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ABSTRACT

Various methods are studied for the relocation, or movement,

including address mapping, of programs within a multiprogrammed digital

computer. The aim of doing so is to determine the best method for use

in the limited time-shared computing system proposed for development

in the Digital Control Laboratory of the Naval Postgraduate School. In

this light, the concepts of time-sharing and multiprogramming are dis-

cussed, as is the implementation of relocation in a very large computer

obtained for the School's main computer facility. The features and

requirements of the D.C.L. are then established and evaluated. It is

found for the Laboratory that complete job swapping will be a fully

satisfactory method of relocation. The time taken will not be exces-

sive, and this method will be the easiest to incorporate in the time-

sharing system. Details of a possible implementation are given in an

appendix to the thesis.
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1. Introduction.

This thesis studies the problem of the relocation of programs

within a mult iprogrammed digital computer. The objective of doing so

is to determine the most suitable method of relocation to be applied in

the limited time-sharing system proposed for development in the Digital

Control Laboratory of the Naval Postgraduate School.

The plan of the thesis is to progress from general consideration of

background matter to specific investigation of the D.C.L. system and its

requirements. The following subjects are treated:

a) a brief survey of the meaning and potentialities of the

end application, time-shared computing;

b) consideration of the general multiprogramming environ-

ment and the need for program relocation;

c) study of a number of techniques of relocation;

d) investigation of the relocation method implemented in a

very large time-sharing computer, the IBM System/360, Model 67;

e) study of the Digital Control Laboratory's requirements

and features of its new SDS 930-centered computing system; and

f) recommendation and conclusion.

The primary investigative tool used is comparative analysis, as,

for example, of different techniques of program relocation. Expository

discussion is interleaved with consideration of advantages and disadvan-

tages.

The following section introduces time-shared computing.

International Business Machines Corporation. The meaning of all

abbreviations used in this thesis is given in the table on page 9.
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2. Time-Shared Computing.

A major impediment to the full use of digital computers has been

2expressed as the "speed-cost mismatch" between man and machine. Com-

puters are very fast, but expensive. Men, relatively, are slow, but

their time is cheap. One result of this mismatch has been a tendency

to hand the machines over to the group of computer professionals - pro-

grammers, operators, and managers - who know best how to keep them busy.

The real users of computer power - the professors, executives, colonels,

and generals - are, in the main, isolated from direct contact with the

machines. No one would suggest that the professors and colonels become

full-time programmers or operators; but there are many problems where

time and meaning are critical, where the isolation of the real users is

a distinct disadvantage.

One answer to the speed-cost mismatch, and to the matter of letting

the real user have direct contact with the machine, is time-shared,

multiple-access, on-line^ computing. Here a computing system is designed

so that a number of different, possibly distant, users have concurrent,

real-time access to it. The speed of the computer is put to good use

in moving between each user's tasks, solving them at a rate which, in a

well-designed system, approaches that of human reaction. The expense

of operating the system may now be spread over its many concurrent users.

Because there are relatively natural programming languages available, and

because the means of access to the computer can be an easily-employed

device (teletypewriters and CRT displays with typewriter-like keyboards

2Licklider, J.C.R., Man-Computer Symbiosis (IRE Trans, on Human
Factors in Electronics, March 1960), p. 7.

3
For the sake of brevity, all these adjectives will be implied

when, henceforth, only "time-shared" is written.
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are most common), direct contact of users is facilitated.

Time-sharing offers several other interesting possibilities. One

of these is in the area of formulative, or trial-and-error
, problem-

solving. Since computers follow only the steps for which they have been

programmed, they have been most useful heretofore in solving completely

pre- formulated problems, using pre-determined procedures. Now, with

time-shared computing, the user with a less-well-understood problem has

the opportunity to sit at his access terminal and to interact with the

machine on an almost conversational basis. If there is a solution to

his problem, he may be able to "feel" his way to it.

There is, with time-sharing, an advantage in the management of an

information base. Only one, central file need be maintained, as its

contents may be made accessible to all authorized users at their termi-

nals; further, once a user enters data into the system, it is immediately

and identically available to other intended subscribers.

Time-sharing can extend the power of a large computer. This is its

major superiority over a proliferation of independent small machines.

For the same computing power and number of users, a time-sharing system

with reasonable communications costs appears to be less expensive than

a system of independent machines.

Perhaps the most interesting possibility of time-shared computing

is the concept of a "computer utility". That is, like water or electric-

ity, computing power would be furnished from a generating element (here,

the central computer) to locations where it can be used, there to be

"turned on" (employed) when needed and "turned off" when finished.

The number and vitality of current applications of time-sharing

demonstrate that this means of computing is quite practical. One

13



4
compilation lists 40 installations. Educational institutions with time-

sharing systems include Stanford, California at Berkeley, and the Massa-

chusetts Institute of Technology. The Naval Postgraduate School will

soon join this group, not only with its D.C.L. system but also through

new equipment being installed in the central Computer Facility. Com-

mercial systems are becoming quite numerous. Many of these are available

anywhere there are telephones, for they employ the telephone lines to

link remote terminals to the computer. Shown in Figure 1 is the equip-

ment used in one such commercial time-sharing system.

It is not difficult, finally, to imagine military applications.

For example, the possibility of formulative problem-solving might be as

valuable to a military research organization as to a similar civilian

enterprise. In a large supply center or personnel directorate, time-

sharing's advantage in management of a centralized information base could

be useful. Because the remote user's terminal may typically be a light-

weight teletypewriter, linked by radio or wire to the computer, time-

sharing may be feasible even on the battlefield. A tactical system

could serve as a message processor, handling battle reports, logistics

status, etc., and also as a means for rapid computation at diverse loca-

tions of such time-consuming problems as aircraft schedules and embark-

ation tables. An added advantage here would be that when a using unit

was not in action, and its computing requirement was therefore small,

an expensive computer would not be idled; only a terminal would not be

in use.

4
Time-Sharing System Scorecard, No. 4 (Computer Research Corpora-

tion, Fall 1966).
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Figure 1. Configuration of a commercial time-sharing system;
adapted from that of the General Electric Company
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3. Multiprogramming and Program Relocation.

Multiprogramming - Definition

The time-shared computing just introduced implies a multiprogramming

environment. That is, more than one active user program will simultan-

eously be present within the computing system. The processor must be

operated to permit the execution of a number of programs in such a way

that none of the programs need be completed before another is started

or continued.

Goals

Multiprogramming a computer, for whatever application, may be done

with any of a number of possible system goals in mind. One of these

might be termed, "improvement in user service". Possible sub-goals to

this include reduction in turnaround time and an increase in the number

of allowable concurrent users. In general, pursuit of this goal reflects

an awareness of the view that a computer is properly the servant of its

users.

A second goal, conversely, aims at realizing the greatest possible

efficiency in the employment of the physical components of the computing

system. It thus recognizes that computers are very expensive machines.

This goal stresses the achievement of economy.

The third, and final, multiprogramming goal to be considered here

is a variation of the first. It can be expressed as "improvement in

service to all users, but with special emphasis on the needs of some".

That is, certain users or user classes would be favored, with the system

responding preferentially to their requests. Presumably, these special

users would be either those whose needs so required or those whose equip-

ment permitted them to take advantage of their favored position. An

16



example of the former might be a hybrid system simulator, who typically

requires a definite amount of digital computing service at fixed time

intervals. He must have this service at the prescribed times if his

simulation is to function at all. The latter could include persons using

an on-line display console to interface with the computer. The relative

problem-solving power of a good display, properly backed with necessary

software, compared to many other input/output media, is So great as to

probably warrant favored consideration to its users.

Problems of Multiprogramming

The designer of a multiprogrammed computer must solve a number of

rather special problems. In general, these problems are either not

found, or are experienced in much less severe degree, in other forms

of computing. Their solutions seem particularly critical in the time-

sharing application, where the human user, at his terminal, is immediate-

ly awaiting answers from his programs.

These problems include:

a) scheduling - the order in which the different programs

actively present in the system will be served must be determined;

b) input/output communications - messages to and from system

users, programs and answers, must be handled;

c) memory allocation - programs must be dynamically assigned

to and within the different levels of system storage;

d) security - necessary isolation must be provided between

different users' programs, and between a user and a system program not

his to use;

e) system monitoring - the complexity of multiprogrammed

operation often warrants special consideration for the task of monitoring

17



system functioning and accounting for the charges to each user; and

f) program relocation, which is the subject of this thesis.

Program Relocation

In general, in the on-line multiprogramming implied here, it is not

possible to process a program through to completion in one "turn" of the

system. That is, the requirement to provide a sufficiently brief response

time to each user - to receive his program or to provide some answers -

necessitates the interruption, before completion, of all but the brief-

est processes. Further, it is disadvantageous to try to allow interrup-

ted programs to remain, unaltered, in main memory. Such practice is

probably impossible, in view of the unforeseeable requirements of sub-

sequent users' programs, and to attempt it would certainly result in a

severe limitation upon the number of allowable concurrent system users.

Thus there is a need for the movement of programs about the com-

puting system as their status changes. It is this movement which is

called, in general, program relocation. Some examples follow. A pro-

gram which at one instant of time resides in main memory for purposes of

active computation may, a few moments later, be placed for temporary

storage on a drum or disc file. Conversely, a routine stored on mag-

netic tape may, at some time, be called into core for processing. Or,

a data area may be required by a running program when, as the result of

prior relocation, the two are in different parts of main memory.

Another way to consider program relocation is to realize that to

function properly, the computing system must be able to access any pro-

gram in the system at any time. No program can ever become "lost" to

the central processor and its operating system. Thus program "movement"

requires a consideration of "access" methods. In studying relocation,



this thesis must then investigate the addressing requirements of multi-

programmed computations. Addressing methods, in fact, are at the center

of the topic of relocation, for they have a direct and important effect

upon the speed and efficiency of the computer.

The following section begins this study by considering a number of

relocation techniques.

19



4. Techniques of Relocation.

First Considerations

System Goal and End Application. Some possible goals of multipro-

gramming were previously given. The goal which is chosen for a system

must be kept in mind when weighing the relative merits of different re-

location techniques. The end application of the computing system may

also influence the choice of relocation method. As indicated before,

the end application important to this thesis is time-shared computing.

Size of Main Memory. Usually, in the multiple-access, on-line

computing implied here, main memory will be insufficient in size to hold

all active computations simultaneously. This is in contrast to the

special purpose Naval and Marine tactical data systems; there, the total

quantity of stored program is known, and because of the real-time re-

quirements of the systems, main memory holds it all. Here, the system

works under a varying program load. Further, there will be a need to

store some programs in an inactive status. Thus considerations of over-

all economy suggest a main memory limited in size, so that it cannot be

expected, in general, to hold all processes at once.

Single-Level Store. With the consequent use of several different

storage media, there has developed the concept of the "single-level

store". Since for a user, it would be difficult, if not impossible,

to keep track of where his program resides at any moment, he is not ex-

pected to do so. Instead, the operating system records and uses this

information, while the user codes as if his programs were always in main

memory. To him, the system does not appear to have its actual hierarchy

Kilburn, T. , et al., One-Level Storage System (IRE Trans, on
Electronic Computers, April 1962), p. 223.
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of different storage media, such as core, disc, and tape; he sees it as

possessing one "single-level store".

Address /Location Map. It may be desirable, for greater flexibility,

that the system not be required to place a program in the same region of

main memory each time it is called up. To so require would incur extra

overhead upon program exchange and would complicate the queueing of wait-

ing processes, although it may be justified for other reasons. Thus a

means is needed to relate the addresses used by a computation to the

physical locations in main memory actually employed for storage. This

means may be called, after Dennis , the "address/location map". It may

be considered to effect a translation from an address, or "name", space

to a location space. This thesis will often speak of program relocation

in terms of methods of creating and maintaining this "map".

Memory Protection. As suggested previously, proper isolation be-

tween different users' programs, or "memory protection", must be a part

of any multiprogrammed computing system. It is not difficult to think

of pertinent reasons. In a commercial system, one business user must

not be permitted access to another firm's secrets stored in the computer.

In a military application, classified information must be protected.

Memory protection is needed in any situation because new programs, which

often contain errors, must be prevented from interfering with other pro-

cesses in the system. Because the form of memory protection provided

is often affected by the choice of relocation technique, memory protec-

tion will be treated as a secondary subject in the remainder of this

thesis.

Dennis, J.B. , Segmentation and the Design of Multiprogrammed
Computer Systems (Journal of the ACM, October 1965), p. 590.
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System Evolution. One lesson learned by designers in recent years

is that provision must be made for evolution in the design of any com-

puter system. Changes in technology and applications occur too rapidly

for this not to be so. There are numerous ways to provide for system

evolution; whichever seem appropriate, any method of handling the re-

location of mult iprogrammed computations must be judged partly upon its

ability to evolve.

Quantitative Aspects

There are two very useful parameters which may be measured in the

evaluation of a relocation technique. These parameters are:

a) the physical size of the relocation program;

b) the time required to effect relocation.

The size of relocation coding is important because it represents

a demand upon a key system resource, storage. When a new computer

system is being planned, consideration of the probable size of the re-

location program may affect the amount of storage specified. In an

existing system, the otherwise available amount of system storage is

reduced by the size of the relocation code.

It is reasonable to measure the size of the relocation program in

terms of main memory computer words or bytes, whichever is appropriate

to the particular computer under consideration, since it is in main

memory that the code will reside while being executed. The number of

words or bytes required is called here, N. In many cases, not all of

the relocation program need be in main memory at all times. For reasons

of greater economy and space-saving, lesser-used relocation routines are

often placed in other, cheaper storage. Of course, the disadvantage of

doing so is the greater access times to such routines. In general, the

22



size of the relocation program may be expressed as

N = Nmm
+ N

2s
+ N 3s

+ ••• C4.1)

wnere Nmm' ^2s' N 3s' •* re ^er to tne ma i-n memory, secondary, tertiary,

... storage used, these amounts being specified in terms of main memory

words or bytes.

The value of N depends upon the features of the instruction set of

the computer under consideration and upon the relocation technique used.

For a smaller N, efficient table-search and powerful input/output in-

structions are necessary, as these are found to be the major tasks of

relocation. Also, as to be expected, the more complex the relocation

technique, the longer the implementing code. In general, considering

the normal size of such necessary components as a loader, many reloca-

tion programs occupy one thousand or more computer words.

Especially critical in a time-sharing application, where human users

are waiting for answers at their terminals, is the time taken for program

relocation. Even though a useful function is being performed, relocation

time is all overhead, non-productive in terms of actual execution of user

programs. This time may be considered in two ways:

a) the absolute amount required;

b) the relative effect, first, in terms of increased program

execution time due to address translations, and second, as a contribu-

tion to total system overhead.

In the absolute measurement, relocation time will be denoted here

as T . It will often be convenient to measure T over one user's assigned
r r °

time-slice, or quantum, q. There are two major contributions to reloca-

tion time. These are the time required for address mapping, T , and the

23



time taken for program exchange (the input or output of code), T . Thus

Tr
= Ta + Te (4.2)

Further, it may be seen that

T = t Lf (4.3)
a a

where t is the time required to translate one address, L is the length

of program under consideration, and f is the fraction of program instruc-

tions containing a memory address. T_ will be discussed elsewhere in

this section of the thesis.

For relative measurements, it is possible to express the fractional

increase in program execution time due to address mapping, called here

F
a , as

F
a

= -^- f (4.4)
m

where m is the number of memory cycles required to execute the average

instruction in the computer under consideration, t is the computer's

memory cycle time, and t and f are as defined above. Obviously, mt

may be replaced by the average instruction time of the computer, if that

is known directly.

If s is the time within q during which the user's program is actually

executed, then (q - s + T ) is the total overhead time within a quantum.

Fe is defined to be the ratio of relocation overhead to this total over-

head. Then

T + TQa e
F = —

—

(4.5)
e q - s + T1 a

With some relocation techniques, T is zero or is small enough to be

negligible. In this situation, the above expression becomes

24



F_ = (4.6)e
q - s

Any or all of these expressions (4.1) -(4. 6) may be usefully evalu-

ated when comparing different methods of program relocation. Some will

be discussed further and used in examples in the remainder of this

section.

Consequences of "No Relocation"

Suppose that the address/location map consists of a one-for-one

translation of addresses into physical locations; that is, the addresses

are always the same as the locations, and a "no relocation" (within main

memory) situation exists. Each program is assumed to have full use, out-

side the resident portion of the operating system, of the possible

addresses in the computer. In such a case, dumping of information from

main memory is often required when, during processing, one program is

interrupted and another started or resumed. This is so because:

a) the new program may require more locations than are left

free by program (s) now in main memory; or

b) even if the required quantity of locations is available,

there may be duplication in the addresses ( = locations here) used. (See

Figure 2.)

In special cases, where the total naming requirements of all pro-

cesses are less than the number of addresses available, this frequent

dumping of information may be avoided. Then, the different programs may

be allocated to separate portions of memory, and relocation is never

necessary. This is the situation with the previously mentioned Naval

and Marine tactical data systems. This is not generally the case, how-

ever, due to changing total demand, in the time-shared computing dis-

cussed here.

25



a) b)

2
n-l 2

1Li

Address
Space
"A"

Location
Space
ML"

. •

2

1

2

1

Dupli-
cation

. 1
Program
#1

Program
#2

t

^n bits^

Figure 2. a) No relocation within main memory

b) Duplication of addresses

Figure 3. Use of a relocating register
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"No relocation" is sometimes known as "job swapping", although such

terminology is rather loose. Often only that portion of previous job(s)

necessary to provide sufficient space for the incoming program is

swapped.

The new program, when the exchange is complete, is normally "run

from zero", i.e. started at some fixed location outside the resident por-

tion of the operating system. In such event, the only main memory pro-

tection required is to ensure that the program does not access above its

upper bound. Perhaps the fastest way to implement this would be by

adding an additional hardware register. During program exchange, this

register would be loaded with the new process' upper bound. Its wiring

would be such that during the running of a user program, each memory

access would produce an automatic "compare" with the register's contents;

the occurrence of an access violation would result in a "no operation"

on the access and a trap to a designated location. The isolation pro-

vided here between programs is complete, with neither reading nor writing

outside one's own process permitted.

To establish the timing of "no relocation", it is first noted that

since there is no address mapping,

t = T =
a a

Thus Tr = T (4.7)

It is useful to divide T into two parts. The first, called I, is de-

fined as the initialization or set-up time required before the movement

out of, or into, main memory of a user program is actually initiated.

This time is used to perform tasks such as searching memory tables for

a user program's length, storage location, first word address, and other

27



quantities necessary to define the input/output operation. The second

part of Te is the time taken for the actual input/output transfer, called

here Tem . Thus, in general,

TQ = I + TQme em

For a "complete" relocation, i.e. one input and output movement, as during

a quantum,

T = 2(1 + T ) (4.8)e em

The initialization time varies, of course, with such factors as

the computer's instruction features and speed, and the number of system

users. It is also dependent upon the exact "no relocation" technique

employed. It will be smallest for the simplest application, complete

job swapping.

The actual input /output time, T , depends upon the characteristics

of the computer under consideration. It is most useful to consider as

Tem only that input/output time not overlapped with other processor

functions. Then

T =0
em

if the transfer is made on a path completely independent of processor

act ion,

T = nt Lem m

where n is the number of non-overlapped memory cycles per word or byte

transferred, and L is the number of words or bytes being transferred,

if the transfer occurs on a cycle-stealing channel, and

T --irem w
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where W is the gross transfer rate of the secondary storage device used,

if the transfer halts all processor action while it is taking place.

In relative measurements with "no relocation",

F =
a

because t is zero, and

2(1 + T )v enr
K =
e q - s

per quantum.

Despite the large amount of program movement into and out of main

memory, this method has proven to be quite usable in practical systems.

It is the technique employed by the General Electric Company's commercial

time-sharing system. Further, it was used for several years at Project

MAC of the Massachusetts Institute of Technology.

Use of a Relocating Register

An improvement in a technical sense over "no relocation" is use of

a relocating register, which permits translation of a contiguous set of

addresses in name space to any contiguous set of physical memory loca-

tions. During the exchange of programs into and out of main memory, the

new program is stored in any convenient set of locations. Thus less

dumping is required than with "no relocation", where the new program is

always loaded starting at the same location. The mapping is effected

during program execution by adding the proper constant, stored in the

relocating register, to each accessed program address. Thus occupation

of a different part of location space during processing is permitted with

Saltzer, J.H. , Compatible Time-Sharing System Notes (Project MAC,
Massachusetts Institute of Technology, 1965), pp. 31-36.
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no changes in the addresses actually contained in a program. Again, the

fastest implementation would be to provide the register and addition in

hardware. Some foresight is needed in the design of the computer word,

however, for a means must be provided so that the register does not

operate on program instructions which do not reference a memory address.

(Figure 3.)

This method can be considered to be an extension of the relocating

loader in non-mult iprogrammed batch-processing. There, address trans-

lation occurs only on loading; there is no provision for relocation

during execution. By contrast, a relocating register effects repeated

translations during execution.

Memory protection may be provided here by using "bounds registers".

Such registers would contain, for the running program at any moment,

the current upper and lower physical memory locations. Any attempt by

the program to access outside these bounds, or to alter the bounds regis-

ters, should result in a protection trap. Again, the isolation between

different programs will be complete.

When a relocating register is used, in contrast to "no relocation",

t„ ? 0. Therefore, in general, F ^ and T 5* 0. That is, a finite
C* El €1

address mapping time is required, and program execution time is thereby

increased. A reasonable range to be expected for a hardware-implemented

t a is from 20 to 200 nanoseconds. This is the time required to sense

that relocation is needed and to add the contents of the relocating

register to the program-contained memory address. The effect upon pro-

gram execution time is, by (4.4), directly proportional to t and in-

versely so to t . Thus the effect of address mapping time is greater in

a faster computer. For an example, choose, as reasonable values,
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t = 100 nanoseconds
a

m = 3

«!

Then, if t is three microseconds,

t a
F = — f (4.4)
a mtm

0.1 2

3(3) 3

= 0.0074 or about 0.7%

But if t is one microsecond,
m

F = 0.022 or 2.2%
a

which is, of course, three times as great. Plotted as Figure 4 are the

variations of Fa with t and with tm , as given by (4.4). The values of

m and f are chosen as above. It can be seen that for the ranges shown

of t a and tm , the maximum F is about 0.05 or 5%. Such an increase in

execution time may or may not be of consequence in a particular computer

system.

If some assumptions are made, it is possible to make a direct com-

parison between the "no relocation" and relocating register methods in

terms of the average time required. The independent variable will be L,

the average length of program being relocated. For "no relocation", it

is recalled that (with subscripts now added, for clarity)

<Vhr (Vnr (*- 9 >

in general, and
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Figure 4. Increase in program execution time due to address mapping
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per quantum. It is assumed now that the initialization required with

use of a relocating register will take three times as long as that with

"no relocation". That is,

This relation seems reasonable, considering the greatly expanded amount

of main memory management which is required when a relocating register

is used. It is also assumed that

(T )_ = nt L (4.12)
em NR m

That is, the secondary storage device to be used in relocation is con-

nected to a cycle-stealing input/output channel which permits partial

overlap of program exchange time with other processing. This particular

assumption is not critical; a non-overlapped channel could just as well

have been used. (Tem )nn will normally be less than (Tem ) NR , because use

of the relocating register allows more than one complete program to be

in main memory at one time. In fact,

<*em>RR M (WNR <^ 13 >

where — is the fractional portion of main memory occupied by the average
M

user program. The meaning of this expression is that if, for example,

the average user requires one-eighth of main memory, then program move-

ment time with use of a relocating register will be, in sum, one-eighth

that taken with "no relocation". This is so because, on the average,

eight user programs can reside in main memory at one time when a reloca-

ting register is employed, and when control transfers from one of these
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programs to another, T = 0. Now, by (4.2)

<Vrr =
<Ta>RR

+ (Te>RR

and, per quantum, using (4.8)

<Tr>RR " <
Ta>RR

+ 2[l
RR

+ <Tem > RR
]

(*-!*>

Substituting (4.3), (4.11), (4.12), and (4.13), and using average values,

(4.14) becomes

_ ntmL
2

(VRR = t
a
Lf + 6I

NR
+ 2—T- (4 ' 15)

Substituting (4.12) into (4.10), and again using average values,

<VnR = 2f
NR

+ 2ntmr ^' 16 >

These expressions, (4.15) and (4.16), represent in comparable terms the

average times for program relocation with a relocating register and with

"no relocation". To demonstrate their different variation with L, average

program length, the following values are chosen:

t = 100 nanoseconds

*-!

I._ = 500 microseconds
NR

n = 2

t =2.5 microsecondsm

M = 8000 words

These values are reasonable for a smaller, medium speed system. The

results are:

(VrR = 6.7(10
_5

)L + 3 + 1.25(10~
6
)L2

(T ) = 1 + 10~ 2
L (milliseconds)

r NR
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These two expressions are plotted as Figure 5, for 0<L2S8000. The super-

iority of the relocating register method is clearly shown for all L

except:

a) L<200, where the greater initialization required with the

relocating register is the dominant effect;

b) L at 7800, i.e. L close to M, where, even with the use of a

relocating register, an input/output transfer is necessary upon almost

all program exchanges.

The disadvantage of the relocating register method of program relo-

cation results from the fact that a contiguous set of addresses is

always mapped into a contiguous set of physical locations. This tends

to create overhead during program exchange when suspended programs in

main memory must be moved up or down solely to provide a sufficiently

long set of free locations for an incoming process.

Nevertheless, the relocating register has also proven to be a feasi-

Q
ble technique. It has been successfully tested at Project MAC. Its

relative simplicity of implementation is an attractive feature. Where

program exchange is a frequent occurrence, however, this method appears

to contribute a significant amount of system overhead.

Blocks and Pages

A method of avoiding the contiguity problem is to divide main memory

into increments, called "blocks", and to divide programs into "pages".

All blocks and pages are of the same fixed length. Pages may also be

considered to be divided further into "lines", a line being actually a

word or a byte. When translating an address, the address/location map

Corbato, F. J. , System Requirements for Multiple-Access, Time-
Shared Computers (Project MAC, Massachusetts Institute of Technology,

1964), pp. 6-7.
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Figure 5. Relocation time vs. average program length, with
"no relocation" and relocating register methods
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must relate the referenced page to its current physical block in memory.

There is no requirement for contiguous pages in a program to be located

in contiguous memory blocks. Also, there is no need for address space

to be of the same size as location space in main memory; the former may

well be larger, as long as the operating system knows which pages are

in main memory blocks, and which are in other storage, at any time.

An added advantage of using blocks and pages is that it now becomes

convenient to call into main memory only those parts - pages - of a

program which are currently active. Of course, an algorithm is needed

to judge activity and to decide which pages to bring in during program

exchange. Thus relocation overhead will be further reduced, beyond the

reduction offered by the removal of the contiguity requirement. It may

also be observed that the paging of a process is not a matter of concern

to the applications programmer. Pages are fixed-length subdivisions

which may occur at arbitrary points in a program; they are not sub-

routines. Paging is effected in the operating system and is invisible

to the general system user.

One straight-forward implementation of blocks and pages creates a

table for each active program in the operating system. This table asso-

ciates each page of a user program with its current physical block or

other location in memory. The look-up is made on the page number, ob-

tained from the referenced address in the program, with the result being

the location. There is no translation of the line, which is assumed to

occupy the same relative position in both page and block. (See Figures

6 and 7 . )

Memory protection may be provided by the association of one or more

bits with each block in the block-page table; these bits indicate the
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type of access which the program is to have to this block. If more

than one bit is allocated, several forms of protection, such as "read

only", "write only", and "no access", can be identified.

As implemented above, the blocks and pages method of relocation

imposes a time penalty for its use. Extra memory cycles are required

during processing to make the table look-ups for the address transla-

tions. This is a serious disadvantage, and to reduce it, current com-

puters employing blocks and pages perform the mapping with hardware. The

SDS 940, for example, provides two extra registers which contain block

locations applicable to the program in execution. The wiring is such as

to replace the upper, or page-indicating, bits of a program-referenced

address with the appropriate block location before the fetch, store, or

branch specified takes place. Two larger computers, the IBM System/360,

Model 67 and the GE 645, incorporate an associative memory element with-

in the central processor. In this element are stored, for the running

program, the page-block combinations of a number of high-use pages (per-

haps these would be the most recently referenced ones). When an address

is referenced, a fast parallel search of the element is made; if the page

is present , its block is then immediately known.

As with the relocating register method, t ^ when blocks and pages

are used. However, the possible values of t a now vary over a wider

range. If the address mapping is performed in hardware, t a
will be of

the same magnitudes as for the relocating register, and Figure 4. ap-

plies. However, if programming is used to translate addresses, t may

be many times tm . This, of course, would lead to much higher values of

Ta and Fa . This matter will be pursued further in Section 5 of this

thesis, where an example implementation of program relocation using com-

bined hardware-software address mapping is presented.
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Generally speaking, the blocks and pages method has been incorpora-

ted in newer computers, in which there are usually available input/output

channels which operate independently, during actual transfer, of proces-

sor functioning. In this case

Tern =

provided only that there exist other tasks for the processor to perform

while the transfer is taking place. The only contribution to program

exchange time, then, is the required initialization time. Per program

page used, this time may be called ID . If k is the number of pages

needed during the measurement interval, then

(Vbp = kI
P

W - 17)

Recalling (4.2) and (4.3), the total relocation time becomes

(T
r>BP

= fc
a
Lf + kI

p
(4 ' 18)

This quantity may be compared to the times required with use of "no

relocation" (4.8) and with use of a relocating register (4.14) over the

same measurement interval. L, in (4.18), is to be interpreted as the

length of program executed over the interval. While, in general, it

will be related to k, the number of pages used, these two quantities may

not be strictly proportional. L may not increase as rapidly as k, be-

cause the use of more pages in the measurement time suggests that fewer

instructions are being executed from each page. Figure 8 plots (4.18)

against k for the following relations between L and k:

L—

k

L -k2/3

L~k 1/3
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and for the following values of the parameters:

t a = 100 nanoseconds (i.e. hardware mapping)

f - 2

I = 500 microseconds

L = 2000 words for k = 1

The results show that for these values, the initialization time, kl ,

dominates. The situation would be reversed, with address mapping time

being more important, if software mapping were employed. This is be-

cause t a would then be many times larger.

A More Realistic Computing Environment

Three features of a realistic computing environment have not yet

been given proper emphasis. These features are very large programs,

variable-size data structures, and use of common routines. All affect

program relocation.

Very large programs occur fairly frequently in some systems. In

non-mult iprogrammed computers, they are handled by we 11 -developed over-

lay and chaining techniques. In general, if the address space of the

system is large enough, unique names may be assigned throughout a com-

putation. Re-naming is then never necessary. Otherwise, some of the

addresses used in later portions of a process will have to be made the

same as some used earlier. The operating system must keep a record of

any such correspondence. In a mult iprogrammed computer using relocation,

this re-naming represents an extra, time-consuming translation beyond

that required by the normal address/location map.

Examples of variable-size data structures in programs include

arrays, lists, and pushdown stacks. These occur frequently, and it is

difficult to know their eventual size, particularly in the on-line
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environment discussed here. This leads to a dilemma. If, in processing,

too many addresses are reserved for variable-size structures, an inef-

ficient use of name space results. On the other hand, if too little

space is reserved, naming conflicts will arise.

For both very large programs and variable-size data structures,

the conclusion from the point of view of naming requirements is that it

would be desirable to have an address space sufficiently large that,

in practice, it would never be filled.

A third important feature of a realistic computing environment is

the use of common routines. It has been suggested that in a time-sharing

system, "common routines" means more than just a library collection. An

important facet of interactive, on-line programming appears to be the

frequent exchange of information between system users. In some cases,

this exchange has occurred between two users active at their terminals,

one entering some matter and then transmitting it, through the system,

o
to the other.

It is desirable, for the sake of efficiency, to code as many common

routines as possible in "re-entrant" form. Puch routines may, by defi-

nition, be entered by a second program before a first has finished its

use. Ideally, then, only one copy of a re-entrant routine need be pre-

sent within the system, no matter how many users might call it. How is

reference to be made by programs to this single copy?

First, a separate address/location map may be assigned to the common

matter, just as if it were an independent user program. This method has

the advantage of permitting the common routine use of the full address

9
Fano, R.M. , and F.J. Corbato, Time-Sharing on Computers (Scien-

tific American, September 1966), p. 140.
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space of the computer. However, it requires a change of map whenever

the routine is called. More importantly, the transmittal of arguments

through two maps would be rather complex and possibly time-consuming.

This disadvantage would compound when a number of common routines are

referenced.

Second, the common routine may be assigned a portion of the address

space of the calling program. Then no change of map is needed when the

routine is called. If address space is sufficiently large, the assign-

ment does not impose a significant restriction on the calling program.

However, this method will work with a single copy of the common matter

only if 1) it is arbitrarily relocatable, or 2) it always occupies the

same portion of address space in any using program. Arbitrary relocata-

bility would impose an additional constraint on the coding, beyond that

of re-entrancy; it also implies an extra, time-consuming movement. By

requiring the movement, it really begs the question of whether a single

copy is being used. By contrast, use always of the same portion of ad-

dress space appears to be a serious restriction. Yet if address space

is large enough, this technique has the virtue of simplicity; a particu-

lar common routine would always be found at the same program addresses.

Segmentation

Up to this point, certain desirable features in the addressing

structure of a mult iprogrammed computer have been noted:

a) address space should be large enough that unique addresses

may be assigned throughout any practical computation;

b) data structures should be expandable without necessitating

a reallocation of addresses; and

c) information common to several programs should have the

same addresses for all programs that reference it.
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It should be stressed that the total address space of a system need not

be physically implemented in main memory storage. In fact, considering

the large addressing capability of some new computers, the cost of such

implementation would be economically very prohibitive. The GE 645, an

extreme example, provides 36-bit addressing, or the capability of speci-

fying over 68 billion, words.

Given a sufficiently large naming capability, the segmentation of

program addresses provides a suitable way to structure the addressing

scheme. Physically, the resulting program segments are an ordered col-

lection of computer words with an associated segment name. The number

of bits used for the segment name is chosen to permit as many segments

as may be needed to distinguish different common routines, parts of

programs, etc. The number of bits then left for word addresses within

the segment should allow for the largest collection of information that

is to be addressed as one ordered sequence. In the GE 645, 18 bits are

employed for the segment name, leaving the same number for word addresses;

2
18

= 262,144. (See Figure 9.)

Segments are used for the allocation of address space, not physical

memory. But unlike pages, they are not invisible to the programmer. To

him, a segment is any more or less independent subdivision of a program.

It may consist entirely of instructions, entirely of data, or it may be

a mix of both. Examples of likely segments are main programs, common

subroutines, and data arrays.

The segment may serve as the basis of memory protection. An advan-

tage here is that address space, which is unchanging over the life of a

McGee, W.C. , On Dynamic Program Relocation (IBM Systems Journal,
No. 3, 1965) , p. 188.
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computation, is used. With, for example, m programs employing a total

of n segments, an m x n matrix might be formed, its elements indicating

the type of access which each program is permitted to make to each

segment

.

During execution, a correspondence is drawn between a program address

identified by segment name and word number, and a physical memory loca-

tion. This might be done directly, but a more flexible technique - in

that it limits exchange overhead while not penalizing long segments -

calls for dividing the segment into pages, and main memory into blocks.

Thus segmentation may be considered to add a second level of translation

to the blocks and pages method of program relocation.

Because of the presence of this second level, mapping times with

segmentation will normally be higher than those which occur with use of

other relocation methods. Also, because of the greater complexity of

the tables to be searched, initialization times will tend to be higher.

In general, then, segmentation will not be the fastest method of reloca-

tion on a single-transfer basis. Justification for its use is based,

instead, upon its overall efficiency in address space allocation, which

should, in fact, reduce the total relocation requirement.

The general nature of an address/location translation using paged

segments is shown in Figure 10. An example implementation of program

relocation, employing segmentation, is discussed in the next section.
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5. Implementation - A Very Large Time-Sharing Computer.

Why Considered

This section presents and evaluates the method of program relocation

implemented in a particular very large, time-sharing computer. The pur-

pose of doing so is to obtain ideas which may be applicable to the Digital

Control Laboratory system. Although the D.C.L. computer is not "very

large", it should prove worthwhile to consider such a system where the

problems of relocation are fully met. Possibly, some of its solutions

may then be scaled to fit the D.C.L. 's requirements.

The machine chosen for this investigation is the IBM System/360,

Model 67. The reasons for selecting this particular computer are the

following:

a) It is further developed than the only other computer of

like size and purpose, the GE 645;

b) the pre-eminence of IBM as a manufacturer of digital com-

puters is based in part upon technical excellence, and the Model 67's

relocation technique may reflect this fact; and

c) a Model 67 is being installed in the central computer

facility of the Naval Postgraduate School, which causes a natural in-

crease in interest in its design.

A note of caution is in order. The first System/360, Model 67 was

delivered in January, 1967. Completion of the operating system for

time-sharing, however, will not occur until 1968. Thus, although the

relocation hardware has been delivered, the systems programming necessary

to employ it in a functioning system has neither been fully developed

As announced in January, 1967. This is a slippage from an earlier
stated date of August, 1967.
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nor, more importantly, user-tested. The discussion which follows must,

12
therefore, be tentative.

Address Translation

A Model 67 equipped for standard, 24-bit addressing offers an address

space, or "virtual memory" in IBM's terms, of 16,777,216 eight -bit bytes.

(All specifications by IBM of addressing or storage capabilities are made

in terms of these bytes.) The four high-order bits of a program-con-

tained, or "logical", address are interpreted as a segment number; the

next eight form the page number, and the final twelve give the line, or

byte. (Figure 11.) Thus address space is divided into

16 segments, each of which contains up to

256 pages of

4,096 bytes each.

It is this 4,096-byte page which is the fundamental quantity moved or

translated during program relocation.

32-bit addressing is available as an option. This provides a vir-

tual memory of over four billion bytes. The logical address is broken

into three sections of twelve, eight, and twelve bits specifying the seg-

ment, page, and line, respectively. Thus there are 4,096 segments

addressable with this option, while the number of pages in each, and the

length of a page are the same as in 24-bit addressing.

It is intended to use strict "demand paging" in the Model 67. That

is, when a program is to begin or to continue executing, only its current

page is necessarily brought into main memory. Further pages not already

12Available technical information on this computer is limited.
The principal reference is System/360 Model 67 Time Sharing System Pre-
liminary Technical Summary (IBM Form C20-1647-0, 1966).
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in main memory will be brought in only when "demanded", i.e. referenced.

This technique will, it is expected, eliminate overhead due to unneces-

sary page movement. Storage for program pages, until they are first

needed, will be on a disc; thereafter, they will be either in core mem-

ory, or as required to free core space, on a "swapping" drum. Any over-

flow from the drum will be held again on the disc. (Figure 12.) All

transfers between these different levels of storage will be completely

transparent to the user.

The entire address/location translation is implemented in hardware

to minimize the time required. There are two special hardware features

which assist the system in maintaining execution speed. These features

are:

a) an associative memory element;

b) storage of the instruction counter in relocated form.

The associative memory element, first mentioned in the preceding

section of this thesis, consists of eight registers. Each time a new

page is referenced by a program, its segment and page values, and current

physical block location are loaded into one of these registers. On sub-

sequent program references to virtual memory, a high-speed parallel

search of the registers is made. If the desired segment and page number

are found, the physical location information is routed to replace that

which otherwise would have been supplied by the segment and page tables.

With eight registers, the relocation of the addresses of a program con-

taining up to 32,768 bytes can be performed entirely in the associative

memory.

The structure of each associative register is shown in Figure 13.

Besides the logical segment and page numbers, and physical block location,
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there are included a "use" bit, a "validity" bit, and four presently un-

used bits. These last provide a very desirable, built-in capability for

system evolution. The validity bit indicates whether the page named in

that register is in core. If zero, the page is not, and any associative

comparison being made is aborted. In effect, this bit appears to offer

the operating system a safety check, particularly valuable just after

program exchange. Upon an exchange, all validity bits are automatically

set to zero; this allows the operating system to load only the associative

register initially needed for the new program, without being concerned

that a program reference to a new page might result, through combinations

still left in other associative registers, in inadvertent access to

another user's program. Each use bit, also set to zero during program

exchange, becomes one the first time its register is used during reloca-

tion. When the eighth use bit is set to one, all of these bits are re-

turned to zero, and the cycle repeats. The operating system should

attempt to find a register with a zero use bit when determining where

to load the page/block information for a newly referenced program page.

Storage of the instruction counter in relocated form adds to pro-

gram execution speed by obviating the need for instruction address

translation until a branch occurs or a page boundary is crossed. The

storage is accomplished in an extra register used solely for this purpose.

How is a complete 24-bit address translation performed? (Figure 14.)

First, relocation must be properly specified in the Program Status Word,

the 64 bits of control information associated with each active program

in the system. Bits four and five of the Word indicate the relocation

mode as follows:
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Bit 4 Bit 5 Mode

No relocation, 24-bit addressing

1 Relocation, 24-bit addressing

1 Invalid combination resulting
in a trap

1 1 Relocation, 32-bit addressing
(invalid combination if 32 -bit
addressing not installed)

Then, when a program references a logical address, a match is first

attempted between bits 0-11 of the logical address (the segment and page

numbers) and bits 0-11 of each associative register having bit 25 (the

validity bit) set to one. If a match is found, bits 12-23 of the asso-

ciative register become bits 0-11 of the actual core storage address.

Bit 24 (the use bit) is set to one if not already at that value.

If, however, there is no match, the segment and page tables stored

in core memory must be used. All additions described in the look-ups on

these tables are permanently wired for speed, reducing the reference time

for each table to one memory cycle. There is first a Table Register,

whose bits 8-31 contain the origin of the segment table for the running

program. To this origin are added bits 0-3 (the segment number) of the

logical address. For this addition, these bits are aligned with bits

26-29 of the segment table origin since the entry being found is four

bytes long. This obtains, held in bits 8-31 of the result, the origin

of the page table for the indicated segment. Added then to this origin

are bits 4-11 (the page) of the logical address, aligned with bits 23-30.

This finds a two-byte entry in the page table consisting of a physical

block location portion (bits 0-11) and control bits (12-15). Bit 12 is

zero if the referenced page is actually in core; if so, bits 0-11 are

used as the same bits of the physical address. If bit 12 is one, the
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operating system may be called in order to set up an input operation to

bring the desired page into core. This last action would presumably

continue independently through an input -output processor while another

program takes over the central processor. The other control bits (13-15)

are reserved for future use. The translation is completed with bits

12-23 of the logical address forming, unchanged, the same bits of the

physical address.

Address translation with 32-bit addressing is different only in that

the segment table for each program may be much longer, containing as many

as 4,096, instead of 16, entries.

Relocation Timing

Enough is known about the Model 67 to quantify the address mapping

portion of program relocation time. When relocation is operative, and

a memory reference occurs, the Model 67' s clock is stopped for 150 nano-

seconds during the associative compare. If a match is found, that time

is the delay imposed by use of address translation. That is, t = 150
EL

nanoseconds. If, however, the segment and page tables must be used, the

clock remains blocked while two accesses to the tables are made and

while the page entry found is loaded into one of the associative regis-

ters. This action takes three memory cycles, or about 2.1 microseconds.

Now, t =2.25 microseconds. Obviously, system performance is greatly

degraded when the segment and page tables are used, even if all pages

referenced are already in core memory. How often will use of these

tables be necessary during execution of a typical program? An IBM

1 o
simulation indicates that a figure of 5% will be realistic. That is,

13
' System/360 Model 67 Time Sharing System Preliminary Technical

Summary (IBM Form C20-1647-0, 1966), p. 56.
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the tables will be required on 5% of the memory references made by an

average program; for the other 95%, a match will be found in the asso-

ciative memory. Certainly this figure will vary with different programs

and in different computing environments. Using it, however, the effect-

ive, or weighted mean, mapping time can be computed to be

t = 0.05(2250) + 0.95(150) = 255 nanoseconds
d

This value is beyond the range specified (20-200 nanoseconds) for single-

level address translation schemes. Further, it is recalled that

t.

mt.
F = — f (4.4)

'm

For the Model 67, tm = 750 nanoseconds. Choosing, as suitable values,

m = 3

**!

F - 255 2

a 3(750) 3
then

a

= 0.0756 or nearly 7.6%

With an F of this magnitude, increases in program execution times

due to address translation overhead will be noticeable. From another

point of view, consider a hypothetical program requiring 100 storage

references, whose run time on the Model 67 in unrelocated mode is 200

microseconds. This might be a typical short scientific calculation,

quite active in memory as it carries out the programmed algorithm. It

is assumed that the program is entirely in core memory. With relocation,

and 5% of the memory references requiring use of the segment and page

tables, the run time will become

200 + 10o|"o.l5 + 0.05(2.1)1 = 225.5 microseconds
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This is an increase, due to address translation alone, of nearly 13%.

Even if the table activity were zero, execution speed would be degraded

in this example by 7.5%.

Program Sectioning

System users must be provided with programming aids which enable

them to take advantage of the program segmentation implemented in the

hardware. They must be able to conveniently section their programs into

logical units. There must also be a means of linking these sections,

including their joining to those, such as common routines, written by

others. In a multiprogrammed computer where it is intended that only one

copy of a re-entrant common process be called by all users, special con-

sideration must be given to this linkage.

Compiler languages generally provide already a means of sectioning

processes. In FORTRAN and in ALGOL, for example, program subdivisions

are formed by use of Subroutine and Block statements, respectively. Many

assemblers provide a similar capability through ORiGin directives and

through machine instructions which branch. Examples of such instructions

include the Return Jump of CDC 1604 CODAP and the SDS 900 Series compu-

ters ,: Mark Place and Branch. The assembly language for the System/360,

Model 67 includes similar features; additionally, the programmer's

general control of sectioning has been expanded, and a means of linking

programs to a re-entrant common process has been provided.

Three assembler directives implement the new sectioning power on

the Model 67. These directives are:

CSECT - Control SECTion

COM - COMmon Control Section

PSECT - Prototype Control SECTion



A "control section" is a block of coding whose virtual memory assignments

can be adjusted, independently of other coding (save for linkages), at

linkage or load time without impairing the operation of the program.

Thus a control section is a logical unit, or in the sense of Section 4

of this thesis, a program segment. The CSECT directive identifies the

beginning of a control section. A tag may be placed in the label field

(to the left on the coding sheet) of a CSECT, thus naming the section.

All statements following a CSECT are assembled as part of that control

section until a new CSECT directive is encountered. The object code for

each CSECT starts on a page boundary, and a page table (without physical

location assignments, of course) is produced as the section is assembled.

The COM directive identifies common coding blocks which may be re-

ferred to by more than one independent assembly when the assemblies and

the common block have been linked and loaded as one overall program.

"Blank" common sections may contain only data placed there during pro-

gram execution. Named common sections, however, may contain instruc-

tions, constants, or data, in any combination.

It is the PSECT directive which provides for the linkage of calling

programs to re-entrant common routines. The chief problem here is the

handling during execution of temporary, or "working", storage required

by the routine for each program which is concurrently using it. In the

Model 67, this matter is resolved by the setting up of an individual

working area for each calling program within that program's own virtual

memory. Re-entrant routines in this computer appear to have different

address space assignments to different programs, although their actual

physical locations remain unchanged. Thus when control is transferred to

such a routine, the calling program must specify an "address constant",
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a quantity which reflects its virtual memory assignments, in order that

the routine may obtain a working area therein for this caller. The

prototype control section is defined for re-entrant process use to handle

these address constants and working storage assignments.

Within a re-entrant routine all working storage and address con-

stant requirements are placed within a prototype control section. This

section forms a special subdivision of the re-entrant process. When the

routine is called, a copy of the contents of the prototype control sec-

tion is made and assigned to virtual memory locations within the calling

program. Thus a working storage area and proper address transfers are

established in and for the calling program. All of this is transparent

to the user; he need not know any of the internal requirements of the

re-entrant routine which he is employing.

Lastly, one or more operands may, quite usefully, be included with

a CSECT, COM, or PSECT directive in order to specify certain attributes

of the control section. These operands include:

PUBLIC - indicates that the control section contains
matter to be accessible to any program

REENTRANT - indicates that the section's coding may be

re-executed from any point after interruption

VARIABLE - denotes that the section's length may vary
during program execution

READONLY - indicates that the section contains instruc-
tions or data which are never modified

Evaluation

Consideration of the extensive relocation hardware incorporated in

the System/360, Model 67 leaves no doubt that its designers are attempt-

ing to make thorough provision for the program movement and addressing

requirements of time-shared, multiprogrammed computations. However,
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without a completed operating system and user tests, it is difficult to

assess the relocation performance of this computer. The importance of

the operating system as it uses, or fails to use, the features of the

hardware to produce an efficient total relocation method cannot be over-

emphasized .

The address space of at least 16 million bytes (four million 32-bit

nominal words) appears sufficiently large to allow the Model 67 to ef-

fectively use segmentation. That is, virtual memory can readily hold

very large programs together with a full library of common routines,

while having a further allowance for variable-size data structures- The

small number, 16, of segments provided in the translation of standard

24-bit addresses suggests, however, that these segments, while useful

in the hardware translation itself, will not serve as the immediate

logical subdivisions of programs. For the latter, groups of pages will

be more appropriate in available number and length, as required during

the assembly of control sections.

The size of the individual program page, 4,096 bytes, is adequate

to hold many shorter routines or data areas. Yet for computing environ-

ments where longer programs are the rule, this short length may lead to

considerable page-turning in and out of core. This is a critical subject,

for how much of page movement overhead may be really submerged by input/

output independent of processing? May not the central processor, in

this complex multi-level store system, have to do a significant amount

of initialization and set-up before turning over the operation to a

channel? If the use of strict demand paging results in excess overhead

time, it will be necessary to make some modification to the page-turning

algorithm. It might be desirable to ensure that core contains several
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pages, rather than just one, of a program about to execute, or even to

limit a user to programs occupying some reasonable subset of total core

and then automatically to bring in his entire program before he executes.

The SDS 940 time-sharing system, for example, does the latter; there,

. . 14
programs are normally limited to 16K of a 64K word maximum core. A

further reason to limit users to a subset of core is to minimize the

length of the segment and page tables that must be handled by the sys-

tem. With enough concurrent users, the core space occupied by these

tables may become significant; if, in such case, some of the tables are

swapped in and out during program exchange, a further addition is made

to system overhead.

A definite liability in the Model 67 is that part of relocation over-

head due to address translation. Extra time is always required, even

when the associative memory alone is used. Some smaller time-sharing

systems with single-level mapping (no segments, only pages) such as, again,

15
the SDS 940, are able to perform address translation with no increase

in execution time.

Finally, from the point of view of the Digital Control Laboratory's

requirements, the major idea obtained from study of the IBM System/360,

Model 67 is a realization of the complexity of segmentation. This con-

cept, whose complexity is apparent in both hardware and supporting sys-

tems programming, is far more difficult to implement than to describe.

14
SDS 940 Computer Reference Manual (SDS Publication 900640A,

August 1966), p. 8.

15 Ibid.
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6. Implementation - Digital Control Laboratory.

The Computing Environment

The D,igital Control Laboratory, a facility of the Department of

Electrical Engineering, serves as a tool of research and instruction

for faculty and students of the Naval Postgraduate School. Many pro-

jects, most of which are associated with coursework or theses, are

accomplished here during the academic terms. For example, all students

in the beginning course in digital computers offered by the Department

of Electrical Engineering currently perform at least one-half their

laboratory work in the D.C.L. While there are some extensive projects,

most are quite small, being measured, in terms of digital computer pro-

gram lengths, in tens and hundreds of instructions.

A particular competence has been developed in the use of cathode-

ray tube displays and in hybrid computation. In fact, the Laboratory

presently contains the only display and hybrid equipment available at

the Naval Postgraduate School. Much advanced course and thesis work

has been performed with the aid of this equipment, in applications such

as tactical warfare simulation and sampled-data control systems. Con-

sidering the value of this work to the Department of the Navy, its

continuance is important and even necessary. Participating officer stu-

dents gain experience which may be invaluable to them in future assign-

ments.

The new computer system which is currently being obtained for the

D.C.L. will significantly expand and enhance its capabilities. The

principal item ordered is a Scientific Data Systems Model 9 30 digital

computer, which is a 1 . 75-microsecond memory cycle, 24-bit word machine.

Two keyboard cathode-ray tube displays, each capable of operation in
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character, vector, and point modes, are also included. These displays

do not contain any internal memory; because of this, all information

being presented on them will have to be stored in the memory of the SDS

930. There will be a new analog computer and the necessary analog-

digital converters for connection to the digital computer. For the first

time in the D.C.L., a nearly full range of standard digital computer

peripheral equipments will be available; these are a card reader, line

printer, paper tape reader and punch, and two magnetic tapes.

Development of a limited, internal time-sharing system is envi-

sioned as the best means to make full use of all this equipment. The

concurrent operations thus provided should reduce problem-solution time

and, it is hoped, allow a closer interface between user and machine.

Because of their greater potential in these respects, the two displays

will receive preference over the standard peripherals in service re-

ceived from the SDS 930. Small-scale batch-processing using the card

reader, line printer, and paper tape system in the background is planned,

however. In fact, two priorities are envisioned for this background

computing. The higher would be assigned to normal, short programs; the

other would be for the infrequent long program. It is hoped to later

include hybrid computation within the capabilities of the time-sharing

system. When this is done, however, the highest scheduling priority in

the SDS 930 will probably have to be accorded to its hybrid program,

because of the latter' s relatively rigid requirements for execution at

fixed time intervals.

The overall goal of the time-sharing system proposed for the Digital

Control Laboratory may be stated as follows: improvement in service to

all, but with preference to display and hybrid computing.
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Pertinent Features of the D.C.L. Digital Computer

The SDS 930 computer being delivered to the Digital Control Labora-

tory 16 has many features which will influence the choice of relocation

method to be used in the proposed time-sharing system. In general, this

computer may be characterized as a later second-generation machine, not

designed for multiprogramming or time-sharing.

There will be 16,384 words of core memory. This amount at first

seems most adequate, considering the probable small size of most user

programs. However, in the time-sharing system, all of this memory will

not be available for user programs. Space must be reserved for the resi-

dent portion of the operating system and for a buffer for each of the

displays. The relocation method used will probably affect the size of

the operating system, including the core resident.

Secondary storage is provided as a 131,072-word rotating disc.

This disc is unusual in that a read/write head is included for each

track, thus eliminating head positioning time when access is made. At

1710 revolutions per minute, the average rotational latency time is 17.3

milliseconds, while the actual transfer rate is 117,000 words per second.

This last is the figure when more than one disc sector (a sector holds

64 words) is accessed during a transmission; it is somewhat lower than

the single-sector rate because of intersector gaps. At this speed, the

entire 16K core memory can be copied onto the disc in 0.175 seconds,

which includes the maximum latency time of 35 milliseconds. On this disc

the sector address is automatically incremented during a multiple-sector

16Requisition N62271-67-C-0013, 13 October 1966, from Supply &
Fiscal Officer, Naval Postgraduate School, to Navy Purchasing Office,
Washington, D.C.

17 SDS 940 Computer Reference Manual, pp. 75-78.
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transfer. Manually-controlled prevention of writing operations is pro-

vided for each of the four 32,768-word blocks; this feature will prove

useful in preserving permanent files, such as disc-resident portions of

the operating system, against inadvertent destruction.

The two displays and the analog equipment will be connected to the

SDS 930 through separate, direct accesses to core memory. Except for

initialization, these devices may operate independently of the central

processor, under the following condition. Core memory is divided into

two 8K blocks; when a display or analog input/output transfer involves

the block other than the one which the central processor is currently

accessing, the two actions are independent, and the processor is not held

up at all. However, when the transfer operation and processor simultane-

ously use the same memory bank, the transfer will take precedence, and

the processor will be delayed one memory cycle time. 8 This fact suggests

that due to display refresh requirements, as far as possible user pro-

grams and the display buffers should occupy different memory banks.

In constrast , all the other peripheral devices, including the disc,

will be joined to the digital computer through what is termed a time-

multiplexed communication channel. This channel shares use of an inter-

nal register with the central processor, and input/output operations on

it always involve cycle-stealing. This is not to say that input/output

cannot take place concurrently with computing, for it can, but computing

time will increase by the number of memory cycles used for the input/out-

put operation, at a rate of two cycles per word transferred.

18SDS 930 Computer Reference Manual (SDS Publication 900064D,
February, 1966), p. 28.

19SDS 930 Computer Reference Manual, p. 25 and p. 28.
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The SDS 930 possesses no hardware aids to the address translation

part of program relocation. In particular, the fourteen-bit address

field of instruction words provides an address space or virtual memory

exactly equivalent to the physically- implemented 16K of core. There is

no provision for translation on a segment, page, or program basis.

Finally, there will be no core memory protection feature. Such feature

is a very desirable corollary to any address translation method. An

SDS option which provides write lock-out protection in 512-word blocks

20
of core is available, but it was not ordered.

The software or systems programming to be furnished with the D.C.L.

SDS 930 is, with one exception, designed solely for non-mult iprogrammed

,

non-interactive batch-processing. It includes MONARCH, a magnetic tape-

21 22
oriented operating system. ' A disc-resident version of MONARCH is

now in preparation. There is a second operating system, Real-Time

23
MONITOR, now being written. It too is disc-resident.

MONARCH provides batched assemblies, compilations, and executions

in any combination for any number of programs. Its language processors

are SYMBOL, META-SYMBOL, FORTRAN II, and Real-Time FORTRAN II.
24 Input/

output devices which it will handle are card reader and punch, line

20 Ibid.
, p. 4.

21SDS MONARCH Reference Manual, 900 Series/9 300 Computers (SDS

Publication 900566B, August 1965).

22
SDS MONARCH Technical Manual, 900 Series/9 300 Computers (SDS

Publication 900616B, October 1965).

23SDS Real-Time MONITOR Reference Manual (SDS Publication 901108A,

February 1966).

Oil

ALGOL is available upon request.
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printer, magnetic tape, paper tape reader and punch, typewriter, and (for

the disc version only) disc- MONARCH also includes the library of SDS

25
programmed operators.

Real-Time MONITOR is intended to add a generalized interrupt-handling

feature, not interactive time-sharing, to a standard batch-processing

executive. Its processors include FORTRAN IV, SYMBOL, and META-SYMBOL.

It will handle the same peripherals as Disc MONARCH and also has the

programmed operator library.

Both operating systems include relocating loaders. These routines

are intended strictly for use in non-mult iprogrammed batch-processing.

They make no provision for program movement or address translation after

execution has once started.

A special display program is the only software item being furnished

which immediately provides a capability for more than batch-processing.

It offers a very basic facility for on-line utilization of the digital

computer from the display consoles. It allows source-language program

creation, including editing, at a display and provides for transmission

of the prepared program to such storage as magnetic tape or disc. When

a program is ready for assembly or compilation, the display may then

function as the system control medium to bring in MONARCH to perform the

desired processing. There is no further interaction with the program

until MONARCH has finished and, if requested, the program has executed.

The MONARCH system and the display program will not reside in core memory

or operate at the same time.

25 SDS 930 Computer Reference Manual, p. A-17.
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The Key Factors

Of all the mentioned features of the Digital Control Laboratory and

its new computing system, the following are considered to be the most

important in terms of their effect upon the choice of method for program

relocation:

a) most programs will be small, containing hundreds, rather

9 ft

than thousands, of instructions;

b) there will be only two interactive users, at the displays;

c) a disc with a high transfer rate and low latency time is

to be available; and

d) the computer has no hardware or programming aids designed

to facilitate any method of relocation.

These are the key factors to be remembered in the analysis below.

Relocation Analysis

The use of segmentation, of any two-level address translation scheme,

appears to be neither warranted nor feasible in the Digital Control Lab-

oratory. The limited address space of the SDS 930 would, in itself,

prevent the gaining of the advantages of segmentation. In addition, the

complexity of the necessary hardware and programming would be, relatively,

immense. The System/360, Model 67 is good proof of this last point.

Employment of a single-level, blocks and pages method of program re-

location would theoretically allow the most efficient allocation of core

memory. Further, address translation may be accomplished in hardware at

small cost in terms of execution speed. Recalling that

9 ft

This point might be questioned in view of the expanded capabil-
ities of the D.C.L. However, with the System/360, Model 67, the NPGS
Computer Facility has received a sizeable increase in its computing power
and should continue to attract most large programs.
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t

F A = —-— f (4.4)a ntm

it is calculated for the SDS 930, where t is 1.75 microseconds, with

m = 3

50 st s 200 nanoseconds
a

that 0.005SF S0.025

That is, program execution time would be increased, at most, by about

2.5%. A possible paged address translation scheme for the D.C.L. is

shown in Figure 15. It is modelled upon the mapping performed in the

27
SDS 940, which also employs 2,048-word pages. The advantage of using

such a page size in the D.C.L. is that this makes possible the use of

two mapping registers, as in the 940. This similarity would reduce the

original design effort required for the implementation of blocks and

pages in the D.C.L. Otherwide , shorter program pages, perhaps 1,024

words, would probably be advisable in the Laboratory in view of the many

small user programs. Unlike the 940' s, the translation scheme shown does

not provide for a physical core memory of 64K words; instead, provision

is made only for a core of 32K, which seems a reasonable limit to poten-

tial D.C.L. expansion in view of the small number of concurrent users.

The extra bit thus made available is to be used for core memory protec-

tion, which, now with two bits per block, could include four forms. The

SDS 940, which reserves one bit per block for such protection, thus pro-

vides only two forms.

27 SDS 940 Computer Reference Manual, pp. 8-9.
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Use of the blocks and pages method of program relocation in the

D.C.L. would require extra expense, considering the relocation registers

and additional logic needed. Coding would also have to be written to

dynamically allocate the core memory and to update the relocation regis-

ters upon program exchange. Presumably, however, programs written for

these purposes under Department of Defense sponsorship at the University

of California, Berkeley, for its modified SDS 930 would be available, so

the original effort required in this respect at the D.C.L. would be re-

duced. The primary disadvantage of using blocks and pages in the Labora-

tory is still, however, the relative complexity of implementation. It

cannot be denied that the effort required would be considerably more than

that necessary if the relocation register or "no relocation" methods were

chosen. Further, the small number of D.C.L. users, coupled with the fact

that a high-speed disc is available, suggests that the time advantages

gained from paging would be minimal. That is, very fast swap times can

be attained on a program basis, unpaged, as will be shown later in this

sect ion.

Employment of a relocating register would be less complex than

blocks and pages, while still providing potentially for more than one

user program to be in core memory at one time. Programs would have to

be moved as one contiguous block, but this might not be a significant

disadvantage when most are small. Considering again this factor of size,

the swapping out of a user program when interrupted, to provide space for

an incoming process, will not always be required. Recalling (4.13), it

can be seen that this will keep down the program exchange time. Of

course, since t f with the relocating register, there will be some in-

crease in program execution times due to the address mapping time. The
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amount would be small, however, of about the same magnitude range as cal-

culated above for the blocks and pages method.

This relocation method does necessitate the design and construction

of the mapping register and associated logic. The latter involves, in

particular, the screening of instruction codes during execution to

select those for which address translation will be performed. Program-

ming will also be needed to keep track of available space within core

memory and to provide shifting of user programs within core in order to

free space for an incoming process. The relocating register method also

requires the incorporation of memory protection, usually in the form of

two bounds registers which restrict the range of access of the program

being executed. If this method of relocation were to be chosen for the

D.C.L., some assistance in its implementation could probably be obtained

from The RAND Corporation, which employs it on a PDP-6 computer in the

98 99
JOSS time-sharing system. '

The final method to be considered is "no relocation", or the swap-

ping of jobs upon program exchange with no address mapping within core

memory. The program to be executed next is always loaded starting at the

same address. In the simplest application, which is that which is con-

sidered here, the active user program is the only user program in core

memory; this is called complete job swapping.

The disadvantage of this method is the large amount of program move-

ment into and out of core. Except when a program is ended, an "out"

movement is required upon program exchange, and an "in" movement is al-

ways necessary.

98Interview with R.L. Clark, The RAND Corporation, Santa Monica,
California, 9 February 1967.

2 Bryan, G.E. , JOSS: User Scheduling and Resource Allocation (The

RAND Corporation, Memorandum RM-5216-PR, January 1967), pp. 2-4; 17-18;

39-47.
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On the other hand, "no relocation" would certainly be the simplest

method to add to a fundamentally non-time-sharing computer such as the

SDS 930. Its allocation of core memory to one user program at a time

emulates that of the non-mult iprogrammed, batch-processing software being

furnished with the machine. Thus, if it were to be the method chosen,

more of this extensive programming might be usable in the D.C.L. Since".

t is zero, there is no increase in program execution time due to address
c*

mapping. Also, the core memory protection required will be minimal. The

relative simplicity of this method can be counted upon to produce the

smallest size, N, of relocation program.

The time taken for program exchange with "no relocation" may be

tolerable in the Laboratory for two reasons: there are only two inter-

active users, for whom response time is most critical, and there is a

high-speed disc. The latter provides for very fast program swap times,

such as the following:

Operation Time

Swap out and in a IK 0.09 seconds
program

Swap out a IK program; 0.12 "

swap in a 5K program

Swap out and in a 5K 0.16 "

program

All of these times include the maximum latency time for both the "out"

and "in" transfers. In addition, they are calculated for completely

non-overlapped input/output. Thus they are absolute maxima, and yet they

are short in terms of human reaction times.

These times may be directly compared to those required if a reloca-

ting register method were implemented. The comparison will be based upon
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the technique developed in Section 4 of this thesis. The variable is L,

the average program length. It is again assumed that

^R^NR <*•">

and that (T ) MD = ntmL (4.12)em NR m

Thus the following expressions apply:

_2
_ nt L

(T ) = t Lf + 61 m + 2 (4.15)
r RR a nr M

(VNR
= 2I

NR
+ 2nt

mL (4 - 16)

Suitable values are chosen for the D.C.L. 930:

t = 100 nanoseconds
a

f-l

I = 500 microseconds
NR

n = 2

t =1.75 microseconds
m

M = 8000 words (i.e. one-half the SDS 930"s
core memory is available for user programs)

The results are:

<T L = 6.7(10~5 )L + 3 + 8.75(10" 7 )L

(T
r ) NR

= 1 + 7(10~ 3 )L (milliseconds)

These expressions are plotted in Figure 16 for 0"<LS1000 words, i.e.

for the short program lengths expected in the D.C.L. The plot shows that

at these lengths, the relocating register method has little time advantage

over the simpler "no relocation". The maximum advantage of the relocating
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Relocating register

0" tiw200 600 800 1000

L, words

Figure 16. Relocation time in the D.C.L.; use of relocating
register compared to employment of "no relocation"
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register is only 4.05 milliseconds, at L = 1000. In fact, until L = 300,

"no relocation" is actually faster, due to the larger initialization time

associated with the relocating register method.

Finally, "no relocation" in the sense of complete job swapping has

been demonstrated through a number of successful applications to be a

practical method for use under conditions of full-scale time-sharing. It

is the relocation method now employed in the General Electric Company's

commercial time-sharing system, which serves up to 40 concurrent users.

It is also employed at the System Development Corporation, for the 31

30
users of its AN/FSQ-32 system.

Recommendation

Considering the requirements of the Digital Control Laboratory, there

is no need, in program relocation, for more than complete job swapping.

The time taken for swapping would not be excessive, and the relative

simplicity of implementation is most attractive. It is, then, the recom-

mended method. When the programs are to be exchanged, a transfer out of

the entire old user program would occur, and the new user program would

be loaded beginning at one fixed address.

Only if some large programs are found to be a common occurrence in

the new system, may one refinement be found worthwhile. This would be

to swap out, upon program exchange, only so much of the old user program

as is required to free sufficient core space for the new user program.

When the old user is large, and the new user is small, relatively, a

significant amount of time may be saved by thus avoiding the unnecessary

relocation of the entire old user program. At some point, the time saved

30Interview with E. Myer, System Development Corporation, Santa
Monica, California, 14 February 1967
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should become greater than that required to execute the extra coding

needed to keep track of how much of each user is in core at any moment.

For details of a possible implementation of complete job swapping

in the Digital Control Laboratory, see Appendix II of this thesis.
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7. Conclusion.

In order to be able to make a recommendation for the new computing

system in the Digital Control Laboratory, this thesis investigated the

general subject of program relocation in a multiprogramming environment.

Four methods of program relocation were identified and analyzed:

a) "No relocation", now used, for example, on the General

Electric Company's commercial time-sharing system;

b) Relocating register, successfully employed at The RAND

Corporation;

c) Blocks and pages, featured in the SDS 940; and

d) Segmentation, implemented in the IBM System/360, Model 67.

Basic upon the D.C.L.'s specific requirements, a recommendation for use

of "no relocation" was made. Thus the announced aim of the thesis was

achieved.

One general conclusion other than the recommendation was reached

during the writing of this thesis. As research progressed, it became

evident that the technical elegance, in itself, of a relocation technique

is a very poor criterion upon which to base a choice of method for a

particular system, such as the D.C.L. First, the more elegant the method,

the more complex its implementation. Second, the relocation methods

studied all differ in elegance, yet each has found practical application.

The reason for this is that far more important factors than elegance are

found in the environment and features of the target system. What was

learned in the writing of this thesis is that these factors must be iden-

tified, for they, properly, will affect most the choice of relocation

method. Technical elegance is a secondary consideration.
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APPENDIX I

SUMMARY OF MAJOR DEFINITIONS

Batch-processing

Demand paging

Logical address

Mult iprogramming

that operation of a computing system
in which programs are collected into
groups, or batches, and are then pro-
cessed from start to finish without
programmer intervention.

a page-turning algorithm in which pro-
gram pages beyond the current one are

brought from secondary storage into

main memory only when referenced.

a memory address as contained within a

program; when relocation is used, that
which is translated into a current
physical storage location.

that operation of a computer which per-
mits the execution of a number of pro-
grams in such a way that none of the
programs need be completed before
another is started or continued.

Program relocation

Project MAC

Real-time computing

within a computing system, the physical
movement of programs and translation
of program-contained memory addresses
into actual storage locations.

the on-line, multiple-access, time-
sharing computing system of the
Massachusetts Institute of Technology.

program execution to satisfy a particu-
lar operational response time, which
ranges in different applications from
microseconds to minutes.

Re-entrancy a characteristic of a program which can
be executed for more than one user
concurrently; meaning, there is no

internal data storage or address modi-
fication which will affect results if

a second user enters the program be-

fore a first has finished.
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Time-sharing - that operation of a computing system
which permits a number of users to

employ it simultaneously in such a

way that each is or can be completely
unaware of the activity of the others.

Virtual memory - or address space; a term for the maxi-
mum addressing capability of a computer,
not all of which is necessarily imple-
mented in physical storage.
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APPENDIX II

ON RELOCATION

IN THE DIGITAL CONTROL LABORATORY

The purpose of this appendix is to discuss further the implementa-

tion of program relocation on the new computer in the Digital Control

Laboratory. Taken as a point of departure is the recommendation made in

Section 6 that "no relocation", or job swapping, be the method used. Cer-

tain assumptions relative to a time-sharing operating system for the D.C.L,

are described, and a Program Status Table to be used during relocation is

defined. Timing considerations and memory protection requirements are

discussed. Finally, charts showing the possible flow of relocation are

presented

.

A fundamental premise is that the operating system will be designed

initially, within the goal of providing time-sharing between the two

displays and other peripherals, to use as many portions as possible of

Disc MONARCH or Real-Time MONITOR. This assumption was certainly a con-

sideration leading to the decision to recommend "no relocation", and it

seems quite reasonable in view of the limited amount of time which is

available among D.C.L. users for writing a new operating system. It

does, however, place restrictions upon the philosophy of operation. In

particular, it implies that each user program while executing will have

the computer to itself, as far as core memory is concerned, save the

portions reserved for the operating system's resident and for special

functions such as the display buffers. This will provide the closest

emulation to standard, non-mult iprogrammed use of MONARCH/MONITOR. Fur-

ther, programs are to be formed - subroutines linked, and a copy of all

common routines attached - before execution. No attempt is to be made to

84



refer to a single copy of common matter. With these restrictions placed,

it becomes possible to hope to employ the MONARCH/MONITOR language pro-

cessors, such as FORTRAN and META-SYMBOL, and input /output drivers with

relatively few modifications

.

31
The scheduling program (called here, SKED ) is to be the dominant

routine within the new operating system. This is a reasonable assumption

consistent with its responsibility for controlling the flow of jobs

through the computer. It is further assumed that SKED will be the first

system routine entered when execution of one user program is interrupted,

and the last routine employed before control is transferred to the next

user program. Thus SKED will be in a position to oversee the housekeep-

ing and other services performed between user program quanta. Figure 17

is a representation of how processing might flow in the computer. Further,

SKED must be responsible for storing the old user's machine conditions -

in the D.C.L. SDS 930, this means the contents of the A,B,X, and P regis-

ters, and the status of the overflow indicator - and for setting the

conditions for the new user. These actions will be the first and last

tasks, respectively, performed during the service period between user

program quanta.

The disc will be used for storage of both temporary and permanent

files. The relocation program, named RELOC, controls the temporary sec-

tion, employed to hold the core images of programs which have been inter-

rupted prior to their completion. The permanent portion contains the

non-resident parts of the operating system, including the language pro-

cessors. If space permits, this portion may also hold certain user

on
Program names used in this appendix are chosen only for their

brevity, consistent with some amount of meaningfulness

.
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time

user

program

service

SKED

accounting,

other
SKED RELOC SKED

T

user

program

service

store old user's
machine conditions

determine
next user

set up machine
conditions for

new user

swap out old user,
load new user

Figure 17. Flow of processing within D.C.L. SDS 930
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programs in an inactive status, such as between working sessions on a

course or thesis project. Figure 18 shows symbolically the organization

of the disc.

To the operating system, each user will be, in fact, a program. Thus

a person using the computer from, say, a display console is known by the

32
name of his program, not by some other means such as his own name or

console number. If he is assembling or compiling before executing, his

program name will first identify his copy of the language processor which

he is using. Later, it will refer to his object program in execution.

There is a need for definition of at least four different user pro-

gram statuses. These might be named NEW, ACTIVE, DEAD, and SAVE. Their

meanings would be as follows:

NEW - indicates a program which has not
yet received its first quantum
for execution

ACTIVE - refers to a program which has
executed at least once, but which
is not finished

DEAD - this program has finished, and its

core image may be discarded

SAVE - this program has also terminated,
but it is desired to store its

core image for future use

The different operating system programs will use these status indicators

to determine which of the possible alternatives open to them will be fol-

lowed as they perform their functions.

Affected by the above will be entries in a Program Status Table

established and used jointly by SKED and RELOC. Each user program will

Or, equivalent ly , by a number assigned to his program by the

system. Using a number might save space in the Program Status Table
(q.v.), but it also implies some name-to-number and number- to- name trans-
lation.



1 - Temporary section

la - temporary files
(core images of interrupted programs)

2 - Permanent section

2a - permanent files

2b - catalog (two parts, as indicated by dotted
line, one for system programs and one for
saved user programs)

Figure 18. Organization of the disc



be included in this table from the time when it is NEW until it becomes

either DEAD or SAVE. Permanent entries will be present for operating

system language processors. The Program Status Table will be a part of

the core resident portion of the operating system. A complete entry for

a program will contain the following items:

a) program name

b) size of core image

33
c) first word address when loaded

d) current location, i.e.

disc, temporary or permanent section
magnetic tape no. 1 or no. 2

core memory

e) machine conditions to be set up before next execution
of program.

Item e) will be principally maintained by SKED, while RELOC will use a)

through d) in performing program relocation. A possible format in core

memory for a Program Status Table entry is shown in Figure 19.

The principal disadvantage of job swapping as a relocation method

is the program exchange time involved. With so few users in the D.C.L.

system, the time required here should be tolerable. Nevertheless, it is

certainly desired to minimize the overhead caused by relocation. Most of

this overhead will be due to transfers between disc and core. In turn,

the time taken for these transfers depends upon two factors, the transfer

rate and the rotational latency of the disc. The former is a fixed quan-

tity, and the time required for actual transfer cannot be submerged since

the disc is attached to the cycle-stealing time-multiplexed communication

channel. The effect of the rotational latency, however, can be reduced.

^Normally, the FWA will be fixed, and thus could be eliminated,
for all user programs. However, it may vary for the language processors
and is therefore included.
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entry

+1

current location
of program

core, disc (temp,

or perm.) , mag.

tape #1 or #2

+ 2

overflow -

indicator

+ 3

+4

+5

+ 6

+7

(preceding entry)

M

(A)

(B)

(X)

10

(P)

(following entry)

\

10 23

core size

10 23

FWA

23

Program name

Machine
conditions

Shaded areas show bits reserved for table expansion/evolution

Figure 19. Format of Program Status Table entry
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This is possible because as the disc rotates, the current sector address

can be read into the computer at any time. Thus RELOC may set up a

transfer but not initiate it until the proper sector is under the read/

write heads, provided that other useful functions are available to be per-

formed in the meantime. Or, RELOC may alter the order of transfer of the

words within the block being moved to take advantage of the current sec-

tor location. This means, perhaps, that a transfer may be initiated with

35
the middle of the block, rather than its beginning. The added coding

complexity should be worth it in either case, considering that the average

rotational latency of 17.5 milliseconds is as long as the actual transfer

time for a program of 2,048 words. An attempt has been made in the relo-

cation routines presented in this appendix to follow the set-up of a

transfer operation with another function which might be accomplished while

waiting for the disc to rotate to the proper sector. However, since

latency times are measured in milliseconds, the provision of enough func-

tions to submerge a major part of the expected time in this way would

certainly involve use of other operating system programs not discussed

within this thesis. It is difficult to say more about timing until de-

tails are known for the disc input/output handler to be furnished with

Disc MONARCH and Real-Time MONITOR. This routine, it is assumed, will be

investigated for possible use in the D.C.L. operating system, and any em-

ployment of it may well affect time considerations.

A modest form of core memory protection would be very desirable,

even in the D.C.L. system where only one user program is to be in core

3Z+
SDS 940 Computer Reference Manual, p. 77.

JJ Ibid. An example of the use of this technique is given. As 547
microseconds are required for one sector to move by the read/write heads,
there is considerable time available for block manipulation.
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at any one moment. This is so that user programs do not inadvertently

destroy parts of the operating system resident, thus preventing continu-

ous operation of the time-sharing system. The experience of the System

Development Corporation in this respect is informative; with no memory

protection, the AN/FSQ-32 time-sharing system never ran for longer than

ten minutes before a user destroyed a portion of the resident executive.

Bounds registers are now installed, limiting the range of access of each

user program. One way to provide protection of specified areas of

core memory in the D.C.L. system would be to purchase the SDS 930 memory

write lock-out feature. This option allows program- or manually-controlled

prevention of writing into any or all 512-word blocks in core; when an

attempted violation occurs, a "no operation" and trap to a fixed location

37
result. Addition of this feature would, of course, involve extra ex-

pense. It would also be possible to design an implementation of memory

protection at the Naval Postgraduate School. One method would involve

a single bounds register. This method would be feasible if all that is

to be protected - the operating system resident and any other reserved

areas - is located either above or below, in core memory, the user program

area. The bounds register, functioning for specified operation codes when

user programs are executing, would cause a trap whenever the instruction

address specified a location within the protected area. Figure 20 shows

an allocation of core memory in which the resident and its tables, forming

the protected area, are placed at the uppermost addresses. This method

of protection is quite restricted in flexibility, but its relative simpli-

city is in keeping with the goals of the D.C.L. system.

36 Interview with E. Myer, System Development Corporation, Santa

Monica, California, 14 February 1967.

37 SDS 930 Computer Reference Manual, p. 4.
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16383

8191

(approx.) 200

Operating System Resident
(including tables)

Display #1 Buffer

Display #2 Buffer

Hybrid program (later)

General

User

Program

Area

System/Channel Interrupts

protected for
specified
operation codes

Figure 20. Possible allocation of core memory in D.C.L. SDS 930
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The routines suggested for RELOC are charted in Figures 21 through

25. They implement job swapping in keeping with the thesis recommendation

and with the assumptions made in this appendix. The overall relocation

process is shown in Figure 21, including the entering arguments from SKED.

The remaining figures depict the two major routines, DUMP, which swaps

out the old user program, and UNDUMP, which brings in the new one.

RELOC routines frequently reference the Program Status Table. In

this connection, there is one particular problem which must be solved.

This problem is how to make the required change to a user program PST

entry after an assembly or compilation, before execution of the object

code produced. While a user is employing a language processor, the PST

entry refers to his copy of that processor; when the assembly or compila-

tion is complete, however, he is finished with the processor, and his PST

entry must be changed to reflect the object program. How and when this

is to be accomplished is a system problem which must be resolved. One

solution would be to add at the end of each assembler and compiler a short

routine which will investigate its binary output medium, on which is the

object program. The program's length, and starting and transfer addresses

could be located there, and with these known, the required PST entry could

be created.

One final matter to be determined at the system level is design of

the loading programs. Each of the operating systems being furnished with

the D.C.L. SDS 930 already includes one or more of these. Tape MONARCH,

for example, incorporates two loaders. One loads binary object programs,

including the output of the SYMBOL and META-SYMBOL assemblers; the other

handles previously compiled FORTRAN programs. Both are designed to accept
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( Entry
J
RELOC

DUMP

Swap Out
Old User

UNDUMP
Load

New User

[ Exit
J

to SKED

Arguments to RELOC from SKED:

Old User status

New User name

Old User's SAVE location )

) "0" if not applicable
New User's system program)

(when NEW)

Figure 21. D.C.L. relocation overall
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Find Old User

PST entry

Erase
PST entry

Change
length of

PST

DUMP

Find Old User
size, FWA
in PST

N (must be ACTIVE) I mag. tape

Store core/

image onj

disc
(temp)

Prepare
program name

label

Update
disc (temp)

catalog

Store core
image w/
name on

tape

Update
PST with

new location

Erase
PST entry

< Exit >
Change

length of

PST

Figure 22. Swap out of old user
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.Store Core
image on

disc
(perm).

Update
disc (perm)

catalog

Erase
PST entry

Change
length of

PST

CEZ)

Set
(Trouble
Flag) Q

(No Old

User PST
entry)

'

c
Exit

)

Disc
(perm)
fuiil

Figure 23. Swap out of old user (continued)
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( Entry ) UNDUMP

Find New Usei

entry in PST

(must be NEW

Find size,

FWA in PST

Find New Usei

in disc (temp

catalog

Update
PST with

new location

f Exit \«_

^e.g. language
processor)

Find
system prograr.

PST entry

mag. tape

disc

Find program
in disc (perm)

catalog

Search tape
for program

k
Load prograc

into core
for

L
New Usei

Create
PST entry

for New User

Figure 24. Loading of new user
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(must be
binary prog.)

Determine
size, FWA,

trans. addr. (P'

Create
PST entry

for New User

CEEj
(P) - Contents of P register

Figure 25. Loading of new user (continued)
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38 "39

files written in the relocatable standard binary language of SDS. '

References to programmed operator and FORTRAN library routines are satis-

fied by attachment of copies at load time. The Disc MONARCH/Real-Time

MONITOR loaders, when written, will doubtless have similar features. In

the D.C.L., all the features mentioned will be necessary, especially for

the initial loading of a program previously compiled or assembled by one

of the standard language processors. After that, there are no further

external references to be handled, and in the proposed system, no re-

quirement for relocatability within core memory. A simple, absolute

loader will handle the movement of core images in and out of main memory

during program exchange subsequent to the first one. It will probably

not be feasible to hold permanently resident in core memory a powerful

relocating loader, because of its size; the binary object program loader

40
of Tape MONARCH, for example, occupies about 1480-j^q words. Thus the

D.C.L. system should anticipate the use of a short, resident, absolute

loading program whenever possible, calling upon a non-resident relocating

loader only when its special features are required.

There are many problems to be solved before the Digital Control Lab-

oratory will have a functioning time-shared computing system. If, however,

job swapping is chosen as the method of program relocation, it is believed

that a reasonable start has been provided for its implementation in this

system.

38SDS MONARCH Reference Manual, 900 Series/9 300 Computers, p. 59.

39 SDS SYMBOL and META-SYMBOL Reference Manual (SDS Publication
900506E, October, 1966), p. 66.

40 SDS MONARCH Technical Manual, 900 Series/9300 Computers, p. 38,

100



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 20
Cameron Station
Alexandria, Virginia 22314

2. Library 2

Naval Postgraduate School
Monterey, California 93940

3. Commandant of the Marine Corps (Code A0 3C) 1

Headquarters, U.S. Marine Corps
Washington, D.C. 22214

4. Commandant of the Marine Corps £Code AP) 1

Headquarters, U.S. Marine Corps
Washington, D.C. 22214

5. Professor Mitchell L. Cotton 3

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

6. Captain James J. Stewart, USMC 1

1209 Durham Road
Madison, Connecticut 6443

101





UNCLASSIFIED

Securitv Classification

DOCUMENT CONTROL DATA - R&D
(jnctirlty claeei llcatlon ol till* ho Iv ol abatract and Indexing annotation mull be antarad when the overall report la elaaelllad)

TING ACTIVITY (Corporato author)

Naval I'ostgradua; School

Monterey, California 9 3940

2« REPORT IICUHITY CLARIFICATION

UNCLASSIFIED
2b C

3 REPORT TITLE

PROGRAM RELOCATION IN A MULTIPROGRAMMING ENVIRONMENT

4 DESCRIPTIVE NOTES (Type ol report and Inclualv* datae)

Thesis, M.S., June 1967

S AUTh -)R(S) (Laat nam: tint name. Initial)

STEWART, Jamos J.

S HEPO RT DATE
June 19 67

8a COntraC
I OR GRANT NO

t. "in iter mo

7a- TOTAL NO. OF A8II
102

7b. NO. OF RIFI

20

• a. ORIGINATOR'! REPORT NUMB«RfS,l

• b. OTHKR REPORT NOfSJ (A tny other number* that may be aaalaned
thla report)

10 AVAIL ABILITY/LIMITATION NOTICES

11 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13 ABSTRACT

Various methods are studied for the relocation, or movement,
including address mapping, of programs within a mul t iprogrammed
digital computer. The aim of doing so is to determine the best
method for use in the limited time-shared computing system proposed
Lor development in the Digital Control Laboratory of the Naval Post-
graduate School. In this light, the concepts of time-sharing and
multiprogramming are discussed, as is the implemantation of relocation
in a very large computer obtained for the School's main computer
facility. The features and requirements of the D.C.L. are then
established and evaluated. It is found for the Laboratory that
complete job swapping will be a fully satisfactory method of reloca-
tion. The time taken will not be excessive, and this method will be
the easiest to incorporate in the time-sharing system. Details of a

possible implementation are given in an appendix to the thesis.

DD ,!!!., 1473 UNCLASSIFIED
10 3 Security Classification



UNCLASSIFIED
Security Classification

key wo R OS
ROLE WT

Computers, digital
Time-sharing
Mult iprogr amming
Program relocation
Addressing methods

t i

DD ,

F°"»"..1473 <b»<:k,

8/N 0101-807-6821
UNCLASSIFIED

104
Security Classification














