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ABSTRACT

The object of this report is to investigate the response of a shaft
or beam to shock applied transversely at the end supports. As a secondary
objective, a simplified method of designing a shaft for shock resistance
is suggested. In particular, the results of this work demonstrate the
prediction of the transient history, with respect to time and position,
of the beam deflection, shear force, and bending moment and show a calcic
lation of the times, positions, and maximum amplitudes of these quantities.

To accomplish the objective, velocity shock was assumed and the
differential equation for flexural vibration of Timoshenko was solved.
The solution was then placed in a form such that values depend only on
the ratio of the beam length to radius of gyration of a cross section and
the ratio of shear modulus, modified by a factor accounting for section
shape, to the modulus of elasticity. The maxima for deflection, shear and
bending moment were then tabulated for various length to radius of gyra-
tion ratios.

As a model, only a solid, circular, steel shaft of six inch radius
was used, but the method of solution could be extended to other config-
urations .

As a result of the investigation, it can be shown that, comparing all
simply supported uniform beams of constant ratios of length to radius of
gyration of a cross section and of constant ratio of shear modulus to
Young's modulus, modified by section shape, the time histories of deflec-
tion, shear, and bending moment will differ only in magnitudes, i.e., the
histories of any such beam can be scaled from that of another.

It was found that there is a range of length to radius of gyration
ratios where rotary inertia of elemental cross sections and shear effects
become significant. Further, there are a two fold infinity of natural
frequencies, each of which corresponds to an odd numbered deflection mode.





The higher series of frequencies is associated with axial compression
and tension due to bending, and the lower series is associated with the
shearing effect. It was found that the higher frequency series, for all
modes, goes to infinity as the length to radius of gyration ratio goes
to infinity and that, as a result, the equations derived reduce to the
classical flexural vibration equations.

It is believed that the results obtained in this work could provide
a designer concerned about the effects of shock with a useful tool in
anticipating design performance due to shock.

There was an indication that the energy contained in a beam subjected
to shock cannot be adequately described with considerations of overall
deflection. However, this point should be investigated further.

It is recommended that the equations and curves obtained be checked
by experiment. It was noted that the equation for shear converged rather
slowly; so, even though the curves obtained from computer calculations
included terms through the forty-ninth mode, this may not provide enough
accuracy. It is further recommended that other types of supports,
especially fixed ends and cantilever, be investigated.

Thesis Supervisor: F. M. Lewis

Title: Professor of Marine
Engineering, Emeritus

ii





TABLE OF CONTENTS

Page

Abstract i

Table of Contents iii

List of Figures iv

Table of Symbols v

Acknowledgement vii

I Introduction 1

II Procedure k

III Results 25

IV Discussion of Results 30

V Conclusions 35

VI Recommendations 36

VII Appendices 37

A. Application of Boundary Conditions 38

B. More Convenient Form for Frequencies kO

C. Proof of Convergance of Bending Moment
Equation for Large Length to Radius Ratio- ... k2

D. Derivation of Damping Factor 45

E. Example Problem kj

F. References .. • 50

111





LIST OF FIGURES

Figure Title Page

1. Beam Model and Sign Convention 5

2. Time History of Deflection, Shear Force,
and Bending Moment for a Solid Circular Beam 27

3. Comparison of the Responses of Two Beams 28

k. Non-Dimensional Maximum Deflection, Shear
Force and Bending Moment 29

5. Qualitative Description of Deflection
Components 32

6. Determination of Maximum Length of Beam

According to Example Problem kS

iv





TABLE OF SYMBOLS

2
A = cross sectional area of beam. (in. )

E = modulus of elasticity, (psi

)

G' = Shear modulus, (psi)

G = k'G* (psi)

g = acceleration due to gravity (in. /sec. )

I - moment of inertia of a cross section about the neutral axis. (in. )

J = mass moment of inertia of a unit length of shaft about the neutral
axis. (lb.-in.-sec. 2/in.

)

k' = factor relating average shear stress to maximum shear stress.

. nrr /. -L
k = — . (in. )n L '

L = length of beam. (in.

)

M = bending moment, (in. -lbs.)

2 2
m = mass per unit length (lb. -sec. /in.

)

n = mode number, an integer (n = 1,3>5*««»«)

Q = shear force, (lbs.)

r = radius, (in. )

r' = radius of gyration of a cross section, (in. )

S = shear stress, (psi)

T , Tp = time period of the nth mode of the lower and the higher series
of frequencies, respectively, (sec.

)

t = time. (sec.

)

v = initial velocity, (in. /sec.)

UCl , U)o = frequencies of the nth mode corresponding to the lower and the
higher series, respectively ( radians/sec.

)

x = position along shaft, measured from one end. (in.

)





transverse deflection, (in.

)

z = dummy variable = 1 + —
hi \rmxy

p = density (

lb. -sec,

in.
/ in-

3
) .

Subscripts :

n = mode number = 1,3>5>« ••

b = refers to bending only.

s = refers to shear only.

Primes, except in k' and r', indicate dimensionless values,
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I, INTRODUCTION

Today, through use of such devices as armor plating, subdivision,

and torpedo bulkhead systems, naval ships are well able to remain afloat

after being struck by sizeable amounts of explosives. However, a ship is

useless if the shock associated with an explosion causes vital machinery

to become inoperable. Furthermore, with modern nuclear weapons, depth

charges, and mines available, physical contact with the ship is not

always possible; and shock effects are then the primary means of incapa-

citating ships. This is particularly true for submarines. Indeed in any

industrial plant or ship where shock or jolting is anticipated, a design

must be able to tolerate these effects in order to perform its mission.

Of particular susceptability to the effects of shock are shafts and

beams when their bearings or supports accelerate perpendicular to the

shaft axis. In actual situations, such items as piping, condense>r shells,

rotating shafts, and in some cases plates could fall into the general

category of beams. Of interest to the engineer are such problems as the

amount of deflection that must be anticipated in order to have sufficient

clearance around the shaft, and the magnitude of the stresses involved

in order to assure that no plastic deformation occurs. Thus, this inves-

tigation attempts to predict these values.

There have been many works on the dynamic flexural behavior of

beams. Among the primary of these is that of Timoshenko \_lj. However,

these works neglect the effects of shear and rotary inertia which becomes

significant when the length to radius of gyration ratio becomes small.





To the author's knowledge, there is no simple design method established

to account for shock effects

.

The investigation was limited to a solid, circular beam, simply supported.

The effects of spinning, such as in rotating machinery, on shaft response was

considered negligible; and no calculations account for this.

The excitation was considered to be a "velocity shock", i.e. the beam

supports experience an instantaneous constant velocity at the incidence of

the shock. This is a commonly used way of specifying shock excitation. Use

of velocity shock allows calculations to be simplified; for when a body,

initially at rest, is excited by a velocity shock, its response relative to

the point of excitation is precisely the same as if the body were initially

in motion with a velocity equal to the excitation velocity, and suddenly

stopped [~2j. Thus calculations can be made as though the beam supports are

stationary and an initial constant velocity exists along the length of the

beam.

If one looks at a beam subjected to shock in actual practice, the response

would depend upon the direction from which the excitation eminated. Thus, if

one support were excited before the other, the response would be different

than if both ends were excited at the same time. In an attempt to simplify

difficult calculations, this report is limited to the case of symmetrical

excitation.

Linearity has been assumed in utilizing the equations involved in this

report. Thus, the results are limited to beams whose stresses always remain

in the elastic region. It was felt that this would not place a serious

handicap on a designer if it is assumed that a beam has failed when the stresses

resulting from calculations demonstrated herein exceed the yield limit of the

material involved.

-2-





To sum up, then, the model used for the investigation is a solid circular

beam, simply supported, with ends fixed; it is subjected to a velocity shock

along its entire length. The response of the model is limited to the elastic

limits of the beam material, which was assumed to be steel. The object of

the work is to describe the response of the beam model with respect to deflec-

tion, shear, and bending moment; then to show to what limits the results apply

to other beams than the model chosen; and lastly to propose a simplified method

of calculating the deflection and stresses for other beams.

-3-





II. PROCEDURE

Definition of Problem . Whereas the physical situation specifies that,

at time, t = o, the ends attain an instantaneous velocity, v, the problem

shall be considered as one where, at t = o, the entire length of the beam

attains a velocity, -v. The final equation for deflection, then, will

be the sum of the values derived and vt.

Figure I indicates the model investigated and the sign conventions.

Motion is restricted to the x,y plane. The problem is to find the motion

of the beam indicated in Figure I.

Derivation of the Differential Equation of Motion* Assume that the

deflection is due to two separate and separable effects, shear and bending.

Then total deflection is

y = y
s

+ yb , d)

where

y = deflection due to shear only
s

y = deflection due to bending only*

Look now at Figure I. The elemental mass is considered rigid.

Consider that, for all shear deflections, there is no rotation of the

element. Rotation is associated with bending deflection only. ThusEdM ^b
Moments = Qdx - ^— dx + J—*— dx = ,

3x
at- ax

where the last term represents rotary inertia of the elemental mass. Thus

it can be seen that, for bending moments, the element always remains

-k-





Figure I.

Beam Model and Sign Convention

A ax A

+Q +M +\ Rotation

M

M + I^dx
ox

Q + |Sdx
ox

mgdx
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perpendicular to the slope of the deflection due to bending, ^— ; and

—p— simply represents the angular acceleration of the element.
St dx

From this it is clear that

»«-
9 + j

a3y
f < 2 >

Equating forces in the y direction,

> forces =- J ax - mdx —K = ,L ax
at

2

or

Bx"
=

-
m Z? '

(3)
ot

Recalling that the maximum shear stress,

S / \ = G
f

* ,s(max) Y '

where i|f represents the slope of deflection due to shear, then

S / \ — -G ^— .

s ( max ) ox

Although shear stress is not constant over an entire cross section, it can

be shown that the average shear stress, S , is

By dy
S = - k' G' y-2. = - G s-£ ,
s ox ox

-6-





where k is a factor depending upon section shape [jLJ .

Thus

Sy
s

Q = S
s
A =

" GA
B3T

' <*>

Continuing, it is well known that

M = + EI —-£ . (5)

Combining equations (l), (2), (3), (*0, an^ (5)> one obtains

EI -r - ir + J -t-2 + m— + S -r = ° * (6)
ax

VGA y
ax

2
dt

2
at

2 GA
at

4

Equation (6) is the equation to be solved. Its derivation is

presented in reference [lj , but has been given here in slightly different

form because use will be made of the equations involved in the derivation.

Solution of Equation of Motion . Assume that the variables are separable.

Then

y (x,t) = T (t) X (x) .

The equation in x is then of the form

k 2

A " + B il + CX= ,dx dx

where A, B, and C are functions of time. The solution of equations of this

type is of the form

X (x) = C, sin k x + Cp
cos k x + C~ sin h k x + C. cos h k x . (7)

-7-





Since the ends are pinned, deflection and bending moments are always

zero at the ends. Thus the boundary conditions are

:(o) = x
s
(o) + X^O) =

:(L) = X
g
(L) + X

fe

(L) =
(8)

*%
dx

A,
x=0

dx

=

X=L

Putting equations (8) into (7) it can be shown that X (x) is of the

form,

X (x) =

CO

z
n=l,3,5...

C Sin k x ,n n (9)

where k
n

= 2E
f n m 1,3,5,

See Appendix A for proof of this.

Assuming no damping, a solution for T (t) can be of the form,

T (t) = C, cos u> t + CU Sin (U t ,n In n 2n n

or

y(x

so

4 F
c

n=l,3,5,... L
C n cos u) t + C Sin oj t
In n 2n n

sin k x . (10)
n

Putting (10) into (6) it is easily seen that the frequency equation results,

i.e.

Jm mA r L /'Elm T \ ,2~| 2
GA n |_ VGA / nj n

+ EI k =0
n

(11)

-8-





Equation (ll) shows that there are two frequencies associated with

each k , which fact will be amplified in a later section. Thus, the
n

assumed T(t) is incomplete, since it does not account for both frequencies.

Allowing for both frequencies, let

Ey(x,t) = \~C. sin tu, t + C cos u) t + C_ sin UL t* v
' '

. *-r-

-

In in 2n In 3n 2n
n=l,3,5,--. •—

+ C^
n

cos U)
2n
tl sin k

n
x . (12)

From equation (12), it is seen that four initial conditions must be

utilized to evaluate the constants. Thus, initially, the deflection of

the beam is zero. From the definition of the problem, the initial

velocity along the entire beam is the velocity of shock, -v . Lastly,

due to rotary inertia, the slope and angular velocity of the deflection

caused by bending cannot instantaneously change, and are thus zero j~3~] •

Putting this in mathematical terms,

y (x,0) = (13)

(HO9y
at

t=o

^x
lt=o

dxdt
- o (16)

t=o

-9-





Now, put equation (12) in (3) and integrate. Then

Q = dQ
S3?

dx = -m 5-i dx

3t
2

n=l,3,5,..«

S- I CB/
2

c. sin OJL t
kn In In In

+ ou, CU cos a), t + -ol C„ sin uo-^ t +
In 2n

+ Const

In 2n 3n
Sln

"fen*
+

"2n
C
4n
cobw^cob ^x

(17)

But from Appendix A, it can be seen that, at x = t, Q = 0, thus const. = 0.

Apply equation (4) to (IS?), so that

y
s

=
rays

dx
1

Odx > m
GA

V£LX - / — ^
£ r*Av

m _ GAk.
n=l , 3 , • • • n B"in

C
ln

SlnV
2 2 2

+ u> C cos m. t + uo_ C_ sin oo_ t + iu_ C> cos u> t
In 2n In 2n 3n 2n 2n 4n 2n

; sin k x.
J n

(18)

Again, boundary conditions preclude constants of integration. Thus.? from

equations (l);, (12), and (l8),

n=l,3,5,«

xW
1 -

In

GAk
C, sin UJ-, t + C„ cos ou n t
In In 2n wln

mw.

1 -
2n

GAk
'

n
°3n

Sin u,
2n

t +
°te

00S ^n*

\

sin k..x.
n (19)

Now the initial conditions can be applied. Applying equation (13) and

looking at the nth term,

-10-





y (x,0) = (C + C. ) sin k x = 0,
n 2n 4n n

or CL = -C,
2n 4n . (20)

Applying equation (l4)
,

Sy
n

St
t=o

= (C. ou. + C_ ip ) sin kx = -v ,In In 3n 2n' '

or (C. n_ + C_ w ) = =
v In In 3n 2n' L

i»L

Jo
(-v) sin k xdx = - —

' n rnr
(21)

Continuing, from equation (15) >

dx
= k

t=o

mu).

C
2n

IX
In

mu

GAk
+ C

,n
(1

2n

GAk
cos k x= 0.

n

But from equation (20), this means that,

"*ln
MU

2n
'2n

=

GAk GAk
n n

Since, as will be seen later in this work, uo cannot equal u)p , a

contradiction results, and

C_ = -C, =
2n kn

(22)

Lastly, apply equation (l6), so that,

#*
Bx3

?
t=o

n*o

C_ cw.
In In

1 -
In

mu

GAk
C
3n «fen'

2n

GAk
cos k x

n

= . (23)

-11-





By combining equations (21 ) and (23),

4v
'In nn

2 2
(GAk - mcu )n 2n

1 2 2 >.

In 2n In '

(24)

,
(GAk 2 - mm

4v n In
'

3n
" nTT

mu>p (w
2

- «.
2

)2n 2n In'

(25)

Thus, by applying equations (22), (24) and (25) to equation (12) and

adding the quantity, vt, as indicated in Definition of Problem above,

one finally obtains

y(x,t) = v J t - y
n=l,3,5-..

nrr-

(GAk 2 mu)n )

mm (w — 0i_ )
2n 2n In'

(GAk - m0Jo )n 2n '

In 2n ln /

2
sin Vt sin k x

n
(26)

Solution of the Frequency Equation . To complete the solution of the

differential equation of motion, the two series of frequencies must be

evaluated, i.e. equation (ll) must be satisfied.

Thus solving equation (ll) for uo , one finds that

CD

r /Elm . , 2] + IT ,EIm tN . 2~| ,JmEI . 1

|

m+(_ +j)kn _ _ A/|m +
(ga-

+ J ) k
n J-

4
-GA-

k
n

n
(27)

Jm
GA

Clearly, there are two frequencies associated with each k ; thus, there

is a two-fold infinity of frequencies, each pair of which is associated

-12-





with an odd numbered mode of deflection. Intuitively, since the deflection

was broken into components from shear and from bending, one would expect

one of these frequency series to arise from the bending and the other

from the shear. This point will be demonstrated more rigorously in a

later section.

It has been found more convenient to put equation (27) into the form

2GAk
2

2 2
0)

m 1 +

\ \w J n

or, letting

: -'i('i^$'-¥

(27a)

z = 1 + i + (±-~

i irr n

2GAk
U)

n

m uTT]
(27b)

Details of this derivation are given in Appendix B.

Calculation of Shear and Bending Moment . Based on the equations derived

in the previous sections, the values of shear and bending moment may now

be calculated.

Combining equations (22), (24), (25), and (17) the shear force at

any section, at any time, is

13-





Q =
L nrr

n=l,3,5--.

2 2
(GAkn

- m>
ln )

k (u) - (JU-,
)n 2n In '

2 2
(GAk - moj

n 2n . ,

* ^ au. sin w., t
, / 2 2 x In In
n v 2n In '

cos k x
n

(28)

Utilizing equations (2), (19) and (28), it can be shown that,

dtrf

dx

ma
+ Jku 2n

n 2n GAk
n=l,3,5-..

n

2 2
GAk - mu).

n In

; 2 2
m (uo - Ctt.

2n In

sin cu~ t
2n

muo.
In

mu),

+ J k UL
In

k ' I'nln GAk
n \ n

2 2
GAk ' - mu)

n 2n

m (^ - U)
ln )

sin u), t > cos k x
In f n

Integrating this,

M =

A
kv

n-1,3,5-..
nnk

n

2n , _ /. 2n
k \ n 2n GAk
n

2 2
GAk - moo,

n In
2 2

v 2n In

'

sin uj„ t
2n

moo.
In

moj.

+ J I k ux.
In

k " I'nln GAk
n \ n

2 2
GAk - mui

n In
2 2

m (oj - ux. )
2n In

sin oj t S sin k x
, (29)

where once again boundry conditions preclude a constant of integration.

Evaluation of Equations . An indication of the validity of any equation

occurs when the equation reduces to a simpler, classically known form

-14-





based on restrictions of the parameters. Accordingly, look at the values

of y, Q, and M when L/r' goes to infinity.

Thus, from equation (27a),

lim

L
CO =
n

2GAk.
XL

-S m
v 2 , v2"

"

+ 2. / L \
\TTr n Ur'n

from which it can be seen that,

to

2n
->

CU
In"

^ tl 2 2 2 t
2.

EAk n rr r
n

mL

k
4 s
n m

or

<J0,

2n ^ °°
j UJ

EI
In ' n a m (30 a,b)

Notice that (13 is the classical natural frequency for beams of long

length to radius ratio. Putting equations (30 a,b) into (26) then

lim

r

'

y (x,t) =vJ t- ^_ ~
n=l,3,5- -•'

uj., sin to. t sin k x
In in n

or,

y(x,t) = v J t -
^>

h /l

n=l,3,5...
n \ n

2"2
) VSl

Sln k
n VST*

Sln V > '
(3l)

But this is just the classical deflection equation for large —
t [lj .

Now, look at the bending moment equation, equation (29). At first

glance, it appears that the coefficient of the sin (jj„ t term blows up

-15-





as > » , However, it can be shown that this term actually goes to

zero. This is because the mass moment of inertia, J, times k goes to
n

zero. See Appendix C for proof of this convergence.

Appendix C also indicates that

c
),

moo,
lim ,, \ 4v InE S

M = > — —r=r- sin go. t sin k x ,

— -} co n=l,3,5--. n
r

or, for large —
, ,

M = — \ Bin k /—t • sin k x . (32)
Z. n n V m n

n=l,3,5-.

To further check this, it can be seen by inspection that using equation

(3l) to determine M from the formula,

M = E I

3x£

equation (32) results.

The shear equation does not converge when —

,

> °°
, as is the case

when classical theory is utilized. This fact shall not be derived here.

Next, look at the equations for y, Q, and M when —j— goes to zero.

Notice that this can occur in a beam of small — , for any mode, n ; or for

any beam at a large n.

Substituting equation (27b) in (26), (28), and (29), it can be shown

that

-16-





y(x,t) = v < t -
4L

rr2 \/GA
n=l,3,5-

1_ G
2 E

n
1 -

1*7*.z +

f~2 kG
- v z -w
r^w sin uo_ t

2n
1 -

/~2 5g
-\l

z
'
—

• • • «

z + ]/z
E

sin out, t
In

Q(x,t) = ~ y^
J^ |

n=l,3,5.

sin k x ,

n

+ v z - w

(33)

e (.- /Z2 .

' E /

2
z

4G
E

_,

sin t»_ t -
2n

-i^T-«

2
(
z +
^o)

z - 4G
E

sin Oft. t > cos k x ,

In I n

TT

n=l"7375...

z - i/Z
2 4g

^F)

(34)

sin uu_ t
2n

sin ux, t > sin k x
In f n (35)

-17-





Certainly these equations look forbidding, but their derivation involves

only algebra, even though long and complicated, and shall not be indicated

here.

Taking the limits of (33)? (3*0, and (35) as L'/r' goes to zero, one

finds

y(x,t) = v J t - -| /— \ -g. sin U)
ln

t sin k x ,(36)

T 1 tt f—;r c n
L V- rrf.,3,5—
r

'

llm
Q(x . t ) = W^A

TT

L-°
E ?^—:r r- n

sin 00. t cos k x
In n

n=l,3,5-.«

(37)

lim

r'^

M(x,t) =
4vL /inGA

52

n=l,3, 5« (
l -i)

G x
sln

"fen*

(-1)
sin cu_ t

G\ In
sin k x

n
(38)

The frequencies in the above equations are found by

lim

L

r'
~

2GAk
CO

n

{(-D^-D)m

from which one sees that

2

CD,

2

2n'

EAk
n

GAk

m
U)

n

In m (39 a,b)

One might ask why such complicated equations as (33), (3*0, and (35)

were used to obtain the limits instead of merely substituting (39 a,b)
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into (26), (28), and (29). Had this been done, the sin U)p
t portion

of the moment equation would have gone to zero, yielding a faulty

equation.

Equations (39 a,b) indicate that cju is associated with the bending

of the beam since it contains Young's modulus. Similarly, uo is asso-

ciated with the shearing action. This holds true for all modes in beams

with small L/r' and for any beam in the higher modes. One could con-

sider that the discrepancy in the lower modes is caused by the inter-

action of shear and bending. There is not sufficient time for the

modification to occur in the higher modes.

With this interpretation, it appears that the response of a very

short beam is almost entirely due to shear, which is completely acceptable

intuitively. Only the bending moment shows any effects, then, of rotary

inertia, since only it has the sin U)p
t term.

A zero-length beam probably has no significance physically, but,

when it is recalled that as n gets large, the nth term goes to the form

of (36), (37), and (38) for all beams, they become more interesting.

Notice equation (37) in particular. This equation can be transformed by

00 00

— v/mGA > - (sin ul t N hv \/mGA \ - ....
tt J_ n In cos k x) = — v / n

n=l,3,5...
n

' ^ nrf.,3,5...

tt (sin UL t cos k x + cos oon t sin k x) - yr (cos oun t sin k x
2 x In n In n ' 2 v In n

00

- sin u>_ t cos k x) = — JraGA >
-

In n 11 tt
v

/ n

- § Sin k
n

(x +J&- t
)J

.

n=l,3,5-..

= sin k (x +J— t)
2 n T Ym

(ko)
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This is just the equation for square waves traveling in from the ends.

The magnitude of each component is v -p— . The component traveling

in from x = is initially positive, and the one from x = L is initially-

negative. The waves travel at a velocity,

velocity
/ga /g

/m "

y p

Further notice that, after each component has traveled the length of

the "beam once, a reflected shear wave of magnitude v /mGA results.

Thus, the transient response of a shaft could he approximated by this

square wave, and the accuracy improves as —
,

gets small.

Lastly, it is noticed that equations (36), (31), and (38) prove

the convergence of the basic equations for y, Q, and M, since, as

indicated above the terms of each of the equations represent the limit

as n gets large. Thus for the higher modes, y and M decrease as

—
p

and Q decreases as —
n

Concept of an Equivalent Beam . An important characteristic of the

equations for deflection, shear, and bending moment can be realized if

they are non-dimensionalized.

Accordingly, define non-dimensional values with primes. Then looking

at equation (27b), one finds that

2
,0 w o 2 2

^ -frr
2n "

• <*)n

(50 -^¥
The non-dimensional time is defined such that

co' t' = <» t
n n
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whereby

••-* FGA

m
(42)

From the definition of k ,

n

t
x

(43)

Continuing, from equations (33), (3*0, and (35); it is seen that

2
r =^y = t , 4

. m
VL 7 GA

TT
n=l,3,5-..

G
n2 E

1 -

. . „ . . sin cu^
n

t ' - [ 1 -

z- \/Z/2 4G

z + yz

. 2 4g
Z +1/2 —

.

_4l
2

/2 4G

J ^ - th

2 4G

* (*
2
- ft

sin uu' t ' \ sin mrx'
nt

(44)

Q' =
Q

v x/mGA

WW

- y -
rr / n

n=l,3,5.--

/2 i+G
+ /z — " <

^ (- - J^h
"2 ~W
5

" E

• ./r
-

4g>
(
z +/* -

-

/2 ^t .2
z - i/z - E

sin uo ' t

'

2n

"2 5g" sin u)' t ' > sin ntT x 1

In
(^5)

M' =
m i- \

vL

1

1 2 kG
/z " 5-

•»

/2 ~4g"
+ /z - —

sin t^t •

-H 1

2

,^
2

- IF) _
sin cu' t' > sin nrr x'

In
(46)
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From these equations, it is clear that the non-dimensional values

of frequency, deflection, shear, and bending moment are equal for any

non-dimensional time or position, for any two beams if their values of

z are the same.

Recalling that

1 +

• £ * {*-)' ?)

it is thus necessary that, for the non-dimensional equations of any two

C T
beams to be equivalent, the ratios — and — , for one beam must equal

these ratios for the other.

Look at the ratio of the modified shear modulus to Young's modulus.

As was indicated earlier,

G = k' G' ,

where k' depends on section shape. Evaluation of k' is complex and beyond

the scope of this work; however, for a first approximation k' could be

evaluated by the equation,

k ! =
*r

'

, (47)

J

C

hdA

where

b = width of the beam material at the neutral axis,

C = height of the extreme fiber of a section measured from the

neutral axis,

h = height of any point in a section measured from the neutral axis. \_k\

-22-





See reference [~5| for the exact evaluation of k 1

. Use of equation (47

)

yields results accurate to about four per cent for a solid circular cross

section*

Clearly there are many variations in shape that would yield a

k'G'
constant value of

E

Effect of Damping . Even though the equations derived herein are appli-

cable only in the elastic region, hysteresis damping does occur. If

the equations for y, Q, and M are used in the form of equations (26),

(28), and (29), respectively, there is a possibility that many of the

modes will become additive at some relatively long time. The result would

be inordinately large magnitudes for the three quantities" of interest.

Applying damping in an analytical way would be difficult to say the

least. However, its major effect, i.e. that of reducing amplitude, could

be indicated approximately without loss of generality for the formulas.

Accordingly let the deflection energy that is lost each cycle be

two per cent of the energy of that cycle foj . From this, it can be

shown that a damping factor for each term would be approximately

t^ • * * -0.00161^ ,,,ONDamping factor = e l^oj

See Appendix D for details of this derivation.

Suggested Design Method . A method of calculating the response of any

beam is implied by the concept of an equivalent beam. Using equations

(42), (44), (45), and (46), modified by damping factors, one could
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obtain values of maximum shear, deflection and bending moments and the

n
time at which these occur. For a constant 77 , these maxima could be

E
T C

plotted versus — , . Several plots for various — would result in a

set of curves that would be completely general. After a few simple

calculations to convert from the non-dimensional magnitudes to absolute

magnitudes, one would have a good indication of the stresses experienced

by the shaft of interest.
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Ill, RESULTS

The equations for deflection, shear force and bending moment,

modified by the appropriate damping factors, were programmed on the

IBM 7090 computer for a solid steel, circular beam. The results of

that computation are indicated in Figures II, III, and IV. These plots

are for unity excitation velocity; thus one need only multiply the

actual velocity to obtain the magnitudes desired.

Figure II shows the time history of y, Q and M for a beam of six

inch radius and thirty-six inch length. Notice that, for a unit velocity

input, the deflection curve magnitude could be considered in units of

time. The origin of each shear and moment curve is the horizontal

line representing the position of the end points on the corresponding

deflection curve. Since the excitation is symmetrical only one-half of

the beam is represented.

Figure III is included to obtain a qualitative picture of the com-

parison of the responses of two beams of different —
t

. The solid line

is for the beam of Figure II while the dashed line represents the response

of a beam of six inch radius and sixty inch length. The units of this

figure have been normalized by dividing time by length and y, Q, and M

by the product of velocity and length. Since, for both beams, the cross

section is the same, equations (42), (44), (V?), and (46) indicate the

validity of this normalization. Notice that the magnitudes have not been

non-dimensionalized, although that too could have been done. Nevertheless

the normalizing method employed provides a satisfactory base for comparison.
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Figure IV shows the variation of the magnitude of the maximum

deflection, shear, and bending with respect to — , . Here all units

have been non-dimensionalized in accordance with equations (44), (45),

and (46). The position of the maximum deflection and bending moment

was, as would be expected, the center of the beam. The position of the

maximum shear varied from x' = to about x' = .125 .
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IV. DISCUSSION OF RESULTS

Upon examination of Figure II, one's attention is immediately drawn

to the negative motion that precedes the positive deflection as the

disturbance travels into the beam. The curves for shear and bending

moment tend to support this, but no physical reasoning is evident. To

show how this occurs, look at the solutions for y and y . By putting
S

equations (24) and (25) into (l8) and (19), it is seen that, relative to

the end points,

. W m_ V"
"

tt GA ZL nk
n=l,3,5... n

„*n 2 2
GAk - mu).,

n In
2 2

muj (co_ - u). )

2n 2n In

0do sin oo t
2n 2n

„., 2 2
GAk - muu

n 2n

mV ( *2n " V to. sin go. t
In In

sin k x ,

n (W

y*

on

Jt H l
tt / n

n=l,3,5...

moo

1 -
2n

GAk
D

I

2 2
GAk - mtu.,

n In
; 2

2~~

2n 2n In

sin uj~ t
2n

moo
In 1

GAk
n

2 2
GAk - moo

n 2n
2" 2"

mux. (oo - oo
n )In 2n In 7

sin 00. t
In

sin k x
n (50)

Equations (49) and (50) show that the coefficients of each term in

the series is the same as the coefficient of the corresponding term for y,
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the net deflection, multiplied by a factor. For simplicity the nth term

of equations (ky) and (50 ) could be written,

mou
2n

sn
GAk

y.2n

muo
In

GAk
yIn ,

(51)

and

y-bn

mcu.

1 -
'2n

GAk
n

t y
:2n

muo.

1 -
In

GAk
n

. yin (52)

where

y„ = the nth sin oo
?

t term of y,

yn = the nth sin 0Jn t term of y.J In In J

As n goes to infinity,

E
^ygn —^ n yo-^ " ynG ^2n Jln '

'bn
1 =

G '2n
|l - (l-)_ yIn

where (l-) indicates that this factor approaches one. Now, by examining

equation (26), the equation for y, it is seen that the coefficient of the

p
sin u) t term is negative. Furthermore, — is always greater than one,

.Ln G

e.g. for a solid circular shaft it is approximately 3-^5» With these

facts it can be seen that, for a circular shaft,

sn 3 ' 45
^2n " ^ln yn ' (53)

^bn^ " 2A5y2n • (5^)
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In other words , this shows that the deflection due to shear is greater

than the net deflection and that the deflection due to bending is initially

in the opposite directionJ When it is recalled that the higher series of

frequencies is associated with bending the the lower with shear, it fol-

lows that the bending effects should travel into the beam faster than

the shear effects. The ratio of these speeds will be on the order of

0),

u>.i

In

E
G *

Utilizing these concepts, Figure V shows, in qualitative terms, how

the resultant deflection occurs.

Figure V

Qualitative Description of Deflection Components

Bending Shear

nt of zero
shear

It can be deduced from this discussion, then* that the negative shear

that precedes the expected positive values is due to the negative bending,

and not the impact shear. This accounts for the fact that the negative

portion keeps pace with the bending action instead of moving at the

slower speed of the shear wave. Conversely, the rising, positive bending

moment is due to the expected positive shear.

By equations (53) and (5*0, it can be seen that the energy contained

in a beam is much greater than is indicated by the deflection alone. Even
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though the deflections due to shear and bending are of opposite sign, their

respective energies are additive. Thus the actual energy in a beam is

much greater than classical theory predicts. Lack of time precludes

deeper investigation of this point to gain quantitative information.

It was noticed that the curves for shear are relatively uneven and

ragged. Even though the computations vent to the forty-ninth mode, this

is probably not enough since the series converges only as —
, and as that

only in the higher modes

.

Upon examining Figure III, the lack of similarity in the two responses

is noteworthy. This confirms that beams of two different length to radius

of gyration ratios cannot be compared, even in a normalized form. Fur-

ther, it is noted that, as predicted, the shear curves of the beam with

the longer — , look less like the ideal square wave than those of the

shorter beam.

The accuracy of the curves in Figure IV is doubtful.. Because of com-

puter time limitations the search for the maxima may have been done with

the time and position increments too large. For this reason also, the

range of time examined may not have included the absolute maxima. However,

the curves are included to show the general variation of the indicated

quantities with — , .

The design method suggested in the Procedures section is dependent

upon the availability of sufficient data from parent models. To obtain

sufficient data to be generally useful, machine computation will probably

be necessary. However, programming the equations derived in this report

would not be too difficult. An example of how to utilize such derived

curves is indicated in Appendix E.
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A further refinement of the results of this work could be accomplished

by incorporating them into elasticity theory to obtain the actual maxi-

mum stresses experienced in a beam. A calculation of this sort could be

included in the computer program previously mentioned and a single family

L C
of curves of maximum stress versus — , for a range of — would result.

r

'

E

Lastly, it is recognized that the results described herein should be

confirmed by experiment before any actual engineering use of this is

attempted. Such experiments are therefore recommended.

3k-





V, CONCLUSIONS

It is felt that the equations derived speak for themselves and require

no further qualification. The equations show that the deflection due to

shear predominates in the total deflection and that the deflection due to

bending is in the opposite direction. The energy contained in a beam is

greater than is indicated by the net deflection because of this fact.

The equations imply that the disturbing effects of bending travel through

the beam faster than those of shear.

It has been shown that beam response may be placed in a non-dimensional

form whereby all beams with the same ratio of length to radius of gyration

and the same ratio of shear modulus to modulus of elasticity, modified by

a factor accounting for section shape, will have identical non-dimensional

responses.

This fact forms the basis of a simplified method to obtain design

calculations. The method is, however, dependent upon the compilation of

response data from a number of parent models.
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VI. RECOMMENDATIONS

It is recommended that the equations derived in this work be

confirmed by experiment.

The indication that significantly greater energies are contained

in a beam than is implied by the net deflection should be investigated

further

.

It is recommended that graphs for the non-dimensional form of the

response of any beam be obtained. In doing so, care should be taken to

assure that enough terms in the series be included to provide sufficient

accuracy and to assure that enough of a span of time is examined, so that

certainty of obtaining the maxima results.

Lastly, it is recommended that the results obtained in this work

be applied to the theory of elasticity so that prediction of the magnitude,

time and position of maximum stress could be calculated. It is recommended

that the results of this be placed into a family of curves, where each

curve is for a constant modified shear modulus to Young's modulus ratio,

and the coordinates are maximum stress and the ratio of length to radius

of gyration.
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VII, APPENDICES
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Appendix A. Application of Boundary Conditions

Equation (8) specifies that X(o) = X(l) = 0. However this could

be specified more completely by,

X
g

(0) = X
s

(L) = X^ (0) = X^ (L) = .

Now let C, = C, + C n , , C~ = C •+ C~, , and so on. From this, one can look
1 Is lb ' 2 2s 2b

'

'

at the boundary conditions for the deflection due to bending separately . Thus,

X, (
x

) = C sin kx + CU cos kx + C_, sinh 'kx + C. cosh". Joe , (a)

subject to boundary conditions

^ (0) = ^ (L) = 0,

d̂x

^
x=0

3x
2

=

x=L

(b)

Carrying out the indicated operations in (a) and (b) above,

h ( °) - c
2b

+ c
to ° -

. 2
-C
2b

+
°4b

= °

x=0

Therefore C on_ = C )T_
= 0.

2b 4b

Then

X^ (L) = C sin KL + C sinh kL = ,
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*>
3x

2
= - C. , sin kL + C„ sin hkL = 0.

lb 3b

[
x=L

Since sin hkL can never be zero, the above can only be true if CL, = and

kL = xm j n = 1, 2, 3> ••••

Thus,

^(x) = C
lb

sin 2E x . ( c )

But the constants for X , the deflection due to shear, have not yet been
s

satisfied. Thus,

X (x) = C, sin kx + CL cos kx + C_ sinfcukx + C, coshikx , (d)
s v ' Is 2s 3s 4s > \

i

and X (0) = C + C, = ,

s
N ' 2s 4s '

X (L) = C sin kL + C cos kL + C_ sirih ikL + C. cosh kL = .

S _LS £_S jS ^rS

But from (c) k = ~
' L , thus,

X (L) = CL + C_ sinh nrr + C, cosh jitt
s ' 2s 3 s 4s

= CL (l - cosh jot) + CL sinh jitt = .

2s 3s

But this is only true if CL = CL = 0. Thus, X = (O. + CL, ) sin "^
c:S JS _LS J.D J_i

= C sin —-— .

L

Since the excitation of the beam motion is symmetrical, the slope of the

beam at x = ? must be zero. This precludes any of the even numbered modes, and

X
n

= C
n

Sin
TT' n = 1}3 >5> ( e )
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Appendix B. More Convenient Form for Frequencies

Starting with equation (27), multiply numerator and denominator by,

m
/Elm _\ . t

+ 7T7— + J ) k
VGA / n

/Elm
_, T \ . 2

m +( 777— + J J k_ yGA / n .

1 Jm __. k-

-4 TT7- Elk
GA n

resulting in,

2 Elk
CO

n
(a)

Elm T . 2
m +

GA"
+ J k

n
Elm

J
_ .2

m + —rrr- + J k
GA n

1
JmEI ,

h

GA n

Notice that,

_
I

EIm
T^l 1

2
1

GA""
+ J

)
k
n

Elm 2

GA"
K
n

1 +
mGA

Elm k

JGA
2

+
Elm

n

But,

I = At'
2

, J = mr'
2

, and k - S
' ' n L

Thus

Elm 2

GA n
_ GA JGA

Elk
2 Elm

Elm 2

GA n -§H^
Elmki

n
GA

where

z = 1 •*H*)'i
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For the case under study, a solid circular beam,
L_ _ 2L
nr ' rrr

Thus,

2EIk
uu
n

Elmk
n „ +

GA

Elmk
T-72
n

GA

4mJEIk
r

GA

Nov multiply numerator and denominator of the last term under the radical

ET
by 777" "to obtain

^mJEIk
n /EI \/GA

GA VGA A EI
_ /mEI kn \ .

V^GA )' ' E

Thus, by putting this into the equation for uj , and factoring,

2GAk
U>

n

n

m - i z -r
(b)
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Appendix C . Proof of Convergance of Bending Moment Equation for Large

Length to Radius Ratio .

From equations (29) and (30 a,b) , it can be seen that, letting M.
n

be the nth term in the infinite series of M,

kv
lim M = lim ——

n nrrk
n

L - » k _» 00

moo,
2n

GAk

„*, 2 2
GAk - mujnn In

m
sin 0Jo t

2n

moj.
In

max

+ J [ k id.

In

n
n In GAk

n

— I sin oj. t > sin k xml In n

mou,

Look at the expression from the above equation, J
2n

GAk
n

Then

Jmu),

lim

L

GAk
2^ = lim (*)(§.
n

}Ak
n

}\L 2n/

With this and equation (27b), since never goes to infinity,

n

Jmu),

lim
L

2n
GAk

n
KL./gj. lim

2 4G
1 T

(a)

Remembering that,

G G ( L
z = 1 + — + —

E E onr'

it can be seen that (a) goes to the form -r as —
,

goes to infinity.
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Clearly L' Hospital's rule applies here, but, in order to keep the

application as simple as possible, recall that this calculation is only

to show that this limit goes to zero. As the numerator is differentiated

in accordance with L'Hospital's rule, it will always have zero as a limit

as -, goes to infinity". Thus the case will be proved simply by showing

that the limit of some derivative of the denominator becomes other than

zero.

To proceed, then,

lim —=-

L »&>
r ' -* °°

1
4g\ 2

E

2zir^i --

lim g
L
r'

G (\ \ L ' E \nrr/

1
X

/ Z -E-

t -W-%

Since we are not interested in the actual magnitude of the limit, cancel

out factors which are constant with respect to — , . Thus we get

lim
L
r ' -» oo

i. 1 -
2z

h
•m

z - u2
-J«t\£

E / _

Therefore the sin u)p
t term goes to zero in the limit as —

,
goes

to infinity.

By similar reasoning, simply by multiplying J by — in the sin ^ t

term,

lim

L
r 1

moo.
In

muo

- J
n

n In
In

GAk
n

moj.
In

(c)

n
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Then,

lim M = —:— -s sm id., t sin k x
n rink V k / In n

n \ n /
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Appendix D . Derivation of Damping Factor

A beam experiencing transverse motion could be interpreted as an

extremely complex spring-mass system. Since the energy of any spring-

mass system is proportional to the square of its deflection, one could

write

E.c* y^ ,

where

E. = Energy of the ith cycle,

y. = Deflection of the ith cycle.

If the energy lost per cycle is two per cent of the energy of that

cycle, then

« 2 2 2
E - E V - V V
-1 ill = 11 JlH - 1 - 3£ - O.CB . (a)

E
! *1 h

From elementary vibration theory the damping factor is of the form,

-U) Bt
Damping factor = e , (b

)

where

B = fraction of critical damping, .

and the frequency, modified by damping is

id. = u) Jl - B (c)
d n V

From (c) the time for one cycle, or the period, is

t, =
2tt

. (a)

U) v/l - BD v/l -
n^

A5-





Clearly, then, from (b) and (d)
,

-2ttB

y
i+i "%BTa ;c?

= e = e'
yi

If B is small compared to 1,

yi+l -2ttB

y
i

e™ . (e)

Combining (a) and (e) one obtains

1.54 - 1 - e-
1"12

= .02 .

Solving this for B one obtains

B = 0.00161 . (f)

Notice that the effect of B on the natural frequency in (c) above

is small. Therefore this effect shall be neglected.

If each term in the equations for y, y , and y is multiplied by
s b

its appropriate damping factor and the equations for Q and M are derived

again, it can be seen that, since B < < 1 , the same equations result

approximately except that each term is multiplied by the appropriate

damping factor.
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Appendix E . Example Problem

Assume we have a solid steel circular shaft 18 inches in diameter.

What would be the maximum length that could be allowed between supports

if the beam is not to deflect more than .1 inch when subjected to a shock

velocity of 35 inches per second?

Let steel have the characteristics,

„ __ . ^,-4 lb. -sec.
p = 7-33 x 10 j-

—

in.

G' = 11.2 x 10 psi .

It can be seen that, by equation (47),

2 2

k*
br '

= R x R
= 3

pC hdA"4f
R gh^h"2 dh" *

f

R gh/^h1
Jo

Thus

6
= i G' = 8.45 x 10 psi.G = IT

By equation (44),

„, y y_ /cT _^i / 8.45 x io
6

308"

vL y^
" *U -Lx35^/

T .33 xiS
-4 " L *

p
For a circular cross section, r' = p .

Tabulate y' and — , for several values of L, as indicated b«low:

L (inches) v ( )
L
r' <&>

96 3-1 21.3

120 2.56 26.7

144 2.13

-47-
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Figure VI

Determination of Maximum Length of Beam

According to Example Problem
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Plotting these values in Figure VI', jwhich is just a copy of Figure IV,

it can be seen that the required L/r' is 30.3* Then

L = -, x r' = 30.3 x 4.5 = 136 inches.

The maximum bending moment for a beam with this L/r 1 is obtained

from Figure VI and equation 46, i.e.,

M = M' (vL VmGA ) = M* (vLA/"p6 )

= 35 x 136 x tt x 9
2

/t.33 x 10 x 8.45 x 10

= 419,000 in. -lbs.

Using the formula for maximum bending stress,

we find

TT X 9T
Similarly, from equation (45) and Figure VI,

TT X 9
2
^7-

-4 n ,. -j6
Q = Q' (v /mGA ) = .73 x 35 x tt x 9 |/7-33 x 10 x 8.45 x 10 = 2010 lb

Now, the maximum shear stress is

1 Q 4 2010 lrt „S
s

=
k« I

=
3

X
n
2 = 10.52 psi .

J
TT X 9

Clearly the deflection governs in this case, but if the allowable

deflection had been greater, the acceptable length would have increased.

This would cause a rise in bending stress. A point would thus be reached

where the stresses govern the length.
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