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ABSTRACT

The sequential solution, in recursive form, of a

growing set of linear equations, based upon the least-

square-error and a weighted least-square-error criterion,

are developed. For comparison these results are applied

to the discrete-time solution of several estimation and

identification problems. Recursive algorithms for pseudo

inversion and the best approximate solution of a set of

linear equations are included. Finally, efficient state

estimation procedures for time-invariant systems using a

sliding-window observer are presented.



.ltorary * lia *p School
,. s . Naval Postgraduate be

ionterey, Calif ^y4Q

TABLE OF CONTENTS

I. INTRODUCTION 5

II. THE NORMALIZED LEAST-SQUARE -ERROR SOLUTION 13

A. LEAST-SQUARE-ERROR AND NORMALIZED
LEAST-SQUARE-ERROR SOLUTION 14

B. RECURSIVE RELATIONS 25

III. THE BEST APPROXIMATE SOLUTION 57

A. THE PSEUDO INVERSE 58

B. RECURSIVE ALGORITHM FOR THE
SEQUENTIAL LEAST-SQUARE-FIT 66

C. ESTIMATING THE STATES OF A LINEAR
DYNAMIC SYSTEM 81

IV. FINITE ITERATION METHODS 85

A. INFINITE ITERATION PROCEDURE 86

B. FINITE ITERATION PROCEDURE 88

C. MATRIX PSEUDO INVERSION 98

V. RECURSIVE ALGORITHM FOR THE SLIDING-
WINDOW OBSERVER 103

A. THE MINIMUM-WINDOW OBSERVER 10 5

B. SLIDING-WINDOW OBSERVER FOR TIME-
INVARIANT SYSTEMS 110

VI. SUMMARY AND RECOMMENDATIONS FOR FURTHER
STUDY 119

APPENDIX A 122

A. ITERATIVE SOLUTION OF A SET OF
NONLINEAR EQUATIONS 122

B. SOLUTION OF THE DYNAMIC RESPONSE OF CIRCUITS
CONTAINING NONLINEAR RESISTIVE ELEMENTS 134

LIST OF REFERENCES 139

INITIAL DISTRIBUTION LIST 141

FORM DD 1473 143

3



ACKNOWLEDGEMENT

The author wishes to express his appreciation to Dr

Sydney R. Parker for his encouragement, guidance and

assistance in this work.



I. INTRODUCTION

In a broad sense this dissertation is concerned with

the basic problem of solving the linear matrix equation*

Ax = b (1.1)

where A is an m x n matrix, x an n x 1 vector of unknowns,

and b an m x 1 vector of constants. The solution, if A has

rank r = n, is straightforward and reduces essentially to

matrix inversion

x = [A
T
A] A

T
b (1.2)

T ip -1
where A is the transpose of A, [A A] is the inverse of

A A, and where x denotes the solution of (1.1). However,

when the rank of A is less than n, the set of equations

(1.1) is underdetermined and infinitely many solutions

exist. In order to select a unique solution out of all

possible solutions further constraints are imposed. In

the work presented here the minimum-norm solution, as de-

fined by Penrose [5], is selected. If x denotes the

selected solution, and x any other possible solution, then

ii ii Twhere x = trace xx . The solution of (1.1) is further

*
Throughout this dissertation a bar under a lower case

letter represents a column matrix or vector. Capital
letters generally refer to matrices.



complicated when the set of equations is inconsistent so

that there is no solution which satisfies all equations.

In this case a compromise solution has to be accepted

such that all equations are satisfied as close as possible

according to some criterion. Usually this compromise

solution is selected by minimizing an error criterion J.

J = f (e) (1.4)

where e = Ax - b. The most commonly used criterion is the

least-square-error sum

J = e e = trace ee = E e, (1.5)
. 3.

where e . is the i element of the vector e.

When this criterion is combined with the minimum-norm con-

dition (1.3) a unique general solution results which

Penrose [5] has defined as the best approximate solution and

which is obtained using the concept of the pseudo inverse.

This general approach to the solution of (1.1) is par-

ticularly useful when applied to discrete-time system

problems such as state estimation, parameter identification ,

and the limited memory observer problem as discussed in the

body of this dissertation. As an example, consider the

problem of estimating the states of a linear, dynamic system

from noise-contaminated measurements. The dynamic system

and the measurements are given by

*k
= Vk-A-i (1 - 6a)



z
k = M

k
*
k + \ (1.6b)

where x, is the system state vector, $, , _, the discrete,

time-varying transition matrix, M, a time-varying observation

matrix of dimensions 1 xn, v, the measurement noise, and z,

a scalar observation. After k observations the data may be

arranged as follows

M §u
l
v
l,k

M $
2 2,k

M,

^k (1.7)

Thus the state estimation problem for linear/ discrete-time

systems is reduced to the problem of solving (1.1). When

the transition matrix is the identity matrix this problem

reduces to estimating a constant but unknown vector x. The

estimation problem has been considered for many years by

such famous mathematicians as Gauss [1], Penrose [4,5],

Kalman [2], Deutsch [1] and many others. In spite of their

differing approaches the underlying concept remains the

solution of (1.1).

The problem of identifying the coefficients of the

recursive difference equation describing a time-invariant,

linear system from a sequence of noisy response measure-

ments can also be reduced to the solution of (1.1). Pre-

vious investigators have solved this identification problem



using different methods such as correlation functions,

deconvolution techniques, adaptive model techniques, and

others as discussed by Mishkin and Braun [17] , Eveleigh

[18], Eykkoff [19] and many others. The approach using

the problem formulation of (1.1) has been considered by

R. C. K. Lee [3]

.

Thus, it has been well established that it is possible

to solve discrete estimation or identification problems

using the concept of the best approximate solution of (1.1).

For real-time computation, as required for example in some

self-adaptive control systems, it is desired to obtain

numerical results sequentially with a minimum of computation

time and data storage. Since the dimension, m, of matrix A

grows at each step in time as additional data is acquired,

it is desirable to formulate a sequential solution to (1.1)

in recursive form. Almost all known algorithms are based

upon the assumption that matrix A has rank r = n whenever

m > n, which might not be true in general. The algorithm

developed in this dissertation solves (1.1) sequentially

for the best approximate solution [5] without any assump-

tions as to the rank of A. The normalized least-square-

error solution and an algorithm, an alternate formulation

based upon a different error criterion, are developed and

applied to an estimation and an identification problem.

For completeness, recursive non-sequential forms for

obtaining the Penrose inverse and the best approximate

solution of (1.1), when the matrix A has constant dimensions,



are included. Finally, efficient procedures for sequential

state estimation of time-invariant systems are presented,

where the state estimation is obtained from a finite but

continuously updated set of observations (sliding-window

observer) . These results fall into the category of linear

observer theory as discussed by Luenberger [11] and Bona

[12].

The development and discussion of the foregoing results,

including geometric interpretation and examples, are pre-

sented as follows. In Chapter II, Eqs . (1.1) are considered

to be a set of overdetermined equations. The closed form

solution, as well as the recursive solution (Kalman type

filter) , are well known. However, a geometric interpre-

tation of the known results suggests an alternate way of

selecting the compromise solution using a weighted least-

square-error criterion. This solution is defined here as

the normalized least-square-error solution. The normalized

least-square-error solution in recursive form, which requires

only a slight modification of the least-square-error

algorithm, is applied to a specific estimation problem as

well as to an identification problem. The latter consists

of identifying the coefficients of a difference equation

describing a dynamic, linear, time-invariant system from

system response data. The experimental results are quite

favorable for the normalized least-square-error solutions.

For the identification problem it is shown that with

sinusoidal excitation the normalized least-square-error



solution results in a smaller bias error. However, these

results cannot be generalized and whether the normalized

least-square-error algorithm should be used depends

entirely upon the specific problem under consideration.

In Chapter III the general solution of (1.1) when the

rank of A is less than or equal to n is discussed. First

the definition and some properties of the pseudo inverse

and the best approximate solution according to Penrose

[4,5] are stated and some alternate expressions for the

pseudo inverse are discussed. Then a complete recursive

algorithm for the best approximate solution for the general

case is developed for use as a sequential-estimation pro-

cedure. The algorithm presented here has the advantage

over previously published results in that the dimensions of

the matrices involved in the algorithm remain constant

irrespective of the dimension, m, and rank of A. It is

interesting to note that the form of the resulting filter

equation

*
k = £k _i + a («k

- a
T x^) (1.4)

evolves naturally by solving the necessary equations and

is not assumed a priori. Finally, the algorithm is adapted

for state estimation of linear, time-varying dynamic

systems

.

The solution of a fixed set of equations (1.1) is con-

sidered in Chapter IV. Although it is possible to obtain

the solution with the algorithm of Chapter III, this method

10



is not very efficient because only the final solution, with-

out intermediate sequential estimates, is required. More

efficient methods are obtained here by combining an infinite

iterative error correcting method, as developed by Noda and

Nagumo [10], and the Gram-Schmidt orthogonalization process

[9]. The results are finite-step algorithms for the solu-

tion of matrix equation (1.1), matrix inversion (when the

matrix is nonsingular) , and matrix pseudo inversion for the

general case.

In Chapter V the sequential solution of a growing set

of equations (1.1) is considered again. However it is

assumed a priori that the set of equations is consistent

and that any subsequent sets of n equations in (1.1) are

independent. The problem is then solved with the ultimate

goal of developing finite-memory, sliding-window observers.

First, the general case of time-varying linear systems

is considered and a new algorithm for the minimum-window

observer (an observer with a memory limited to exactly

the minimal set of data) is developed. However the high

sensitivity of this observer to measurement noise severely

limits its use [12]. Introducing the further constraints

that the system and the observation matrix are time invariant

leads to more useful and very efficient results. It is

shown that with these constraints it is possible to construct

simple and efficient filters for state estimation from noise-

contaminated measurements using the results for the minimum-

window observer. Also, using the concept of the pseudo

11



inverse, the memory of the observer may be extended so that

a sliding-window observer of arbitrary length i > n is

obtained. In this case the algorithm for state estimation

reduces to

^k = F*k-1
+ 2 z

k d' 5 >

where F and g are constant. The performances of these

filters when processing noisy measurements is illustrated

with an example.

Finally, in Appendix A, the solution of a set of non-

linear equations using the results of Chapter IV is

attempted. An iteration scheme is presented in which the

value of the total difference quotient for the nonlinear

part of the set of equations is iterated sequentially to

its true solution. Computational results are presented for

examples where this iteration process converges while other

commonly used methods, such as Newton-Raphson, Gradient,

and Linear Interpolation fail. This iteration scheme is

then proposed for the solution of sets of nonlinear

differential equation for networks containing nonlinear,

memoryless, dissipative elements.

12



II. THE NORMALIZED LEAST-SQUARE-ERROR SOLUTION

In this chapter the solution of a set of overdetermined

simultaneous linear equations is considered first, using

the concepts of the pseudo inverse as developed byPenrose

[4,5], The usual least-square-error solution is presented

and interpreted geometrically. It is then shown that an

alternate solution, which has been designated here as the

normalized least-square-error solution, is also possible

and leads to a different geometrical interpretation. These

results are then applied to an estimation problem, and a

recursive algorithm, based upon the normalized least-square-

error solution, is developed. The resulting equations are

similar in form to the Kalman [2] type of discrete filter

as discussed by R. C. K. Lee [3], but differ substantially

in their precise formulation and the nature of the results.

A numerical-estimation example comparing the least-square-

error filter with the normalized least-square-error filter

is presented. The recursive equations are then applied

to the problem of identifying the coefficients of the

difference equation describing a dynamic system from a

sequence of noisy measurements of the system's response.

The results of a numerical example are presented and com-

pared with the results obtained using the usual least-

square-error filter. These results indicate that the error

in coefficient identification may be less for the normalized

13



least-square-error solution, as defined, than for the usual

least-square-error solution available in the literature.

An alternate approach to the solution of the identifi-

cation problem is to use estimates for the past system

response rather than the past observations themselves in the

problem formulation. As shown in Example 2.3 this procedure

may result in a better identification of the system co-

efficients. Finally, it is demonstrated that in the

presence of measurement noise a bias error in the identifi-

cation begins to build whenever the input function is

constant. However, when the input function is causing a

significant dynamic system response, the estimation error

approaches a constant bias. The analysis of bias error is

performed by approximating the discrete formulations in

the continuous time domain so that a limiting process can

be performed readily. These results are verified experi-

mentally.

A. LEAST-SQUARE-ERROR AND NORMALIZED LEAST-SQUARE-ERROR
SOLUTION

The most common method of solving a set of m simul-

taneous equations in n unknowns, where m > n, is the least-

square-error solution. The problem consists of solving

the algebraic relationships

b = Ax (2.1)

where A is the m x n matrix of coefficients

14



b is the m x 1 vector of constants

x is the n x 1 vector of unknowns.

A solution for x is the best approximate solution introduced

by Penrose [5]

.

x = A
+
b (2.2)

where A is the Penrose pseudo-inverse, and x is the best

approximate solution. If the matrix A has rank n , this

solution is obtained as*

x = [A
T
A] A

T
b (2.3)

rji rp -1
where a denotes the transpose of A and [A A] the inverse

T ^
of [A A] . In this case the solution x minimizes the cost

function J

2 9 m 9

J =
||
Ax - b|| = |je|| = I ef (2.4)

i=l
1

where e = Ax - b (2.5)

and e . represents the components of the vector e_. Thus

this solution satisfies all the equations of (2.1) as close

as possible in the least-square-error sense which is shown

as follows.

*
If A has rank less than n (i.e., the rows of A are not

independent) the pseudo inverse has a different form as
discussed in Chapter III.
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The minimum of Eq. (1.4) occurs when

— = 2[Ax - b]
T
A = (2.6)

3x

or A
T
Ax = A

T
b (2.7)

Therefore

x = [A
T
A] A

T
b (2.8)

A geometric interpretation of the least-square-error

solution may be obtained by considering the two dimensional

case where the vector x has two components x, , x~. Each

equation of (2.1) represents a line in the x, , x
2

plane.

These lines generally do not intersect at a single point.

Now consider the sequence of lines given by

Ax = b - e (2.9a)

where e is a vector with arbitrary elements, e.. These

lines are parallel to the original lines but shifted in

the orthogonal direction by the amount, s. , where

2 2
"^

s
i

=
^ a li

+ a
2i^

e
i '

i = 1 ' 2 '--- m (2.9b)

and a. . are elements of the matrix A. In the least-square-

error solution the lines are shifted so that they all pass

through the point x, , x„ so that the cost function, J

m ~

J= I e
Z

(2.9c)
i-1

X

is minimized.

16



A different result may be obtained by considering each

equation of (2.1) as a permissible geometric locus for the

desired solution point. In general this locus is a hyper-

plane in n dimensional space, where n is the number of

elements in the unknown vector x. If all the loci intersect

in a single point this solution corresponds to that of

(2.3). If they do not intersect in a point, the solution

point may be defined as the point which minimizes the sum

of the distances squared to each locus. This solution is

defined here as the normalized least-square-error solution.

Its interpretation is quite different from the least-square-

error solution and in certain types of identification prob-

lems is seen to be more meaningful than the usual results

available in the literature.

The normalized least-square-error solution is a weighted

least-square-error solution with weighting factors chosen

such that the solution point lies as close as possible to

all geometric loci described by (2.1). This result can be

obtained by selecting the solution x* such that the scalar

cost function

m p

J* = t d (2.10a)
i=l

L

is minimized, where the d. 's are the distances from x* to
i —

the respective loci designated by the subscript i. Before

deriving this solution it is desirable to prove the

following.

17



The distance from a point

P* (x *,x * ... x *) to the plane12 n c

= a-,x, + a~x + ... + a x - c (2.10b)11 2 2 n n

is given by

-is
2 2 2

|d| =
|
(a, + a„ +...+ aJ (a,x * + a„x *+. . . +a x * - c)

1
' '

, 1 2 n 11 2 2 nn

(2.11)

Proof of Eq, (2.11) is given for the three dimensional case.

Extension to higher dimensions is obvious,,

Proof

Let the point P*(x*,y*,z*) and the plane c = a-, x+a-y+a^z be

given. The unit vector normal to the plane is found by

considering a plane through the origin parallel to the

given plane. Its equation is

= a,x + a„y + a^z (2.12a)

which is the dot product of two vectors, one the position

vector r to any point in the plane

r = xi. + y£ + z4 (2.12b)

and the other a vector normal to the plane

n = a
1
l+ a

2£ + a
3£ (2.12c)

where x_,
fi_,

and jb are unit vectors defining the three-

dimensional cartesian space. The unit normal vector is then

18



71= a i + a
2

j_ + 013k (2.12d)

where

2 2 2
a. = (a, + a + a~) a. , i = 1,2,3

The distance |d| is then given by (See Fig. 2.1, where N is

the point in the given plane closest to the given point P*

and NP* denotes the vector from N to P*)

|d| =
I

(r - r*) • TO
|

• (2.12f)

where r is the position vector of a point in the given plane and

r* is the vector from the origin to the point P*.

Since
2

- 2 "^
r«7i = a,x + a„y + a_z = (a, + a_ + a_) c (2.12g)

and

-3*

r*.?l= (a^ + a
2

2
+ a^) (a

±
x* + a

2
y* + a

3
z*) (2.12h)

it follows that

ii.222^ ,

|d| ^
I

(a
1

+ a
2

+ a-) (a,x* + a
2
y* + a

3
z* - c)

|

(2.12i)

Extension to higher dimensions follows the same arguments

as above and leads to the general result of (2.11).

The solution to the equations (2.1) which minimizes the cost

function (2.9) may be obtained by considering a slight

modification of (2.3). Consider the vector d with elements

d. given by

d = WAx - Wb (2.13a)

19
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FIG. 2.1 DIAGRAM FOR PROOF OF£q. (2.11)
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where W is a diagonal mxm matrix of weighting or normalizing

factors w. . given by

n -\ _;*

w
±i

= ( I a
±

.) ~ * (a
i
a
i

) , i=l,2,...,m (2.14)
j = l

Eq. (2.13a) may be rewritten as

d = A*x - b* (2.13b)

where A* = WA (2.15)

and b* = Wb (2.16)

The solution of (2.13b) in the least-square-error sense is

the desired solution, namely

x* = [A*
T
A*]

_1
A*

T
b* (2.17)

It should be emphasized that this method solves a different

set of equations (2.13a), derived from the original set of

equations (2.1) by normalizing each equation, using the

standard least-square-error-solution. Thus the normalized

least-square-error solution is a weighted least-square-

error solution of (2.1). This is quite different from

other possible solutions of (2.1) minimizing alternate

cost functions [18,21], i.e.

m „

T - V 2P
1 "

i=l *

where p is an integer or

21



m
J~ = E |e.
z

i=l

The following example demonstrates that the solutions (2.3)

and (2.17) may differ appreciably.

Example 2.1 : Solve the set of 4 equations in 2 unknowns:

Given b = Ax , b

n 1 1

o -1 1

l '
A =

10 10

ij L-io 10

According to (2.3)

x =
.0

.09
J

According to (2.8)

x* = .0

.05

These results as well as the lines defined by the above

equations are shown in Fig. 2.2.

This new approach to the solution may yield more meaning-

ful results where the indiscriminate use of the least-square-

error procedure leads to unexpected or undesirable results.

Consider for example the problem of estimating the parameters

of the semiconductor diode model [14] from measured electri-

cal data. If the diode is forward biased the model essen-

tially reduces to a resistor R, representing the combined

22



-}- LEAST SQUARE ERROR SOLUTION

NORMALIZED LEAST SQUARE ERROR SOLUTION

FIG. 2.2 EX. 2.1
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body, lead, and contact resistance of the actual diode,

in series with an ideal diode given by

'I-I
V
D

= k in k£n(I) - k£n(I ) .

V is the voltage across the ideal diode, I the diode

current, I the reverse saturation current and k the
s

characteristic constant (for constant temperature) of the

diode. If V represents the voltage across the actual

diode, the model is described by

V = IR + k£n(I) - kiln (I ) .

An estimate for the constant parameters R, k, and

-k£n(I ) is obtained from £n measurements of voltage and

current for the forward range of the diode. The measure-

ments may be written in the form

v
l

1 z
i

Jin (I,) -k£n(I )

1 s

v
2

1 J
2

£n(I
2

)

•

•

•

c

•

• c

R

V
m

•

i

•

Im

«

£n(I )

m _
k

j

The least-square-error solution results in a model which

is very poor for small currents and excellent for very large

currents, because the weights attached to the measurement vectors

[1 I. Jin (I )] may differ by orders of magnitude. Therefore

the normalized least-square-error solution, which weighs

24



each measurement vector equally, is preferred, resulting

in a model which describes the actual diode adequately for

the entire forward range.

B. RECURSIVE RELATIONSHIPS

1. Development of the Recursive Relations for an
Estimation Problem

In estimation* problems the least-square-error

solution is widely used in the form of a recursive relation

for sequential estimation where in addition to a set of

solved equations one new equation is considered and its

data taken into account**. A typical example of such an

estimation problem is to determine the set of initial

conditions for a dynamic system from a sequence of discrete

observations. Consider the system equation given in dis-

crete form as follows:

y_k
= *(T) yk _ 1

(2.18)

z
k

- M y_k
(2.19)

where y, and y. , denote the state vectors at discrete

times kT and (k-l)T respectively. $ (T) is the known

transition matrix of the system for the discrete time inter-

val T. M is the known observer matrix of dimensions 1 x n

and z, is the scalar observation at time kT. If the state
k

*
The term estimation is used to designate problems in-

volving the solution of (2.1) where the elements of A are
known exactly.

**
See Ref. 3, page 51.
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vector at k = is denoted by the vector x the observations

can be listed in the following form:

M

M$
k-7

x (2.20)

Estimation of the vector x is equivalent to solving (2.1).

Thus in general form (2.20) may be written as

z, = A, x—k k—
(2.21)

If A, is of maximum rank, Lee [3] defines (M,<J>) as an

observable pair and (2.21) has a least-square-error solution

according to (2.3):

-k " P
k
Ak-k (2.22)

where z, is the vector of k observations—

k

T t| T T ' k-1 Tl
A, the k x n coefficient matrix, A, = [M

i
$ M

;
. . . ,$ M

k k '

T
P, the inverse of the matrix A, A, and

x, the least-square-error solution for x based upon
the k observations

Now consider the (k+l)st equation

T
Zk+1

=
* * (2.33)

where z,
,

, is the new observation or data in the vector z, ,

,

k+1 -k+1
T T k+land a a row of new coefficients. a is equal to M$ for

26



the estimation example above. It is now possible to define

the matrix A. , and the observation vector z,
, ,

.

k+1 —k+1

A
k+1

A

*k+l

ik

J

k+1

(2.24)

The least-square-error solution then takes the form

-k+1
: P

k+1
Ak+1 -k+1

where P,
, , is the inverse of the matrix [A,

, n A, ,,k+1 k+1 k+1

(2.25)

] . This

result can be written in the following recursive form [3]

.

X = x n +
-k+1 -k

P
k*
T

1+a P. a— k—

T . \

'k+1 " *- ^k }

>

^
P
k+1 = P

k
"

pk!i
Tp

k
T

1+a P. a— k—

(2.26)

It should be noted that (1+a P, a) is a scalar and is— k—

treated accordingly. The derivation of (2.26) normally

available in the literature is rather involved and a short

derivation which has been developed here is presented.

-1 T
P, = A, A,
k k k

(2.27)

-1 rp iji T~l T
p
k+i = Ak+i3c+i

=W + ^ = p
k

+ ^^

-1 T "I
P, . , = [I + a a P. ] P.
k+1 -- k"

(2.28a)
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After premultiplying by P
k + 1

and postmultiplying by P,

(2.28a) becomes

P
i

= P
n ^i + P

t _li a a P
ik k+1 k+1 k

(a. 28b)

Combining (2.28b) with (2.28a) yields

P, ., = P, - P, [I + aaT P. J aaT P,
k+1 k k — k k

(2.29)

T -1
The expression [I+aa El a may be simplified.

T -1
Let £ = [I + a a P ] a

then C(l+a
T
P,a) = [I + aa T

P, ] a (1 + a
T
P,a)

k k K"-

= [I + aa T
P ] [a + aaT

P a]

= [I + aa T P
R ] [I + aa T P

k
]a

= a

Thus £ = a/(l + a P.a) and (2.9) reduces to

Then

p
k+ l

=

T
P, aa P,

r
k— k

k
l+a

T
P, a— k—

-k+1
= T

P A 7
k+1 *k+l -k+1

=

T -,
P. a a P.

r
k k

k
l+a

T
P

1
a

L — k—

TAk-k
+ zk+l-

= I
3 a T

Pk- T^ _T
k k

'
k

l+ a
T
P,

- "k"k-k T
a

(2.30)

,

p
k
£a p

k
a,

:

k+l l

Pk- " 77~Tl i

1+a P, a— k—
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=
2k

-
p
k* t~

p
ki*

a *
k

+ zk+ iT
1+a P, a— k—

T
1+a P, a— k—

p p\

k- , T. .

-k+1 " -k
+

nj_
t (zk+l - -k }

1+a P, a— k—

(2.31)

(2.30) and (2.31) are the desired equations of the recursive

form (2.26) .

By comparing (2.3) and (2.17) the recursive relationship

for the normalized least-square-error solution follows

x = X* +
P*a*k—

k+1 -k
1+a* P*a*— k—

fz*lzk+l

p* = p* _
^ k+1 k

P,*a*a* P*k— — k

l+a*
T
P*a*— k—

(2.32a)

Now because of the normalization

T -%
z*+1

= (a a) zk+1

T
i* = (a a) a- /

(2.32b)

Substituting (2.32b) into (2.32a) yields

V*
-k+1

p*
v k+1

*k
+

p* _
k

P*a

a a+a P *a

a a+a P*a

(ak+1 ax*) N

(2.32c)

From (2.32c) it follows that explicit normalization of each

equation is unnecessary. Instead a slight modification of
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(2.26), as given in (2.32), results in the desired algorithm,

It should be noted that (2.32) is not valid for the meaning-

less observation with the coefficient vector a = 0, which

must be excluded from the recursive procedure. For this

case

x = X*k+1 -k

) for a =

p*
k+1

P
£

(2.32d)

In the following example sequential estimates for a

vector of constant elements are computed from noise con-

taminated measurements using both the least-square-error

and the normalized least-square-error procedure. The

measurement noise is derived from a noise population with

zero mean and a distribution of finite extent (i.e. uniform

distribution), rather than from a normal distribution, in

order to conform with practical problems where the largest

possible measurement error is bounded.

Example 2.2 : Estimate the unknown vector x of dimensions

2x1 from the scalar measurements given as

z
k = \± + \ 2.33a)

where

k-1 2
M
k

- [1. (Sjji)
] (2.33b)

M, is a time varying observation matrix, z, the scalar ob-

servation and v, the measurement noise. At time instant k
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the k equations, according to (2.33a), may be written in

matrix form as

z, = A, x + v,—k k— —

k

(2.33c)

where

A, =

1/4

,k-l , 2
( k '

(2.33d)

-k
: [z

l
z
2

* '

*

z
k ] (2.33e)

\ = [V
1
V
2

•'• V
k ] (2.33f)

Since x must be estimated from noisy measurements, z, , it

is necessary to solve the equation

z, = A. x—k k— (2.33g)

The solution of C*\33g) for the estimate of x is given by

T
-k ~ P

k
A
k-k

where P,
T -1

(AkV

(2.33h)

(2.33i)

The estimation error is then defined as

x, x, - x
1—k —

k

T
P
k
A
k-k

T
- P. A, Z,

k k —

k

V
p
k
A
k^k

(2.33k)
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0.1
0.9

and the measure-Results for a specific case, where x =

ment noise v, is a sample from a uniform noise population

with maximum deviation ±0.1 and zero mean are shown in

Figure 2.3 and" Figure 2.4. The sum e of the absolute

estimation errors

l~l, |

2
e = x, + x,

1 k '
' k

(2.33£)

-vl ~2
where x, and x, are the two elements of x, is shown for

both estimators in Figure 2.5. Note that the estimation

error does not approach zero.

The experimental result of Example 2.2 may be verified

by considering a similar estimation problem where the

sequence of observation matrices is given as

A
k

" (2.33m)

The matrix P, in (2.26) for this problem takes the form

P
k

=

-1 1+

-1

1

for k > 2

In the limit as k goes to infinity

£im
k->-°° k

1 -1

L-l 1

(2.33n)
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and
1 -1 1 1 1£im ~

k -*-00 —

k

•

-1 1 1 1

V- (2.33o)

Since v. is a random variable, it follows from (2.33o) that

£im
k+°°

{Prob (x-x) = 0} =

and the estimation error will approach a constant bias

dependent on the value of the first noise sample. In

Example 2.2 the result is quite similar and the estima-

tion error will approach a constant bias with probability

equal to 1. This bias is dependent mainly upon the first

few noise samples as shown in the following.

k
1 2

2 (1 - =-)

2
T

A A =

2 (!-=)

2
x

z (1-4^)
2

x

and P, =
k

1

k
1 4

2
1 "

"~ k 12"
1 E (1-t-)

k 2

2

1
k

1
4

1
k

1 2

k| d-i)
2

i
i

(2.33p )

In the limit as k goes to infinity the elements of P, do not

go to zero but approach constant values. An approximation

of ,

1™ P, may be obtained by converting the piecewise-

constant functions in (2.33p) to continuous functions and

the summations to integrations. Thus
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Since

Also

and

k^-oo k o
v 1' k-*°° k ^ i' x

* im {hx - 4£nx - i + 2
y
--iT ]

k+ ' 5

}
k"w k X

x
2

3x
3

1.5

= 1-4 ,

£im [i £n(k+.5) ]
k->°° k

= 1

2
5,1m 1 , ,, i Urn r, -1, n L 1 ,, 1. -,-,

,
r- Jln(k) = , lk [ (I-?-) + tt(1-H + ...J)

k-*°° k k+°°
L k 2 k

=

11 1 *„ 1. . Jlim 1 , ,, 1. ,

, r £ (1— ) dx - .
— J (1— ) dx

k-+°° k 9 x k->°° k ! x

im r 1
r

- . 1, -,

, ir-[x-2£nx - —

]

}
k->°° k l x , _

1 . _>

=1-2 f
im

[i £n (k+.5) ]k+oo L k

= 1

*"*
{Z (1 _1) _ 1 [E (i-l) 2

] }
k+°° ~ i k l

i'
J

2 z

Urn v d4) 4dx- I [/ (
i-i) 2

dx] >

2 -3s
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&im c -) -i
K i . D - -|

K"t" . j Z

k_ Ux-^nx-f +V-V s
-|[(x-2£nx-i)|

] }

x 3x 1 .

5

1.5

- -(1.5 - 4£n(1.5) - ^-tt +
5 2 3L,D

1.5
Z

3x1.

5

J

2 2

+
ki~ ( (k+.5) - 4£n(k+.5) -

(k+
^
5)

+ 4
(k*' 5) In (k+ . 5)- ^[ In (k+.5)] }

3.33 + tt
m
r [^nk]

3.33

Since

* im i [iln(k)]

2
= 4 * im [k"^n(k)]

2

- 4 *i>^ [(i-|> + | d-i) 2
...]}

=

Thus

lira

k->°° k 3.33

1 -1

-1 1

(2.33q)

and also

£im
k->°° —

k

£im „ A T
. P, A. v,
k->°° k k—

k

1

-1
Z i (2-i)v.

. , l 111=1
(2.33r)

-1
{V
1
+
I V

2
+
I V

3
+
T6

V
4
+
2T V" }
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Eq. (2.33)r is a weighted sum which places emphasis on the

first few noise samples and whose weighting factors approach

zero as k becomes larger and larger. Thus for large k

the estimation error depends mainly upon the first terms of

the summation in (2.33) r and approaches a constant bias.

As a consequence of Example 2.2 the assertion in Lee

[Ref. 3, page 53] that .^^ P, = [0] is contradicted and the

estimate obtained is not consistent.

2 . Application to Identification Problems

The foregoing results may also be used in identi-

fication* problems. Consider a discrete-time system char-

acterized by the discrete equation

x, = a,x. , +a~x, ~+...+a x, +b,u, , +b~u, ~+...+b u,
k 1 k-1 2 k-2 n k-n 1 k-1 A k-2 ro k-m

(2.34)

where in general n > m, and x, and u, represent the
r — k-n k-n r

system response and driving function at time t = (k-n)T.

It is desired to determine the coefficients a. and b.
i :

(where i=l,2,...n and j=l,2,...m) from sequential measure-

ments of the output. If the measurements z, are noiseless

then

Z-. X, — I X-. -, • • * X-, Xji-, n • • • U* Jk k k-1 k-n k-1 k-m
*n

fan

after k = n+m measurements the following data bank will

result if the system starts with zero initial conditions

The expression identification is used to designate
problems involving the solution of (2.1) when some or all
of the elements in A are random variables.
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n+m

x
Q

X
l

X

n+m-1 n+m-2 m

u,

u. u.

u , u „ . . ,un+m-1 n+m-2 n

>1~
•

•

an
b
l

•

•

•

bm

(2.35)

or

z
,

= [x
,

: u ]—n+m n+m ; n+m
—

n

b~"—

m

(2.36)

The identification problem is then to solve (2.35) for the

I -nvector -r— . An exact solution is obtained only if the
b *

matrix [X ! U ] is nonsingular. Sequential estimationn+m
J

n+m * ^

is then possible using (2.26) or (2.32) when the number of

observations K > m+n and the matrix [X
i
U

,
] has— n+m

j
n+m

maximum rank equal to m+n.

In the presence of measurement noise the observations

of the output become

z
k+l

x
k+l

+ V
k+1

where v
v .-, is the measurement noise. Eq. (2.35) may then

be approximated by

. . .

z rt ...

zk-l z
k-2

Jk-n

?1~

l°k
a
n"

5
i

bn_

(2.37a)

39



or

5k " !z
k i V

a—

n

b-m
(2.37b)

This solution is proposed by R.C.K. Lee [3]

.

An alternate approach is to use an estimate for the

element x. in (2 . 35) , denoted by x. in the matrix X, . Thus
X X Jv

r
X. = [x. X.

x-1 x-n
u. , ... u.
x-1 x-nr

a—

n

i—m J

(2.38)

This approach, as shown in Example 2.3, has a distant advan-

tage over the solution of (2.37b). This example also

demonstrates the difference between the least-square-error

and the normalized least-square-error solutions as given by

(2.26) and (2.32)

.

Example 2.3 : Identify the coefficients a, and b, in the

difference equation

x
k+i

= aiVb
i
u
k

(2.39a)

from noise corrupted measurements z, , , where

zk+l ~ x
k+l

+ v
k+l (2.39b)

and v. is a sample of the measurement noise with the follow-

ing statistical properties

E {v. } =
x

E {v. • v . } = 6 . ..a
i 3 i/J

6. .

<: # }

} (2.40)
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2where E{ } denotes the expected value, and a is the vari-

ance of the measurement noise. Specifically consider the

discrete equation

xk+l
=

* 9x
k

+ - 1 u
k

(2.41)

For a given input sequence {u, ... u, } and zero initial

conditions, the output sequence {x
n
,x, ... x, } is generated

using (2.41). The output sequence is then corrupted with

noise, taken from a uniform distribution with maximum

deviation ±0.1 with zero mean to obtain the sequence of

noisy measurements {z ,z, ... z, } which then are processed
O _L .K

according to Eqs . (2.26) and (2.32). For both approaches,

one using the z. 's and the other using the x. 's of Eq. (2.38)

as elements in the coefficient matrix X, two computations

are made - one where the input is a unit step and one where

the input is a sampled cosine wave of unit amplitude.

Typical results using the same measurement data for

both estimators (the least-square-error and the normalized

least-square-error) are shown in Fig. 2.6 through 2.17.

Figs. 2.6 and 2.7 present the estimates for a, and b, for

the least-square-error and the normalized least-square-

error solutions for a step input. Fig. 2.8 presents the

magnitude of the total identification error e. =
|
a, (k)-a.,|

+ |b, (k)-b,
|
for both cases. Figs. 2.9, 2.10, 2.11 present

the identifications using the estimated past values for X,

as given by (2.38). Figs. 2.12 through 2.17 present the

corresponding data when the input is a cosine function. The
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results indicate that the identification error is generally

smaller when the normalized least-square-error method is

used and that the identification error depends upon

whether the input function causes a significant system

response. In the following it will be demonstrated that

for the step input the identification error approaches a

very large value, compared with the parameters to be iden-

tified, independent of the variance of the measurement noise

while for the cosine input the identification approaches

a constant bias dependent on the variance of measurement

noise. Consider the least-square-error solution of (2.37b)

which takes the form

n = { [z, ! u, ]

T
[z,

!
u, ]} [z, I u, ]

T
z.

k
i

k k k k k —

k

m

(2.42)

where k > m+n. For Example 2.3 this may be written as

r~ i
-k-1 k-1 -, -i -k-1 —

a
i

Z z.

i=0
x

Z u. z .

i=0 x x
Z z . z . . ,

i=0
x 1+1

•s k-1
E u.

i=0
X

k-1
b
l

Z u . z .

i=0
x x

Z u. z
.

^

n

i=0
x 1+1

— — _ i

(2.43a)
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or -1

I V 2
r- L Z .

k
i=0

x

1
k " 1

t- Z u . z .

k
i=0

1
k_1

r- Z U. Z .

k i=0

i
k
:
x

2
s- 2 U.
k

i=o
x

r- 2 z . z .
,

,

k
i=0

x 1+1

1
k" 1

t- Z u. z .
, ,

1
i=0

X 1+1

(2.43b)

In the limit as k goes to infinity the summations in (2.43b),

provided that u, and x, remain bounded, take the following

form

£im 1 „ 2 Jlim 1 , _ 2 „ „ v 2,
. r- E Z :

.
= , r- [ Z x. + 2 £ x.v. + Z v.]

k-*00 k . i k->°° k . A 1 - n !1 • n i1=0 1=0 1=0 1=0

Urn 1
k
„
1

2 2
, ,— Z x. + ak— k

i=Q
i

£im 1 ,, £im 1 r „ _
t

, ,— Z u.z.=
1 r- Z U.X.+ Z u.v.j

k->™ k . n 11 k->°° k . A 11 . A 11
i=0 i=0 1=0

£im 1 „
,

r- Z U. X.
k->°° k . A 11

i=0

. ^ t
k-1 . , k-1 k-1 k-1 k-1

icim 1 „ ximl, „ „ „ n
. -r- Z z , z. , = r-L^ x. x. . _ + Z x. v .

,
, + Z x.

,
, v. + Z v . v .

,
, J

k->«> k . A i l+l k->°° k . A i l+l A l l+l _ l + l i A l l+l
1=0 i=0 1=0 i=0 i=0

Jlim 1 „

-* 00 k . n l l + l1=0

im 1 „ £im 1 r „ v ,

, .— Z u . z . , = , r- [ Z u.x.+ Z u . v .
,

,

k->°° k
±
_ i l+l k+°° k l

i_ Q
l l

i_ Q
i l+l

£im 1 „
,

=- Z u . x

.

k->°° k A l i1=0
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Then for very large k the following relation is obtained

from (2.4 3b)

9 9
E x7 + ka z

i-0
X

k-1
E u. x.

i-0
x x

u-1
E u . x.

i=o
x x

k
:
x

2
E u.

1=0
x

k-i n
£ x. x. .

,

i^o
-1
-
1+1

(2.44)

k-1

=0

j
E u. x.

,

Li=r

The corresponding expression for noiseless observations is

E x.

i-0
x

k-1
E x. u.

i-0
x 1

k-1
E u. x.

i-0
x x

k-1
E 2

1= 1

k-1
£ x. x. .

,

i-0
x 1+1

k-1
E u. x. .

,

.i-0
X 1+1

.

(2.45)

or

:

k 1
2 2

E x . + ko
i-0

X

k-1
E u. x.

Li=o
x x

k-1
E u. x.

i-0
x X

k-1
E x.x.

+1 ka a;L

! +

k-1 .

E u
i=0 J ^

k-1

L-o
UiXi+i

-

(2.46)

The identification error for very large k is then obtained

by combining (2.44) and (2.46)

k 1
2 2

E x . +ka
i-0

x

k-1
E u. x.

i-0 * X

k-1 1
E u.x.

i-0
x X

k-1 .

E u'

i=0

1

a
l"

a
l

i
2

ko a.

brb
i
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or

l

b
l

=

a
l

b
l

-

a
l

b
l

"k-1
2

k-1 "7

E x. +ka E u. x.

i=0
X

i=0
X X

k-1
E u. x.

i-0
x x

k-1 .

E u
i=0

-fca a.

(2.47)

In the limit as k goes to infinity, Eq. (2.47) is easily

evaluated by considering the corresponding continuous system

with the transfer function

x(s)
,

1

u(s) s + 1
(2.48)

Integration of (2.48) yields (2.39a) when the forcing func-

tion u(t) is approximated as piecewise constant and the

sampling time At satisfies the relation

-At
e = a.

or

At = £n a. (2.49)

For the step input, when the system is initially at rest

u(t) = 1

x(t) = 1 - e

(2.50)
-t

Then
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£im V 2
Z x .

i-0
x

£im
t* 00

£im
k+°°

k-1
Z u . x.

i=0
L x

£im

£im
k-*-°°

V 2
Z u.

i-0
x

£im
t->-oo

r 2,.,,. £im
/ x (t)dt - . t

o

/ u(t)x(t)dt
o

£im
t-*-°°

£im 1
k~

n £im . 2
, a Z 1 = . to
K

i=0

>

(2.51)

J

and

£im
k+°°

Lb l-

t(l+a ) t

t t

-a.

u+a^

-1
. 2

-to a.

-t

-t (1+0 )t

'
. 2

-to a.

J

(2.52)

also

— — — — — — i— -

£im
k->°°

a
l

Lb
x
_

=

Lb
x
_

£im
k->°° k-

= (2.53)

This demonstrates that identification of system parameters

from a step input is only feasible as long as the system

response is not close to the final value, as shown in

Fig. 2.6.
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Similar considerations yield the estimation error for

the unit cosine forcing function. Using (2.48) and

U(s)
s
2
+ l

(2.54)

it follows

x(s) = h . \s+h

(s>l) (s+l)
s+1

+
s
2
+l

(2.55)

and u (t) = cos (t)

x(t) (cos t + sin t - e )

(2.56)

also

Aim _ 2
, Ex.
k-*-°° A i

i=0

km „
, E u. x.
k->°° . n 11

i=0

Urn „ 2
, Z u.

1=0

Um - 2 ,. x ,

,

Aim 1
,

. / x (t)dt =
, 7 t

t->oo
'

t->« 4

Aim
t->oo

Aim 1
t->°° 4

/ U (t)x(t)dt = ™ jt > (2.57)

Aim , 2
/

.
x ,. Aim 1 .

, j u (t)dt =
. ^-t

t-*-°°
n

t-»-» 2

Then from (2.47)

Aim
k->°°

ub i.

Aim

2
-a a

ih+a )t

L *t a-2t

-1
-to a.

1

112
16^2° h ik+o*)J

l +

-1

l

8o
2J

(2.58)
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The identification error as shown in Eq . (2.58) approaches

a constant bias which is reasonably small for a large

signal to noise ratio. For the specific example (Ex. 2.3)

this bias as obtained from (2.47) for very large k is

-.0212'

L .0106

for the least-square-error solution and

L^J

-.016 3"

.0054.

for the normalized least-square-error solution. The total

bias error reduction for the normalized least-square-error

solution is approximately 32% compared with the least-

square-error solution. This agrees with the experimental

results obtained as shown in Fig. 2.14.
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III. THE BEST APPROXIMATE SOLUTION

In estimation theory, quite frequently one has to

solve a set of inconsistent or insufficient specified

linear equations. Since in these cases an exact or unique

solution does not exist, an optimal or best approximate

solution has to be accepted. Penrose [4,5] has defined

this best approximate solution as follows.

Definition 1 : X is the best approximate solution of

the linear equation

f (X) = G, (3.1)

where X and G are rectangular matrices, if for all X ^ X
o

either

||
f (X) - G||>||f (X )-G|| (3.2a)

or
||
f (X)-G|| = ||f (X

Q
)-G|| and

||
X ||>_||X

o || , (3.2b)

T
where ||x|| denotes the norm of X defined as

||
X

j|

= trace X X.

In the discussion which follows, X is restricted to be

a vector of dimensions n x 1 with real elements denoted by

x. Then Eq . (3.1) may be written as

Ax - b (3.3)

where A is an m x n matrix and b is an m x 1 vector.

The best approximate solution for x, according to

definition 1, is the least-square-error solution if A has
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maximum rank, and the minimum-norm least-square-error

solution if A has rank less than maximum. This solution is

obtained by using a generalized matrix inverse developed

by Penrose [4], and denoted in the work which follows as

the pseudo inverse. The solution to (3.3) is thus written

as

x = A
+
b (3.4)

where x is the best approximate solution and A the pseudo

inverse.

In the following the definition and some properties of

the pseudo inverse, as given by Penrose, are stated. Then

some alternate expressions for the pseudo inverse are dis-

cussed. Finally a new recursive formulation for the

sequential solution of Eq. (3.3) is presented. This form-

ulation has the advantage over previously published results

(Wells [6]) in that the dimensions of the matrices in the

algorithm remain constant irrespective of the size and rank

of A. A flow diagram for the computation of the algorithm

is presented and illustrated with a numerical example.

Finally, the recursive algorithm is adapted to the problem

of estimating the states of time-varying, linear systems

from noise-contaminated measurements.

A. THE PSEUDO INVERSE

1 . Definition and Properties

Penrose [4] defines the following
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Definition 2 : Four matrix equations are defined

AYA = A (3.5a)

YAY = Y (3.5b)

[AY] = AY (3.5c)

[YA]*= YA (3.5d)

where * denotes the conjugate transpose. These equations

have a unique solution for Y. This solution is called the

pseudo inverse and is denoted by Y = A .

The essential feature of this definition is that any

expression for the inverse of matrix A is established as

the unique pseudo inverse if and only if it satisfies

Eq. (3.5). As a consequence of definition 2 the pseudo

inverse has the following properties

A
++

= A (3.6a)

A*
+ = A

+ * (3.6b)

A = A if A is nonsingular (3.6c)

(AA)
+

= A
_1
A
+

(3.6d)

(A*A)
+

= A
+
A* (3.6e)

+ + +
A,A*A,A ,A A have rank equal to the trace of A A

In addition, for completeness, define [1]

+ = T (3.6f)

2 . Alternate Expressions for the Pseudo Inverse

It is desirable to be able to express this inverse

by a mathematical formula and the following results are
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essentially available in the literature as discussed by

Deutsch [1] , Koenig [6], et. al.

a. Overdetermined case, m>n, r=n

As shown in Chapter I, the solution (3.4) is

obtained using

A
+

= [A
T
A] A

T
(3.7)

which corresponds to the minimum mean-square-error solution

of (3.3).

b. Underdetermined case, m<n , r=m

The solution (2.4) is obtained using

-1
A
+

= A
T
[AA

T
] (3.8)

which corresponds to the minimum-norm solution.

Equation (3.8) satisfies definition 2 and is thus the

desired pseudo inverse. The fact that the solution is the

minimum-norm solution can be demonstrated geometrically for

the three-dimensional case as follows:

Given two equations in three unknowns

~
a
l

a
2

a3~ X

y
—

"
c
l"

_
b
l

b
2

b 3- z
_
C
2_

(3.9a)

Find the minimum-norm solution for the unknown vector

T
[x y z] .

Eqs . (3.9a) represent two planes

r • a = c.

r • b = c.

(3.9b)

(3.9c)
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where r is the position vector from the origin to the
point (x,y,z)

a a vector with components a., , a~ , a~

and b a vector with components b, , b~, b^

Normal vectors to the planes are given by a and b

Then any point on the line of intersection of the two planes

satisfies (3.9b) and (3.9c) and the desired solution is the

point on the line of intersection closest to the origin.

Let the vector from the origin to this point N be desig-

nated by ON (see Fig. 3.1). ON is a linear combination of

the vectors a and b

ON = y-^a + y ?k

a
l

b
l

ON ,a
2

b
2

a
3

b
3

(3.9d)

where y. and Y? are scalars, which are determined from the

condition that ON has to satisfy (3.9b) and (3.9c) as the

position vector r.

Thus

(Y]_a + Y 2k)
* 1 = c

i

(Y^ + Y 2k)
* k = c

2

and

Y-

Y 2^

a«a a«b

a«b b*b

-1

L c 2

(3.9e)
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FIG. 3.1 MINIMUM NORM SOLUTION ON
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Equation (3.9d) may be written in component form using

(3.9e) as

X
N

^N
=

_
Z
N_

a
l

b
l

a
2

b
2

a
3

b
3

Z a
i=l '

L a.b.
i=l >~ x

Z a.b. E b.
• ill . , i

-1

_
C
2j (3.9«

or

V —
a
i

b
l

r

" ^ a
2

a
3

% = a
2

b
2

it ^1 b
2

b
3_

_
Z
N_ _

a
3

b
3_

a
l

b
l

a
2

b
2

^
a
3

If the matrix A is defined as in (3.9a)

A
b.

-1

.1

(3.10a)

(3.10b)

the result (3.10a) may be written in the form of (3.4)

X
N

Z
N

= A

L
c
2.

(3.10b)

+ T T -1
where A = A [AA ] .

This shows that in this case the pseudo inverse in (3.4)

results in the minimum-norm solution.

c. Underdetermined case, m>_n , r<n or m<_n , r<m

The solution (3.4) is obtained using either

-1
,

m rp m - rp

A = AN [N AA N] N (3.14a)
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or A
+

= M
T
[MA

T
AM

T
] MA

T
(3.14b)

which corresponds to the minimum norm solution of minimum

square error. Matrices N and M are defined as factors of

A [1]

A = N-M (3.11)

where matrix N is of dimension m x r, and matrix M is of

dimension r x n. The rows of N are chosen such that they

constitute a set of base vectors for the column space

spanned by A. Matrix M is then the transformation of N to

A. Its dimensions are necessarily r x n. For example, the

columns of N might be chosen as all the independent columns

in A. The pseudo inverse is then given as

+ rp T-l T-1T
A = M [MM ] [N N] N (3.12)

because (3.12) satisfies all four equations in definition 1

as indicated below:

-l- T> T-l T-1T
(1) A A = M [MM ] [N N] N NM

T T-l
= M [MM ] M

= [A
+
A]

T

-(- fp rp-lT-lT
(2) AA = NM M [MM ] [N N] N

T -IT
= N[N N] N

= [AA
+

]

T

(3) AA
+
A = NM MT [MM

T ]~ 1
[N
T
N]~ 1

N
TNM

= NM

= A
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+ + T T -1 T -1 T T T-1T T
(4) A AA = M [MM ] [N N] N NMM [MM ] [N N] N

T T -1 T -1 T
= M [MM ] [N N] N

= A
+

Expression (3.12) which involves two matrix inversions may

be simplified further to expressions involving only one

matrix inversion. Since both matrices M and N have rank r,

(3.11) can be solved for either one

M = [N
T
N]

-1
N
T
A (3.13a)

N = AM
T
[MM

T ]" 1 (3.13b)

Substitution of (3.13a) into (3.12) yields

A
+ = A

TN[NTAATN]
-1

N
T (3.14a)

and substitution of (3.13b) into (3.12) results in

A
+

= MT [MA
TAMT ]" 1MAT (3.14b)

All expressions, (3.12), (3.14a), and (3.14b), are valid

general expressions for the pseudo inverse. However, if

the matrices involved in actual computation are to be as

small in dimensions as possible, (3.14a) and (3.14b) should

be used as follows:

( 1 ) m<n , r>jn

rp mm _ 1 rp

A = A N[N AA N] N

( 2 ) m>n , r<_n

i m m m _ l m
A = M [MA AM ] MA
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B. RECURSIVE ALGORITHM FOR THE SEQUENTIAL LEAST-SQUARE FIT

In Chapter I a recursive relationship for sequential

estimation based on the equation

b = Ax (3.15)

and its least-square-error solution

x = [A
1
A]

LA i
b (3.16)

is given. However this recursive form is only valid if the

T T -1
matrix [A A] is nonsingular such that its inverse P = [A A]

exists

.

Consider now the case where no assurance as to the

existence of the inverse can be given. Using the pseudo

inverse it is possible to write formally

x = A b

+ + T
= A [AA ] h

mi m (3.17a)
= A A 1 A X

b

= [A
T
A]

+
ATb

T
or x = P A b

Twhere P is the pseudo inverse of [A A] . The dimensions of

the matrix P are always n x n independent of m or r. This

is significant because in a sequential procedure both m and

r increase as more data are incorporated. Therefore, the

use of an algorithm updating the matrix A , as proposed by

T.N.E. Greyville [22], may not be practical for sequential

estimation because the dimension, m, of A grows at each
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step. Alternate methods [7,8] using an updating procedure

for A until the matrix A has dimension n x n are considered

below:

(1) Direct updating of A .

At each step, as additional measurements are incorpora-

ted, the size of A grows one column for each step. C. H.

Wells [7,8] presents an algorithm for the updating of A .

However his procedure has the disadvantage that when initi-

ating an estimation problem the rank of A must increase at

each step until maximum rank is reached. This is not the

case if the first n equations in (3.15) are dependent.

(2) Updating A using (3.8) as long as m<n

.

A recursive algorithm or direct computation based on

T
(3.2) is possible only if the square matrix AA , of growing

dimensions, remains non-singular. Thus the rank of A has

to increase at each step which may not be true. Further-

more, a recursive form could be used only as a starting

T
procedure up until the matrix AA has dimensions n x n.

Consequently, it is desirable to find a recursive

formulation similar to (2.26), where all matrices involved

have constant dimensions regardless of rank or size of A.

This result is accomplished here with a recursive form for

T
the matrix P, where P is the pseudo inverse of A A.

In order to derive this recursive algorithm, consider

the set of equations

^k
(3.18a)
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where the subscript k denotes the number of equations.

Assume the solution of the form (3.17a)

~ T + T
x, = [A, A, ] A, z

n—k k k k —

k

T
P, A, z,
k k —

k

(3.19a)

where P, is the pseudo inverse of A, A, and x
n

the best
k r k k —

k

approximate estimate for x based upon the last k equations.

Then at the next step (3.18a) takes the form

*k

L'k+l-J

Ak+1-
" _k_

T
a J

x (3.18b)

T .where z, , , is a new scalar measurement and a is a rowk+1 —

vector of coefficients relating the observation z, , to x.

The solution to (3.18b) is then

T
-k+1

: P
k+1

Ak+1 -k+1 •
(3.19b)

In order to find an alternate expression for (3.19b) let

x = x, + Ax (3.20)

Substitute (3.20) into (3.18b) and premultiply with A, ,

to obtain

k+1 :

k+l
= Ak+1 A

k+1 (^k
+ A^ } •

or

a, z, z, i a —
k—k k+1— [A

R
A
k

+ a a ] (x
k

+ Ax)
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But

T +
-tit Ai — it-, •

k k k

Thus

A,
T
z. - P.

+
x, + (z, ., - a

T
x.)a = [P,

+
+ aa T

]Ax (3.21a)k—k k—k k+1 — —1 — k —

T + *
The term A, z_, - P, x, can be shown to equal the null vector

as follows. According to the defining equations of the

pseudo inverse, (3.5),

T T T+ T
k k k k

i m m
" [AkV A

k

+ T= A
k
A
k
A
k

+ + T
= A, [A. A, ]A, A,

k k k k k

= A
+
A+TATA A

T
A
k
A
k

A
k
A
k
A
k

rp m m i rn

= [A,A, ] [ATA, ]Ar = Pv P^Ar . (3.22)
k k k k k k k k

Also since P. = P^ and P,
+

= [P.
+

]

T
k k k k

P P
+

- [P P
+

1

T
k k L k k J

= P
+T

P
T

k k

Vk (3 - 23)

Then using (3,22) and (3.23),

A
k-k " P

k-k
= A

k-k " P
k
P
k
A
k-k
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= [I - P*P, ]A?z.
k k k—

k

= [I - p
k
p
k
]AA

[I " P
k
P
k
]P

k
P
k
A
k5-k

" 2. • (3-24)

Then Eq. (3.21a) reduces to

(zk+l " -
T
^k ) - = [P

k
+ --

T]
A-* (3.21b)

The solution of (3.21b) for Ax is obtained as follows.

(1) If P. has rank r < n and [I - p
k
?
k ] a ¥

the solution

(i)
[I_p

k
p
k ] a T

AxU; =
K

? (z - a
X
x ) (3.25)

a
T [I-P^P

k
]a

k+1 " _k

satisfies (2.21b) by inspection. Ax is not defined if

either P, is of rank n, which implies that [I -P.P.] = , or
k k

if tI"P^Pk 3 a = 0.

(2) If P
k

has rank r = n , or if [I-p£p.]a =

the solution is given by

P a
Ax (2)

= jpF— (z
k+1

- a
T
x
k ) (3.26)

1+a P. a— k—

Substitution of (3.26) into (3.21b) yields

T-

[P^+aa 1
] Ax u; = -^^ £ {a- (a/p a)a- [I-P^ja} (3.27)

1+a P. a— k—
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Since either [I-P, P, ] = when P, has rank r = n, or
k k k

[I-P,P, ]a = (3.27) reduces to (3.21b). Using the above

two possible solutions for Ax, which according to the

conditions (1) and (2) are mutually exclusive, recursive

forms for the solution of (3.18a) are established.

(1) Recursive relation if P, has rank r =n , or if

[I-P+P
k
]a =

From (3.20) and (3.26) ,

*k+l
=

*k
+

. T~ (zk+l " ^k } (3 ' 28a)
1+a P. a— k—

Combining (3.28a) and (3.19b) determines the updating pro-

cedure for the matrix P,
, n :

k+1

T
T

Pk-- T
Pk-

X, ,, = P, A, 2, - —^ P, A, z, + z.
-k+1 k k-k .. T„ k k-k k+1 ,, Tn1+a P, a 1+a P, a— k— — k—

T

Pi, m ] A, Z, + Z
k .

,
T_ k-k k+1 , ,

TV
1+a P, a 1+a Pa— K

—

K

Since

P,aa P, P, a

[Pv -
k~~ k

] a =

Also

V T1 — T
1+a P. a 1+a P. a— k— — k—

T_

*k+l
= [P

k " ,*>
p

k
] tA% + Zk+1^ ]

'

i. + a r, a— k—

*k+l
= P

k + 1
[A
k^k

+ Z
k + 1^ ]
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Thus ,

pk+ i
p
k

T
P, a a P.
k k

T
1+a P, a— k—

(3.28b)

The new matrix satisfies the defining equations for the

pseudo inverse (3.5). Thus (3.28a) and(3.28b) constitute

the required recursive form

x
k+1

k+1

*k
+

P
k

"

Pk*
T

1+a P. a— k—

T
P, a a P.
k k

T
1+a P. a— k—

(zk+1
T- ,

a
2i

)

(3.28)

(2) Recursive relation if P, has rank r<n and

[I-P, P, ] a 7^ 0_. This condition excludes the solution (3.26),

which does not satisfy (3.21b). Then from (3.20) and (3.25)

: [I-P>
k
]a

T ^

-k+1 *k
+

£
T
fI _p

+
Pk]£

<
zk+l " *%) (3.29a)

For notational convenience define

^k+1

[I -P
k
P
k
]a

-

a
T
[I-P;P

k
]a

(3.30)

and note that g_, , has the following properties

T T
* gk+i - z.k+1 * = 1

P
k £Lk+1 = P

k£k+1 -

T T + T
ak+i p

k ak+i pk
= a

(3.31)
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The desired updating procedure for P, . is found by com-

bining (3.20) and (3.25)

*k+1 = *
k

+ gk+1 (z
k+1

- a x
k )

T T T
= p

k\£k
- gk + ]

_a P
k
A
k
z
k

+ z
k+1 gk+1

= t pk
- ak+1£

T
p
k
]A^z

k
+ zk+1 gk+1

Also,

x
i . i

= [Pi .i]A z. + z, ,.P, .a—k+1 k+1 —k k+1 k+1—

Then P
fc+1

must satisfy the following conditions

(a) p
k+ i

p
k+ i

(3 - 32a)

T
since A, ,-A,

,
, is a symetric matrix.k+1 k+1 J

(b) P
k+l

A
k

= [P
k " 2k+l^P

k
]A

k
(3 ' 32b)

(c) P
k+1 a = gk+1 (3.32c)

A possible solution satisfying the above conditions is

p
k+l

= Pk-ak+i£
Tp

k " p
k£^+i +

(
1+£

Tp
k£)£k+ i£k+ l

(3.29b)

Assuming symmetry of P, , Eq. (3.29b) satisfies (3.32a)

by inspection, Using (3.22) and (3.31), Eq. (3.29b) can

be shown to satisfy (3.32b):

p
k+ i

A
k [pk-ak+i

aTp
k i Ak " p^iiA

k
+ <- l+*\mk+1sLl+A
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Since

and

T T T + T
ak+ l

A
k

=
2k+1PkVAk

T T
Sku-iPi, = P. >i-k+1 k

then

m mm
p

i._l-. ai
= [I-g, xl a PJA.k+1 k -S-k+l— k k

The last condition (3.32c) is also satisfied by (3.29b) since

p
k+1£ 7 p

kl-2k+1£
T
P
k
a-P

k
a^

+1a
+(l+a

T
P
k
a) 2k+l2^+1a

P
k »

" <i
T
P
k£>SLk+ i

" P
ka + d+aTPk a) £k+1

Hence

p
k+ i* = gk+i

In order to prove that (3.29b) is indeed the correct

T +
and unique expression for the pseudo inverse P, , = [A, , A, , ] ,

P, , has to satisfy the defining equations for the pseudo

inverse, (3.5). Proof that the equations in definition 2

are satisfied follows:

Proof Using (3.31) and (3.23),
(1)

p
k+ i

p
k+ i

=[p
k
-2

k+ i^
Tp

k - p
k£%+ i

+ d +£
T
P
k£)ak+12k+ i

] K+**T]

= P
k
P
k " ak+1£

T
P
kPk

+ p
k^^-2k+i^

Tp
k^)£

T

" p
k££Lk+lii5-

T+ d +£
Tp

k£)£k+1ak+ l^^
T

*A - *k+l*\K + ak+1£
T

(3.32a)
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+ + t I -pk
ptl£S

T
[i-P

kp!]
P
k+ l

P
k+ l

P
k
P
k

+
T. T Z pTl

(3 ' 32b >

a [I-P
k
P
k la

Thus P^
+1

Pk+ i
is symmetric and

+ + T
P P = TP Pi
k+1 k+1 L k+1 k+l J

™ Pk+lPk+l
= [P

k+ l
P
k+ l

]T

This follows since P, , , P, , , P^.-jP^.-i are symmetric.

(3) Using (3.32b)

P
+

P P
+

P
+

TP P
+

1

k+1 k+1 k+1 k+1 1 k+1 k+1 J

[P
1
+aaT ]Jp

1
P

n

+
+

a
T
[I-P

k<] a

+ + T + T +
= P. P. P. + a a P. P. + a a [I-P.P. ]k k k k k k k

+ T
= P. + aa

k

+ + +
P P p = p
k+1 k+1 k+1 k+1 *

(4) Using (3.32a)

p p p = rp p ip
k+1 k+1 k+1 L k+1 k+1 J k+1

= <\P
t
+ 9k+ii*ti-P

!
^Jlj£Pk-^rtl«

T
Pk-Pltasf+1

+ (l+a
T
P
k
a)gk+1 g£+1 ]

=P
k
P
k
Pk" gk+l^k+l^

Tp
k- P

k
P
k
Pk^^k+l

+ d^k^^k+l^k+A+l
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p
k -gk+1 £

Tp
k - p

ki£li + (i+a\i^+ia?k-'^-k+l^k+l

P P P
k+1 k+1 k+1

= P
k+1 *

This concludes the proof and (3.29b) is indeed the desired

updating procedure for the matrix P, .

To complete the recursive algorithm for the solution of

(3.18) a recursive form for the matrix R, = [I-P P ] has to

be established. From (3.32a)

Pi-l-iP^Li = P,P,
+

+ glxl a
T

[i-p.p*]k+1 K+1 k k 2-k+l— k k

then

[I -p
k+ i

p
k+ i] - [I-pkpk J ak+1a

T
n-Vk 1

and

Rk+1 " R
k " 2k+i * R

k (3.33)

Note that the matrix R. remains unchanged if the recursive

form (3.28) is applicable because, in this case,

P P
k+1 k+1

T -i
P. a a P.
k— k

T
1+a P. a— k—

J

+ T
P, + a a
k —

T

P, P, + P, a a - = P,
k k k— lx T„ k

1+a P, a— k—

T

g
P
k»- p T

T PVaa1+aVa K
— k—

P P
k+1 k+1

+ Pka-^ +
p p + — n-p pi
*k

r
k 1-L Tn

LX *W •

1+a P. a— k—

Since either

[I-P
k
P
k ] = or

T + TaMl-P^] =
1

,
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then

P P
+

= P P
+

k+1 k+1 k k

and

R
k+1 ~ R

k
'

Then the complete recursive algorithm, if P, has rank < n

and [I-P
k
p£]a ^ 0, is given by (3.29a), (3.30), (3.29b),

and (3.33), which are summarized as

£k+l

R, ak—

a R, a— k—

x, . , = x, + g, ,
, (z, , , -ax,)—k+1 —k —k+1 k+1 — —

k

(a)

(b)

p
k+ i

pk-SLk+i^
Tp

k
-p

k^+ i
+ < 1+i

Tp
k^ak+1gLi (c)

R
k+ 1

p
k

- ak+i£
Tp

k
(d)

(3.34)

J

where R, = [I-P, P, ] is an idempotent matrix, the trace of

which is equal to n-r, where r is the rank of A, and n the

maximum possible rank of A, . A computation flow diagram for

the recursive algorithm (3.28) and (3.34) is given in

Fig. 3.2. Note that if the normalized least-square-error

solution is desired, only Eq. (3.24c) has to be changed to

p
k+ i

p
k " ak+1a\ - *

k»Skn + ^± + *\^3.k+A+ i < 3 - 34e >

The complete algorithm, Eqs . (3.28) and (3.34), is illus-

trated in the following simple example.

77



LEAST SQUARES FIT RECURSIVE ALGORITHM

COMPUTATION DIAGRAM

YES

YES

CRIT=g
T
R
k g/q

T
g

NO

USE

EQUATIONS

3.34

RETURN

NO

YES

Jkl^

NO

X n =(J
k
/g
Ta)g

P
k

= oaT /(a_
T a)

2

R
k
= I -ggT

/g
T
g

RETURN

USE

EQUATIONS

3.28

RETURN

FIG. 3.2
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Example 3 .

1

Given the four equations below, calculate

the best approximate estimate for x sequentially.

[1 0]x

[3 0]x

[1 l]x

[2 l]x

Following the computation diagram in Fig. 3.2 the results

below are obtained

a)

*1
=

k =

"l

Z
l - X

P, =
1

a
T

= [1 0]

R
l

=

1

trace R, = 1

b) k = 2 z
2

= 2 a
1 = [3 0]

trace R
x

= 1 , CRIT = 0, then use (3.28)

1.3
*
2

= +
P
l^
T

1+a Pa

P
2

= P
l

-

T
P a a P

T
1+a P

1
a

To
R
2

R
l

1_

race R
2

. 1.

.1
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c) k = 3 z
3

= 3 a = [1 1]

trace R, = 1 , CRIT = .5, then use (3.34)

R2-
2-3

=
-Tl
a R

2
a
2

*
3 = *

2
+ 23

(z
3
-a ^

2
}

=
1.3

1.7

T T T T
P
3

= P„ - g_a P„ - P
2
a_cj_

3
+ (1+a P

2
a ) £32.0

.1 -.1

-.1 1.1

R
3

~ R
2

" £3^ R
2

"

trace of R, = 0, thus all following equations are processed

according to Eq. (3.28).

d) k = 4 z
4

= 4 a = [2 1]

*4

P. =

£3 +

P
3

"

Pk^
T

1+a P. a— k—

P3^
Tp

3

T
1+a P

3
a

(z
4
-a x

3
)

.0952

-.104

1.29

1.67

-.104

.714

The vector x. is then the best approximate solution to the

given set of equations.

The recursive algorithm presented here is more general than

the one used in Chapter II, because it includes a starting

procedure. Regardless of the rank of A the estimate
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obtained is the best approximate solution according to

definition 1.

C. ESTIMATING THE STATES OF A LINEAR DYNAMIC SYSTEM

An alternate interpretation for the above recursive

algorithm is that of determining the constant state vector

x for the following system from a series of noise-contam-

inated scalar measurements:

wh

System: ^+1 = I xk

Measurement: zk+1
= M

k+1 xk+]_
+ vk+]_

ere M, , is the time-varying observation matrix

and Vi , > is the measurement noise.
k+1

In order to be able to estimate the state vector for

a dynamic system, where the transition matrix $k+ -i k
is

in general time-varying and not equal to the identity

matrix, it is desirable to develop an algorithm similar to

(3.28) and (3.34) for the following systems and the scalar

measurements z

System: x_
k+1

= \+1 fk^ (3- 35a)

Measurement: z
l-+ i

= M
k + 1—k+1 + Vk+1

(3.35b)

For the case when the system of equations for the estimation

of x, is determined or overdetermined (P, has rank n) Eqs

.

(3.28) are easily adapted to include the transition matrix

[3]. Let the equation
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*k = AA + v
k (3- 36a >

be valid at time instant k, then the solution is

x
k = ^V'S^k (3.36b)

and

P
k

= [A
k
A
k
]_1 (3.36c)

Using the property of the transition matrix that

[ *k ,k-i
rl

- Vi,k - (3 - 37a >

Eqs . (3.36) at time instant k+1 take the following form

*k
= A

k
$k,k_l*k+1 (3 * 37b)

r ,T ^T,, . i-l*T a T
*k+i

=
[*k,k+iWk,k+i ] *k,k+i

AA
= ^t _i_t i

x
t (3. 37c)k+l,k—

k

T T -1
k+1 k,k+l k k k,k+l J

58 $v_li uPjLi i
(3.37d)k+l,k k k+l/k

Thus whenever the matrix P, has rank n, the valid recursive
k

algorithm for the dynamic case, including the new observa-

tion Zj.+1 / is
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-k+1

k+l

-k+1

k+l,k k k+l,k

Q
T

M M O
k+1 k+1 k+luk+l

k+1 T
k+1 k+1 k+1

(3.38)

'k+l,k-k
+

Qk+l
Mk+l

1+M
k+lQk+l

M
k+l j

Consider now the case when [A, A, J is singular so that the

pseudo inverse

P
k = t AkAk

]+ (3.39)

should be used. At time instant k+1

T +
= r$ p $ 1yk+l L k,k+l k k,k+l J (3.40)

A comparison of (3.39) and (3.40) can easily be made using

(3.14a) . Let

then

A, = N-M
k

+ T T T - 1 T
A, = M [MA, A. M ] MA.
k k k k

Also define

B
k

= A
k
$k,k+1

then

+ TT 'ttt T
k,k+l l k,k + l k k k,k+l k,k+l k

Thus (3.39) and (3.40) may be written as
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T + T "l
P = M [MP

k
M ] M

T T + T T
k+1 k,k+l l k,k+l k k,k+l k,k+l

This reveals that there is no simple relationship between

the matrices [A
k
A
k ]

+
and f\ /k+1

A
k
A
k
$
k /k+1 l

+
-

Thus (3.34) cannot easily be adapted to yield the best

approximate estimate for the state vector at k+1. However

an acceptable alternative for a starting procedure is to

estimate x, sequentially using (3.28) and (3.34) until P,

reaches maximum rank; then (3.38) may be used. The inter-

mediate estimates when P, has rank r<n are given by

*k = $k,l*l •
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IV. FINITE ITERATION METHODS———•—

—

In previous chapters methods for the solution of Ax=b

and for the pseudo inversion in recursive form have been

presented for the solution of the sequential-estimation

problem. In this chapter, finite iteration methods for the

solution of a set of linear equations and for matrix pseudo

inversion are presented. These methods are based upon an

infinite sequential error-correcting scheme, proposed by

J. Nagumo and A. Noda [10], combined with the Gram - Schmidt

process [9]. The derived methods require only a finite

number (equal to the rank of A) of iterations. This

approach has also been considered by L. D. Pyle [23] and

some of the results presented in this chapter are similar

to his. For the proper use of Pyle's algorithm it is

necessary to rearrange the given set of equations whenever

T
the constant b, in the first equation, a,x = b, , is equal

to zero. Since this may not always be convenient in practice,

an alternate algorithm is presented in which the computation

starts unconditionally. Section A presents the basic

iteration procedure with geometric interpretation. In

Section B(l) this method is combined with the Gram - Schmidt

process resulting in a procedure for the solution of a

consistent set of equations. These results are extended

in Section B(2) to solve a set of inconsistent equations

and the solution is shown to be identical to the best

approximate solution according to Penrose. An alternate
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method accomplishing the same result is then derived. In

Section C, the foregoing methods are extended to solve for

the matrix inverse, when it exists, and for the pseudo

inverse. In Appendix A these results are applied to the

iterative solution of a set of non-linear equations.

A. INFINITE ITERATION PROCEDURE

Consider the problem of solving the following consistent

set of equations. The term consistent is used to denote

the fact that the system of equations is assumed to have

either an exact solution or a unique locus for the solution.

Alternatively b is contained within the vector space

spanned by the column vectors of A.

Ax = b (4.1)

T

in b. Then (3.1) may be written as

Let a. represent the i ' th row of A and b. the i ' th element—i * i

T wa, x = b,

T
a2- D

2 (4.2)

a x = bm— m

The iteration scheme proposed by J. Nagumo and A. Noda [10]

solves each equation in (4.2) successively for x by adding

to each approximation for x a correction of appropriate

size in the direction normal to the hyper-plane in x-space

Trepresented by a. x = b.. After solving the m'th equation
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the process starts over again with the first equation. Let

the i ' th approximation for x be denoted by x. and the

initial estimate for x by x =0. Then the method may be

presented as

x
i

i ,
• = x_ , „ + (b, -a-, x_

,
. )l+jm —0+jm 1 —1—0+]m

*1

T
^1*1

—2 + jm
T —2

—1+im 2 —2—1+im T
*2-2

x

V
-m+ jm

+ (b -ax
a—

m

t

—m-l+jm m —m—m-l+jm TJ J a a—m—m /

(4.3)

Eq. (4.3) may be derived as follows. Consider the i ' th

equation in (4.2) and assume that the solution has the

form

x. = x. , + Ax.—l —l-l —i (4.4)

where x. , is the solution for x obtained from solving the—l-l — 3

(i-l)st equation. Combining the i ' th equation of (4.2)

with (4.4) yields

T T
(b .

- g , x, , ) = a. Ax,
l ^i—i-l —l —

l

(4.5)

which may be solved for Ax. using the best approximate— l

solution according to Penrose, namely

T -i
Ax. = (b. - a.x. ,) —7=

—

—l l —i—i-l T
a. a.
—l—i

(4.6)

Then Ax. is the minimum norm solution of (4.5), and— l
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Si
= 2i-i

+
(^i

- ^ ) -Jt- (4.7)
a. a

.

—l—i

This describes the equations in (4.3) before the iteration

process starts over again with the first equation in (4.2).

The convergence rate of this iteration scheme, although

quite rapid at first, decreases asymptotically towards zero

as the solution is approached. The limit is the exact

solution if the system is determined, that is, if the rank

of A is equal to the number of unknown elements in x. How-

ever, if the system is undetermined, the minimum-norm

solution, as discussed in Chapter III, is approached since

each correction Ax. is in the direction normal to the plane

described by the i * th equation in (4.2)

B. FINITE ITERATION PROCEDURE

1. Sets of Consistent Equations

The foregoing iteration scheme requires an infinite

number of steps to converge to the solution. If the process

is truncated, only an approximation is obtained. As will be

demonstrated this difficulty may be remedied by constraining

the corrections to be orthogonal to each other.

Again consider the set of consistent equations (4.2)

where each vector a. is normal to the hyper-plane described

by the i ' th equation in (4.2). These normal vectors are

generally not orthogonal to each other. However, using the

Gram-Schmidt process [9], an orthogonal basis for the vector
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space spanned by the vectors a. (i = l,...,m) may be

obtained. According to this procedure a sequence of vectors

a. is constructed from the set of vectors a. in the follow-—

1

—l

ing manner:

*1
=

*1
T

^2-2-2 T -1
-1-1 (4.8)

T
k-1 a . a,
v —i—

k

a. = a,— l —=— a

.

—k —k . , T —ii=l a . a.
—l—i

then the set of vectors a- consists of mutually orthogonal
—l T
%£kvectors only. Note that —— a. is the component of a,

at a.
—1 -K

—l—i
in the direction of a., which is subtracted from a, leaving—

1

K

the normal component to a. . In recursive formulation this

orthogonalization process may be presented as follows.

Let {C ,C, /....C, } be a sequence of n x n matrices with
o 1 k ^

C =1, then the set of mutually orthogonal base vectors a,

are obtained from

a, = C, n a. if a, = 0, recalculate a, using a. ,,—k k-1—i —k — —k 3 —l+l

T
a, a, l = 1 , 2 , . . . , m

C
k

= Ck-1 T k = l,2,...,r (4 * 9)

a, a,—k—

k

If the process yields a zero base vector, the corresponding

vector a. is a linear combination of the previously defined

base vectors, and the i ' th equation is a linear combination

of the previous equations. Therefore the i ' th equation and
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the corresponding zero base vector may be disregarded, so

that, finally, there are only r independent equations and r

orthogonal base vectors, where r is the rank of A in (4.1).

The exact solution for x or the minimum-norm solution for

x, if the system of equations is underdetermined, is

obtained as a linear combination of these r base vectors.

Using the form of (4.7) a correction A_x, is made success-

ively for each of the r mutually orthogonal base vectors

T -k
*k = *k-l

+ (b
k " *k2k-l> ^T— (4 ' 10)

SWk

It should be noted that the process (4.10) terminates after

the r corrections are made. Thus the infinite iteration

process of (4.3) essentially reduces to an r-step process.

These results are summarized in (4.11)

a, = C, ..a. if a, = 0, recalculate a, using a. . \—k k-1—i —k — —k 3 —li '

T
-k^kc = c —

k k-1 T
<*k^k

a
k T

i=l,2,...,m
-k

=
-k-1

+
~f (bk"-i-k-l } k = 1,2,... f r
a, a,—k—

k

/

(4.11)

Note however that the first equation which starts the pro-

cess has to have a nonzero element, b, , in the vector b,

because if b, = 0, x, = 0_ which is not correct generally.

If b, =0 the process may be started by either choosing

another suitable equation of (4.2) as the first equation
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or by initializing x = a., where a. x a. ¥ 0. That is,J 3 —o —j —j —i

a. is not parallel to a,. Eqs . (4.11) may be rewritten in

a compact form as

7

~j k-l-j

P = P
k k-1

T
k-1—3—j k-1

T
a ,P, , a .

-3 k-1-:

> (4.12)

K. JL j Z. f m • • f 10

where P =1 and the index j denotes the succeeding equation

T
in (4.2) for which a. P, a . ¥ 0. It is interesting to—j k—j ' *

compare the form (4.12) with the form of the recursive

least-square-error solution (2.26). The following example

illustrates the use of (4.11).

Example 4.1 : Use Eqs. (4.11) to solve the following set of

equations for x.

1 2 X
l

1

1 1 X
2

=

2 1
^

X
3.

X—

o

= C = I
o

Step 1:
fi

ou = C a, =
-1 o-l

2

x
x

= Xq + (b
1
-a

1
x
o )

a

T
a . a

.

—l—i

rv tti r: 2 ]
o

i

.4

c, = c -
1 o

T
a . a

.

—l—i
T

a . a

.

—i—i

.8 -.4
1

-.4 .2
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Step 2: a„ = C,a
2

.8
1

-.4

*2 £i
T ^2

(b
2
-a

2
x
1

) ~y—
.2

1

9

.8 1

1 -1
.4 -.4 4

Step 3:

C
2 = C

l "

«
2

T

^2

°L2 i

9

^2

"-10/9"

2.3
= C

2
a
3

+10/9
+ 5/9

*3 = * 2
+ (b 3"^2 )

4

-4
-2

-4

4

2

-2
2

1

a
3
a
3

1
_1

-.8 .2
-1 .8 = -.2

4 9
•4j L..4J

c„ = C
2

" ^3
T
1^3

x-. is the unique solution to the given set of equations.

The iteration sequence as well as the planes described by

the set of equations are shown in Fig. 4.1.

2 . Sets of Inconsistent Equations

If the set of equations (4.1) is inconsistent, as

is usually the case in estimation problems, the vector b

is not completely contained in the vector space spanned by

the column vectors of A. A solution may be obtained by

solving the equation

Ax = bA
(4.13)
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LLUSTRATION FOR EXAMPLE 4.1

FIG. 4
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where b is the part of b contained in the column space of

A, or the projection of b into the column space of A. The

remainder b^ = b - b represents that portion of b which

is ignored in the solution, and is orthogonal to the space

of A. This represents an optimal choice for b, which may

be shown as follows:

Let the vector b be decomposed into two components

k = kA
+ ke (4.14)

where b' is contained in the space of A and bp is the part

of b which is ignored in the solution process. If x, is

the solution of the consistent set of equations

bi = Ax,—A —

k

then llb-Ax, II = lib' - Ax, + b„\\ = II b_
ii _ _k ii I' —

A

—k —E " " —

E

m
T 2

where || b_E ||
= 2 (b. - ^x^.)

i=l

The minimum of
||
b

||
is obtained when b_ = b^. Then the

solution for x of the inconsistent set (4.13) is, by

definition, the least-square-error solution. The standard

way of achieving this projection of b is to premultiply

(4.2) by AT .

T T
A Ax = A b

T
_T, + A b^7= A bA -N
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but since

T
A b.

T
=

—N —

A
T
Ax = A

T
bA (4.15)

Since (4.15) is a set of consistent equations, it may be

solved using (4.11).

Another finite-step process for the solution of (4.1)

which starts unconditionally but involves a little more

computation may be derived following arguments similar to

those which led to (4.11). Again consider the equations in

(4.2). In order to obtain the minimum-norm solution (if

the set is underdetermined) the desired solution may be

represented, as in the previous section, as a linear com-

bination of the row vectors of matrix A, or, equivalently

,

as a weighted sum of different base vectors representing the

same space. The set of Eqs . (4.1), if it is assumed to be

inconsistent, may be written

b = Ax + b^
T

(4.16)— — —JN

where again b is orthogonal to the space of A.

Now let

b = A,Aa, + A-Aa~ »-... + A Aa +bM (4.17)— i.
—

_l z —
z. r —r —in

where the Aa, vectors are constructed to be mutually per-

pendicular and A, Aa, is the part of b parallel to the vector

Aa, . Thus the coefficients A, are determined from the

condition
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(Aa
k ) (b - a

k
Ax

R )
= (4.18)

as

a. A b—k —
T T

a. A AOL
—k —

k

(4.19)

Substituting (4.19) into (4.17) yields

a, A b

* = T T A
«l

+
'

a, A Aa,

T T,
a A b—r —

+ m _ Aa + h ,

a A Aa—r —

r

= A
r a, A b
v —k —

k=l a, A Aa,—k —

k

+
*N (4.20)

Comparison with (4.16) yields the desired solution, namely.

T T
r a A b

J5

=
*

nT, *k
•

k=l a, A Aa.—k —

k

(4.21)

The mutually perpendicular vectors Aa, are constructed using

the Gram-Schmidt process. Using (4.9) with a, replaced by

Aa, and a. replaced by Aa. , yields

Aa. = C, , Aa. if Aa, =0 , recalculate Aa. using Aa.,r|—k k-1 —l ~k — —k ^ —l+l

C, = C,

T T
Aa. a. A—k—

k

I k k-1 T_T_
a, A Aa,—k —

k

i = 1 , 2 , . . . ,m

J\. — ±. f A f * • • f XT

(4.22)

Another equally acceptable set of mutually orthogonal

base vectors for the column space of A may be obtained from
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the vectors Ad . , where the d, 's are the rows of the matrix

TA A, since the column space of A may be expressed using the

set of all the vectors Ad. , as well as the set of all

vectors Aa . . Using Ad. instead of Aa. in (4.22) requires

less computation if the dimensions of A are such that

m»n. Thus it is possible to write, starting with C = 0.

A3, = C, _-,Ad. if A3, =0_, recalculate A3, using Ad. ,n

^

c = c
k k-1

m m
AW
T T

Bk
A A6

k

i = 1,2,.. . ,

n

(4.23)

where 3, replaces pt, in (4.17) and (4.21).

In order to obtain the solution (4.21), Eq. (4.23) is modi-

fied to yield an explicit form for the calculation of the

3j_'S/ which when multiplied by A yield the orthogonal base

vectors for the column space of A.

c
k-i *

-

T T

T T
i£A A

£i

T TAe.k-A-iA

T T
£*-i

A A
£k-1

then

T T
k-1 A3.6TA

—l—i= i - y —-—-

—

T T
k-1 A3- 3-

A

A3, = [I - 2 -t^~ ] Ad.
K i=l 3 A A3-—i —i

T T
k-1 3..3.7A A

= A [I - Z Hs-i ]
^-i

i=l 3,.A
i
A3,—

i
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and

£k =

mm-.
k-1 g. 3-A A—1—1

T _ y _ ±
T T

i=l g A A3-— —1->
d.—

1

Combining (4.24), written in recursive form, with (4.21)

yields the desired finite step process for the solution of

(4.1) . Let C = I then
o

3_, = C, _-|d. if 3i_
- 0, recalculate $, using d. , \

C, = Ck-1

m mW A
m m

T T
KA b

x = x + — 3~k ' 1
B^A

T
ABk

~k
^

The process is completed when k

solution.

i

k

r

.

-L / ^- / • • • / n

-L / ^- / * • • f 1-

j

(4.25)

x is the desired—

r

C. MATRIX PSEUDO INVERSION

The foregoing computation methods may be extended to

yield matrix inversion or pseudo inversion. However no com-

putation time comparison with already existing methods has

been made. Consider the solution of the matrix equation

AX = I (4.26)

where the matrix A is square of dimensions n x n and non-

singular. The inverse of A may be obtained as the solution

of (4.26) from (4.12). Let P = I and X = A
T

then
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xn
=

P
1 l

auk-l-k
X
k-1

+
TD

-k
Pk-l-k

T T
(k " *k

xk-i }

p, = p
k-i

+

T
Pk-l-k-kPk-l

T
-k

P
k-l-k

k = 1,2,

) (4.27)

,n

. T .

where 1, is the 1
' th row of the identity matrix and the

n ' th approximation for X, X is the desired inverse. The

Tinitial condition X = A is chosen to ensure that the
o

starting conditions for (4.12) are satisfied, since

a ~ , a _. , ..., a are, by virtue of the nonsingularity of A,

not parallel to a,

.

The pseudo inverse may be obtained as follows.

Let C = I and X n = , then
o

r
^-k

= c
]

,d. if 6 =0, recalculate 6, using d.

,

i-l—i —k — —k —1+
>

C = C
^k

uk-l

T
-k-k T
T T

V.

T
6, 6r

y = y + K K
A
k

A
k-1 ,T T AXc^A A^

A
T i = 1 , 2 , . . . ,n

y(4.28)

T T
where d. denotes the i'th row of A A, and X is the solu=

tion for the pseudo inverse of A. Proof of (4.28) follows.

From (4.28) it is evident that

m m
6 A A5 . =
-l -j

for i j- j (4.29)
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since the vectors A6_. (i = l,2,...,r) are orthogonal. Also

TA A may be expressed as a matrix whose rows are linear com-

binations of the set of vectors 6 . . Thus—

1

A A = [6_
x | 6.2 |

. . . \§_ ] M (4.30)

The expression for C from (4.28) may be rewritten as

C =
r

mm-,
r 6.67A A

I - i zizi
-1- u m m

i=l 6.A A6

.

—i —l -J

= I -

T "1

6.6.
—l—imm

i=l 6 7A A6.
—l —l

TA A

(4.31)

where the summation is identified as Y

Y =
r

E

i=l

T

T T
6.A A6.
—l —

l

so that

C
r

= I -

T
- YA A

(4.32)

(4.33)

Using (4.29) it follows that

C 6. =
r—l — (4.34)

and thus

and

C A
T
A =

r

C Y =
r

(4.35)

(4.36a!
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or Y = YATAY. (4.36b)

TUsing (4.36b) to expand the product A AY yields

T T TA AY = A AYA AY

or [A
T
A - A

T
AYATA]Y = 0. (4.37a)

Since Y ^ this yields

ATA = A
TAY A

T
A (4.37b)

From (4.35)

T T TA A - YA A A A =

and then also [A
T
A - YATA ATA]Y =

This is combined with (4.37a) to yield

[A
T
AY - YATA] A

TAY = 0. (4.38a)

Since A
T
AY ^ , then

A
T
AY = YA

T
A. (4.38b)

Eqs. (4.36b), (4.37b) and (4.38b) by definition establish Y

T
as the pseudo inverse of A A:

Y«[ATA]
+

(4.39)

Comparing (4.32) with the last equation in (4.28) when

k = r yields

X
r

= YAT = [A
T
A]

+
AT = A

+
(4.40)
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Penrose [5] has also suggested a recursive method for

computing the pseudo-inverse. Let

then

C
l = X

C
k+1

= l * k trace (C
k
ATA) " c

k
ATA (4.41)

T . TThe product C , A A = 0, where r is the rank of A A,

Tthen the pseudo inverse of A A is

[A
T
A]

+
= £ — C

r
(4.42)

trace C A A

The proof is given in Ref. 5. It should be noted that the

Penrose method involves at least one matrix multiplication

3 3for each step, or approximately rn operations, where n

operations are required to perform the multiplication of

two n x n matrices, whereas the method of (4.2 8) requires

2approximately 5rn operations to obtain the same result,

T +
namely [A A] .
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V. RECURSIVE ALGORITHM FOR THE

SLIDING-WINDOW OBSERVER

Since the work of Luenberger [11] , deterministic linear

observation systems, called observers, have been recognized

as practical alternatives to statistical optimum linear

filters when efficient and fast real-time estimation of

the system states is desired. Avoiding problems associated

with the estimation of a priori statistics, the observer

simply solves the estimation problem as a deterministic one

and disregards statistical quantities. The simplest formu-

lation for the observer is the sampled-data type which

accepts the measurements or observations only at discrete

points in time.

Consider the sampled-data system

*k
=

*k,k-l *k-l

z, = M, x,
k k —

k

(5.1)

where x, is the system state vector at time instant k,

, , is the general time-varying transition matrix from

time (k-l)T to kT. M, is the time-varying observation

matrix of dimension 1 x n, and z, is the scalar observation

As in other chapters, only the case of scalar observations

is considered here in order to obtain results without time

consuming matrix inversions. The observer for the system

(5.1) is given as
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x, = $, . , x, , + g, ( z, -M, $, . , x, , ) (5.2)—k k,k-l—k-1 —k k k k,k-l—k-1 \~"*»

where x, is the estimate at time kT.

This observer equation may be rewritten as

*k
= Fk*k-1

+ 2k ^
k

(5.3a)

where

F
k - [I - fcWWi (5 - 3b)

The matrix F, is called the observer transition matrix.

Bona [12] has shown that the eigenvalues of F, , which are

dependent on the choice of g, , determine the performance

of the observer in processing noise-contaminated observa-

tions. The time-varying gain, g, , for the optimal filter

is determined such that the trace of the error covariance

matrix is minimized. For a specific time-invariant

observable system [3], Bona [12] has demonstrated that

constant gain observer with eigenvalues of approximately

0.5 approach the performance of the Kalman filter. As an

observer design rule for time -invariant systems, he suggests

the choice of the largest eigenvalue A of F so that

(X T ) is approximately zero, with the result that (F) is

approximately zero thereby limiting the memory of the

observer to approximately the last i observations. Because

of the size limitations of the memory, this type of observer

is also referred to as a sliding-wihdow observer.
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In the following work, stimulated by a list of un-

solved observer problems [13] , a recursive relationship

for the sliding-window of minimal length for the general

system of Eq. (5.1) is developed in Section A. In Section

B these results are extended for the time-invariant system

to yield the recursive form for a sliding-window of speci-

fied length. The approach to the solution is quite

different from the one discussed by Bona, resulting in a

new design rule for sliding-window observer of exact

specified memory length. Finally, the results obtained are

illustrated by an example.

A. THE MINIMUM-WINDOW OBSERVER

The minimum-window observer is the fastest linear

observer possible in that it determines the states of a

system from the necessary minimum number of observations.

The eigenvalues of the observer transition matrix are all

zero [12] . The desired recursive form is derived as follows

Consider system (5.1) and its observer equation (5.3).

Suppose the system is of order n. At each instant of time

k the state vector, x, , is determined from the last n

observations . Thus

Jk-n+l

'k-n+2

J

k-1

Mk-n+l $k-n+l,k

Mk-n+l \-n+2,k

Mk-1 k-l,k

M,

*k
(5.4a)
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or

z^ = R(k) x
k (5.4b)

where the matrix R(k) relates the n last observations z, to

the state vector x, . The observability condition for this

system is then that R(k) is nonsingular for all k. Because

of this it is not necessary that each of the rows of R(k)

be the product of an observable pair. The solution to

(5.4b) is then trivial

x
k

= R(k)
1
z
k

(5.5)

where x, denotes the output of the observer. Let the

matrix R (k) = C(k) be partitioned into column vectors

C(k) = c, (k) I c (k) I

. . .
I c (k)—1

i
—z

i i
—

n

(5.6)

Then (5.5) may be written as

x
k

= c
1
(k)z

k _n+1+ c
2
(k)z

k_n+2+ ...+cn ^(k)zk _ 1+
c
n
(k)z

k
(5.7)

Expanding Eq. (5.3) yields

x, = F, x, , + g, z,—

k

k—k-1 -k k

" FVFV-1^_9 + Fviv-l Zk-l + ik 2
k k

F
k
F
k-l'

*

,Fk-n+l-k-n+l
+ F

k
F
k-l* *

'

Fk-n+2^k-n+l Zk-n+l

+ F
k
F
k-l'

*

,Fk-n+3^k-n+2 *
zk-n+2

+ Fk2k-l zk-l

+^k z
k
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Comparing (5.7) and (5.8) on a term by term basis leads to

the following conclusions

(1) F
k
Fk-l"- Fk-n+ l - °

(2) g = C (k)—n —

n

(3) c_.(k) = F
k
c
j+1

(k-l) j = 1,2,. ..,n-:

(5.9a)

(5.9b)

(5.9c)

so that

(k)
F. c,(k-l)

|
... iF, c (k-1) iC (k)k—

2

k—n n
(5.9d)

The recursive relation for the gain vector g_,
= c (k) may

be determined from (5.9a) using (5.9c) repeatedly. Thus

F, [F,
n ...F, ^,g, ] = F. c, (k-1) =

k k-1 k-n+1—k-n k —

1

(5.10)

since

F
k

[I - 2A ] *k-l,k

(5.10) may be rewritten as

$k-l #kHl
(k- 1) = 2k\ *

k_l,k £i(
k-D (5.11)

The desired result is then obtained directly from (5.11)

Sk - £n (k) = *
k-l,k «**« t"k *k-l,k ^(k-D]"

1
(5.12a:

Note that for scalar observation Eq. (5.12) may be also

written as

2k
Vk-i,k£i |k'1J

(5.12b)
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For scalar observation the desired algorithm is therefore

given by Eqs. (5.12b), (5.9b), (5.9c) and (5.3). This is

summarized in (5.13):

r

{

ak
Vi,^!**- 1 * A

Vk-i,kSi (*-i)

k
= [I - gA ] %

c . (k) = F
k
c .

+ 1
(k-l) , j = l,2,...,n-l; £n (k)=g_

k

(5.13)

x, = F, x, , + g. z
n

\ —k k —k-1 ^-k ] J

This completes the derivation of the recursive algorithm for

the minimum-window observer. The computation time required

is almost equal to the computation time required for the

corresponding optimal filter (3.38). For linear time-

invariant systems with a time-invariant observation matrix,

the observer gain and transition matrix are constant.

Thus (5.13) reduces to the observer equation

x, = Fx, . + gz,—k —k-1 — k
(5.14)

and the required computation time is reduced substantially.

Although the minimum-window observer is highly sensitive

to measurement noise, practically excluding the direct use

of (5.14) for non-deterministic problems, it is nevertheless

possible to construct acceptable filter schemes from (5.13)

or (5.14) for special applications. Consider, for example,
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an oscillatory time-invariant system given by Eq. (5.1) with

zero damping. Then a simple averager following the minimum-

window observer is characterized by

x, = Fx, , + gz,—

k

—k-1 -2- k

* 1 * *k-i- k-1 *
x, = 7- Z $ x. = —

-,— $x-K K i=1
-1

1 -

'-k-1 k -k (5.15)

where x, , the output of the combined filter, results in a

filter performance almost indistinguishable from the optimum

filter (3.38). This is demonstrated in Example 5.1. Note

that the computational requirements are only a fraction of

the computational requirements for the optimal filter. It

is the author's opinion that this result merits further in-

vestigation in order to find some design rules for simple

and fast observers with almost optimal performance similar

to the one given in Eq. (5.15).

Example 5.1

Let the system equations (5.1) be given as

\

*k
= $*k-l

.9 -.5

.38 .9
*k-l

\ = \x
k

+ vk =[1 0]x
k

+ V]

(5.16)

where the observations are now noise- contaminated with the

measurement noise v, , a noise sample drawn from a uniform

distributed noise population of zero mean with maximum

deviation of ±0.1. Estimate the system state vector x_
k
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using (5.15) when the system starts with x =
—

o

1

.1

Results for a typical noise sequence {v-, ,v ?
. . . v, } are shown

for both state variables xl, and x2, in Figs. 5.1 and 5.2.

Note that the filter response closely matches the actual

system response. The estimation error defined by

-k " -k -k (5.17)

is compared with the estimation error of the least-square-

filter in Figs. 5.3 and 5.4.

B. SLIDING-WINDOW OBSERVER FOR TIME- INVARIANT SYSTEMS

For the case of time-invariant observable systems with

a time-invariant observation matrix it is possible to in-

crease the memory of the observer to an arbitrary length I

where & >_ n. This results in a sliding-window observer of

length I, where the state vector x, is determined from the

last I observations in the least-square-error sense. Con-

sider the first set of I observations according to (5.1).

ft-1

-I

M$

•

M

-£+1

-U2

-1

*£ (5.18)

or

2
£

" A x
£

,
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FILTER RESPONSE FCH STRTE UfiRIRBLE XI

B.pJ | 10. DO

FIG. 5.1 EX.51
+ UltjP.I SYSTEM RESPOMSf

FILTtfl RESPBK3E EQ. f4. 153

FILTER RESPONSE FCR STRTE UfiRIRBLE X2

<.
J

FIG. 5.2 EX. 5.1

+ fiCTUPL SVSfEM RESPONSE

FILTER HESPCN3E EQ- (4.15)
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where z* is the observation vector of the last i observa-

tion, Xj is the n dimensional state vector at time instant

£, and A is the £ x n matrix of constants relating observa-

tions and state vector x„ . Since the system is assumed to

be observable matrix A has rank r = n. Then the solution

to (5.18) is given by

x = PA z»

T -1

(5.19)

where

Eq. (5.21) may be written more explicitly as

X
£

= P{ {$~ i + 1)Vz + ($" £ "f2
)

TMT z
2

+.. . + ($" 1
)

T
MT z

£_ 1
+M

T
z
£

}

(5.20)

At time instant £+1 Eq. (5.18) takes the form of Eq. (5.21)

since the memory of the filter is limited to £ observations.

" A -£+1 (5.21)

*£+l

Then analogous to (5.20), the solution of (5.21) may be

written as

X. +1 = P(($ ) M z„ + (« ) M z
2
+... + ($ ) M z +M Z

e+ ]_J

To obtain a recursive algorithm it is necessary to combine

(5.22) and (5.20). Thus

x
z

- P($"
£+1

)

T
MT Zl = P$

T {($" £+1
)

TM
T
z
2
+. ..+($" 1

)

TMT z} (5.23)
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Substituting z, = M$ X . , which is true for noiseless

— 1 T —1
observations, and premultiplying (5.24) with P($ ) P

yields

P{ ($" £ + 1
)

T
M
T
z
2
+. . .+ ($

_1
)

T
M
T
z
£

}

= P ($ ){P - ($ )MM$ }x

= P{($
_1

)

T
A
T
A$

_1
- ($" £

)

T
M
T
M$"

£
}$x

£

= Pl($ ) [ ($ ) M M$ + ($ )MM$ +...

+ M
TM]0

_1
- ($" £

)

T
MTM$" £

} <3>x
£

= P{(<1> ) M M$ +...+$ M M$ }$£o

= P{A A - MM} $x
£

= [I - (PM
T
)M] $x

£
(5.24)

TIdentifying g = PM (5.24) may be written

P{ ($" £+1
)

T
M
T
z
2
+. . .+($

_1
)

TM
T
z
£

} = [I-gM]$x
£

(5.25)

It is interesting to note that g is given by the last column

of A , as a generalization of (5.9b) of the previous section.

Substituting (5.25) into (5.22) yields the desired recursive

relationship

where the estimate x , is no longer dependent on the ob-

servation z-. . It then follows that the next estimate
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x
z+2

= [I-gM] $x
£+ i

+ 2£+2 (5.27)

is no longer dependent upon the first two observations z,

and z„. Therefore the general recursive formulation for all

discrete times k > I is given by

k-1 = F
*k

+ azk+l (5.28)

where F = [I-gM]$ and g remain constant. The complete

algorithm for the general rectangular sliding-window ob-

server, with the first state estimation available after

£ observations are processed, is then

^ T -1 T
x
£

= [A A] A z
£

k = I

X-k+l
= Fx

k
+ 2Zk+l k * l

(5.29)

The estimation error

x
k

= x
k

- x
k (5.30)

obeys the same dynamic relation as x, . Thus

*k+ i
= F

*k
+ avk+1 (5.3D

If the covariance matrix of x, is denoted by C, it follows

from (5.31) that

ck+i = *k+i*k+i = FC
k
pT

+ *Rg
T

(5 - 32)

where R is the variance of the measurement noise. Let

£
k

= |Vck (l,D |
+ |Vck (2 # 2)
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where the sequence of matrices, C, , is obtained from (5.32),

R = 1, and C (i,i) denotes the i diagonal element of

the covariance matrix. e, is a relative measure of the

expected absolute estimation error at time instant k. A

comparison in terms of this relative absolute estimation

error for a few sliding-windows of the system in Example 5.1

with the corresponding error of the least-square-error

filter is shown in Fig. 5.5.
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VI. SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY

(1) The normalized least-square-error solution of a set

of inconsistent linear equatons has been established as

an alternative to the usual least-square-error solution.

The solution is obtained by minimizing a weighted least-

square-error criterion and presented in recursive form

for obtaining sequentially, the solution of a growing set

of equations. The technique is illustrated by some

estimation and identification problems. Further investi-

gation is required to establish a decision criterion to

determine whether the normalized least-square-error or

the least-square-error solution method is to be preferred

in engineering problems. It is expected that this decision

criterion, in the case of problems involving discrete

state estimation or parameter identification, will depend

not only upon the system equations themselves but also upon

the nature of the measurement noise.

(2) Complete recursive algorithms for the normalized least-

square-error solution and the least-square-error solution

based upon the concept of the best approximate solution [5]

are presented.

(3) A finite step algorithm for the calculation of the

pseudo inverse and the best approximate solution of a fixed

set of linear equations is proposed. This result has
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advantage over previously published recursive computa-

tion methods in that the algorithm presented starts

unconditionally

.

(4) Finite-memory, linear, observation filters in recur-

sive form are proposed for the sequential state determin-

ation of a sampled-data system. Design rules for these

observation filters, when the system is time-invariant,

are given:

(a) for the minimum-window and averager observer where

the system states as determined from the minimum set of

past data, are smoothed by a simple averager. This

procedure is shown to be very efficient for an oscillatory

system with zero damping. Further investigation is recom-

mended to improve the estimation for general systems, using

the minimum-window observer together with a weighted

averager. It is expected that optimal weighting can be

approached using a scalar weighting factor in the recursive

form.

(b) for the sliding-winding observer of memory length

£, I > n, where the n states of the system are determined

from the last I measurements in the least-square-error sense.

(5) In the Appendix, the recursive algorithm of the best

approximate solution is applied to the numerical solution

of a set of nonlinear equations. The results are promising

in that solutions are obtained when other well known linear-

ization or gradient techniques fail. The theory behind
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this approach has not been investigated fully and it is

recommended that further mathematical work be persued to

establish rigorous proofs and conditions of convergence.
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APPENDIX A

A. ITERATIVE SOLUTION OF A SET OF NONLINEAR EQUATIONS

The solution of simultaneous nonlinear equations is

often impossible to obtain analytically, and graphical or

iterative methods for a computer solution have to be em-

ployed. In addition, the solution of a class of nonlinear

differential equations, as discussed in Section B, reduces,

after integration, to the solution of nonlinear algebraic

equations at each step of the integration process [16].

The most commonly used iterative methods are based upon

linearization techniques, i.e., Newton-Raphson method and

linear interpolation, or upon some gradient method whereby

the iterative approximation to the solution is sequentially

improved such that some error measure is forced to decrease

[16], All these methods however may not converge, or they

may converge to a solution at infinity. In addition, the

values of the functions as well as their gradients may

have to be calculated at each iterative approximation.

This calculation might be impossible if the approximation

is outside the range or domain of one or more of the

functions, or if one or more of the functions has a dis-

continuity at that particular approximation point for the

solution. Further complications arise from the fact that

the set of nonlinear equations may have more than one

solution and the above iteration schemes may converge (if

they converge at all) to an undesirable solution point.
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Using the solution methods for a set of linear equa-

tions, as discussed in Chapter IV, a new iterative pro-

cedure is developed. This procedure circumvents the problems

and drawbacks of the foregoing methods, and converges to a

single point if one or more solution points exist. If this

point is no solution point the initial estimate has to be

displaced in the direction of the preferred solution point,

where the preferred or desired solution is defined (in

accordance with the concept of the minimum-norm solution)

as the solution which is closest to the initial estimate.

The class of nonlinear functions included in the iteration

process in general are all functions which can be represen-

ted in polynomial form or which have power-series expansions.

1 . Development of the Method

Let a set of n nonlinear functions in n unknowns be

given as

h(x) =

h
1
(x)

h
2
(x)

h (x)
n —

= (A.l)

Using the polynomial form, or a power-series representation,

(A.l) may be written as

Ax + Bg (x) = c (A. 2)

where A and B are constant matrices of dimensions n x n and

n x m respectively. The elements of the n x I vector
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T
c = [c, ... c ] are the negatives of the constant terms

in the polynomial or series form. The vector

T
g(x) =. {g, (x) . . . 9 (x)

J has dimensions mxl. Its elements,

the functions g.<X) are the nonlinear remainder terms of the

corresponding function h. (x) , or parts thereof, chosen such

that the functions g. (x) are defined for all x.

Range-or-domain-limited functions g. (x) can be accepted

only if it is possible to reformulate these functions in

terms of variables for which they are always defined. As

an example consider the equation

y = £nx = (A. 3a)

which has no real solution for x 0. However the same

equation may be written as

ey - x = (A. 3b)

or

2 3

U + y + y
rr + y

n- + ...} - x = (A. 3c)
2!

or

[-i + 1] fxl + [1] g n (y) +1 = (A. 3d)i + 1] Txl + [1] gi (y) +1 =

where

2 3

g l (y) =
2T

+
3T

+ (A.3e)

Now g, (y) is defined for all y and the domain-limited Eq.

(A. 3a) is acceptable in the iteration process in the form
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of Eq. (A. 3d). This separation of the nonlinear part of h.

from the linear and constant part has the advantage that

the discontinuities of h . do not appear in g . . Thus, for

example, if

2 yx + x - 1 = (A. 4a)

or

[1 0] [2] xy (A. 4b)

y is not defined for x = 0. However the function

g 2
(x,y) = x.y (A. 4c)

is defined for all x and y

Let

x = x + Ax— -o — (A. 5)

where x is the desired solution, x is the initial estimate— —

o

for x, and Ax is the necessary correction to x in order to— — J -o

satisfy Eq. (A.l). Eq. (A. 2) may be rewritten as

AAx + B[g(x +Ax)-g(x ) ] = c - Ax - Bg(x— — —o — — —n — —-o — ——

O

(A. 6a)

or

[A + BD (x , Ax) ] Ax—o — — (A. 6b)

where c 1 is a vector of constants defined as the right side

of Eq. (A. 6a) and the elements of the m x m matrix D are

defined from the total difference quotients of the functions
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g. (x) , (i = l,2 f ..,,m). Thus

[D(x ,Ax)] Ax = g(x + Ax) - g (x ) (A. 6c)—o — — — —o — • —

o

This may be best explained with an example. Again consider

Eq. (A. 4c) . Then

g 2
(x
Q

+ Ax, yQ
+ A

y
) - g2

(x
Q , yQ )

= (x + Ax) (y + Ay) - x yo 2 o 2 oJ o

= *
Q
Ay + YQ

Ax + AxAy (A. 7a)

which may be written as

&.*¥ v¥J[-j (A. 7b)

^ 3 nH fv + Ax-Then the terms (y + -^-) and (x + —*-) are elements of the

matrix D. In general all the elements in the matrix D

are dependent on the initial estimate, which is a constant

vector during the iteration process, and the value of Ax,

which is unknown. The algorithm proposed sequentially

updates an estimate for the elements of D(x ,Ax) until the

true values are obtained. Then the last approximation for

Ax is the desired correction for the solution given in

(A. 5). From (A.l), and the given initial estimate x ,—

o

calculate A, B and c' as defined above. Let Ax, denote
' — —

k

the k approximation for Ax and set Ax =0. Then solve

iteratively

.

[A + BD (x , Ax, ) ] Axlxl = c' (A. 8)—o —k —k+1 —
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Using (4.25) for Ax, +1 un til (A. 5) satisfies all equations

in (A.l). The solution is obtained from (4.25) because the

matrix in (A. 8) may become singular at some step in the

iteration process. This describes the basic technique,

whereby the solution is obtianed by iterative approximation

of the exact difference quotients of the functions g. (x)

and not by iterative improvements of a previous approxi-

mation to the solution. If the process (A. 8) converges and

the error

n
e = E |h.

I

(A. 9)
i=l. -

1 '

is acceptably small, the solution (A. 5) usually is the

desired solution closest to the initial estimate. However,

if process (A. 8) converges to a value of Ax for which e is

not small, then x = x + Ax lies between two or more

solutions of (A.l). In this case a displacement of the

initial estimate is necessary and the iteration has to be

repeated. As shown in subsequent examples the values for

the elements of Ax, oscillate in a damped manner about

their exact value. In order to increase the rate of con-

vergence and, more importantly, to force convergence if the

damping of these oscillations is slightly negative (which

would eventually lead to divergence) additional damping may

be introduced. This is accomplished by using a weighted

average between Ax, , and Ax, for the computation of the
K — I K.

elements of D (x , Ax, ). Then solve iteratively starting
-o —

k

with Ax = using (4.25)
-o 3
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/

[A + BD(xo,Ax,] Ax, , = c'

< (A. 10)

Ax,
, , = ax, + (1-a) Ax,

,
,—k+1 —

k

—k+1

where a, <_ a < 1 , is the coefficient of additional damping,

a is determined from the rate of convergence of the process

(A. 10) starting with a = 0. If after a few steps of the

iteration are completed the convergence rate is considered

too small, a may be increased and the process reinitiated.

This completes the development and discussion of the new

algorithm for the solution of a set of nonlinear equations.

In order to show the power of the iteration method (A. 10)

two examples, where other techniques may fail, are given

below.

2 . Experimental Results

Example 1

Find the point of itersection of the two curves

(A. 11)

y + 2xy + x = 1

y - xy + x =1

closest to the given point (x ,y )

.

According to (A. 6a) and (A. 6b) this set of equations may be

written as

(A. 12a)[1
1" "x

-1

r 2
0^ xy~ "l"

_0 lj _y_

+
-i i: Lx2j

-
_1_
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or

ri l

+
2 |

L° l J-l 1. _

o 2

2x +Ax
o

1 1

1

^Ax
o 2

|~Ax

J J Lay

-V

2

.0 -ij

x y

X2u o -'

(A. 12b)

Eq. (A. 12b) is now in the desired form for (A. 10).

Starting from the initial estimates

a)

X
o _

0~

b)
X
o

~-2~

c)
o

.8

,*0- _0_ ' *a-> 1_ / *o _

with no additional damping (A. 10) yields the following

sequences for Ax,

a)

b)

-1.0 .33 -.6

_ 2.0 / 1.78^ / _2.0_

.25

2.25

.3975

1.9 3*

-.1595

1.703

.3993

1.895

...

O 883

263

.516

-.052

" .5993"

-.1051

Thus the following solutions are obtained

a)

r
*1

. y.J

-.1595

1.703

-%-
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b)

O

X 1.399

y_ _-.105

X 1.399

Y -.105

The graphs of the functions in (A. 11) and the three solu-

tions are shown in Fig. A.l. Fig. A. 2 shows the oscilla-

tion of the sequential values Ax for case (a). Fig. A.

4

illustrates the dependence of the rate of convergence upon

the additional damping a where it is assumed that the

-4
solution is obtained whenever e < 10

Note that in case (b) none of the iteration methods that

depend upon function values could have initiated an iteration

and that in case (c) other methods would have converged to

a different solution point.

Example 2

Find the point of intersection of the two curves

(A. 13a)

closest to the point of (x ,y )

The solution
X' -2/7

+ 3
, obtained directly from sub-

stitution is the only finite solution. Thus, no matter

what the initial estimate is, the desired solution is

T
[x* y*] . The set of Eq. (A. 13) may be rewritten as
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ILLUSTRATION TO EXAMPLE I

Y + 2XY + X =

Y - XY + X
2

= 2

X INITIAL ESTIMATES

FIG. A.I
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OSCILLATION OF AX AND AY - CASE A

FIG. A.2 EX.
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CONVERGENCE AS A FUNCTION OF

ADDITIONAL DAMPING - EXAMPLE

i
1 r

DAMPING FACTOR

FIG. A.3
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1 1

1

2

L2.

Ax
^

Ax
"* +

2
_
1 _Ay_

"
1

-2
-

1 l"

1

X
o -

~2~

2

x y

(A. 13b)

similar to other iteration methods, (A. 9) will diverge

whenever the initial estimate x > 0. While the other
o

methods diverge because they iterate towards the solution

-.5 , method (A. 9) diverges because the oscillations

in Ax become increasingly larger. This situation is reme-

died by using the method of Eq. (A. 10) with an additional

damping factor of approximately a = .7. Now the iteration

for Ax converges rapidly so that the desired solution is

obtained in only 8 to 9 iteration steps. The solution

for the first few iteration steps, starting with the

initial estimate X 1o —

lYoj L-^J
as well as the graphs of the

functions defined by (A. 13a), are shown in Fig. A. 4.

B. SOLUTION OF THE DYNAMIC RESPONSE OF CIRCUITS CONTAINING
NON-LINEAR RESISTIVE ELEMENTS*

The exact solution of the dynamic response of a circuit

containing non-linear resistive elements such as diodes or

transistors often presents problems, even when the non-linear

characteristics are known, because it may not be possible

to solve for the required variables explicitly [6]. The

The material in this section up to Eq. (A. 21) has been
published in the Proceedings of the Second Annual Princeton
Conference on Information Sciences and Systems, 1968.
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LLUSTRATION TO EXAMPLE 2

Y + 2XY+X = I

2XY + X = -2

FIG. A.4
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non-linear resistive elements are considered as dependent

current (or voltage) sources, dependent upon state or

other variables in the network. The network is then

characterized by the following equations.

x = Ax + B, u + B i (A. 14)— — 1—s 2—

n

in = N £-<V (A. 15)

v
n

= Rx + S
x

u
s

+ S
2

i
n (A. 16)

where x = the state variables

u = independent sources

i = equivalent current sources for the non-linear
elements

v = corresponding voltages across the non-linear
elements

The matrices A, B, , B~, R, S, , and S~ are determined from

the network and matrix N is defined from the characteristics

of the nonlinear network components. The roles of v and

i in (A. 14), (A. 15), and (A. 16) are interchanged when

dependent voltage sources are used. Eq. (A. 14) is the state

equation for the linear part of the circuit. Eq. (A. 15)

formulates the characteristics of the non-linear components

as given, for example, by the Ebers and Moll [20] equations

for transistors. Eq. (A. 16) gives the circuit constraints

(loop equations for equivalent current sources and nodal

equations for equivalent voltage sources) between the
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voltage across the nonlinear elements and their currents,

the states, and the known sources.

For a discrete time solution the sources, u and i ,—s —

n

may be approximated as piecewise linear functions. Thus

the solution to (A. 14) is given by

Sk+ 1
=

*^k
+r

i
BlVk > +r

2
BlVk+1)+r

i
B2in (k)+r

2
B2in (k+1)

where

(A. 17)

AT

-1
[e y~ (e " I) ]

-1
T
2

= A 1

[^f- (e
AT

I) I]

(A. 18)

(A. 19)

(A. 20)

Substituting (A. 15) and (A. 17) in (A. 16) yields

V (k+1) = R x(k)+R [B
n
u (k)+B 9 i (k)]

—

n

— 1 l—s z—n

+ (s
x
+R

2
B
1
)u

s
(k+l) + (s

2
+Rr

2
B
2
)N f[v

n
(k+l)]

(A. 21)

Knowing the values x(k) , u (k+1), i (k) , Eq. (A. 21)

represents n simultaneous non-linear equations which have

to be solved for v (k+1). Eq. (A. 21) may be written in the

form

A'V (k+1) + B—

n

*i (V

g (v )^m —

n

n

(A. 22)
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For diodes or transistors the functions g. (v ) are functionr i —

n

of one variable only and have the general form

kVi
gi

(v
i

) = (e
X - 1) (A. 23)

Thus the method (A. 10) is directly applicable and yields

with the estimate v (k) the solution closest to this point

v (k+1) . Using v (k+1) in (A. 15) and (A. 16) enables i (k+1)—

n

' —

n

—

n

to be calculated. Using these as initial values in (A. 21)

permits the calculation cycle to be reiterated.
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