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ABSTRACT

An accurate method of parameter estimation for the mathemati-

cal modeling of semiconductors using the Ebers-Moll equations is

presented. Its usefulness is apparent in estimating parameters

to be used in computer circuit-analysis programs that have been

developed. The Ebers-Moll models were modified to better

represent the actual characteristics. The least-square-error

methods presented for estimating the parameters are easy to pro-

gram to the digital computer and result in parameters that are

quite accurate in describing the actual characteristics. This

procedure yields solutions for parameters that are quite helpful

to the engineer in solving electrical circuits involving p-n

diodes and junction transistors.
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I. INTRODUCTION

In this age of computers, several excellent computer circuit-

analysis programs have been developed which solve the equations

describing electrical networks with remarkable accuracy. In order

for the computed results to agree with actual circuit performance,

the procedure of device modeling must furnish accurate models

which are computationally efficient. As stated in a paper

published by Design Automation, Inc. I

1J , "For all its advantages,

the computer analysis of a circuit can be no better than the data

that are fed into it. Poor models or improperly assigned values

yield inaccurate results. In fact, once a circuit-analysis pro-

gram is running on a computer and the designer has developed the

skill to use it, the choice of semiconductor models and procedures

for finding numerical values for the models' parameters are the

main stumbling blocks to applying the program. The parameters of

a real switching transistor or real diode vary as functions of

voltage, current and temperature. Modeling is most accurate when

the device characteristics are measured under conditions of

voltage, current and junction temperature similar to those under

which the device is expected to operate." After a model has been

chosen, it is essential that the various parameters must be

computed easily and accurately. With nonlinear devices, such

as diodes and transistors, the model equations must give a

mathematical description of the curve so that for a given voltage

the current is known or vice versa. For this analysis, the



Ebers-Moll 2J
models (modified slightly) for the diode and the

transistor are usually employed. Using these models, methods

are needed to determine the various parameters necessary for

computation using any of the several computer circuit-analysis

programs (TRAC, CIRCUS, NET I, NET II, and SCAN). These models

cover both small- signal linear and large- signal nonlinear

operation. The analysis in this thesis is limited to determining

model parameters using steady-state characteristics.

In May, 1965, engineers at North American Aviation, Inc.

completed analysis on the least-square-error curve fit for the

semiconductor diode model parameters for the SCAN and TRAC

computer circuit analysis programs. The modified Ebers-Moll

model for the diode was presented and the necessary assumptions

were included.

Design Automation, Inc., in June 1967, proposed a modeling

procedure for transistors and diodes for computer-aided nonlinear

circuit analysis 111 . The models presented were essentially

the Ebers-Moll models with additions. The analysis by Design

Automations, Inc. was developed for the NET I Network Analysis

Program. Several improvements were made to the existing models.

In June 1968, the junction transistor model (modified Ebers-

Moll model) was presented by E. Steele for the TRAC computer

analysis program I

3
J . In March 1969 engineers at North American

Rockwell Corporation presented, in an internal letter, a proposed

method, using least-square estimation, of deriving the various

parameters by analyzing the two junctions of the transistor

separately.
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In this thesis the problem of estimating the parameters of

the Ebers-Moll models is considered. Questions investigated

are: (1) determination of which regions of a semiconductor device

are most useful for estimating each parameter of the model,

(2) development of computer techniques of parameter estimation

using least-square-error and normalized least square error

solutions, and (3) estimation of the accuracy of the estimations.

The ultimate question is whether the proposed models give an

accurate representation of the actual performance of the semi-

conductor devices.

In Chapter T.I the modified Ebers-Moll models for the diode

and the transistor are presented. These models allow accurate

calculations to be made of the semiconductor device parameters

necessary for the computer circuit-analysis programs.

In Chapter III the two methods of least-square-error

solution are presented. One method is based upon the usual

least-square-error solution and the other is based upon a normal-

ized least-square-error solution as developed by Werther and

Parker |V1.

Procedures for calculating the semiconductor device parameters

are presented for both the diode and the junction transistor. A

discussion of the useful regions of parameter determination and

the typical values expected from this analysis is included. A

method of accumulating measured data and correcting estimated

values accordingly in also discussed.

The parameters for typical diodes are calculated in the

Appendix, using the two least-square-error methods. A comparison

11



of the results of these two methods is made and includes

calculation of the error after the model parameters have been

estimated.

The computer programs used for the solution of the model

parameters are given following the Appendix. Recursive equations

for both least-square-error methods are used. The FORTRAN IV

programming language is used for the computer programs. Most of

the subroutines were developed for this analysis, but several

were existing subroutines in the Naval Postgraduate School

Computer Facility subroutine library.

12



II. EBERS-MOLL MODELS

Ebers and Moll described the diode model and the junction

transistor model, under DC conditions, using the small-signal

parameters to relate to large-signal behavior [2J. These models

described all regions of operation. Most of the other proposed

models are mathematically equivalent and generally less accurate

than the Ebers -Moll model
|_5J.

Both the diode and the transistor

models are considered below. The Ebers-Moll equations are modi-

fied by considering a term called the emission constant M for the

diode and Mg and Mq for the transistor. Also linear resistances

are added to account for the deviations from the ideal models.

The Ebers-Moll models relate the semiconductor device character-

istics in terms of several parameters, and generally provide very

little insight to the actual physical processes within the devices

represented by these models.

A. DIODE P-N JUNCTION MODEL

For an ideal p-n junction diode, the current and voltage

have the following relationship

I = I
s
.[exp^AT) -T) (2.1)

where I s is the reverse saturation current

V is the voltage across the terminals

q is the charge on an electron

k is the Boltzman constant

T is the absolute temperature (room temperature- 2 98°K)

kT/q equals 26mV at room temperature.

13



In practice very few p-n junctions can be described using the

ideal diode relationship. In order to account for deviations

between the theoretical and actual characteristics the ideal p-n

junction diode needs to be modified by placing linear elements in

parallel with or in series to the ideal diode. A large parallel

resistance called the reverse diode leakage resistance is used to

represent the slope of the reverse characteristics, and a small

series resistance called the diode ohmic series resistance is used

to represent part of the voltage drop across the p-n junction.

Also, a modification to the Ebers-Moll model is the quantity

M called the diode emission constant, with a value between 1 and 3,

which changes the exponential dependence to more exactly describe

the actual behavior, because of the non-ideal operation I 3
\

.

The modified ideal diode equation becomes

I = I s |exp(qV/MkT) - l] . (2.2)

The DC diode circuit is given in Figure 1 using the above model.

The various quantities included in Figure 1 are defined as

Vj, Ij - the measured diode terminal voltage and current

R
g

- the combined body, lead and contact resistance

Rn - the reverse surface -leakage resistance across the junction

D - the modified ideal diode

I - the ideal diode current given in equation 2.2.

From the measured data of current and voltage, the parameters

I , R , R and M are to be determined to describe a specific

diode or p-n junction.

14
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DC P-N Diode Circuit Model
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B. JUNCTION TRANSISTOR MODEL

For the ideal junction transistor, Ebers and Moll proposed

the following current-voltage relationship assuming a pnp

transistor
|2 J.

r™ r "I °CI™ "I
(2.3)IE

= IE
I
_^^xP(qVE

AT)-l
'N

Ir == -«<ulNxEO

%°<I
exp(qVEAT)-l

°( I
I CO exp(qV AT)-1

1- ^N^I

CO

N 'I

+
i-c< oC Sxp(qVcAT)-l

o< I o( i1 CO = N EO

where Ip = the emitter current

(2.4)

(2.5)

Iq = the collector current

Vg = the emitter-to-base voltage

Vq = the collector-to-base voltage

jq
= the common-base normal-mode DC current gain

j = the common-base inverted-mode DC current gain

IgQ = the saturation current of the emitter junction with

zero collector current.

Iqq = the saturation current of the collector junction with

zero emitter current.

From this the following is true 13

J

X
ES

= W^^N^l) (2.6)

*CS
- W^^N^l) (2.7)

where I_„ = the emitter- to-base p-n junction saturation current

Ipo = the collector-to-base p-n junction saturation current.

16



In order to make the exponential dependence more exact, two

quantities ME and Mq are needed similar to the diode exponential

emission constant. The quantity ME is the emission constant for

the emitter-base p-n junction and the quantity Mq is the emission

constant for the collector-base p-n junction. The ideal transis-

tor equations then become

IE = IES £xp (qVEAlEkT) -l|- 0(^5 £xp (qVc/MckT) -l]
(2 , 8)

and

I
C

= ICS EXP ( (IVC/MCkT) "3" S^ES EXP (qVE/MEkT) -l] . (2 .
9)

Linear circuit elements are then added to modify the ideal transis-

tor to an equivalent element to describe the actual relationship,

similar to the diode formulation. The transistor equivalent

circuit is presented in Figure 2 111 . The elements of Figure 2

are defined below:

Ig = Ig + Iq the base current

I 2
- the current generator across the collector-base junction

= I
cs

[^xp (qV
c
/M

c
kT) -I]- o(

NE
ES [Jxp (qV

E
/M

£
kT) -l]

1-^ = the current generator across the emitter-base junction

= IES [exp (qVE/MEkT) -II- ^jlcs [exp (qVc/MckT) -l]

RRR = the base spreading, bulk and contact resistance

RpF = the emitter bulk and contact resistance

Rpp = the collector bulk and contact resistance

RE = the emitter-base junction ohmic leakage resistance

Rq = the collector- base junction ohmic leakage resistance

17
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The equivalent circuit for a pnp junction transistor may be used

for a npn transistor by changing the polarities of Vq and Vg and

the directions of 1^ and I2.

The specification sheets for transistors usually specify

common-emitter DC current gains Hrp and Hrr rather than the

common-base DC current gains ©<^ and °( j . The relationship

between these o( T s and Hpp's are

C< N
= H

FEn/CHFEn+
l) (2.10)

and

°*I
= HFE/(%E +1)- C2 - 11)

1 1

A simplified ideal model of the junction transistor is given

in Figure 3, where 1^ and I2 are replaced with diodes and

dependent current sources. The resistances R^ and R^ are assumed

to be very large and Rgg, RqC' anc* REE are assumG(i to be small.

For Figure 3 the elements are defined below

Z EF " IES EXp CiVe/MeIcT) -f] (2 . 12)

and

ICF = I CS [^xp (qVc/MckT) -l] . (2 . 13)

From measured data, the parameters Rqq, R££, Rbb> ^E» ^C>

l£g, I^g, Hp£ , and Hp£ . are to be determined to describe a

specific transistor.

The complete model including the AC components for the diode

is given in Figure M-. The AC components added to the diode model

are

C-£ - the junction transition capacitance

and

19
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C^ - the junction diffusion capacitance.

In Figure 5 the AC components have been added to the

transistor model so all operating conditions except the break-

down regions for the junctions can be accounted in the model.

The added components are

CfE " the emitter-base transition capacitance,

C-j-q - the collector-base transition capacitance,

C^p
(

- the emitter-base diffusion capacitance,

and

C^q - the collector-base diffusion capacitance.

The transition capacitances are functions of the junction voltages

and the diffusion capacitances are functions of the emitted

currents from the emitter and from the collector I

1J

.

22



FIGURE S

Complete Transistor Model
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III. LEAST-SQUARE-ERROR SOLUTIONS

The method chosen to compute the various parameters of the

models presented is the least-square-error estimation. This

solution is for a set of overdetermined simultaneous linear

equations. There are two least-square-error methods presented.

The first method is the usual least-square-error solution

utilizing the concepts of the pseudo inverse as developed by

Penrose I 6 Ji and presented by Werther I M-J . The second method is

the normalized least-square-error solution as developed by

Werther and Parker |_M_|. A recursive equation is presented for

each method to facilitate the use of additional data points in

the calculation. These two methods and the estimations are

compared with measurements to determine the usefulness of each

method.

The material for the least-square-error estimation and the

normalized least-square-error estimation was obtained from

Werther Qf)

.

A. LEAST-SQUARE-ERROR SOLUTION

The least-square-error solution is a very common method of

solving a set of m simultaneous linear equations in n unknown,

m being greater than n. This is the overdetermined case for

linear equations which is common when measurements are made to

find a small number of unknowns. The least-square- error solution

214



solves the relationship

Ax = b (3.1)

where A is the m by n matrix of coefficients,

b is the m by 1 vector of constants,

and

x is the n by 1 vector of unknowns.

A unique solution for x is obtained by using the concept

of the Penrose pseudo inverse. This yields the exact solution

if it exists, or the least-square-error approximation if the

exact solution does not exist. The Penrose pseudo inverse is a

n by n matrix and is identified as A+ . The least-square-error

solution is

£ = A~V (3.2)

If the matrix A has rank n the least- square -error solution is

x. =[aT3 ATb (3.3)

where A^ is the matrix transpose of the matrix A and |_A Aj
-1

is

T
the matrix inverse of the product of A and A. In order for the

rank of A to be n, the rows of A must be independent. This

solution is easily obtained on the digital computer with available

matrix operation subroutines.

For the recursive relationship, the least-square-error

solution for the first k points is

% = PkVkk ( 3 -^)

where Z]< is equal to bj^ which is the vector of k points,

1-The bar under a lower-case letter represents a column matrix
or vector.
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and

A^ is the k by n coefficient matrix,

T
P^ is the inverse of the matrix A^ A^,

A
xj< is "the least-square -error solution.

Now to consider the k+1 equation, jet- is a row of new coefficients

to the A matrix and zj^+i is the new data for the vector b^-^.

Therefore

Ak+1
A

and

(3.5)

b.k+1
*k

±k+l

The k+1 least-square -error solution is

x = P A T7
-k+1 *k+l

A
k+l -k+1

where P^+i is the inverse of the matrix [a^+^^A^+i]

The resultant recursive equations are

*k+l = *k + —t (zk+l-a 1^)

and

Vi pk

T
1+a P^a

Pk-a aTPk

l+aTPka

(3.6)

(3.7)

(3.8)

(3.9)

B. NORMALIZED LEAST-SQUARE-ERROR SOLUTION

The normalized least-square-error solution is a weighted

least-square-error solution with weighting factors chosen such

26



that the solution lies as close as possible to all geometric loci

described by equation 3.1.

The matrix of weighting or normalizing factors is a diagonal

m by m matrix called W. The factors w.q are given by

n

w-ii "" (Xaij 2)~^ i=l,2,...,m (3.10)

3=1

This weighting matrix is multiplied times the matrix A and

vector b resulting in two new quantities

A* = WA (3.11)

and

b* = Wb. (3.12)

The normalized least-square -error solution is then

^* = [a*TA*] A*Tb*. (3.13)

The recursive relationships for the normalized least-square-

error solution are

" k " " k+i
l+a*Pg a*(z*k+l " a*x*k)

(3.14)

and

Pg a*a*Tp£

P
*k+l = P*k " T^— ' ( 3 - 1S )

l+a*T P* a*

Using the fact that

z *. ,
= (aTa) 2

z,
,

(3-16)
- k+1 v

' -k+1

27



and

a* = (a
T
a) "a (3.17)

the recursive relationships become

A* = A tfi± _ T (3.18)" k
"

k
aWPk* £

k+1 k

and

?k a a
TP£

p* = p* . (3.19)
k+1 k m .

l+aT P* a— k —

The recursive relationships for both the least-square -error

solution and the normalized least-square -error solution are

easily adapted to the digital computer and a sample computer pro-

gram for each method is found after the Appendix.

28



IV. DETERMINATION OF SEMICONDUCTOR PARAMETERS

Using the models presented in Chapter II, the model parameters

are calculated utilizing the least-square-error method. Param-

eter calculation is accomplished using the above equations and

the equivalent circuits. In order to use the least-square-error

methods, the nonlinear equations characteristic of these semi-

conductor devices must be converted to a set of linear equations,

which involves several assumptions. The solution is made on the

nonlinear equations where these equations can be assumed to be

linear. The error associated with these assumptions is so small

it is considered negligible.

These parameters enable the user to employ these models

in existing computer circuit-analysis programs and obtain

computed results that very accurately represent the actual per-

formance. The data for parameter estimation may be obtained

using the measured current and voltage values o r values taken

from device specification sheets. When specification sheets

are used, the values of the voltage should be read to several

millivolts in order to obtain accurate results.

Since the data involves experimental error and is statistical

in nature, as many data points as possible should be used in the

estimation of the semiconductor parameters. Since the measure-

ments are independent, in general, the rank of the matrix A in

equation 3.1 is equal to n, the number of parameters. Since the

overdetermined case must have the matrix A with a rank of at

least n, the solution presented in Chapter III may be used.

29



A. LINEAR EQUATION FOR DIODE PARAMETER ESTIMATION

The model for the semiconductor diode is presented in

Figure 1. In order to determine the values of the parameters,

the model equation has to be simplified and made linear to be

compatible with the least-square-error methods. Using Figure 1,

the following can be stated:

Ij = I + V/Rl5 (4.1)

or

I- = I
s
[exp(qV/MkT)-l] + V/R^ (4.2)

The first restriction is that Vj (the measured terminal

voltage) be positive (Vj^O). With this restriction,

exp (qV/MkT) >> 1 because even with small positive measured

voltages (for example 0.1 volt) and with q/MkT = O.025, the term

exp(qV/MkT) =54-. 99 . This is much greater than 1. Since Ri is so

very large compared to V, I "^V/R-^, and equation 4.2 is simpli-

fied to

Ij = I sexp(qV/MkT) (4.3)

which by rearranging becomes

V = MkT/q In (I ./IJ . (4.4)

Referring back to the model

V. = V + IjRs , (4.5)

and substituting 4.4 into 4.5 results in

Vj = MkT/q ln(Ij/I
s ) + IjR

g
. (4.6)

30



This equation is simplified by letting Aq = MkT/q and

A-l = 1/I S , obtaining

Vj = a mcA-Lij) + l,r8 (lk7)

Vj = A ln(Ax) + A InCIj) + I.jRs (4.8)

Vj = A 3 + A ln(Ij) + IjRs , (4.9)

where A^ = Aq ln(A^) . This approach is currently used by

North American Rockwell Corp., among others.

In the above equation, V-; and I-: are the measured forward-

voltage and current data points for the diode. The other three

quantities are constants to be determined using the least-square

-

error procedure. For the least-square-error method

A =

ln(Ii)

ln ^m) Im

(4.10)

and

A .

b =

V,

Vm

A A3
x = A

Rs
__

(4.11)

(4.12)

where x is the least-square-error solution. After A3 , Ao and Rs

are determined, the parameters of primary interest are calculated

using the following relationships:

31



M = AQqAT, (4.13)

AX = exp(A3/A ) , (4.14)

and

Is
= 1/AX . (4.15)

The three parameters M, I s and Rs are then calculated and

can be used in the circuit-analysis computer programs.

For determination of Ri, (the reverse diode leakage resist-

ance due to the imperfections, surface effects, and thermally

generated carriers in the depletion region) the same equation is

used as the one for the determination of the other diode

parameters. For this case, data points are used from the reverse

characteristics of the diode; thus Vj and Ij are both negative.

The basic equation is 4-2. By making an assumption that

exp(qV/MkT) «1 for V less than -0.2 volts, 2 equation 4.2 is

reduced to

Ij = -I
s

+ V/Rjl. (4.16)

Solving for V,

V - (Ij + I s)Ri (4.17)

and substituting this into equation 4.5 results in

Vj = (Ij + I
s ) Rl + IjR

s
. (4.18)

Rearranging,

Vj = Ij(R
x

+ R
s ) + I

s
Rr (4.19)

2With V = -0.2 volts and MkT/q = 0.026, exp (qV/MkT) = 4.5xl0" 5

and most measured data is less than -0.2 volts.
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Setting (Rjl + Rs ) = A 5 and Ig^ = A
6

results in

(4.20)

This is solved using the least-square-error procedures with

Vj = IjA 5
+ A

6 .

A =

J
l 1

Jm 1.

C*.21)

b =

V

x =

m

A
5

(4.22)

(4.23)

In the above procedure Vj and Ij are the measured voltage

and current in the reverse direction of the diode. From the

results, R^ is determined after an assumption is made. From the

assumption that Ri>>Rs , Ri is then equal to A5 since A5 = Ri + Rs

and R is so small it can be neglected. A value of reverse

saturation current, I s , may be found from this data but this

value is not a good value for this current, especially for silicon

diodes. For a 1N540 diode, the reverse saturation current is

determined from the reverse characteristics along with R^. The

value obtained is then placed as a constant into the equation used

to derive the forward parameters. The other two parameters are

derived to see if this reverse saturation current resulted in

parameters in the useable range . It is found that the value of

Rs is -1.46 ohms and the value of M is 3.67. These values are not
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realistic numbers to be used in computer circuit-analysis pro-

grams. These values are determined in the Appendix. The reverse

characteristics of silicon diodes tend to be more difficult to

model, since the ideal diode law breaks down completely as a

description for the reverse silicon-diode behavior [7J . In most

p-n junctions the reverse current is not completely voltage-

independent, due to the surface leakage. R^ is the only reliable

parameter derived from the reverse data.

Several regions of the forward characteristics were investi-

gated to discover where the best parameter estimations can be

found. The standard deviation was computed to determine the

closeness of fit to the measured points of the various regions.

The closeness of fit is an indication of the error involved. The

least standard deviation was found to be when the data was

utilized along as much of the forward curve as possible. A

comparison using the standard deviation from data received in

different regions along the curve reveals this fact. Using the

points corresponding to the large values of the measured voltage,

or far out on the curve, the standard deviation is three times

greater than the standard deviation found using the complete

curve. The deviation found from the data of small values of

voltage, or closest to the origin, is also much larger than the

least standard deviation. These calculations are included in the

Appendix using the 1N5M-0 diode.

The reverse saturation current determined from the forward

characteristics was used to help find Rj from the reverse

characteristics by setting I s a constant in the derivation. This
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method reveals that this value of I has very little effect on

the value of R^ obtained. A simplified equation for determining

R^ can be made,

Rl = Vj/CEj-Ig), (4.21Q

where V- and 1^ are measurements from the reverse characteristics.

The parameters for two diodes, 1N5M-0 and 1N277 are calculated

in the Appendix. The standard deviation for each diode using the

parameters determined is also given. The standard deviation was

found using the measured voltage V^ and the calculated voltage VC;

from the measured current I*. Equation M-.9 is solved placing the

estimations of the parameters in the equation for the constants

and using the various values of measured current. The value

obtained is called VC • . The standard deviation is found by the

following relationship

standard deviation =

N

(vc.-v/

= 1 0*.25)

N - 1

where N is the total number of data points used. This value

of the standard deviation is used as an error indicator. The

method with the largest standard deviation has the largest error

using the same data points. For the two diodes used, it was

found that the least-square-error method had a smaller standard

deviation than the normalized least-square -error method, for

both diodes. The difference is quite small and is not a good

indicator of which method is best. From using these programs,

it appears that the normalized least-square-error method has an
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advantage in calculations when the measurements are at relatively

great distances from the actual desired curve. Either method

estimates parameters that give a curve that has less deviation

than that expected due to variations from diode to diode due to

manufacturing procedures and techniques.

B. DETERMINATION OF PARAMETERS FOR JUNCTION TRANSISTORS

The model for the junction transistor was presented in

Figure 2. The parameters to be determined are Igg, *CS> He» ^C>

RBB> RCC' REE' RE an(^ RC • •Cn ^is analysis, the emitter-base and

the collector-base junctions are considered to be two separate

diodes for these calculations. For the emitter-base p-n junction

parameters, measured data are made with the collector terminal

open circuited and for the collector-base p-n junction parameters,

measured data are made with the emitter terminal open circuited.

Considering the emitter-base junction as a diode, calculations

are made on the forward measured data to determine the quantities

lES 5 Me, and Rse > the same as I s , M and Rs were determined for the

discrete diode above. The quantity Rg£ is the combined emitter-

base body, lead and contact resistance. The emitter reverse

leakage resistance (Rg) is determined using the reverse character-

istics, the same as for the diode.

For the collector-base junction considered as a diode,

calculations are made on the forward characteristics to determine

the quantities Iqs» ^C , and RgQ , the same as was computed for the

diode. The quantity RgQ is the combined collector-base body,
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lead and contact resistance. The collector reverse leakage

resistance (Rr ) is determined using the reverse characteristics,

the same as for the diode

.

To complete the model parameters for the junction transistor

an assumption is made that the emitter bulk resistance is zero.

The quantity REE is the emitter bulk resistance. Using this

assumption, Rgg is calculated from

RBB " (HFEn
+ D^E C 4 ' 26)

The collector bulk resistance is determined to be

RCC = RSC - RBB/^FEi + X) C4 - 27)

The quantities Hpg and Hpp . are the common-emitter DC normal

and inverted current gains respectively.

The shift of HPF can be evaluated from the specification

sheets available on the individual transistors . Specification

sheets normally give curves of HFF versus I p . An average value
JrLn L

is obtained by taking n values of Hpg from the curve at equally

spaced values of collector current over the range and then

dividing by n. This average value of HFEn can "then be used in

further calculations of parameters. The parameter HpE± can be

measured directly or assumed to be values as shown in Table I

.

The common-base O^'s can be calculated using equations 2.10

and 2.11.

This procedure of determining the model parameters for the

junction transistor are currently used by North American

Rockwell Corp., among others.
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TABLE I

Typical Values of Hp£

.

(Reprinted from the Motorola Switching Transistor Handbook.)

Transistor Type Typical HpEi

Planar, silicon epitaxial 0.2

Alloy, uniform base 4

Alloy, diffused base 1

Mesa, diffused base 0.4
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C. TYPICAL VALUES FOR MODEL PARAMETERS

For the p-n junction diode the values of M, R and I are

usually determined to be in the following ranges . The value of

M is between 1.0 amd 3.0. the value of Rs is between 10 and

10"-'- kilohms, the value of I silicon is from lO
- -^ to 10 mA and

s

for germanium is from 10 to 10 mA

.

The quantity R-. has a value

between one and ten megohms

.

The junction transistor parameters are usually contained in

the following ranges: The value of M£ and Mq is between 1.0

and 3.0, the value of R££ and Rqq is between 10" and

-2 -4 l

10 kilohms, and R
fiB

is usually between 10 and 10"-1
- kilohms.

R££ has been assumed to be zero in this analysis . The usual

range of I£S is 10 _lt| to 10 _5mA for silicon and 10" 8 to 10" 2mA

for germanium. The value of Iq§ is usually an order of magnitude

larger than I £g . The quantities R-> and R^are usually larger

than one megohm.

These are only typical values, but if a parameter is

substantially outside the usual range, the input data and

calculations should be checked for error. These values were

presented by Design Automation, Inc. [l]

.

The parameter values for the two diodes calculated in the

Appendix conform to the typical values for the model as is shown

in Table II.

In Table III a comparison of the values calculated using the

least-square-error methods to the values calculated following

the procedures given by Design Automation, Inc. [lj. There is

very little difference in the parameter values derived by either

method. The standard deviation for the least-square-error methods
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TABLE II

Calculated Parameters and Standard Deviations

INS 40 1N277

Usual Normalized Usual Normalized

M 1.7S 1.76 1.07 1.10

Is 1.6SxlO~ 10 1.86X10" 10 2.65X10 -10 3.72xl0 -10

Rs 0.13 0.126 82.83 67.9

SD 0.006 0.0062 0.0025 0.0027
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TABLE III

A Comparison of Parameters Derived Using Two Methods

Design Automation Least Square Normalized Least Square

M 1.75 1.7S 1.76

I s 1.5xl0" 10 1.65xl0 _10 1.86xl0- 10

R 0.132 0.131 0.126
s

SD 0.0076 0.006 0.0062

41



is a little less than that for the method of Design Automation,

Inc. This indicates that the least-square-error methods are as

well suited to these models as other procedures.

D. COLLECTION OF DATA POINTS

The measured values of current and voltage used in the

A matrix and the b vector for the least-square-error methods need

to be evenly distributed from the minimum value of voltage (at

least 0.1 volt) to a value of voltage that corresponds to maximum

power. If these values are too close together or on only one

portion of the curve, the derived parameters turn out to be

negative values or values that do not correspond to the usual

range. Most of this type of error is due to the inaccuracy of

the measurements of the voltage and current. A typical derivation

is presented in the Appendix. After the parameters have been

initially estimated, the additional points are utilized in the

recursive relationships. The additional points may be taken

anywhere between the minimum and the maximum values of voltage.

The least standard deviation is found utilizing as much of the

forward characteristics as possible.

For the reverse characteristics, fewer points are needed and

they may be spread more than the forward characteristics. The

reverse leakage resitance is a large value and if equation M-.2!+

is used only one set of points is needed in the calculation.

This calculation need not be too accurate since the reverse

leakage resitance is of little importance. Values of current

and voltage between -0.2 volts and the breakdown voltage are

acceptable

.
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V. CONCLUSION

A good model has been chosen since it has been shown that

these models accurately represent electrical performance of the

device over a very wide range and the models are computationally

efficient in regards to the computer circuit-analysis programs

presently in use . It is found that the error by this method is

considerably less than the variation in the characteristics due

to manufacturing techniques. The region chosen to measure the

data for the parameters for the forward characteristics is

represented as the points lying between 0.1 volts and the maximum

power rating of the device. The measured data best represents

the device when the points cover as much of the curve between the

above mentioned points as possible. Considering the two methods

of parameter approximation, both methods give results that are

well within the accuracy expected. The normalized least-square-

error solution does more to eliminate the influence of points

located farthest from the desired curve.

The standard deviation, which is a measure of the error in

parameter estimation, reflects that these models give an accurate

representation of the actual performance of the semiconductor

devices. The standard deviation from the least-square-error

methods is a few millivolts and most measurements could be this

inaccurate . As seen on the forward characteristics presented in

Figures 6, 7 and 8, the difference between the actual measurements

and computed values is almost indistinguishable.
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Parameters were not estimated for a transistor, but the

method of determining these parameters is straight-forward and

should not present any serious difficulty. Semiconductor devices

with more p-n junctions than the transistor can be modeled

similarly by dealing with each junction separately as a diode.

A comparison of values of parameters from the least-square

estimates with other methods of parameter estimation reveals that

the least-square-error methods produce parameter values essential-

ly the same as other procedures. The error for the least-square-

error methods is slightly less than other procedures.
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APPENDIX

Examples of Parameter Estimation

This section is used to give two examples of the use of the

procedures presented in this thesis. Two diodes, one the 1N540

and the other the 1N277, were used in this analysis as the two

examples. Measured data of current and voltage were taken in the

forward and reverse portions of the two devices to be used to

determine the device parameters.

The following is the forward data collected for the two

devices with the voltage given in volts and the current in

milliamperes

.

1N540 1N277

Voltage Current Voltage Current

0.4 0.002 0.25 0.002
0.48 0.006 0.27 0.004
0.5 0.0092 0.28 0.006
0.52 0.014 0.285 0.008
0.54 0.021 0.29 0.01
0.56 0.033 0.3 0.014
0.58 0.0555 0.31 0.02
0.6 0.086 0.32 0.025
0.64 0.215 0.34 0.049
0.68 0.483 0.36 0.085
0.72 1.15 0.38 0.14
0.76 3.18 0.4 0.222
0.8 9.15 0.42 0.37
0.84 15.5
0.88 37.8
0.92 76.0
0.96 155.0
1.0 270.0

The reverse data for the devices are presented with both the

current and the voltage as negative quantities and the current is

in milliamperes and the voltage in volts

.
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1N540 1N277

Voltage Current

9.0 0.01
11.2 0.012
13.0 0.014
15.5 0.016
19.5 0.20
22.5 0.24
26.5 0.0265

Voltage Current

2.65 0.004
5.8 0.008

10.0 0.0125
11.5 0.014
20.0 0.024
30.0 0.0355
36.0 0.0425

Using seven selected points, an A matrix is assembled to

start the recursive operation with the forward characteristics.

These seven selected points are spaced over as much of the curve

as possible so as to take into consideration the influence of

different parameters on various regions of the curve. Errors are

sometimes encountered when two points are used that lie too close

to each other.

The seven points chosen for the A matrix and b vector are

1N540 1N277

Voltage Current Voltage Current

0.58 0.0555 0.25 0.002
0.6 0.086 0.27 0.004
0.68 0.483 0.285 0.008
0.72 1.15 0.3 0.014
0.88 37.8 0.34 0.049
0.96 155.0 0.38 0.14
1.0 270.0 0.42 0.37

where the voltage is in volts and the current is in milliamperes

The natural logarithms of the currents were determined and the

information was then run on the computer programs to start the

recursive procedures. The solution of the parameters using only

the first seven points for the 1N540 are as follows for the

least-square-error methods described above.
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Least Square Normalized Least Square

M

1.021+9

0.0453
0.1268
6.656xl0 9

1.502x10-1°
1.743

1.0233
0.0451
0.1324
7.1373xl0 9

1.4019x10-10
1.734

The solutions for the points for 1N277 are

Least Square Normalized Least Square

A3
A0
Rs
Al
Is
M

0.6097
0.0275

78.2493
4.1626xl0 9

2.4023xl0- 10

1.0587

0.6162
0.0281
71.3765
3.3997xl0 9

2.941xl0- 10

1.0798

The rest of the measured points are used in the recursive

equations and result in the final forward parameters as

1N540

A3
A0
Rs
Al
Is
M

Least Square

1.0246
0.0455
0.1308
6.0536xl0 9

1.6519x10-1°
1.7495

Normalized Least Square

1.0261
0.0458
0.1257
5.3908xl0 9

1.855xl0- 10

1.7611

1N277

A3
A0
Rs
Al
Is
M

Least Square

0.6116
0.0277

82.8309
3.7768xl0 9

2.6477x10"!°
1.0666

Normalized Least Square

0.6236
0.0287
67.8968
2.6885xl0 9

3.7195xl0-10

1.1047

The seven points from the reverse characteristics were only

evaluated using the normalized least-square-error method since

the only parameter attained from the reverse characteristics is
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the reverse leakage resistance Rt. The value of R-> is of little

importance and any value in the megohm range will be adequate.

The calculated values of R-. are

1N540 1N277^

—

R
±

9.65xlO S 8.69xl0 5

Values of these parameters were calculated with the procedures

of Design Automation, Inc . Jllusing the data as listed above. The

following values were obtained.

1N540

M 1,.75

Rs 0,.132

Is 1,.5x10"
-10

It is evident that these values are quite similar to those of the

least-square-error methods.

The standard deviation using equation 4.25 was calculated for

the three sets of parameters calculated by the above methods.

Each standard deviation calculated is listed below.

Standard Deviations
''<

1N540

Design Automation Least Square Normalized Least Square

.

; 0.0076 0.006 0.0062

1N277

0.0025 0.0027

In checking the various regions of the curve to be used the

standard deviation was calculated for the parameters derived

from data far out on the curve. The parameters calculated were

M equals 1.872, I s equals S.686xl0"10 and Rs equals 0.101. The
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standard deviation for these parameters is 0.0184. This

indicates that the best parameters are derived from data covering

as much of the curve as possible.

The standard deviation is a measure of the error between the

calculated and the actual measurements. It is seen that the

deviation is usually only a few milliamperes

.

Figures 6, 7, 8, 9, 10 and 11 are plots of the forward

characteristics from the measured data and also of the calculated

parameters for diodes. From these curves it is clear that the

solution obtained by the least-square-error methods is very

accurate

.
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Plot of Measured Points for the 1N540 Diode
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Plot of the Measured Points for the 1N277 Diode
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Plot of Calculated Points Using the Least-Square
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Plot of the Calculated Points Using the Normalized
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COMPUTER PROGRAMS

C THIS IS THE MAIN PROGRAM FOR THE NORMALIZED LEAST SQUARE
C ERROR SOLUTION.
C A IS THE M BY N INPUT MATRIX OF COEFFICIENTS.
C B IS THE M BY 1 INPUT VECTOR OF CONSTANTS.
C RS, SI, AND ETA ARE THE OUTPUT PARAMETERS WHERE RS
C IS BODY RESISTANCE, SI IS THE REVERSE SATURATION CURRENT
C AND ETA IS THE VALUE FOR THE EMISSION CONSTANT M.

.

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A (10,10) , B(10,10), C(10,10), D(10,10)
DIMENSION W (10,10) , T(10), A2(10,10), E (10,10)
DIMENSION A3 (10,10) , F(10,10), G(10,10), H(10)
READ (5,i+) M,N
READ(S,5) ((A(I,J) ,I=1,M) ,J=1,N
READ(5,5) (B(I,1) ,I=1,M)

4 FORMAT (2 110)
5 FORMAT (7F10.0)

. DATA T/10*0.0/
DO 118 1=1,

M

DO 118 J=1,N
T(I)=T(I)+A(I,J)**2

118 CONTINUE
DO 122 1=1,

M

W (I , I) =1 . 0/DSQRT (T (I) )

122 CONTINUE
DO 114 1=1,

M

B(I,1)=B(I,1)*W(I,I)
DO 114 J=1,N
A(I

s
J)=A(I,J)*W(i;i)

114 CONTINUE
DO 2-3 1=1, M
DO 23 J=1,N
A2(J,I)=A(I,J)

23 CONTINUE
CALL MATMUL(A2,N,M,A,M,N,C,M4,N4,L)
CALL GAUSS3(N,EPS,C,A3,KER,10)
IF (KER.EQ.2) GO TO 10
CALL MATMUL(A3,M4,N4,A2,N,M,D,M5,N5,L2)
CALL MATMUL(D,M5,N5,B,M,1,G,M8,N8,L3)
PRINT 8, (G(I,1) ,I=1,N)

8 FORMAT(10X,3D14.6)
DO 303 J=l,10
READ(5,30) (H(I),I=1,N)
READ (5, 32) Z

30 FORMAT (3F10.0)
32 FORMAT (1F10.0)

CALL WRLSF (A3,H,G,Z,N)
PRINT 8, (G(I,1) ,I=1,N)
A4=G(1,1)
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A0=G(2,1)
RS=G (3 , 1)
Al=DEXP(Ai+/AO)
PRINT 33, A4,A0,RS,A1

33 FORMAT(10X,4D14.6)
SI=1.0/A1
ETA=A0*38 . 16
PRINT 8, SI, ETA

303 CONTINUE
GO TO 300

10 WRITE (6, 12)
12 FORMAT(10X,8HSINGULAR)

300 STOP
END

C THIS IS THE MAIN PROGRAM FOR THE LEAST SQUARE ERROR
C SOLUTION.
C A IS THE M BY N INPUT MATRIX OF COEFFICIENTS.
C B IS THE M BY 1 INPUT VECTOR OF CONSTANTS.
C RS, SI, AND ETA ARE THE OUTPUT PARAMETERS WHERE RS
C IS BODY RESISTANCE, SI IS THE REVERSE SATURATION CURRENT
C AND ETA IS THE VALUE FOR THE EMISSION CONSTANT M.

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A (10,10) , B(10,10), C(10,10), D(10,10)
DIMENSION A2 (10,10) , A3 (10,10), G(10,10), H(10)
READ (5,4) M,N
READ (5,5) ((A(I,J) ,I=1,M) ,J=1,N)
READ(5,5) (B(I,1) ,I=1,M)

4 FORMAT (2 110)
5 FORMAT ( 7F10.0)

DO 23 1=1,

M

DO 23 J=1,N
A2(J,I)=A(I,J)

23 CONTINUE
CALL MATMUL(A2,N,M,A,M,N,C,M4,N4,L)
CALL GAUSS3(N,EPS,C,A3,KER,10)
IF (KER.EQ.2) GO TO 10
CALL MATMUL(A3,M4,N4,A2,N,M,D,M5,N5,L2)
CALL MATMUL(D,M5,N5,B,M,1,G,M8,N8,L3)
PRINT 8, (G(I,1) ,1=1, N)

8 FORMAT(10X,3D14.6)
DO 303 J=l,10
READ(5,30) (H(I),I=1,N)
READ (5, 32) Z

30 FORMAT (3F10.0)
32 FORMAT (1F10.0)

CALL TRLSF(A3,H,G,Z,N)
PRINT 8, (G(I,1) ,I=1,N)
A4=G(1,1)
A0=G(2,1)
RS=G(3,1)
A1=DEXP(A4/A0)
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PRINT 33, A4,A0,RS,A1
33 FORMAT(10X,4D14.6)

SI=1.0/A1
ETA=A0*38.46
PRINT 8, SI, ETA

303 CONTINUE
GO TO 300

10 WRITE (6,12)
12 FORMAT(10X,8HSINGULAR)

300 STOP
END

SUBROUTINE WRLSF (A3 ,H,G,Z,M)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A3 (10,1) ,H(1) , Q(10) ,V2(10) , G(10,l)
DIMENSION Q2 (10,10) ,Q3 (10,10) , Gl(10)
CALL MATVEC(A3,M,M,H,Q)
CALL VECMUL(H,H,M,S)
CALL VECMUL(H,Q,M,V)
V1=S+V
DO 122 1=1,

M

122 V2(I)=Q(I)/V1
DO 132 I-1,M
G1(I)=G(I,1)

132 CONTINUE
CALL VECMUL(H,G1,M,Z2)
Z3=Z-Z2
DO 124 1=1,

M

124 V2(I)=V2(I)*Z3
DO 126 1=1,

M

126 G1(I)=G1(I)+V2(I)
DO 134 1=1,

M

G(I,1)=G1(I)
134 CONTINUE

CALL MULVEC(M,Q,H,Q2)
CALL MATMUL(Q2,M,M,A3,M,M,Q3,M,M,L9)
Q4=1.0D0+V
DO 128 1=1,

M

DO 128 J=1,M
128 Q2(I,J) = Q3(I,J) /Q4

DO 130 1=1,

M

DO 130 J=1,M
A3 (I , J) =A3 (I , J) -Q2 (I , J)

130 CONTINUE
RETURN
END

58



SUBROUTINE TRLSF (A3 ,H,G,Z,M)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A3 (10,1) ,H(1) , Q(10) , V2 (10) , G(10,l)
DIMENSION Q2(10,10), Q3 (10,10), Gl(10)
CALL MATVEC(A3,M,M,H,Q)
CALL VECMUL(H,Q,M,V)
Vl=l . 0+V
DO 122 1=1,

M

122 V2(I)=Q(I)/V1
DO 132 1=1,

M

G1(I)=G(I,1)
132 CONTINUE

CALL VECMUL(H,G1,M,Z2)
Z3=Z-Z2
DO 124 1=1,

M

121+ V2(I)=V2(I)*Z3
DO 126 1=1,

M

126 G1(I)=G1(I)+V2(I)
DO 134 1=1,

M

G(I,1)=G1(I)
134 CONTINUE

CALL MULVEC(M,Q,H,Q2)
CALL MATMUL(Q2,M,M,A3,M,M,Q3,M,M,L9)
DO 128 1=1,

M

DO 128 J=1,M
128 Q2(I,J)=Q3(I,J)/V1

DO 130 1=1,

M

DO 130 J-1,M
A3(I,J)=A3(I,J)-Q2(I,J)

130 CONTINUE
RETURN
END

SUBROUTINE VECMUL(X,Y,M,SUM)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(l) ,Y(1)
SUM = SUM- SUM
DO 5 1=1,

M

SUM=SUM+X(I)*Y(I)
CONTINUE
RETURN
END
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SUBROUTINE MULVEC (M,X,Y,XY)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(l) ,Y(1) ,XY(10,1)
DO 6 1=1,

M

DO 5 J=1,M
5 XY(I,J)=X(I)*Y(J)
6 CONTINUE
RETURN
END

SUBROUTINE MATVEC (A,M,N,V,P)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A (10,1) ,V(1) ,P(1)

DO 6 1=1,

M

P(I)=P(I)-P(I)
DO 6 J=1,N
P(I)=P(I)+A(I,J)*V(J)

6 CONTINUE
RETURN
END

SUBROUTINE MATMUL(A,MA,NA,B,MB,NB,C,MC,NC,L)
IMPLICIT REAL8* (A-H,0-Z)
DIMENSION A (10,1) ,B(10,1) ,C(10,1)
L=0
IF (NA.NE.MB) RETURN
L=l
MC=MA
NC=NB
DO 12 J=1,NC
DO 12 1=1, MC
C (I, J) =0.0
DO 12 K=1,NA

12 C(I,J)=C(I,J)+A(I,K)*B(K,J)
RETURN
END

The other subroutine GAUSS3 is a subroutine in the Naval

Postgraduate School Computer Facility subroutine library for

calculating the inverse of a matrix if such an inverse exists.

These programs are not the most computationally efficient but

are adequate for this calculation. There are several improvements

that can be made to these programs expecially in regard to

storage required.
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