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ABSTRACT

A theoretical analysis for the characteristic undamped natural

frequencies and mode shapes of three dimensional piping systems with

general topology is presented. The development makes use of matrix

methodology including transfer matrices, dynamic stiffness matrices, and

certain topological matrices derived from the theory of linear graphs.

A distributed mass model is employed throughout.
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CHAPTER I

Introduction

1 .

1

General Remarks

The dynamic behaviour of piping systems is of general interest in the

design of such systems. The objective of this thesis is to present an

analytical method of determining the characteristic frequencies and mode

shapes of mechanical vibration of three dimensional piping systems possess-

ing general topology.

Although no digital computer program is incorporated in this thesis,

the matrix methods employed and the iteration solution suggested not only

lend themselves to a computer solution, but they make a large capacity,

high speed digital computer mandatory.

1.2 Scope of Work Presented

A method for determining, analytically, the undamped natural fre-

quencies and mode shapes of three dimensional piping systems with general

topology is presented herein. Previous investigators in this field have

presented techniques which have been successfully employed for analysis of

systems contained entirely in a plane and with "tree like" topology, that

is, elastic branches have been permitted, but involved meshes or loops have

been excluded. Also, previous mechanical models have not permitted the

analysis of circular, elastic arcs with distributed mass. A method of

obtaining the transfer matrix for a circular arc with distributed mass is

presented in Appendix A. The details of the method of obtaining topological

matrices which permit analysis' of general topology is presented in Chapter

2, Section 2.7. Dynamic stiffness matrices are defined in Chapter 2, Sec-

tion 2.4. The details of the necessary geometric analysis are presented in

Chapter 2, Section 2.5 and 2.6.
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1.3 Notation.

matrix

state vector

1 th element of a state vector

transfer matrix from node a to node b

deflection partition of a state vector

force partition of a state vector used with transfer matrix
j.

sign convention

[Z.-Ketc six by six partition of a transfer matrix

[S] , dynamic stiffness matrix between node a and node b
B a M

[S-.^etc six by six partition of a dynamic stiffness matrix

[F] . force partition of a state vector, associated with

dynamic stiffness matrix sign convention

[D] , deflection matrix of the terminal nodes of a primary path

[F] , force matrix of the terminal nodes of a primary path
B a D

X,Y,Z system coordinates of a node

L vector length

<X)/9,K direction cosines

e unit vector

& central included angle

yO radius of curvature

AO vector from point A to point

[G] node rotation matrix

[TLG] state vector transformation matrix from a local

reference system to the global reference system





[TGL] state vector transformation matrix from the global

reference system to a local reference system

[SGL] primary path deflection matrix transformation

matrix from global reference system to a local reference

system

[SLG] primary path force matrix transformation matrix from

local coordinates to global coordinates

G network

[A] node incidence matrix

[SP] primitive stiffness matrix

[SN] node stiffness matrix

ISNl frequency determinant

[DM] mode shape matrix

[FN] node force matrix

[DN] node deflection matrix

! X eigenvalue of an array of coefficients of

differential equations





CHAPTER II

Definition of Properties and Operations

2.1 Problem Nomenclature and General Procedure

The solution for the characteristic frequencies of a piping system

with general topology requires a form of network analysis. In the analysis

which follows, a given piece of pipe will be referred to as an element. The

ends of an element will .be incident on nodes. If only two elements are in-

cident on a node, that node will be referred to as a trivial node. When

more than two elements are incident on a node, that node will be referred to

as a primary node. When an element terminates at a foundation or some other

boundary of the system, that node, upon which only one element is incident,

will be referred to as a boundary node. Those elements connecting two non-

trival nodes together will form a primary path when only trivial nodes are

in the path connecting the two non-trivial nodes.

The necessary solid geometry analysis utilizes conventional vector

notation and involves many different frames of reference. Right handed

triads will be developed which will be associated with each end of each

element and will generally be referred to as local triads or local refer-

ence systems. Such a triad will be so oriented that the x coordinate will

be tangent to the centroidal axis of the element involved. One triad will

be designated a global triad or global reference system and the node at

which the global reference system is located will be designated the global

origin.

The general procedure is as follows. Beginning at a primary or bound-

ary node and proceeding along a primary path, certain geometrical properties

will be developed for the first element encountered which will permit., comput-

ing a transfer matrix. The next element will then be analyzed for its
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geometrical properties, its transfer matrix will be computed, a node rota-

tion matrix, which is a function of the two triads associated with the ends

of the elements incident at the trivial node involved, will be computed, and

the product of these three matrices will be formed so as to eliminate the

trivial node and leave a single transfer matrix for the first two elements.

The next element is then analyzed in a similar fashion, a new transfer matrix

is formed, and so on until a single transfer matrix has been computed for

the entire primary path. This transfer matrix will then be transformed into

a dynamic stiffness matrix which will contain the characteristic dynamic

properties of the primary path analyzed. The dynamic stiffness matrix will

then be transformed to the global reference system. This procedure will be

repeated for all primary paths.

Once dynamic stiffness matrices have been calculated for each primary

path, they will all be assembled into a single diagonal matrix known as the

primitive stiffness matrix. A topological matrix known as a node incidence

matrix will then be formed. By premultiplying by the transpose of the node

incidence matrix and postmultiplying by the node incidence matrix itself,

the primitive stiffness matrix may be transformed into a new matrix called

the node stiffness matrix. This matrix will relate the forces at the

boundary nodes to the deflections at the non-trivial nodes of the network.

By applying a qualitative knowledge of the constraints at the boundary nodes,

a determinant known as the frequency determinant may be obtained from the

node stiffness matrix. The frequency determinant will vanish for the char-

acteristic frequencies of the network. Essentially, by a process of assum-

ing values of frequency and determining the corresponding values of the

frequency determinant, its zeros may be located and refined.





2.2 State Vector

The state vector at a given node, a, of an elastic system is the

collection or group of quantities whose sense and magnitude completely

describe the instantaneous displacement, both rectilinear and angular, of

that point from its quiescent position, as well as the corresponding recti-

linear and angular forces in the member at the same point at the same in-

stant, that is, those forces which, if a cutting plane were passed through

the point at the instant of interest, would have to be applied to each cut

face to prevent relative motion between them. For the purposes of this

discussion, the state vector will be considered to be a column matrix.

Although the systems to be studied are three dimensional, the individual

elements which make up the systems will be planar, that is, only straight

elements or circular arcs are permitted. For such planar elements, it is

possible to consider an in-plane and an out-of-plane state vector. Each of

these state vectors would have six elements, three pertaining to force and

three to deflections. Although this notion has some utility when discuss-

ing systems contained entirely in a plane or when deriving the distributed

mass transfer matrices (to be discussed later) of the individual planar

elements, it is useless for describing a three dimensional system. There-

fore, all future references to a state vector, symbolized by [SV] , will be

the complete three dimensional state vector containing twelve elements, six

of which describe displacement, and the other six describing force. These

elements are organized and defined as follows:





sv 1, displacement in an x direction

sv 2, displacement in a y direction

sv 3, displacement in a z direction

sv 4,. rotation about an x direction

sv 5, rotation about a y direction

[SV] « sv 6, rotation about a z direction

sv 7, force in an x direction

sv 8, force in a y direction

sv 9, force in a z direction

sv 10, moment about an x direction

sv 11, moment about a y direction

sv 12, moment about a z direction

A local x y z coordinate system and the elements of a state vector are

arranged as in Fig. 2.1-1.

\SV3

T V
\SVIO

lS«M2

Fig. 2.1-1.
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The x axis of a local coordinate system is tangent to the centroidal

axis. The y axis is normal to the x axis and directed in a convenient manner.

The z axis is normal to both the x and y axis so as to form a right handed

triad. As an example, the y axis of a curved element may be fixed in the

plane of the curve and directed towards the center of curvature. The z

axis would then be normal to the plane of the curve. A more complete dis-

cussion of coordinates is contained in a general discussion of solid geo-

metry which follows.

2.3 Transfer Matrix

The derivation of transfer matrices is treated in great detail in

Reference 2 and the method employed to develop the transfer matrix for a

circular arc with distributed mass is discussed in detail in Appendix A.

Accordingly, only the briefest discussion will be given here, largely for

the purpose of refreshing the reader's prior knowledge of this subject.

For the purposes of this discussion, a transfer matrix is defined to be a

twelve by twelve matrix which relates a state vector at one node and with

a given orientation to another state vector at another node in a common pri-

mary path and generally having a different orientation from the first. Let

[Z] represent such a transfer matrix. This relationship is described by

the following matrix equation.

[SVl
b

= [Z]
flb

. [SV]
a

2-2

In this equation, [SV] represents a column state vector at node a,
B

[SV], represents another column state vector at node b, and [Zl . represents
t> ab

the transfer matrix between node a and node b and is a frequency dependent

property of the element or elements connecting node a and node b.
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A dot written between two matrices indicates nothing more than ordinary

matrix multiplication which could, of course, be indicated by writing the

matrices in close juxtaposition. Here the dot is used to avoid confusion

which might result from typewritten typography.

Consider the following system containing two elements designated ab

and be whose transfer matrices are known as [Z] . and [Z], .

ab be

Fig. 2.2-1.

Given the state vector at node a, [SV] , the state vector at node b,
B

[SV]
b

» is given by eq. 2-2.

Furthermore, [SV] is given as follows:
c

[SV]
c

= [Z]
bc

. [SV]
b

2-3

It is apparent that the intermediate state vector at node b may be

eleminated and the following equation written:

[SV]
c

= tZ]bc
. [Z]

ab
. [SV]

a
2-4

or

[SV] = [Zl . [SV] 2-5
c ac a

where [Z]
ac

= [Z)
bc

. [Z] 2=6

2.3a Transfer Matrix Sign Convention

A sign convention, unique to transfer matrix operation, must be estab-

lished. The force elements of [SV] are considered to be applied to element
B





ab at node a by node a. They are positive when their sense is in the posi-

tive x, y, or z direction of the triad associated with element ab and located

at node a. The angular forces, or moments, are positive according to a right

hand rule about the x, y, or z directions. The force elements of [SV], , as
b

computed by eq. 2-2, are those forces applied by element ab to node b and

have sense and orientation according to the triad associated with element

ab and located at node b. The force elements of [SV], , as given in eq. 2-3,

are considered to be applied to element be at node b by node b. Their sense

and orientation are specified according to the triad located at node b and

associated with element be. In a like manner, the force elements of [SV]

are applied to node c by element be and have sense and orientation accord-

ing to the triad associated with element be at node c.

It is apparent that there will generally be two local reference systems

at each trivial node and that they will generally not have the same orienta-

tion. This problem in geometry is handled by a rotation matrix which has

been omitted from eqs. 2-4 and 2-6 in the interests of clarity, but is in-

cluded in a discussion of geometry which follows. (cf. Sect. 2.8)

2.4 Dynamic Stiffness Matrix

A given state vector may be partitioned into two smaller column matrices,

one containing the first six elements pertaining to deflection and referred

to as a displacement vector, [D] , and a second column matrix containing the

last six elements pertaining to forces and referred to as a force vector,

[f].

Consider two nodes, a and b, connected by a primary path. The path

connecting nodes a and b need not be a unique one. If there exists more

than one path, this discussion applies to any given one. Let the two state

10





vectors, [SV] and
a

, be partitioned into the associated displacement

and force vectors, [D] , [f] , [D], , and [f],. Let the appropriate transfer
9 B D O

matrix, [Z] . , be partitioned into four six by six matrices as indicated be-
ab

low.

Z// i Z
i3

ab \ f a

2-7

Equation 2-7 may be expressed in an equivalent form as the following two

equations:

[D]
b

= [Z„ ] . [D]
fl

+ [Z«] . [f]
a

2-7a

[f]
b

- [Z x/ ] . [D]
a
+ [Z^] . [£] 2-7b

Let the following six by six matrices be defined as indicated.

[su i = rz^r 1
. [zu i

ts
12

l =-[z
12

J"
1

[s
21

] = [z
21

] - [z
22

] . [z
12

] [zu ]

[s
22

] - [z
22

] . tz
12

]

-1

We may now write the following.

[fl
a * [S

11
]

'

[D]
a
+ [S

12
]

'
[D]

b

[f

]

b
- [S

21
] . [D]

fl

+ [ ] . [D]
b

2-8

2-9

2-10

2.4a Dynamic Stiffness Matrix Sign Convention

Equation 2-9 computes the negative of the forces at node a applied by

node a to element ab. If it is clearly understood that the negatives of

these forces are the positive forces applied by member ab to node a 9 the

11





negative sign in equation 2-9 may be eliminated and both [f] and [f], are
a b

then considered to be forces applied by element ab to nodes a and b oriented

according to triads located at nodes a and b. It is emphasized that this

constitutes a unique sign convention to be associated with stiffness matrices

versus transfer matrices. In the succeeding development, force column

matrices will be indicated by capital letters instead of lower case letters

when they are associated with the stiffness matrix sign convention.

The two force vectors may now be combined into a single twelve element

column matrix containing the forces applied by the element ab to the nodes

at a and b. In like fashion, the two displacement vectors may be combined.

If the four six by six matrices are also combined to form a twelve by twelve

matrix, the following equation may be written.

F
a

F
b

S
ll

S
12

S
21

S
22

2-11

which we write as

[F]
a,b " tSl

a,b '
[Dl

a,b
2-lla

The twelve by twelve matrix, [S] s will be referred to as the dynamic

stiffness matrix. The dynamic stiffness matrix, like the transfer matrix

from which it was derived, is a function of frequency and the relative

displacement and orientation of the state vectors at a and b and also depends

on the element or elements connecting a to b by a given primary path. One

can think of eq. 2-lla as relating the distortion of the member , [D] ,, to

the forces, [F] , , producing them.
S i D
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2.5 Local Solid Geometry

Analysis of a three dimensional piping system requires, for each

element, a knowledge of the length, radius of curvature (for circular arcs),

relative position and relative orientation. Such information may be readily

obtained if the positions of the ends of each element are specified in a

convenient basic reference system of cartesion coordinates. Such coordin-

ates will be referred to as system coordinates and might be measured from

a corner of a room or any other convenient reference point. The three

coordinates will be referred to as X, Y, and Z. It is convenient also to

develop a number of local coordinate systems for use in calculating trans-

fer matrices and for other purposes. It is the purpose of this Section to

accomplish this development.

Consider a single straight element whose X, Y, and Z coordinates are

known. Let one end be designated an "a" end and the other a "b" end. The

"a" end may be considered to be the end with which a known state vector is

associated. Let the system coordinates of the "a" end be designated X ,
8

Y , and Z . In a like manner, the Hb" end coordinates will be X, , Y, , and
a a bo

Z, . Three local direction numbers may be defined as follows.

X . - £ - X 2-12
ab d a

Y . = Yu - Y 2-13
ab b a

Z . - Zu - Z 2-14
ab b a

These three numbers are the direction numbers of a vector directed

form "a" to nb" and of length, L, equal to that of the straight element.

L is given by the following equation.

2 2 2
X ^ + Y * + Z T 2-15
ab ab ab
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Three direction cosines (X^, /&x» am* »* may °e obtained in the follow-

ing manner.

*x * fab 2-16

L

x " ^ab 2-17

L

^x * fab 2-18

L

These three direction cosines are the direction cosines of a unit

vector tangent to the centroidal axis of the straight element. The direc-

tion of this unit vector, designated e , is defined to be the x direction

of a unit triad fixed in space at the "a" end of the element. For a straight

element, the y direction of the unit triad is defined so as to be parallel

to the XY plane of the system coordinates as well as being normal to the

local x direction. Given a unit vector, e , directed in such a manner,

the following vector equations may be written:

le J - 1 2-19
w
e . e 2-20
x y

where e = CX I + /? j + ^ k and e & i + A> jx x x x y y y

For e vector with a zero Z component, equations 2-20 and 2-22 may be

written in scalar form as follows:

CX
2
+ ft

2
- 1 2-19a

y y

0< x cX + ft %j& =0 2-20a
x y x y

These two equations define the magnitudes of the direction cosines of e

as follows:

CX --^CX . '

y 1
~

2-21
/ +

14





= *
f 2-22

y
/?* \ ' + CXy,

0TL

X

y
m

'7
= 1

y

tf =0 2-23
y

These equations will be valid except when e has zero Y component.

In such a case, the following equations will be used:

2-21a

2-22a

2-23a

The z direction of the local triad at "a" may now be defined by the

following vector equation:

e = e X e 2-24
z x y

The local triad thus established for a straight element specifies the

orientation of the two state vectors associated with the ends of the element,

The second of the two types of elements permitted in a three dimension-

al piping system is a circular arc. In general, a piping system would be

fabricated so that the ends of a circular arc would be tangent to the ele-

ments that they are connected with. Consider such an arc with ends design-

ated "a" and "b" and with the system coordinates of the two ends designated

X , Y , Z , X, , Y. , and Z, in the same manner as the preceding straight
a a a d b b

element. The element attached to the arc at the "a" end will have a triad

associated with it whose orientation has been previously determined. The

unit vector, e , of this triad will be tangent to the arc at the "a" end.

Let this vector now be designated e . Let the vector C connect the end

points "a" and "V". The direction numbers of C, C. , C_ , and C_ are given

15





by the following equations.

C
l

- *b " X
a

2"25

C
2 * Y

b " Y
a

2 " 26

C
3

- Z
b

- Z
a

2-27

The length of C is given as follows:

ff
2 2

+ CZ + CZ 2-28
2 "3

The direction cosines of C are as follows:

CX
c

= C
1

L

/S
c
2

L

c
- C

3

2-29

2-30

2-31

These three direction cosines define a second unit vector e contained
c

in the plane of the arc just as is e A unit vector, e , normal to ther
t n »

plane of the curve can now be defined by the following vector equatioh.

e -
g
t * e

c 2-32
n — -=—

e
t
X e

c

A fourth unit vector, e , again contained in the plane of the curve,

but directed towards the center of curvature , can now be defined as follows:

e ff x ^ 2-33
r n t

Designating the direction cosiness of e" as c* , fi , and
tf" , the

central included angle of the arc, & , is given by the following equation.

(Refer to Fig. 2.5-1).

& = 2 arcsin (e . e ) 2-34
r c

The radius of curvature, yO , is given as follows:

P - L/2 2-35

e . e
r c
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'TA-

Fig. 2.5-1

The three unit vectors, e , e , and e , form a local triad with origin
x n r

.

at "a" which specifies the orientation of the state vector associated with

the "a" end. A similar triad fulfilling the same function at the "b" end

may be obtained as follows.

AO * AB + BO

yoe Le +/fle .
' r c rb

e , « e - Le
rb r ;s c

tb rb n

2-36

2-37

2-38

2-39

where e . , e , and e . forms the local triad at the "b" end.
tb n rb

A combination of two straight elements and a circular arc, such as

Fig. 2.5-2, where one is given the system coordinates of three points,

•'a", "b", and "c", and the radius of curvature of an arc to be fitted in

the included angle is also permitted. Since the required analysis is a

combination of the previous two, it will not be presented here.

17





2.5a Node Rotation Matrix, [6].

It is now possible to discuss the geometry requirements associated with

more than two triads located at one common node, but with different orienta-

tions.

Fig. 2.5-3a Fig. 2.5-3b

Consider two elements, ab and be, connecting three nodes, a, b, and c,

with node b a common node. If the centroidal axes of the two elements

are not collinear atnode b, as indicated in Fig. 2.5-3a, the triad associated

with element ab and located at node b will not have the same orientation as

the triad associated with element be and also located at node b. In order

to perform the multiplication indicated in eqs. 2-3, 2-4, and 2-6, it is

necessary to perform a rotation transformation upon the state vector [SV], ,
D

as computed by eq. 2»2, before utilizing it in eq. 2-3 to compute [SV] .

The circular arc transfer matrix developed in Appendix A performs the re-

quired rotation associated with a curved element as well as the translation

associated with all transfer matrices.

Consider some element of [SV], , as computed by eq. 2-2, oriented in

the x direction of the triad associated with element ab at node b. It will

have three components when expressed in the primed coordinates of the triad

at node b associated with element be. Since the triads concerned are de-

fined by unit vectors expressed in system coordinates, the component of

any given x directed element in the x' direction will be the product of the

magnitude of the x directed element and the dot product, e" . e .

18





As an example, let the first three deflection elements of [SV],

oriented with element ab have magnitudes svl, sv2, and sv3. Let the desired

magnitudes of the corresponding elements of [SV]', oriented with element be

be designated svl', sv2', and sv3l The latter three values are computed by

the following equations.

svl 1 e'. S . svl + S*. 5 . sv2 + e'.e . sv3xx x y x z

sv2' e'.e . svl + e'.e
y x y y

sv3' e'.e . svl + e'.e

sv2 + e'.e
y z

sv.

Z X

svl'

sv2'

sv3'

e'.
X

e
X

e'.
y

e
X

e'.
_ z

e
X

y

or

e" .e
x y

e'.e
y y

e'.e
z y

or

sv2 + e' .e . sv3
z z

e'.e
x z

svl

e'.e
y z

sv2

e' .e
z z.

sv3

svl'

sv2*

sv3'

[GX]

where

fGX] =

e" .e
x x

e'.e
y x

e' .e
z x

svl

sv2

sv3

e'.e
x y

e' .e
y y

e' .e
z y

e'.e
x z

e' ,e
y z

e' .e
z z

2-40

2-41

2-42

2-43

2-43a

2-44

Since the four sets of x, y, and z directed elements of a given state

vector all require a similar transformation, it is apparent that a single

12 x 12 matrix will perform the desired transformation for all elements.

Such a matrix will have the three by three matrix, [GX], repeated four

times on the major diagonal as follows:

19





[G] 2-45

GX

GX

GX

GX_

The indicated elements of [G] are three by three matrices themselves.

The bracket notation for [GX] has been omitted for clarity. This practice

will be continued in the succeeding development.

Now the following complete transformation can be made

[SV]'= [G] . TSV] 2-46

Equations 2-4 and 2-6 can now be written without omitting the nec-

essary rotation matrix:

[SV]
c

- [Z)
bc

. [G]
b

. [Z]
ab

. [SV]
a

'Z 'ac " fZl
bc •

[G)
b •

[Zl
ab

2-4a

2~6a

2.6 Global Solid Geometry

In order to make use of certain features of linear graph theory which

apply to mechanical network analysis, it is necessary to express all directed

quantities in a single common reference system. Such a reference system will

be called a global reference system. A discussion of network analysis of

mechanical systems follows in Section 2.7.

The location and orientation of a global reference system may be chosen

artibrarily. Although it could be anywhere, for the purposes of this dis-

cussion, the global reference system will have the same orientation and

position as the first local triad to be constructed.

The derivation of the necessary transformation matrices and a more

complete discussion are presented in Ref. 3. They are simply defined and

exhibited here.

Let [F] be some force column matrix expressed in a local reference
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system and [F] ' be the same force matrix expressed in the global refer-

ence system. [F] and [F] ' will be related by a transformation matrix as

follows:

[F]
f = [TOA] . [F] 2-47

The matrix [TOA] may be partitioned into four three by three matrixes

as indicated below.

TOA
11

TOA
12

TOA
21

TOA
22

TOA.
?

is a zero matrix.

TOA.. is obtained precisely like [GX] of Sect. 2.5 with the exception

that the primed coordinate system is now the global reference system.

TOA
22

= TOAn 2-48

TOA_. is equal to TOA premultiplied by the

following translation matrix [L]

.

L = L.

•L
3

L

-L,

•L
2

L
l

2-49

The elements of L are defined as follows.

Let X, Y, and Z be system coordinates of the local reference system

position. Let X , Y , and Z be the system coordinates of the global

reference system position. Then

L
3

" Z " \

2-50

2-51

2-52

An inspection of [TOA] shows that the inverse is given as follows:

21





[TAO] = [TOA]
-1 TAO

TA0
21

TA0
22

2-53

where

and

[TA0
11

] = [TA0
22

] = [TOAu ]

[TA0
21

1 = [TAOn ] . [L]

2-54

2-55

The inverse transformation relationship can now be written as

[F] - [TAO] . [F]' 2-56

A similar transformation exists for displacements.

Let [D] be some displacement matrix and let [D] * be the same displacement

matrix expressed in a global reference system. The following equation may

be written:

[D]' - [TAO]
1

. [D]

where

[TAO]
T

=
TOA

11
TOA

TOA
21

22
The inverse relationship is also true.

[D] - [TOA]
T

. [D]'

where

[TOA]
T

=
TAO

11
TAO

TAO
21

22

2-57

2-58

2-59

2-60

If the forces and deflections associated with a transfer matrix equa-

tion are transformed to a global form, a similar transformation must be made

on the transfer matrix. A complete state vector is transformed as follows:

[SV],

TAO,

TOAj^

• [SV],

or
[SV]* - [TLG], . [SV].

b b b

2-61

2-61a
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rsv]

TOA

TAO
rsvi;

2-62

or [SV] [TGL] . [SV] '

3. 3 3

These transformations operate on the transfer matrix as follows:

[sv]
b

- [Z] . [SV]
g

[SV]^ - fTLG)
b

. [SV]
b
= [TLGl

b fZ
'ab-

(TGLl
a • [SVl

a

or

[SV]
b

- [zv
ab

. rsvi;

where

'zUb " [TLG
'b • [Zl

ab •
[TG11

a

A similar transformation exists for the dynamic

stiffness matrix. The deflections are transformed as follows:

or

[D]
a,b

TOA

TOA,
a,b

[D!
a,b " [SGL,

a,b •
[Dl

a,b

tF3
•

a,b

TOA

T0\
. [F]

a,b

2-62a

2-63

2-64

2-64a

2-65

2-66

2-66a

2-67

or

or

where

[F]' = [SLG] . . [F] .

a,b a,b a,b

[F]' . = [SLG] . [S]
a

. [SGL] . [D]'
a,b a,b a,b a,b a,b

a , b a , b a, b

[S]' = [SLG] . [Si . [SGL]
a, b a, b a , b a,b

In the preceding development, one may think of the transformation

symbols as follows:

2-67a

2-68

2-68a

2-69
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[TLG]

»

local to global transformation matrix for transfer matrices

[TGL]

,

global to local transformation matrix for transfer matrices

[SLG]

»

local to global transformation matrix for stiffness matrices

[SGL]

,

global to local transformation matrix for stiffness matrices

2.7 Application of Graph Theory and Topological Matrices

The present treatment of the problem of vibration of a mechanical net-

work with general topology utilizes certain features of the theory of Linear

Graphs. This discussion will be limited to those features and will be

developed in terms of mechanical parameters rather than abstract mathe-

matical ones.

Given all the necessary quantities expressed in a global reference

system, the topological solution which follows makes use of three conditions.

First, the forces, applied by the primary path to the nodes upon which they

are incident, are related to the end deflections of the paths by dynamic

stiffness matrices. Second the nodes of the network must be in equilibrium,

that is, the forces applied by the incident elements to a node must sum to

zero for a primary node, or sum to the force which the node applies to the

boundary in the case of a boundary node. Third, continuity requirements must

be met at the nodes, that is, the deflections of the ends of the primary paths

incident on a node are identically equal to each other and are equal to the

deflection of the node.

Consider some network designated G. Let the number of nodes in G be M.

Let the number of elements connecting the nodes be N/2. The N force column

matrices associated with the N ends of the N/2 elements may be designated as

[FE-], [FE ], [FE l
S [FE ]. The deflection matrices associated with the

Bj], [DE
2
], [DE

3
;

ends of the N/2 elements may be designated as [DE. ] , [BE ] , [BE ],-—

,
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As defined by the stiffness matrices sign convention, the forces are

positive when applied to the nodes. Now consider some node, m, of G, con-

nected to the rest of G by n elements. In order that the node m be in

equilibrium, the n forces associated with the elements incident on node

m must sum to zero or to the force applied by the boundary to node m. The

N-n forces that are not applied to node m do not enter into the summation.

Let the boundary forces, which may be zero, be designated [FN ]. There are M
m

summations to be made, one for each node. A given summation may be indicated

as follows:

[FN ] = f. [a*] . [FE ]
n»

i
= 1 ,J J

2-70

The N coefficients [a ] . are either a six by six identity matrix
m, j

or a six by six zero matrix according to the following rule.

[a ] . I if end j is incident on node m 2-71
m, j

[a ] if end j is not incident on node m 2-71a
m, j

When the M summations have been made, the coefficients [a ] , form
m » J

a matrix designated [A] which has 6M rows and 6N columns. Now, if the N

force matrices are assembled in a single column matrix, [FE], and a second

column matrix [FN], is formed which contains all the boundary forces, both

zero and non-zero, then [FN] is related by equilibirum requirements to [FE]

as follows:

[FN] = [A]
fc

. [FE] 2-72

Next we concern ourselves with geometrical continuity at the same

node m with n elements incident on it. The n deflections of the n element

ends at m must be identical. Also, the deflection of the node itself must

be identical to each of the n element deflections. Let the node deflec-

tion be [DN ]. One of these identical relationships may be expressed as
m
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the following summation.

M
[DE.] = Z-. [k] . [] 2-73

j m58 ! j ,m m

The M coefficients [k] . are either a six by six identity matrix or a

six by six zero matrix according to the following rule.

[k] ,
s [I] if end j is incident on node m 2-74

[k] . *» [0] if end j is not incident on node m 2-74a
J»m

There are H summations to be made. The coefficients [k] . form a

matrix which is [K]. Inspection of the rules for forming [K] reveals that

[K] is the transpose of [A] . Accordingly, it will be referred to as [A]

henceforth.

If the N deflection matrices associated with element ends are assembled

into one column matrix, [DE] , and the M deflection matrices associated with

nodes are assembled into one column matrix, [DN], then [DE] and [DN] are

related by continuity requirements as follows:

[DE] - [A] . [DN] 2-75

As developed in Section 2-4, eq. 2-12a, the forces and deflections

associated with a given element, e, having ends a, b, are related as

follows:

e a,b e a,b e a,b

There are N/2 such equations which can be written for G. Let them

be written as follows:

[Va,b ' tVa.b -'Va.b 2-76.1

1F
2

] a,b " I S 2) a ,b -'Va.b 2 " 76 - 2

'Va.b
= [S

3
] a ,b -"Va.b 2-76.3

[F
N/2 ]a,b- [S

N/2 ] ajb
.ED

N/2 ]
a>b

2-76.N/2
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The N/2 equations may be written in more compact form as follows:

[FE] - [SP] . [DE] 2-77

In eq. 2-77, the ordering of [FE] and [DE] follows a certain method.

The forces occur in pairs for each element. This imposes a limitation on

how the topological array [A] is made up. Although the order in which nodes

occur is not restricted, it will be found most convenient to take the bound-

ary nodes first and then the remainder in any order. The order in which

the forces [FE ]| have been numbered is governed by the manner in which the
n

matrix [SP] is assembled.

If eq. 2-75 is substituted into eq. 2-77 for [DE], the following is

obtained.

[FE] - [SP] . [A] [DN] 2-78

If eq. 2-78 is premult iplied by [A] , and eq. 2-72 is used, the follow-

ing is obtained.

[FE] = [A]
t

. [SP] . [A] . [DN] 2-79

which we will write as

[FN] - [SN] . [DN] 2-79a

where

[SN] - [A]
fc

. [SP] . [A] 2-80

The matrix [SP] will be referred to as the primitive stiffness matrix.

The matrix [SN] will be referred to as the node stiffness matrix.

2.8 Boundary Conditions and the Frequency Determinant.

A knowledge of the boundary constraints provides certain qualitative

knowledge of [FN] and [DN] which in turn makes it possible to extract from

[SN] an array, designated [SN], the determinant of which will vanish for

certain values of frequency which are natural frequencies of the physical

system.
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/

/a. b

\
Fig. 2.8-1

If the problem consisted of the simple beam of Fig. 2.8-1, the two

nodes a and b would both be boundary nodes. The deflections at b would be

generally non-zero while the forces would be zero. At node a, the deflec-

tions would be zero while the forces would be non-zero. Depending on the

boundary conditions at a given node, there may be any combination of zero

and non-zero forces and deflections. However, there will always be the same

number of zero quantities, that is, for each zero force there will be a non-

zero deflection and vice versa. Reference 1 gives a more complete dis-

cussion of such boundary conditions.

The relationship [FN] - [SN] . [DN], as developed in Section 2.7 9 is a

global equation while the given qualitative knowledge of [FN] and [DNj is

in local coordinates. Just as forces and deflections were expressed in a

global reference system so as to facilitate the desired topological opera-

tions, they must now be expressed in local coordinates so as to make use of

the given qualitative knowledge of boundary conditions. However, only those

six element matrices containing both zero and non-zero elements in local

coordinates need be expressed in local coordinates. If [FN] and [DN] have

not been assembled so that those six element matrices just mentioned are ad-

jacent and in low numbered positions, let [FN], [DN], and [SN] be reordered as

necessary so that the qualitative information is so positioned. If the

number of nodes is M and the number of those having non-zero [FN ] matrices
m
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is p, then [FN] may be partitioned into two column matrices, the first

containing p six element matrices and the second containing (m-p) six element

matrices, of which, all elements are zero in global or in local coordinates.

[DN] may be partitioned in like manner. The given qualitative knowledge

of the first p six element matrices is not available in global coordinates,

but the second will contain m-p six element matrices, which will be non-zero

in either global or local coordinates.

Let [FN], [DN], and [SN] be partitioned in this manner. Then the node

stiffness equation* may be written as follows:

F
_p_

= sn
11

sn
12

sn
21

sn
22

•

D
P

D
m-p

[F ] = [sn ] . [D ] + [sn ] . [D ]

p II p 1Z m-p

[0] = [sn ] . [D ] + [sn ] . [D ]

Zl p ZZ m-p

2-81

2-81a

2-81b

The forces and deflections associated with the p boundary nodes have

the same local position and orientation as the forces and deflections associ-

ated with the element end incident on a given boundary node. Therefore, the

inverse of the p translation and rotation matrices, [TOA] and [TAO] , which

transformed the boundary node element end forces and deflections to a global

reference system may be retrieved and utilized to transform [F ] and [D ] to
P P

local coordinates. Let this be done and let the appropriate transformation

matrices be arranged in two large arrays as indicated below:

TAO,

TAO,

TAO

[TAOP] 2-82

*cf. Eq. 2-79a.
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TOA,

TOA, [TOAP] 2-83

TOA

Then we can write

[FJ - [TAOP] . [F

J

P local P
2-84

and

[DJ - [TOAPp . [D ] . -

p p local
2-85

Premul tiplying eq. 2-81a by [TAOP] gives the following result.

[TAOP] . [FJ - [FJ - - - [TAOP] . [sn ] . [D 1 +
p p local 11 p

[TAOP] . [sn.J . [D Jiz m-p
2-86

Substituting eq. 2-85 into eq. 2-81b and eq. 2-86 for [D ] gives the

following two equations.

tFp' local
tTA0Pl

"
[sn

ll' •
fT0AP,t

• [V local
+

[TAOP] . fsn.,] . [D JLZ m-p
2-87

[0] = [sn
21

] . [TOAP] . [D
p

] ^ + [s.^] . [D ] 2-88

Let the following four arrays be defined as indicated.

[snnr - [TAOP] . [sn
1]L

] . [T0AP]
fc

[sn
12 ]

f - [TAOP] . [sn
12

]

[sn
21

]' - [sn
21

2 . [TOAP]*
1

[sn
22

]' [sn
22

]

2-89

2-90

2-91

2-92

Now equations 2~81a and 2-81b may be written as follows,
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F
£ rsN]* .

D

D
. m-p_

2-93

where [F ] and [D ] are now in local coordinates.
P P

There are 6p elements in [F ] and also in [D ] . Just as [SN] was re-
P P

ordered so that boundary node forces and deflections were in low numbered

positions in fFN] and [DN], [SN]' may be reordered so that the non-zero

elements of [F ] are in low numbered positions and the zero elements of
P

[D ] are in corresponding positions. For m nodes, [SN] 1 would be a 6m by
P

6m matrix. If the number of non-zero elements of [F | were q, then [SN]'
P

could be partitioned as follows:

rr i - [«.u]" . roi + tsn
12 ], t

2 .94n m-q

[0] = [sn..]" . TO] + [sn.J" . \D ] 2-95
21 22 m-q

For the boundary conditions given above, [sn-.] 11 is q by q, [sn ] '

'

is q by m-q, [sn_. ] '

* is m-q by q, and [sn -]'' is m-q by m-q. Inspection

of fsn--]'
1 reveals that it must be singular if the non-zero elements of

[DN] may have any given value. The determinant of [sn.-] 1
' will be referred

to as the frequency determinant, |SNl . By evaluating |SNl at various

frequencies over a given range, those values of frequency which yield a

zero value for |SN| that is the eigenvalues or characteristic frequencies,

may be determined.

The reordering procedure indicated in the preceding is most appropriate

for computer procedures. If one were doing such a manipulation with pencil

and paper, one would naturally strike out rows of [SN]' corresponding to

non-zero elements of fF ] and strike out columns of [SN] 1 corresponding to
P

zero elements of [D ] . The resulting array would be [sn_ ]''. We may now
P 22

adopt a more convenient notation for [sn99
]' 1

, that is [SN].
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2.9 Mode Shapes

If we presume that [SN] is evaluated at a characteristic frequency and

that [SN] is only "singly singular", that is, its rank is one less than

its order*, we have

- [Sit] . [DM] 2-96

Let [DM] have g elements. One, say g , can always be chosen such that

the other g-1 elements of TDM] can be expressed in terms of g . [DM] can

then be normalized so that

\m]
1

. [DM] - 1 2-97

The matrix, [DM], thus obtained is unique, that is, independent of our

choice of g .

a

[DM] is the mode shape of the primary nodes. Trivial nodes of interest

may be included in [DM] by treating them as primary nodes in all the pre-

ceding analysis.

An optional method of obtaining the mode shape of the trivial nodes is

as follows:

Reconstruct [DN] including the elements of [DM] where appropriate and

carrying out the necessary local to global transformations. Obtain [DE] by

pre-multiplying [DN] by [A] as follows:

[DE] = [A] . [DN] 2-98

The matrix [DE] may then be partitioned into the twelve element column

matrices associated with the primary paths.

*
Otherwise, we have the coalescence of two roots which would complicate

subsequent discussion unnecessarily, the situation being essentially no
different than the case of any vibrating system having identical character-
istic frequencies, corresponding to which the modes are not unique.
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For any given primary path, say between primary nodes a and b, we may

then write

[S]
a,b

2-99

Solving eq. 2-99 for [F] and [F], provides sufficient knowledge to
a b

assemble a complete state vector at either node a or node b. By choosing

node b, we may avoid any confusion concerning sign conventions. We may

then write [SV]. as follows:
b

[SV], 2-100

In eq. 2-100, we use lower case f indicating forces and sign conven-

tions appropriate for transfer matrix use. We may then evaluate the

transfer matrices, at the appropriate eigenvalues, between the primary nodes

and proceed to obtain the deflections associated with all nodes.
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CHAPTER III

Discussion

3.1 Network Analogies

As has been previously stated, the solution for characteristic frequen-

cies of three dimensional piping systems with general topology requires a

form of network analysis. Once all vector like quantities had been ex-

pressed in a single common global reference system, as suggested by Ref. 3,

the writer found the methods of network analysis developed by Fenves and

Branin, Seshu and Reed, and Kron to be applicable to the subject analysis.

Kron, in Ref. 5, describes the equivalent network of a vibrating beam

as a six wire, six phase transmission line. Such a model does not permit

the direct application of the development of Ref. 3. However, a similar

technique was found in Ref. 4 which was directly applicable to a mechanical

network when the properties of such a network were described in terms of the

dynamic stiffness matrix suggested by Pestel in Ref. 1.*

It should be noted that the mechanical transfer matrix was found to be

analogous to the electrical transfer matrix of h parameters. The dynamic

stiffness matrix was found to be analogous to the electrical short circuit

admittance matrix. The connection tensors of Ref. 4 are node incidence mat-

rices. And finally, force and current, as well as voltage and deflection,

are analogous.

3.2 Practical Limitations

In principle, there are no limitations to the size of a mechanical system

that can be treated in this manner.

*cf. page 150, para. 3 of Ref. 1
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In reality, there are two. First, any given digital computer, though possess-

ing total recall, has a limited memory capacity. The method developed in

this thesis requires the assembly of very large arrays. A network composed

of 20 non-trivial nodes and 30 primary paths requires storage capacity for

57,600 quantities for just two of the matrices involved, no matter how clever

the programmer.* Although the subsystem technique developed in App. B would

relieve this requirement somewhat, very large high speed computers are still

mandatory computational tools. The second limitation is that of the size of

the numbers involved. A very large system will require the ability to

compute very large or very small numbers. Thus, double, or even triple,

precision may be required in order that precise answers may be obtained.

* t
For the example above, [A] . [SP] would be dimensioned 120 by 360

and would contain 43,200 elements. [A]*" . [SP] . [A] would be dimensioned
120 by 120 and would contain 14,400 elements.
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APPENDIX A

A. Distributed Mass Transfer Matrix for Circular Arcs

A.l General Remarks

Although it is not the purpose of this thesis to derive transfer matrixes,

the fact that the transfer matrix for a distributed mass model of a circular

arc has not been developed and utilized before, warrants a discussion of the

technique employed. Ref. 1 indicates the general method.*

Since the development which follows is restricted to a single planar

element, it is both possible and convenient to consider an In-Plane case

and an Out-of -Plane case. Consider the In-Plane case. A satisfactory state

vector, consisting of three deflections and three forces, may be defined as

follows using the notation of Sect. 2.2.

svl

[SV]
IP

sv2

sv6 A-l

svl2

sv7

sv8

Given such a state vector, the following equation, as suggested by

Ref. 1, may be written:

d[SV]
IP - [A] . [SV]

ds
IP

A-2

where s indicates the length of the arc. The matrix [A] should not be

confused with the topological matrices previously developed.

*cf. page 145, para. 3 of Ref. 1.
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Matrix, [A], is an array of coefficients of six simultaneous differen-

tial equations. It is derived in Ref. 1 and is repeated below:

K

[A]»

2
-uw

-K

1

1

EI*

< z.w o
z

-1

1.
-uw

-K

1

EA

K

A-3

The parameters of the non-zero elements of [A] are defined as follows:

K , curvature, or inverse of radius

E, Young's modulus

Ig , moment of inertia about the z axis

u, mass per unit length

iz , radius of gyration of cross sectional area about the

z axis

w, circular frequency of free vibration

The elements of [A], for convenience, are renamed as follows after multi-

plication by s , total length of arc.

Ks - B
o

S
o -C

EA

- H

EI

ui, w s J£ o

-uw
l
s L
o

[A]s may be reordered in the following steps:

(a) interchange rows 2 and 5

(b) interchange columns 2 and 5
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The following is thus obtained:

[A]

-B c

L B

H

-s
o

J

B s
o

L -B

A-4

As indicated by Ref. 1, the eigenvalues, X » of the following array

must now be obtained.

[[II*- [A] s
Q ]

= [SD]

It is apparent that [SD] has the following form:

[SD]

X +B -C

X -L -B

X -H

—

+s
o

-J X

-B -s
o

X

-L +B X

A-5

The characteristic equation of [SD] may be obtained in a number of ways.

The following matrix reduction scheme is most convenient. Let [SD] be parti-

tioned into four three by three matrices as indicated above and below.

fP I

Q"

[SD] A-6
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A reduced matrix, [SDR], having the same characteristic values, is

given as follows:

[SDR] = [P] - [Q] . [S]"
1

. [R]

[SDR]*-* 2
[I] - [Q] . [R]

The product, [Q] . [R] , is given below:

(-CB) <-B)s,

A-7

[Q] . [R] =

(-B + CL)

(2LB) (-B*) (L)s,

(-H)s (HJ)
o

A-8

Now, the elements of [SDR] X have the following form.

[SDR]A

2 2
(A - CL + B )

(-2LB)

(CB) (B)s,

( X
2
+ B

2
)(-L)s,

(H)s, (A -HJ)

A-9

Expansion by cofactors reveals the following polynominal as the charac-

teristic equation, or C. E.

C.E. = ( A
2
+ B

2
-CL)( X

2
+B

2
)(X

2
-HJ)+( *

2
+B

2
-CL) (LH)s

2
+

(2LB) (CB) ( A
2
-HJ) -(2LB) (H) (B)s

2
A~10

Further expansion reveals eq. A-10 as the following cubic in A .

C.E. - (A )
3
+(2B

2
-HJ-CL)(A

2
) +(B

2
-2HJB

2
+HJCL-tCLB

2
+

LHs
2
)( A

2
)-(LHB

2
s
2
+HJCLB

2
+CL

2
Hs

2
+HJB

4
) A-lOa

Further algebraic manipulation of the characteristic equation would be

very tedious and difficult. However, numerical solution is quite simple.

2
The three coefficients of the powers of A raay be evaluated for an assumed

value of frequency. The trigonometric solution of a cubic equation will

2
yield three values for A . The square roots of these values may then be
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obtained yielding six values of A ,
generally complex.

The solution of eq. A-2 is of the following form.

[SVJ. - e
[A]s

o . [SVl
b a

or

[SV], - [Zl . [sv]
aD a,b a

A-ll

A-lla

where

IZJ e o
a,b

A-12

Now the Cayley-Hamilton theorem may be employed as suggested in Ref

.

1. Since [A]s is a sixth-order square matrix, the (in-plane) transfer

matrix may be written as follows:

[Z]
ip

- e
[Als

o - c
o
[I] + c

1
[A]s

o
+ c

2
([A]s

o )

2
+ c

3
([A]s

o)
3
+

c
4
([A]s

o )

4
+ c

5
([A]s

o)
5

A-13

Since the eigenvalues of [A]s must satisfy eq. A-13 also, six

simultaneous equations may be written in a form similar to eq. A-13. These

six equations may be written in matrix form as indicated below:

e
*<

e
A*

e
A3

—

eNl

e*r

eH

i \, K K K X
i "i i

5

I A, >£ ^ ** &

' >M *3 *3 *3 >§

I A// A/, X1

ft, >sl $
H A4 Asy Ay

i *5 4 a3^ 4 >£

• ** ^ >4 ?i %

A-14
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or

[ECS] - [RIA ].[C] A-14a

A given value of A may be represented as a complex number, R( A ) +

jl( A ), where R( A ) indicates the real part of ^ and I( A ) indicates

the imaginary part of A . A power of A may be indicated in a similar

fashion as R(/\ ) + jl( /s ). When a value of A has a non-zero imaginary

part, there will be another value of A which will be the complex conjugate.

When I( A ) is zero, the corresponding rows of [ECS] and [RI/\] will remain

as shown above.

If I( A ) is non-zero, then the two rows of [ECS] and [RIA ] corres-

ponding to the conjugate pair involved may be combined as follows to yield

equations containing real numbers only.

e
R( A ^osK /N ) - c

Q
+ ClR( A

2
) - c

3
R( A

3
) +

c
4
R( A

4
) + c

5
R( A

5
) A-15

e
R( A } sinl( A ) - c

Q
+ Cl I( A ) + c

2
I( A

2
) + c

3
I( A

3
) +

c
4
I( A

4
) + c

5
I( ^

5
) A-15a

These two equations may be substituted in place of the rows from which

they were obtained so as to obtain real values only in eq. A-14 and eq. A-14a.

Then the coefficients may be found as

[C] = [RI A ]

_1
. [ECS] A-16

Having thus obtained the six coefficients of eq. A-13, [Z] TP may

readily be evaluated for the assumed frequency. A similar procedure will

yield the Out- of- Plane transfer matrix [Z] np . tz ] T» an<* I^]-^ may then be

combined into one twelve by twelve array which, when reordered, is the

general three dimensional transfer matrix desired.
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APPENDIX B

B. Sub-system Topological Technique

Extremely large piping systems would exceed the storage capacity of

the large computers available. A sub-system technique is presented in this

appendix, which may ease computer storage problems.

Fig. B-l

The system represented in Fig. B-l might be viewed as the four elements

connecting nodes A and a, B and b, C and c, c and d plus two sub-systems, one

connecting nodes a, b, c, and containing nodes 1, 2, 3, and 4, and a second

sub-system connecting nodes d and e and containing nodes 5, 6, 7, 8, and 9.

Let the first sub-system be considered isolated from the general system

at nodes a, b, and c, as represented in Fig. B-2.

Fig. B-2

The node stiffness matrix, [SN], may be obtained in the fashion

previously described. This matrix would be 42 x 42. The node force matrix,
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[FN], would have, when appropriately ordered, 18 non-zero elements in the

low numbered positions and, since there are no forces applied to the sub-

system at nodes other than a, b, and c; the remaining 24 elements of [FN]

would be zero. All of the elements of the node displacement matrix [DN]

would be generally non-zero. Let [FN] be partitioned into a non-zero

matrix, [FN] , corresponding to the forces at nodes a, b, and c, and a

zero matrix [FN]_. Let [DN], ordered so that the first 18 elements corres-

pond to the 18 elements of [FN]., be partitioned so that the first 18

elements make up a matrix, [DN] , and the remaining elements make up a

second matrix, [DN]-. Let [SN] be reordered and partitioned so that the

following two equations may be written:

[FN]
X

= [R] . [DN]
X
+ [S] . [DN]

2
B-l

[FN]
2
» [T] . [m)

t
+ [U] . [DN]

2
B-2

where

[SN]

U

B-3

Since [FN]_ is a zero matrix, eq. B-2 may be used to define [DN]„

as a function of [DNL, [T], and [U] as follows:

[0] = [T] . [DN]
1
+ [U] . [DN]

2
B-2a

Premultiply by the inverse of [U].

[U]"
1

. [T] . [DN]
1

= [DN]
2

B-4

substitute eq. B-4 into eq. B-l for [DN]_.

[FN]
X

= [R] . [DN]
X
+ [S] . (-[U] [T] [DNip B-5
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or

[FN]
1

= ([Rl - [S] . [U]"
1

. [T]) . pH
1

]

or

[FN]
1

- [SN]
1

. [DNJ

B-5a

B-5b

The column matrix [FN], contains the forces applied by the sub-system

to nodes a, b, and c. Let it be written as follows:

[FN]

FE
la

FE
lb

FE
lc

B-6

In a similar manner, write [DN] as follows:

[DN]

DE
la

DE
lb

DE.
lc

B-7

Now, eq. B-5b may be written as follows:

FE
ib

- [SN]
1

.

~
DE

la|

DE
lb

.

FE
lc.

DE
1C

B-5c

If a similar analysis were made for the second sub-system, the follow-

ing would result.

FE
2d

FE
2e

- ISN],

DE
2d

DE
2e

B-8

Similar equations can be written for those elements connecting the

sub-systems together and to the boundaries at A, B, and C.
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The system of Fig. B-l has been thus reduced to that of Fig. B-3.

// —•

—

15
*

l¥

IX

B
Fig. B-3

The reduced node incidence matrix [A] may be written as follows:

element

ends

11,

Nodes

11

12
B

12,

13

13

14

14

'd

A B c a b c

1

1

1

1

1

1

1

1

1

1

1

1

1
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The primitive stiffness matrix of the reduced system has the following

form:

[SP]

Su
S
12

S
13

S
14

s
l

s

S 11* ^19* SlV S
i&*

and S 9
are ^ x ^ arrays in this particular problem

while S. is an 18 x 18 array.

The reduced system node stiffness matrix may now be formed from the

reduced node incidence matrix and the reduced primitive stiffness matrix.

[SN] = [A]
x

. [SP] . [A] B-9

The reduced system frequency determinant, |SN| , the characteristic

frequencies and the characteristic mode shapes may now be obtained in the

fashion previously developed.

In the preceding developments, trivial nodes were eliminated by using

transfer matrix techniques. In this Appendix, we have seen that there are

other nodes, which might be referred to as "removable nodes 08
, which may be

eliminated by the indicated manipulation.
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