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ABSTRACT

Pattern recognition and classification systems have been under de=

velopment for several years. This paper examines one of these systems,

which has been called an adaptive linear neuron, to determine how the

desired classification is achieved and how this system might be used in

the practical field of character recognitiono Specifically, the follow-

ing ideas are discussed in this paper:

(1) The basic concepts of linear separability and iterative adap-

tion by an adaptive linear neuron (Adaline), as applied to the

pattern recognition and classification problem.

(2) Four possible iterative adaption schemes which may be used to

train an Adaline.

(3) Use of Multiple Adalines (Madaline) and two logic layers to

increase system capability.

(4) Use of Adaline in the practical fields of Speech Recognition,

Weather Forecasting and Adaptive Control Systems and the possible

use of Madaline in the Character Recognition field.
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1. Introduction.

Systems which can be trained to classify complex digital and analog

patterns have been under development for several years. One such system

has been proposed by B. Widrow and others at Stanford University Q3»

In this system, pattern recognition and classification are accomplished

through the use of integrative memory cells, each of which consists of a

variable resistor whose value can be made, by suitable "training", to

become a useful function of the experiences of the device itself. The

training of these devices is essentially a process of iterative adaption.

In general, training consists of a systematic adjustment of each of the

memory elements of the device in such a way that the system is forced to

produce a predesignated output to each of a number of specific inputs.

After the device has successfully adapted to a large number of training

patterns, it has the ability to classify inputs which are related to the

training patterns, as well as the training patterns themselves.

Characteristics of the trained system are the effectively instantaneous

classification of pattern inputs and the diffuse storage of information

throughout the memory elements. The basic system developed by the Stanford

group is an adaptive threshold device called an adaptive neuron, or

Adaline, an acronym of adaptive linear neuron. A discussion of the

functions performed by this element will be presented later. Systems

containing one or more of these devices are being developed for use in

speech recognition, weather forecasting and electrocardiogram analysis.

They have also been used as trainable controllers in adaptive control

systems.

In this paper it is planned to review the progress made by the

Stanford group in the field of pattern recognition and classification.





Specifically, a close examination will be made of an Adaline 9 the basic

ideas behind its use s the procedure followed in training it and the

results obtained using a trained system. The investigation will be

prosecuted experimentally by testing digital computer simulated models e

In addition 9 a similar mathematical model will be applied to the

practical problem of classifying the ten characters zero through nine

when these are in a hand printed form. Finally, a start will be made on

the problem of identifying a set of 45 alphanumeric characters, also in

hand printed form.





2. The Basic Adaptive Neuron.

The basic adaptive neuron, or Adaline, developed by the Stanford

group is shown in figure 1. The input p.'s are binary 8 but for

convenience they are required to take the values of +1, rather than

the more conventional +1 and 0. An input pattern is defined to be a

particular set of values of the p.'s. In the Adaline each p is

multiplied by a corresponding (analog) weight, w., which can be re<=

f h
garded as the current setting of the i memory cell, and which can

take both positive and negative values. The weight w is called the
n

threshold weight. Thus the analog output of the summer is ]F_ p.w„ + w

f <r 1and the digital or quantized output is sgn i 2_ Pjw4
+ wn e >

I i=l '

i=l

Di gital Output

Quantizer

Fig. 1. Basic Adaptive Neurcn





3. Linear Separability.

For simplicity, a two input Adaline will be discussed first.

Suppose that it is desired to classify the possible input patterns into

two classes?

(a) one or both p. positive, and

(b) both p. negative.

In this particularly simple case it is easy to see that if w = w

W£ 1, then the corresponding digital outputs will be +1 and ~1» It

will be said that this setting of the weights has classified the patterns

into two classes, (a) with a +1 output, and (b) with a <=1 output. In

more complicated cases, the values of the weights would be adaptively

determined during training. However, is such classification always

possible? Suppose it is desired to classify the input patterns into

the two classes:

(a) both p. positive, or both p negative, and

(b) Pi's with alternate signs.

In this case it is not possible to find a set of w. which will yield a

digital output of +1 for the first class of input and ~1 for the second

P 2 4 P2
a . .D

Pi

Pl + p 2
+ 1

a ,

"> p
l

b .

Fig. 2. Separation
Into Two Output Classes

Fig. 3. Not Separable
By One Adaline





It will then be said that the patterns are not "linearly separable" into

these two classes and that a classification cannot be affected with a

single Adaline.

The same thing can be illustrated graphically as in figures 2 and 3.

n

The analog output must change sign as the line ^L P- w * + w is

i=1
i i

crossed, and it can be seen that the analog output above the line in

figure 2 is positive, and that it is negative below the lineo Since a

line can be drawn (actually an infinite number of lines can be drawn,

each with different w ) separating the a and b pattern classes, it can be

concluded that the patterns are linearly separable into these two

classes. On the other hand, it is immediately obvious that the classic

fication of figure 3 is not possible.

It is of interest to continue the classification of the possible

input patterns into different groups of two classes until all possible

combinations have been examined. Using this procedures both the number

of linearly separable and the number of not linearly separable examples

may be determined for a two input Adaline. The digital outputs for the

two classes will bes

class (a) +1, and

class (b) °1.

Table 1 contains eight examples illustrating this concept of linear

separability.

It can be seen that examples 1 thru 6 in the table could be repeated

with the desired digital outputs reversed, i.e., with a °1 output for

class (a) and a +1 output for class (b). This procedure would double

the number of linearly separable classifications, and with the addition

of the case illustrated as example 7 and its counterpart (for all inputs





Table 1. Separable and Not Separable Examples For Two Binary Inputs

No,

Desired Classification Graphical

of Input Patterns Representation
One Set of w- For
Linear Separation

(a) One or both p. +

(b) Both pj -

*k a *

w.

"l
= l

w
2

= I

(a) Both p.'s + and both

P
i'

S "' P
l

+ and P
2

'

(b) pj - and p2
+

i+-ft-fc*o

w - 1

w, 1

w2 "1

(a) All except in (b)

(b) Both pj's +

ffe b* w,

w. =1

w
2

= »1

(a) Botn p 's +, a
fe a.*

p.'s =, p
i

= and p
2

+

(b) p, + and p 2
-

w
Q

= 1

w
2

1

Both pj's +, p. - and p- +

Both pj's -, p + and p -

(a)

(b)

CL b a.*
w
Q
=0

w -

w
2

= =!

(a) Both p^s +, p. and p -

(b) Both pj's -, p. - and p +

^-b=©—
*-H

a.

w
Q
=0

w. 1

w,

(a) All inputs +

< 2+

1 CL

CL

w.

w

w9 = \

(a) Both pj's +, both p.'s -,

(b) p.'s w/ alternate signs

0,

% (L*

b

None





to be classified as (b)), would yield a total of fourteen examples which

are linearly separable. The interchange of the +1 and «=1 of example 8

would yield a second example which is not linearly separable.* Thus the

total number of separable and unseparable classifications into two

classes is equal to 16.

Suppose now that the number of binary inputs to an Adaline is 3

rather than 2, and that it is desired to classify the input patterns

into the two classes:

(a) pj - +1, p
2

- +1, p
3

- +1, and

(b) p
L

- -1, p2
- +1, p = +1.

If the weights are chosen to be w, =» 1 and w^ w w 0, it is10 2 3

easily seen that the digital output will be +1 for all the patterns in

class (a), and »1 for those in class (o) . Thus separation has been

achieved by the plane p 0.

Table 2. Numoer of Linearly Separable Classifications

for Different Numbers of Binary Inputs

Number of Maximum Possible Number Number of Known Linearly

Binary Inputs (n)
2
n

of Examples (2 ) Separable Examples

1 4 4

2 16 14

3 256 104

4 65,536 1 9 882

5 4.3xl09 94,572

6
19

1.8x10 15 s028 9 134





In general, if there are n binary inputs to an Adaline 9 the two

classes will be separable if the w. can be chosen in such a way that the

n-1 dimensional hyperplane w^p, + W2P2 + — + w p + w = separates

the two classes in n-space.

It was shown above that, for an Adaline with two binary inputs,

the total number of input-output situations was 16. An extension of

2n
this reasoning from 2 to n binary inputs indicates that there are 2

possible examples, again including both linearly and not linearly

separable types. Table 2, whicn was extracted trom C2J, lists this

figure together with the numoer of known linearly separable examples,

for n from 1 to 6.





4. Threshold and Dead Zone.

Linearly separable input patterns cannot normally oe separated

unless the weights are carefully chosen. The process of changing the

weights until each weight has the value most likely to affect the linear

separation of the input patterns is called adaption or training.

One of the weights adjusted during adaption is w , the threshold

weight. First, in relation to the binary or quantized output, we see
n

that the output changes sign when Yl Piw i
" =wn anc^ t *ie threshold can

i=i

therefore be regarded simply as a bias on the quantizer, as shown in

figure 4. Alternatively, if we consider the geometry of the hyperplane,

it can be seen that a change of the threshold from Wq to w. ' affects a

shift of the hyperplane to a new location parallel to its original

position, as illustrated in figure 5 for n = 2. In fact, the

perpendicular distance of the hyperplane from the origin, d, will be

w. It should also be noted that the slope of the
2 2

(w, + Wo W
n

>

Pi
-5-i

Summer

<0<°

^(Pl^l+P?"?)

+ . f<
>

1

*

j, !

- >

1

'

1

>

-1—
po

"ej

w >0'^_^) + i

-* K- Wo

- ->

Quantizer
Fig. 4. Effect on Quantizer oE

Changes in Threshold Weight





hyperplane is not a function of the threshold, but instead is determined

by the settings of the other weights.

erplane

>*!

Hyperplane
for w rt

Fig. 5. Separating
Lines as a Function
of Threshold Weight

For the situation depicted in figure 6, any of the three hyperplanes

determined by the thresholds w
Q , w • and w " will linearly separate the

input patterns into the two desired output classes a and b» However,

use of the w ' or w " hyperplanes would not provide the safety that

might be needed in a practical situation. Some of the factors that

might cause classification errors are resolution of the quantizer and

drift in the circuit components. As a result, the input to the quantizer

must always be sufficiently different from zero so that a small change

in the quantizer input after adaption will not yield an incorrect digital

output. In addition, the problem of resolution and drift is magnified

by the fact that, as the number of binary inputs increases, the tolerance

required on each weight becomes more critical. This is discussed in {3~]»

Now what can be done to decrease the effect of such errors on the

Adaline system? One technique would be to utilize the Wq hyperplane

as the separating plane, with the w * and w " hyperplanes as the outer

10





Hyperplane
for w.

\ -S»Pl

1_ N Hyperplane
N \for Wq

Buffer

Fig. 6. Buffer and Dead Zone

limits of a buffer zone about the separating plane. The system would

then be trained so that all possible input patterns would be classified

into classes above and below the buffer zone 9 with a consequent reduc=

tion of the danger of producing an incorrect output from the quantizer.

For convenience, each of the spaces on either side of the separating

plane will be called a "dead zone" as labeled in figure 6.

11





5. Multilevel Adaline.

It is often necessary to separate the input patterns into more than

two classes. In some cases this can be done effectively with a multi-

level Adaline^ which separates the input patterns into classes according

to the analog output (level) assigned to each patterno For this type of

separation to be possible the input patterns or sets of input patterns

must be linearly separable in a specific fashion The several assigned

output levels may be regarded as equivalent to a corresponding set of

threshold weights. These in turn define a set of parallel hyperplanes

such as shown in figure 6 for Wq, w
q

8 and w ". Therefore s the use of the

multilevel Adaline is restricted to the classification of inputs which

can be linearly separated from each other by a series of parallel hyper=

planes.

A typical use of a multilevel Adaline would be to classify the

written digits one through nine. As a simple test of this concept a

computer simulated Adaline was used to separate one sample of each of

these digits. The written digits were converted into patterns using a

seven by seven input space. After training, all nine patterns were

correctly classified showing that this particular set of patterns was

separable in this manner.

12





6. Ada line Adaption.

The previous sections contained a discussion of Adaline fundamentals

and the concept of separating pattern classes by the appropriate setting

of the weight elements.. Training or adaption is the process of iter=

atively determining suitable values for the weight elements. This

section will formulate the adaption problem and then consider four

possible adaption or training procedures.

Adaline application in a pattern recognition problem involves the

following sequence of events. Firstly , training patterns are chosen and

assigned digital outputs, i.e. plus or minus one. Then an adaption

process is selected and Adaline is trained until it either correctly

identifies all the patterns, or until the training is terminated due to

a failure of the training scheme to converge. If the training was not

so terminated, the Adaline would now have the capability to correctly

identify all the training patterns (thus proving the pattern classes to

be separable) and in addition, the ability to recognize a number of

"similar" patterns. In fact, one of Adaline's main advantages is the

ability to identify patterns it has not been trained on. Other methods

of pattern recognition such as "table look up" do not generally have this

capability.

One question now to be answered is 9 what constitutes a "similar"

pattern? One measure of the similarity of two patterns would be the

number of pattern elements that would have to be changed in one pattern

to make the two patterns identical. Figure 7 displays three patterns^

each containing 16 pattern elements. Pattern (a) differs from pattern

(b) by one pattern elements while pattern (a) differs from pattern (c)

by eight pattern elements. Patterns (a) and (b) would be classified as

13





"similar" patterns while patterns (a) and (c) would be classified as

dissimilar patterns if the above criterion were used. In some cases s

however, a pattern might be regarded as "similar" to a training pattern

if it were related to it 8 for example,, by a simple rotation or transla=

tion. In that case patterns (a) and (c) would be regarded as similar.

This criterion might be used if the Adaline was being specifically

trained to recognize patterns even when translated or rotated from their

normal conf iguratioru

A A A o A A A v oooo

o A o o OOeo A A A

o A O o O A S o G A

oooo o o o • ooAe

(a) (b) (c)

Fig. 7. Similar and Dissimilar Patterns

Finally, a "similar" pattern is often generated by the contamination

of a training pattern by noise. For this reason "similar" patterns are

sometimes referred to as "noisy" patterns. The ability of Adaline to

recognize similar patterns is clearly an extremely complex function of

the total number of pattern elements in the input pattern,* the number

and complexity of the training patterns, the value of the weight

elements, and the degree of similarity of the input pattern to a train-

ing pat tern

o

It was shown earlier that the analog output is imposed on a

quantizer whose digital output is either plus or minus one. It is

usually desirable to endow the quantizer with a dead zone s so that some

finite magnitude of the analog output is required before the digital

output becomes non~zero» During the training or adaption phase the

14





analog output of each training pattern is made equal to or greater than

an "adaption dead zone". After training , a smaller value of dead zone

may be introduced which will often enhance the probability of correctly

identifying similar patterns<> Thus patterns will be classified accord=

ing to the relationship of their analog outputs to a "recognition dead

zone".

The adaption or training problem can be formulated ass

Givens A collection of patterns and the desired digital

output for each patterno

Finds The value of the weight elements such that the
n

expression Wq + ^L P- w - yields the appropriate analog
i=l *

X

output for each input pattern.

The weight values are usually determined by an iterative process

based on a comparison of the actual analog output for each training

pattern with the corresponding desired analog output. In other words 9

an input pattern is imposed on Adalinej the analog output is examined s

the weight elements are changed if required^ and then another pattern is

imposed. This process is continued until the analog output of each

pattern is acceptable without further adaption^ or until it is determined

that the process will not converge. The adaption process will be defined

as having converged when each training pattern generates an acceptable

output. It should be noted that an adaption process may not converge to

a solution even though the pattern classes themselves are linearly

separable. In such a case a different adaption technique would have to

be employed.

15





7. Specific Adaption Schemes.

Common to each of the adaption schemes discussed below are the

following rules.

When an analog output is unacceptable §

1. Change each of the weight elements by the same absolute

magnitude.

2. Increase or decrease each weight according to whether the

product of the corresponding pattern element by the desired

change of the analog output is positive or negative. For

example 8 if the analog output is to be increased and p,

is = 1 9 then w would be decreased.

A description of the four adaption schemes listed in QO now follows,

Minimum Square Error Adaption

This process adjusts the weight elements in such a manner that the

analog output for each pattern is driven toward the same absolute magni=

tude, called the adaption dead zone. The error at each step is defined

as the difference between the adaption dead zone and the actual analog

output, and the change made to each weight element is expressed by the

following equations

I A w -
|

= Error x Proportional Constant
1 Total Number of Weights

If the proportional constant is greater than zero and less than two,

the process will converge provided that the patterns are both linearly

separable and meet an additional requirement that will be discussed

later. In the case where the weight elements are continuously variable^

it has been experimentally determined (Appendix III) 8 that the number of

iterations required to converge in a typical situation approaches a

minimum when the proportional constant is approximately equal to one*

16





The criterion requiring identical magnitudes for the analog outputs

for all input patterns causes an extremely large number of iterations..

Therefore, a tolerance is usually established around the adaption level 9

defined as minimum square error bounds, and no changes are made to the

weight elements if the analog output falls within this bound.

This adaption scheme also suffers from the disadvantage that there

is no assurance of convergences even if the pattern classes are known to

be linearly separable* If the number of input patterns is equal to or

greater than one plus the number of weight elements 9 there is a possi°

bility that the adaption will not converge.. The two pattern space^

considered in section 3, will be used to illustrate this limitationo It

can be seen in Figure 8 (a) that the classes can be separated in such a

way that the analog output has the same magnitude for each patterno This

is not true in the case of the configuration of Figure 8 (b), and the

minimum square error procedure,, as described abovej, will not converge

even though the classes are linearly separable.

The next three adaption procedures have been proved to converge to

a solution provided that the pattern classes are linearly separable.

These schemes compare the adaption dead zone value with the actual analog

output and, if the magnitude of the analog output is less than the adap°

tion dead zone value, some method will be employed to adjust the weights

in such a way as to increase the analog output magnitude. However^ if

the analog output magnitude is equal to or greater than the adaption dead

zone, no changes are made*

17
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Fig. 8. Separation With Minimum Square Error Procedureo

Incremental Adaption

When the analog output magnitude is less than the adaption dead

zone value, all the weight elements are changed by an amount:

A I
Incremental Constant x Adaption Dead Zone

1
I

Total Number of Weight Elements

The number of iterations required to converge, and the final value of the

weight elements, is a function of the incremental constant o Note that

the corrections are independent of the errors»

18





Relaxation Adaption

This procedure is similar to the minimum square error adaption

except that no corrections are made when the analog output magnitude

is equal to or greater than the adaption dead zone. The adaption pro=

cess will converge if the proportional constant is between zero and twoo

The weight elements are changed, if required;, by an amounts

Aw.
(Adaption Dead Zone Analog Output) x Proportional Constant

Total Number of Weight Elements

Modified Relaxation Adaption

A disadvantage of the minimum square error and relaxation adaption

procedures is the large number of iterations required for convergence.)

When the difference between the desired analog output and the actual

analog output is small , a small correction is made Thus s the closer

the process gets to the solution^ the smaller the magnitude of the

corrective changeso The modified relaxation adaption procedure over-

comes this difficulty by correcting to a value larger than the adaption

dead zone. This value 9 usually 1»1 to 1«5 times the adaption dead zone

magnitude, is defined as the adaption level o No corrections are made if

the output magnitude exceeds the adaption dead zone. The equation for

the change of weight elements , where the proportional constant should

again be between zero and two for convergance » iss

I a I m (Adaption Level ° Analog Output) x Proporti onal Constant
i| Total Number of Weight Elements

19





8. Evaluation of Adaption Procedures

The different characteristics of the adaption procedures were in°

vestigated by the solution of some typical problems. In all casesj

Adaline was simulated on a CDC 1604 Digital computer using one of the

adaption procedures which are defined by the Fortran statements listed

in Appendix I* In one example the adaption process is examined after

each iteration;, (Appendix II), while in another a test is described of

Adaline's ability to correctly identify a number of patterns upon which

it had not been trained (Appendix IV).

If training patterns are not separable* the training process will

not converge and must be arbitrarily terminated* The Adaline will then

fail to identify all of the training patterns correctly^ but if the

number of failures is small this may be tolerable in some applications.

When it comes to the recognition of noisy versions of the training

patterns, it must be expected that Adaline will only recognize a sta<=

tistical percentage of the similar patterns presented* The only method

of ensuring that Adaline will correctly identify all possible input

patterns is to train on all the conceivable patterns* Bute, this is

then a form of "table look up" recognition^, which can be performed by

other means without the necessity of employing an iterative scheme.

Appendix V summarized the results of training Adaline on pattern classes

that are not separable.

No attempt will be made to promote the use of one adaptive procedure

in lieu of the others. It can be noted that the modified relaxation

procedure usually requires the fewest number of iterations to converge,

but results in a wide spread in the analog output values« On the other

hand, the minimum square error adaption requires more iterations to con<=

verge but has a narrow spread in the analog output values.

20





9. Possible Adaline Applications c

The output of a trained Adaline can be regarded as a binary digit 9

or logical decision^ whose value depends upon the pattern input to the

device* It follows.,, therefore^ that an Adaline can 9 in principle, be

applied in any situation where a decision is to be made on the basis of

some "input" to the decision making device* In particular^ the Adaline

concept is valuable in situations where performance can or must be

improved as experience accumulates

•

The basic difficulties in the application of Adalines relate firstly

to the problem of converting an input into a pattern^, and secondly to the

development of a suitable training procedure which will ensure that the

Adaline does in fact improve its performance with practice* The following

three sections will consider a few of the possible Adaline applications*

21





10. Servo-Mechanism Controllers

A single Adaline with its digital output can be used as a bang°bang

servo°mechanism controller as in figure 9.

Desired Adaline
Controller

Plant

Actual

Fig. 9. Basic Adaline Servo<=Mechanism Controller

Graduate students at Stanford University have used an Adaline in

such a control problem. The plant consisted of a rolling cart powered by

a reversible electric motor. Installed on the cart was an inverted

pendulum. The Adaline controller was trained to keep the pendulum in a

vertical position without extreme excursion of the cart in either diree=

tion. Four plant variables were measured; the position and velocity of

the cart and of the pendulum.

The direction the electric motor should rotate^, and thus the desired

Adaline digital output , is a function of the four measured variables.

The value of each variable can be cataloged into one of several distinct

levels j and each level can in turn be represented by a code consisting of

a series of pattern elements. These pattern codes must be carefully

chosen to ensure that the pattern classes are linearly separable. The

complete input pattern is composed of the pattern elements of the four

variables.

The Adaline is trained by permitting it to observe the performance

of another type of controller. The "correct" response is then available

at all times and the Adaline weights can be adjusted to bring the Adaline

output into agreement. After the training is completed^ the Adaline can

take over the operation of the plant.
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11. Speech Recognition.

A real time speech recognition system [5J has been constructed at

Stanford University<> The system^ which consists of several parallel

Adalines, has the capability of converting speech into typewritten wordSo

Since the operation of parallel Adalines will be discussed in a later

section, only the coding technique will be discussed hereo

The main problem encountered in coding was the choice of parameters

to describe the sound of a spoken wordo Bandpass filters were employed

to separate the sound energy into eight frequency bands and the sound

intensity in each band was then digitally coded according to the ampli=

tude level » Four levels were chosen corresponding to the three bit

patterns, 000? 001, 011 , or 111 9 where 1 equals +1 and equals =l e

Ten samples were taken during the utterance of a word 9 so that each

filter generated 30 pattern elements., The complete pattern from all

eight filters therefore consisted of 240 pattern elements..
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12. Weather Forecasting.

Adalines have been applied in the area of weather forecasting to

the extent of predicting "fair" or "rain" in one locality Q3J. In

this application parallel Adalines were trained to Interpret weather

maps. In particular , they were trained to "read" surface pressure maps

of a 500,000 square mile area<>

The weather map was divided into 48 regions each of approximately

600 square miles 9 Then 9 the expected range between the highest and

lowest pressures was divided into ten levels 9 each of which was repre°

sented by one of the ten digits , through 9. Thus*, each input pattern

contained 48 pattern elements each of which could acquire one of ten

values (as compared with the usual two).

The results obtained from the Adalines were comparable with those

obtained from "human" weather forecasters.
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13. Classification When Pattern Classes Are Not Linearly Separable.

Previous sections have discussed the basic structure of an Adaline

and have detailed several schemes for the use of an Adaline in pattern

recognition and classification. The discussion thus far has been limited

to the separation of sets of input patterns into classes by a single

Adaline. It was found that the classification of input patterns into

two classes could not always be affected with a single Adaline. This

situation was illustrated by the not linearly separable example shown in

figure 3. In that example it was desired to classify all input patterns

into the two classes?

(a) both p, positives or both p. negative^ and

(b) p^'s with alternate signs

This separation can be accomplished by a system using two Adalines in

parallel. The weights of the two Adalines define two hyperplanes, which

affect the desired separation as illustrated in figure 10. The overall

system consists of two logic layers , the first layer being composed of

Adalines with adaptive elements and the second layer made up of a fixed

logic element or threshold device In the first layer each Adaline

\Hyperplane from
\. Adaline Two

Hyperplane from
Adaline One

T r
l

Fig. 10o Linear Separability
With Multiple Adalines
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attempts a classification of input patterns into linearly separable

classes while the second layer combines the outputs of the first layer

to complete the desired classification. Using the example of figure 10,

the inputs would be classified in the first logic layer as follows:

Adaline One a) both p. positive

b) all others

Adaline Two a) both p, negative

b) all others

This classification would place the two hyperplanes as in figure 10.

The next step would be to insert the Adaline outputs into the second
1

layer which is an "or" gate (in this case) in order to realize the

desired output classification. This process is summarized in table 3.

Table 3. Separation Using Two Logic Layers

Inputs Outputs

Adaline #1 Adaline #2 Or Gate Desired

1 1 1 -1 1 1

1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1

-1 -1 -1 1 1 1

It is apparent that the choice of weights (hyperplanes) in the

first level Adalines is dependent upon the logic device used in the

second layer and vice versa. It follows that the choice of a logic

device and the establishment of a training procedure for the Adalines

may prove very difficult if the result is not known in advance, as it

was here. In fact this would seem to be the major difficulty in this

An "or" gate is a device which gives a positive output if one or
more of its n inputs are positive.
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scheme. One approach to this problem now follows.

There are many devices which could be used in the second layer to

combine the Adaline outputs, so that it is important to estimate which

of these devices is likely to be the best one for this purpose. The

previously mentioned "or" element can be regarded as a special quantizer

whose output is -1 unless at least one Adaline output is positive*. At

the other extreme would be an element whose output is -1 unless all n

Adaline outputs are positive.

In trying to find the "best" quantizing device for use in the second

logic layer it seems natural to try a device whose output becomes +1 when

about n of the Adaline outputs become positivee It has been found, [7 ,

2

that for a system with an odd number of Adalines, a simple output

majority, or a second layer "threshold" of n+1 , will realize the
2

classification of the greatest number of inputs. Similarly for an even

number of Adalines, second layer thresholds of n or n+2 will realize the
2 2

highest percentage of classifications. It should be noted that the

criterion used in the above reference to determine the "best" second

layer threshold for general use was the criterion of the classification

of the maximum number of input pattern sets. However, for any specific

patterns, or sets of patterns, the threshold which is "best" might be

anywhere from 1 to n.

There is still the problem of choosing the "best" adaption scheme

for the first layer. One method that has been suggested makes use of

both the analog output data from each Adaline and the digital output

desired from the overall system. In the case where the second layer

element is an "or" gate, the procedure to be followad will depend on

the desired system output. Thus, if the desired system output is -1,
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all Adalines must give a negative output and any Adaline which is giving

a positive output will have to be adapted. However, when all first layer

outputs are negative and the desired system output is +1, only one

Adaline need by adapted. In this case it has been suggested that

adaption be confined to the Adaline whose analog output needs the srnall =

est change to establish the required condition. If the second layer

threshold is a majority logic device, the same general procedure will be

followed. If, to obtain the desired system output, the output of at

least k Adalines must be revised, the k Adalines whose outputs require

the least change will be adapted. The idea behind this procedure is that

adaption should take place with the minimum of disturbance to the pre=

viously established pattern of weights.

It may be noted that if it were not for the difficulty in choosing

a suitable logic for the second layer, and a training procedure for the

first, it would be theoretically possible to establish any desired

classification if sufficient Adalines were employed in the first layer.

In an extreme case, for example, the n+1 hyperplanes defined by the

weights of n+1 Adalines could separate one input from all others in

n-space if the weights could be chosen properly, and ^f the second logic

layer properly interpreted the outputs of the Adalines.
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14. Madaline*

Multiple .^da lines in parallel, or a Madaline as this combination is

sometimes called, may also be used to classify a set of input patterns

into more than two output classes. If the input patterns can oe

appropriately separated by each of the Adelines, Madaline can accomplish

the desired classification with the help of a digital output codin

scheme such as that illustrated in figure 11 and table 4. It is easily

seen that the maximum number of individual output codes available is 2"

where m is the number of Adalines in the Madaline. As m = 3 in figure 11

and table 4, it is readily apparent that eight input patterns or pattern

sets can be classified into eight different digital output combinations

in this situation.

Here the coding scheme is predetermined, so that the training

follows the procedure devised for a single Adaline. That is, each

Adaline is trained individually to generate the appropriate response to

each of the training patterns.

The problem which may arise is related to the choice of codes for

the several pattern sets. If these are not properly chosen, ther. the

Eiaital y +1

outputu
*>

1UUL

Desired Output
(Training Only)

J COMP \ Output
code

Fig. 11. Madaline Output
Coding scheme
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individual Adalines may well be attempting to separate the patterns into

classes which are not linearly separable. A change in the codes may

eliminate the problem in any given situation, but no systematic pro-

cedure for choosing the coding scheme has been found.

Also to be considered is the fact that the coding scheme may affect

the number of Adalines needed, and/or the number of adaptions necessary

during training. These considerations, however, seem to be less im-

portant than that of the previous paragraph.

For the example of figure 11 all eight possible binary output codes

are used. Note, however, that there are many possible choices for the

code to be assigned to each pattern or pattern set. One such choice is

shown in table 4.

Table 4. rypical Madaline Output Coding Scheme

Adaline 1 Adaline 2 Adaline 3

pattern 1

Output Output Output

= 1

pattern 2 -1 1 • 1

pattern 3 -1 m \

pattern 4 -1 1

pattern 5 1 -1

pattern 6 wm
]_ -1

pattern 7 1

pattern 8 -1 -1 -1

To summarize, each of the Adalines is trained to separate the input

patterns into two classes (a) +1 output and (b) -1 output. Then, as an

input pattern is imposed on the Madaline, the Adalines simultaneously

determine their output responses. The outputs can then be examined to

properly classify the imposed pattern. The classification of the
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written digits, one through eight, suggested herein was successfully

accomplished using three computer-simulated seven by seven Adalines«
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15. Character Recognition

In this section the application of a Madaline to the recognition and

classification of hand printed letters, numbers and other punctuation

symbols will be discussed. For def initeness, the alpha--numeric character

set chosen corresponded to that used in Fortran computer coding, and the

aim was to evaluate the possibility of "reading" hand printed Fortran

symbols using a Madaline.

The investigation was divided into two parts. The first consisted

of an evaluation of the feasibility of classifying the ten numeric

characters using a Madaline, while the second consisted of an attempt

to classify 45 Fortran characters using a similar device.

In the first part of the investigation the Madaline consisted of

four Adalines, the minimum number required, each with a seven by seven

input space. The first tests were conducted using patterns of ten digits

obtained from five different persons, each of whom wrote one sample of

each of the ten digits on a standard Fortran coding form. The written

digits were enlarged by projection on a screen and a seven by seven grid

form was used to determine the actual input patterns used. Each test

digit was centered on the seven by seven grid form and a digit was de°

fined to be "in" a grid space if it entered in such a manner that both

sides of the line could be seen inside that space- The tests, which are

detailed in Appendix VI, were conducted using the patterns obtained in

this manner. In one of these tests, the Madaline was trained four times

on each of the fifty different input patterns and was then asked to

classify each input pattern. All input patterns were classified

correctly.

The second part of this investigation was again conducted with the
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minimum number of Adalines required. Six Adalines, each with a seven by

seven input space, were used to classify the 45 Fortran symbols. The

results of this classification are detailed in Appendix VII.
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16. Summary and Acknowledgements.

This paper contains a survey of the pattern recognition problem as

approached through the application of adaptive linear neuron devices.

Some of the basic Adaline concepts were verified experimentally and some

concepts were amplified. In particular, an example was shown of the

inability of the minimum square error adaption procedure to separate in-

put patterns that were linearly separable, and a method was developed

to display the convergence characteristics of the individual adaption

procedures. In addition, preliminary tests to determine the feasibility

of utilizing a Madaline for character recognition indicated that a pos°

sible application exists in this field.

An interesting project, which is a natural follow up of the work de-

tailed herein, would be that of using an actual laboratory set up to more

completely determine the feasibility of utilizing Madaline for character

recognition. Perhaps this could be accomplished using photocells for

input pattern detection. Another carry over project using Adalines would

be to continue the weather forecasting analysis previously discussed jlf)

The wealth of weather data available at this location makes this a par=

ticularly feasible project.

The authors wish to acknowledge the guidance and assistance given

to them by Dr. J. R. Ward.
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APPENDIX I

FORTRAN STATEMENTS OF ADAPTION PROCEDURES

The Fortran statements used to simulate the four adaption procedures

are listed below. The program was written for an Adaline having 17

weight elements. It is to be noted that this is not the complete program

but only the adaption techniques.

Abbreviations used in the program:

ADAPT Adaption level

BETA Increment constant

BMSE Bound for minimum square error

DELTA Dead zone level

PAT(I,J) Input pattern, I=pattern element, J=input pattern
number

PIE Proportional constant

SGN(J) Desired binary output of pattern J

SUM Analog output of pattern J

WEY(I) Value of weight element I

C MINIMUM SQUARE ERROR ADAPTION

ERROR=SGN(J)*DELTA-SUM

A3ER=ABSF( ERROR)

IF(ABER-BMSE) 100,100,50

50 EN0RM-PIE* ( ERROR/ 17.0)

DO 60 1= 1,17

60 WEY(I)=WEY(I)+EN0RM*PAT(I,J)

100 CONTINUE

36





C INCREMENTAL ADAPTION

IF(5GN(J)) 256,254,254

254 IF(SUM) 258 9 258 9 255

255 IF(SUM-DELTA) 258 9 262,262

256 IF(SUM) 257,259,259

257 IF(SUM+DELTA) 262, 262 9 259

258 SIGN=+1»0

GO TO 260

259 SIGN==loO

260 DO 261 1=1,17

26

1

WEY( I) =WEY( I) +S IGN*BETA*PAT( I , J)

262 CONTINUE

C RELAXATION ADAPTION

IF(SGN(J)) 306,304 9 304

304 IF(SUM) 310,310,305

305 IF(SUM+o0005~DELTA) 310,312,312

306 IF(SUM) 307,310 9 310

307 IF(SUM-.0005+DELTA) 312,312,310

310 ERROR=SGN(J)*DELTA~SUM

ENORM=P IE* ( ERROR / 1 7 <, 0)

DO 311 1=1,17

311 WEY(I)=WEY(I)+ENORM*PAT(I,J)

312 CONTINUE
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C MODIFIED RELAXATION ADAPTION

IF(SGN(J)) 356,354,354

354 IF(SUTl) 360,360,355

355 IF(SUM-DELTA) 360,362,362

356 IF(SUM) 357,360,360

357 IF(SUM+DELTA) 362,362,360

360 ERR0R-3GN(J)*ADAPT-SUM

ENORM-P I E* ( ERROR / 1 7 . )

DO 361 1-1,17

361 WEY ( I) -WEY( I) +EN0RM*PAT ( I ,J)

362 CONTINUE
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APPENDIX II

EXAMPLES OF ADAPTION PROCEDURES

An example of pattern separation was solved using each of the

four different adaption procedures to illustrate their characteristics,

The test patterns were:

(+1)

(-1)

X • X o • X • X 0.00
» X • . a c X s X » X • . X e X
X » X o . X . X • X e a Q X )

see. Q • A C X 8 • X o X

(1) (2) (3) (4)

o X 9 • • a X • • o a o e o

X 9 X e X • X 9 X y o X

XXX. .XXX X o X • s X e X
• ( • • ... a XXX. .XXX

(5) (6) (7) (8)

When a pattern is imposed on an Adaline, corrections are made to the

weights so that its analog output satisfies the training criteria. ThiSj

however, has a tendency to partially destroy some of the effects of

previous training. In an attempt to illustrate this process, the analog

output of the Adaline was examined after each adaption throughout this

test.

The fixed conditions of this experiment were:

Weights: Continuously variable with initial values of 0.0

Pattern sequences 1, 2, 3, 4, 5, 6 9 7 8 8

Proportional constant: 1.00

Minimum square error adaption level? 30.00

Minimum square error adaption bound? + 1.00

Incremental constant: 1.00

Adaption dead zones 30.00

Adaption levels 40.00
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Minimum Square Error Adaption

Number of iterations required to converges 64

Weight elements after convergence.

3.436
7.364 10.197 -5.141 -5.773

-.725 9.090 .228 =11.528

-17.821 =12.380 -16.595 -15.091

-.400 -3.237 -9.718 4.442

Analog output of each pattern after convergence.

Pattern Analog output

1 29.819

2 29.385

3 29.031

4 29.368

5 -29.846

6 -29.529

7 -30.063

8 -30.000
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Incremental Adaption

Number of iterations required to converges 82

Weight elements after convergence.

4.000
10.000 14.000 -6.000 -6<>000

-2.000 10.000 .000 -14.000

-22.000 -14.000 -22.000 -16,000

-2.000 -10.000 -12.000 6.000

Analog output of each pattern after convergence.

Pattern Analog output

1 30.000

2 46.000

3 30.000

4 30.000

5 -42.000

6 -34.000

7 -46.000

8 =30.000
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Relaxation Adaption

Number of iterations required to converges 168

Weight elements after convergence.

3.540
7.881 10.304 -5.277 -5.918

-.730 9.141 .285 -11.706

18 . 106 -12.534 -16.846 -15.344

-.401 -8.312 -9.827 4.516

Analog output of each pattern after convergence.

Pattern Analog output

1 30.000

2 30.000

3 30.000

4 30.000

5 -30.000

6 -30.000

7 -30.000

8 -30.000

Notes The criterion of the relaxation adaption procedure is that the

magnitude of the analog output for each pattern be equal to or greater

than the adaption dead zone. In this particular example the magnitude

of each pattern analog output after training was exactly equal to adap*

tion dead zone. This would not normally be expected .
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Modified Relaxation Adaption

Number of iterations required to converge? 31

Weight elements after convergence.

3.896

9.918 12.819 -5.197 -6.787

-1.319 9.970 .057 -13.871

20.536 -14.237 -20.485 -16.814

-1.542 -9.604 -11.569 5,735

Analog output of each pattern after convergence.

Pattern Analog output

1 34.697

2 37.435

3 30.138

4 30.844

5 -36.076

6 -37.091

7 =40.000

8 -33.365
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APPENDIX III

MINIMUM SQUARE ERROR ADAPTION AS A FUNCTION OF PROPORTIONAL CONSTANT

An investigation of minimum square error adaption was conducted to

determine the effect of the proportional constant. The number of iter=>

at ions required for convergence and the resultant value of the weight

elements were examined » Fixed conditions of the experiment weres

Adaption levels 30»00

Bound for minimum square error; +1»00

Weights s Continuously variable with initial values of 0»0

Pattern sequences? A. 1, 2, 3, 4, 5, 6, 7, 8

B. 1, 5 9 2, 6 9 3, 7, 4, 8

C • Random

Training patterns

X & J X . X • o X • X 8 o o e

X . e O X e X X • e X o A

(+D X X e » X a X e X • e • o X •

• a o

(1)

• • O

(2)

e X X

(3)

• o X a X

(4)

• • X • • X 9

X . X • X © X • X © O A

(-D X X X • • X X X X • X e o X o X

a •

(5)

a •

(6)

• X X X

(7)

e o X X X

(8)

C & T X X X . X X X o • o X X X X

X a a • Q 9 X X • a X X a e X

(+1) X 9 • • • « X X X X a o X
X X X

(1)

« . X X

(2)

X X X X

(3)

X a a a a

(4)

X X X • • » X a a X e

• X . c XXX X X o a e a » X •

(-D e X . • • o • X X X X X a a X •

X a s s a X a X X X

(5) (6) (7) (8)
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Training patterns

X & X . X « X . X 9 « a

X . X e X X X o X

( +D X . X e X . X X . X

(1) (2)

X X

(3)

• X . X

(4)

X X X X X X

X X X . X X X X XXX
(-D X X X X X X X . X X . X

• •

(5)

• • »

(6)

X X X

(7)

XXX
(8)

U 6e T X e o X X X X X X X X X X XXX
X a » X X • • X e e X X

(+1) X » o X X » • X « X « X
X X X

(1)

X X X X

(2)

X X

(3)

X X XXX
(4)

X X X X • X X X e X
X X © X X X X X X X XXX

(-1) X X • X X X X X X X XXX
X X

(5)

e o

(6)

X X X X

(7)

X X

(8)
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NUMBER OF ITERATIONS REQUIRED TO CONVERGE FOR MINIMUM
ERROR ADAPTION

PROPORTIONAL CONSTANT

PATTERN SEQUENCE .25 o50 .75 1.00 lo25 1.50 1.75 1.90 2.00

X&J A 434 188 104 64 42 72 162 455 *

B 423 182 109 66 49 71 162 434 *

C 440 200 136 96 72 99 160 392 *

C&T A 143 68 37 47 35 52 132 353 k

B 149 68 46 49 43L 49 123 343 *

C 139 72 56 40 72 80 168 383 *

X&O A 297 129 73 45 45 69 122 360 *

B 300 144 84 54 47 66 145 367 *

C 312 152 96 72 72 85 143 366 *

U&T A 96 55 35 27 37 58 92 259 *

B 97 51 35 31 45 60 149 397 *

C

i

104 56 40 45 40 72 120 280 *

* denotes nonconvergence
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RESULTANT WEIGHT ELEMENTS AFTER CONVERGENCE FOR X & J PATTERNS

PROPORTIONAL PATTERN WEIGHT VALUES AFTER
CONSTANT SEQUENCE CONVERGENCE

•25 A 3,454

1.00 A 3,436

1.90 A 3.519

.25 B 3.446

1.00 B 3.406

7.661 10.010 =5.114 -5.758

=.737 8,868 .265 =11.380

17.576 =12,174 =16.368 =14,392

= .425 =8.074 =9.559 4.389

7,864 10.197 =5,141 =5.773

o.725 9.090 ,228 =11.528

17,821 -12,380 -16,595 =15,091

-.400 =8,237 =9,718 4,442

7,936 10.373 =5.306 =5,979

= .859 9.161 .202 =11,658

=18.137 =12.682 =16.912 =15.342

-„448 =3.136 =0.811 4,694

7.622 9.991 -5.137 =5.742

= .713 8.869 ,285 =11,352

17.575 =12,162 =16.328 =14,895

= .394 -8,059 =9.548 4.380

7.670 10.244 =5.334 =5,698

= .663 9.199 .388 =11.464

17.932 =12,542 -16.403 -15.285

= .259 =8,121 -9.846 4.478

51





PROPORTIONAL PATTERN WEIGHT VALUES AFTER
CONSTANT SEQUENCE CONVERGENCE

1.90 B 3,569

.25 C 3.426

1.00 C 3.467

1.90 C 3.657

7.950 10*375 -5.356 -6,014

-.920 9,144 ,220 -11,739

-18.160 -12.729 -l6o966 -15,378

-.418 -8.154 -9,782 4.650

7.672 10*099 -5,116 -5.740

-.720 8.878 .259 -11.357

-17,573 -12*172 =16,367 -14,878

-,389 -8,063 -9.527 4,394

7e803 10,130 -5.193 -5,853

-.674 9.104 .290 -11,560

-17.826 -12,455 -16.525 -15.247

-.310 -8.210 -9,705 4.423

7.762 10,126 -5.357 -5.943

-.775 9.026 .270 -11,689

-18.095 -12.358 -16.831 -15,239

-.394 -8.358 -9.690 4,380

52





COMMENTS

1* The proportional constant strongly affects the number of iterations

required to converges A minimum number of iterations was required when

the proportional constant was approximately equal to one. The adaption

process will not converge if the proportional constant is equal to two.

2. For each pattern pair 9 the final values of the weight elements were

approximately the same regardless of the proportional constant chosen

or the sequence of the training patterns. Only a representative sampling

of resultant weights are included in the data 9 but all the results sup°

ported the above conclusion.
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APPENDIX IV

ADALINE RESPONSE TO SIMILAR PATTERNS

An Adaline was trained^, until it had converged to a solution^ on the

ten patterns shown below 8 After convergences, 50 "similar'1 patterns were

imposed upon the trained Adalineg the "similar" patterns being generated

by randomly changing one pattern element of the training patterns* This

test was conducted using each of the four adaption procedures in turn 8

Training Patterns

+1 Class

A • o A X o o A O A o o o A
« A A o • o A A o X A X X o A o A o

.XX. o A A o o A A o o X X o A
A o o A A o o A o A A o o X X o A o A o

• O « A o o A o X X A o o o A
(1) (2) (3)

-1 Class

(4) (5)

• • o A A A
A • o A A A A

A • o A A o o A A O A A o o o A
X X X X X X X X A o o A o A o o A A o o o A
• •00 X X X X . X X X X X X X X X

(6) (7) (8) (9) (10)

The fixed conditions of the experiment were?

Weights? Continuously variable with initial values of 0»0

Pattern sequences 1 9 2, 3, 4, 5, 6 S 7, 8, 9, 10

Proportional constant; KOO

Minimum square error bounds + KOO

Adaption dead zones 30.00

Incremental constants KOO

Adaption levels 40.00
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Adaption
Procedure

Number of

Iterations
Range of Analog
Output for Train-
ing Patterns

Range of Analog
Output for Similar
Patterns

Minimum
Square
Error

103

+ <= + o

30.128
29.587

29o076
30.837

35.657
6.508

19o268
38.684

Incre=
mental

29 62.000
36.000

36.000
52.000

58.000
18.000

318.000

64.000

Relaxation 99 42.274
30.000

30.000
38.701

43.564
17.171

17.099
49.652

Modified
Relaxation

i

19 52.642
30.534

35.249
46.580

55.708
17.156

17*367
57.823
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COMMENTS

The range of the analog outputs for tne similar patterns is de-

pendent upon the final trained values of the weight elements* In this

example, one pattern element was changed in the generation of each simi=

lar pattern and this had the effect of changin3 the sign of one corres°

ponding weight element o Thus the largest change j, in this case y would

occur when the pattern bit corresponding to the largest weight element

is changed in sign..

All of the analog outputs of the similar patterns were of the same

sign as the desired binary output <> However, if similar patterns had

been formed by changing more than one pattern element 9 it is possible

that some of the similar analog outputs would be of a different sign

than the desired pattern binary output

o
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APPENDIX V

THE RESPONSE OF AN ADALINE TO TRAINING PATTERNS THAT ARE NOT LINEARLY
SEPARABLE

Two pattern classes were chosen so that they were not linearly sepa=

rable<> This was accomplished by assigning the same pattern t© both the

(+1) and the (°1) class* There were a total of 100 input patterns 8 eaeh

of which was composed of nine pattern elements o The training patterns

used in this experiment are tabulated in [l[ e

The experiment consisted of two parts 9 the first consisting of an

attempt to separate the two pattern classes by imposing all the training

patterns on the Adalineo This was performed for both 500 and 5000 iter°

at ions o Second;, a random sample of ten patterns was chosen and Ada!!

was trained on these patterns for 200 iterations or until it

to a solutions Then the remaining 90 patterns were imposed

trained Adalineo The fixed conditions for this experiment are the same

as those listed in Appendix IV.

The results are listed in the following table<> For this experiment s

a pattern was defined to be not correctly identified if its analog output

was either of an opposite sign to the desired pattern binary output or

if the analog output was zero.
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Number of Patterns Not Correctly Identified

Adaption Procedures

Number of Number of Min Sq» InCo Relaxation Modified
Training Iterations Error Relaxation
Patterns

100 500 13 4 1 7

100 5000 13 2 5 5

10* 200 11 9 9 9

10* 200 14 10 10 10

10* 200 14 9 10 9

10* 200 22 11 11 7

* Different random samples of ten patterns,





APPENDIX VI

NUMERIC RECOGNITION TESTS

A computer simulated Madaline consisting of four Adalines was em°

ployed to attempt the separation of the ten numeric characters into the

ten different classes, zero through nineo Ten hand written digits (one

set) were obtained from each of five persons 9 and were converted into

patterns in a seven by seven input space<> The computer program was

written in Fortran and executed on a CDC 1604 digital computer using the

Minimum Square Error adaption scheme with a proportionality constant of

one and an adaption dead zone of 30» The following output coding scheme

was used in this investigations

Digit Adaline 1

1

2

3

4

5

6

7

8

9

Adal ne 2 Adaline 3 Adaline 4

A series of tests were run in which one 9 two or more sets of

patterns were used to train the Madalinej, after which the Madaline was

asked to recognize and classify all fifty input patterns o The number

of training iterations performed prior to the classification check 9 and

the number of digits recognized out of the total of fifty imposed on
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the system are included in the data tables below.

Noo of patterns
I No« of training

trained on iterations
l

_. ..._ .

Noo ©f patterns
checked

N©o of patterns
classified

1 set of 10 4 iterations
per pattern

50 36

2 sets ©f 10 4 iterations
per pattern

50 36

3 sets of 10 4 iterations
per pattern

50 44

4 sets of 10 4 iterations
per pattern

50 45

5 sets of 10 4 iterations
per pattern

50 50

Noo of patterns
trained on

Noo ©f training
iterations

Noo of patterns
checked

Noo of patterns
classified

1 set of 10 200 total
iterations

50 3?

2 sets of 10 200 total
iterations

50 38

3 sets of 10 200 total
iterations

50 44

4 sets of 10 200 total
iterations

50 44

5 sets of 10 200 total
iterations

50 50

The results of this test show that the system must be trained on

all patterns to insure that it will be capable of classifying all the

patternso However g training on just one set gave the system the capa-

bility of recognizing many of the other patterns submitted t© it for

classifications Of interest is the suggestion that repeated iterations

do not necessarily improve the ability of the system to classify the lm<

posed input s«
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APPENDIX VII

FORTRAN SYMBOL CLASSIFICATION

The sole purpose of this test was to determine whether or not 45

hand printed Fortran symbols could be separated by a computer simulated

Madaline consisting of the minimum number of Adalines that could theo«

retically accomplish this task. Six Adalines,, each with a seven by

seven input space 9 were utilized to accomplish the desired separation

after the hand written characters had been converted into input patterns.

The computer program was written in Fortran and executed on a CDC 1604

digital computer using the Minimum Square Error adaption technique. A

proportionality constant of one and an adaption dead zone of 30 were

used for this teste

After extensive manipulation of the Madaline output coding schemes 9

the 45 characters were properly classified. Nine thousand training

iterations were executed prior to the classification of the 45 input

patterns. The 45 Fortran symbols and the output coding scheme

accomplished the desired classification are as follows"

Pattern Adaline Adaline Adaline Adaline Adaline Adaline
One Two Three Four Five Six

-1 1 1 I X

1 1 1 1 I a ^

2 = 1 1 <=! I = 1

3 = 1 1 -1 -I

4 1 1 1 1 o jL

5 1 1 1 -1 O \ a 1

6 -1 1 -1 1

7 1 1 1 = 1 a X
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Pattern

8

9

A

B

C

E

F

G

H

I

J

K

L

M

N

P

Q

R

S

T

U

V

W

X

Adaline
One

Ada
Two

ine Ada
Three

ine Adaline
Four

1

Ada] me
Five

Adaline
Six

>1

1

1

1

1

1

1

1

1

1

1
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Pattern Adaline
One

= 1

Adaline
Two

Adaline
Three

1

Adaline
Four

1

Adaline
Five

C3 \

Adaline
Six

Y 1 -1

Z -1 -1 1 4 o \ = 1

+ 1 i -1 1 1

<=> = 1 = 1 1 -1 1

/ °1 = 1 1 1 X -1

( = 1 «1 1 -1 = 1

) = 1 -1 1 1 ca X 1

9 -1 = 1 = 1 -1 = 1

e 4 -1 = 1 -1 °1 1

« -1 = 1 = 1 1 G9 \ 1

* = 1 = 1 = 1 1 1

The final output coding scheme was obtained mainly by trial and

error methodSo However s an effort was made to use certain characteristics

of the individual input patterns to facilitate the desired classification.

Specif ically 9 at least one Adaline was trained to produce the same output

for each of the following sets of input patterns?

a' Patterns with a long vertical line in the left
hand column*

Patterns with other long vertical lines.

Patterns with a long horizontal line.

Patterns with large circles

Patterns with small circles

Patterns with small horizontal lines

Patterns with small vertical lines

Patterns with left to right slant lines

Example? E 8 L 9 P

Examples 4 9 I 8T

Example? E 9 Hj,I

Examples 0,Q

Examples 8 9 9 9 P

Example? A 9
+

8
-

Examples 5,+

Examples N 9 V 9 X
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i) Patterns with right to left slant lines Example; I<s>Z>/

j) Patterns which were smaller than the others Examples »
8

°
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