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ABSTRACT

The availability of digital and hybrid computers has led to the

development of the state space approach and optimization theory for the

analysis and design of control systems, particularly in space oriented

problems where meaningful cost criteria can be defined. In this thesis

optimization theory is investigated as applied to classical control

systems, such as regulators, to determine if these techniques may be

\ised in the design of systems to meet conventional performance standards

As part of this investigation a method has been developed which yields

the overall state equations for ^,system from the state equations of the

individual components. Also, since optimal designs are usually non-

linear and time varying, a discussion 01 stability criteria for these

systems is included.
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INTRODUCTION

There are two basic approaches to the analysis and design of

control systems. The classical approach uses a transfer function to

describe the system. Since this is primarily a frequency (either s or

w) domain description, most of the design and analysis techniques are

formulated in the frequency domain. The state space approach describes

the system with a set of first order differential equations. Since

this is primarily a time domain description it is logical that design

and analysis techniques be formulated in the time domain. Part of the

analysis problem consists of combining the individual component descrip-

tions to form the overall system description. The methods for forming

the system description with the classical transfer function are well

established. However, for components described in the state space,

such methods are not established. In Chapter I, a method is introduced

which permits the engineer to obtain the system equations from the

component state equations in a straightforward manner.

One class of design problems which uses the state space description

is to be found in optimal control theory. Optimization and state space

techniques can be applied to such problems as minimum time, minimum

fuel, and trajectory calculations with much success. Their application

to the design of servomechanisms and regulators is questionable. In

Chapter II, optimal control theory is applied to the regulator problem

in order to obtain a better understanding of the meaning of optimality.

This investigation naturally leads to the question as to how the engineer

can use this theory to design a regulator to meet specific design

criteria.



Optimal control theory, more often than not, leads to non- linear

and time varying systems. Stability is therefore an important considera-

tion when using the state space approach. Since there is no simple

stability criterion that is applicable to all non-linear and time varying

systems, Lyapunov's second method must be used to develop criteria for

specific classes of non-linearities. Lyapunov's 6econd method is

particularly useful in state space because it is formulated in the time

domain. In Chapter III, stability criteria that exist for a particular

class of time varying systems are investigated. This system is of

particular interest because it can be the result of an optimal linear

regulator design.



CHAPTER I

State Space Approach to Component Interconnections

1.1. Introduction . Since the transfer function is not a valid representa-

tion of a non-linear system, design tools such as root locus, Routh

criterion, Nyquist criterion, and frequency response cannot be applied

to non-linear systems. The state space description has a wider applica-

tion because it is a valid representation of non-linear, linear, time

invariant, and time varying systems. Often in the analysis and design

problem, the internal behavior of the system is of concern. The transfer

function is an input - output relationship and therefore provides no

information about internal behavior. The state equations provide both

input - output and internal information about the system. The state

variables themselves determine this internal behavior. It is significant

to note that the transfer function concept implies a single input-single

output for each component or block of a system. The state space approach

enables one to describe the system in a compact and simple form even

though the system is composed of components which are multi-input and

multi-output. The objective of this chapter is to present a simple

method for obtaining the system state equations from the component state

equations for component interconnections such as cascade, parallel, and

feedback; and also to present a general method for the same task when

the system is composed of many components which are interconnected in

any conceivable way. The advantage of the two methods developed here

is that the identity of the states of the individual components are

21
preserved in the system description. Choate and Sage have developed

a procedure to yield the system state equations in phase variable form.



This is a mathematically convenient form but it does not preserve the

identity of the individual component states in the system description.

1.2 State Equations and the Invariance of the Classical Transfer Function .

Any dynamic component of a control system is completely described

by the state equations

X= Ax +6/1 (1-D

Y = C x+ DA (1-2)

where

A an nxn matrix

B « an nxm matrix

C an sxn matrix

D * an sxm matrix

* an nxl column vector of state derivatives

x an nxl column vector of states

/^ an mxl input vector of forcing functions

^ * an sxl output vector

s the number of outputs

n «= the component order

m the number of inputs

An expanded form for Equations (1-1) and (1-2) is

*,

X„J

An An

An A»2

AM Am

An] X

Ajo Xi

•

•

+

*

A««L _X„

Bn BlV ' ' ' Bim

BfM &m * « » 8f\m_

5
(1-3)
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C„ d 'D.. D,i

Y = + /I (1-4)

lc« c S2 sn Xn J L0SI Q« » • » » Dsm.

where A.., B.., C... and D.. are obtained from the basic differential
ij iJ i-J ij

equations describing the component and thus may be constant, time

varying, or functions of x, or both. Henceforth, Equations (1-3) and

(1-4) will be referred to as the generic form.

Equations (1-1) and (1-2) have various special forms for which

there are unique A, B, C, and D matrices depending upon the choice of

state variables. In general, the choice of states is arbitrary and

thus many representations exist. However, only certain specific choices

have physical meaning (such as measureable indentif iable quantities) in

any given system. It is worthwhile to demonstrate the invariance of a

transfer function (single input/single output) to the manner in which

3
the states are defined. Let

Z - TX d-5)

Thus, Z is a new set of state variables defined by means of the matrix

transformation T operating on the given set of states X. Equations

(1-1) and (1-2) then become

-i.

T I = AT Z +B/Z (1-6)

./

Y= CTZ + Dyi (1-7)

where r and Y are considered as column vectors (multiple input and

output). Solving for the output, one obtains

11



YtO = Cf'lf's -AtVb/*"> + D/?<rs) (1-8)

Equation (1-8) is equivalent to
.1

Y(0-Cln S-AT")Tj SAO) + D/Z^-

d-9)

The output, Equation (1-9), is identical to that obtained from the

original Equations (1-1) and (1-2). For the case of a single input

and single output system, the transfer function becomes

%$> --c[si-a]"b + d (l-io)

Equation (1-10) is independent of T and is the classical transfer

function.

1.2.1 Special Forms . The following special forms are commonly used

state representations.

(a) Normal Form. Phase Variables.

X, O I o oOOIO
. • O

I

o• #

« • • •

_Xr» j jAa, -/\ nz ~An3 "An* • •

o k.

+

'°1

o
•

•

• j-
•

"Aml ]Xn .1

.

a

(i-ii)

Y =[c„ ca C'„ • • C,n]|V +M /i

LXft.
(1-12)
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This form corresponds to the following transfer function for single

input -single output:

4") Am -^An,S+A n3 S
l
4

' CnS
'

1

AnnS**' 4 S*
d-13)

If the transfer function of a plant is expanded in the form of Equation

(1-13), Equations (1-11) and (1-12) can be written directly provided

3
the plant is controllable. The normal form may also be obtained from

the generic form by performing a matrix transformation such as that

described by Equation (1-5). The procedure for selecting the T matrix

that transforms the generic states into Normal Form (phase variables)

9
is discussed by Browne. The procedure is not straightforward and

requires a great deal of mathematical manipulations. Thus, for a single

input and single output component, it is usually simpler to go from the

generic form to the transfer function and then to the Normal Form. This

particular representation is of interest in Chapter II because it lends

itself to certain mathematical conveniences not available in the other

forms.

(b) Lur'e or Eigenvalue Expansion

X, An O O '

A ti O •

. o An o

• o
LP o o .

y = [i i I
•

°1

o
x»
1

ft

+
•

1

Af*<\! _)V -UAt

I]

Xr>

A

+ [dJ/z

(1-14)

d-15)
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Equations (1-14) and (1-15) correspond to a component with simple poles

only. For components with repeated poles, the A and B matrices are

altered. This Lur'e form corresponds to the following transfer function

(for the component with simple poles only):

M ^ A " S-A 2 ,

^
s . Aftn

(1 15a)

This state variable representation is obtained from the partial fraction

expansion of the transfer function. However, it may also be obtained

from the generic form by a proper choice of the T matrix.

In practice, if the differential equation relating input to output

is available, then the transfer function is easily obtained and the

Normal form or Lur'e expansion follow readily. However, if the system

is described by a sequence of differential equations then the generic

form may be obtained easily. For multiple input and multiple output

systems a scalar transfer function for the system cannot be described

and therefore the generic form has to be utilized to obtain the special

forms

.

When components are interconnected it is possible to derive the

differential equations for the combined system and then identify new

variables and state equations. This involves a lot of unnecessary work

and the original states lose their identity in the new system. Also,

if the original component states are physically measureable quantities,

this might not be true for the new states of the system. In the next

section it is shown how the state equations for the system can be de-

rived from the component state equations without changing the original

states. The generic form will be used for simple interconnections.

14



1.3 Procedure for Obtaining System State Equations . Consider the state

equations for two components each designated by a superscript within a

parentheses.

k
(l) . A(D X(1) + ,<«-.(I)

X

Y
(l) = (1) x

(l)
+ „( 1)^(1)

X<
2
> = A<

2
> X<

2
> + B<

2
>/1 < 2 >

Y(2) = c
(2) x(2) + D

(2)yt (2)

(1-16)

(1-17)

(1-18)

d-19)

Equations (1-16) through (1-19) can be combined into two matrix

equations as follows:

"
.10

1

X A"
;
o V

£ O ! A* .«".

+
B°

O B
u)

.«)

fl
U)

(1-20)

V" c°
CO

d" Q a

u. c* i\
.

1? i
(1-21)

Equations (1-20) and (1-21) imply that components one and two are

operating independently, i.e., they are uncoupled. The next several

sections investigate the effect of the following types of inter-

connections.

15



(a) Cascade Combination

(b) Parallel Combination

(c) Feedback

Figure 1-1 is a block diagram representation of Equations (1-1) and

(1-2) for a component. The double lines indicate that the signals are

matrix quantities. Equations (1-1) and (1-2) can also be expressed in

flow graph form as shown in Figure (1-2). The flowgraph form is used

in the following development to obtain the system state equations.

1.3.1. Cascade Combination . When two components are cascaded, Figure

1-3 results. From Figure 1-3

(0

(2,

Y = Y

/ = ^

d-22)

(1-23)

(1-24)

Substituting Equations (1-22) through (1-24) into Equations (1-16) through

(1-19), one obtains the following new form for Equations (1-20) and

d-21):

(0

X

X

l(i1A Q

bY A* i\

+

10

B'

a) (0

B-D

n
(1-25)

Y = D C C
0)

»
X

|\J* .jo -i

t [D-D
J
/i

(1-26)

16



The identical result is obtained by inspection from the matrix flowgraph

of Figure 1-4, i.e., Equations (1-25) and (1-26) are obtained by writing

the matrix equations of the new dependent variables as functions of the

4
new independent variables. An interesting modification to Equation

(1-20), due to the cascade connection, is that the lower left matrix

is replaced by a coupling term. Thus, the lower left and upper right

matrix positions represent coupling of two components. Coupling

connections are expressed in a general form in Figure 1-5. Note that

the cascade combination is a special case of Figure 1-5. Cascade

connection, when one of the two components is a matrix of gains, K,

results in the following system state equations:

.(2) (2)i v (2)[i™] =
|>

( }

\ s B<
2
> K

[y
(2

>] - [c (2)

]
x
(2)

+ [d ( 2) K

/I

/I

(1-27)

(1-28)

1.3.2 Parallel Combination . When two components are connected in

parallel, Figure 1-7 is obtained. From this figure

a - /i - si (1-29)

= Y
(l)

+ Y (2) (1-30)

Substituting Equations (1-29) and (1-30) into Equations (1-16) through

(1-19) yields the following new form for Equations (1-20) and (1-21):

,0)

X

f

A" o X
«

A
U)

X
®

er

B
&

n (1-31)

17



y = y* .l*> ,10

(?)

n w-r

+ [d\ d A
(1-32)

l*

The same results are obtained by inspection of the flowgraph of Figure

1-8. As one would expect from paralleling two components, the output

is merely the sum of the outputs of the two components operating

independently.

1.3.3 State Variable Feedback. Introduction of state variable feed-

back to a single component is shown in Figure 1-9. From this figure

(1-33)/t". ^-hxw

where H is a lxn row vector of gains. Combining Equations (1-33), (1-16),

and (1-17), one obtains the following results:

!<»
-

[

(1)
B
(1)

(1)

H "I X

[c (1
> - d

(1) h] X

+ B
(1>/1

+ D<
1
>/1

(1-34)

(1-35)

Using the flowgraph method and Figure 1-10, the same results are obtained

by inspection. Introduction of state variable feedback changes the A and

C matrices and thus enables one to move the open loop poles of the

component to any desired location as shown by the system transfer

function (for a single input and single output system).

^ = c rsi - a I
-1

/Us)
B + D (1-36)

18



where

c . cu> - D^H

A . Ad) - B<»H

B -B<«

D -D<«

(l-36a)

(l-36b)

(l-36c)

(l-36d)

Unity feedback is a special case of state variable feedback and there-

fore treated the same. To demonstrate the use of the above, several

examples are considered. Appendix A gives a set of state equations

for a few networks and machines. Normally the states of a component

are arbitrary; but, for the components listed in Appendix A the states

chosen are physically measureable quantities.

Example 1.1 Figure 1-11 is an example of a system formed by cascading

several components. The state equations for the lead network (Appendix

A) are

V,
R.R*C

v
c + Lk.c E,

(1-37)

V, f Eh
(1-38)

The state equations describing the servomotor are

• *

a'01

o

Ktt+f

©mi

+

~0
'

6m
L

Ke

_ T .

<f\ (1-39)

19



6m = [ I O
]

4

(1-40)

Using Equations (1-25) and (1-26), the combined system state equations

can be written directly.

r m*i
RMtC

o

o 1

. Ke
J

Ko + f

V
6m + O

6.
J" -

v«
(1-41)

§- = [O T O jk (1-42)

T is the gearbox ratio. The important result here is that system state

equations are written directly without using the transfer function of

the components and therefore retaining the original component states.

Example 1.2 Unity feedback is now added to the system of Figure 1-11,

and the resulting system is Figure 1-12. This type of feedback is the

same as state variable feedback with a feedback gain matrix

H = T ol (1-43)

Therefore, using Equations (1-34) and (1-35), the system state equations

are

y

ff,R*c
O ~VC

~

o I a H- o
- Ke
J" S -

_6m _ _ J" J

(1-44)

20



(1-45)

The examples above illustrate the simplicity in obtaining the system

state equations from the component state equations. The very same

results are obtainable through the use of transfer functions but with

the added difficulty of identifying the original states. The general

equations used to obtain the system state equations do not have to be

remembered because they are easily obtained from the flowgraph method.

1.3.4. Complex Combination . More complex control systems often have

component interconnections that are not entirely cascade, parallel, or

feedback connections. The overall system may consist of components

which are multi-input/multi-output, single input/single output, or

combinations of both. Figure 1-13 is an example of a complex combination.

The state equations for the overall system can be obtained by the flow-

graph method. However, as the number of inputs and outputs of a com-

ponent increases the flowgraph method becomes impractical. A method

is proposed which will enable one to obtain the system state equations

for any complex system as well as the cascade, parallel, and feedback

connected systems. The general formulas for computing the system state

equations are now derived.

If the state equations of the individual components are combined

into one large matrix of equations so that the overall system inputs

are at the top of the input vector /Z and all other internal inputs

form the bottom of the •/]. vector, then the combined matrix of state

equations can be written as

21



X = AX + Ba /la + Bb J2- b (1-46)

R is the vector of external system inputs and /t^ is the vector of

internal component inputs. The same arrangement of the input vector

allows the combined matrix of output equations to be written as

Y = C X + \JlA + D b ^6 (1-47)

From the diagram of the system, the -/7_£ vector can be written in terms

of the Y vector of the combined system. This relation is

/lb = AY (1-48)

The elements of A , the interconnection matrix, are determined by

inspection. To illustrate the procedure of writing the combined matrix

of state equations, output equations, and the interconnection matrix,

consider the system of Figure 1-13. For this example there are only

two system inputs, /t, and /£J . For simplicity, consider each

component to have only one state (first order components). Equations

(1-46) through (1-48) become

,<f)-i

: x,

x,

A

O

o

to

X" o o \\X

(3)

sl' Oiffooooo 1 r

/? ;

r

o o o B? £ o o o

O A O

O O O A
(4;

fj)

i (4)

+ ;o bT< o o o b'*o O

<4> W
O O ! O O O B, B,

k
,1, d-49)

if

22



~er o oo^ X,

y2 c5 o o x,

y. o
la)

c, o o i

ft)

x,
C2>

c? c o

y o o
t3i)

/. o o
to]

o c
1

or

+ i°
o

o

10

o
(

d; 2 o o

o ' dI'L o o

o
o
(?)

o o o

o o o

o o o

o o o
o o o

I? o o

r
rf,"

n

O ' O O O O D, D;

47] d"50 )

1?
*\

T,
W

**

O o o

£ 1 o o
/«.• o 1

4? 1 o o
4/

i

o 1

w
!

I o o

o o o

O O
o o o

o o o

O I c

1

y?
fi>

tti

d-51)

If Equation (1-48) is solved for Y and this result equated to Equation

(1-47), {L^ can be obtained in terms of x and /I a. Substituting this

result f or A. b into Equations (1-46) and (1-47) yields

X

Y =

A+Bb(l-AD b)AC X +
-i

BA tbba-ADb)AD, d,

_C + Db(l-ADb)Wl]x f [Da +Db(I~ADb)AD^U

(1-52)

(1-53)

The complete derivation of Equations (1-52) and (1-53) is given in

Appendix E. The above equations represent the state and output equations

for any system. To illustrate the application of the above results,

23



consider the following examples. In each of these examples the elements

of the A, B, C, and D matrices of the component state equations are

arbitrarily chosen for illustration purposes only.

Example 1.3 The combined matrix state equations and output equations

for the system of Figure 1-14 are

.0)

X,

x,

X,

1 o o 1
"xT

I o
ft

x, +
\

o o 1

J

v •

L

\ I c o

O O O 3 i

4,

*2
U)

M

n
w

d-54)

d)1

y«

in

fs]

y

I o o

I o o

z o

O 4

.<n -i

u)

X,

to

X,

n zoo
BOO

+
at

;0 0,4 O !

/2

ui

O o,o
^

/z

(1-55)

The interconnection matrix equations are

^ 1
1 o o o r yr

<•*>

^

Therefore

I o o y*

y
n)

(1-56)

1

3

(1-57)

(1-58)
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Application of Equations (1-52) and (1-53) yields

X,

X,

"I O o" >ri
_

l z
r ">"t

1 2 o x,
j -f 1 2 4*

3
1 xH 3 q

-

(1-59)

(1-60)

(1-61)

(1-62)
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fl?
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o
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x
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1

3

8

A

Lyl b 4
-1

1 3

(1-63)

Example 1.4 The combined state equations and output equations for the

system of Figure 1-15 are

*,

x,

zoo
O I o

lO o i JLx.j

(01
X

to

X,

(3)

+

I o o o

2 3 O

o o o ^

[ v;

^t».)

/?,
g)

w.

^3;

(1-64)
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Z. o c
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/?,

to
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O I 1/2
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(1-65)
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/?

/«>

I O O Oljyf
]

o I o o y*

(i)

U)

ti>

y

(1-66)

Again, application of Equations (1-52) and (1-53) yields

a

x,

Z c o] "x
1

,"
"l

" pi"]

6 ! x, + 3 z !

00

a

9 z
_ < 8

_1

(1-67)

\0)
2

- fl)-

M o

(0 IA

Y2 i o x, Z=
-f ;

U^ tt

y :

6 3 x, 3 z
,3)

_ -J

y Z i
1 U

n

fl.

ct)

(1-68)

Example 1.5 . Figure 1-16 is different from the previous two examples

because a feedback loop is present. From flowgraph theory one would
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suspect that the determinant of (I - ADb ) can have a value different

from unity. This is indeed the case. By inspection of the block

diagram of the system for a closed loop, the necessity for computing

the determinant of (I - A^b ) can be established. Figure 1-16 has a

closed loop provided y^ is a function of fi ^ and y is a function

of fi . The combined state equations for this system are

. (0

X,

X,

A
X,

3 O O

2

o o

o

r
xr

(tf

IX

4 !X

I z
,
o o

1

O 5 O

O, O O 4

a
(fr-

/2,
:

J
(1-69)
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O o
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o X,

i

1 (a)

[x,

4- '
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Z i o o

O 3 O
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(1-70)
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(1-71)

Substituting into Equations (1-52) and (1-53) yields

X
I I

x
w

x,

-5 O -10

-35 * -50

-2 O -16

(-0

X, +"

^
X,

-7

-35

-2

/')!

/?/

(1-72)
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y

y.
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n
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1
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\'Z o X,
flti
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(I)

-21 4 -30 x, -/>

(1-73)

y !-4 -5 _ -4

Example 1.6 This example demonstrates the procedure for obtaining

the system state equations when the components are connected by pure

gains and summers. Consider the system of Figure 1-17. The combined

state and output equations are

x,

1

-1 o o X? 1 z jo o o~ k"

"

.*) fl) *,
w

x, = -z o x, + • 2. c o *

a's ffl
i

x, _0 -3 x, [0 ,
c 5

4,

A
»)

(1-74)
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~l o n (0
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3 X,
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\ \ s\ o o o

I
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+
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c con
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d-75)

For this system the interconnection matrix is

.M

A,

/I,

O 5 O O

I o o o

O I o

r on
y
y."

fa)

y

_y

.

(1-76)
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Again, application of Equations (1-52) and (1-53) yields the following

state and output equations:

*r -I O O

x, — 10 -z

x, 21 15 -3

X
f*> —

p

a)

X, +
fj-)

J L
IX,

I I

!30 Z0

;73 40

<o

4,

>?,

f/i

L~*J
d-77)

W
y-

Y<

/*
ft)

y

z

1 O
5" 3 O

7 3 4

ITx
ro

w

-h

3

15"

16

5" '

i

2 !

IS"
''

/?;

ft>

f»

/?,

d-78)

The examples above demonstrate the usefulness of the general method to

a system composed of multi-input/multi-output components which are

connected in any complicated fashion. For systems composed of many

components, the method is particularly suitable to the digital computer.

In this chapter a brief introduction to the state variable

description of a dynamic system is presented, and some general methods

are presented for obtaining the state equations for the system from

the component state equations. This system description lends itself

to a time domain design procedure. The classical approach to the design

of a regulator or servomechanism uses the transfer function description.

The question now arises as to how one designs a system in the time

domain to meet required specifications? This is discussed in Chapter II,
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Figure 1-2. Flowgraph of State Equations
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Figure 1-3. Cascade Connection of Two Components
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Figure 1-4. Flowgraph for Cascade Combination

(I is the Identity Matrix)
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Figure 1-5. Block Diagram of Coupling
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Figure 1-8. Flowgraph for a Parallel Combination
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CHAPTER II

System Design Using Optimization Theory

2.1. Introduction . In Chapter I the state space description was

used to represent the control system. A design technique or approach

which is based on this type representation is known as optimal control

theory. Even though some of the optimal criteria are stated in the

3
frequency domain, most are in the time domain. Kalman argues that

this is a weakness of the modern approach because the majority of the

control concepts are expressed more simply in the frequency domain.

The experienced designer of a servomechanism or regulator uses fre-

quency domain concepts such as root locus, phase margin, bandwidth,

etc., because he can relate these parameters to a good design. To

use the modern approach, the designer must translate the design spec-

ifications into a performance index which he then proceeds to minimize

or maximize to obtain the control that yields these specifications.

The correlation between the performance index and performance criteria

is the main subject of this chapter. In order to study the problem,

three subobjectives are considered.

(1) To obtain the optimal control in terms of the system and

performance index parameters for a simple system. The motivation

behind this objective is the desire for a better understanding

of the effect of these parameters on the resulting optimal system.

This type of information is helpful in translating specifications

into a performance index.

(2) To study the evaluated cost function in order to obtain its

meaning in terms of a classical control problem.
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(3) To investigate the optimal deBign techniques that are used

to realize a desired Bystem.

The infinite linear regulator problem is considered because it has a

closedform mathematical solution and It is similar to the Bervomechanism

problem.

2.2. Derivation of the Optimal Control . The purpose of this section

is to derive the optimal control for the linear regulator of Figure 2-1

with the following performance index:

J= J [X
TQX+ UPuJdt (2-1)

o

Q is a positive semidefinite state weighting matrix and P is a positive

definite control weighting matrix. The integrand of Equation (2-1) 1b

positive definite to ensure stability of the optimal system. The plant

to be optimized is described by

X-AX+fe^ (2-2)

The above performance measure expresses the desire to drive the state

vector from an initial condition to the origin with a trade off between

the system error and the amount of control energy expended. This desire

is readily seen by making use of the end result* Minimization of this

performance index leads to time invariant linear state variable feed-

back as the optimal control. For a second order linear time invariant

plant the optimal control is

U s -K,X, -M, (2-3)
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Substituting this result into Equation (2-1) and expanding yields

JsjCflnXiV^xUcI* +- rp.,CKX+2K,Kl X |(X l fKiXtJdt (2-4)

where

Q - <U °

q
22

P = p

(2-5)

(2-6)
11

The first integral of Equation (2-4) represents the system error and

the second integral represents control energy. The choice of q, , , q 99 ,

and p.- represents the emphasis on minimizing the system error as

opposed to control energy.

The control interval is infinite and thus time is of no importance

For a finite upper limit on the performance index, the optimal control

is time varying state feedback. In the optimal control literature it

is shown that the optimal control is

r' t
lKx,

3
= -P BRtt)* (2-7)

where R(t) is the solution to the matrix Ricatti equation.

(UO + Q - FU^BpVr^) + R(i)A +ARU) = O (2-8)

Since the performance index has an infinite upper limit and the optimal

system is assumed to be stable, R(t) vanishes and R(t) becomes a time

invariant matrix. This leads to the reduced Ricatti equation.

-' T.

A
T
R VRA -RBP6R » Q = Q (2-9)
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The optimal control, Equation (2-7), then reduces to

uu)- -p'brx (2-10)

For the plant of Figure 2-1, the matrices of the reduced Ricatti

equation are

R
L

4,, A lt

P-- p„

(2-11)

(2-12)

Q -

A =

B =

1"

c pK

o
\

-a

"o

"

6

(2-13)

(2-14)

(2-15)

R is a symmetric positive definite matrix. Substituting the above

matrices into the reduced Ricatti equation yields

'(-£&+*) fa -**».'£A* /U$

&-•***'£****) HrUn,c^^

o

o o
(2-16)
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14
Application of Sylvester's Theorem to obtain the requirements for a

matrix to be positive definite yields the following solution to the

Ricatti equation:

4n = JE& J ?* <?$? + *& Jfy» (2-17)

n* '- gJJP-> (2-18)

n - En -a f
(V'+G'-ist + TL&Jf/p*

(2-19)

The optimal control is

li(X) = -BB>P~ X (2-20)

U(X)

£ A

16 /2«
LP"

^T

X

U0<) = -
^'/p»

-L

-tX.

L~
a+ y*+tffc+w^

X,

x,

This result leads to the system in Figure 2-2 where

K,= ffih

(2-21)

(2-22)

(2-23)

K* B 6 -a+ j£+s &±±i& (2-24)
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Equations (2-23) and (2-24) represent optimal feedback gains in terms

of the plant parameters and the weighting factors of the performance

index; but before discussing them, another approach is employed to

check the results and show the effect of the parameters on the state

trajectories

.

A check on these results is obtained by using the Euler equation.

However, this approach is valid only if the plant can be described in

Normal (phase variable) Form which implies that the plant must be

3
controllable. For the plant in Figure 2-1

X, - X z (2-25)

(2-26)

(2-27)

Xi - -fiXz. + 6 W

or

X, = -tfx* +6^

The performance index, Equation (2-1), can be written as

j»j"c$.,xr+£«x!+<uVi dt (2_28)

Solving Equation (2-26) for u and substituting the result into Equation

(2-24) yields
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or

oO

J s JVx.,*.,X,)dt (2-30)

Substituting the integrand above into the following Euler equation

> go<.j*,xi)

<ix,

_ d- ftafa.MJ
at d*. dt

1
<^x.

= O (2-31)

yields

X, X, +- 6 £il X, = O (2-32)

Taking the Laplace transform of Equation (2-32) yields

.4 r^a

L Pii J pit
P'

(2-33)

Equation (2-33) can be factored into the following:

sWa-va-b s-
J _

~/A-J^1^]UaWA2
-- B

7

TWaWA1
- B '

J
= o (2-34)

where

A = 6 £tf + (2-35)

(2-36)
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Two of the roots of Equation (2-34) are in the right half plane and

thus must be eliminated to satisfy the boundary condition

X 6*) = (2-37)

Thus, Equation (2-34) reduces to

st /a-^-b' "][s+ Ja^W e> = o (2-38)

Taking the inverse Laplace transform yields

x, f x[_J^W^ -^JmIa^] + x,/eT =o (2-39)

Equation (2-39) represents the optimal state trajectory for the system

based on the chosen performance index. But, from Equation (2-27)

x, - -ax, + G,u (2-40)

Substituting this equation into Equation (2-39) and solving for u

yields

m= -i^x, __ i_r-di-
[-
a+j^^ +j B̂

:n
Therefore, the optimal feedback gains are

(2-41)

K, = JB" (2-42)

k- i^^A-y^'^jA^ B (2-43)
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Equation (2-43) is simplified as follows

(K** +a? = J2A*z{b' (2-43a)

Solving for K_ yields

K t = -cl+ 2A4Z/B
1

(2-44)

With the appropriate substitutions for A and B, the optimal feedback

gains are

K, -It, (2-45)

K*=i (2-46)
pi. 1 p« J

These results are identical to those found by solving the reduced

Ricatti equation.

The following results are stated without proof for a first order

plant shown in Figure 2-3:

K,s -o- + g*£l + a? (2-47)

The above approach not only serves as a check but also demonstrates the

effect of the plant and cost index parameters on the optimal trajectories

To obtain general results such as these for higher order systems brings

about mathematical difficulties. The digital computer must be employed

to obtain specific results for specific systems. The solution to the
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reduced Ricatti equation is obtained by numerically integrating the

matrix Ricatti differential equation backwards in time with the

following boundary condition:

R (t = 0) = (2-48)

For large negative time the R terms will approach constant values that

are the solution to the reduced Ricatti equation. An example of this

procedure is given in section 2.3. However, the general results obtained

for the second order system serve to illustrate the effect of the plant

and performance measure parameters on the optimal system.

With attention focused on Equations (2-45) and (2-46), some

general results are obtained. If the elements of the Q matrix are

held constant and p - made large, the feedback gains are small. This

result is reasonable since large weight on control energy relative to

the weights on the system error expresses the desire to use small

amounts of control energy at the expense of large states, i.e., system

error. For a constant p..- and for large values for the elements of the

Q matrix, the feedback gains are large. Again this result is reason-

able since the emphasis is now shifted to small system error at the

expense of large controls, i.e., large feedback gains. However, the

Q and P matrices actually have the same effect on the feedback gains

since the optimal control is a linear combination of the states. That

is, gains are made large by increasing Q or decreasing p. . . The same

optimal system results from an infinite number of choices of Q and p

since the optimal control is a function only of the ratios q../p .

and q /p . Thus, unless each state is of separate concern, the Q

matrix should be the identity matrix and the p.
1

term used to achieve
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the desired optimal system. This result will be utilized in the section

on modeling. The pole and gain of the plant also affect the feedback

gains. For large pole values the size of K
2
decreases. This is expected

because large pole values imply a small time constant for the open loop

plant. Thus, the plant is able to decay to the origin with little

assistance from the control.

The characteristic equation describing the system in Figure 2-2

is

X, + (a+K*6)X, f K,GX, -O (2-49)

Therefore

W« = (k^ = i^/^p" (2-50)

where Wn is the undamped natural frequency and £ is the damping ratio.

From Equations (2-46) and (2-47), large Q matrices relative to p..

produce highly damped systems with large bandwidths. But note that ^
can exceed unity. One would expect that some sort of limit on &

would result from the optimization process. For large values of p

relative to the terms of the Q matrix, optimal systems which are highly

oscillatory with small bandwidths areproduced. But, there is a com-

promise between these two extremes which is obtained by trade-offs

between q 1
-

, q„„, and p.... Thus, even though the optimal control has

been found, the classical ideas on what constitutes a good design

must be introduced to express the ultimate objective. The performance
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index chosen yields a class of optimal systems and any specific one of

the class is chosen by selecting the appropriate Q and V matrices.

However, the general results obtained for the second order Bystem do

give some feeling on how to select the parameters of the performance

index. For higher order systems the exact relationships between the

performance index parameters and the classical parameters are not known,

and thus some other approach must be taken. This new approach is

mode 1 ing

.

2.3 Modeling . As noted in the previous section it Is difficult to

translate the classical design criteria Into the performance index

parameters for systems higher than second order. Even the procedure

oi adjusting the Q and P matrices until an acceptable time constant

and percent overshoot are obtained gives no information about the band-

Width, phase margin, ltd However, this problem can In- eliminated by

using a procedure similar to one employed by the classical approach.

In the clissiial approach, one often adds componentp 01 feedback loops

so that the new system behaves like a known differential equation.

Tills model differential equation represents a system that has the desired

I tssical specifications. If this model is incorporated into the per-

formance index so that the mathematical process oT minimization is

applied to t tie difference between the system response and the model

1 espouse, then the optimization theory takes on meaning and practical

14
significance. Sehult ,-. and Melsa present Buch a modeling approach

to the design of a linear regulator.

Comidei a plant described in Normal form. Any quadratic index

Of I he form

J £ ]t X
T

Q X 4- p()

A/Ddt (2-52)

o
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where the states are phase variables, is reducible to

oO

J=Jt (

L

T
xf + ^ (x

T
s*) 4-

Rl
aa

x
2 dt (2-53)

S is a symmetric constant matrix of order one less than the system, and

L is a column vector of system order. That is, the first term of the

quadratic form is reducible to a perfect square and an exact differential,

Again, it must be emphasized that this result is valid only when the

states are phase variables. The exact differential is not affected by

the minimization process because

T

J di

t = -6

= -X^SX^o) (2-54)

tso

From Equation (2-54) it is evident that the exact differential term

represents a fixed value of cost that is determined only by the initial

conditions. The term is positive because the terms of the S matrix

are always negative. The derivation of the L and S matrices for second

and third order systems is given in Appendix B. The general recursion

formula for higher order systems may be obtained from Reference 14.

The performance index, for the Normal Form representation, is equivalent

to

<K>

J*j"£a
T
xf+ ft

n
1
] A (2-55)

With this performance index, the L matrix has to be selected instead of

a Q matrix. But this form allows one to incorporate the desired model.
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Consider, for the moment, that p.- is zero. Then the cost function is

zero if

a i

Lx= JU.a) + Ax,u) + j
3
x,tt)+ +u,(t)--o (2-56)

for all time. By the proper choice of the L matrix, Equation (2-56) will

be the model differential equation. The Q matrix, which is needed to

solve the Ricatti equation, is derived from the L matrix using the

formulas of Appendix B. Then, p
1 1

is decreased until the optimal system

response is close to the model response. However, the system response

cannot be identical to the model response because as p
1 1

approaches

zero the feedback gains become extremely large. Stability problems are

also encountered due to the fact that p . is then semidef inite . The

value of the cost function then represents how close, on an integral

square error basis, the system response is to the model. Thus, one is

prevented from attaining the desired model response by physical restric-

tions on the size of the feedback gains. Note that the model equation

must be at least one order less than the plant in order that the L

matrix not exceed the system order. This presents no problem since one

usually designs higher order systems to behave like second order systems.

This modeling technique is also applicable to plants which have zeros.

In summary, the procedure of this technique is to select the L matrix

from the coefficients of the differential equation representing the

desired response and then determining the elements of the Q matrix from

the relations in Appendix B. With this Q matrix, the Ricatti equation

is solved with various values of p.. . until the maximum permissable

feedback gains are obtained. The following examples demonstrate this

procedure

.
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Example 2.1 Consider the plant of Figure 2-1 where

G = 1 ; a = 2 (2-57)

and the desired model is

X + 2X = (2-58)

Since the L matrix comes from the model differential equation, it

follows from Equations (2-56) and (2-58) that

L = (2-59)

Using this L matrix and the relations of Appendix B, the Q matrix is

determined to be

n
4

1

Q = (2-60)

With this Q matrix, the feedback gains are determined from the relations

for the second order system of the previous section. Figure 2-4 shows

the desired model response as well as the optimal system responses for

various values of P-, -, • Note that as p.. .. is decreased the optimal system

response approaches the model response. Figure 2-14 shows the trade-

off between the size of the optimal gains and the cost (proximity of op-

timal response to model response). The next example is a more practical

one since the plant is third order and the desired model is second order.

Example 2.2 Consider the plant of Figure 2-5 where

G = l;a=3;b=5

and the desired model is

X + 2X
X
+ 2X

l
=

(2-61)

(2-62)
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Using Equations (2-56) and (2-62), the L matrix is

L = (2-63)

From the results of Appendix B for a third order plant, the Q matrix is

determined to be

Q =

4
0~

1

(2-64)

Since there are no closed form solutions to the reduced Ricatti equation,

the matrix Ricatti differential equation must be numerically integrated

to obtain the solution to the reduced Ricatti equation. This solution

is obtained by integrating the matrix Ricatti differential equation

backward in time with initial conditions

R (t = 0) = (2-65)

For sufficiently large negative time, the terms of the R matrix will

approach constant values and these values are the solution to the re-

duced Ricatti equation. The optimal feedback gains are then obtained

from

K = R B P
_1

(2-66)

The solutions to the matrix Ricatti differential equation for various

values of p are shown in Figures (2-7), (2-8), (2-9), and (2-10).

The system responses for the feedback gains associated with the various

p - are shown in Figure (2-11). Again, note that as p-- decreases the

optimal system response approaches the model response. Figure 2-15

shows the trade-off between the size of the optimal gains and the cost

(closeness of the optimal response to the model response). The
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mathematical formulation of the first order differential equations com-

prising the matrix Ricatti differential equation is given in Appendix C.

This modeling technique provides more information about the meaning of

optimality with respect to a quadratic index than the techniques to be

discussed next. Since the Q matrix and the p ... term affect the optimal

control in the same way, it is simpler to fix the Q matrix and vary

the p.
1

term to obtain the desired optimal system. Once the Q matrix

is chosen, optimality is also defined since there is a unique L matrix

associated with the chosen Q.

9
Another modeling technique is proposed by Tyler . This technique

also uses the quadratic performance index but defines a new set of state

variables that are the difference between the model states and the

states of the plant. This index is then minimized. This procedure also

leads to the matrix Ricatti differential equation. This procedure,

unlike the previous one, requires the adjustment of both the Q and P

matrices to yield a satisfactory system response. These two modeling

techniques bring to light several conclusions about the optimal control

approach to the design of regulators and servomechanisms. The optimi-

zation technique is a mathematical method of introducing a set of

variable parameters into the actual system that provide the designer

with a more useful tool with which to cope with system constraints such

as gains. However, the ultimate objective is still expressed in the

form of a differential equation. The optimal controls approach is a

search for the performance index that yields the desired differential

equation. The physical significance of the value of the cost index is

also questionable and, therefore, is considered next.
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2.4 The Evaluated Cost Index . Consider again the performance index

3
of the linear regulator. Kalman shows that the value of this index

for a stable system is

J = X
T

R X (2-67)
op -

where R is the solution to the reduced Ricatti equation. For the second

order optimal system of Figure 2-2, Equation (2-67) yields

Xp - P„ Ki(a4 K 2 £)X*(c) +Ap« Hi XJ^X^o)
4-f* &L *tM (2-68)

Section 2.1 stressed the fact that there are many values of Q and P

that yield the same optimal system. This is also true for the value

of the cost index. One could then argue that the value of the cost

index has no significance. In general this is true. But, for the

modeling technique of Schultz and Melsa, the cost does have meaning.

For that technique, zero cost corresponded to a system response identical

to the model response. Thus, the cost represents the deviation of the

system response from the model response in an integral square error

sense.

Even though the numerical value of the cost provides little infor-

mation of interest in the design problem, it does provide some insight

into the mathematical process of minimization. The cost function

J~ r {( i
T

Q>S + JU
T
p,U)dt (2-69)

o

is evaluated for a non-optimal second order system by assuming solutions

for X (t), X
2
(t), and U as follows:
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v -At v -Kt
KL W) = x,l±) -~ - Ate- --c^e (2-71)

ua) -- -k.x.u^ - k.x^o (2-72)

The feedback gains of Equation (2-72) are not the optimal gains and thus

are not the same as Equations (2-45) and (2-46). For the moment,

consider them as arbitrary values. Substituting these solutions into

Equation (2-69) and carrying out the integration yields

T= (Kfrfy) + C**+-ffiXa+ Kafr)
3

^ iWi+ &&)
K,6

(2-73)

+
l<>z+

fe + k; + £» ft.
X^O

Ki6 p„

Equation (2-68) may be obtained from this relation by substituting the

optimal gains. However, note that Jop, Equation (2-68), is a positive

definite function, whereas J, Equation (2-73), may not be positive

definite. The positive definite function, Jop, plots on the X. versus

X_ plane as a family of concentric ellipses as shown in Figure 2-12.

The constant cost curves decrease continually toward the origin. How-

ever, Equation (2-73) will plot as a family of curves that may overlap

since it is not necessarily a positive definite function. If the

optimal feedback gains are used, the state trajectory on the X.. versus

X„ plane will cross the family of constant cost curves in a manner

such that the cost at any instant of time on the trajectory is less

57



than that for any previous instant of time. But, if non-optimal gains

are used, this will not be true. The reason it is true for the positive

3
definite function is due to a theorem by Kalman which is discussed in

Chapter III. The theorem states, under certain assumptions, that Jop

is a Lyapunov function and that

d

dt
Jop = - X

T
QX + U

T
P/yj (2-74)

is a negative definite function because of the previous assumption on

P and Q. Therefore, the state trajectory must transit the Jop curves

in the manner described above. One might suspect that the state tra-

jectory on the X versus X~ plane would be normal to the Jop curves.

This is not true because

d— Top O Jo{

^T
a* = '&x£*

L a*
X (2-75)

L ^X J dt

Thus, as seen by Equation (2-75), the time rate of crossing is not only

a function of the gradient of the Jop curves but is also a function of

the state equations. The shape and amount of axis rotation of these

Jop curves depends on the choice of Q and P, as well as the plant para-

meters. Thus, when more weight is put on one of the states than the

other, the effect is a rotation of the axes of the family of cost curves

so as to restrict the motion of the state trajectory. Figure 2-13 is

a plot of these cost curves along with the optimal trajectory for

Example 2.1. The value of p. .. for Figure 2-13 is unity.

A reasonable conclusion to be drawn from this chapter is that in

the design of a regulator or servomechanism the optimal controls approach

is superior to the classical approach in some respects and inferior in



other respects. The optimal controls approach does allow the engineer,

inexperienced in the classical techniques, to design a control system

to meet the required specifications. With the use of the modeling

14
technique of Schultz and Melsa , the modern approach gives the engineer

a single number, the cost, that represents the proximity of the optimal

system response to the model response (integral square error sense).

The implementation of the optimal control is another problem. The

finite linear regulator problem leads to an optimal control that is

time varying state feedback. The servomechanism problem has an optimal

control which is time varying state feedback plus a function of the

desired reference states „ The synthesis of these controls is difficult.

Therefore, in most cases, the experience factor is merely shifted to

the synthesis of the optimal control. The linear regulator was con-

sidered in this chapter because of the simple mathematics involved,

and also because it offered a challenge to the meaning of optimality

with respect to the design of a regulator to meet certain specifications

The quadratic performance index was discussed in detail. The effect of

block diagram manipulations on this index is considered in Appendix D.

This chapter used the linear regulator to study the meaning of

optimality. For this particular problem,, the quadratic performance

index with a finite upper limit led to a time varying system. When

the optimal controls approach is used, the resulting optimal system is

usually non-linear, time varying, or both. Stability then becomes a

subject of primary concern. Lyapunov stability theory is the primary

tool that is used to study the stability of these type systems. Like

the optimal controls approach, Lyapunov stability theory is based on
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the time domain description of systems. Chapter III will introduce

some of the stability criteria that are useful in determining the

stability of a class of time varying systems for which stability can

be studied directly.
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Figure 2-1. Second Order Plant

Figure 2-2. Optimal System

Figure 2-2. First Order Plant
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Figure 2-12. Curves of Constant Cost (C_>C_>C )
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Figure 2-13. Optimal X vs X Trajectory

with Constant Cost Curves
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CHAPTER III

Stability of a Class of Time Varying and Optimal Systems

3.1. Lyapunov's Second Method . In the analysis and design of

control systems an important question to be answered in the early stages

is the question of stability. Not only is a yes or no answer desired,

but also the limits of stability must be investigated. Various design

criteria such as phase margin and the Routh criterion express the limits

of stability graphically and algebraically, respectively. Thus, the

range of values that system parameters can take on is of vital impor-

tance in the design problem. The study of stability can be broken

down into two general areas. First, the stability of linear systems

is straightforward due to the Routh and Nyquist criteria. Second,

the stability of non-linear as well as time varying systems is not

straightforward and requires the use of Lyapunov's methods because the

Routh and Nyquist criteria are no longer applicable to these type

systems. The first method or indirect method of Lyapunov is so named

because It requires the solution to the non-linear differential

equation. This method investigates the stability in a small region

about each of the equilibrium states of the system. However, knowledge

of this type stability is usually not enough in certain problems of

interest. The second method or direct method is a tool which enables

one to obtain more stability information than is obtainable by use of

the first method. The second method of A. M. Lyapunov, published in

Russian in 1892, was developed for the purpose of studying the stability

of mechanical systems. It was not applied to electrical systems until

1944. The second method is applicable to linear (time invariant and
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time varying) and non-linear systems. For linear, time invariant

systems, it can be shown that the Routh criterion and the second

method impose the same requirements for stability.

As mentioned, the second method is not as straightforward as the

Nyquist or Routh criteria. Stability, by this second method, is

assured provided there exists a so called Lyapunov function which be-

haves in a prescribed manner. The determination of the stability of

a system consists of a search for a non-unique Lyapunov function,

V(x, t) , which is a function of the system states or a function of

the states and time. The Lyapunov function is often compared to the

energy in a system. However, the energy in a system is not necessarily

a Lyapunov function because it does not have to be a decreasing func-

tion of time as a Lyapunov function. That is, the average energy of

a system may be a decreasing function of time, but the instantaneous

energy may not be. Such a system would be unstable and thus the energy

would not be a valid Lyapunov function. Since Lyapunov functions are

not unique, the determination of the limits of stability is not an

easy task. One may obtain a valid function that establishes a set of

limits for stability, but nothing can be said about the stability be-

yond these limits. That is, the function assures stability within the

limits but does not assure instability beyond. In the literature there

are two basic methods proposed for generating Lyapunov functions, the

gradient method and the Lur'e method. As might be suspected, since

both methods are straightforward, their requirements on the system are

too restrictive. Because of this, and the fact that all non-linear

systems cannot be treated in the same way, non- linear systems are

broken down into classes depending upon the type of non-linearity.
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This enables one to establish a stability criteria that is not so

restrictive. In this chapter stability criteria that have been de-

veloped for linear systems with a time varying gain in the single

feedback loop are considered. The stability of optimal systems is

also discussed. Before doing this, it is necessary to state the types

of stability which will be of concern.

3.2 Stability Definitions . Before stating the applicable stability

definitions, the terminology used in stability analysis of non-linear

and time varying systems is reviewed. A non- linear or time varying

system is described by the following state equations:

X = f(X,t) (3-1)

where f is a non-linear function of the states and time. The solution

of Equation (3-1) is writen as

(j)<t; X > t
Q) (3-2)

where X is the state vector at time t or
—

o

o

(t)(t ; X , t ) = X (3-3)
^-r o —o o —o

The equilibrium states, Xe, of Equation (3-1) are all values of _Xe

such that

fQLe, t) = (3-4)

Non- linear systems may have one or more equilibrium states and each

may be shifted to the origin (Xe = 0) by an appropriate change in

state coordinates. The norm of a point or vector in the state space

is a function which assigns to that point a real number such that

(1) ||X|| > for all x
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(2) ||X + Y|| < ||x|| + ||Y|| for all x, 1

(3) IUXII = loCl'IIX.11 for all x and constants «C

(4) ||x|| = implies x = o

A motion is defined as the trajectory starting at any point in the

state space. There are many types of stability; a system may be stable

in the whole state space or stable only in certain regions. The system

may be stable in the sense that the state vector decays to the origin,

or in the sense that the state vector is bounded by a finite region.

The many variations of stability are discussed by Kalman and Bertram

and by Hahn . For purposes of this chapter the following definitions

are applicable and are taken from Reference 17.

Definition One . An equilibrium state xe of a free dynamic system

is stable (in the sense of Lyapunov) if for every £ >0 there exists a

real number qC^^q)>0 such that X - X ^ & implies

||(J>(t; X,. t
o
) -X

e ||< C forallt>t
o

.

If o is not a function of t the system is uniformly stable. Thus,

for a system which is stable in the sense of Lyapunov, the state vector

is confined to a finite region.

Definition Two . An equilibrium state Xe of a free dynamic system

is asymptotically stable if

(1) It is stable and

(2) Every motion starting sufficiently near Xe converges to

Xe as t-* «o . Asympotic stability is of more practical importance

76



than stability in the sense of Lyapunov. However, an asympotically

stable system may be an impractical design since the system may operate

outside of the asymptotically stable region. The ultimate stability

desired is asymptotic stability in the large which is asymptotic

stability in the whole of state space. The main stability theorem of

Lyapunov f
s second method is stated in Reference 17. This theorem

establishes the requirements on the Lyapunov function for uniform

asymptotic stability in the large. This is the most stringent of all

the types of stability and, as a result, the requirements for the

weaker forms of stability are obtained by weakening the conditions of

the main theorem. With these few remarks about Lyapunov' s second method,

the various stability criteria for linear systems with a time varying

gain in the feedback loop are investigated.

3.3 Brockett and Fory's Stability Criterion . The system shown in

Figure 3-1 has received a great deal of attention because of its

appearance in control systems and in electronic devices. It might re-

present a control system, a parametric amplifier, or other electronic

device. Many authors have attempted to develop a stability criterion

for this type system which establishes stability limits beyond those

of the presently known criteria. Brockett and Forys have established

a criterion for stability in the sense of Lyapunov (Definition One)

for the system of Figure 3-1. Since the system is linear, although

time varying, stability in the sense of Lyapunov implies boundedness

for any initial conditions. Their criterion is based on the following

theorem which is obtained from the main theorem of Lyapunov' s second

method.
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Theorem One . The time varying system in Figure 3-1 is stable in the

sense of Lyapunov if there exists a continuous positive definite

function V( X) , having continuous first partial derivatives with respect

to X, such that the time derivative of V(X) is non-positive along any

solution of the system.

Before stating the Brockett and Fory criterion, a few remarks

concerning the development are in order. The system of Figure 3-1 is

expressed in Normal or phase variable form such that the output is

written as

q(D) X = Y (3-5)

where D is the familiar differential operator. The differential equation

describing the system becomes

p(D) X + f (t) q (D) X = (3-6)

Brockett asserts that if all solutions of Equation (3-6) are bounded,

then the system of Figure 3-1 is also bounded. The stability criterion

for the system is obtained from a study of Equation (3-6). The develop-

ment is also based on the analogy between the systems of Figures 3-1

and 3-2. That is, the system in Figure 3-1 is equivalent to a passive

network with a time varying resistor across one of the ports. Based

on this analogy, it seems reasonable to suspect that Equation (3-6) is

stable if q(D)/p(D) is positive real and f(t) is non-negative. This

analogy led Brockett to the following theorem:

Theorem Two . The system in Figure 3-1 is stable in the sense of

Lyapunov provided G(s)+ — is a positive real function whose real

part is not identically zero and £ f(t) £ K.
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Theorem Two is a sufficient, but not necessary, condition. This

theorem, although useful, severely restricts the linear part of the

system. The Nyquist criterion, when applied to the same system with

a time invariant gain, predicts stability provided the Nyquist plot

does not intersect the negative real axis to the left of - — . How-
ls.

ever, the above theorem predicts stability if the Nyquist plot avoids

the entire plane to the left of - — . Because of these severe

restrictions, Brockett attempted to lessen them by placing restric-

tions on f(t). The attempt led to the following theorem:

Theorem Three . The system in Figure 3-1 is stable in the sense of

Lyapunov if there exists an oC , S , and K such that

1 + oCS
(1) [g(s) + 1/K] is positive real (3-7)

1 + £S

(2) ^ f(t)< K (3-8)

(3)
I(l| - 2

[
l ' f<^ /K

]
min (i J i > < 3

" 9 >

This theorem provides sufficient conditions but not necessary conditions

This is to be expected since Lyapunov functions are not unique. To

obtain the meaning of the above theorem it is necessary to intepret

the equations and the constants o^ and & . For the moment, consider

oC and 6 as an arbitrary constant and zero respectively. The

positive real requirement of Equation (3-7) is easily established by

introduction of the modified polar plot of Popov. This plot, shown

in Figure 3-3, is the same as the polar plot except the ordinate is

wlmG(jw) instead of ImG(jw). Equation (3-7) is positive real provided
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Re (0(jw) + £ ) (1 + CJLU ) 2 (3-10)

or

ReG (jw) + £ - oCwImG(jw)- (3-11)

However, the equality portion of Equation (3-11)

Re G(jw) +^ - oC WlmG(jw) - (3-12)
K

plots as a straight line with a real axis intercept of — and slope

-« on the modified polar plot. Therefore, the inequality of Equation

(3-11) will hold only if the modified plot of G(jw) lies to the right

of this line. Note that the above requirements only satisfy the non-

negat iw real part restriction for a positive real function. Similarly,

for a zero oC and a non-zero B , Equation (3-7) is positive real

provided the modified polar plot of G(jw) lies to the right of the

line

ReG(jw) + ^ + ^ u;ImG(jw) = (3-13)

This line is also plotted in Figure 3-4. To apply the theorem, either

aC or B is selected to be zero. Both could be zero but the criterion

would then reduce to Theorem Two. The selection depends on the modi-

fied polar plot of G(jw). If the modified polar plot of G(jw) crosses

the negative real axis with positive slope, (3 is selected to be zero.

If the plot crosses with negative slope, oC is selected to be zero.

This theorem allows one to reduce the restrictions on f(t) by placing

restrictions of t(t). This is the purpose of cC and ^ . That is,

for a system that has a zero 3 , the maximum restriction on f(t)

occurs tn a zero oC . Equation (3-9) then implies that f(t) is not

bounded because — is not bounded. However, as dC is increased
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Equation (3-7) will be positive real for larger values of K and thus

f(t). But f(t) must then take on smaller values as seen from Equation

(3-9). There is also an upper limit that f(t) cannot exceed and this

is established by a line tangent to the modified polar plot at the

negative real axis intercept. The slope of this tangent line puts

an upper limit on dC and thus establishes the most restrictive set of

bounds for f(t). Equation (3-9) is used to establish the most restric-

tive set of bounds for f(t) in the following manner. After the maximum

value of eC is determined as explained above, the upper bound on

f(t) is determined from Equation (3-9) by substituting the maximum

oC and the maximum K into the equation. The maximum K will be the

reciprocal of the negative real axis intercept of the modified polar

plot of G(jw). Equation (3-9), for these values of eC and K reduces

to

< o r/.x , . mif(t) ^ 2 f(t)
K
max <£ max

(3-14)

Up to this point the maximum restrictions on f(t) and f(t) have been

established. A compromise between these two extremes is possible for

the proper choice of ^ and K. This is the significant contribution

of the theorem. The following example illustrates the explanation

ab ove

.

Example 3.1 Consider the system in Figure 3-1 where

1

G(s) =
a 2 ,

(3-15)v ' s + ps

The differential equation describing the system is

" »

X + pX + f(t) X = (3-16)
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The modified polar plot of G(jw), shown in Figure 3-5, is a straight

line passing through the origin with slope p. The problem is to

determine the range of values of f(t) and f(t) for which the system is

stable. Since the plot crosses the real axis with positive slope, ^

is taken to be zero and the equations of Theorem Three reduce to

[b(s) 4 1/k] (1 + *Cs) (3-17)

< f(t) ± K (3-18)

7$ ~ ~k C
1

"
£(t)/K

]
(3 " l9)

To obtain the maximum restriction of f(t) an ^C equal to zero is always

chosen. For this choice of & , Equation (3-16) is positive real if

K £ p
2

(3-20)

Since the maximum value that K can assume in order that

G(s) + 1/K (3-21)

is positive real is the minimum of the real part ot G(jw), Equation

(3-20) can be obtained from the modified polar plot. To obtain the

maximum value of K, a vertical line tangent to the modified polar plot

is constructed. The intersection of this line with the negative real

axis yields -——— . Note that this line has slope
K
max

oC (3-22)

and the modified polar plot of G(jw) lies to the right of it. Thus,

this line represents the choice of <£ and K such that f(t) has the

maximum restrictions and f(t) has none , Equations (3-18) and (3-19)

reduce to

< i(t) <L p
2

(3-23)
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f(t)£ oO (3-24)

To place the maximum restrictions on f(t) and the least restrictions

on f (t) , the associated oC and K are obtained from the line tangent to

the modified polar plot of G(jw) at the real axis intercept of the plot.

As required by Theorem Three, the plot must lie on or to the right of

this line. The slope of this line determines the maximum value of oC
,

and thus the restrictions on f(t), and the maximum value of K. Equa-

tions (3-18) and (3-19), for this choice of cC and K, reduce to

£ f(t)<c cO (3-25)

f(t) £ 2pf(t) (3-26)

The lines representing these two extremes are shown in Figure 3-5. In

between these two lines is a compromise line (dotted). This line

represents the tradeoff between the two sets of restrictions. The

*

value of oC and K to determine the restrictions on f(t) and f(t) are

obtained from the slope and real axis intercept of the compromise line

which can vary between the two extremes. The following steps illustrate

the application of Theorem Three.

(a) Plot the modified polar plot of G(jw).

(b) From the plot determine whether oC or Q should be zero.

(c) Construct the line representing the maximum restrictions

on f(t) by constructing a vertical line tangent to the

modified polar plot of G(jw) such that the plot lies to

the right of the vertical line.

(d) Construct the line representing the maximum restrictions

on f(t) by constructing a line tangent to the modified

polar plot of G(jw) at the real axis intercept such that

the plot lies to the right of the line.
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(e) All the possiblf compi omises lie In between the tw@ extreme

lines* Any compromise line Is valid provided the modified

polar plot -»t Q( jv^ Llfil t- 1 the right of tt.

(f) The values of ^ and K are obtained from the elopeB and

jeal axis Intercepts of theBe lines

,

In the event that the time varying gain In the feedback loop has an

f(t) that Is not bounded, one must utilize Theorem Two to obtain the

range of values of f(t) for which the system is Btable t Brocket! has

developed a stability criterion which is Identical to Theorem Two but

is easier to apply because it uses the ordinary NytJuiBt plot*

12
3,4 Bj :k< Its Cli le. Criterion . 'J he circle criterion establishes

Ehe range of vslu^c ef f(t) which will assure stability assuming tie

restrictions on f(t)« The significance of this trite* Ion Is twofold,

It is easy to apply fttid it reduces to the Nyquist tiiteiloti as a special

case. The circle criterion is contained wttbi" lh< ''"1 lowing theorem}

12
Theorem Four Let i'«?) an-1 p(§) k§ p-i ,'"""ials without common factors

and let

X = A X f |41 (1=27)

d = -f(t) c
T

x (3-28)

/ - c
T

x (1=29)

be an irreducible representation of G(s) = q(s)/p's) (syst§ffl 4§ e©ifl=

tioilable and ebs&i vabie) i Then, if p(s) has n£ 3ero& in the fight

half plane

(a) All. solutions of E.'i'-at - §& (1*27) ate b@Un4e4 if

0£p£f(t)4rf (1=10)



and the Nyquist locus of G(s) does not encircle or inter-

sect the open disk which is centered on the negative real

axis of the G(s) plane and has as a diameter the segment

I i
of the negative real axis ( - —r— , - —ts- )

(b) All solutions are bounded and go to zero at an exponential

rate if there is some £>Osuch that

O^ £ + £ £PU0£«£-£ (3-31)

and the Nyquist locus behaves as in (a).

This theorem is also concerned with the time varying system of Figure

3-1. The open disk is shown in Figure 3-6. Part (a) of the criterion

simply says that if the Nyquist plot of G(s) does not intersect or en-

circle the disk of radius 1/2 (
—— - —3- ) and center at -3/2<£+ 1/2^

then the system is stable in the sense of Lyapunov. Note that if the

lower limit on f (t) , 8 , is zero then the disk becomes the entire

plane to the left of -1/QC This is the same result as was obtained

using Theorem Two. To show that this criterion reduces to the Nyquist

criterion, consider f(t) to be a constant K. Then the open disk reduces

to a point at -1/K. The system is stable, provided the Nyquist plot

of G(s) does not intersect or encircle the point -1/K. But this is

simply the Nyquist criterion. Part (b) of the criterion implies that

if one constructs the largest disk possible that is not intersected or

encircled by the Nyquist plot G(jw) and can find an £ ? o that will trans-

late the <£_ and 6 associated with the largest disk to the actual Ji

and Q of f(t), then all solutions go to zero at an exponential rate.

This is asymptotic stability and not just bounded output stability.

To demonstrate the use of the circle criterion consider the following

example

:
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Example 3.2 The open loop plant of Figure 3-1 has the transfer

function

G(S) =
S(S+2) (3-32)

and the Nyquist plot is shown in Figure 3-7. The time varying gain has

the following limits:

0.1 £ f(t) ^ 2 (3-33)

and the circle criterion disk for this f(t) is also plotted in Figure

3-7. Since G(jw) does not intersect or encircle this disk, the system

is stable. In fact, the system is stable for the following range of

values for f(t):

6. f(t) £ 4 (3-34)

These limits are established by constructing the largest disk subject

to the requirements of the theorem. This circle is the entire plane

to the left of line

min Re G(jw) = -0.25 (3-35)

This line corresponds to an *C of value 4. It is obvious that the

system is not asymptotically stable because there is no £ > O that

will translate the aC and 2> of the infinite circle to the actual eC

and (3 of f(t).

The previous sections of this chapter have considered the problem

of stability for time varying systems. The various stability criteria

for these systems were developed primarily from the stability theorems

of Lyapunov's second method. At first glance it might appear that

the design of controls systems by the optimization technique eliminates

the stability problem. This is not true. Kalman, in Reference 3,

makes this clear by the statement, "Optimality does not imply stability!"
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One might also question the relation between non- linear (and time

varying) systems and the design of linear systems by the optimal control

theory. The answer to this question is that the optimal control

approach, more often than not, leads to a non-linear or time varying

system. The next section considers the problem of stability as it

relates to optimal control.

3.5 Stability and Optimal Controls . Lyapunov stability theory is

very similar to optimal control theory in many respects. The formula-

tion of the optimization problem consists essentially of selecting the

cost function that expresses the desired objective. This function may

be dependent upon the system states, time, the control, or all three.

The choice of the index is not an easy one to make. However, assuming

that the choice has been made, this function can usually be translated

into the state space as a family of constant cost surfaces. The

solution to the optimization problem is the control that produces

system state trajectories that transit these surfaces in a manner such

that they are always headed toward a lesser cost surface. The deter-

mination of stability consists of a search for a Lyapunov function

which may be dependent upon the system states and time. If this function

and its time derivative behave in a prescribed manner, then stability

is assured. The Lyapunov function also may be translated into the

state space as a family of constant value surfaces. If the unaltered

system state trajectories transit these surfaces in a manner such that

the Lyapunov is a decreasing function of time, then stability is assured.

But this is where the similarity ends. As emphasized by Kalman, the

optimal control approach may lead to an unstable system unless some

sort of stability consideration is incorporated into the optimization
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problem. The obvious place to inject this consideration is in the

choice of performance index. That is, to select a performance index

that is a valid Lyapunov function for the optimal system . For

instance, if the integral squared error criterion is chosen for the

free ( JL| = 0) linear regulator then this criterion is a Lyapunov

function for the optimal system provided the squared error criterion

does not vanish along any state trajectory of the optimal system.

This result is crystalized in the following theorem by Kalman.

Theorem Five Consider a free ( /U = 0) , linear, time invariant

dynamic system with an equilibrium state at the origin and assume

(a) The error criterion (x) is positive definite and

L(o) = 0.

(b) The performance index

dO

J (X) = H-Cx) dt (3-36)

o
is finite in some neighborhood of the origin.

Then the equilibrium state is asymptotically stable.

This theorem is applicable to the parameter optimization problem,

which selects the value of a system parameter that minimizes the per-

formance index. Stability of this type of system is assured by placing

certain restrictions on the cost function that requires it to be a

valid Lyapunov function for the optimal system. It is interesting to

note that the error criterion does not have to be quadratic. The

positive definite requirement on (x) ensures that the cost function

or the Lyapunov function does not vanish anywhere other than at the

origin. If it did vanish, the optimal system would have an equilibrium

state other than the origin. This is the reason why the Q and P
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matrices of the performance index of Chapter II were required to be

positive semi-definite and positive definite, respectively.

The above theorem is applicable to the unforced linear regulator

but not to the true optimization of the forced linear regulator for

which the optimal control is derived. This problem may have a finite

control time and thus a new stability criteria is required. Kalman

has considered this problem and with the following results.

3
Theorem Six . If the assumptions

T T
(a) The pair (A, L ) , where Q = LL and A is the A matrix of

the plant state equations, is observable.

(b) The plant is controllable

are satisfied then R(t =«o) is positive definite and the optimal control

law is stable.

The first assumption of this theorem ensures that the integrand

of the cost function

X
T
QX + W

T
PU (3-37)

does not vanish along the optimal trajectories. This implies that the

cost function is a Lyapunov function for the optimal system. Since

the evaluated cost function is

J = X
T

R X (3-38)

then R must be positive definite. The second assumption guarantees a

solution, R, to the matrix Ricatti differential equation.

This chapter has considered the problem of stability for time

varying systems and the problem of stability for optimal systems. The

similarity of stability theory and optimal theory suggests that optimal
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control theory might be useful in establishing stability criteria for

non-linear and time varying systems. The linear regulator problem

with finite control time suggests such an idea. For that particular

problem the feedback gains are time varying but stability is still

assured if the requirements of Theorem Six are met. The optimal controls

approach would be useful not for the purpose of designing an optimal

system but for its ability to yield non-linear and time varying systems.

The optimal approach might provide a refreshing look at the stability

of these systems.
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Figure 3-1. Block Diagram of Time Varying System

R- P*0

Figure 3-2. Network Equivalent of Figure 3-1

uj Im GrCj^)

Re 6(0*0

Figure 3-3. Axes of Modified Polar Plot
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Figure 3-4. Modified Polar Plot
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Figure 3-5. Modified Polar Plot of G(s) = 2
s + ps
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Ŝ

/'

-10

X,"^

^•i*^

\

-.5*

>"
/

.a*

Im 6r(juj)

Re6<juj)

Figure 3-7. Circle Criterion for Example 3.2
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APPENDIX A

A.l The following is a list of the state equations of the networks

and machines of Figure A-l through A-7 respectively.

(1) Phase Lag Network

Vc - feflVc + [rc]e ro (A-l)

£o = [l]Vc (A-2)

(2) Phase Lag Network with High Frequency Attenuation

Vc^Lc^rJvc -h Lc(r,+r xJe iv (A-3)

R,

E 6 = L R, 4- R^_ Vc -f L R,+ Rx J (A-4)

(3) Phase Lead Network

Vc/C -L RcJVc 4- LRc]E/ ft (A-5)

e.=[h]vc +- [i]e». (A-6)

(4) Phase Lead Network with Fixed DC Attenuation

Vc = R.R.C JVc t .fUCjEin (A-7)
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I,. - EllVc +- [l lEin
(A-8)

(5) DC Motor with Constant Field Current and Negligible

Armature Inductance

r»6

la,

o

o _ Kt Km

em

"

aJ
+

o
£;,

(A-9)

©i -[l o]

(6) DC Motor with Constant Armature Current

(A-10)

•

If °1v 1

u
= i

H-
e„

- J
-I
J _

m

[©„_ o
_ _

Ein (A-ll)

a. = o

(7) Two Phase Servomotor

(A-12)

e,n.

â

o

o

1

©«i
~o

"

J a
+

Us.

-\f\ (A-13)

O-i =
"rti o e»

a
in

(A- 14)
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The following is a list defining the constants and variables of the

above state equations.

Km = motor back emf constant

Kt = motor torque constant

Ra = armature resistance

Rf = field resistance

Lf = armature inductance

la = armature current

If = field current

Ein = applied armature or field voltage

Om = motor shaft angular position

T = gear box ratio =

Jm = motor inertia

J = load inertia

J = Jm + T
2
J

fm = motor friction

f = load friction
Li

f = fm + T
2
f_
Li

Ke = motor torque constant

Kn = motor vicous friction constant
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R

£m Vc E

Figure A-l. Phase Lag Network

Rx

-in

Vc

Figure A- 2. Phase Lag Network with High Frequency
Attenuation

tf\ ^
Figure A-3„ Phase Lead Network

«./V

Efc. ft*

Figure A-4. Phase Lead Network with Fixed DC

Attenuation
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Ra

\
In

Figure A-5. DC Motor with Constant Field Current
and Negligible Armature Inductance

Efo

Figure A-6. DC Motor with Constant Armature Current

Cof\\ro \

10

Ref Field

Figure A-7. Two Phase Servo Motor
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APPENDIX B

B.l. Derivation of the L Matrix for a Second Order System

JX
TQxdt = J[g„xN|»Xzlk= fi>H X*+£«X,

Z
]dt (b-1)

7
°°

=J[^X,^XjJt -jli/fffiK,*, it (B-2)

<*> t--*>

- jW^x.+^rx,] dt - 4fl JfZKit)
o -t-o

A
i a.

= fCJ|7x,+^x,ldt 4 J|^T x,(o

(B-3)

(B-4)

From Equation (2-52) the L matrix is

L
LJ£I

B.2. Derivation of the L Matrix for a Third Order System

(B-5)

oO

jxTQXdt- fa.x*+£„X*+^«X, 3dt (B-6)

=JC^ X, f J^Tx, +- ^7 X, ]* dt

*o

(B-7)

-z(Lffj£xX ^y/^TA.A.-^^'x.xJdt
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CO

90

+ ^«£*» X,%) t feffij** X,X,dt

IB-8)

*0

+ T|m^7 x,<o + J^i x, ^

<<p

(B-10)

Xjfi'fr! +
ty\

+^$'p
l

l£M*yftfr fJ/«*^^FJ^^

From Equation (2-52) the L matrix is

L =
(B-ll)

102



APPENDIX C

C.l Mathematical Formulation of the Ricatti Differential Equation

for a Third Order Plant . The state equations for the plant of

Figure 2-5 are

V
X* =

A_ :

I

O -ah -(a+b)

~x<~
"0"

x*
H-

L
x*_ 6

—1

>U

(C-l)

De f ine

F = a + b

G ab

(C-2)

(C-3)

The matrices required by the Ricatti equation are

A =

10
1

-G -F

(C-4)

R =

B =

~/?u n
l2

nu

/i
l2

/?
22

/i
23

*13 ^23 *33

G

(C-5)

(C-6)

p = p 11
(C-7)
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Q

«11

''22

(i n 'i

13

are

The terms of the Ricatti differential equation

A
J

R 4 RA - RBP
_1

B
T
R + Q = *R

O Q O

(G-l)

(C-10)

RA -

4*-*>2/j A*-fAn

n^-Gn^ n lx-tin

-RBPBR

f>„ P" »«
"

V
P

I 1

p- p„

p*» p* P„
Substituting the above terms into the Ricatti equation yields the

following six first order non-linear differential equations.

(c=ii)

(C-12)

.2 A 2

-6. 'Wtf* ^- - auto} (Mi)

(§*U)

.'A



-^/*»M+4i i + *(/^*)- £/?«/*>) = ~ /i^Lt) (C-16)

-^/W^/h^m^a£0-£/kj#W>W*;-F/*zia) = ~ rt is ft) (c-17)

-6! /^J5^) + 3̂3 f X(All(i) - F/Ultf)) = ~ //»*#J (C-18)

Note that the number of first order equations which must be integrated

to obtain the solution to the Ricatti equation is

n (n+1) (C-19)
2

where n is the order of the plant. These equations are easily solved

on a digital computer by integrating backward in time with the following

initial conditions:

R (t = o) = (C-20)

The solution to these equations is easily checked by using Equation

(C-13). The steady state value of /? . _ is

For higher order plants, Equation (C-21) becomes

/l,n -- ± J
ftp"

( C " 22 >

This result is valid if the description of the plant is of Normal Form.
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APPENDIX D

D.l. Block Diagram Manipulat ions . Whet! control systems are represented

by block diagrams, manipulations are often performed to convert the

system to a convenient form for analysis. Manipulations 6uch as theBe

often result in a new set of state variables for the system. Thus, a

block diagram manipulation is comparable with the changing from one state

variable representation to another. For the linear regulator problem,

the Normal Form has an advantage over the others because of the Bimple

modeling procedure due to Schultz and Melsa. Whatever representation

is selected, one must be aware of the effect of these changes on

optimization process. The problem of interest is again the second order

linear regulaLcu. In Chapter II this problem was solved by substituting

the A matrix of the plant of Figure 2-1. Since there is a certain

amount of matrix algebra that must be performed to obtain the solution

to the Ricatti equation, the problem is simplified by moving the pole

of the plant into the feedback loop. This is a valid operation since

it is known that the optimal control is state variable feedback.

Figure D-l shows this manipulation. The optimal feedback gains with-

out this manipulation are represented by K
1

and K„. Now, the open

loop plant of Figure D-l is optimized by the same procedure used in

Chapter II. The optimal k and k, for the new plant ate obtained and

then K
1

and K
9

are found from the relations

K
x

= k
%

(D-l)

K
2

= k
2

- a/G (D-2)

K
1
and K^ are not the same as the K. and K Obtained Lfl ChafJtef IT.
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This is reasonable since the optimization process does not take into

account the ability of the actual plant to drive the state vector to

the origin. However, the same optimal system will result if the Q and

P matrices are also changed for the new plant as follows:

V- = 4^ (d " 3)

f^=
'

h- 4-(ff (D-4)

P" pi. \GI

The bar indicates the new plant, and the hat indicates the original

plant. Note that the q.^/p--, which represents emphasis on minimizing

the state as compared to emphasis on minimizing the control for state

X
9 , increases as the square of the quantity added to the feedback loop

of state X_. The term q-./p.- did not change because the feedback loop

of state X.. did not change. One might look at this result in the light

that, since the pole is now used as control, the emphasis on minimizing

the state must be increased over the emphasis on minimizing the control

to obtain the same optimal system.

The very same procedure is carried out for the case where both

the pole and the open loop gain are moved into the feedback loop.

Figure D-2 shows this manipulation. For this case, the Q and P matrices

must be changed as follows:

"pit pii

r 4

(D-6)

P»
p. i V Cs
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These equations are 6 I Lmei the results obtained lor the case where

only the pole Is moved. Thus, the same optimal system is obtained by

moving all poles and i>|" a loop gains into tin feedback loops and tin n

Increasing the appropriate q../f>
{

. by the square oi the pole values

and then multiplying this result by the square of the open loop gain.

This result is useful becausi Jt introduces the maximum number of zero

elements into the A matrix. It also demonstrates the effect of block

diagram manipulations on the opt imizatlon problem.
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Figure B-l. Optimal System with Pole Moved
into Feedback Loop

Figure D-2. Optimal System with Pole and Gain
Moved into Feedback Loop
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APPENDIX 8

E . 1 Derivation of the Bytt< m State.. Equations for Complex Inter -

connections . In Chapter E Li Wftl Ittttd that tht combined state

equations could be rearranged in the following manners

* s Ax + B^k * B k tf» <•«

* C&r C^ + Dbtf. (1-2)

4» ax cm>

Kb is the vector of component inputs that are not By stem inputs.

Solving Equation (E-3) for Y and substituting into Equation (E-2)

yields

&(Lh = Cx + Dk2* 4- D^4 (1-4)

Solving this equation for r, yip Ms

Substituting this result into Equation (E-l) yie I

X > WbblA ' bb]Cj 6 4 Jft»4 BblA DklEti !• (e«6)

The term

CA'^Dbl (e-7)
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can be written as

-I

[A"'-Db]AA (e-8)

or

Sa[a"'-D^1 A (e-9)

But, this expression reduces to

-I

[1-ADb] A (E-10)

Therefore, Equation (E-6) reduces to

X= >A+Bt[l-ADGACix + JbcL+bbLl-ADblADol /2* (e-h)

The output equations, Y, are obtained by substituting Equation (E-5)

into Equation (E-2) and rearranging. The result is

Y = lC4Dktl-ADblAC?* + f D* + Dbd-ADb]A0J/2* (E-12)

The existence of the inverse of (X-A-Db,) i s assured by consider-

ing a linear time -invariant system. If (l-ADb) does not exist,

then the system does not have a characteristic equation. But, every

linear system has a characteristic equation.
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