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ABSTRACT

There are many factors, such as aircraft configuration

and weight, winds aloft, airspeeds flown, altitude, distance,

etc., which affect fuel consumption in turbojet aircraft e

For any given combination of these factors a flight path can

be determined that will result in the least fuel consumed for

a ground distance covered, Under divert conditions from air-

craft carriers at sea to fields ashore the choice of the

optimal flight path is critical The many possible combi-

nations of factors lead to the adoption of computer flight

planning,, Pilots can avail themselves of computer solutions

during flight planning and briefing sessions, and after

take-off can receive further information via UHF radio c

Typical flight handbooks display fuel flow data, etc. in

such a manner that the pilot must "guesstimate" entry

parameters such as average horizontal weight, or weight prior

to descent Several iterative procedures are developed that

provide exact solutions to these important figures e Thus

the computer flight planning system will provide more

accurate solutions, and free the pilot from this chore so

that he may better spend his time briefing tactics

.
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CHAPTER I

PURPOSE OF THE STUDY

Naval Aviation has been described as hours and hours

of boredom interrupted by moments of sheer terror., The

simple word " BINGO " provides for some of these anxious

moments. Bingo is well known to everyone as a friendly

game of chance, but the word carries a special meaning to a

U,S C Navy carrier pilot « It causes concern both ashore and

at sea, and especially in the cockpit of at least one air-

plane that is flying circles around some aircraft carrier

somewhere at sea u

"Fortress 501, this is Atlas tower . Bingo 10Q°/125

miles e Change to departure control, 31606, for radar

vector 9
"

"Atlas tower, this is Fortress 501 • Roger, switching

3l6„6 B
"

This conversation might have occurred west of San

Clemente Island off the coast of Southern California,, To

the pilot of Fortress 501 the message is unmistakable , He

is to turn to 100° magnetic and land at the field 125 miles

away, rather than attempt to land aboard Atlas, U S S

INTREPID, CVA-llo

In most cases an aircraft will receive a BINGO because

of a flight deck accident, or because the pilot is having

difficulty landing aboard the carrier due to bad weather



and/or a badly pitching flight deck. The high fuel con-

sumption of jet aircraft at low altitudes precludes having

the pilot hold until the deck is clear, or in the latter

case attempting more landings aboard

When the pilot of Fortress 501 switches to Jl6 6 f

he will receive a radar vector to the nearest suitable

landing field, the weather at the field, and the approach

control and tower frequencies But he will have to deter-

mine his own flight profile; that is, how high to climb,

what airspeeds to fly, and at what distance from his

destination to commence an idle descent. Since the air-

craft is usually low on fuel when the pilot commences the

BINGO,, the pilot attempts to fly tne flight profile that

minimizes fuel burnedo There are no other constraints on

the pilots, for he is only interested in running out of

ocean before he runs out of fuel G

The factors that affect fuel consumption in a jet

aircraft are altitude, aircraft weight, and of course, the

air distance travelled., Jet aircraft burn enormous amounts

of fuel at low altitudes and during the climb to higher

altitudeso During an idle descent from altitude the fuel

flow is only one-sixth that of the climb portion* A

heavier aircraft burns more than a lighter one, and a head-

wind increases air distance and thus increases fuel burned c

With these factors in mind, the pilot must decide what com-

bination of climb, cruise, and descent flight paths will

take him to his destination with the least fuel consumed^
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A wrong choice could result in the loss of an aircraft and

perhaps a pilot. A lesser error might result in a safe

landing, but several hundred pounds of jet fuel will have

been wasted This latter error might also result in some

premature gray hairs on an intrepid naval aviator e

Since a determination had to be made at what fuel

weight to BINGO the pilot, the knowledge that all pilots

would fly an optimal (minimum fuel) flight path would allow

the BINGO to be delayed for perhaps one more pass at the

flight deck Also, any "gravy" could be reduced from the

bingo weight* This lower weight would increase operational

readiness by keeping all aircraft aboard the carrier where

they belong, and where all commanders want them. If an

aircraft is sent to the beach, the carrier must remain in

the area to send messages concerning ship's position and

overhead times so that the stray bird can come home to

roost. Since carrier skippers like to hide their ships

out at sea, there are obvious tactical advantages in

keeping all aircraft aboardo

An ideal way to ensure that all pilots fly an optimal

flight path for all distances , aircraft weight, and wind

conditions would be by computer flight planningo Thus when

Portress 501 contacted departure control on 316.6 he might

hear,

"Roger, Portress 501 „ Climb at 285 knots to 19*000

feet. Cruise at 260 knots indicated. Commence idle descent



when kk miles from destination fix u " Departure control could

then follow with the standard weather and radio aids infer-

mation c

This thesis considers only the short BINGO problem in

its development of a computer flight planning program,, This

applies to a small, but important segment of aviation^ The

obvious extension is to use this type of flight planning for

all long distance cross-country flights The only modifi-

cation necessary is to incorporate several horizontal legs

at altitude sandwiched between a climb and a descent leg,

rather than just one as does the BINGO program,, The cross-

country program would also require a change of optimal

flight altitude to a higher one when the aircraft weight

decreases enough to warrant a climb in order to remain

optimal*

10



CHAPTER II

REPOiiT OF THE STUDY

The BINGO problem may be stated mathematically as a

classic minimization problem:

min (iaJ - w
)

3
3s.t. h < 40 x 10 , in even thousands

A^ > B where B = aircraft empty weight

.•;,

o
*h

X

Figure 1

Definitions and abbreviations:

W = aircraft weight at start of flight

A - weight at end of climb portion

A. weight at end of horizontal portion

W = weight at destination

11



h - altitude in thousands of feet

X = ground covered in climb portion
c

X. = ground covered in horizontal portion

X = ground covered during idle descent
d

X = total distance to destination

t = time

GAS = calibrated airspeed, velocity of the air over
the pitot tube

TAS = true airspeed, CAS corrected to sea level

1 ,

Ph
TAS = t where d =

d P

P^ = density of the air at altitude h

Pq = density of air at sea level

GSPD = ground speed, aircraft speed relative to the
ground (TAS corrected for wind)

F = fuel burned in pounds

1/f = rate of fuel flow in pounds per nautical mile

DI = drag index for the particular aircraft con-
figuration

A flight profile depicted by figure (1) is used because

of standard operating procedure, and also because the air-

craft instrumentation is such that it is the only profile

that a pilot can fly accurately,, An arcing path such as a

semi-circle or a cycloid is impossible*

In order to fly a flight profile in the form of a

cycloid or a semi-circle a pilot would have to rely on his

VSI (vertical speed indicator) to accurately control his

rate of climb throughout the entire flight This instrument

12



is inaccurate at best since it is a pressure instrument and

fluctuates with slight changes in pressure. The VSI also

tends to lag the true pressure changes . A climb , level

,

descent flight profile can be accurately flown because the

pilot need only control his airspeed and altitude,, Both

these cockpit indications are excellent in all aircraft, and

a pilot gets acquainted with them from his first step into a

cockpit.

The objective function^ '<J

Q
- W-, is the fuel consumed

in travelling the distance Xt , since the only weight loss

will be the fuel burned. The constraint irf_ > B is obvious

If the destination cannot be reached, even by flying an

optimal flight profile , then the aircraft should rendezvous

with a tanker aircraft if one is available, or else continue

landing attempts aboard the carrier . It is not obvious that

^"c
+ \\ — ^"t-

~ ^d
^ s a necessary constraint A possible

flight path could be to continue horizontally until the

destination is reached, and then commence a circling descent-

such that X. = 0. Navy flight tests show that an idle

descent at the proper airspeed for Xd will use less fuel

than any other possible flight path covering the distance

X,. This type of idle descent is standard operating proce-

dure for jet aircraft.

The altitude, h, must necessarily be less than or

equal to the service ceiling of the aircraft being flown 9

For this study h < 4-0,000 ft e , the service ceiling for the

A^C* is used e Even thousands of feet are used, resulting

13



in 40 possible flight profiles Using every 500 feet will

result in 80 possible profiles, and using every 250 feet

will result in lo0 o This study uses even thousands merely

for ease of presentation^, Only a minor change is required

to solve for any desired number of possible profiles

•

The following assumptions were made concerning the

flight path of Figure 1

1, the aircraft makes an instantaneous transition

from the climb to the level flight attitude, and

from the level to the descents

2„ all airspeed changes are instantaneous*

3« the aircraft can remain on track despite any

cross-windo

4 Q wind information is known, and there are no up-

drafts or downdrafts*

performance data such as fuel flow and airspeed were

obtained from NATOPS Plight Manual *- -* for the A4C aircraft.

Although only the a4g is considered here, similar data can

be used for other aircraft in the inventory,, All perform-

ance data was gathered by U S Navy flight tests The

peculiar form of the graphs (Figure 6-13) makes it diffi-

cult to form mathematical functions for such values as

maximum range airspeed,, This precludes formulating the

problem as a standard Lagrange minimization problem

„

The computer program developed is one that calculates

the fuel burned for all altitudes up to 40,000 feet, the

service ceiling of the a4c, and chooses that flight profile

14



that results in the least fuel burned „ The first altitude

tried is level at 1000 feet for the entire distance, X »

The remaining thirty-nine are flown as follows

.

(1) a 100$ power climb to h-thousand feet

(2) level at h-thousand feet at the max-range air-

speedy (that airspeed that gives the most miles

per pound of fuel

)

(3) an idle descent at that airspeed that covers

X„ with the least fuel burned
d

Aircraft performance data is presented as follows e

CLIMB PORTION:

F - F (W , h, DI)

CAS = C (W , h, DI)
u

time = t (W , h, DI)

HORIZONTAL PORTION ;

f = f (lll/k , h , di)

P =^1=W
1
-H

2
(1)

F = F(X
h?

X
2

* , h, DI) (2)

i/J-i + wo
CAS = C(

2
*

. h, DI)

DESCENT PORTION

:

F = P(W
2 , h, DI)

CAS = C(^
2

, DI) (3)

Xd = X(W
2 , h, DI) (4)

time = t(h, DI) (5)

1.5



Future functional notation will omit the drag index, DIo

It will be held constant at DI = 50, the value for an air-

craft with no external stores This is almost always the

case in a BINGO situation.,

The first flight profile tried is level at h = 1000

feet. Since this differs from the others only insofar as

there are no climb or descent portions, a typical climb,

level, descent profile will adequately explain both possi-

bilities o For the climb to any altitude, WQ and h are known,

From Figures 6, 7, and 8, F, CAS, and the time to climb

are easily determined., CAS is converted to TAS, and the

predicted wind information (averaged over h-thousand feet)

converts TAS to GSPDo W~ - F = W. , and GSPD x time = X •
1' c

Each 5000 feet the CAS is changed to the optimal climb

speed for the next 5000 foot portion If h > 5 the climb

portion of the flight results in ([h/5] + 1) iterations

At the start of the horizontal portion, W_ , h, and

(X - X ) are known c Figures 9 and 10 however, require the
u C

average weight during the horizontal leg, (W +W )/2, as
1 2

an entry parameter,, Recall that the fuel burned during

the horizontal leg is an implicit function of tf and W e

1 2

From equation 2,

F = F(X . -±-r-^ , h)
h 2

The procedure for using the graph in Figure 10 is to

enter with the average weight, proceed horizontally to the

16



altitude h, read vertically downward to the DI = 50 line

and horizontally to the left to read f , the fuel flow.

Three different methods were tried to solve the im-

plicit function for the average weight e

METHOD I

Approximate the altitude lines in Figure 10 with

straight lines as shown in Figure 2.

DI= 50

Figure 2

1?



From geometry we obtain;

t. t
tan =

(W, - 10,000) W-, +W?

t = (tf. - ) . tan
v

i 2

Knowing t, we solve for fuel flow, f, using

f - f + t • tan a
o

f = f =i- (w. - -= =) tan G tan a

Since F = h = $-, - W from equation 1
f 12

1 2

inhere A. is defined in Figure 2 C

i

Solving this quadratic for A will allow a good approximation

to the average weight, (
± c

)» This approximation is

believed to be quite accurate, since the altitude lines are

fairly straight „ An exact approach is given in method two c

METHOD II :

Allowing for tne fact that the altitude lines are non-

linear, a more precise but lengthy method for solving for

the average weight is the method of successive approximations.

Referring again to the graph of Figure 10 , we see that the

average weight is a number such that, if it is used to enter

18



the table, it produces a fuel used, F, such that iaI - f= tf
p o

ihen ti
?

is combined with A to get the average (-_± _), this

average will exactly equal the average we used to enter the

table. Because of the construction of the table, the true

average is the only entry number that will give the average

back again.

The first approximation to the average is J c The
1

aircraft continuously loses weight, thus we know that this

approximation is too high. Entering the table with it yields

4 + (d
n

- Fn ) ,

an F., 8 This yields an average _±—

—

±—_A_ 4 d « Decrease
1 2 1

\s\ by some \ > o Entering the table with it - k gives F .

Form another average

:

2
\- X

Continue in this manner until

tf
l
+ <Wl- g

rHl> u x- W_ - nX
2 1

This method is easily suited for computations on a digital

computer, but it proved too lengthy,, The greater the accur-

acy desired, the smaller h must be 4 But a small a. requires

a large number of iterations This method was abandoned

for the third and final method*

METHOD III;
vV, + Wp

Recall from Figure 10, ?= ?(-±—_£ , h). The graph
2

shows that the fuel burned is directly proportional to the

19



aircraft weight „ As a first approximation to the true

average weight, use tf «, This is too large , therefore it

results in a fuel burned , F, , that is too large.

AV
1

=
*l

P - P(AVlf h)

From equation 6

F =
f + (W\ - AV„ ) tan 9 tan aoil

Let

X, = D a constant
h

f + tf tan 9 tan a = B a constant
o i

tan 6 tan a = C a constant

The first approximation to the fuel used on the horizontal

leg is:

F
i - irhr

x

• where h = AV
i

(7)

Since F_ is too large, as a next approximation to tne average

weight decrease AV by §F e Thus in equation 7, multiply by
1 1

*• §, and add W to both sides tfe get
1

2 11 2(B+ CX-
l

) 1



AV - X = —L— + rf

2 2 B + CX-l 1

(where A = - «)

Entering Figure 10 with X yields

D

B + CX
2

and

A
AV_ = X_ = * tf

3 3 B + CX„ 1

This iterative process yields a sequence S x/l

X = A
1 1

A
X = — — + rf

2 B + CX-l 1

/ = . A + j
3 B + CX„ 1

n B + CX . 1
n - 1

where

A - -150

B - o3^

.
,

-6
C = -6A x 10

i^
1
= lo5 x l(T

21



Solving for the first few points yields a nest of closed

intervals as shown in Figure 3°

+- H

x
2

x
4

x
6

x
5

x
3

x
l

Figure 3

At this point it can be seen why ( .i/, - §F^ ) was used
J- 1

as the second approximation to the average weight Since

we know that X, is well above the average , it is desired to
l

decrease it by a quantity large enough to drive the second

approximation below the average*, A number like *8 or e 9

could have been used to multiply F , but the use of § is

sufficient and causes the sequence to converge faster than

numbers like 8 or „9«

The manner in which the successive points alternate

led to applying the theory of continued fractions in an

attempt to show that the sequence { XJt converges. Hall and

Knight 1- J show that each successive convergent of a con-

tinued fraction is alternately less than and greater than

the true value of the continued fraction c

Rewriting equation 8 yields

X = W. +
n B + CX

n - 1

22



Back-substituting for X , by X ; for x o by X ~;n — x n = c. zi =* c, li <* j

etc yields:

xn - W, +
1 / ft.

B + G ( ./, + — —
- - - AB + C ( *[, +

1 B -I- C ( rf +

9 +
B+ CX

o

The form of the classic continued fraction is obvious

Factoring out the A in the numerator, and multiplying in

each convergent by C yields:

X* = Lim Xn
= A + A

n-^°° x
/n j. nu \ , GA(B+ C^) +

(B+ G^ ) + CA

(B+C^) +

Dividing numerator and denominator of each successive

fraction by (CA)

X* = Wn + A
1

(B+ Ctf ) +
1 /B+C'^,

(B+CW
n
)+ X

,

1 /B + Ci/^

CA

In the continued fraction in the brackets, let

a - B + CM >0
1

B + C i/J-i

b = -i >
CA

23



Then

9*=—i_ (9

a + ___1

b +
+ —Jl
b +

As we let n->-°°, replace the 3 » ^ $ etc c convergents by

a + ^

b + e"

b + 0'

Solving the resulting quadratic yields

9* = -abA (a2b
2
4-^fab)^

2a

Thus we have that

V
2a

The minus sign is selected because X* < d.
x

This third method gives the average weight for any

given value of tf , X , and h Q For most values ? the sequent

converges in 6 to 8 iterations, whereas the second method

required mos - 50,

24



It is interesting to note that in the continued frac-

tion, equation 9> for real but unequal odd and even con-

vergents, Van Vleck's theorem can be applied,, For a or b

imaginary, Stieltjes theorem applies „ proofs of these

L3]theorems are given in /Jail
1- Having solved the implicit

^1 + :i2
function for =

» Figure 9 yields CASo It is converted

to TAS, and the wind at altitude h changes TAS to GAPD

time = Xh / GSPD

air distance = X = time x TAS
SI

*L
+ A

2
Figure 10 gives F as a function of X and 5-

Since optimal CAS is a function of the aircraft weight,

as the weight decreases during the horizontal leg the CAS

should be changed to remain optimal. In this program, when

the aircraft weight decreases by 500 pounds, CAS is recom-

puted. This results in breaking up X, into segments of

length X = 500 x f. This results in ([Xh/X, ] + 1) iter-

ations of the horizontal leg computations

.

At this point it should be noted that in order to

solve for the fuel burned in the horizontal leg by either

of the three methods, we require X,. At the start of the

leg we know only X. and X . Since X, = X. - (X + X ) the
u c n X/ c cL

value of X n must be determined prior to the start of
d

the horizontal leg u From equation 4 recall that

X, = X (\ti , h). The problem resolves to this: in order

to solve for tf2 , we need X. * But we need W before we can

25



solve for X * Another method of successive approximations
&

is developed that results in a recurrent sequence that is

shown to converge e Once it is shown that we can find X,

(and consequently Xh ) at the start of the horizontal leg,

then all previous procedures are justifiedo

The air distance covered during the descent is

X = X (h 8 DI 9 wind) From equation 3, CAS = C (WoS DI) a

ad *-

From equation 5» t = t ( h» DI)o

From Figure 11

CAS

190

12*000
"2

20,000

Figure k

CAS = 190 + tan (tf - 12000)

Let (190 - 12000 tan 3) = a

irean ^ - b

CAS = a + bW,

26



and

TAS = -i- CAS = k • CAS where k = -i-
d o o d

time in descent = t - = —— = _
d TAS GSPD

X, = t, x GSPD
d d

GSPD = TAS ± wind = k x TAS
1

where k is a constant to correct TAS for wind*

GSPD = k. (k x CAS)
1 o

G3PD = k (k [a + brf ])1 o L 2

Since

Let

X, = t x GSPD
d d

X = t (ak k + bk k W )

d u 1 o 1 o 2

ak.. k t = a
1 o d

bk, k t , = a
1 o d

X «= a + fid (10)
d d

Begin the iterative process by letting (W ) = W . This
2 1

large value will yield an X that is too large Since

X - X - (X + X,), the resulting X will be too small*
h t c d h

Fuel burned on the horizontal leg is directly proportional

to the distance, therefore F will be smaller than the true
h



value (VI ) = wL - P, . This value is still too large, bu
2 1 1 h

is closer to the true value of ^ than was the first approxl
2 i

mat ion, i/J „

1

From equation 6 we have

Xh
tf - W =

f + W tan 9 tan a - tan 9 tan a . / ^1 + A
2

\o i 2

Let

f + tf tan 9 tana = b
i

and

tan 9 tan a

c
C

xh

i+c (w
2
+ w

2 )

B aL - BW + C (W - OU_ + - X,
1 2 12 12 h

Solving the quadratic for W_ yields

rf,

2 i

. -B ± (B
2

- 4G C-Cv^ - B^ + Xh] )
*

2 '

2C

But from equation (10)

XJ = a + |3(W )
d

K
" 2 o

^= (X
t
-X

o
) - Xd

= (X
t
-X

o
) -a - B(W

2
)

o

Let

(X
t -X -a) = d

= d- ,3U
2 )

28



and
l

-B ± (B
2

- iJ-C [-C'rf? - Btf, + [d - (W2 ) ]] )

2

^ 2
;

i 2C

Grouping constants

,

i

(W
2

) - A - (B~C(W
2

)o )

2

where

A = 5o65 x 104

B = 1.81 x 109

C = 2,35 x 10
2

(W ) - W_ =L6x 10
*- o 1

The iterative process thus described results in the sequence

ft* !

x = w
o 1

1

X
]_

= A- (B-

X
2

= A- (B-

*cx )'s
o

L « A - (B-CX ,
)* (10.1)

11 n - 1

Calculating the first few values results in a monotonic non-

increasing sequence of points as in Figure 5° In order to

show that such a sequence converges, we refer to the theory

of contraction mappings as illustrated by Lyusternik and

MYanpolskii" .

29



X
5
X
Z|
X
3

x
2

x
i

x
o

Figure 5

Let f be a continuous operator from E into E , and
n n

Y = f (X) e In order to solve for the equation X = f (X)

we set up the iterative sequence of elements: x ,x ,x
2 »«.<>.,:

where x^ is an arbitrary element of E . Here we have
n

X , - f (X ). If the sequence £ X^ is convergent to some

X'% then X* is a solution of the equation X=f (X), and X

is called a fixed point of the transformation Y=f (X),

The principle of contraction mappings provides a con-

dition for the existence of a fixed point of the transfor-

mation Y = f (X).

DEFINITIONS:

(1) An operator f from E into E is said to be a
n n

contraction mapping if there exists a constant q,(0<q<l) 9

such that for any x s x_, £ EIn
f (x

1
) - f (x)| < q |

x
1

x

(2) A sequence ^_X \ having the property that, given
n-

any £>0» there exists a subscript N such that I X ~ X I <£ fo
1 m n 1

all m>N, n>N, Is said to be fundamental

.
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BOLZANQ-CAUCHY CRITERION :

A necessary and sufficient condition for the sequence

fX "I to be convergent is that it be fundamental

.

The following shows that the principle of contraction

mappings provides for a fixed point of the transformation

y = f (x)o

Let f be a continuous operator from E into E„, such

2that f is a contraction mapping and in C , i e, twice con-

tinuously differentiable in all components . Then there

exists a solution X to the equation X = f (X) ? and tnis

solution is unique The iterative sequence formed by

successive approximations is convergent to X whatever the

initial approximation XQ o

PROOF:

Form the iterative sequence of elements

X = W
o

X, - f(X )
-L O

x
2

= f(x
1

)

x - fu ,

)

(ii)
n n - ±

X . = f(X )
(12)

n + ± n

Subtract equation (11) from (12) and take absolute values

IX - X I = |-f(X ) - f (X )
|•n+1 nil n n -

1

31



But f is a contraction mapping by hypothesis.

K + i - xJ =
l

f<V - ^\^)

C -X |<q|r -X I

n + 1 n I - l^1 n - 1 '

< q X - X—
I n n

(13)

x2-^i^Mr x
o

XQ - X
|
< q I X? - X I = q

2
| X_ - X Ic 1 1 o'3 2

X - X ! < q
11

i X, - Xn + 1 n - 1 ;im

If the sequence, equation (14), can be shown to be funda-

mental, then by the Bolzano-Cauchy criterion it is converge!

Choose £>o, and N large. To show that I / - X \<f for al'

m > N, n>N, we add and subtract all values of x, , m<k<n.
k

xm - X + X - - - X + X „m m - 1 m = 1 m~2 m-2

< I X - X
a m-1

iTom equation (14)

I ^ ni-1 I

^ X < q X
•1 I

~
I 1

X ^X
m-1 m-2

- X + X - X
n+1 n+1 n

"f" • • « T X ~ X
I n+1 n

m m=

m-1 m„2

X

^ m~ 2
I „< q X - X

1

X - x
n+l n

< q
u

X - X
1 o
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X-X +X -o'..-X _+X ,-X I <(qn+q
n+1

-t-.oo-j-q
m "2

-»-q
m" 1

)*U-1

-Xm m_i m-1 n-1 n-1 n 1 - 1
c

< q
11
(l+q+q2+. « o+q

111
" 11" 1

)
-1 o

Since q < 1, the partial geometric series is less than
1-q

X -X _ +X
m m-1 m-1

X , + X _ - X
n-1 n-1 n

n , l v

<q (-^-

)

1-q
X -X
1 o

ie can choose n large enough so that the sequence is funda-

mental and therefore convergent Since q<l, we can make

the right hand side arbitrarily small „ In fact, |x -X y

as n-*~°° e

From equation (11)

n n-1

V f(V =
|
f (X . )-f(X ) |<q|x- X^ I

n-1 n ~
I

n n-H

I X - f (X )| <q I X -X I ->-
I

n n
I
-

!
n n-1'

Since f is in C
2

, as X —*- X*, f (XR
)-*>f (X*)

T'.ius

and

X*- f (X*)

X* = f(X*)

=

Q o E e D

,
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If
I

f*(X)
I

< q < 1, then f is a contraction mappings From

the mean value theorem of differential calculus

f(b)-f(a) = (b-a) . f • (X) for some X, a<X<b.

f'(x) - f(b) -f (a)

b = a

If
|
f • (x)

|

< q < 1, then
|
f (b) - f (a)

|
< |b - a

and |f(b)-f(a)l<q|b-a|

From equation 10,1 the function under study is:

(f )= A - (B- CX) :

2(B-CX) 2

To show that the function is a contraction mapping it is

necessary to show that jf*| < q < 1 for all values of X

that will be encountered,, It is easily seen that when

B BX = — the derivative is not defined, and that when X > —
C

it is imaginary

o

The values of the constants in the equation are

A - 5.65 x 104

B = lo8l x 10 9

G = 2.35 x 10 2

^~ = tf = 1,6 x 104
o
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x
1

= ic39 x :

Ae desire to show that X < - = 7,? x 10 for all X that

are encountered in the iterative process The first

approximation to X is;

X = A = 1 6 x 10^
** J.

X
x

= 5o65 x 10^ - (l 8l x 109 - 2 35 x 10 2 x 1. 6 x 104 )*

X-l = 5o65 x 10 - (18.3 x 108 )^

X2 = 5o65 x 10^ - (1.81 x 109 - 2 35 x 10 2 x x
1 P

X
2

= 1.35 x 10^ < X
]
_
< X

Q

It can easily be shown that each value of X will be smaller

than the one that precedes it, since at each iteration a

larger value will be subtracted from the constant Ao Thus

the sequence X is monotonia non-increasing, and its upper

bound is A . Since A <~^— s all values of X that will be
1 1 C

encountered are also strictly less than — e Solving for
C

the first derivative when X = A yields:
X

I f •
I
= 2o35xio2

< ±

2(4.2^3x10^)

Thus
|
f '

|
< 1 for all values of X in the iterative sequence

„

This is so because ^X \ is monotonic non-increasing, and

any value of X < A increases the denominator of the deriv-

ative, thereby decreasing its value. Thus f is a contrac-

tion mapping, and the sequence \iL\ converges. Lyusternik

and Yanpol*skii L show that if f is a contraction mapping,

then the sequence is convergent to X* as fast as a geometric
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progression with ratio q. Thus the computer iteration

procedure is not lengthy since in this case q = ,0027,

The knowledge that we can solve for X^, and thus X
,

at the start of the horizontal leg of the flight assures us

that we can correctly find the average weight on the leg

using the procedures described earlier. V/e can solve

W^ - F = w Knowing tf
2

we solve for the fuel used in the

descent using F = f (tf
2
,h), and A^ - W« " F « The fuel

burned during this profile (W - A ) is stored, along with

the altitude and proper airspeeds for the profile.

Once fuel figures for all profiles are calculated, a

searching procedure selects the global minimum and prints

it as the optimal fuel along with corresponding altitude

and airspeed figures. The possibility of a tie is virtuall

eliminated by reading fuel figures to four decimal places

.

Should several local minima arise, the search is designed

so that the global minimum is always selected,

A listing of the Fortran IV program and a sample out

put is given in Appendix B« All variable names are written

such that they are easily recognizable. TAS is true airspe

DIST is distance, etc. As inputs, the program only require

the course and distance to the field, the type aircraft

(A^ = 1, A? = 2, etc This allows for the difference in

aircraft), the weight of fuel aboard the aircraft at time o

BINGO, and the wind information. The wind can be up-dated

at intervals as set by meterological readings.
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CHAPTER III

RESULTS AND CONCLUSIONS

For a fixed distance, X
t
nautical miles, (100 < X. < 250),

the winds aloft and the aircraft weight combine to determine

the optimal flight profile . Under a zero wind condition

and normal BINGO fuel weight, the optimal flight profile is

to climb to the service ceiling and commence an idle descent

at X , , or to climb until X, is reached, and then to start

the idle descent such that X is zero For fuel weights
h

higher than the normal BINGO weights, the optimal altitude

is lower than the service ceiling because of the excess

fuel used in climbing to high altitudes when the aircraft

is heavy.

Since zero wind conditions are rarely if ever en-

countered, the wind velocity aloft is a most important factor

in determining the optimal flight profile e In order to

test the effect of winds on a standard BINGO problem, a

typical wind pattern for winter months along the coastal

region of Southern California was obtained from the weather

facility at the Naval Auxiliary Landing Field in Monterey

.

The following winds are typical of a northern hemis-

phere cyclonic low pressure area.
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ALTITUDE tfIND

- 5000 ft 270°/ 10 kts
6 -10000 ft 240°/ 15 kts

11 -15000 ft 210°/ 20 kts
16 -20000 ft 180°/ 30 kts
21 -25000 ft 150°/ 40 kts
26 -30000 ft 120°/ 60 kts
31 -35000 ft 095°/ 80 kts
36 -40000 ft 080°/ 100 kts

The BINGO situation considered is such that a pilot leaves

a carrier off the coast of Southern California and flies

090° / 160 miles to WAS North Island near San Diego. The

fuel weight at start of BINGO is 2200#.

For this example a flight profile with the service

ceiling as the optimum altitude would require 1499 •**#. A

guess by a "seat of the pants" acquaintance of mine would

use 25000 ft as the optimum altitude and would require

1435. 3#. The computer flight plan predicts the optimal

flight profile as follows.

Optimum altitude is 20,000 ft
Climb speed is 314.4 kts
Cruise speed is 250. kts
Start descent when y<Z. 1 miles out
Descent speed is 195. kts
Fuel required is 1135.6 lbs

The savings in jet fuel of 300# for the optimal over

the guess, and 364# for the optimal over the climb to serv^

ceiling is substantial when it is considered that this

savings would allow two more landing attempts either at the

carrier or at the field ashore. Multiply this savings by
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thousands of flights per month if the system were incorpor-

ated in the fleet, and it is easily seen that the jet fuel

saved would soon become significant , The two extra landing

attempts would probably result in fewer aircraft ramaining

on the beach over night

In order to demonstrate the usefulness of extending

the present BINGO computer program to long distance flights,

a flight of 600 miles was flown with a fuel weight of 6000

pounds at the start The entire distance is flown with a

course of 115° magnetic* This is not realistic since even

West - East cross-country flights sometimes require course

changes of more than 20° e Also, the present program does

not change altitudes to higher ones when the aircraft weight

decreases to a value that suggests a climb in order to

remain optimal c Nevertheless, some fuel values for

different profiles indicate the savings in fuel that would

be realized if the optimal profile is flown For example:

Fuel (lbs. ) Altitude (ft. )

5596*6 5*000

4646 1 10,000

V333.9 15,000

-—^-38^2.8 20,000

4517.I 25,000

^3^8,8 30,,000

3976o6 35,000

—7— 3733*5 40,000 service
ceiling
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In this case the service ceiling is the optimal

altitude . But if this altitude can not be reached because

of poor engine performance in a particular airplane, then

20,000 ft would be the best altitude.

An experienced pilot may often fly a near-optimal

flight profile merely by an educated guess or by carefully

managing the fuel flow But he can never do better than

the computer prediction, and will probably do worse most

of the time since his wind information is sketchy if he

has any at alio

The professional doubter may complain that even mete

ology doesn't know the accurate wind information at altitu

so why even bother with a computer solution? tfe can only

reply that some good estimate is better than none at all,

and that modern meteorological equipment can measure and

predict the winds quite accurately,.

The incorporation of a computer system to predict

optimal flight profiles may at first meet with some inerti

from fleet pilots, especially the more experienced ones.

The "seat of the pants" pilot may reject the computer

decision as hocus-pocus or just plain incorrect. But even

the most experienced aviator may encounter vertigo some

dark, rainy night and he may discover that flying the

airplane is about the only job he can handle Figuring ou

an optimal flight profile to the beach may take a back

seat to survival. It is in this situation that informatioi

from departure control would be most welcome

,
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The cost involved in establishing and operating a

system such as described above may appear to be too large

when compared to the small savings in relatively inexpensive

jet fuel But the possible loss of a phantom II and/or

a pilot may shift the balance in the system's favor.

One possible reaction against the use of computer

flight planning for cross-country flights is that often the

air traffic control center will not allow a climb to the

desired altitude because they must wait until they can safely

fit the aircraft into the West-East (or vice-versa) traffic

flow, which may be considerable in this jet age e This will

result in remaining at a non-optimal altitude for many

minutes . But this drawback exists for non-computer flights

as well. And it is still better to climb from a non-optimal

altitude to an optimal one when cleared to climb, than to

go from one non-optimal altitude to another

Another great advantage in long range computer flight

planning occurs when several alternate routes are available

„

Then the program can be written to choose the optimal

altitude as well as the best route of flight 6 The many

possible routes and altitudes would require too much compu-

tation for a pilot during his flight briefing, but a high

speed computer can solve such a problem in minutes , Thus

the pilot can spend his pre-flight time briefing the mission

and tactics, and let the machine do the arithmetics
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APPENDIX A

Aircraft performance Charts for the Navy A^-C Aircraft
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MODEL: A-4A, A-4B, A-4C
ENGINE: J65-W-16A

DATA AS OF: 1 DECEMBER 1965
DATA BASIS: FLIGHT TEST (NAVY)

1400

1200

1000

800

600

400

200

STANDARD
ALTITUDE TEMPERATURE
1000 FT. •c

15.0

5 5.1

10 — 4.8

15 — 14.7

20 —24.6

25 —34.5

30 —44.4

35 —54.3

40 —56.5

±20 ±10

Figure 6. Climb Fuel
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MODEL: A-4A, A-4B, A-4C
ENGINE: J65-W-16A

DATA AS OF: 1 DECEMBER 1965
DATA BASIS: FLIGHT TEST (NAVY)

50

45

40

ui 35

->„

Q
tZ 25

-

ui

S x>

1 5

10

150 175

\\\

H \ \ ^

200 225 250 275 300 325

CALIBRATED AIRSPEED - KNOTS

375

Figure 7. fillmb Speed Schedule
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MODEL: A-4A, A-4B, A-4C
ENGINE: J65-W-16A

22

DATA AS OF: 1 DECEMBER 1965
DATA BASIS: FLIGHT TEST (NAVY>

20

a
z
o
a.

8O 18

I

I-
X
O 16
UJ

O 14

ot

O
—i

< 12

z

10

14

12

10

z
S

I

s
6

STANDARD
ALTITUDE TEMPERATURE
1000 FT. °C

15.0

5 5.1

10 — 4.8

15 —14.7

20 —24.6

25 —34.5

30 —44.4

35 —54.3
40 —56.5

±20 ±10

Figure 8. Climb Time
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MAXIMUM RANGE CRUISE
TIME AND SPEED

MODEL: A-4A, A-4B, A-4C
ENGINE: J65-W-16A

DATA AS OF: 1 DECEMBER 1965
DATA BASIS: FLIGHT TEST (NAVY)

ICAO STANDARD TEMPERATURE— "C

15 5 -5 -15 -25-35 -45 -55

I 1/ / i I ,'
i

1

,

5 10 15 20 25 30 35 40
ALTITUDE— 1000 FEET

0.2

40 -10 —60

OUTSIDE 15°

AIR TEMPERATURE -
° CENTIGRADE

200 250 300 350 400 450 500

MAXIMUM RANGE TRUE AIRSPEED - KNOTS

Figure 9. Maximum Range Cruise - Time and Speed
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MAXIMUM RANGE CRUISE— FUEL

MODEL: A-4A, A-4B, A-4C
ENGINE: J6S-W-16A

DATA AS OF: 1 DECEMBER 1«>65

DATA BASIS: FLIGHT TEST (NAVY)

2 3 * 5 6 7

FUEL FLOW -1000 POUNDS/HOUR

figure 10. Maximum Range Cruise - Fuel
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MODEL: A-4A, A-4B, A-4C
ENGINE: J65-W-16A

DATA AS OF: 1 DECEMBER 1965
DATA BASIS: FLIGHT TEST (NAVY)

Q
z
o
a.

Ooo

X
o

O
Of

O

22

20

18

16

14

12

10

<u
I—
3
<
Z

u
z
<
i-

Q

200

150

100

50

DESCENT SPEED SCHEDULE - KCAS

GROSS WEIGHT — 1000 POUNDS

DRAG INDEX 10 12 14 16 18 20 22

100

200

180

165

155

200

180

170

215

195

180

230

210

195

240

220

205

255

235

220

270

245

230

Figure 1 1

,

Descent Distance



MODEL: A-4A, A-4B, A-4C
ENGINE: J65-W-16A

DATA AS OF: 1 DECEMBER 1965
DATA BASIS: FLIGHT TEST (NAVY)

22

20

Q
Z

2 18

OOo
I 16

o

o
O

14

12

10

Figure 12. Descent Time
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MODEL: A-4A, A-4B, A-4C
ENGINE: J65-W-16A

DATA AS OF: 1 DECEMBER 1965
DATA BASIS: FLIGHT TEST (NAVY)

Figure 13. Descent Fuel
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APPENDIX B

Program BINGO and Sample Output
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orogpam HTNfjn

rMMFMSfON WNDfPS(4^) t WNn c,PD(4~), Ri|PM<4-), nT*P(0)
TJMPnqnN Hr)RIZ(^l, 1ESC(43), nDALTI A'l|,niJT(V" )

Common wndtr<; , WNDSPD, CRS

FTPST DA T ". CAPO: RFAPING AND DISTANCE
F'l^L HN R^ARO, AMD AIRCRAFT TYPE

ti f i ei n

o^

C°S»DTST,F!IFL, ACTYPF
) f.P^,nisf f FIIF! f 4C T Y^F

4%=,

RPAD< c
f 9C)

WRITE (6 f 90

no 9? t=1,
1 = 1+1

L = T+^

0P4n(S t 9U WNOTRCf I) WNOS D n( T ) f wNnr.RS( J ), WND^PDU) ,

WNDCRMK) »WNDSPD(K ) t WMOCPS(L) , WNDSPDM » ,

*wndc oc;( M)
t wNnsPD(Mi

Q\ FDRMAT( \nfz
, }

)

o-> rTMTTMIJF

FACH FAQO CONTAINS 5 ^ >" FEET OF WIND TNFO

IP ( 4CTYPP. r Q< 1 . ) GO to 4r

no to 4i
t*r RASIC=110^ r

.

41

4?

73?

73^

7?4

LEVEL AT \r?r< FT

ALT
W T =

ACIJ
ADI
ail
T= 1

R')R
RPD
RWT
JT =
AWT
CDN
STA
WT =

c\s
T*S
GS?
Fljc
WOT
TIM
WDI
I
c

(

CHE
GO
CHE
CON
DIF
CDP
T*M
TP(
GO
TFS
TPS
T
c

(

WT =

nis
GO
TPS
TES
I
c

(

WT =

-U"fl
FUEL+RASIC
Ft =FU C

!

ST=niST
ST=DIST

N< !)=0
I«;T = RDT<T

1

=WT
TTMHF
RT=AVHOWT( WT
START
=HP<;pn( wt, I

)

=rTAS(r.AS,T )

D = WIN0( I .TAS)
L=HRFUEl (WT,I

)

ST=REHICT
F=WDTST/O^PD
ST=TIMF*TAS
WMDCRSf T ) GE. 1R^.

)

CK=WMDCPS( I J-flR .

TO 732
C*=WNDCPS( T »-lR n

.

TINMF
F=CRS-CH C CK
R=ARS(OIFP)
CORR.LT <*"- I

CHRR.GT, 270.
TO 734
T=WDIST-DIST
T=ARS(TPST)
TPST.LF. 2 ) GO
RWT
T=DIST-2,
TO 42
T=WDIST-DIST
T=ARS(TF$T)
TFST.LE 2 ) GO TO.

RWT

I ,ni^T t JI )

r,o TO 7 3"1

GO TO T3^
GO TO 7^3

TO 797

797
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707

f-T

6 1

]

7C

r,n th 4?
CONTINUE
IF( JT.GT.l I GH Tn 63
HHRT7C T )=C»S
CHMIMIJE

SHOI^T = FIIFl*S^" .

RFOIST=PFni ST-^HHTST
ARG=ARS(REniST)

IF(RFOIST, I. T- SHniST) P,n TD 61
RMPN( T ) = RHPN(

I

)+***,

WT=RWT
nTST=PPOIST
wniST=PFnicT
no Tn 4?
RMPN( T )=RIJRN( I) «*"»"».( A RG/F»| c l )

CI IMR( T
)=A

oesct n*r.
WRTTF(6.17)

' FnpMATflH! ,35X,
*3x,« oFsr
WPITP(6, 7r7

)

' popma t
( 35X,

*^X,* _

M
5MPN

T • )

TT

rt_l MC< HORI7 «
t

WPTTF(6,7?) R!JPN(1 ) ,CLTMR(1 ),HPRI7( l) f DESfC I) » T

'7 FORMAK////, 3*>X f 4F10-4 t I7l

56

R?i

FT INCREMENTSSTART CLI^RING IN 10'

WT=sAFUEl+BASIC
N=l

mm=ic
on io<* A ! = ?,'r
3MRN( T )=0,
JI = 1

C! OICT=0,
Mf =T /MM
T«=(MI.FQ.l ) GO TO 56
no rn 57
MM=M«^5

COMPUTE TH^ CLTMR FIJFL AMD DISTANCE

OH 82'^ J = ^,I,5
ALT=T*100^
HPALTd )=Al t

CAS=CISPD< J)
TAS=CTAS(C£S, J)
TTMF=rLTTMMWT r J)
TIMF=TIMF/( J/5)
TIME=TIMF/AO»
VFRT=5000. /TIMF
V=RT=VFRT/60R0.
TAS = SORT(TAS**?-VPRT**? )

GSPD=AVWTND< J,MNI
mm=mn*5
GSPD=r,SP04-T4<;
FMFL=CLFUFL(WT f I

)

RIIRNC T ) =FUEL
r|_DIST =CLDI ST+GSPD*TI ME
CONTINUE
CONTINUE
OIST=Rni$T
WT=AFUFL^RA5ir
ALTsI*1000,
OPALTCT )=ALT
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fMs=CL<;pn( i

)

CLIMBU)=CAS
0FLTA=ALT-1 0?r>,
TAS = r.TAS(CAS t ! )

TIMF=rLTT Mr (WT t I

)

TTMF = TTMr/f,^.
VPRf=nFLTfl/TTMF
V':: RT =VPPT/AOR^,
TAS =SORT( TAS**->-v/frt- -?

)

r,c:p[) = r,SP04-TAS
p UPL=ri.FIFL(WT t T )

*URN< I ) =FUFL
CI nT^T =GSPn*TiMF

C
C CnMPMT«= THF DESCENT FI1FL AND OTSTANC.F
C

TnnisT=niST
AWT = WT-Rt)QM( i

)

«^FFnRF = RIJPM( I )

3WT=AWT
WAT T = AWT
NN = 1
NK = 5
r>n «5S^ J = l f N«<
WT=AWT
CAS =ns$Pn(WATT)
DESCC I )=CAS
OSni^T = DniCT( I )

TAS =CTAS(CASt T )

MN = l
GSPn=AVWIMnt I ,MM)
GSPD-GSPO+TAS
OSnTST^rG^Pn + TIMF
0UT(

I

)=nsnTST
C
f COMPUTE THF HHRT^OMTAL F<I C L AMO TISTANCF
C

OIST=TODIST-(CL DIST+^SnicT)
AniST=niST
R-DIST=DI^T
TF(OTST.GF, 0« I GO TO 9^

c> wPTTFf 6 f Q4) T
oA FOPMAK/, ! 2X, • FOR TH!^ r»I ST/FIJE1.

*• S T AV RFLHW •il"', 1 THOUSAND PFFT
GH Tp

j ono
° c CONTINUE

<sTART=AVHRWT( WT , I ,DIST f JT )

WT=START
C&S=HP9Pn( WT f I

)

TAS=CTAS(CAS,I )

GSDD=WTND( I ,TAS)
FilFL = HRFUFt (WT »I )

wniST=ADTST
TIME=WniST/GSPD
WDTST=TIMF*TAS
TF( WNPCRSC I ). GE.VB*. > GO TH 4?f
CHECK=wNnrp<;( i > + i?n.
GQ TO 427

426 CHECK=WNOCRS( T )-l*^.
&?7 rnNTlNME

DIFF=CPS-GHECK
rnpR=ABS(niFF)
I
c (CHRP. IT. 9^. I GH TH 42«
TFtCHRR.GT. 27^- ) GO TH 4?R
GH TO 429

428 TF^T=WOIST-OTST
TFST=ARS(TFST)
TF( TFST.LF. «. ) GO TG 431
WT=AWT
NN=NN+1
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4?<=

4"»1

:c c

niST=nis
GO Tn 05
tc<;t=WOI

IFITFST.
WT=AWT
NJM = NM+1

an m 95
CONTINUE
IPfJKGT
HORIZU )

7 ?7 CONTINUF
Jl=?
FUFL=WOI
WAIT=AWT
CTNTTMUF
RURN( I ) =
W^=WAIT
F'IEL = OSF
R!JRN( T ) =
f=(RUPN(
HO Tn 5 2
N=I
CONTINUF
WPITr(6 f

CTP.MATC3
C n NTINUF
WRTTF(6,
P1RMAT( /

*• FF^T •

WRTTF(6,
FOPMATf /
WPITF<6,
POPMAK /
WRITF(f ,
FORMAL /
WRITFfft,
FORMAT(

/

WRITER,
FORMAK /
END

«=1

c ?

7^

7^

75

7A

77

78

T-P.

ST-OIST
(tfstj
LP. R. ) GO TO 431

T+R.

. 1 ) 00 TO 777
=CA$

ST/FUFL
-FMFL

BURNU )«-FUFl

UPL CWT f I )

RURN( I )+F'IFl
I I . LF.RU"M(N) I OP TQ 51

71 ) RURNf I I f CLIM«l I ) f HPPI7( I) ,OFSC(I) ,

I

5X,4F1 ^.4,17)

73) nP\L^(N)
////////, 41X» • OPT T MUM ALTTTIJDF IS % po .1t
1

c
r
r

FUNCTION AVHPWT(WT r i , niSTf.JI)

fOMPUTE THE AHERAOF HORI70NTAL WEIGHT

HOL0=WT

3^33 JJ=1,5
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FUNCTION ri.son( I )

THIS IS th<" CLTMR SpPPO SCHEDULE

Al T = Ix-l nno.
IF( ALT.LE, 26500. ) r,n m i"»
CLSPn = 307.-((ALT-2 65'^.)/n5(~)* 7 O.
GO TP 1

1

].r rtSPn = 337 ~(AIT/?65P' >*30
11 CONTINUE

RPTUPN

PUNCTIHN CI TTMF( WT ,1)

TIME NFEOFn TO CLIMB Tn AITITUDE

761

761 1

76] ?

762

7621

76??

763

76^?

7631

764

7641

764?

765

76M
76*2
766

ALT = I

IPfWT.
TF( WT.
TF( WT.
TF(WT.
IF(WT.
CLTIMF
00 TO
TP( ALT
T c ( ALT
CLTIMF
GO TO
CLTTmf
on to
CLTIMF
GO Tn
TF( Al T
IF( ALT
CLTIMF
GO TO
CLTIMF
GO TO
CLTIMF
GO TO
IF( ALT
TF( A1

T

CLTIMF
GO TO
CLTIMF
an Tn
CLTIMF
go jn
TEC Al

T

IF ( AIT
CLTIMF
on t^
CLTIMF
no Tn
CLTIMF
GO TO
TF( ALT
IM ALT
CI TIMF
GO TO
CLTIMF
GO Tn
CLTTME
CONTIN
RFTU&N
FNO

LE.1200*- ) GO t

LE. 130OC, ) GO t

LE. 14000. ) GO T

LE, 1

c

00^. ) GO T
LE. 16000. ) GO T
= 12.
766
. IF 20. ) Pn m
.LE.30 ) GO th
=7.1-( (40.-4LT)
766
=2.7*(ALT/?^,

)

766
=4.4-( (30. -ALT

I

766
•LE, 10. J GO TO
. LF. 30. ) GO Tn
= R.-( (4r -ALT)/
766
=( ALT/IP. )*1,

2

766
=4. R-( (30. -ALT)
766
.LP. 10. ) GO Tn
. LE.3P ) Gn TO
= 9.-( (40. -ALT)/
766
=5.?-( (30. -ALT)
766
=1.4*( ALT/10. )

766
.LP. 15. ) GO Tn
.LE.30. ) an to
=10 -( (40. -ALT)
766
=2-4* (ALT/15,

)

766
=5.°-( (3^. -ALT)
766
.LE. 15, ) Gn m
. LF. '5. ) GO TO
=ll.4-( (4A.-ALT
766
= 2. 6*( ALT/15. )

766
=8.2-((35-*l T)/
UE

O 761
n 76?

7*3
764

n 76*

7611
7612
/10. )*? 7

/ 10 - ) * 1 7

76 21
762?
1 . ) * 3 . 2

/20, ) *3 6

7631
763?
2^. )*3.P

/ 2 o . ) * 3 . R

7641
764?
/10. )*4 1

/l 5. )*3 5

76 51
7652
)/5. )*3.

2

20. )*5.6
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eilNCTION HRFUEt.fWT, I)

COMPUTE TH C FUEL USED IN LFVFL FLIGHT

(SSI

651 1

6*5

6551

6 CM

65?

65?]

65?2

65?3

6 C 7

ALT = I

IP(WT
IF(WT
I
c

( WT
IP(WT
GO TO
HM AL
HRFUF
HRFUP
GO TO
HPFUF
HRFUF
GO TO
IP( A I.

HRRIF
H"FUF
GO TO
HRFUF
HRFIF
GO TO
TF( AL
HPRIE
H9FUE
GO TO
HRFUF
HRFUF
GO TH
TM AL
TP(4!
IF( AL
HPFUF
HRFUF
GO TO
HRFUF
HRFUF
GO TO
HPFUF
HPFUF
GO TH
HRFUF
HPFUE
rnNTI
RCTUR
PMO

.LE.l

.LE.l

.LE.l

.LE.l
652

T.LE.
t = .2^
L=HRF
657

I =.?n
L=HRF
657

T.LE.
L-.30
L=HRF
657

L = .2?
L=HRF
657

T.LE.
L = .? 7

L=HRF
657

L = .iQ
L=HRF
657

T.LE.
T.LE.
T.LE.
L = .2?
L =HRF
657

L = .H-
L =HRF
657

L = .15
l=HRF
657

l=.21
L=HRF
NUE
N

30^">. ) GO TO 655
4000. ) GO th 651
5000. ) GO to 654
6000, ) GO TO f>5?

20. ) GD TP 651]
-( (40, -ALT) /15. )*. r 9
UEL-.025*(WT/14000 )

-U25.-4LT) /?5. )*.i
UEL-.02 *(WT/i4'«on )

20. ) GO TP 6551
-( (40.-4LT) /15, l*/Q
UEL-.025*(WT/13000 )

-( (25.-ALT) /25. )*.]
UEL-.0?*(WT/13000. )

?0. ) GO TO *541
-((4*.-&LT)/!5 I*. 09
UEL-.025*(WT/15000, )

-( (25.-ALTI/25. )*.!
UEL-.02*(WT'15 r 00.)

10. ) GO TO 6521
15) GO TO 65 22
30, ) GO TO 6523

UEL-,03 *(WT/160^0_ )

(ALT/10. )*. "4
UEL-.0?*(WT/16000.

)

-((15. -ALT) /5. >*. 0!
UEL- 023*(WT/16000.

)

-U30.-ALTI /15. )*.^6
UFL-.0?9*(WT/160no. )

FUNCTION OSSPO(WT)

THIS IS THF OESCFNT S°EEO SCHEDULE

fF(WT. LE. 12000. ) GO TO 21
OS S PP = 1 90. ( (WT-12O0->. ) /90^0 )*55
GO Tn ">2

?] 0SSPP=19O.
22 CONTINUE

RFTUPN
FNO
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^ r> r*

31 r
1

111

3^

"*4

FUNCTION WTNn( I ,TAS)
HT MFNS jhm WNHfRS (4*"*) » WMn«t>n(4"» )

COMMON WNTfR^

,

WNOSPn t CR^

r TMDIITF WINO COMPONENTS TH rnMVE°T T * S INTO r.cpr)

31

TF
r.H
on
r.H

rn
pi
en
T c

IP
IF
go
en
RA
w

GO
Cn
RA
W

GO
RA
W

go
co

w
en
RF
FN

( wnocr<m
ECK=wNnr

Pf.K = WNnr
NTINUF
ff=crs-t
PR=ABS(D
(CPRR.LT
(f.nRR.GT
(CORR.GE
TO t\}

RR = rr)RR-
n=(CTRR/
TNn=TA5-

0=(CORR/
TNn=TAS-
to 3n

o=<corp/
IN^=TAS+
TO 013

RR=CPRR-
omcorr/
IN0=TAS4
MTTNUF
TtJRN
n

T i.r,p.ift-». ) on to ?o
PS(

I

I+IRI.

RS< I >-l 80.

HECK
IFF)
. 93. i go to b^o
,

2

7^. ) go m ^4^
180. ) GO TO 3ni

1 8">.

1 80. )*3, "*4i 5
CCS(PAO)*WNnSt>n( I )

on,

SINf PAD) *WNOSPQ( I

)

1 8^. )**, 141

6

rns(RAn)*wNOSPn( I

)

?in t

1 80, )*"*. 141 ^
sin( pah) *wnospo( i )

PACTION CTAS(C

THIS CONVERTS C

41C

41 1

41 2

41 3

14

4] 6

417
4QQ

1L
IF
TF
IF
IP
IP
IF
IF
IF
GO
ST
go
si
GO
SI
GO
SI
GO
M
GO
SI
GH
SI
GH
SI
ct
RP
EN

T = I

( Al T

( At.T
(ALT
( ALT
( ALT
(ALT
( ALT
(ALT
rn

GMA =
TO

GMA =
Tn

GMA =
TO

GMA =
Tn

GMA =
Tn

GMA =

Tn
GMA =

Tn
GMA =

AS=r
TURN
n

.LE.

. LE-

.LF»

.LE.

.IF,

.LE,

. LE.

.LE,
417
l.+C
4 0Q
l. n 7
499
1.16
499
1.26
499
1.37
499
1 .49
490
1.63
499
1.79
AS*S

AS, I )

AS INTO TAS

5 ) GO Tn 410
in.) go Tn 411
15. ) GO TH 41 2
?0, ) GO Tn 41

3

25. ) GO TG 414
30. ) GO Tn 41

5

35. ) Gn TO 416
40. ) GO TQ 417

ALT/5. 1*.0773

7 3M ( ALT-«5 ) /5. ) *. r£^4
?7+( ( ALT-K I/*. >* 3969

C 2+( (ALT-15. ) /5. )*. 1C94

( ( Al T-"»n. ) /5. )* 123*

38+( ( ALT-25 ) /5> )*. 1411

4 9+( (ALT-30. ) /5. )*, 1615

64+( (ALT-35 )/^. )*. 2191
IGMA
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PI.JNCTTON CL
r
r rnyptiTF THE
c

ALT = 1

!
C (WT.LE.12

I
C (WT,LF.13
IF(WT.LE.14
IF(WT.LF.15
CLFUFL=760.
an tp 69

61 CLFUFL=5C0.
r,n TP 69

6? CLFUFL=S6^.
HP TP 6 9

6"? CL'r UFl=620.
gp th 69

64 CLFUFL =700.
60 TM I. IT. I'M

TP(I.LE.2 r>)

T
r (I.LT.3")

CLFUEL = f.LFn
00 TP 691

*,o? CLPUFL=CLFU
GO TP 6<n

AQ"3 CLFUFL=CLFU
6C1 CONTINUE

P^TURN
ENO

FUPL(WT t T)

FUEL USEP IN THE CI IMP

500. ) GO TP 61
5PP. ) GO th 6?
500. ) GOTH 63
500. ) GO TP 64
-( (40 -AtT)/40. )*T60.

-{ (40 -AL T >/4r . »*500«

-( (40 -ALT >/4P )*56^.

-( (40 -ALT)/4r
- )*62 r

.

-( (40 -ALT)/4C. )*7^r.
OP TP 697
C,P TP 69?
OP TP 69*>

EL+CALT/40. )*6^.

FL+( Al T/4^ )*4?0.

ElXAlT/4^ J*??^.

^UNCTION DPIST(I)

DISTANCE COVERED DURING IDLE PESCENT

41

43

44

45

46

47
4P

A!.T=T
IF( AL
IP(AI
TP( Al
IP( AL
IF(AL
TF< AL
IPfAL
doist
GO TP
DPIST
GO TP
PPIST
GP TP
PPIST
GO TP
PDTST
GP TP
DPIST
GP TP
DPIST
GP Tp
DPIST
CPNTI
RFTUP
ENO

T.LF
t.LE
T.LE
T.LE
T.LF
T.LE
T.LF
= 90,
48

= ( (A
48

=6.+
48

= 14.
48

= 23.
48

= 3?.
48

=44.
48

=62.
MUF
N

, 5.

)

GP TP 41
. 10.

)

GP TP 4?
.

» 5. ) GP TP 43
. 20.

)

GP TO 44
. 25.

)

GO TP 45
.30.

)

GP TP 46
. 35. ) GO TO 47
+ ( ( ALT-^S. 1/5. 1*20.

LT-1, )/4, )*6

( ( AlT-5, )/5 )*8

+( (ALT- 1 ^. ) /5. )*9

.

( (ALT-IS. )/<>. )*1T

( (ALT-20. )/S. )*1 1,

( (ALT-25. )/5. »*18

( ULT-30, )'5. K18
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r

C
c

7^1

772

77^

774

775
777

FUNCTION ncFUEL(WT f I)

CHMPUTF THE FUEL USFH TN THE OFSC.PNT

A

I

IF
'F
IP
IP
IF
OS
go
OS
go
OS
on
r»S

GO
OS
GO
OS
rn
RE
EN

T=I
(WT.I
(WT.L
(WT.L
(WT .L
(WT.L
EUFL =
Tn 7

FUFL =
TO 7

FUFL =
Tn 7

TO 7
FUEL =
TP 7

FUEL =
NTTNU
TURN

E.l
E.1
E.l
E.l
E.l
210
77
2R0
77
?60
77
24n
77
225
7^
215
F

2000. )

3009. )

4HO0.
)

5000. )

"
e:0 A0. )

00
GO
GO
GO
GO

TO
Tn
in
T

TO
.( ALT/40.

)

.(ALT/40.)

.•(ALT/40.

)

.( ALT/4*.

)

.(ALT/40.)

.(ALT/40.)

771
77 2
773
774
775

* c
l

5511

552

5^21

553

55?1
55 7

FM

HO

AL
IP
IP
IF
GO
I
c

HR
GO
HR
GO
IF
HO
GO
HR
GO
IP
HR
GO
HR
CO
RP
EN

NOTION HRSPO(WT t I )

RIZONTAL S D FE0 SCHFOULF

T=I
(WT.LE.l
(WT.LE.l
(WT.LE.l
TO 557

(ALT. I.E.
Spn=?2n.
TO 557

SPO=230.
Tn 557

( ALT.LE.
SP0=240.
Tn 557
SPn=25 e5.

TO 557
(ALT.LE.
SP0=245.
TO 557
SPD=260.
NTINUE
TURN

4000. ) GO T
^0*0. ) GO T
6000. ) GO T

30. ) GO TO
((40. -ALT)

551
552
553

5511
/10. 1*10.

( (30. -ALT) /30. )*6C.

2 5. ) GO TO
( (40. -ALT)

5521
/15. )*15.

( (25. -ALT) /25. )^50.

25. ) GO TO
+((40. -ALT)

5531
/15. )+l^.

+((25.-ALT)/25. )*50.
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FUNCTION AVWINDU,MN)
TTMPNMON WNOf PS(40) tWNOSPOK^ )

r.n«MPM WNOCRS,WNOSPO,CRS
c
C Cn«P()TF THF AVFRAGE WIND IN CLIMR AND DESTFNT
r

AVWIND=0.
nn 44^ n=mn.I
TF(WNnCRS(NJ.GF.180.) GO TO 40A
CHEGK = WNDCPS(N)-H8'>.
GO TO 405

404 CHFCK=WN0CRS(N)-1 80.
4^5 CONTINUE

OI»=F =CPS-CHECK
CPPR=/iBS(DIPP)
!F(CnPP.LT.90. ) GO Tn 407
!P(CORR.GT. 270. I GO TO 408
IP(CORR.GF. 18n. ) GO TO 409
GO TH 410

4Po r.oRp=cnRQ-i80.
RATaf CORR/180. )*% 1416
*OD=-COS(PAO)*WNDS°0(N>
GO TH 444

41^ CPRR=CORR-°?.
R/\0=(Cnop/iRO. )*3. 1416
40D=-SIN(RAO)*WNDSPD(N)
00 TO ^44

407 PA0=(C0RR/180. )*% 1416
A0D=COS(PAO)*WNO^P0(N)
r,o TO 444

408 00RR=C0RR-270,
RA0=(C0RR/100. )*3. 141

6

&00=SIN(RAOI*WNOS°0<N)
444 AVWINO=AVWINn*AOO

AI = I

AVWTND=AVWINO/AI
RCT1JRN
FNO
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BURN CLIMB HORIZ OESC ALT

1520.3477 0.0 287.9998 0.0 1
1436.8254 334.7358 285.9998 198.0575 ?
1388.4229 333.6038 283.9998 197.9612 3
1344.5466 332.4717 281.9998 197.8650 4
1304.7539 331.3396 279.9998 197.7687 5
1228.1814 33C.2075 277.9998 197.6725 6
1195.5281 329.0754 275.9998 197.576? 7
1165.8674 327.9434 273.9998 197.4800 P
1138.9519 326.8113 271.9998 197.3837 Q
1164.0527 325.6792 269.9998 196.9437 I

^

1259.1255 324.5471 267.9998 196.8131 11
1236.3667 323.4150 265.9998 196.6825 12
1216. C037 322.2830 263.9998 196.5519 13
1198.0518 321.1509 261.9998 196.4212 14
1181.8977 320.0188 260.0000 196.2906 15
1048.8237 313.8867 257.9998 196.1600 16
1039.0364 317.7546 256.0000 196.0294 17
1030.6504 316.6226 254.0000 195.8987 18
1023.5820 315.4905 252.0000 195.7681 19
1017.7534 314.3584 250.0000 195.6375 20
1356. 76C3 313.2263 248.0000 194.7850 21
1428.3113 312.0942 246.0000 194.6200 22
1447.1089 310.9622 244.0000 194.4550 23
1427.0532 309.(301 242.0000 194.2900 24
1410.2793 308.6930 240.0000 194.1250 25
12C8.3538 307.5659 238.0000 193.9600 26
1199.5144 304.0740 236.0000 193.7950 27
1194.4165 298.2222 234.0000 193.6300 28
1191.4863 292.3704 232.0000 193.4650 2°
1340.2283 286.5183 230.0000 192.2687 30
1349.7646 230.6665 229.0000 192.0694 31
1354.3699 274.8147 228.0000 191.8700 32
1361.1338 268.9629 227.0000 191.6706 33
1369.8821 263.1111 226.0000 191.4712 34
1380.4607 257.2590 225.0000 191.2719 35
1388.2974 251.4074 224.0000 191.0725 36
1398.0271 245.5556 223.0000 190.8731 37
14C9.5244 239.7037 222.000C 190.6737 38
1422.6638 233.8519 221.0000 190.4744 3°
1437.3345 228.0000 220.0000 190.2750 40

OPTIMUM ALTITUDE IS 200C0.O FEET

CLIMB SPEED IS 314.4 KNOTS

CRUISE SPEED IS 250.0 KNOTS

START DESCENT WHEN 34.4 OUT

DESCENT SPEED IS 195.6 KNOTS

FUEL USED WILL BE 1017.8 POUNDS
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