

271

272 int ss_get hdr( struct shm_hdr ** addrOf shm ._hdr,

273 struct user ia_struct *1a data )

274 {

275 int debug on = 0;

276

2717 int shmid = -

278 key t key;

279

280 if( ia_data == NULL )

281 {

282 dbug( debug_on, "ss get hdr: ia _data == NULL" );

283 key = calc_key( SHM_ STRUCT BASE . _KEY );

284 shmid = get shm(key,(V01d **)addrOf shm hdr,sizeof (struct
shm_hdr));

285 } else {

286 dbugd( debug_on, "ss_get_hdr: ia_data->sl = ", ia data-
>s1 );

287 dbugd( debug_on, "ss_get_hdr: ia_data->il = ", ia data-
>il ) ; .

288 #ifdef 0SS OPTION

289 access_ma maccess;

290 access_da daccess;

291 errox_code err = NO_ERROR;

292 _nhear void * far_addr;

293

294 dbug( debug_on, "*ss_get_hdr: far_addr declared" );

295

296

297 maccess.security_level = (utiny)ia_data->sl;

298 maccess.integrity level = (utlny)la data->il;

299 maccess.integrity categories = 0;

300 maccess.security categories[0] = 0;

301 maccess.security categories[l] = 0;

302

303 daccess.owner_perms = READ MODE | WRITE MODE; // rw

304 daccess.group perms = READ | _MODE | WRITE MODE; // rw

305 daccess.other_perms = READ_MODE | WRITE MODE; // rw

306 //daccess.acl_id[0] = O0; ~// see TFPM access (5)

307 //daccess.acl perms[0] = 0;

308 key = ia data->sl * 10 + ia data->il +
SHM_STRUCT BASE_KEY;

309
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err = get_shared memory( key, &maccess, APPL RING,
APPL_RING,

sizeof( struct shm_hdr ), 0, daccess, &shmid );
if( err != NO_ERROR )
{
dbugd( debug_on, "get_ shared memory shmid = ", shmid
)i

print_error( "ss_get_hdr:get_shared memory error", err

shmid = ~1;
perror("ss_get hdr:get_shared memory error");
}// end if

dbugd (debug_on, "ss_get_hdr: get_shared memory returned

shmid =",
shmid );

err = attach shared memory( shmid, 0, NULL, false,
&(far addr) );
if( err != NO_ERROR )

{
dbugd( debug on, "attach_shared memory shmid = ",

shmid );
print_error( "ss_get_hdr:attach_shared memory error",
err );
shmid = -1;
perror ("ss_get_hdr:get_shared memory error");
exit (-1);
}// end if

if (debug_on)
{
printf("far_addr = $8.8x \n",
far addr ):;
}
if( far_addr == 0 ) exit (-1);
*addrOf_shm hdr = (struct shm hdr *)( far_ addr);

#else // NOT USING OSS_OPTION
key = ia_data->sl * 10 '+ ia_data->il +
SHM_STRUCT_BASE_KEY;
shmid = get_shm(key, (void **)addrOf_ shm hdr, sizeof (struct
shm_hdr));
#endif //0SS_OPTION
}// end if

dbugd( debug _on, "ss_get hdr: using key = ", key );
dbugd( debug _on, "ss_get_hdr: returning shmid = ", shmid };

return (shmid) ;
}// end ss_get_hdr
void ss_detach_hdr( struct shm_hdr * shm hdr )
{ %f( shmdt ( (void *)shm_hdr ) )

169




358 perror ("ss_detach_hdr: shmdt() failed");
359 } ,

360 }// end ss_detach_hdr

361

362

363
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// File: tps.c

// BAuthor: Scott D. Heller & Susan Bryer-Joyner
// Date: 28 January 1999

// Purpose: Main{) for the Trusted Path Server

#include <errno.h>
#include <stdio.h>
#include <types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>

#include <stdlib.h>
#include <sys/byteorder.h> // for htonl and htons

#ifdef  OSS_OPTION // must set -DOSS_OPTION when
compiling TPS
// for ring 2.

#include <stop/privileges.h> // for granting privileges
// must also use tp_edit
#include <stop/tcb_gates.h> // used for fork_ process
#include <error_code.h> // for suspend event
#include <message.h> // for suspend event

#endif //0SS_OPTION

#include <fecntl.h>
#include "util.h"
#include "tps_util.h"
#include "user ia.h"
#include "cdb.h"

#include  "buff io.h"

$ifndef OSS_OPTION // if NOT OSS_OPTION set

#define fork process() fork()
extern int fork():;

$else // OSS_OPTION is set.
#define sleep(a)

suspend_event(NOﬁEVENT,(a)*ONE_SECOND,O,NULL,NULL,NULL)
$endif //0SS_OPTION
extern int fentl( int, int, int ); // to eliminate warning.

int main ( int argc, char **argv )

{

int debug_on = 1;

int listenfd = 0,
connfd = 0,
clilen = (,
testBind = 0,
cap = 0, // Controlling Active Process

sak_attempts = 0, // note signal handler needs to reset
this.

171




hw_id
flag

-1,
0;

struct in_buff struct *buffer;
struct user_ia_struct ia_data;

int cdb_size = 0;
cdb_size = init_cdb( );

dbugd (debug_on, "Start execution.TPS pid = ", getpid() );

struct sockaddr_in cliaddr, servaddr;
memset ( &servaddr, 0, sizeof(servaddr) ):;
servaddr.sin_family AF INET;
servaddr.sin_addr.s_addr htonl (INADDR ANY);
servaddr.sin_port htons (SERV_PORT) ;

listenfd = socket (AF_INET, SOCK_STREAM, 0);
ensure( listenfd > ~1 );

testBind = bind{(listenfd, (struct
sockaddr*) &servaddr, sizeof (servaddr) ) ;
ensure( testBind > -1 );

dbugd (debug_on, "Listening to port:", SERV_PORT);
listen( listenfd, 5 );

if(debug on) print cdb();

for ( ; ;)
{

clilen = sizeof( cliaddr );

// block until connection then accept

connfd = accept( listenfd, (struct sockaddr *) &cliaddr,
&clilen );

ensure (connfd > -1);

// set O_NDELAY for connfd.
flag = fentl( connfd, F_GETFL, 0 );
flag |= O_NDELAY;
if( fentl( connfd, F_SETFL, flag ) == -1 )
{
perror("fentl set flag failed");
exit(-1);

}

// create the child to handle the new connection
if( ( fork_process() ) == 0 )
{

// child process

dbugd( debug on, "TPS Child. pid = ", getpid() );

// only the parent should use listenfd
close(listenfd);
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109 | // allocate and initialize buffer for storing connfd

data.

110 dbug( debug_on, "TPS Child: calling malloc struct
in buff struct");

111 buffer = malloc( sizeof( struct in buff struct ) );

112 dbug( debug on, "TPS Child: calling
init_buffer(buffer)");

113 init_buffer( buffer );

114

115 do { // loop until we have a valid SAK mssg.

116 sak_attempts++;

117 dbug( debug_on, "TPS Child: calling select sleep”);

118

119 sleep( 1 ); // 1 second

120

121 dbug (debug_on, "tps.c: Checking SAK Message");

122 if ( (cap = check SAK(connfd, &hw_id, buffer)) > 0 )

123 { .

124 dbugd({ debug on, "TPS rcvd SAS when SSS
should've.", cap );

125 exit (0);

126 ,

127 } else if( cap == Y {

128 // cap is TPS

129 // make this child the CAP

130 dbugd( debug on, "child: cap = ", cap );

131 if( update CDB( hw_id, getpid() ) == -1)

132 {

133 dbug (debug_on, "hw_id not valid. Exiting");

134 exit (-1);

135 }

136 if (debug_on) print_cdb( );

137

138 // perform user_ IA returns true if valid.

139 ia_data = user IA(connfd, buffer);

140 if( ia_data.valid )

141 {

142 dbug (debug_on, "tps:calling socket_relay"):

143 // finally do all the work.

144 socket relay( connfd, buffer, &ia_data };

145 }

146 }

147 } while( cap == -1 && sak_attempts < MAX SAK ATTEMPTS );

148

149 dbugd(debug _on, "tps.c:hwid = ", hw_id };

150 // if the current process is the CAPID update CDB

151 // make TPS the CAPID.

152 if( ( cap = get_CAPID( hw_id )) == getpid() )

153 {

154 if( !'update CDB( hw id, 0 ) )

155 perror ("Error updating CDB during cleanup"};

156 }

157

158 // allocated above via call to malloc()

159 free( buffer );

160

161 dbugd (debug_on, "Exiting!! :", getpid() ):
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162 exit (0);

163 }//end if

164

165 close(connfd); // parent then when finished child
166 // closes connected socket
167

168 }// end for loop

169

170 return 0;

171

172 }// end main
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1 // File: tps_util.c
2 // Author: Scott D. Heller & Susan Bryer-Joyner
3 // Date: 28 January 1999
4 // Purpose: Functions used by the Trusted Path Server (tps.c)
5
6 #include "tps_util.h"
7
8
9 // Return: -1 if not valid SAK mssg else return CAPID
10 // Param: sockfd: valid socket descriptor
11 // hw_id : pointer used to return the hardware id of the
TCBE
12 // queue : buffer associated with the current connection.
13 // Purpose: Verify the SAS is legitiment. Eventually public-key
verification
14 // should occur here.
15 // Note: A valid SAK mssg, for now, is one the starts:

16 // T"send brk" and is followed by a 1-3 digit hardware ID.

17 int check SAK(int sockfd, int * hw_id, struct in_buff_struct
*queue )

18 {

19 int debug_on = 0;

20 dbug (debug_on, "tps_util:check SAK: beginning");

22 char *hwid buff ptr;

23

24 int result = -1;

25 int num read = 0;

26

27 // get hw id from SAK mssg.

28 // get_token allocates memory for and returns char *,

29 // if there was an error (ie. no data avail) NULL returned.
30 hwid buff ptr = get_token( sockfd, queue,'\n', MAXHWID );
31 if( hwid_buff ptr == NULL ) return (-1);

32

33 // if the message starts out like a SAK mssg.

34 if( strlen( hwid buff ptr ) >= MIN_SAK LEN &&

35 * (hwid buff ptr) == TELNET SEND &&

36 * (hwid_buff ptr + 1) == TELNET BRK )

37 {

38

39 if( sscanf( hwid_buff ptr + 2, "%4d", hw id ) <= 0 )

40 { .

41 printf ("check_SAK: failed to convert hwid_buff to int");
42 exit (-1);

43 }//end if

44

45 dbugd (debug_on, "check_ SAK:after sscanf hw_id = ", *hw_id );
46

47 // look up hwid in CDB

48 // get CAPID from CDB

49 result = get CAPID( *hw_id );

50 }

51

52 // memory allocated above by get_token.

53 free( hwid buff ptr );

54
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// return CAPID
return( result );

}// end check SAK

int socket_relay( int cli_fd,

struct in_buff_ struct *old_cli_ buff,
struct user_ia_struct *ia data )

int debug on = 1;

int ok = 0, svr_fd = -1;
int num_cli_read = 0, num_svr_read = 0, result = 0;
ushort original priv = 0; '

// ptr to attach shared memory to.
struct shm_hdr * shm_addr = NULL;

// get privileges as define in priv util.c
// %, %k ok k ok ok ok ok ok ok ok PRIV CODE **********?********/

original priv = enable priv();

// set shm_addr to the first addr of the shm structure.
if( ss_get_hdr( &(shm_addr), ia_data ) == -1 )

{

}

perror ("socket_relay: error calling ss_get hdr");
exit (-1);

svr_fd = ss_request_connection( shm addr );

dbugd (debug_on, "Serving pskt connection: ", svr_fd );
dbugd (debug_on," At sl: ", ia data->sl );
if( svr_fd == -1) {

failed");

}

dbug (debug_on, "socket_relay: ss_request_connection

exit (~1);

// move to_cli buff to shared memory
ss_copy_cli_buff( shm_addr, svr_fd, (void*)old cli buff );

for ( ;)

{

// if there is data to read go get it.

ok = poll ok to_read block(cli_fd, 50000);

if( ok > 0 )

{
//dbug (debug_on, "tps_util:server relay:data avail");

// data going from tcbe client to protocol svr
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111 num_cli read = ss_xfer skt buff(shm addr, svr_ fd,

cli fd );

112

113 // we had a flag indicating there was data to read

114 // if there is actually no data the socket has been

115 // closed. Time to move on.

116 if( num cli_read <= 0 ) break;

117

118 num_svr_read = ss_xfer buff skt(shm_addr, svr_fd,
cli_£d );

119 if (num_svr_read == -1 ) break;

120

121 } else if(ok < 0 ) {

122

123 if( errno == EINTR ) num _cli read = 0;

124 else {

125 dbug (debug_on, "Socket no longer
valid:socket relay"):

126 ss_close( svr_fd, shm_addr );

127 exit(-1);

128 }

129 } else {

130 .

131 num_cli_read = 0;

132 }// end if

133

134 }// end for loop

135

136 ss_close( svr_fd, shm_addr );

137

138 set priv( original priv );

139 //*T********** END PRIVILEGE CODE **%%%skkkkkkhkkkkkkk /

140 //***************************************************/

141 return result;

142

143 }// end socket_relay

144

145

146 void select_sleep( int fd, long seconds )

147 {

148 int debug_on = 0;

149 static struct timeval timeout;

150

151 fd_set ibits, obits, xbits;

152 FD ZERO(&ibits);

153 FD_ZERO(&obits);

154 FD_ZERO(&xbits);

155

156 FD_SET(fd, &ibits);

157 FD_SET(fd, &obits):;

158 FD_SET(fd, &xbits);

159

160 //timeout.tv_sec = seconds;

161 timeout.tv_sec = 5;

162 timeout.tv_usec = 5;

163

164 if( select (16, &ibits, &obits, &xbits, &timeout ) < 0 )
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165 {

166 dbug( debug_on, "tps util:select sleep:select error");
167 perror ("select_timer:select error");
168 }
169
170 }// select_ timer()
171
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// File: user ia.c .

// Buthor: Scott D. Heller & Susan Bryer-Joyner

// Date: 28 January 1999

// Purpose: Perform User Identification and Authentication.

#include "user ia.h"

// Have the user enter a user ID, password, session IL and SL
// Ensure these are proper values IAW the user access databases
// used by STOP. This is the procedure that should hook into
// the STOP login procedures.

//

// Return: user_ia_struct with user_ia struct.valid set to true if
// valid login data accepted.

// * %k Kk ok kok ok This is Still a stub [EE SR L SR EE SR EEE RS LRSS

// Currently only the valid, sl, and il fields are used.

struct user_ia struct user IA(int sockfd, struct in buff struct
*queue )

{

int debug on = 0;
const char DELIM = '\n';
struct user_ia_struct result;
char *user_id,

*user_pw,

*user_sl,

*user il;

// get info for each of the 4 data items.

// much error checking needs to be added here. Currently
// anything will be accepted. However the 3rd char of

// user_sl and user_ il must be a digit that corresponds
// to the existing level of a protocol server for

// commuication to be established.

user_id = get_token(sockfd, queue, DELIM, MAX USER_NAME );
if( user id == NULL ) result.valid = false;
dbug( debug on, user_id );

user pw = get_token(sockfd, queue, DELIM, MAX USER PWD );
if( user pw == NULL ) result.valid = false;
dbug( debug on, user pw );

user_sl = get_token(sockfd, queue, DELIM, MAX SL_LEN )
if( user_sl == NULL ) result.valid = false;
dbug( debug_on, user_sl );

user_il = get_token(sockfd, queue, DELIM, MAX IL_ LEN );
if( user_ il == NULL ) result.valid = false;
dbug( debug on, user_il );

result.valid = 1;

strepy (result.uname, (const char*)user_ id);
result.sl = atoi (&user_sl{2]);
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result.il = atoi (&user il([2]);

if( user_id != NULL ) free(user_id);
if( user pw != NULL ) free(user_pw);
if( user_sl != NULL ) free(user_sl);
if( user_il != NULL ) free(user_il);
dbug( debug_on, "tps_util:user IA:leaving");

return result;

} // end user IA
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1 // File: util.c

2 // Author: Scott D. Heller & Susan Bryer-Joyner

3 // Date: 28 January 1999

4 // Purpose: General utility functions possibly used by any

application
#include "util.h"

// Param: test value

// Purpose: if test == 0 ensure will print perror information
10 // and exit.ring 2 application do not have access to assert.
11 void ensure(int test)

12 {

13 int debug on = 0;

15 if(!test){

16 printf ("Ensure exiting: $d\n", errno);
17 exit(1):;

18 }

19 else(

20 dbug( debug_on, "Ensure ok\n");

21 }//end if

22 } // end ensure

23

24 void ensure m(int test, char *mssg )

25 {

26 if(!test)

27 {

28 if( mssg != NULL )

29 {

30 printf ("Ensure exiting: %s: %d", mssg, errno );
31 } else {

32 printf ("Ensure exiting: %d: ", errno );
33 }// end if

34

35 }// end if

36 }// end ensure_m

37

38 // Param: int on/off switch, debugging message.
39 // Purpose: Standardized debugging. If int is not zero print the
40 // string prefaced by the pid of the calling process
41 void dbug( int on, char * prompt )

42 {

43 if( on )

44 {

45 if (prompt != NULL )

46 {

47 printf( "%d:%s\n",getpid(), prompt );
48 } else {

49 printf( "NULL" );

50 }

51

52 fflush{( stdout );

53 }

54 }

55

56 // Param: int on/off switch, debugging message.
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57 // Purpose: Standardized debugging. If int is not zero print the
58 // string prefaced by the pid of the calling process
59 void dbugd( int on, char *prompt, int data)

{

61 if(on && prompt != NULL)
62 {

63 printf( "%d:%s %d\n", getpid(), prompt, data );
64 fflush( stdout );
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APPENDIX D. ECHO SERVER SOURCE CODE

Makefile for Echo Server
1 source = echos.c ../listeng.c echo_util.c ../util.c ../io_util.c
../buff io.c ../shm_struct.c ../shm.c ../msem.c ../priv_util.c

2 CFLAGS = -DUSE_P_SOCKET

3

4

5 echos: ${source}

6 cc -g -DUSE_P SOCKET ${source} pskt.c -o echos -lcass

- .

8 conf: ${source}

9 cc -g -DUSE_P_SOCKET ${source} pskt.c -o echos_c ~lcass

10

11 sock: ${source}

12 cc -g -I/usr/include/sys/ ${source} -o echos -lcass -lsocket
13

14 oss: ${source}

15 cc -oss —-g -DOSS_OPTION -I/usr/include/sys/ ${source} -o echos

~lcass -lsocket

16

17 clean:

18 /bin/rm -f /usr2/sdheller/wip/echo/*.0

19 /bin/rm -f /usr2/sdheller/wip/echo/core

20 /bin/rm -f /usr2/sdheller/wip/echo/echos

21
22 depend:
23 cc -Hmake ${CFLAGS} ${source} pskt.c =-o echo -lsocket -lcass
24
25
26
27
28
29
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// File: echo util.h

// Author: Scott D. Heller & Susan Bryer-Joyner
// Date: 28 January 1999
// Purpose: Functions used by the Trusted Path Server (tps.c)

#ifndef TPS_UTIL H_
#define TPS UTIL H_

#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

#include <memory.h> // for memset ()

//for select in select sleep

#ifndef USE_P_SOCKET
#include <sys/time.h>
#include <sys/types.h>
#include <sys/select.h>
#else

#include "pskt.h"
fendif // USE_P_SOCKET

#include "../io_util.n"
#include "../buff io.h"
#include "../util.h"

#define MAX USER_INPUT
user

#define MAX SAK ATTEMPTS
before exit

#define MAXHWID

=>

#define TELNET_SEND
#define TELNET BRK
#define MIN SAK LEN
#define SERV_PORT

// return -1 on error.

256

255
243
3

// lonéest string accepted from
// limit of invalid SAK attempts
// maxsize of hw_id in char + 3
/i hw_id can be 3 digits

// value for brk (?)

// value for send (?)
// minumum valid SAK length

6009 // port TPS will listen to.

// relay data from client to server and vice a versa.
int socket_relay(int cli_fd, struct in_buff struct *cli buff );

// select test

void select_sleep(int, long );

#endif
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10

12
13

14
15
16

17
18

20
21

23
24

26
27
28
29
30
31
32
33
34
35

37
38
39
40
41
42
43
44
45
46

47

48
49
50
51

// File: pskt.h

// BAuthor: Scott Heller

// Date: 20 February 1999

// Purpose: Provide socket like interface to shared memory
information

// passing.

#ifndef PSKT H_
#define PSKT_H_

// decl needed to simulate socket.h

#define I_NREAD 1 // this means ioctl needed

#define AF INET -1 // only socket type supported internet
stream.

$define SOCK_STREAM -1

#define MAX OPEN_CONN 5 // sets number of connection buffers
allocated in shm.

/*
* defined in shm_struct.h
* struct sockaddr {

* u_char sa_len;

* u_char sa_family;

* char sa data[l4];
* .
*/},

struct timeval ({
int tv_sec;
int tv_usec;
bi

typedef int fd_set[MAX_OPEN_CONN]; // for select

#include "../msem.h"
#include "../shm.h"
#include "../listeng.h"
#include "../shm_struct.h"

// Return: pseudo-socket descriptor for listen queue.
/7 Fixed at MAX OPEN_CONN + 1.
// Param: domain: Not used. Should expect AF_INET

// type: Not used. Should be SOCK_STREAM
/7 protocol: Not used.
// Purpose: Provide pseudo-socket interface consitant with tcp/ip

sockets.

// Initializes shared memory structure used to simiulate socket
connections.
int socket (int domain, int type, int protocol }:

// Return: As expected for socket bind. 0 on success, -1
otherwise.
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52
53
54
55

56

57
58

59
60

61
62
63

64
65

66
67
68

70
71

72
73

74

75
76
77
78
79
80
81

82

84
85
86

87
88

90
91
92
93

// Param: sockfd: Must be listen queue socket descriptor.

// sockaddr: Not used.

// size: Not used.

// Purpose: Provide pseudo-socket interface consitant with tcp/ip

sockets.
int bind(int sockfd, const struct sockaddr * serv_addr, int size

);

// Return: As expected for socket bind. 0 on success, -1
otherwise.

// Param: fd: Must be listen queue socket descriptor.

// queue_size: Not used. Hard coded to 5 during the
socket call.

// Future work should cause the allocation of shm to be delayed
until

// here. Then queue_size could drive the size of the shm
segment.

/7 Requires modification to shm_struct initialization procedure
and

// struct declarations.

// Purpose: Provide pseudo-socket interface consitant with tep/ip
sockets.
int listen( int fd, int queue size );

// Return: Pseudo-socket identifier. (AKA connection index).

// Param:  listen_sem: the listen queue identifier from the call
to socket.

// addr: Not used. Future should get actual client
address from SSS

// addr_len: Not used. Future should return len of addr.
// Purpose: Provide pseudo-socket interface consitant with tep/ip

sockets.
int accept (int listen_sem, struct sockaddr * addr, int * addr len

)i

// Return: number of char read. -1 on error.

// Param: fd: pseudo-socket connection id.

// buff: location for char data.

// read_limit: max char to read.

// Purpose: Provide pseudo-socket interface consitant with tep/ip

sockets.
int my read({int fd, char *buff, int read limit);

// Param: fd: pseudo-socket connection id.

// Purpose: Provide pseudo-socket interface consitant with tep/ip
sockets.

void my_close( int fd );

// Return: number of char written. -1 on error.

// Param: fd: pseudo-socket connection id.
// buff: location for char data to write.
// nbytes: max char to write.
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94
95

97
98
99
100

101
102
103
104
105

106
107

108
109

110
111
112
113
114

115
116
117
118

119
120

121
122
123
124
125
126

127

128
129
130
131
132

133

// Purpose: Provide pseudo-socket interface consitant with tcp/ip
sockets.
int my write(int fd, const char* data, int nbytes );

// Return: number of pseudo-socket descriptors with bits set.
// Param: bits_to_check: Not used. MAX OPEN_CONN is hard coded.

// ibits: = set of bits. each sckt id set using FD SET is
checked -

// for data availible. Set to 1 if data avail upon
select return.

/7 obits: set of bits. each sckt id set using FD_SET is
checked

// for space availible. Set to 1 if space avail upon
select return.

// xbits: set of bits. each sckt id set using FD_SET is
checked

// for connection valid. Set to 1 if connection
invalid upon

// select return.

// timeout: Not currently used. Should indicate max

blocking time.
// Purpose: Provide pseudo-socket -interface consitant with tcp/ip
sockets.
int select( int bits_to_check, fd_set *ibits, fd_set *obits,
fd_set *xbits,

struct timeval *timeout );

// Param: fd: pseudo-socket connection id.

// bits: set of flag bits of which one should be
associated with fd.

// Purpose: Provide pseudo-socket interface consitant with tcp/ip

sockets.
void FD_SET(int fd, fd_set *bits);

// Param: bits: set of flag bits to be set to all ZERO.

// Purpose: Provide pseudo-socket interface consitant with tcp/ip
sockets.

void FD_ZERO(fd_set *bits);

// Return: true if set. false otherwise.

// Param: fd: pseudo-socket connection id.
// bits: set of flag bits to test if fd is set to
true(l).

// Purpose: Provide pseudo-socket interface consitant with tcp/ip

sockets.
int FD_ISSET(int fd, fd_set *bits);

// Param: fd: pseudo-socket connection id.

// bits: set of flag bits of which the bit associated
with fd will be

// set to zero.
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134 // Purpose: Provide pseudo-socket interface consitant with tcp/ip

sockets.
135 void FD_CLEAR{int fd, fd set *bits);
136
137

138 //ioctrl - not yet designed.
139 //fctrl - not yet designed.
140

141 #endif
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// File: echo_util.c

// BAuthor: Scott D. Heller & Susan Bryer-Joyner

// Date: 28 January 1999

// Purpose: Functions used by the Trusted Path Server (tps.c)

#include "echo_ util.h"

int socket relay( int cli_fd, struct in_buff struct *cli_buff )

{

int debug on = 0;
dbug {debug_on, "tps_util:socket_relay:entered");

int to_svr nbytes = 0, ok = 0;

int num_cli read = 0, num svr_read = 0, result = 0;
int 1g_shmid = 0O;

char *to_svr;

//Select test %k ok ek dok ok ok ke kok ok
fd_set ibits;

fd_set obits;

fd_set xbits;

FD_ZERO (&ibits);

FD_ZERO (&obits);

FD_ZERO (&xbits);

//timeout.tv_sec = seconds;
static struct timeval timeout;
timeout.tv_sec = 5;
timeout.tv_usec = 5;

dbugd( debug on, "cli_fd =", cli_fd );
for ( :: )
{

// if there is data to read go get it.
dbug (debug_on, "******about to call FD_SET ****x**x);

FD_SET(cli_fd, &ibits);

// FD_SET(cli_fd, &obits);
FD_SET (cli_f£d, &xbits);
dbug (debug_on, "******about to call select *¥**i*i*n);
if( select (16, &ibits, &obits, &xbits, &timeout )} < 0 )
{
dbug( debug_on, "tps_util:select_sleep:select error");
perror ("select timer:select error");
}
dbugd( debug_on, "ibits = ", FD_ISSET(cli_fd, &ibits) )
dbugd( debug_on, "obits =", FD _ISSET(cli_fd, &obits) );
dbugd( debug _on, "xbits = ", FD_ISSET(cli_f£fd, &xbits) );
// ok = poll ok to_read(cli_fd);
ok = FD ISSET(cli fd, &ibits);
dbugd ( debug _on, "echo_util:session server: FD_ISSET(
ibits ) =",

ok );
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if( ok > 0 )
{ v

dbug (debug_on, "tps_util:server relay:data avail");

num_cli_read = get_data( cli_fd, cli_buff );

dbugd( debug_on, "echo:get_data read = ", num _cli read
)i

if (debug_on) print_buff queue( cli buff );

// we had a flag indicating there was data to read

// if there is actually no data the socket has been

// closed. Time to move on.

if( num_cli read <= 0 ) break;

if(debug_on) print_buff queue( cli_ buff );

to_svr_nbytes = num char( cli buff );

to_svr = empty buff( cli buff);

dbugd( debug_on, "echos: There are nbytes in my buff
=> I',

to_svr_nbytes );

dbug ( debug on, "echos: writing the following to
Writen..."); :

dbug ( debug_on, to_svr );

#ifdef DEMO

dbug( 1, to_svr );

#endif //DEMO

if( to_svr != NULL )
{
if( Writen( cli_fd, to_svr, to_svr _nbytes ) < 0 )
{
perror( "relay: Writen error");
exit(-1);

}// end if
free(to_svr);
}// end if

} else if(ok == 0 && FD_ISSET( cli fd, &xbits) ) {

perror ("Socket no longer valid:socket_relay");
my close( cli_fd );
exit (-1);

} else {

num_cli_read = 0;
}// end if

}// end for loop

return result;

}// end socket_relay

void select _sleep( int fd, long seconds )

{
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int debug_on = 0;
static struct timeval timeout;

fd set ibits, obits, xbits;
FD_ZERO(&ibits);
FD_ZERO(&obits);
FD ZERO (&xbits);

FD SET(fd, &ibits):
FD _SET(fd, &obits);
FD_SET(fd, &xbits);
//timeout.tv_sec = seconds;
timeout.tv_sec = 5;
timeout.tv_usec = 5;

if( select (16, &ibits, &obits, &xbits, &timeout ) < 0 )
{ .
dbug( debug on, "tps util:select_sleep:select errox");
perror ("select_ timer:select error”);

}

}// select_timer()
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// File: echo.c

// Author: Scott D. Heller & Susan Bryer-Joyner

// Date:
// Purpose: Main/{()

28 January 1999
for the

#include <errno.h>

#include <stdio.h> //
#ifndef USE_P_SOCKET

#include <types.h>

#include <sys/socket.h>

#else

#include "pskt.h" //
#endif //USE_P_SOCKET

#ifdef 0SS_OPTION

#include <stop/tcb_gates.h> //
#include <error_code.h> //
#include <message.h> //
#else

extern int fork();

#endif //0SS_OPTION

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/byteorder.h> //
#include <fentl.h>

#include "../util.h"

#include "echo_util.h"

#include "../cdb.h"

#include "../buff_io.h"

extern int fcntl( int, int, int );

#ifdef OSS_OPTION
#define sleep(a)

Trusted Path Server

inplace of sys/socket.h

used for fork process
for suspend event
for suspend event

for htonl and htons

suspend_event(NO_EVENT,(a)*ONE_SECOND,O,NULL,NULL,NULL)
#define fork() fork process() -

#endif

int main ()
{
printf("hello\n");
int debug on = 1;
listenfd
connfd =
clilen =
testBind
flag

o
~

int

ool
~ ~
Ny~

O O

struct in_buff struct
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servaddr.sin_family
servaddr.sin_addr.s_addr
servaddr.sin_port

dbugd (debug_on, "Start execution.TPS pid = ", getpid() ):
struct sockaddr_in cliaddr, servaddr;

listenfd = socket (AF_INET, SOCK_STREAM, 0);

ensure( listenfd > -1 );

memset ( &servaddr, 0, sizeof(servaddr) ):

AF_INET;
htonl(INADDR;ANY);
htons (SERV_PORT) ;

testBind = bind{(listenfd, (struct
sockaddr*) &servaddr, sizeof (sexrvaddr) )
ensure( testBind > -1 );

printf ("Listening to port %d\n", SERV_PORT);
listen( listenfd, 5 ):

for (; 7 )

clilen = sizeof( cliaddr );

// block until connection then accept

connfd = accept( listenfd, (struct sockaddr *) &cliaddr,
&clilen );

dbugd( debug on, "echos:returned from accept connfd =

connfd );

ensure (connfd > -1);

if( ( fork() ) == 0)
{
// child process '
dbugd( debug on, "TPS Child. pid = ", getpid() )

close(listenfd):;
dbug( debug on, "TPS Child: calling malloc struct

in buff struct");
buffer = malloc( sizeof( struct in buff struct Y )

dbug( debug_on, "TPS Child: calling

init buffer (buffer)");

init _buffer( buffer );

dbug (debug_on, "tps:calling socket_relay");
socket_relay( connfd, buffer );

free( buffer );
dbugd (debug_on, "Exiting!! :", getpid() );
exit (0); ’
}//end if

close(connfd); // parent closes connected socket
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}// end for loop

}// end main
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// File: pskt.c

// Buthor: Scott Heller

// Date: 20 February 1999

// Purpose: Provide socket like interface to shared memory
information

// passing.

#include "pskt.h"

static struct shm_hdr *shmhdr; // required since protcol svr can
not pass.

static int initialize = 1; // ensure we only initalize once.

static int child needs_shm = 1; // ensure we attach if needed.

// initialize static shm database if needed otherwise return.
int socket (int domain, int type, int protocol )
{

int debug on = 1;

key t level key = 0;

int shmid = 0;

if( initialize )
dbug (debug_on, "socket:Initializing shm_hdr");

// initialize shared memory.
shmid = init_shm_hdr( &shmhdr };
if( shmid < 0 ) {
perror ("init_shm hdr: failed");
exit(-1);
}

// prove able to access memory
dbugd( debug_on, "If able to read mem access worked here",
shmhdr->conn[0] .in_use )};
initialize = 0;
} else {
dbugd( debug_on, "socket: called and NOT initializing",
initialize );
}// end if

// fixed value for listen queue p-socket.
return MAX OPEN_CONN + 1;

} // end socket ()

//bind
int bind(int sockfd, const struct sockaddr * serv_addr, int size )

{
int debug on = 1;
int result = 0; // success
// do nothing

if (sockfd != MAX OPEN CONN + 1) {
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56 dbugd (debug_on, "bind:server bind to unexpected sockfd = ",

sockfd);
57 result = -1;
58 ss_cleanup (shmhdr) ;
59 }
60
61 return result;
62 }// end bind()
63
64

65 //listen

66 int listen( int fd, int queue_size )
67 {

68 // do nothing

69 int debug on = 1;

70 int result = 0;// success

71

72 if( £d != MAX OPEN_CONN + 1) {

73 dbugd (debug_on, "listen:server listen to unexpected sockfd =
", £d );

74 ss_cleanup (shmhdr) ;

75 result = ~-1;

76 }

77

78 return result;

79 }// end listen()

80

81

82 //accept
83 int accept (int listen fd, struct sockaddr * addr, int * addr_len )
84 {

85 int  debug_on =1;

86

87 int new skt id = -1;

88

89 struct listen g struct *1q = NULL;

%0

91 // block until connection availible

92 new_skt_id = ss_block on_lg( shmhdr );
93

94 dbugd( debug_on, "accept:new_skt_id = ", new_skt_id );
95

96 // return connection index

97 return new_skt_id;

98

99 }// end accept
100

101 int select( int bits_to_check, fd_set *tibits, fd_set *tobits,
fd _set *txbits,

102 struct timeval *timeout )
103 {

104 int debug_on = 0;

105 dbug (debug_on, "select: entered”);
106 int *ibits, *obits,* xbits;

107 ibits = *tibits;

108 obits = *tobits;

109 xbits = *txbits;
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int result = 0, set_one = 0;
int shmid = 0;

if( child needs_shm )

{
shmid = ss_get_hdr( &shmhdr, NULL );
child needs_shm = 0;

sleep( 1 ); // psuedo block should be fixed via signal io.

for (int idx = 0; idx < MAX OPEN_CONN; idx++)
{

if (debug_on && shmhdr->conn[idx].in_use)

{
}

dbugd( debug on, "select: conn in_use => ", idx };

set_one = 0;

// determine if we should set a bit

// if a bit set for a fd (aka idx) increment result
// it is reasonable that a bit set will be null. Must

check for this.

if (ibits != NULL && ibits[idx])
{
if( (ibits[idx] = ss _data_avail(idx, shmhdr)) > 0 )

{
dougd( debug_on, "select:ibit set for fd = ", idx

set_one = 1;
result++;

}

if (obits != NULL && obits[idx])

{
obits[idx] = ss_space_avail (idx, shmhdr);
if( obits[idx] ) dbugd( debug on, "select:obit set for
", idx )
if(!set_one && obits[idx])
{
result++;
set_one++;
}
}

if(xbits != NULL && xbits[idx])
{
xbits[idx] = ss_socket_error(idx, shmhdr);
if( xbits[idx]) dbugd(debug on, "select:should be NOT

in_use",

shmhdr->conn[idx].in_use );
if( xbits[idx] ) dbugd( debug on, "select:xbit set for
v, idx );
if(!set_one && xbits[idx])
{

197




162 result++;

163 set_one++;

164 }

165 }

166 }

167

168 dbugd( debug_on, "select exiting: result = ", result );

169 return result;

170

171 }// end select{)

172

173 void FD_ZERO( fd set *tbits)

174 {

175 int * bits = *tbits;

176

177 for(int idx = 0; idx < MAX OPEN_CONN; idx++ )

178 {

179 bits[idx] = 0;

180 }

181 }// end FD_ZERO()

182

183

184 void FD_SET(int fd, fd_set *tbits)

185 {

186 ensure_m( fd >= 0 && fd < MAX OPEN_CONN, "FD_SET: invalid
£d" ) ;

187 int *bits = *tbits;

188 bits[£fd] = 1;

189 }// end FD_SET()

190

191 int FD_ISSET(int fd, fd_set* tbits)

192 {

193 ensure _m{ fd >= 0 && fd < MAX OPEN_CONN, "FD _ISSET: invalid
£fa" );

194 int *bits = *tbits;

195 return (bits[fd] >0 2?2 1 : 0);

196 }//end FD_ISSET

197

198 void FD_CLEAR(int fd, fd_set* tbits)

199 {

200 ensure_m( fd >= 0 && fd < MAX OPEN_CONN, "FD CLEAR: invalid
f4av ) ;

201 int *bits = *tbits;

202 bits[£fd] = 0;

203 }// end FD_CLEAR

204

205

206 //myread
207 int my_read(int fd, char *buff, int read limit)

208 {

209 int n = 0;

210

211 n = ss_read(fd, shmhdr, buff, read limit);
212

213 return n;

214 }// end my_ read

215
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216

217 //mywrite

218 int my write(int fd, const char* data, int nbytes )
219 {

220 int n = 0;

221

222 n = ss_write( fd, shmhdr, data, nbytes ):;

223

224 return n;

225 }// end my write

226

227 void my close( int £fd )
228 {

229 int debug_on = 1;
230

231 ss_close( fd, shmhdr };
232

233 }// end my_close()

234

235

236

237 //ioctrl
238 //fctrl
239

240

241
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APPENDIX E. PSUEDO-TCBE SOURCE CODE

Makefile for Pseudo-Trusted Computing Base Extension

1 source = tcbe.c ../util.c ../io_util.c ../cdb.c ../buff_io.c
cli echo.c

2

3 tcpserv: ${source}

4 cc -g -I/usr/include/sys/ ${source} -o tcbe -lsocket -lcass
5

6 clean:

7 /bin/rm -f /usr2/sdheller/wip/tcbe/*.0

8 /bin/rm -f /usr2/sdheller/wip/tcbe/core

9
10
11
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// File: cli_echo.h

// Author: Scott Heller and Susan BryerJoyner
// Date: 2 Feb 1999

// Purpose: echo client function

#include <stdio.h>
#include <string.h>

WO WK

#include "../io util.h"
10 #include "../buff_io.h"

12 #ifndef CLI_ECHO H_
13 #define CLI ECHO H_

15 #define MAXLINE 4096
17 // perform the echo client funtions.

18 void str_cli( int sockfd );

21 #endif
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// File: cli_echo.c

// Author: Scott Heller and Susan BryerJoyner
// Date: 2 Feb 1999

// Purpose: echo client function

#include "../util.h"
#include "cli_echo.h"

OCoOJauUurdx WN K

10 void str_cli{ sockfd )
11 register int sockfd;

12 |

13 int debug on = 1;

14 int n, ok = 0;

15 char *recvline, sendline[MAXLINE];

16 struct in_buff struct *recvline_ptr = malloc(sizeof (struct
in buff struct));

17 dbug (debug_on, "Entered str_cli: Echo server should be
responding.”);

18

19 while (fgets(sendline, MAXLINE, stdin) != NULL)

20 {

21

22 n = strlen(sendline);

23 dbug({ debug_on, "attempting to Writen");

24 if (n > 1)

25 {

26 dbug{ debug_on, "calling Writen");

27 if (Writen(sockfd, sendline, n) < 0)

28 {

29 break;

30 }

31 else

32 {

33 dbugd( debug on, "wrote: ", n);

34 }//end if

35 }//end if

36

37 ok = poll ok _to_read( sockfd );

38 // now read a line from the socket and write it to

39 // our standard output

40 if( ok == 1)

41 {

42 dbug{ debug on, "attmpting to Readline");

43 if( (n = get_data(sockfd, recvline_ptr)) > 0 )

44 {

45 // empty buff allocates memory for and rtns char *.

46 // must free(recvline) after done using.

47 recvline = empty buff( recvline ptr ):

48

49 dbugd( debug_on, "Readline read n bytes => ", n);

50

51 if( recvline != NULL )

52 {

53 puts(recvline );

54 free( recvline );

55 }
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if(n == 0) break; // socket was closed.
} else if( n < 0 )
{

break;
}// end if

} else if( ok < 0 ) break; //end if
}// end for
free( recvline ptr );

dbug( debug on, "sti cli - leaving" );
}// end str_cli
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28
29
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31
32
33
34
35
36
37
38
39
40
41
42
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44
45
46
47
48
49
50
51
52
53
54
55

/] File: tcbe.c

#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/byteorder.h>
#include <arpa/inet.h>
#include <fecntl.h>
#include "../util.h"
#include "../io_util.h"
$include "../buff io.h"
#include "cli_echo.h"
#define MAX USER_INPUT 256
extern int fentl( int, int, int );
int
main( int argc, char* argv[] )
{
int debug_on = 1;
int sockfd;
int flags = 0;

struct sockaddr in  servaddr;
int ent = 0; // counts number of elements in SAK

char SAK[20};
//SAS beginning.

SAK[cnt++] = (unsigned int)255;
SAK[cnt++] = (unsigned int)243;
//add user entered hardware id.
while( (*argv([l]) != '\0' )
{
SAK[cnt++] = *(argv[1l]}++);

}
// add delimiter to SAS
SAK[cnt++] = '\n';
SAK[cnt++] = '\0';
SAK([cnt] = '\0";
if (debug_on)
{

printf ("ent: %d\n", cnt);

cnt = 0;

while (SAK[cnt] != '\0')

{
putchar (SAK{cnt++]);
}//end while
}//end if

//interactive input from keyboard
char user IA mssg[MAX USER _INPUT];
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56 char user pwd[20];
57 char user_sl([20];

58 char user_il[20];

59

60 printf ("Enter user name\n?");

61 scanf ("%s", user_IA mssgq);

62

63 printf ("Enter password\n?");

64 scanf ("%s", user pwd) ;

65

66 strcat (user_IA mssg, "\n");

67 strcat (user_ IA mssgqg, user_ pwd) ;

68

69 printf ("Enter new security level\n?");
70 scanf ("%s", user_sl);

71

72 strcat (user_IA mssg, "\n");

73 strcat (user_IA mssg, user_sl);

74

75 printf ("Enter new integrity level\n?");
76 scanf ("%s", user_il);

77

78 strcat (user_IA mssg, "\n");

79 strcat (user_ IA mssg, user_ il);

80 strcat (user_IA mssg, "\n");

81

82 printf("%s", user_ IA mssg);

83 memset (&éservaddr, 0, sizeof(servaddr));
84 servaddr.sin_family = AF INET;

85 servaddr.sin_addr.s_addr = inet_addr("131.120.10.99");
86 servaddr.sin port = htons (6002) ;
87

88 dbug( debug on, "entering tcbe" );

89 if( (sockfd = socket (AF_INET, SOCK_STREAM, 0 )) < 0 )
90 perror ("client socket call failed");
91

92 dbugd( debug on, "sockfd = ", (int)sockfd );

94 if( (connect (sockfd, (struct sockaddr *) &servaddr,
sizeof(servaddr)) ) < 0 )

95 {

96 perror ("client cannot connect to server");

o7 exit (-1);

98 }

99

100 flags = fcntl( sockfd, F_GETFL, 0);
101 // flags |= O_NDELAY;

102

i03 if( fentl( sockfd, F_SETFL, flags ) == -1 )

104 {

105 perror ("fcntl failed™);

106 exit(-1);

107 }

108 if( debug_on )

109 {

110 flags = fcntl( sockfd, F GETFL, 0);

111 if( flags & O _NDELAY ) dbug( debug_on, "O NDELAY SET");
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112 else dbug( debug _on, "O_NDELAY OFF");

113 }

114 dbugd{ debug on, "tcbe:strlen(SAK) = ", strlen(SAK) );
115 dbug( debug on, SAK );

116 Writen( sockfd, SAK, strlen(SAK) ):;

117 dbug( debug_on, user IA mssgqg);

118 Writen( sockfd, user IA mssg, strlen(user_ IA mssg) )
119 dbug( debug on, "tcbe: finished writing user IA mssg");
120 :

121 str cli (sockfd); /* do it all */

122 sleep(2);
123 exit(0);
124 }
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APPENDIX F. GLOSSARY OF TERMS AND ACRONYMS

*_Property — A Bell-LaPadula security model rule allowing a subject write access to an
object only if the security level of the subject is dominated by the security level of the
object. [Ref. 2]

Access — A specific type of interaction between a subject and an object that results in the
flow of information from one to the other. [Ref. 2]

Access Control — (1) The limiting of rights or capabilities of a subject to communicated
with other subjects, or to use functions or services in a computer system or network.
(2) Restrictions controlling a subject’s access to an object. [Ref. 7]

Accountability — Accountability is the quality or state that enables actions on an ADP
system to be traced to individuals who may then be held responsible. These actions
include violations and attempted violations of the security policy, as well as allowed
actions.

Audit Trail — A set of records that collectively provide documentary evidence of processing
used to aid in tracing from original transactions forward to related records and reports,
and/or backwards from records and reports to their component source transactions.
[Ref. 7]

Authentication — (1) To establish the validity of a claimed identity. (2) To provide
protection against fraudulent transactions by establishing the validity of message,
station, individual, or originator. [Ref. 7]

Bell-LaPadula Model — A formal state transition model of computer security policy that
describes a set of access control rules. In this formal model, the entities in a computer
system are divided into abstract sets of subjects and objects. The notion of a secure
state is defined and it is proven that each state transition preserves security by moving
from secure state to secure state; thus, inductively proving that the system is secure. A
system state is defined to be “secure” if the only permitted access modes of subjects to

objects are in accordance with a specific security policy. In order to determine
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whether or not a specific access mode is allowed, the clearance of a subject is
compared to the classification of the object and a determination is made as to whether
the subject is authorized for the specific access mode. The clearance/classification
scheme is expressed in terms of a lattice. [Ref. 2]

Daemon — A daemon is a process that runs in the background and is independent of control
from all terminals. [Ref. 20]

Denial of Service — The prevention of authorized access to system assets or services, or the
delaying of time critical operations. [Ref. 7]

Diffusion — A method in which the statistical structure of the plain text is dissipated into
long-range statistics of the cipher text. This is achieved by having each plain text digit
affect the value of many cipher text digits. [Ref. 9]

Discretionary Access Control (DAC) — A means of restricting access to objects based on the
identity of subjects and/or groups to which they belong. The controls are discretionary
in the sense that a subject with a certain access permission is capable of passing that
permission (perhaps indirectly) on to any other subject (unless restrained by
mandatory access control). [Ref. 2]

Dominate — Security level S, is said to dominate security level S, if the hierarchical
classification of S, is greater than or equal to that of S, and the non-hierarchical
categories of S, include all those of S, as a subset. [Ref. 2]

Lattice — A partially ordered set for which every pair of elements has a greatest lower bound
and a least upper bound. [Ref. 2]

Module — In software, a module is part of a program. Programs are composed of one or
more independently developed modules that are not combined until the program is
linked. A single module can contain one or several routines. [Ref. 30]

Nonce — A unique character string used in cryptography to provide protection against replay
attacks. [Ref. 10]

Object — A passive entity that contains or receives information. Access to an object

potentially implies access to the information it contains. [Ref. 7]
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Penetration — The successful violation of a protected system. [Ref. 7]

Process — A program in execution. It is completely characterized by a single current
execution point (represented by machine state) and address space. [Ref. 7]

Reliability — The extent to which a system can be expected to perform its intended function
with required precision. [Ref. 7]

Secure Attention Sequence (SAS) — An out-of-band communication from a trusted
computing base extension (TCBE) to either the Trusted Path Server (TPS) or the
Session Server associated with an active session. It is composed of the TCBE
hardware identification number and a nonce and encrypted using the Secure LAN
Server public-key.

Secure Local Area Network Server — A software product composed of a Trusted Path
Server and a Session Server that provides a method of establishing a secure session
over a trusted path. The Trusted Path Server establishes the trusted path between the
trusted computing base (TCB) of a high assurance server and a TCB extension
(TCBE) over an Ethernet Local Area Network. The Session Server receives the
informatioﬁ required to establish a secure session via the trusted path. The Session
Server then provides an interface to ported protocol servers.

Security Policy — The set of laws, rules, and practices that regulate how an organization
manages, protects, and distributes sensitive information. [Ref. 7]

Session Server — The Session Server is a software component of the Secure LAN Server. It
provides the hardware and user authentication required to establish the trusted path
and the secure session, respectively. Upon successful authentication, it provides a
relay between the TCBE and the ported protocol servers.

Simple Security Property — A Bell-LaPadula security model rule allowing a subject read
access to an object only if the security level of the subject dominates the security level

of the object. [Ref. 2]
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Subject — An active entity, generally in the form of a person, process, or device that causes
information to flow among objects or changes the system state. Technically, a
process/domain pair. [Ref. 7]

Trusted Computing Base (TCB) — The totality of protection mechanisms within a computer
system — including hardware, firmware, and software — the combination of which is
responsible for enforcing a security policy. It creates a basic protection environment
and provides additional user services required for a trusted computer system. The
ability of a trusted computing base to correctly enforce a security policy depends
solely on the mechanisms within the TCB and on the correct input by system
administrative personnel of parameters related to the security policy. [Ref. 7]

Trusted Computing Base Extension (TCBE) — A network interface card (NIC) that has been

~ modified to support a trusted path to the trusted computing base (TCB) on the XTS-
300.

Trusted Path Server (TPS) — A program that initializes the Connection Database and
handles requests for new connections.

Trusted Subject — (1) A trusted subject is a subject that is part of the TCB. It has the ability
to violate the security policy, but is trusted not to actually do so. [Ref. 7] (2) In the
XTS-300, a trusted subject is one that has an integrity level that allows manipulation
of TCB databases (an integrity level of at least operator) or if the process possess
privileges that exempt it from specific access control rules (for example, the privilege

to be exempt from the security *-property). [Ref. 18]

212




10.
11.
12

13.

LIST OF REFERENCES

A Guide to Understanding Security Modeling in Trusted Systems, NCSC-TG-010
Version 1, National Computer Security Center, October 1992.

Department of Defense Trusted Computer System Evaluation Criteria, DoD
5200.28-STD, National Computer Security Center, December 1985.

Navy Virtual Intranet: Functional Architecture and Concept of Operations, Draft
Version, Naval Virtual Intranet Integrated Process Team, 11 December 1997.

Irvine, C.E., Anderson, J.P., Robb, D.A., and Hackerson, J., “High Assurance
Multilevel Services for Off-The-Shelf Workstation Applications”, Proceedings of
the National Information Systems Security Conference, October 1998.

Cisco Systems, [http://www.cisco.com/public/library/isakmp/isakmp.html].

Whittle, R., “Cryptography for Encryption, Digital Signatures and Authentication”,
[http://www.ozemail.com.aw/~firstpr/crypto/index.html].

Trusted Network Interpretation of The Trusted Computer System Evaluation
Criteria, NCSC-TG-005 Version-1, National Computer Security Center, 31 July
1987.

National Security Agency Evaluated Products List,
[http://www.radium.ncsc.mil/tpep/epl/entries/CSC-EPL-92-003-D.html].

Stallings, W., Cryptography and Network Security: Principles and Practice, 2n
Edition, Prentice Hall, Inc., 1998.

Garfinkel, S. and Spafford, G., Practical UNIX and Internet Security, 2™ Edition,
O’Reilly & Associates, Inc., 1996.

DoD Information Security Program, Department of Defense Directive 5200.1-R,
January 1997.

Glossary of Computer Security Terms, National Computer Security Center, 21
October 1988.

An Introduction to Computer Security: The NIST Handbook, NIST Special
Publication 800-12, National Institute of Standards and Technology, October 1995.

213




14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

25.
26.

27.

Department of Defense Password Management Guideline, CSC-STD-002-85 ,
Department of Defense Computer Security Center, 12 April 1985.

Security Requirements for Automated Information Systems (AISs), Department of
Defense Directive 5200.28, March 21, 1988.

“Concepts and Terminology for Computer Security,” Information Security: An
Integrated Collection of Essays, IEEE Computer Society Press, 1995.

Garfinkel, S. and Spafford, G., Practical UNIX & Internet Security, O’Reilly &
Associates, Inc., 1996.

XTS-300, Trusted Facility Manual, Document ID: FS92-371-07, WANG
Government Services, Inc., McLean, VA, March 1998.

Parnas, D.L., “On the Criteria to Be Used in Decomposing Systems into Modules,”
Communications of the ACM, December 1972.

Stevens, W. R., UNLX Network Programming Volume 1, Networking APIs: Sockets
and XTI, 2™ Edition, Prentice Hall, Inc., 1998.

XTS-300, User’s Manual, Document ID: FS92-373-07, Wang Government
Services, Inc., McLean, VA, March 1998.

Stevens, W. R., UNLX Network Programming, Prentice Hall, Inc., 1990.

Kang, M.H., Moore, A. and Moskowitz, 1.S, “Design and Assurance Strategy for the
NRL Pump,” Computer, Institute of Electrical and Electronics Engineers, Inc., April
1998.

Kang, M.H., Froscher, J.N. and Eppinger, B.J., “Towards an Infrastructure for MLS
Distributed Computing,” Proceedings of the Computer Security Applications
Conference, Institute of Electrical and Electronics Engineers, Inc., April 1998.

Eads, B. Developing a High Assurance Multilevel Mail Server, Naval Postgraduate
School, Monterey, CA, March 1999.

XTS-300, STOP 4.4, Network Login Option Software Release Bulletin, Document
ID: FB94-237-04, WANG Federal, Inc., McLean, VA, April 1997.

XTS-300, Pentium Installation and Setup, Document ID: FS96-290-04, WANG
Government Services, Inc., McLean, VA, March 1998.

214




28.

29.

30.

XTS-300, STOP 4.4, Trusted Programmer’s Reference Manual, Document ID:
FS92-375-07, WANG Government Services, Inc., McLean, VA, March 1998.

XTS-300, STOP 4.4, Application Programmer’s Reference Manual, Document ID:
FS92-374-06, WANG Government Services, Inc., McLean, VA, March 1998.

PC Webopedia, [http://webopedia.internet.com].

215




216




INITIAL DISTRIBUTION LIST

Defense Technical Information Center ........cceeveeeeeeveereeeseeesneennes

8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library..........cccoceeeeseecrrcerereerseeseseesenesesesenesesesencans

Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

Chairman, Code CS ... sesssessesesaseene

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Cynthia E. IrViIne.......ccooorerveecteeeerereceseeeesreeseeesesesesesnesessenens

Computer Science Department Code CS/Ic
Naval Postgraduate School
Monterey, CA 93943-5000

Mr. James Bret MICRAEL. ... v e eeeeeeeeeeeeeeeeeeeeeeeerseeessseeessesssnneas

Computer Science Department Code CS/Mb
Naval Postgraduate School
Monterey, CA 93943-5000

Mr. James P. ANAEISOMN..ccuuiieieiieiieeeceeeeereeereesssessssessssessnsesasnnsas

James P. Anderson Company
Box 42
Fort Washington, PA 19034

M. Joseph O’Kane........cucivuieceenircieeeninnreeeeensseeesesssnensassssssans

National Security Agency

Research and Development Building
R23

9800 Savage Road

Fort Meade, MD 20755-6000

217

No. Copies




10.

11.

12.

13.

14.

CAPT Dan GaliK......coouvieeeieimceeeninieeisssence e ssesaescsentescsssssesesssssssssssssnss
Space and Naval Warfare Systems Command

PMW 161

Building OT-1, Room 1024

4301 Pacific Highway

San Diego, CA 92110-3127

Commander, Naval Security Group Command..........ccecveeeevererererererenenerenenrnens
Naval Security Group Headquarters

9800 Savage Road

Suite 6585

Fort Meade, MD 20755-6585

ATTN: Mr. James Shearer

MI. GeOIZE BIEDET .....oveverecierieierrcreeeesesseessss e sastesesae e nesesesesessasssenes
Defense Information Systems Agency

Center for Information Systems Security

5113 Leesburg Pike, Suite 400

Falls Church, VA 22041-3230

CDR CRIIS PEITY ..cvenrrievincrinneeeirieteststesseestsssestesesesssssssssssesessesssssssassssasssenes
N643

Presidential Tower 1

2511 South Jefferson Davis Highway

Arlington, VA 22202

Mr. Charles SheTuPSKi .......ccceeeveeinirririrerenisisisisseseneneseseseessessesessssenesssesssssessns
Community CIO Office
Washington DC 20505

MS. DEDOTah M. COOPET «....cervunrrrrerrrereenreessaessessssssssesssssssssessssasssnssasssessssnces
Deborah M. Cooper Company

P.O.Box 17753

Arlington, VA 22216

Mr. ROBErt WHETIEY ......covvvevuririrereeisceteee et steee e s s nese s nesasnenns
XTS Product Technical Manager

WANG Federal Inc.

7900 Westpark Drive

McLean, VA 22102-4299

218




15.

16.

17.

18.

Mr. Paul Barbieri .....cccoceeveeveveeeecnennnne
WANG Federal Inc.

7900 Westpark Drive

McLean, VA 22102-4299

LCDR James P. Downey..................

DISA D6/IAESO/MSL Engineering
5600 Columbia Pike
Falls Church, VA 22041-2717

Susan BryerJoyner ........ccoeveueniunnn.
22286 Capote Drive
Salinas, CA 93909

Scott D. Heller..ooniivreeiieeeennrennen
300 Glenwood Circle #112
Monterey, CA 93940

.................................................................

.................................................................

.................................................................

.................................................................

219






